MATERIALS FOR FISH NETS - THEIR PROPERTIES, SELECTION AND PRESERVATION

THESIS
submitted to
The University of Cochin
in partial fulfilment of the requirements
for the
Award of the Degree of

DOCTOR OF PHILOSOPHY
in the Faculty of Marine Sciences

hy
P. J. CECILY. M. Sc.

Dedicated to my mother

 Mrs. Mary Joseph
CONTENTS

Chapters Page

1. INTRODUCTION 1
2. VEGETABLE AND SYNTHETIC FIBRES 13
3. TERMINOLOGY ON FIBRES, YARNS AND TWINES 37
4. EXPERIMENTAL PROCEDURE 55
5. PHYSICAL PROPERTIES OF NETTING TWINES 65
5.1 Linear De.ısity 84
6.2 Diameter 91
5.3 Twist 92
5.4 Breaking Strength 114
$5 \overline{5}$ Elongation 126
5 6 Stress-strain behaviour 130
57 Knot strength 144
6. CAUSES OF DETERIORATION OF FISH NET TWINES 153
6.1 Rotting 153
6.2 Weathering 166
6.3 Fatigue 202
$6 \notin$ Abrasion 212
65 Action of heat and chemicals 222
7. MIXING OF SYNTHETIC FIBRES FOR FISH NET TWINES 226
8. SELECTION OF NET MATERIALS FOR FISHING GEAR 242
AND RECOMMENDATIONS
9. SUMMARY 254
10. REFERENCES 264
11. PUBLICATIONS 293

CERTIFICATE

This is to certify that this Thesis is an authentic record of research work carried out by Smt. P.J. CECILY, M.Sc. under the supervision of the late Shri. G.K. Kuriyan, former Director Central Institute of Fisheries Technology, Cochin and after his demise under my supervision and guidance and that no part of it has previousiy formed the basis for the award of any other degre in any University.

Cochin-682 016. May, 1984.

ACABOMEDCETAT

I wh to recert wy deep sense of grutitude
and indebteriness to the ite Shri. G.K. Kuriyan. former Director, Centrel Institete of Fioheries Technology. under whose apervistion the mariy part of thit xesearch wext wat carrled out.

I to grateful te Dr. C.T. Sowoel, Deme, Faculty of Merive sciences of Induatrial Ficheries, thiversity of Cochin for his viueble guidance sfter the devise of the former guide on smb-19ao and for eriticolly exanialng the mauseript and offoring veluable suggestions.

1 extromely thankful to Dr. C.C. Pandorange Fee. Dirpctor, Centrai Institut of Fisheries Technology for paptiding me with facilitiee to cerry out the researeh et Contral Institute of Fisheries Tectinology.

1 an grateful to Dr. T.K. Covindon for rendering Help throughout the course of ay study, for his keen Interest in going throwh the mauseript and for his constent oncouragesent.

1 recerd ay sincere thonite to shri. G.f. thaithen. H. Krishne Iyer and / X. Koeaven Naif, Seiontiste, Centrol Institute of Fisherlet Teehnology and to sut. K. Rachom 1akhal. Asstetent Tecknical officer for their expert advice will processing the deta.

The sincere assistences rendered by S/Shri. K.B. Thilatan, M.L. Anselem, V.K. Ibrihin ond K. Bhaskaran. Technicians, Centrel Institut of Fishezies Teehnology and Kumart Reens Rejegopal of the Department of Indwetriol Fisheries, University of Cochin in the prem paration of this document ere gretefully echnowiedged.

To the Indtion Council of Agricultural meatreh I record $x y$ sincere thonk for the fecilities scemeded to me to conduet the stedies at the Cmbrel Institute of Figherie: Technolegy.

Cochin-682 029
20-:-1934.

(1)

1 IST OF PHOTOGRAPHS

1. Different types of synthetic yarns used for the nanufacture of fish net twines
2. Different types of twines used for fabrication of fishing nets
3. Torsion balance
4. Travelling microscope
5. Twist counter
6. Tensile strength tester
7. Abrasion tester
8. Static loading test
9. Hand driven twine twisting device
10. Ring-type twine twisting nachine
11. Combination twines made of multifilaments of polyanide and polypropyiene yarns
12. Combination twines made of PA multifilaments and PE fibrillated tape yams
13. Combination twines made of PA multifilaments, PE fibrillated tape yarns and PP multifilarents
14. Knot-less net
15. Thangurvala operation

IIST OF TABLES

Pag 18

1. Compentiton of vegotable fibres
2. Charseteristiee of ophthetic flbree wied for maling fion net tuacs 26
3. Physicel papperties of single stroncod hand-riode colton twinet ueed for indigmowt 66 gill neta
4. Prysical papperties of single stranded hondacde cotton twines beed for indigenows selme net 67
*. Physical properties of mitistrenoded cotten trines used for indigmove nete 6
5. Phyaicel properties of mehine-made soft twisted cotten twines 69
6. Physical properties of enchlnemato 70 hand twisted cotten twines
©. Phyeleal paopertios of sun hemp tuines used 72 by fisherwon and those obtained frow treders
S. Pryaicel propentiee of Itcilian meap twines 74
7. Physical propertiet of celr twinet 7
8. Comparative phytical propertiot of vegretoble fibre enines 76
9. Pryiteal properties of pelyonide maltifilament twines 7
10. Physteal properties of polyothyiene menofilament twine: 76
11. Phyeicel properties of thinee ande of pelyethylene senefilament braided twines 80
12. Physical papperties of tuines nade of polyethyiene f2at tape tminos. 81
Page
13. Pryalcal properties of pelyetirione flbrillated tape trinee
14. Phytical properties of polypropyiene sultifila- nont twines 33
15. Reistionahip betmen sees, totel nuber of yatme ond dimater of vegotable fibre tuinet 86
16. Twist specification for cotten turinee, twisted 97
in mea direction with different twiet-fecters
17. Twist specifications for cotton twines twisted in 98 z2e Arection with different twistefactors
18. Contraction in length of cotten yomes during twisting operations uning houd triven twine twisting device 100
19. Contraction of yazns in ring type twisting wochine 101
20. Phypical properties of sinilar spectificetions of nyion twinet obtetne frow ifferent truder 103
21. Thysicel propertien of sinilar spectificotione of pelyothyleme moveriloment twimes obtained from 304 different trodare
22. Specifications for softhenisted pelyomice nulti- filament twines 106
23. Specificatione for hord-twisted polyanide malti- Fillant timines 107
24. Specification for polyethyione menofilasent ewines 108
2t. Specificetione for pelycthyione not tepe twines 109
Peg
25. Specification for polyothylem 4brilloted tope twinet 110
26. The reictieachip between outertivet. Imertimet. totel muber of yarns and count numbers of yorn 119
27. Rel otionchip botmen breaking otrongth, mumber of 117
28. Knot strength of vegotoble fibre twines 141
29. The hydregrephicel fectors during the tiffernt monthe of the vear 156
30. The rotting per doy for the different mathe of the year 187
31. Resistance of synthetic twines to continwous imession in Cochin bactrers 162
32. Comparstive mether reicetance of dizferent 172 vegetatle fibre twines
33. Weather resistance of vegetable twines treated with IT cuteh and coal tar
34. Anove - vegotoble twinet treated with cutch and 177 conl tar
35. Comperative mether retiotence of arferent 182 onthetic yeans
36. Comperntive wenther resist ance of different synthetic twines. 18 :
37. Comparative weather resistance of synthetic twines of different dioneters 108
Pager
38. Weother reisstance of myien tudnes dyed in differmet shedee 193
39. Weether reoistance of infien twines treated with cutch, cutch fixed and coal tar 198
Ah. Comparison of regreasion ilnes - leg rotained strongth on number of monthe of expoevre to wether 193
40. The elongation, breaking atrongth and at roteh of 210 different not naterials on fatigue de to tutic loeding
41. Comparison of abresion resiatance of nyien and teryione 218
42. Comparative abreetion reiotance of ifffermen not aterials 220
43. Action of heat and cheraicals on the properties of 223 net tuines
44. Physical properties of if monofilament twisted twine 228
SO. Physical propertiec of trines made of PP monofilements 229
45. Physicel preperties of twines nede of PE monoflianente 250
46. Physical properties of twinet mede of conbincticn twines of PA. PP and PE monefliamonts 231

(vi)

MEABMARES

Pege
2. Dircetion of tuist and whet of cemptrvetiman of tuintes
2. Eratdel twine 38
3. Bifforent typet of mote uod In mot fabsictition 68
4. Fioxibilisy tenting Anvice 62
 synthetic twines
6. Anagle of twist 53
di meter -
PA miltiflemont twines 120
A. Feletionanlp between breaking atrength and di acoter - IE moneitilamont tuines 122
 - PI wonefilistent srailet minet
10. Nelationahip betwen breakino strongth and fiomoter

- PE Nat tape tuines 123

- PE fibxillated tape twines 124

12. Snistionenty butwoen bseokine otrongth mid diometer

- PP mitifiteant tulave H2

13. Strese-stroin behwolewr of netting twines - Cotten tuines	Page 134
	132
- - - met	136
12. - movefilament tuinee	137
16. - PE moneflisment brolded twince	139
17. * - Ptitiat tape tmine*	140
18. - PE fibrilisted tape twines	141
19.: - PP mitifilament tulnes	143
20. Folcticnehip betwen lmot strength mat diarter	150
21. Knot=fficientey of afforont synthetie fish net tudnes	102
22. Comparisen of weatrer xestatence of vegetable flore tulnee	173
23. Weather realstance of cetton tulaes	178
24. - ean how tuninet	379
2*. - Italien heop tuinet	180
26. Comperwive wather resiecence of different evnthetic yams	183
27. Weather resistance of of differomt syanthetic twines	186

28. Weather resistance of synthetic twinee of difforme Pagedilumers190
29. Weather reeistonce of nyion tuinet sreated with cutch. cutch fired and cool sax 1%
30. Weather resistmee of mylen treated segreesien 1ines 201
31. Faplgue tue to static leading - Cotten tulnes 203
32. - - PA mitifilment twines 204
33. " PE nonefilisnont twines 20e
34. - PE smoftlament breldod 206
35. . - PE flat tape tuinee 207
36. - - PE flbrillated tape tuinee 208
$37 . \quad$ - - - PP multifilamant tmines 209
37. Streacletrein behoviour of nyien twines obreded for unfernt cyeles - dry 216
38. - - met 217
39. Street strain behaviour of conbination tulne and tuince wade of compenente 234
40. Strestastrain behowiout of combination tmines of differmet Honeters 236

claptisa I

introdectian

Fishing eraft and eeer play vital roles in the exploitation of the Iishery resourcea. Mishing exafts incinde eatmarans, deg-out comoen and amoll plank-bailt boate ranging in leagth from three to fiftera motres. The traditicmal fishing gears are dras nets, drift note, gill note, shore seines, boat seines, cast nets, hooks and linee and traps. Fishing methods lite traviling, trolling and parse seining vere introduced with the operation of mechanised boats. The materials for the fabrication of fishing gear plav an important role in fisheries development.

Histopient pemmats

At first, fibres of vegetable origin were the main Haterials used for fish net fabrication, Cotton, a seed fibre obtained frem geanyily spp. was mot comoniy used for fishing nete, while 'goft fibres', al so knova as 'best fibres' obtained

 (hinm rititatinding) vere alwo used for difforent types of Ilshing gear. The leaf fibres obtained from sisal (Arace
 were extensively ased all over the world for maling trawle, set note and ropes.

Prior to the introduction of synthetic tuanes, vegetable fibres vere the naterials used in India for the fabrio
cation of indigenoma fiching cears in the differcont maritine 8tates of India. Hornell (1937), Mukerjee (1959), Kwifitia and Ractalakehny (1960) and Kuriyan and Cecily (1962) mave reperted the use of alffereat vegetable fivre twines for various types of fishing gearz. Balasubramanan at al (1960 , 1961) reported the ise of old pieces of un homp diflt nets converted into botton set gill mets for the capture of lobatort. Josoph and warayanin (1965) indicated the use of an hem tudies of diametors ranging from 1 to 2 for eome of the bottom set gill nete in Brabmaputra piver systen, In Karnateka fishories, "rampail met is atill made of bolip tuines and the bost guited material for botton eet gill nete for dara fishory off the coant of Dorbay is Italian homp (Dealpande 1962). Miramoto and shariff (1959), George and Hadhalakshul (1962) and Kuriyan and Radhalakshmi (s962) have degeribed the characteristics of ann-hemp twines ased for varions typea of 5ith nets. George (1971) hat described the Various indigenous mothode and gears prevalet in various aystens of inland waters of Indla and civcm the detrall of apecifications of vegetable flice twines med for fabrication of limes, traps and differcat epes of nets.

Kuriyan it al. (1962) montioned that ecertain parts of Indigenous 'thanguvala' knova as 'adivala' and 'nervala' vere made of mmd-twisted single stranded cotton cords of 5 jaras belonging to 20 count yarn. gathyanarajana and sadanmaden (1962) in their atudy on the encircling gill nots for ardines
and mackerel of Korala coast observed the use of hand-made single stranded cotton corde of 3 and 4 yarns. Deshpande and Ocorge (1962) reported the use of 6 and 7 yarns for'aravala' and 'malmade' parts of the net vaile hand-made miltistranded cotton twines of $20 / 4 / 3$, and $20 / 7 / 3$ were ased for the 'velleyad1' part of 'rolachivala', a two boat geine for car fishes. Joseph and Marayman (1965) in their survey on the fishing coar and mothods of fivor Brabnapatra geve dotails of the use of single stranded cotton corde and multistranded cotton and homp twines of various apecifications used for the difforent types of indigenous gear oporated in that area. Evaluations of the physical properties of cotton fish net turines by Kuriyan and Cecily (1959, 19t0 and 1962) reveeled the need for uniform triste and stability of twines by maintaining the correct ratios for innor and outer tuists.

More information on the use of machine twistod three stranded cotton twines for comereial prawn trawling was pro-
 (1962), Hair and Goorge (1964), Nair ot et (1966) med Destpande et al (1968). Early designs of trawl nete of two seam and four soam indieated a gradual increase in thickness of three stranded cotton twines from the wing and belly recions towards the throat and cod-end by selecting cotton tudnes of apocifications $20 / 6 / 3,20 / 7 / 3,20 / 8 / 3,20 / 9 / 3,20 / 10 / 3$ and 20/12/3. A deviation from the above denign van used by Harae yanappa (1968) in the eatoh officiency studien of travi nets
in which omiy a single specifications of cotton twine of 20/8/3 vas used from the ving to the threat region while the cod and vas made of nylon 210/7/3. Again Mair (1969) mentioned the use of nylon $210 / 7 / 3,210 / 9 / 3$ and $210 / 12 / 3$ for botton travia In place of cotton of apecifications 20/7/3, 20/9/3 and 20/12/3. garlier deat gas of cear for both minine and inland watere ghowed that the materials used for ropes were of vegetwile oxigin, mainly sisal, manila and coir.

The pronlen of rotting wes the main drawback of vegotable flbres which was overcome to a certain axteat by treating the nete with indigenoun preservetives at frequent intervals. The most popular method practised by fighermen all over the werld 1a the application of tannin and its fixation by aither amoniacal copper sulphate selution or potassiva dichromate and treatment with chemical like Copper sulphate, Copper maplo thenate, coaz tar and reains (Takayama and shimosaki (1959). mijanthe al (1962) gave a comparative aceount of rotting re2 sistance of netting trines of vegetable origin. Details of indigenous preservatives used in differcat maritime states or India along with the methode of treatment folloved by local P1shermen were given by Miyamoto (1959), Furiyan and Iayar (1961) and Kuriyan $\frac{1}{2}$ (1962). Methods of preservation of cetton twines were alse deseribed by Mayar (1962). Kuriyan and Mayar (4962), Venaja (1963) and Cectly and Kunjappan (1971 and 1973). Miyamote and Shariff (1959) and Coorge and Radhelakohai (1962) studied the efficacy of preservatives on homp
manila
twines. Experinents on preservation of coir and atal wure Nayar etal.
 and Warar and Fanaja (1962). Coeliy (1977) in ber theots min
 tonalng mborials. optimu concontration of tannin solnticn to get the maximan offectireness, Ifxation of tarain, use of eon ter on tanin fixed twinet and other ehencal preservative to retred the procest of rotting of vegetable fibres.
gandoz (1997) and maperti (1959) deseribed acetryatima and Arical-C process ly wieh vegetahle fibres could be maco rot-proof; but beanse of the conglicated nature of thoir application and hifo cost. these methode of prescivetion Ad mot cain popularity.

Inaoratien of manmade Ifleres wat the ansuer to the serlous proben of deterioration eet with in vegetable Ilbres and as moon as they were made knoun, there were larce dxmande for gythetie filvee fron the fishing indastry. The mon-rotting character of syathetics is of great inportance in 80 far as it ean diapease vith the laborious and axpensive rot-proofing treatmente required for vegetable fibres. The first gyther tie Interial to be introduced in IIshing belonged te polywiny chloride grous and that was in the year 1936 for making trape (Brandt 1957). After the second world war many grathette fibret were mamfactured from polymer and it marked the bego maing of a revolution leading to the nse ar synthoties in place of veget ble fibre twines in fighing indastery.

Hylon became very pepular amongst the mab-mad fikrea and becanse of its streagth, fineness, olasticity, durablil ty and rot-proofmeas got an oany entry in the field of gill nets. sot nots, seines and lomg line fisheries all over the world. Mugaas (1959) reportad the ase of mylon in Mervay from the Jear 1951 onvards and fownd its catchability to be approximately twice that of comventional hemp mets. Amano (1959) observed that salmon and trout gill nets made of anilan in Eorthern Pacific canght twice as much fish as rame sots. Catel efficieney studies done by saetersdal (1959) in Norwegian waters indicated the fishing power of artificial fite to be 2.5 to 4.4 times for cod, 1.4 to 2.3 times for coal figh and 1.2 to 1.3 times for mackeral compared to cottoni whereas Brandt (1955) found only a 35% incracee in catoh in merring drift net made of perion. Zaucha (1964) reported comparathe studies on cill nets made of nylon, Kuralon and cotton in Pollsh vaters and found the first one to be the atrongest material for herring drift net, while kuralon nete equalled cotton nete in atreagth and efficiency. Bat saetersdal (operita) vas of opinion that cods caught in nylon nets were inferior to those caught in cotton nots as the fish died more rapldiy. Molin (1959) reported the 11 shing capacity of maltifilament mylon in inland waters of sweden to be twice and that of monofilament nylon seven times that of cotton net, the difference being attributed to the invisibility of mono filament nylon under vater. Fishing trials in Japanese vatera by shimozaki (1964) showed the catch efficieniet of monofilancat
gill met to be 1.2 to 2.3 times that of cotton nets ville ita performance was not found satisfactory dac to difficulties involved in handing bedanse of its baik and knot-looseness. The use of nylon soon spread to the purse-seine fishery. In Japan when purse-selne vas made of nylon, the boat and the crew could operate muct larger net. Nylon nets vere widely employed in the tuma and tonito fisheries (Amano, 1959). The first menhaden seine made out of nylon proved to be more durahle then nete previously msed. The largest nylon purse-selne ever manufactured in U. S.A. raz produced in 1956 for tumeselaing. set nets made of nylon were ret and abrasion resistant and could be left in water for indefinite periods.

The uses of terylene for cod and coal fish and Jopanese Kuralon for cod traps in Norwegian vaters were investiefted later. Molin (1959) was of opinion that kuralon or terylene could be used for parts wick are destroyed by the ultra violet rays of the sun. Polyvinyl chloride was found equally officient as mylon by Teikoku (1959) in solmon and trout fisheries in morthern Sea and the fibre did not doteriorate even in the warmest season of the Jear. Kreheloa, a Vinylidene chlorlde fibre hyolng high specific gravity and hence ainking faster was fown guitable for setnetes long IInes and trawla. Kurcha Kasel (1959) auggested that alnce this fibre is very sensitive to beat, the nets should be kept off frou sandy beaches.

The next nev fibre developed was courlene or pelyethylue in monofilanont form which vas found suitable for lines, traps and ropes. Accerding to shimosaki (1964) the cost of gynthotic fibre ropes vorice out to be three times that of manila and their exeessive olongation sometimes Fonderce then inefficient and even dancerens. heeording to Kloppmbare and Bouter (4964); the properties of polyethylene depend on the type and quality of polymer used for its preduction and the decree of atretch applied at the orientation stage and hence recomended only highly stretehed monfilam ments for rope-making. Twiated monofilaments of polyethyleme slowly get introduced into travl fisheries to replace cotton and manila and contimaed to be popular as trawl twine oven after the accoptance of nylon and terylene in many of the fishing geare of the weld. Oring to the buoyant nature of polyetidiene fibre; shimosaki (1964) recomended use of cotton or vinylon vobbinge for fineunder part of the travi net and polyethylene for the other parts.

Polypropyleme monofilanont then entered the fishing rope industry. Frurther researches roaulted in the production of polypropylene multifilament (uletroa), the fibre posseseing equal strongth in dry and wot conditions, and resembling ayion maltifilament but for ita low apeoific gravity and elasticity. According to Carter and West (7964), polypropylene maltifilament has got the outstanding properties of polyamide, pelyester and polyethylene. Honda and

Osada (1964) vosked out the eatel ratio of gill nets made of nulatron and mallan turnes of the gane diameter. Fhoy did mot observe any change in the mesh size after continuod oparations. But the materiel was found to be two to three times more voluminous than amilea and the number of toars vere also more. Uletron was aleo found suifable for soines and trawle slace trawl efricieney depended to a large extent on the oxtenaibility of the fibre, travi twines were given relativoly high twiat factors (Kiust 1964). In mid-vater trawle, a stiffening or bonding agent was applied to enable the nets to retain thoir hydrodynamic shape. According to carter and west (1964) the largest use of uletron vas in the production of ropes.
side by side with the development of vegetable twines by improved methode of processing and preservition, synthetic twines, mainly nyion got into the Indian fiabing induatry. Even though the axact period of introduction of man-made fibres in India is not elearly know, the first conaignemt of aylen landed in the country in the year 1954 - 55 mador the TCN aid (Redhalaxshai and Mayar/4973). Leter, with the eatablishment of the then Indo-Morwegian Project, central Fisheries Teelnological Research station and Orf-abore Fishing station, the suitability of aynthetic matorial: like nyion, torylene, kuralon, saran, polyethylene and polypropylene in various forms was atudied in the laboratory and field for various types of fishing goar. The country depended ontirely on lumprts of synthetic gear material till indigenous prodaction of aylon yarn was started in 1962 usiag imported Caprolactum, How,
polymertsation plants are avallabie in various parts of the country and mylon as monofilanent and multifilament jarns in various deniers are being manufactured for fisheriea purposes. The malient features of nylon, especially its stronsth, pliability, elasticity and rot-proofness attracted even the traditional fishermen and the fishing incuatry cane forward to accept it dospite the high initial investment.

Field studies conducted on marine gill nets shoved that twine sises of $210 / 1 / 3$ and $210 / 7 / 4$ are suitable for sardine and mackerel (satyanarayana and Sadanandan, (1962) ${ }_{3}^{4}$ Joseph and Sebastian, (1964) 210/2/3 for pomfret and hilge (Sulochanan and Krishna Mao (1967), Panicker ato al (1978) and $290 / 6 / 3$ and $210 / 12 / 3$ for sepmberompra ratitan and scosberompue manrmpa reapectively.' (Mathai et. al (1971), Sreckrishare it al (1972) and sulochanan t. ol (1975). satyanarayma and sadanandan (1962) described a now deaign of bottom set gill mot made of nylon for the captware of 106. sters. The use of nylon was extensively experimented x'n $_{n}$ Hiraknd resemoir by sulochamin at el (1968), Maidu and
 coorce at al (1979) and Khan at al (1980). Investigations vare also carried ont using nylon monorilament and multifilament trine at Gandhisager (Hayar st/ al, 1969) and Gobindsacar reservoirs (Mathai and Coorse, (1972) , khan et al., (1975): Ceorse at/\{is, (1977); and khein et all; (1980) for the rabrication of various types of ample gill nets, viz. sur. race and colum set nets, vertical line net, frame net and

11

Abstract

tramal neta for the captare of various specien of fish and the efficacy of mica mots in reservoir fisheries got vell established. Ceorge it ale (1975) also carried out experiments on the catch effleiency and selective action of soloured gill nets in Cobindsagar reservoir and Aarayamapa at. an. (1977) in HLrakud reservoir.

The aynthetic fibre produced in India after mylon was poljethylene in the forn of continuous monofilemente which could be twisted into twines of varying thicknesses. These fibres because of their rigidinturn, knot-finmass and choapness vere readily aceepted at a trawi gear material in proference to cotton in small trawis and aisal and manila in doep vater fishing (Kartha at aleg974). Simaltancoully, braided monofilaments of polyethylene also appeared in the market. Polyethylene prodnced as flat tapes for the weaving industry also could be twisted to form fish net twines at leas cost than monofilement turines and the material was tested successfully in the trami IIshery (Karthat at. 9 /4977). i further development in this line is the fibrillation of tape Jarns. Tvines made out of these split fibres showed better pliakility and anootmpess than those made of flat tapes and the utility of this material in place of bast-fibres is yet to be established.

Polypropylene as monofilaments alvo entered the fighing indugtry moon; but beeause of ite rigidity, it mes uged
only for mownting ropes. Doth polyothylene and polypropylene are largely consman in the rope making industry, slowiy roplacing the vesetable fibre ropes. Prochetion of polypropyIene in miltifilament form has boen a recent dovelopmont, the prompects of which are expected to be enormous as the material 1s arite pliable and resembles nylon in its physical properties exeept for the clanticity and deasity. The matorial is to be further tested in the laboretory and field.

The properties of synthetic fibees vary with the inherent physical characteristics of the basic raw material used, mode of preparation of yarns and method of conatruction of twines. Since the synthetic fibres are manfactured from polymers wich are synthesised from simple cheaical unite, the quelities of man-made fibres can be influenced by the process of manufacture and certain zodifications can even be introduced at the processing stage to meet any specific reo quirement to e certain extent. Honce, an elaborate study of the properties of fish net twines prodnced in mada mas boen taken up with a viov to determining their suitability for various types of fishing ecar with particular reforence to conditiona prevailing in India.

CEARTER II

TRAETABLB AMD SYITHETIC TIPDFR

2. 1 Veretable fibren, their extraction and propertiess

Cotton fibre is single-celled and originates from the opiderisis of the aced coat of gonsmity apecies. Cotton fibres are classified an 'long staple', having a leagth of 2.54-5.08 en, with fine, atrong calibre (Egyption and sea island cotton); 'intermediate staple', having coarse texture and length $1.27-4.65 \mathrm{~cm}$. (American upland) and 'strort staple' of no lustre with a length of 0.95-2.54 em. (Indian and Aaiatic). Harria (1954) and Galati (1957) stadied the structare of cetton fibre in detail. Cotton fibre is an irregularly tristed, cellapsed and flattence tube with a central Iuwen throughout ite length except at extrenities. The IIbre conalsta of an outer cuticular layer and primary and secondary velle of cellulose. The physical features show convolutione which often revorse in drection. Aecording to Bails (1928), Brovn (1938): Amon (1956) and Meredith (1959), these convoIutions are advantageous in spinaing. The cell dimensions are: 1ength - $00-50$ and dianeter th-21 μ
zast fibres, often knova as coft fibres, are schieronehymatous maticellular filaments ombedded in the sten of the planta and comented together by a nataral guin like abb-
 sative (true homp), Crotalaria Juncen (Sum or sum-homp), Corchorut sapmiapte (Jute), and Bopherin Alrea (Iumie).

Wancraberger (1954) and Himmelfarb (1957) have studied in detail the atructures of these cells. Flax or Linen fivee are manally moad with indistinct cell dimendons varying from 5 to 55 in iongth and from 13 to 41μ in dianotor. Cross soctions of these filurea are polygonal. Homp fibrea are unevon in width showng risaures and crose makinge. Cells of Jute have heavy longitudinal stefiations man woveniy thick valls with hread irregular lumen and bluat ands. Colls in ramie are blunt, show many longitudinal striations, broad Iraon irregular in outiline, cell dimensions being $60-750$ mam longth, 17-64 h diameter maving a crose section of alongated polycon with rounded corners.

Leaf fibres or hard fibres oceur in the outer surface of the lenves of Muna textilig (manila also known as abeca') and Araye tialana (eizel). There is no bonding substance comentins the filires to the parenchymatous tisume of the leaves. According to Himmelfart (92 . afto) cella in abecal are mooth, Iustrous and relatively thin walled uth 1ong tapering ends. The lymen is large, distinct and rounded. The coll is oval, $10-32 \mu$ in diameter and oross sections are irregularly round or oval. sisal cells alow no crese marking and they have wide prominent lumens and blunt ends which are forked. The lumen is often vider than the cell wall and circular in ghape. The crose aettion is sharply polyconal. Fibres are stiff, 1.83-3.65 m. long, light, elastic, strong, durable and resistant to salt and vater. Coir fibree obtained from cocos nucifere (coconut)
are mainly eompased of schiorenchyatons cells, highy ligaiILed, containing 20.68 molsture. The flbre is short, coaree, brovm, hareh and apring.

Cordage fibres of plant origin are similar in chomical constitution, the main constituent being cellulose, the contont of vich varies from fibre to fibre and is found ascociated with vegetable matter, ligmin and peetin in varions measures as presented in table I.
Table I

Cotton fibres are separated from sceds and other extrancous matters and cleaned by mechanical processess knova as giming, carding sad combing. The fibrea are parallellsed to form slivers and twisted into yarng. Bagt and coir fibres are extracted by process of retting (Pringle (1951), Nam-
 Water retting is cariled ent in dam, river or tank and dew retting by apreading the stall expesed to weather. The fibres obtained by dew-retting are darker in colour and inforior in quality to those obtained by water retting. A double retting process is also reported by Pringle ore cit and Manoraborger (ope sit) in which the retting in wator is allowed to proceed about half way thoough and the fibres further cricd in an. Retting is then continued and completed by gentle retting action Jielding superior quality fibre. Depending on the
Table : 1 Composition of vegetable fibres

81.	Hame of fibre	$\underset{(\pi)}{\operatorname{coslc}}$	${ }^{\text {Moi }} \text { (ture }$	$\left.\frac{\mathrm{A}(\mathrm{sh}}{(\mathrm{x}}\right)$	$\underset{\substack{\text { poctin } \\(\%)}}{\substack{\text { polin and }}}$	Extractives
1	cotton	90.00	8.00	1.00	0.50	0.50
2	Flax	76.00	9.00	1.00	10.50	3. 50
3	Howp	77.07	8.76	0.82	9.31	4.04
4	smm	80.40	9.60	0.60	6.40	3.00
5	Jute	63.24	9.93	0.68	24.41	1.42
6	Abaca	63.72	11.83	1.02	21.83	1.60
7	stseal	77.20	6.20	1.00	14.50	1. 10

17

temperature of vater, condition of stalk and other related fectore, water retting may take two to three weeks in the case of bast fibres and 6-10 monthe in coir fibres (Anom 1950). Retting is followed by stripping and waching iy hand operation or using decorticating machines and the fibres are separated from the pith. The bast bundle is freed of bark and woody portions by a process called scatching. The 'line' fibre is then backled by mand on coarse steel pins and graded according to colour, lustre, length and general appearance. The leaf f1bres are extracted by mechanical serapling of the fresh 1 enves.

The utility of fibres depends on thair physical and chemical properties. When the cellulose chains are nearly parallel to the fibre zais, they are ald to be highly oriens ted and the closeness with wich the cellulose chaing lind one another is termed degree of crystallinity (Bimanfarb op. elt,). Both the factors conjointiy exert a profound Influence on the phosical characteristice of the fibrearsuch as tenaile strength, stretch, elasticity, bending ability, abrasion and effect of wetting. The specific gravities of Vegetable fibres are 1.54 for cotton, 1.51 for ramie, 1.50 for flax and 1.48 for hemp and jute.

Weindling (1947) studied the comparative physical properties of fibres and found that among soft fibres, ranie ranked first with reapect to durability, tensile strength, length of fibre cells, finemess and colour, while Hax ghowed the maximum cohesiveness, uniformity and pliability. Hemp
steo socend 4 th reepect to tensile atrength fellowed by Slax and Jute. Amonc hard fibres, abaca' was found superior te sisel regarding durability, teasile strongth, finceses, miformity and pliability. schiefor (194t) shoved that hamp Ifbre had 72% of disy atrength of abecal and 87% of that of sisal. In his gtualien on the etroteh properties of vegetable fibren, the smperionity of hard ifibres over seft ones was established. 8 tretch at ruptrare vas found to be 2.8% for manila, 2.98 for sisal, 1.8% for mom and 1.58 for juta. Tho flexing ondurance woited out to be greater for alsal followed by abacal and jute, vhile homp registered half the value of those of abacal and jute.

The ratio of vet atragth to iny strength of the fikes as worked out by Echiefor (2ng sit) were 0.79 for abaca', 0.89 for sial, 0.83 for jute and 0.58 for heup. The absorption of moisture by fibe as explained by flimelfarb (ope cit), occurred vy water moleculen penetrating the fibre and forming an internal part of its molecular gtroucture with consequent ehanges in properties and water is mold mechanicaliy in the interapaces between the cells. wataral cortage ribres absorb molstare regulting in aveliing, pronounced increase in elongation and reduction intstrength except in the case of cotton and ramie. hecording to Mere-
 region and forms hydrate resulting in on increame in volwae. The water talso acts as lubricant releasing internal stresses cauging swelling, wich increases the fibre

strongth of cotton and ranie.

Bobinson and Jolmaon (1953) deternined the knot strength of vegeteble fibres and found softer fibres to be less adversely affected by knotting, mabling then to wthstand bonding strosses better. Himmelfarb (ope sit) observed that hard fibrea an a class are more resistant to abrasion than soft fibres.
stual os on the relationship of fibre properties with the apinning value of eotton confirmed the role of staple length and fibe fincaess in assesing the guality of yarn. Balls (ope cit) and Galati (one git) pointed out that yarn atrongth is dependent on fibre properties, their intrinsic strength, fineness and alipperinesg while there vas no marixed correlation between spiming value and fibre length. Spinning operation vas done in early days by hand using a simple spindle consisting of a piece of wood carrying a veight or 'whorl' at the lover end (Springle ope eit). Due to the momentuin of the whorl the fibres are drava and epinning is continued. At present, dreving of fibrea and spinning are dome by machines. Depending upon the fincness of the yarns, the process of spinning is done on a riag Ayer or dill minning frame. Fer ramie, dry apiming 1: amployed producing yarns of 56 to 60 lea, while yarn of 180 lea is also made. Ranie fibres are cut aftor deguming to adjust their 1 engthe to sait the equipment. Max is cottonised to be spun on cotton machinery (Pringle ope cit). Mauera bercer 0ape cit) pointed oat that treatment inth bot vater softoned the gum bolding individual fibrea together in hemp
facilitatiag their belng apun into oven and fine jarm. Himelfarb (ope aft) reported that a softener or batehing matarial 1iko 011 in vater or vater in oil is used for bat fibrey to mininige pessible datace to fibres during apinaing.

Daring the apinning precese, the siver is atteruated by twisting, converting it to a contingous cylindrical form 1.e. yarn. Ivist plays an important role in the preparation of yarn. since vogetable fibres are short, the tuis tis given either in the clockwise or anti-clockuise direction (Culatig gne sit). The parpose of the twist is to biad the component fibrea together transititing atress from fikre to fibe along the length of the yarn. Himelfarb (gna sit) found a corresponding increase in the atrength of jarn uith twist; vile it decreased beyond an optimun twist and on further twisting breaking occurred due to local overtulsting. A rigid fibre is given less twist. seoother fibres slide more readily against the contacting fibres and consequentiy a greater degree of twist is required to compress thon adoquately. short fibires field finer and sefter yaras in comparison to coarser fibres. The process of toristing causes a cortain amount of contraction which is proportional to the mamber of turns inserted in the Jarn. Himmelfart (gne cits) noted a 254 reduction in strength in case of hard fibre by spinning into yarn.

The qusility of yarn is expressed in terms of its appean rance, count, turns per unit longth, strength, elagticity and moisture content. Evenness is a very important factor in grading of yarn vileh is deternined in terms of diamoter, weight

Per matt leagth, muber of filpes in cross section and vation of twist and strength.
2.2 syathette filures. thotr proparatien and propertien

The developnont of aynthetic fibres uas atarted aroma 1920 by H. Staudinger ond after a great deal of resench for a pertod of 40 yenre, mommade flirea could be produced from ming natural prochets such as con, 11me oil, molasees, grain and common salt. since meond world var, minthotic fiveres beeme Tery popular and large varieties of them having dif ercet plesien propertios were invented. Countries like V.E.A. Japmi Feacral Hepralic of cermeny, U.8.8. B. Great Britain, Italy and France started manifactaring these Iibres on comorcial bais. Rany stuts (1959) nade an elaborate elassification of aynthetie fibres besed on thelr source. process of manafaetrare together with various trade names meler wirich ther are marketed. The ehgelcal groups of olasees of gynthethe fines used for making fithing nets are the folleuing.

Abstract

Polvatin(P): Iw types of nylons are used for fish nets vis, mylon 66 and nylon 6 . the Ansevvary of the fermer is eredted to De. Wallae Eume Carether of D. S. A. in the year 1935 and is prepared by heating hexamethyene diamine win adipic actid (Armano i959). Ine latter is synthesised from a finge monomor caprolactan' and was developod by a enemst. P. Sehlaek ef

Germany in the yoar 1937-38. structurally beth nylons conalst of the anme anide eroup but differentiy arranged to constitute a long chain mocule (Einmelfarb gre git). From the fisheries point of View, there is mot meh ilfference between these two polyanides, as they possess practically sindlar mechanical properties.

Polyethyene(PA):

Polyethylene fibres are produced by a method developed by ziegler of Cerman in the Jear 1950. The mononer, the basic unit of polyetby2ene is obtained by crecking petrolem under low presaure in the presence of an organemetal catalyst, aluminium skiy. The fiture is prepared by pelymerising ethylome at high pressure of 1500 psi. The fibre is known by trade names, 'polythene', 'courlene' and 'Hi-sax'.

Polverorlma(PR):

This fibre was developed by Professor Hatta of Italy in the year 1954 by pelymerisation of olefines uaing orgenometsilic catalyst of Zeigler type. Polyethylene and polyprom pylene are colleetively knova ae polyolefines. Because of thetr difforence in physical properties, thay are considered as two separate groups. ingtron' is the trade name diven to polypropylene fibre.

Polyester (PRS):
Polyester fibre was developed by J.R. Whinfield and
J.T. Dickson of United Kingtom in the Fear 1940-41 by the polycondensation of terophthailic acid and ethylene elycol. The fibres are manufactured by the ester exchange of clycol and dimethyl terophthallate. The common trade names are 'teryleno' and 'daeron'.

Polviny ehtopidi (PIC):

This filure was developed by F. Klatte and H. Fubert of Gernany in the fear 193^{3} from the monomer, vinyl chloride. It wes the first synthetic material used for fishing gear under the trade name 'PeCe'.

Rolurinylidene ghloride (FID):
This fibre was invented in 1939 in U.S.A. Vy co-polymerising a mixture of vinyildene chloride and vinyl chloride. The trade name of this composition is 'saran'.

Polvaingl alaghol (PVA):
Polyrinyl alcohol fibre was produced in the year 1931 by W.O. Hermann and W. Hechncl. This fibre was furthor inproved in Japan since 1938 and the product is known as 'Xaralon'.

The polyvinyl ehloride, polyvinylidene chloride and polyrinyl aleohol fibres are not much used in fishories oxeopt in Japan where they find application in various typea of fishing gear. Amother synthetic fibre, viz; polyaerylonitrile fibre. although important in the textile indugtry,
is not popular for application in fish nets.

The finished polymer is cut into chips and couverted into fikre form by melt apinning, i.e. squirting the moltan substance through spinnorets wich on omerging gets solidified by cooling in a current of air into ductile threafs. The mame facture of filanente is done by drawing or gtretching then to three to four times their original length aceording to Carrothers (ope cit); whereas Lohani (1961) recorded a streteh of four to five times. In case of nylom, accoraing to Inderfurth (1953) cold drawing doveloped transparency and a high degree of lustre. Celd drawn filameats hed a mich higher teasile strength and elasticity then undrawn filamont. They wore safficiently pliahle and tough to be tied into hard knots, whereas madrav filaments vere inelastic and fragile. In the case of polyethylene the drav ratio is elght to ton times, the strotehing being done in bolling water and wound up mader constant tension. The dearee of draving influcnces the physical propertiea of the final product, mainly tenacity.

The properties of syathetic fibres vary from material to material and also depend on the mode of preparation of basic yarn. Detailed properties of manade fibres are given by Carroll-Porczyaski (1961). The characteristics of synthotie fibres commonly msed all over the world for making fish not twines are presented in table 2.

Tahe
 2

The wasic fibe types used in the Iishinc indastry are of different types, visf continuous monofilament and mitiIilanent, steple Iibre, tape and split Iibre. In contimuous filmont the fire Iength is infinite. Honofilanont mane a single fliamant wish can athor function as a twino at in nylon monofilamont or made into finer forms and tristed or hraided torm trines of suitable dimeter as in polyetrale end polypropylene monefilament twines and wraided coste. NultiIflament consists of a number of smooth and silky filementa produeed in different degrees of fineness g generally mah thinner than 0.05 diemeter. They are produced vith or without tuisto staple fibres also mown as gpun fibese are diseontinuous in mature. Thes are also propared my catting contimucris filamenta into mitable lengthe and twistinc into Jarn by minainge Iarn made of gtaple filue mat reugh curface the to the hairy projections of the mumeroun loose ond of the fibres. Iylen and tarylone cen be produesi both
 alcobol Iibres are made only in the steple form.

Flat tape of high density polyethylene is the basie rav material ued in sack industry. gtudies carried out by the candidate showed that these could be tulstod inte twines inat an monfilomente and fial trials conducted with. tihis
Tablen 2. Characteristics of aythetic fibrea(filament) used for making fla not trines.

81.	Properties	$\begin{aligned} & \text { Poly: } \\ & \text { (PA 66) } \end{aligned}$	$\begin{aligned} & \text { aide } \\ & (\text { PA } 6) \end{aligned}$	Polyestor (PES)	Polyethylene (PE)	Poly-propyle (PP)	Polyvinyl chlorict (PVC)	Poly Finy11dene chloride (PVD)	Polyvinyl alcobol (PVA)
1	Fibre density	1.14	1. 14	1.38	0.96	0.91	1.39	1.70	1.30
2	Tenaelty Normal (g/den) tonacity	4.5-6.0	4. 1-5.8	4.0-5.5	4.0-6.0	6.5-7.7	2.7-3.7	1. 5-2.6	3.5-4. 5
	high tengelty	6.5-8.5	6.5-8.0	6.0-7.0	-	-•	-•	-	7.7-9.2
3	Breaking strongth wet(in x of dry)	85-95	$85-95$	100	110	100	100	400	77
4	$\begin{aligned} & \text { Extension normal } \\ & (x) \quad \text { tonaoity } \end{aligned}$	26-32	$24-30$	27-17	20-40	20.5	13-30	18.33	14-19
	$\begin{aligned} & \text { dry } \\ & \text { high } \\ & \text { tenact } t y \end{aligned}$	15-20	16-24	15-7	-•	9-20
	$\text { wot } \begin{gathered} \text { normal } \\ \text { teracity } \end{gathered}$	30-37	27-34	27-17	20-40	20.5	13-30	18-33	14-22
	high tenacity	18-28	19-23	15-7	-	-•	-	-	12-22

Table 2. Contd.

$\begin{aligned} & \text { S1. } \\ & \text { NO. } \end{aligned}$	Properties	$\begin{gathered} \text { Poly } \\ \text { (PA 66) } \end{gathered}$	ande (PA 6)	POly. ester (PES)	Polyethylene (PE)	POIV-proprlene (PP)	Polyvinyl chloride (PVC)	Polyvinyt 11dene chloride (PVD)	$\begin{gathered} \text { Poly- } \\ \text { vinyl } \\ \text { aleos } \\ \text { bol } \\ \text { (PVA) } \end{gathered}$
5	Knot strongth (\%)	85-90	85-90	70	-•	72	70	70-80	75-80
6	```Moisture regain(%) at 65%```	4	4	0.4	0	0	0.3	0.4	5.0
7	woight in wator (in \% of air dry wt.)	12	12	28	Buoyant	Buojent	26-28	41	23
8	Softening point(C)	220-235	170-180	230-250	115-125	140-165	70-80	115-160	200
9	Melting point (C)	245-250	215-218	250-266	125-140	160-175	130-190	170-175	220-230
10	Resistance to weather	medium	medium	high	medium	$\begin{aligned} & \text { lov } \\ & \text { medium } \end{aligned}$	$\begin{aligned} & \text { very } \\ & \text { nigh } \end{aligned}$	high	hist

material (Kartha et. al 1977) shoved ite suitability for fabrication of botton travl neta. The aplit fibres originate from oriented plastic tapes which are stretched during mana factare by sach high draw ratios that the tapes aplit loagin tudinally vhen twisted under temaion. A yara made of gach fibrillating tape consiste of aplit fibres of irregular finoness almilar to natural bast or hard fibres. Photograph I shows the different types of synthetic yarns used for the mamufaeture of fish not twines.

1. mirforont types of rioh met yarme.

Yaras are produced in atandard aises and man minbering systems axist to denote their sises, vilieh fall under two prominent heads viz; the 'indirect systen' and the 'direet systen'. The former is followed generally for vegetable flbre yarn as well as apun synthetic jarns in which the woight is kept constant and the leagth varies; bence higher the number, the thinker vould be the jama. They include paglish Count (H e), metric count (ha), meglish Linen count (Lea) 'typ' system, and ruanage (\mathbf{m} / kg or $\mathrm{yds} / \mathbf{1 b}$). In the direct systen of numbering the length is kept constant and the voight varies. The 'denier systen' is commonly used for continuous synthetie filaments as well as silk. The British Standards Institution has dravm up standarde for textile jarn adopting the 'tex' system. The International Standards organisation has roeomanded this syaten of mumbering based on metric units for intersetional adeption in place of various methods of num boring followed in different countries. The detalle of mumbering aystens are given in chapter III under teruinology on fibres, yarns and twinen. For easy conversion of the difforent aystons of numbering, the formia appliod is Tex $=0.1111 \times \mathrm{Td}=\frac{1000}{\mathrm{Him}}=\frac{500.5}{\mathrm{He}}=\frac{1000000}{\mathrm{~m} / \mathrm{kg}}=\frac{406055}{\mathrm{yds} / 10}$ where $\mathrm{Id}=$ total deaier number,

Hn \quad metrie countif Me $=$ maglish eotion count (Iluat 1964).

Wyon yarn is conerally made of 210 denior sise while those of $420,630,840,1260$ are also made for apecific usea (Harenscichonverband 9959). He has indicated the uee of nylon yarn of tho denier having 68 rilamente and Terylene yara of 250 denier baving 48 coarser filaments or 144fine filamonts for selmon gill mets. Carrothers (1957) mentioned the ase of terylene yesna made of $50,75,100,125$ and 250 denier aises. shimoseki (1959) bas codiried the properties of polyande croup of fibrea of yarn sise 60, 110,210 and 250 denior and teviren of 300 denier. The differcht denier sises deseribed by Honda and osada (1964) for polyande is 210 , polyeater-210, polypropylene 180 , saran 360 and teviron 300.

Nylon multifilament yarn corppises ceneraliy of 24 filaments. Carmod (1968) deseribed the production of yarm with 6, 7, 12, 15, 18 and 24 filaments and opined that the yarn: made of 6, 7 and 15 filamonts were more suited for netting twines. In India, aylon yarns of 210 denier having 24 and 34 filaments are commonly used for the production of fish net turines (Hayar and Radhelakshai (1973). Monofilament: fall within the range of 100 - 4000 deniers, those used in fish trines folling in the $100-1000$ range. The denier size of flat tape ranges from 750 to 1000.
2.3 Construction of trinems
The methods followed for the manufacture of netting
twines are twisting, plaiting or braiding, A twine is pro-
dueed by two twisting operationg. Two or more angle yaras belonging to ataple fibre type, monorilament, multifilament or tapes are twisted together in the direction of loft hand or Fight hand to form a gtrand or ply and in the second tyo sting operation two, three or even four such strands are twisted in the direction opposite to the earlier operation to form the tulne. In the proparation of cotton trines the yarne are dram through water (vet epun), while nylon yaras are twisted in the dry state. Figure 1 show the direction of twist and method of construction of twine.

Fig. 1

Photograph 2 presente the different types of twines used for fabrication of fishing nets.

2. Befferent typeo ef fi mh met twines.

The number of turists given to strands and twines are to be so adjusted that a twine in the free state does not show kinks or teadeney to snarl or liveliness of cut ends. Proper ratio of inner and outer tuiste are to be maintsined to produce balanced twines and the twist-factor folloved by the firma for the mamafucture of twines depends upon the type of material, thideknes: of twine and hardnest required for the and use which would be disoussed in elmipter 5.3.

Braided twince are produced in interiacing a number of yaras and strands in such a way that thoy oross each other in diagonal direetion to the edge (Klust 1973). Fraida form a tube and the size of lumen depends wpon the kind of braiding, mumber and kind of strand, core and atructure of the traids the compactaess of the braid depencing on the increase in the number of visible picks or stitches per unit leagth resulting in soft, medium or hard lay. The core is made of single jarn, folded yarns or monofilaments which fill the lumen of the braided tabe or thated contimuous filament tuine or straight monofilamonts. Figure 2 shovs the process of construction of braided twines.

33

CONSTRUCTION OF TWINE Fig:I
BRAIDED TWINE Fig: 2

2.4 Denimation of tyinne

The deaigantion of a trine is done by different methods. The diameter of the twine vas followed in many countries along uith diameter of yara with which it was made together with the mumber of Jarns. Another method is by denoting the runnage of twine. Hayturat and Robingon (1959) designated tuine by giving the yarn size, number of yaras In atrand and number of strands in a twine. sccordingy, a cotton twine is designated by 20/5/3 and a nylon twine 210/5/3 having 5 yarns per strand, with three such strands and the thickneas of twine vas occasionally referfed to in the trade by code number 5. Thifis eode sotem conld be applice to tuines of different thicknesses except for $290 / 1 / 2$ and $210 / 2 / 2$, the former 1s knom as code no. and the latter as code no. 1h. The twine maving one yarn in each gtrand is known as code no. 1 and depending on the number of yama In sach otrand, the twines are known by their code manbers.

Not makers ofton require the weight of twanes. A rough way of oalculation of veight of twine is by eatimating the 'Mominal tex' by multiplying the jam tox with the number of strands. An ellowance of 10% is added to this value to compencate for the increase in the actual veight due to contraction oy toristing operation for mediun laid twines. The 'reaultant tex' (Atex) value is based on the actual weight of the twine per 1000 metre loagth which tokea
into account the increase in weisht ane to twist also. R-tox value molds good for designating tuines of any tuist hardness, for bealded twince of complicated strudtare and for twines of disaimilar componcats such as saran - nylen combination (Xlast phe sit). But the Fequltant tex alene does not supply full lndicating of netting twine as thore is posaibility of giving urong information in guch cases as a hicher R-tex of one apecification of mard lay can be the same as that of another specification of torine having more mumber of yarns but of soft lay. In order to avoid men a misinterpretation the count of single yarn and the number of atranda constituting the twing are given along with R-tex values. This method of designation gives a clear pictare of the apecification of twines used in fishing industry.

According to the syatem developed by the CIFT and accopted as Indian Standard (Is 4640 - 1968) the method of desigating twine is as follous.
i) linger deasity of single yarn in tex syatem

1i) The mamber of single yaran in one strand
111) Humber of strands forming the twine

1v) Reaultant linear density expressed in the tex sutem
v) Tvist directions in the various stages upto the
finishod prodact
vi) The composition of the Jarn
1.

The first three characteristies are joined to each other by a multiplication sign, the fourth characteristic is preceded by the lettor A, fifth is indicatod by the lotter 2 or s , for eg. 23 tex $2 \times 68 \times 32 ; \mathrm{R} 460$ tex 2 .
2. For netting tulies composed of dissinilar matorials and beavily twisted travi twines complete dealgation would be complicated. In auch easen the renultant linear density, the direction of twist, the composition of yam and thoir percentage of combination will be usoful; for ef. $a 4000$ tex S , wilion 75\%, polyeater 238.
3. Tvines obtained by braidiag is designated by their regultent linear density, eg. braided twine 14000 tex.
4. The International stendards organisation has also recommended the above method for giving designation to the net twines. Kluat (1964) advocated an almost similar method along with the ineorporation of the number of twists inserted at the various stages of production of twines.

cmarted III

	a veiching mechanise, oo the rate of Increase of load or elongation is dependent upen the extension charactoristic of the specimen.
Cord	is a term applied to a variety of textile strands imeluding plied yarns. cabled yarn or structures made by plaiting or braiding.
Cose	: a rilament or strand that serves as an extended axis around vhich other rilamenta can be wound.
Count	8 the size or the number of 535 m bed on the relation betreen length and waight of jarn. Tam count may be based on the number of tixed length per standard welght (direct system) er the number of fized veighte per stendard leagth (indireet system)
Deformation	- a change in the shape of a apectinen cansed by the application of a toasile load or force.
Denier	: a mit of fineness, the Jarm maving a weight of 0.05 gram per 450 metre length. It is numericaliy oqual to the number of grains per 9000 metres.

47

I. Indirect system a numbering system indicating the length of Jain for a constant weight higher the number the chimer would be the yarn. Examples are British count, Metric count and sininde.

1) British count (Me) or cotton (continental) the malar of system hanks each of leagth 840 yards welsh one English pound. This system is used in Great Britain, U.S.k., Japan, Canada and other countries to denote the size of cotton yarn and synthetic staple yarn.
ii) Metric count the number in kilometres of single yarn weighing one kilogram. This system is used for cotton, hump and synthetic fibres in some countries.
iii) English linen count (lea) : the number of banks each of length 300 yards weighing of one English pound. This system is used for rand and flax.
iv) spindle $:$ the number of monks of 14,400 yards per posed.
v) Typ system : the number of one thousand yards of yarn per one porn.
vi) Rope yam member: In some European countries rope yam number as metres per kilogram or yards per pound ia used for measuring travitumes made of manila, sisal and synthetic fitments. This mysteries follwed in Great Britain and Cana for denoting the size of travis twines and seine twines.
II. Direct syaten of numbering: a maboring aystem indieating the welght of Jarn for a constant standard length, higher the number, the thicker vould the yarm oxamples are International conier aystem and tex aystem
i) Denier syatem : based on the woight in grame of 9000 metres of aingle Jam.

1i) Tex system $:$ brsed on the weight in grams 1000 metre of single yarn, higher the tex value, the hoavier the yam.

Yield point	:	fikrea obey Hooke's lav ien strain is proportional to the stress, only wite certain limit beyond which the fibre exhibits a plastic hou which point is knowa as yield plint.
Weathering	8	deterioration of net materials vhen exposed to veather conditiong.
Weight	1	the force exerted on a body by gravity

CHAPTER IV

EXPERITEATAL PROCRDTRE

Japan Chemical Association (1959), Van Hijnganrden (1959), Carrothers (1959), Kluet (1964), Von Brendt and Carrothers (1964) have reported test methods for fighing goar matorials. The methods deseribed by Indien standards Institution (IS: 58:15, part I, II and III 1970 and part IV 1971) were followed for the evalmation of physical proporties vis. thicknesm, linear density, twist and breaking load. petail: of the test methods are civen belov.
4.1 The standard atmosphore for testing is $27 \pm 2^{\circ} \mathrm{C}$ and 65 土 2\% R.H.
4.2 The atendard temsion is equal to the weight or 500 m . length of trine.
4. 3 A standard tension is applied to one and of the twine after fixing the other end to a mook, lengths of ase metre marked using a scale and test specimens out off. The mass of the twine is determined by a torsion balamee show in plotograph 3.

Photocraph 3

The wet veight is determined by imaersing the test pieces in distilled vater for a period of 24 mours and noting the wet velght after allouing the admaring weter to drain off.

The miderwater wolghts of the test pieces are determined by sumpending the proviounly wot material madervater using a thin plastie filamont. Matorials which are boyant are kept immorsed in vater by uging additional weighte and findiag the difforence is veight after removing the test manples.
4.4 Tie diameter is deterinined by the use of a travelling meroscope shown in photograph 4 . The twine is kept tant by

Photorraph 4
applying a tandard tencion. The pin head of the travelling mieroscope is rotated so that one of the crose wres kopt in the ere-piece of the mieroscope tonches the upper adge of the torine. The readings on the main scele and vernier seale are noted. The pinheal is again rotated 90 that one of the eroas bar wres tonchen the lower elge of the twine and the readings on the seale are noted. The difforence between the two readings gives the diameter of the twine

3. Sozcion balamee.

4. Travolling miereseope.
5. Twi ot cemater.

1 的
4.5 The tuist is determined weing a twist counter shova in photograph 5. The movable part of the tuist counter is
Photograph 5
drava so as to give length of 25 cm . Aftor applying a standard tension, the twine is fixed on the toist tester. The mande in rotated in the airection oppesite to that of turst given to the twine till the strends are separated. The twiste recorded in the counter give the outer twist (T0) of the twine. Keeping one of the strands in fixed position, the other strands are cut off and the handle rotated in the opposite direction so that the reverse twiste given to the strands while untristing the twine are noutralised and the counter reads zero. The extra length of strand measured by applying one third standard tension gives an indieation of the contraction in length of gtrend while tuisting into twine. The remaining twists in the strand are noted by the untristing method until the jarns get parallelised, the manber of tuiste recorded give the inner twists balaneing with the outer twists. since the outer twist is always opposite to that of inner twist, for twist specifieation studies the number of inner twists civen to the strand is the aum of innor and outer twists . The twist is expreased as number of turns per metre length of twine.

Abstract

4.6 The broaking strength and stretch are deternined by using a tensile streasth tester or dynamometer, vorking on the principle of constant rate of traverse of $300 \mathrm{~mm} / \mathrm{mt}$ shown in photograph 6. The speeimets are flyed by applying

photocraph 6
a Etandard tension and gtrained, the tent 1 agth being 200 m. When the teat piece breaks at the qeatre, the breaking strength and streteh are noted simaltancousiy on the respective scales, The strength is recorded in kilograns and streteh in mililmetres. The breaking atreteh is expreseed as percontage of the test length of the epecimen. The breaking streagth and stretel in wet condition are noted by immersing the test-piaces in distilled vator for a period of 24 mours and noting the strength and alongation at the breaking point. 4.7 The stress-strain property of the trine is determined by a tensile strength tester by moting the elongation at equal intervals of load till the breaking point. The percentage alongation of the twines plotted againat the loads gives the load-elongation curve and the aroa under the eurve is noted for calculating the energy and Young's modalus of the samples tested.
bent in sueh a may as to form a loop and the ends are fixed In the metal clamp. A iistht cellphme vessel of about 3 ef veight is aumpended from the loep. yater is led into the ${ }^{\prime}$ vessel from burette adjusted in such a way that the flow of vater-drops gradually draws the loop of the twine together. The opening of the leop at its videst point is observed uith the asmistance of a gauge and the flow of vater is atopped as soon as the opening is doereaged to 5 man. The velght of the Fessel and the quantity of water dropped into it as read rom the burette is used as a measure in grans of the atiffrese of the material tested.
4. 10 The restetance of abrasion of net materials is detormiaed by using an abrasion tester as show in photograph 7.
photograph 7

One end of the trine is fixed on a book and atandard temsion is applied on the other and which is kept free to move over a pulley. The trine is allowed to rub on an oilstone abradant which is allowed to move to and fro. The number of rubbings are noted in the counter fixed on the abresion tester. After applying certain number of frictions, the abraded portion of the test apecimen is aubjected to treaking strength test and the comparative resistance to abramion is noted.
4. 8 The knot atrength is detornined by noting the atrongth at lueck of a twine on which either an overhand knot, a single knot (reef or trava), knot and a half, double knot or lock knot is tied at the contre of the twine as shova in Figure 3. The reduction of breaking strength by tyiag of knot 1a expressed as percentage with reapect to unknotted twine. Whon two twines are involved in forming a knot, the inear strength is doubled to find out the reduction in strength dee to the tying of knot.

```
Flgure 3
```

The mesh gtrength was tudied by noting the atrength of mesh at bronk usiag a tensile strength tester. Ine meshes are stretched in between the frips provided separetely for conducting strength of meshesc is:5815 Part V, 1971

The knot firmaess is tested by cutting one of the 1imbe of a knot and testing its tivength till the suine breaks or 100sens.
4.9 The nexural atiffiess is noted by a device as shown in flyure 4. Tventy cay length of the apecimen is

DIFFERENT TYPES OF KNOTS FIg: 3

FLEXIBILITY TESTING DEVICE . FIG. 4.

In the case of vet tests the samples soaked in distilled vaten for a period of $2 \boldsymbol{h}$ hours are gubjectad to abrasion teste whild keeping them moist throughout the experiment by dripping vater from a tank fitted above the moving portion of the tester. The number of frictions required to break the apecimon or the difference in the breaking atrongth of the samples before and ufter the experinont are noted.
4. 11 The resistance to static loading is deternined in hanging different loads from one and of the twine, the other end being tied to a book at the top shown in photograple. The period of loading is kopt as 4, 8, 12 and 24 hours. The differnce in the gtreas-strain property or the broaking strength and atretch before and after the experiment gives the effect of tatic loading. The extmaxion of matorial due to

Photograph 8
fatigue is noted by finding the increase in the leagth of twine usiag atandard tension before and after loading teste.
4.12 The weathering experimont is carried out by expening the test samples of one metre length on wooden frame to the action of weather. After periodic interval the retemtion of strength is determined using a tensile strength tester.
6. Tensile strongth tester.

7. Abrasion Testor.

8. Static lead test.
4. 13 The deterioration of fish net twines under contimous immersion in beckaters wes atudied by kooping bunchas of trimes of 50 emy lemgth knotted at the free end under the supface of the water and poridelically deteraining their retention of strength.
4. 14 The offect of chemicals is deternined by treating the trunes uth chmicals and moting the streagth and atrete before and after the treatments. The action of beat vas studied by axposing the twines to verying temperatures.

crapter V

pixsical propratigs of hettime twings

The physical proportiea of single stranded and multiatranded hand-wade cotion twinea used by fishermen for indigenous nets in the different maritime states of India prior to the introduction of aynthetic twines are prosented in tables 3, 4 and 5. The phosical proportiea of machine trulsted cotton tulnes of soft and hard lay used for fabrication of gill neta and trawl nete are prosented in tables 6 and 7. The physical properties of bast fibre twines such as gunhery and Italian hemp commonly used for certain types of fishing sear are presented in tables 8 and 9 and those of coir trines used for certain parts of nets and ropes are civen in table 10. A comparative account of the physical properties of vegetable fibre twines is presented in table 11.

$$
\text { Tables: } 3,4,5,6,7,8,9,10 \text { and } 11
$$

The data collected on the phasical properties of aynthetic tuines mell as polyonide multifilament, polyetmylene twisted monorilaments, polyethylene monofliamonta braided, polye thylene flat tape twines, polyethylene fibrillated tape twines and polypropylene multifilament twines are presented in tables 12,13,14,15, 16 and 17.

$$
\text { Tablest } 12,13,14,15,16 \text { and } 17 \text {. }
$$

Tablet 3 Properties of single stranded hand-made cotton twines used for indigenous sill note

ai

4

Tables 5 Physical properties of multi-stranded cotton twines used for indigenous nets.

Tables 6 Physical properties of machine-made soft-twisted cotion twines.

S1.	speci- fication	$\begin{gathered} \substack{\text { Dia- } \\ \text { meter } \\ (\mathrm{man})} \end{gathered}$	$\begin{gathered} \text { Mass } \\ \text { per } \\ \text { pertere } \\ \text { (} 8 \text { (r) } \end{gathered}$	Twlst per metreouter inner		$\begin{aligned} & \text { Breaking gtrength } \\ & \text { dry }^{(\mathrm{kg})} \text { wot } \end{aligned}$		$\begin{gathered} \text { Breakin } \\ \text { dry } \end{gathered}$	$\begin{gathered} \text { stretch } \\ \text { wet } \end{gathered}$
1	20/4/3	1.00	0.37	323	646	5.6	6.6	12.0	16.0
2	20/9/3	1.20	0.90	228	520	13.6	15.7	16.7	30.0
3	20/12/3	1.40	1.10	189	354	16.8	19.2	19.5	28.8
4	20/15/3	1.70	1.60	177	331	21.6	24.2	22.1	32.8
5	20/18/3	2.00	2. 10	217	390	26.6	30.2	25.0	33.0
6	20/22/3	2. 10	2.40	165	260	31.7	34.3	24.5	31.0
7	20/32/3	2.60	3.60	138	213	46.7	53.5	24.5	33.5
8	30/4/3	0.63	0.23	402	795	3.7	4.0	11.0	14.7
9	30/6/3	0.79	0.39	378	583	5.8	6.5	20.3	24.0
10	30/9/3	0.93	0.56	260	543	8.5	10.9	14.6	26.1
11	40/4/3	0.61	0.18	350	610	3.3	3.7	12.2	18.3
12	$40 / 6 / 3$	0.74	0.29	331	520	4.5	5.4	18.5	21.1
13	40/9/3	0.84	0.43	260	370	6.8	7.4	14.2	23.3

Tablet 7 Physical properties of machine-made hard-twisted cotton twines.

$\begin{aligned} & \text { S1. } \\ & \mathrm{NO} . \end{aligned}$	specification	Dian meter (m ($\begin{array}{r} \text { Mass } \\ \text { per } \\ \text { metre } \\ (\mathrm{s}) \end{array}$	Trist outer	$\begin{aligned} & \text { per metre } \\ & \text { inner } \end{aligned}$	Breaking strength dry (kg) wet		$\begin{aligned} & \text { Breaking tretch } \\ & d r y \text { vet } \end{aligned}$	
1	20/3/3	0.72	0.30	398	1640	4.2	4.8	14.5	27.2
2	20/4/3	0.87	0.47	358	1365	5.2	6.3	17.2	33.8
3	20/5/3	0.95	0.63	291	1280	6.1	7.3	$2{ }^{2} .2$	30.7
4	20/6/3	1.04	0.76	299	1967	8.7	9.7	21.9	30.0
5	20/7/3	1.09	0.87	291	987	10.5	11.6	13.8	30.3
6	20/8/3	1. 15	0.98	291	961	11.2	11.6	21.9	29.8
7	20/9/3	1.25	1.22	236	846	12.5	13.2	25.7	34.5
8	20/10/3	1. 28	1.25	236	874	14.1	14.9	21.8	30.8
9	20/12/3	1.39	1. 39	197	661	16.6	17.2	21.6	32.5
10	20/14/3	1.54	1.86	205	555	17.7	18.7	26.6	37.2
11	20/16/3	1.67	2.12	205	608	20.8	22.8	2.7	36.5
12	20/19/3	1.78	2. 37	201	601	23.7	24.5	26.0	32.5
13	20/20/3	1.88	2.67	189	631	25.9	27.4	26.4	35.2
14	20/21/3	1.97	2.66	189	524	27.6	23.4	23.6	3 C .2

Tatb: 17 Conto.

$\begin{aligned} & \text { s1. } \\ & \text { soc. } \end{aligned}$	$\underset{\text { sication }}{\text { spect- }}$	$\begin{gathered} \text { Diar } \\ \substack{\text { meter } \\ \text { man })} \end{gathered}$	$\begin{gathered} \text { Maza } \\ \text { par } \\ \text { perter } \\ (\varepsilon) \end{gathered}$	$\begin{aligned} & \text { Twist per metre } \\ & \text { Outer } \\ & \text { inneer } \end{aligned}$					
15	20/23/3	1.99	2.77	185	504	28.5	30.6	30.4	30.0
16	20/24/3	2.06	3.07	189	508	30.6	35.2	2322	32.0
17	20/25/3	2.17	3.10	181	500	30.6	32.5	32.5	23.7
18	20/26/3	2.18	3. 17	185	496	31.8	34.4	29.4	35.9
19	20/27/3	2.19	3.23	177	484	31.7	32.5	23.3	32.2
20	20/29/3	2.25	3.67	265	504	35.5	36.4	23.3	34.3
21	20/30/3	2.29	3.36	169	484	36.1	37.5	30.1	36.3

Physical properties of sun hemp twines uaed by fienerman.

rableng Contd.Physical properties of sun hemp twines obtained from tradera.

iable: 9 Characteriscics of Italian hemp twines.

f10:	${ }_{\text {Damater }}^{\text {(ma) }}$	comem	${ }^{\text {TM ase }}$ deper				
1	${ }^{0.596}$	0.274	337	7.6	8.2	6.7	${ }^{0.8}$
2	${ }^{0.631}$	${ }^{0.331}$	325	7.9	8.4	6.6	11.4
3	${ }^{0.766}$	0.490	230	11.2	11.7	2.7	9.5
4	0.910	${ }^{0.689}$	${ }^{4} 4$	13.2	13.5	8.3	10.3
5	2.080	3.390	531	67.5	6.5	7	11.9

Tables 10 Physical properties of coir twines.

$81 .$	Dlameter (mm)	Mass per metre	$\begin{gathered} \text { Brealigg strength } \\ (\mathrm{kg}) \end{gathered}$		Breaning stretch$(\%)$	
				wet	dry	wet
1	3.41	4.08	13.1	15.4	34.7	19.3
2	3.68	4.48	20.7	16.4	34.5	33.3
3	4.12	6.25	24.0	22.0	37.4	43.5
4	4.41	5.44	30.9	24.6	29.8	33.9
5	4.42	7.32	40.1	30.3	32.3	32.5

Tables 11 Comparative/phygical properties of vegetable fibre twines.

s1. No.	Material	$\begin{gathered} \text { Di aneter } \\ \text { (min) } \end{gathered}$		Hista per notre (s)		Breaking strength $d x$ (Kg) wot				Breaking $\left.{ }^{(}\right)$wretchdry			
1	sun herip	$\begin{gathered} x \\ 2.26 \end{gathered}$	$\begin{gathered} \sigma \\ 0.2 \end{gathered}$	3. 31	$\begin{aligned} & \sigma \\ & 0.3 \end{aligned}$	32.7	$\begin{gathered} \sigma \\ 3.5 \end{gathered}$	37 d	$\begin{gathered} \sigma \\ 3.7 \end{gathered}$	5.8	$\begin{gathered} \sigma \\ 0.9 \end{gathered}$	11.6	σ 1.0
2	Italian nomp	2.08	0.1	3.90	0.2	67.5	4.8	69.4	5.4	8.0	0.5	16.0	1. 3
3	Flax	2.21	0.1	2.93	0.3	44.6	5.6	50.9	5.6	8.8	0.9	16.6	1. 2
4	S18al	2.38	0.1	3.28	0.3	$3 t .0$	5.4	39.9	5.7	9.6	0.9	14.5	1.3
5	Manila	2.66	0.2	3.90	0.4	50.2	C. 4	53.7	5.6	9.1	0.9	15.9	4.2
6	cotton	2.21	0.1	2. 34	0.1	27.0	1.7	30.7	2.2	21.1	1.7	26.7	1.0
7	Cols	2.57	0.2	2.04	0.4	9.1	2.0	8.4	2.1	21.2	4.0	25.9	4.2

$z=$ arithmetic mean
$\sigma=$ standard deviation
Table: 12 Physical properties of polyamide multifilament (nylon) trines.

Tables 13 physical properties of polyethylene monofilament twines

Table Is Centa.

$\begin{aligned} & \text { sl. } \\ & \text { no. } \end{aligned}$	Speet. fication	Diametor (min)	$\begin{aligned} & \text { Mass } \\ & \text { per } \\ & \text { metre } \\ & (\mathrm{g}) \end{aligned}$	$\begin{gathered} \text { Runa } \\ \text { nage } \\ (\mathrm{m} / \mathrm{kg}) \end{gathered}$	Twist outer	$\begin{aligned} & \text { por metre } \\ & \text { inneer } \end{aligned}$	Ereaking ngth dry	$\begin{gathered} \text { stre- } \\ \text { (kg) } \\ \text { wet } \end{gathered}$	Breakin寢 dry	gtrem (袢) wet	Knot stre:ugin ($\mathrm{k} \%$) wet
16	$32=3$	3.098	4.374	220	97	62	116.6	120.3	24.5	24.6	93.2
97	$45=3$	3.540	5.320	135	91	84	99.4	114.5	45.0	40.8	89.6
18	$48 \geq 3$	3.210	4.580	218	9	20	91.7	104.6	42.3	46.1	85.9
19	60:3	4. 9hen	8.103	123	53	46	889.1	176.6	29.6	36.3	103.2
20	63×3	4. 380	8.953	110	52	42	200.7	193.5	31.3	35.3	173.0
21	72×3	4.060	7.520	132	83	59	142.0	14\%. 3	43.2	35.6	119.4

Table: 4 Physical properties of polyethylene monofilament braided twines.

Tablet 15 physical properties of high density polyethylene flat tape(weaving tape)

s.	Diza meter (min)	$\begin{aligned} & \text { Mags } \\ & \text { per } \\ & \text { metre } \\ & \text { (} \mathrm{E}) \end{aligned}$	$\begin{aligned} & \text { Runnage } \\ & (\$ / k g) \end{aligned}$	Twist per metre outer inner		$\begin{gathered} \text { Breaking gtre- } \\ \text { ngth (kg) } \\ \text { dry wet } \end{gathered}$		$\begin{aligned} & \text { Branking tre- } \\ & \text { tech (\%) } \\ & \text { dry } \end{aligned}$		Knot strength (kg) wet
1	1. 35	0.668	1500	174	291	17.8	20.1	27.0	22.8	14.7
2	1.79	1.489	670	172	347	34.1	39.3	25.6	25.6	25.5
3	2. 10	2.049	490	173	338	43.2	48.5	33.6	29.8	36.8
4	2.80	3. 146	315	122	259	68.6	69.8	32.2	28.7	53.2
5	3.50	4.774	144	100	225	98.2	105.5	33.9	33.3	79.1

82

$\begin{aligned} & \text { Sl. } \\ & \text { No. } \end{aligned}$	Divm moter (min)	$\begin{gathered} \text { Mase } \\ \text { per } \\ \text { metre } \\ (\mathrm{s}) \end{gathered}$	$\begin{aligned} & \text { gunnage } \\ & (m / \mathrm{kg}) \end{aligned}$	Iwlat per metre outer inner		Break 1 ngth dry	$\begin{aligned} & \mathrm{g} \text { trem } \\ & \text { (xg) } \\ & \text { wet } \end{aligned}$	$\begin{aligned} & \text { Breaki } \\ & \text { tech } \\ & \text { dry } \end{aligned}$	$\begin{aligned} & \text { stre } \\ & \text { (\%) } \end{aligned}$	```Knot strength (kg) wet```
1	0.86	0.340	2940	251.2	195.8	10.3	11.2	25.1	21.5	8.9
2	1.15	0.635	1575	167.8	206.0	18.3	20.6	27.5	24.6	16.2
3	1.50	1.071	935	132.0	191.4	28.8	32.8	31.7	25.8	25.9
4	1.92	1.425	700	119.8	174.4	36.6	41.3	34.3	29.0	32.8
5	2.08	1.824	548	135.0	307.2	42.0	4 C .8	44.6	29.3	35.8
6	2.10	2.193	455	124.6	278.4	49.8	55.9	45.5	30.3	43.0

Tables 17 physical properties of polypropylene multifilament twines.

5.1 Lipear denaity:

The mase of tuine is an important factor to be reckoned while dealgaing a net (Beuter 1959). Apart from economic considerationg, the mass of tuine helps to determine the total weiget of the gear which in turn indicates the broyancy and gravitational forces necessary to keop the net in the proper fishing position. Radhalakshad (1964) has worked out m ampirical formula for the estimation of the weight of webbing based on the mass of twine, its count maber and the atretched mesh sise. The mass of the twine depends on its thickness as is evident from the above tables 3 to 17 in the case of different specifications of vegetable and synthetic twines. Kuriyan and Cecily (1959, 1960), Nayar (1960)and Kuriyan and Radhalaishai (1960) bave proved that the mass is directiy proportional to the square of diameter of twines, which in turn is directly proportional to the totel mumber of jarns, the count number of the single yarn remaining the same. The data on mase and diameter of varions specifications of twines of vegotable and aynthetie oricin were analysed using the relationghip $H=K n$ and $H=I D$ where, H is the mas (B) per eetre longth of twine, s is the total mumber of yarns constituting the twine, D is the diameter of twine (mm) and K Is the constant of proportionality in both the equations. Table 18 shove the values of constants worked ont for vegetalle fibre twine: for the above relationshipa.

Table 18

The variation in the velue of E in the relationship $K=\operatorname{In}$ ie. the weight of a single yam of 20 count yarn of cotton twines shows that irrespective of whether the twinee are sincle stranded or maltistranded, the I values depond on the degree of twist, a soft twisted tuine showing less veight when coupared to a hard twisted one. When the number of twist per unit length is relatively greater, the shrinkage of the yarns is more, resulting in the use of more material for making the twines and consequently the mass per mit length of twine is therefore relatively higher than that of a soft tuisted twine. The constants worked out for soft twisted cotton twines eade of different count numbers show that apart from the decree of twists applied to strands and turnes, the size of the yarn uith which the twines are made exert profound influence on the lincar dencity.

The vaines of I in the relationahip $E=X^{2}$ ghow the mase of twing in crans per diameter square serve as an indox to denete the relative mase of different materials. This relationsif also ahows higher value of X in the case of hard twisted cotton twines. Among the other vegetahle fibre twines. Italian hemp is heavier than the other materiais of the same thickess with gun homp, flax, sisal, manila and
Teble 18 Relationshlp of mass, cotal number of yarms and diameter of
vegetable fibre twines.

Meterials	Value of K in the relationship	
	W $=\mathrm{Kn}$	v $=\mathrm{KD}^{2}$
1. Cotten		
hand aede sincle strended	0.035	0.62
- multistranded	0.037	0.47
mehine made soft twisted 20 count	0.036	0.58
30	0.020	0.60
40	0.015	0.54
hard twisted 20	0.044	0.78
2. Sunheep	-	0.68
3. Italion hemp	-	0.78
4. Flax	-	0.60
\%. Sisal	-	0.58
6. Manils	-	0.36
7. Coir	-	0.31

W mass/netre; $n=$ totel no. of yoms: D mianeter $K=$ constant
coir following the order. Coir is the lightent among the materials compared.

In the case of synthetic ribre twines the data colleeted on mass and diameter were statiatically analysed. Highy significant poaitive correlation (pw 0.01) betweon mass and diameter square was observed which indicates that the mase of the twine increases with the increase in diameter square. Megression aquations of mass on diameter squire were worked out for each type of twine. The equations are presented below.

Material
 Bersession ruations

1. PR braided twines
$I=0.64 X$
2. PE fibrillated twines
$I=0.46 x$
3. PA mal tifilament
$x=0.45 x$
4. Pr monofilament twisted trinet
$Y=0.44$
5. PE flat tape twisted turines
$I=0.41 \mathrm{X}$
6. $P P$ maltifilament twines
$Y=0.35 x$
Where Is the dependent variable (mass in grams per metre) and X is the indopendent variable (diameter agare in min). The ematant I is vorted out by using the relation $\mathrm{K}=\mathrm{X}$ where ' n ' is the mamer of observations.

The graphical representation of the equations vorked ent
$\xrightarrow[\text { Ficure } 5]{ }$
are given in the figure 5.

K Falwes in the above equations show that the PT monofilament braided twine is the meaviest, followed by PE fibrillated twines, PA wultifilament, PE monofilament twines, PF flat tape and PP multifilament. As observed in the graph, PR fibrillated, PE monofilament and PA multifilament are more or less of the same weight, while PP maltifilament twines have the least weight amongst the synthetic fibre twines tested. By using the above regression equations the weight for any given diameter of twine can be estimated.

In a similar may, if the mas per motre of any twine is given, the diamoter can be obtained by the following regression equations os the diameter square on mass per unit length.

Metariels

1. PP mitifilamot
2. PE flat tape
3. PA maltifilamont
4. PE momofilament
5. PE Pibriliated
6. PE mraided

Whore I is the diameter square (mul) and X is the mass in srame per motre.

The density and apecific volume are inversely proportional and bence the thickness of tuine on equal veight per metre increases with decreasing density of fibres. From the above equation it is evident that the PP multifilament shows higher diameter for a fen mass won compared to PA maltifilamont twines. This is attributed to the lesser dersity of PP maltifilament twine in comparison with PA multifilament twines. Here comparison is made between maltifila ment twines of two different polymars but the type of yarm and construction are the same.

Nith regard to polyethylene, four constractionally different sambes of the same polymer are compared. Fibriliated tape and monofilament twisted twines are maving almot the same diameter and they are founc to be thinner than flat tape twines. Pr brilded twines shoved the least diameter among the others when zamples of equal mass are compared. Although monofilaments are used in the basic yarm for both twisted and braided forms, the variations of the values of K in the above regression equations is attributed to the comstructional difference ie. twisting versue braiding resulting In the lover dianeter values on equal mass in the case of braided twines compared to monofilament twisted torinea.

5.2 Dineter

The dianeter of the twine is on inportant charactoristic in detervining the effect of curremt on a given piece of wobbing, the puil on the net by the moving fish and the pewer sequired or apeed attoined in the case of towed gear (Carrothers 1959). Andreev (1962) followed the formela $D=\sqrt[x]{\text { 有 }}$ for dotermining the diencter D of twine where n is the nuber of yams. Nw, the count mumer in the setric system and K, the constant in the relationship which wae worked out as 1.3, $1.5-1.6$ and 1.4 for cotton, kapron and heap respectively. The selection of twines of proper dioneter for particular fishing gear is made by experience. The thinner the twine, the lower ist he resistance, which in meat cases is advantageous for the catching efficiency as it reduces water turbulence which in turn binimises the frightening effect on fish. The importance of diameter of twine in the case of gill nets hat been reperted by von Brandt and Liepolt (19*3), Mohr (1961), Culbadapor(1962). Steinberg (1964), Znamenoky (1963). Meyar at, at (1967) and Sulochenen and Krishat Reo (1964).

The relation between mass and diameter has beon already discussed earlier (5.1). The infiuence of diemeter on other properties such as twist, stringth and knot strength of twines Will be discussed under the respective tepics. Riust (1973) steted that PA netting twines become thimer in wet condition compered to those of polyester, polyethylene, polypropyiene and polywinyl chloride diameter of wich remained nrecticaliv
unchanged.

5.3 Treat

The method of twisting of twines from single yams of menofilament, multifilament and staple yams and the process -f breiding hove already been discussed under chapter II (Figures 1 and 2). The twist date presented in tables 3 to 11 show that before the int roduction of synthetic twipe s , Indian fishermen wire using vecetahle materisls lite cotion ond hemp, either singlemstranded or multi-stranded with two, three or four strends. Hayhurst and Robinson (1989) are of opinion that in two stranded twines the interstices and the angle of loy are wide so that the twines do not have a round shape although they have the advantage that the strands cannot ride over one another. They contend that the three stranded construction is tore stable and free from distortion than the other types, the reasons being that the cross section is in the form of - triangle which is not easily pushed out of shapes the angle of lay is more acute and the interstices are narrow. Although the twines with four strends give exceptionally round fornation, the loy gets easily distorted cousing uneven stresses.

Touti (1929) in his studies on strength of cord in relation to twist observed that the bal ance betwen the priwery twist for aaking strande frov yarns and the secondery t wist to make the twine fron strand is very important, since on increased twist augnents the tensile strength upto an optimus point, beyond which it produces an opsosite effect. Kondo
(1938), Kolzume (1984) and Shimozoki (1987) mention that among cotton and synthetic twines with verying tuists wsed for fishing gear in Japan, there is a difference of about ls to 20% in tensile stremgth since an overtiwisted and weaker twine noy be found side by side with a correctly twisted stronger one. Hoyhurst and Pobinson (1999) stated that additional twists reduced the breaking strength and length per unit weight and isproved the extension at break and resistance to obrasion and general wear.

When the strands are twisted, esch strand mikes helix and the angle betweon this helix and the axis of the twine is commonly teraed the 'angle of twist' (Figure 6).

Fig. 6 Angie of twist of twine.
The dearee of twist of twine is represented by this angle. The greater the angle of twist, the harder is the twine. Twist can, therefere, be expressed by their nusber per unit length.

If AB represents the pitch of helix (length of twist),

 $A C$ the lemgth of hellix, the diameter and T the nuaber of twist per unit length of twine, then, BC (circumference of| twine $)$ | $=\pi \mathrm{D}$ |
| ---: | :--- |
| AB | $=\frac{1}{\mathrm{~T}}$ |

$\operatorname{Ton}=\frac{B C}{A B}=\frac{\text { IR }}{\frac{1}{5}}=\pi D T$
Accordingly, $T=\frac{\operatorname{sen} \theta}{D}$
or D
$=\frac{\tan \theta}{T}$

The above formulse lead to the concluaion that when the diometer of the twine is constent, the number of twists per unit length is proportional to the angle of twist and when the ancle of twist reseins constant, the number of twists per unit length is inversely proportional to the dismeter.

$$
\text { If, therefore, } n \text { and } n_{1} \text { denote the total number of }
$$

yams constituting each twine, D and D_{1} their respective dizoeters and W the mass of a thread of length L, then,
$=\frac{\pi}{4}$
$D^{2}:$
$1 \times \frac{\pi}{4}$
$D_{1}^{2}=m$
: $n_{1}{ }^{w}$

If the angle of twist ' is constant in both the twines,

| $T:$ | T_{1} | $=D_{1}: D$ |
| ---: | :--- | :--- | :--- |
| or T | $: T_{1}$ | $=\sqrt{n_{1}}: \sqrt{n}$ |

The number of twists therefore is inversely preportional to the diameter of twines and also to the square reot of number of yerns, the size of the compenont yem remaining the same. The twist date on different specifications of twines belenging to both vegetoble and synthetic origin presented in tables 3 to 17 depict the obove relationshipe.

The obvious difficulty in twisting a mitistranded twine is to give the appropriate outer twist in relation to the inner twist of the strand. If the proper ratio is not calntained between the inner and outer twists, the twine will be unstable and suceptible to twist in the directien of outer or inner twist whicever is more. Klust (opepfit) montions that fish net twines can be made as soft, nediun, hard end extromard as per requirewents of various types of fishing gear and it may not be pessible to specify the degrees of hardness by numerical valves. Since twist is minportant factor in the selection of material for different kinds of rets, on atteapt has been wade te find out the proper ratio betwen inner and oute: twists and to evolve the twist-factors te produce twinet having varying degrees of twists. Busic yain of cotton of count number 20 was eelected for this study. Using e handedriven twine twisting aschine shomin in photograph 9, cotton twines of varying degrees of twiste were prepared in two different directions vir. 252 and 2Z5. Tables 19 and 20 present the nusber of inner and outer twists for
soft. eedium, hard and extrewherd twines of cotton made in

Tables 19 and 20

ZSZ and ZZS directions.

The constant for the degrees of twists were worked out incorpersting the tetal number and count number of yams as,
To $\quad K \sqrt{\frac{h_{s}}{n}}$ where T_{0} is the outer twist per
metre length of twine, n is the total number of yams. Ne is the count number of yam in the British system and K, the twist-factor depicting the 'degree of twit'. The K values found out for the different degrees of twists for cotton twines are as followst

	Z5Z	225
Soft	185	225
Medive	230	275
Hard	275	320
Extre-hard	315	335

By substituting the K valves, tetal number and count number of yerns, the outer twist for different degrees of hardness fer any specification of cotton twine can be estimated. The inner twist can be morked out from the relationship. $I_{0}=K T_{1}$ where $T_{0} i s$ the outer twist. T is the inner twist. The constant K was found to be 0.28 for $Z S Z$ direction and 0.84 for 27.5 direction.
Tables 19. Iwist specifications (twist/m) for cotion twines twisted in $2 S 2$ direction

S1:		soft		outer ${ }_{\text {M }}$	inner	Hard		Extra-hardouter inner	
1	20/ 2/3	323	1157	431	1543	502	1799	523	2047
2	20/3/3	263	941	351	1260	409	1468	468	1677
3	20/4/3	227	815	303	1087	354	1268	405	1453
4	20/ 5/3	204	728	272	972	318	1138	363	1299
5	20/6/3	185	661	247	382	283	1031	330	1181
6	20/7/3	172	614	229	819	268	957	306	1094
7	20/8/3	161	575	214	766	250	894	286	1024
8	20/9/3	154	539	202	730	236	842	270	964
9	20/10/3	144	515	193	637	225	803	257	921
10	20/11/3	137	483	183	653	213	762	244	874
11	20/12/3	131	468	175	$\boldsymbol{\epsilon} \boldsymbol{t}$	205	732	234	835

98

$\begin{aligned} & \text { s1. } \\ & \text { No. } \end{aligned}$	Specification	soft		Medium		Hard		Extra-hard	
		outer	inner	outer	inner	outer	Inner		Inner
1	20/2/3	395	1200	502	1480	573	1665	646	1358
2	20/ 3/3	321	1004	409	1236	466	1389	525	1539
3	20/4/3	278	890	354	1090	405	1228	455	1437
4	20/5/3	250	815	318	996	363	1118	407	1232
5	20/ $\epsilon / 3$	227	752	288	913	330	1027	371	1138
6	20/7/3	211	709	288	862	306	961	344	1067
7	20/ 8/3	197	673	250	815	286	909	322	1008
8	20/9/3	185	642	236	775	270	866	303	957
9	20/10/3	177	¢ 20	225	748	257	835	239	917
10	20/11/3	168	596	213	716	244	- 799	274	878
11	2/12/3	161	579	205	695	234	772	263	846

The suitability of the above twiat factors tested using ring-type twisting aschine (photograph 10) showed that cotion t wines of soft and medium twists in the directions ZSZ ond soft twines in ZZS could be wede eccording to the suggested twist specifications, wheress in the case of twines with higher degrees of herchess kinks were forned in the strends. The reason for kink formation during strend twisting was investigated. Since the direction of outer twist was opposite to that of the t wist of strand, a number equal to outer twist got untwisted fron the strands during twine twisting operetion. There was no provistion in the case of ring type twisting aachine to add inner twist during the letter operation to compensate the loss of inner twist by the change of direction of t wist as in the case of hendudriven twine twisting machine. A further probe on the linitation of the ring type machine showed that the higher the degree of herdhess the greater was the contraction in length of yem as shown in table 21 and 22.

Table 21 tand 22

The sbove studies also indicated that the twist on twist (zZ) in strand aoking operation required more of contrection in length of yam than t wist ggainst twist (zS). The experinents confinged that twines which need greater contrection of length of yam could be twisted according to the sugcested standards in mand-driven twine twisting device where the twisting gear on the opposite side is fixed on

9. Hand drivon twinc twisting machine.

10. Ring type twine twisting machine.

Tablet 22 Contraction of yaras during turne toriating oparations in fing type

	direetion of trist		282		228			
	Tvist	netre	(\%) contrection	observal	Twat	metre	contracti	obsorved
${ }_{1} 10$.	outor	1 mmor	outer tristing		outer	innor	outer	Imnor trating (total contra- con ction)
1	100	460	4.8	5.3	193	323	6.5	8.2
2	205	547	5.5	7.4	189	401	6.2	9.1
3	201	582	5.1	7.4	208	500	7.0	13.3
4	318	795	10.6	14.4	260	657	9.1	16.1
5	362	885	13.3	17.9	315	780	12.3	21.0
6	389	996	16.0	20.8	394	975	17.6	27.2
7	421	1146	17.3	24.5				

wheals and can be drom closer so as to provide for the required contraction in length of yarn during the tousting proceas.

The twist data on synthetic twines presented in table 12 to 17 were malysed. The K values showing the relation ef inner to outer twist per metre loagth of ewine show that the outer tulst is about seg of the imner twist in the case of polyonide multifilement twines, 52% in polyprepyiene wultifilanent twines and 50% in polyethyiene flat tape twines. In the case of polyethylene twisted monofilaments and polyethylene fibrillated tape twine, this relotionship Is found to be erratic. Sayples of polyanide nultifilament and polyethylene monofilament twines procured fron ifferent traders were abjected to analysis of physical properties to note the twist-foctors. Tables 23 and 24 preseat the properties of similar specifications of twines aede of PA multifilaments and PE monofilament twines. It is evident ixeo

Table 23
Teble 24
these tables that the traders are not following any set pattem in selecting the t wist-factors for the preduction of twhes and the physical properties of twines are affected to certain extent by odopting different twist specifice tions.
Tables23 physical properties of similar specifications of nylon twines obtained from different

Firm	Specirication	Diameter (m)	Mane per metre (E)	$\begin{aligned} & \text { IWI: } \\ & \text { onter } \end{aligned}$	$\begin{aligned} & \text { per } \\ & \text { ine } \\ & \text { inner } \end{aligned}$	Break ngt dry	$\begin{gathered} 8 \text { tre } \\ (\mathrm{Kg}) \\ \text { wot } \end{gathered}$	$\begin{aligned} & \text { Broak } \\ & \text { tol } \\ & \text { dry } \end{aligned}$	$\begin{aligned} & \text { Stro- } \\ & \text { (\%) } \\ & \text { wet } \end{aligned}$	Tonacity$(\mathrm{s} / \mathrm{d} \mathrm{m})$dry	
A	210x2x 3	0.56	0.15	296	292	7.1	6.4	28.0	32.0	$\begin{aligned} & 4.9 \\ & 5.8 \\ & 4.6 \end{aligned}$	4.54.94.0
3	$210 \times 2 \times 3$	0.61	0.16	278	304	8.1	6.7	26.0	25.4		
C	210x2x 3	0.60	0.11	367	259	4.4	3.9	31.4	33.3		
A	$210 \times 3 \times 3$	0.71	0.23	293	240	11.1	10.5	26.8	33.4	$\begin{aligned} & 5.2 \\ & 6.4 \\ & 6.1 \end{aligned}$	$\begin{aligned} & 4.9 \\ & 5.3 \\ & 6.0 \end{aligned}$
3	$210 \times 3 \times 3$	0.72	0.24	246	234	13.3	19.0	30.6	27.8		
C	210×3×3	0.76	0.24	263	513	10.8	10.4	30.4	31.6		
1	$210 \times 4 \times 3$	0.86	0.318	214	216	15.2	13.9	29.0	35.0	$\begin{aligned} & 5.3 \\ & 6.4 \\ & 4.3 \end{aligned}$	4.85.23.9
B	$210 \times 4 \times 3$	0.77	0.32	199	226	17.9	14.4	29.8	27.8		
c	$210 \times 4 \times 3$	0.99	0.34	265	267	13.0	11.9	40.0	43.6		
A	$210 \times 5 \times 3$	1.10	0.42	242	258	19.2	17.6	38.0	48.5	$\begin{aligned} & 5.1 \\ & 6.0 \\ & 5.3 \end{aligned}$	$\begin{aligned} & 4.7 \\ & 5.1 \\ & 4.6 \end{aligned}$
8	$210 \times 5 \times 3$	0.96	0.41	190	242	21.8	18.4	31.4	32.4		
C	$210 \times 5 \times 3$	0.95	0.40	198	214	19.5	16.9	29.2	33.8		
	$210 \times 6 \times 3$	1.08	0.52	222		21.5	20.5	40.5	47.0	$\begin{aligned} & 4.5 \\ & 5.1 \\ & 4.9 \end{aligned}$	4.34.15.5
B	$210 \times 6 \times 3$	1.12	0.53	226	268	24.0	19.1	38.4	40.0		
C	$210 \times 6 \times 3$	1.16	0.51	236	256	22.5	20.5	38.0	40.2		

Tables 24 Physical properties of gimilar suecifications of polyethylene monofilament

Tirm $\underset{\text { sieation }}{\text { specio }}$							
		${ }_{\substack{323 \\ 235}}^{\substack{ \\ \\ }}$	$\underbrace{\substack{10}}_{\substack{818 \\ 218}}$			${ }_{\substack{3.8 \\ 3.8}}^{\substack{3 \\ 3}}$	${ }_{\text {3 }}^{3} \mathrm{3}$ 3．9
						${ }_{\text {che }}^{\substack{3.7 \\ 2.3 \\ 2.7}}$	
		洨	${ }_{\text {c }}^{9}$			2．9，	3．8
							cole
		边䞨	先			¢	${ }^{3} 1.3$

105

Experifental twisting was carried out in the laboretory using hond-driven twine twisting machine and different specificatiens of synthetic twines were made fros mylon multim filament yazn of 210 denier, polyethylene menefilament of 3*0 denier, polyethylene flat tape and fibrillated tape twines of 1000 denier. Since wide variations in the degree of twists are not used asong the differeat synthetic twines as in the case of cotton t wines, suitable twistmactors were worked out for seft and hard twisted nylon and mediun twistedt wines of polyethyiene menofilanemt, flat tape and fibrillated tape.

Tables $25,26,27,28$ and 29 present the twist specifications and tranoth of bulenced twines of PA multifilament of 'soft' and 'hard" twists and PE menofilament, PE flat tape, PE fibrillated tape of cedium twist.

Tables 26, 26, 27, 28829

Hewever, the sythetic twines can be wade by different twistfactors and even if the inner and outer twists are not balamced, the twist cen be set by post twisting stobilising treatments such os thernosetting and application of bending agente. The twist specifications prescribed here can be used as nuide. lines for raking balanced twines of polyande multifllament, pelyethyiene menofilaments, fiat tape and fibrilisted tope twines without any twist-setting process. Frow the above twist specifications the relationship betweon outer twist and inner twist, totel number and denior number of yarns were
Tablet 25 specifications for soft twisted polyamde multifilament(nylon) twines.

$\begin{aligned} & \frac{81}{810} \\ & \text { Ho. } \end{aligned}$	Spocification	$\begin{gathered} \text { Maga por } \\ \text { moter } \\ (\delta)) \end{gathered}$	mannage m / kg	$\begin{aligned} & \text { Twist per aetre } \\ & \text { outer inner } \end{aligned}$			
1	210x 2×3	0.16	6200	310	560	6.3	5.4
2	210x 3×3	0.24	4200	250	450	9.5	8.1
3	210x 4×3	0.33	3000	230	410	12.6	11.7
4	210x 5x3	0.41	2400	210	380	15.7	13.4
5	210x 6×3	0.51	1950	255	460	18.9	16.1
6	210×7×3	0.59	1700	225	420	22.0	18.7
7	210x 8×3	0.65	1550	200	360	25.2	21.4
8	210x 9x3	0.77	1300	170	310	28.2	24.2
9	210x12x3	1.00	1000	155	305	37.9	32.2
10	210x15×3	1.28	780	145	270	46.5	40.0
11	210×18×3	1.51	660	135	250	56.5	48.0

Tables 26 specifications for hard twisted polyande multifilament (nylon) twines.

$\begin{aligned} & \text { s1. } \\ & \text { No. } \end{aligned}$	Speci- fication	Mags par (8)	$\begin{aligned} & \text { Bunnage } \\ & \text { (m/kg) } \end{aligned}$	Twlat per outer	motre inner		$\begin{aligned} & \text { Kqugth } \\ & \text { wet } \end{aligned}$
1	210x 2×3	0.17	6000	490	870	6.1	5.1
2	210x 3x3	0.25	4000	395	720	9.2	7.6
3	210x 4x3	0.36	2800	360	630	12.2	10.0
4	210x 5×3	0.43	2300	300	550	15.3	12.6
5	210x 6x3	0.54	1850	285	510	18.3	15.2
6	210: 7x3	0.62	1600	265	475	21.4	17.5
7	210x 8×3	0.70	1420	250	450	24.4	20.2
8	210× 9×3	0.82	1220	230	420	27.6	22.2
9	210×12×3	1.06	940	200	365	36.8	30.2
10	210×15×3	1.35	7 740	180	328	46.0	37.8
11	210×18×3	1.59	630	164	296	55.0	45.0

Table: 27 specifications for polyethylene monofilament twines. (yam diameter 0.2 mm)

${ }_{\text {¢10, }}^{10}$	${ }_{\text {ripaction }}$		(amma			
,	${ }^{23}$	0.23	4400	${ }^{20}$	410	${ }^{6.0}$
2	383	0.33	3000	220	350	8.0
3	583	0.62	1600	170	20	15.5
4	6×3	0.71	1300	155	250	9.0
5	9×3	1.18	${ }_{85}$	190	20	2.0
6	1583	1.82	550	120	200	40.0
7	2433	3.08	3	9	155	65.0
8	30×3	4.35	230	so	140	90.0
,	45×3	6.67	150	75	${ }^{125}$	${ }^{140.0}$
${ }^{10}$	68×3	8.00	${ }^{25}$	\%	120	19.0

Toble 28 : Specification for twines mode of PE flet tape.

S1. no:	spoed- fication	Ofenter		Twist per metre Outer Inner		
1	2×3	1.0	± 0	175	290	17
2	4×3	1.8	570	170	289	34
3	- $\times 3$	2.0	40	168	272	43
4	- $\times 3$	2.8	315	120	260	68
\leqslant	12×3	3.0	210	100	220	9

Table: 29 Specifications for tuines made of Polyethylene(HDPE) fibrillated tape.

$\begin{aligned} & \text { s1. } \\ & \text { No. } \end{aligned}$	$\begin{aligned} & \text { speoi- } \\ & \text { fication } \end{aligned}$	Kase per metre (8)	Ma metar (ma)	(munnage	$\begin{aligned} & \text { Tvist per } \\ & \text { outar } \end{aligned}$	metre inner	$\begin{aligned} & \text { Breaking } \\ & \text { Strangth } \\ & \text { Min. }(\mathrm{Kg}) \\ & \text { dry } \end{aligned}$
1	1000×1x3	0.34	0.75	2900	200	390	8.5
2	1000x2x3	0.64	1.00	1550	170	350	15.5
3	1000×3×3	1.05	1.50	950	150	310	25.0
4	1000×4×3	1.43	1.75	700	135	300	32.4
5	1000×5×3	1.82	2.00	550	130	290	40.0
6	$1050 \times 6 \times 3$	2.22	2.20	450	125	275	49.1
7	2000x1x3	0.71	1.25	1400	170	295	17.5
8	2000×2x3	1.44	2.00	695	130	260	31.5
9	2000×3×3	2.22	2.25	450	115	230	52.4
10	2000x 4×3	3.08	2.50	325	105	210	65.0
11	$2000 \times 5 \times 3$	3.70	2.75	270	95	200	80.0

mosked ont and the K values are presented in table 30.

Table 30

By substituting the respective K values for different types of materials. the approximate outer and imer twists of synthetic twines of my specification cam be estimated.

The guidelines given in toble 25 and 26 for twisting nyion twines were tested by some of the twine twisting facteries in Indie and the twines showed stability of inner and outer twists and expected strength and related properties. Field studies conducted at Central Institute of Fisheries Technology alse showed suitability of soft twisted nyien twine for gill nets in marine and inland waters, while hard twisted twines were better suited for trawl nets, purse seine. and other types of nets which require high sinking speed. Polyethylene monofilawent twines of different specifications were made by any fixns in India as per guidelines given in Table 27 and the products tested in the field successfully for fishing gear like trowls, stake nets, dip nets, treps. etc. Since the material is light proper rigging attechments were provided to keop the nets in the cencerned fishing positions. Due to the rigidity and buoyant nature, the materisi is unsuiteble for gill net fishery were plisbility is a criterion for selection. Because of the cheapness of the fibre, polyethylene monofilaments are extensively used for making ropes. Braided twines made of polyethylene monofllamenta

8	ntteplate th	The wolue of canotunte (t) in tho rolotionohtp		
L.	Fa mustifil munt solt twisted twine	0.06	0×0	18670
2.	pa nultifilamemt has ewioted tiver	O.**	Lewo	17800
3.	PE Eomefilament tulmee	0.60	740	12300
4.	Pr faet tope tminet	0,40	07	18200
-	P官 Etbstiloted tap emi	0.0 .47	48	14900
6.		0.*	7 mo	100es

hove slso been irtroduced recently in Indisn fishing industry. However the utility of this aterial for trawis. traps and IInes are to be tested by conducting field trials. The polyethylene flat tape twines mede by firm according to the guidelines given in table 28 were found to be wore or less like polyethylene monofliament twines and suitable for nets where rigidity is a criterion for selection. The twines produced by firm sceording to the suggested standards were tested for their utility in fabrication of trewi nets. Comparative studies of trowl nets mede of different waterials proved the utility and cheapness of flat tape wines for botton trawl nets (Karthe et al 1977). The stendards given in teble 29 were tested for production of fibrillated tape twines in firm. The twines manufectured were found to be more flexible than twines mare of polyethylene monofilements and flut tape and resesble those wade bast fibres. Apart frem utilising the fibrillated tape twines for trawls, stake nets, dip nets and sialler types of fishing gear, it is expected that these twines cm also be used as evostiture material for hemp twines in gill net fishegy with proper rigging attachments since the density of the matezial is less then that of water. Field triais on this material are yet to be carried out to find out its suitability for different types of fishing gear.

114

6.4 BREAKRUG STRENCTH

The bresking strength of twine depends on the inheromt properties of the besic raw naterial such as the hind of fibre. sode of preparation of yern and wethods of cenotruetion of twiset. The inherent propertice of vegetabie and synthetic fibres are given, in tables 1 and 2 . It is evident frox toble 2 that the polyomide. polyecter and polypaopyicne mitifilament fibres possess higher strmegth than other groups of polywert. It is reperted by Arzono (operiti) that polyanide, polyester and polywiny alcohol filaments can be nade inte normal and high temacity fibres by inereasing the draw ratio, by which the strength per denier shows a substantiol incrrase of 40 manx in the cese of high tenacity fibres. Klust (no, git) mentlons that the polyvinyl alcehol fibre wes first introcuced in fishing industry as staple finges which were further modified as continuous fibres hoving conslderably Migh breeking strengths. Polyvinyi chlorlde and polywinyildene chloride finpes have lewer strem noths compered to pelyinyl olcohol. Since polywinyi chloride was cheaper the enterial wes consused in ierge quintities for fishing purposee: but it wes oredualiy dieplaced by pelyethylene whith has got cemparatively better properties then polywinyl chieride.

The effect of twist on the strength of twines, the balance between the inner and outcr twista. the dogree of twist, and the methods of construction of twines have already been discussed eariser. Lonsdale (1989) found the ratio
of twine strength to aggreante yem strength to be 908 in case of nylon. Honds (19:6) has reported about the lam fluence of the length of test-piece on the breaking atrength of twinet: the longer the plece, the tronger they are. Between twines of the sase material and thinaer then 60 yams of C-20 equivalent, the difference in breaking strength wes not conaplcuous. Wirenzel chonverbend (one sit) observed thet the specific tenacity of monofilaments decreases Wh incressing diameter, for exemple it is $70-80 \%$ for 0.1 to 0.3 mineneter. $60-70 \%$ for 0.3 - 0.70 mend 50 - 60% for monofilements above 0.7 ma. He alee found that high degree of stretching of fibres mesulted in conslderoble incresee in strongth of tuines. Inperiol Ohem nicel Inowetries (1999) give comparetive account of strongths of teryiene, owilion and nyion twines of different specifications wich showe that the strength of teryione Is unaffected by wetting wheress anilan and milon lese streneth in wet state. With reoard to the difference in the wet and dry strengthe of twines, shinoreti (1989) found that netural fibre twine is obout $10-20 \%$ stranger in wet condition then dry but it is the ether way with oulion and turelon. With teviron, sarm and kuralen the wet twines vere found to be 3.5\% stronger than ory ones (Shimozaki 1981).

It has already been proved by Kuriyan and Cecily (ane fit) that breaking strength it directly propertionel to the square of the dianeter of twines and the total mumber of threads constituting the twine when the count norber of

116

yern is the save. Toble 31 presents the constants morked out in the case of vegetoble fibre twine for the relationships $S=\operatorname{kn}$ and $S=K D^{2}$; where S is the breeting streagth of twines in Eliegrams. is the total number of yasme. D Is the disweter (y) and K, the constant of preperw tienality.

Table 31

It would be seen that K in the equetion $S=1 n$ stonds for the strength per yem of the twine whith is found te be higter in the caee of seft twisted cetten twiaes when compered to herd-twisted enes. This finding is in conformation with the eariler observation that harder the twist. the lewer the breaking etrongth. The constante obtained for twines rade of yams of differcnt count numbers show that the breaking streacth of aingle threed is inversely pripertional to the count number of yerme (indirect syetex) os can be sen fron the above table. In the case of vegetable fibre twines other than cotten. this relationship could not be warked out ss the size of yem is not discemuble. Hence the roletionship of strength end dian veter square wes worked out In the case of Sunhosp. Itellan hemp. flax, sisal. Eenile and ceir. A cemperiten of the K velwes in the sbove relotionships show thet Italim hemp Is more then t wice os strong es Sunheng. Strengh decreases In the order flax, menlis. Sunhewp and stel. Colr twines exhibited peor strength men comeared to other materiale
Table 31 Felationghip of strength，number of yarns and diameter of vegetable

Materials	Valuo of x in the relationship $s=K_{n} \quad s=X D^{2}$			
	$\mathrm{D}_{2 Y}$	wet	dry	wot

Mogn		of Figong i
－゙らす！	－iges	
	$\begin{gathered} 5 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	ต甲ロロッ～ 1 ＝itnig
$00^{\circ} 0^{\circ} 0^{\circ}$	बल゙ㅠㅜㅇ	$\begin{aligned} & 88888 \% \\ & 0 \text { genain } \end{aligned}$
	－	
－9\＃88	S88 \&	
		べゥボメャ

tested. The increase of strencth in wet condition mere
 cotton. 8.1% in sisat and 6.9% in monila. The inereate In strength of Italion hemp by wetting wat oniy 2.9%, while coir showed oxeduction in strencth of 7.5% in the wet state.

The correiation (r) between the dicmeter scuare and breoking strweth in $\mathrm{H} r \mathrm{y}$ and wet conditiens of dif ferent swthetic seterials ore as follows

Materiols	-r'smint	
	Dix	边
PA mitifilument twinet	0.998	0.996
PE monofilament twimes	0.974	0.980
PE nonofilement bralded	0.940	0.916
PE flat tape tmine	0.996	0.994
PE fibrillated twine	0.980	0.978
PP multifliament twine	0.992	0.004

In ell these cases the ' x ' values are pesitive and highly significant (p O.O1) wheh proves the linear relaticon ship between the two. The regression equations of breaking strength (Y) on dienter square (X) ore atven below

D. En
$Y-22.24 \times Y$ Ye. $13 x$
$Y=10.62 \times \quad Y=12.30 X$
$y=13.82 \times \quad Y=15.31 x$
$y=9.39 x \quad Y=10.35 x$

PE fibrillated twine PP suitifilament twine

$$
\begin{array}{ll}
Y=11.92 \times & Y=13.33 \lambda \\
Y=19.48 X & Y=19.94 X
\end{array}
$$

Frew the above equation lit mey be sean thet PA multifilament has got the saxisum strength followed by PP moltifilasent, PE braided, PE fibrilisted, PE sonofilament twines and PE flat tape twines In the deeeending order.

By epplyine paired "t" test. dry and wet strengths were sompared. There is highiy sicalificont (p 0.001) reduction in streneth (-10.2%) in the case of nyion tuines In the met stote as con be acen fron figure 7. In the case of PE monefiloiment twines, the strength improved by wetting by 15.8% (figure 8). Bralded twine showed m Incresse of strength of 10.9% in the wet state as en be seen frow figure 9. The rate of increase in atrength in cese of fiot tape twines is 10.3% and that of fibrilleted twine is 11.3% is evident in figuree 10 and il. From the above figures it cen be concluded thet pelyethyleme twines, whatever be the fors of yom for making twines show improvemont of strem th by wetting. In the case of polyprepyiene multifilament twines. the difference in strenath in dry and wet conditions wes not significont on it is move or less conotont. In this case. both dry and wht etrength were cembined to get common regrestion Iine ie. Y=i9.71 x as presented in figure 12 .

Figures 7, 8. 9, 10, 11 and 12

RELATIONSHIP BETWEEN BREAKING STRENGTH AND DIAMETER-PA Mutifiloment twines Fig: 7

RELATIONSHIP BETWEEN BREAKING STRENGTH AND DIAMETER - PE Monofiloment twines Fig: 8

REL ATIONSHP GETWEEN BRE AKING STRENGTH ANO DIAMETER-PE Monoflament broided wines Fge

RELATIONSHIP BETWEEN BREAKING STRENGTH

 AND DIAMETER- PE Flat tape twines. Fig: 10

RELATIONSHIP BETWEEN BREAKING STRENGTH AND DIAMETER-PE Fibrilloted tape twines Fig:

RELATIONSHIP EETWEEN DREAKING STRENGTH AND DIAMETER - PP multimoment twmosfat?

5.3 Eracithen

fs in the case of strencth, the extensibility of Ifsh net twines dopends on severel factors such as kind of flore, ite inherept qualities. fibre procesting end enthod of preparution of yarn and twines. ICI (ene sit) secerds thit the extinsibility is more for polyanide group of fibres and comperatively sanl for polyenter. Under the sane group of flbyes, the extensibility dopencis en
 staple. Arzano (on. git) has reportrd thet t wines made of staple yarns produce higher degree of stretch then contio nuous filawnt twines. He has also inclicated thet prem stretching in the preperation of polyanide end polyeater fitges of continuous filament and polyvinyl aleohol fibres of both entinuous filament steple Yams resulta in consideratie decreases in the bryoting extension whon compared te normal tenacity yame.

The bremind etretch valute of verious mpecificetions of singie and waltistrinded cotten thines eoft ond hard twisted cotton t winet, sunhemp. Italim hemp and coiz twines are presentad in tables 3 to 10 and the comperative stretch properties of vegeteble fibse twines are included in tabie il. It is ovident that the breoking streteh is sere in hard twisted cotton twines thm soft twisted caes. Heuter (19\%0) observed that the totel extension ot break of manlie rope was more with normal ley than herd and soft laid ropes in dey condition. Contrary to this. in the wet
condition the cboprved higher tetel extemsion at breek in case of manile ropes with hard and soft loy than with nossal lay. The twist specification studies on nyion twines of soft and hard ley olse Indiented higher breaining stretch values for herd laid nylon twine than their soft counter perte.

Fegarding the toparative breaking stretch velves of different vegetoble fibre tines, it would be evident frew toble il that the extensibility of sunhesp is lover than Italian hemp and fisx. Sisel and manila twines exhibited sinest the same brealing stretch. wile cotton and colr thowed comparatively areater elengation then cempared to other vegetat le fibre twines. In all the vegetcole fibre twines tested. the brealing streteh was found to be wore In wet condition then in dry.

Det. collected in the breaking strangth of difforent types of evathetic fibre twines showed the correlation between diameter and dry and wet breaning stretch to be nonmignificont in all typee of twines tested. One of the possible explanations is that the stretches of twines are Independent of thiciness. This is an importent finding since in aill mete, the stretch of wine is on inpertant facter for the captnre of suitable specles, of an increase In the mesh size may become responsible for the escape of cilled fish. Breed on this finding, bllownce need be aiven oniy to the inherent stretching property of the fibre and the wethod of construetion of twines. Kiust
(eng fit) has zeported that noet of the oynthetic tulae. ore inydraphoblc in general and their dry and wet elomootions sre meariy ldonticol. But he has noted silgit Increase in lengation in the case of polyanide twines as the moterial. can absert swfficient moisture to effect not oniy the breaking strength but elso the elengation. Observations on the effect: of wetting on symethetic twines ofinened a maginal decrease of stretich in wet condition compored to dxy stretch in case of nylon twines (tyble 12). The percentage breaking stretch of polyend mollifilament in the dry state was in the ronge (23, 2e). In pelyethrIene menofilaturt twines, the percentane breaking stretch In the dry condition was sbserved te be in the range (23. 48). The decresse of strnteh frow iry to wet condition in the cese of pelyethyime monefilament wes found to be highly significont. In wet state the breaking stretch wes nostiy in the range (2R. 3e). As regards polyethylene wonofllament breided twines the deepease in stretch in tive wet state wes significent ot 5% level. Bralded twines registered - very high breaking etretch ranging frop so to sex in the drystete and decreased to 40 to 84° in wet condition. The veriation of stretch valves observed in the cose of polyethylune twisted monoflioment and braided twines is ettributed to the varistion in the stretching property of the different eomples. Polypropyiene multifilament twine
is found to have the mininum hroaking stretch of 23 to 29% In the dry condition ond the diffarence between $d x y$ and wet
breaking stretch the difference was non-significant.
It can also be stated that the stretching property of polyamide multifilawent and polypropylene multifilasent follow a thilar pattern. Both were having the finimum breaking stretch awong the materials tested and the breaking stretch was unaffected by wetting.

3.6 STRESS-STRAIN BEHAVIOUR OF FISH NET TWINES:

In textile industry much impertance is attached to the tenacity of the fibre; but for fishing purposes extensibility is an caunily importent property especially the beheviour of the fibre when stressed to a degre not reaching the breaking point. The olastic behoviour of fibre is referred to as "Young's nodulus'. The textile fibres do not obey Hooke's lew mich states that strein is proportional to strese. They obey this law only upto stage called 'yield point' , beyond which the flbree exhibit a plastic flow. Where Hooke's law is epplicable, the 'Young's nodulit' of ifferent fibres are comparable. Arzono (ope cit) steted thet deformetion caused by strein consists of two components, an elastic extension wich is recovertole on release of stress and permanent elongation which is not recoverable. The forner is of ereat inportance fer several end uses. According to hiw the orea under the lead-- Lengetion curve deplets the ability of the twine to absost energy which may be the sawe for low tenacity and high tenacity fibres, as in the forwer case the otrenoth is low and the extension is high and vice versa in the latter. The knowledge of the stressestrain behaviour of t wines on the different parts of the net is thereforw needed te counteraet the deformation that the nets underge during fishing operetions.

The shape of the load-elongation curve is ilfferent for the various tyces of fish net twines as it depends on the inherent stretching procerties of fibxe at increasing loeds as well as on the manifecturino pettem to eertain extent. The trawis, especially ced ends wade of hard fibres like nenila and sisal, withstand sudden shock leade, but because of their very seell extenaion properties, they ere not able to absorb the kinetic energy. The net in operation is not oniy subjected to deed loads, but the tension that plays on the net is draoged oreinst the current and the force exerted by strugging fish noy hoep to be absoried by the net. If the net can absort the energy inflicted on it. the seterial eelection can be coasidered to he proper.

Corroethers (gne cft) sucgested thet salnon nylen

 nets need not be* so strong at linen gill nets to hold the tame orivity of fish due to the hioh denrec of elastic extension shown by the forner. warnzelchenverband (ong $s f$) hes shown the loadmextension curve of perion clish at a nore obtuse angle thon that of matural fibres wich show oreatar workino cepecity enabling it to absox: shocks like spring. Stretched nyien recovers its original length very soon except for the permanent elongstion which is approxinately 10%. He found that iane iately after the epplication of lead, a hich degree of extension ensured which recoined its ecuilibrite within the next it to 30Tinutes. As indicated earifer the extension wes found to be proportional to the increase In the Inad with wes relatively greeter at low and medium leads than at high leads. Hons Stutz (on, fit) compared the load-extensien properties of different twines in dry and wet conditiens. Perion and trevira were tested in continuous and spen ferms and differences in behaviour were observed under amall to mediun leads, wich are very significant for prectical purposes. In pelyester the leadenlongetion curve is reletively steep at low lead, which is advantageous to certain types of nets. Rlust (1973) cbserved that perion continuous fllaxents heve Migher temacity and lower extension than those of spin yam. Compering perien and trevira twines of simila thictness showed much better wet tenacity in the latter. He observed that twines of stopie fibres are wor extensible than those of continuous filament.

The stressastrain beheviour of different netting twines are presented in Figures 13 to 19. The lood (kg) is plotted on the ordinate and elengation (\%) on the obscisse.

It vould be evident that each kind of fibre has not only a specific degree of elongation but also a sypien fern of lead-elongation curve. It is also observed that at equal loads the elengetion recuces with the size of twines irfespective of the kind of fibre as thieker the twine sore force is required to obtain the elengetion.

In the case of cotton twines it is observed that the degree of twist influences the stress-strain propery ties; higher the twist, more is the elengotion at equal loads and the breaking strength is affected to a certain extent. The iesdmelongation curve seems to incline towardt the x-axis with increase in the degree of twitt(Figure 13). However the frea under the loadmelongation curve seems to

$$
\text { Fig. } 13
$$

be not wuch affected since the decrease in streagth due to increase in the number of twists is compensated by enhanced elongation values. It is also observed that cotton twines iepreve both strength and extension in the wet cendition.

In the case of PA nultifilavent twines elonoation was found to be more at low loads than at higher loade. In the wet state the strencth of nylon twine is considerobly roduced while the extnision is silghtiy inproved as is evident in Figure 14a and b.

$$
\text { FIgs. } 14 \text { and } 15
$$

PL monofilenent twincs show increased stretch in the dry state at increasing loada bringing the lead-elongation curves towards the ordinate (Fioure 15). The Dreaking strength is improved by wetting wile the extension is considerebiy reduced. In the ease of PE nonofilament braided

135

STRESS - STRAIN BEHAVIOUR-PA MULTIFILAMENT TWINE (DRY).
Fig: 140

STRESS - STRAIN BEHAVIOUR PE MONOFILAMENT TWINES (DRY \&WET) Fig: 15

twines alse sinilar trend is observed. However de viation in the stretching property is observed os the elongation is found to be less during the initial steges -f loading and on reaching the breaking peint a piastic flow of extension could be moticed wich encbles the neterial to cover - leroe area under the leadelongation curve in the dry state. This stretch et the ${ }^{\circ}$ yield point" is considerably reduced in the wet condition as is evident in figure 16.

F19. 16

PE flat tope twines show low stretch when comrered to both PE monofilesent wisted and bratded products. In the wet stetr the strength is impreved and the stretch is reduced as shown in figure 17.

Fig. 17

PE fibrillatod tope twines show wore extension
thon PF flat tape toines in the dry state. In the wet state the stretehing tendency is censiderably reduced (Figure 18).

Fig. 18

STRESS-ETRAN GEHAVIOUR - FE FLAT TAFE FIG:IT

STRESS-STRAIN BEHAVIOUR-PE FIBRILLATED TAPE Fig:ig

The stressastrein beheviour of different forms of polypthylene twines shows that all the varieties reeistered inproved strencth followediby a decrease in stretch at different loads in the wet condision wich reduce the area under the lead-iongetion curves observed In the dry state.

In polypropyleme multifilazent twines no difference in the strestmestain values could be observed betwen dry and wet states as is evident in figure 19.

```
FIg.19
```

STRESS-STRAN OEHAVOUR

144

8.7 NMCT STRENTH

Azzono (on, efit) stated that the knotting test say give on ide of the effect of bending due to knotting. Lensdaie (egogit) reperted that when anot is tied it constitutes apet of weakness and reduces the effective strength of the t wine. According to hiw the knotting efficiency of meta made of myion 66 yem is of the order of 40 to sox for single knots and 50 to 60% for double knots: the difference in the configuration of knots being reepensible for the v ariations in the knotting efficiency. Inperial Chemical Industice (ogett) while deternining the knot strength of terylene twines also observed that twine with double knot showed knot stroncth about 10% higher than incle knotted twines. Shimozaki (3989) rem portad that the brokine strenoth of knotted twine can be regarded as mearly proportional to the total number of yerns and sould mot find sny difference betwen the double knot and leck knot in mylen twines. Hans5tutz (1959 b) studied the leteral strength and knot firxness of synthetic twines for fishing purpeses and indieated thot the boot strength in wet cendition is the decisive facter in judiag the usefulness of the meterial in wets, as high mornal ten sile strength need not give equally cood knot streagth. This fect is bome out by the lower knot strength values of continuou filewent twines which possess himer tensile atrength compared to twines ade of spun material. Mansstutz
(eris git) is of opinion that net twines mede of spen yom (staple) shew sufficient firmess of knots wich is directiy attributeble to the rougher surface preduced by the prejecting ends and the pesition of capillary fibres. This finding is in aoreenent with the views of Himelfarb(enciti) that wen the strand surfacet are smoth, the frictional forees in binding are reduced and the knot breaks more repidiy. Carrother's (on, flt) etudies on the staple and coatinuous fllament nylon twines rev aled that although the former is only half as strong as the latter, it is about 4/sth as strong when knotted. Klust (onenfi) found that with polyoutde and polypxopyiene eontinuous filement netting yom. the finer the twine. the lower is the less in stringth ot knot. Although poiypthylene monofilement twine has low dry breoking strength, this disedventane is partially comm pensated by the f ect that they are not affncted by water and their loes in strencth by knottinc is low. Hens stutz (ropeft) also observed that the twines wetted for 24 hours and then drisd showed better knot firmess than dry sasples. Klust (opecit) testad the weavers ${ }^{\circ}$ knot in $A B-C D$ and $A C-B D$ directions of sull ie. the noral (N) direction or top mesh ond the trensverse (T) direction or side mesh respectively and found the knot breaking load tested fn top aesh direction es superior to side nesh. He is of opintom that the top resh direction is appropriate as it is eloser to the conmon pesition in the mets.

The knot otrengths of vecetable fibre twines in different direction of pull are presented in table 32.

Table 32

It was found that although sunhemp possesses lower linear strength cospared to Italian hemp. it shows better knotefficiency than the latter. Among the two vorieties of sunhemp, the one having a rougher surface shows superior efficiency than thet hoving snooth surface.

Of the different kinds of knots used in the fabrication of nets, the English knot ortrom knot and the reef knot or square knot are sost cormonly used. Since continvous filamente are having smooth surfaces. the knote are unstable and susceptible to slip, resulting in unequal shape and sire of with. This is undosiroble for gill nets where the catch dopends on certain specific opening of the sesh. Knot stability is necessary for many other types of gery such as trawls os well to maintain the cerrect hanging of netting to lines. For these reasons, manufactumet Leprove the mesistence soinst knot slippoge by wing knot and half or double knot. in place of single knots which give the net sufficient knot-stability (Tran-Von-Tri and Ha-Khecmehu 1964). Compered to the nornel single weaver's knot, these knots have the disadvantage of increased melaht due to the difference in length of twine and lize of knot which adversely affects the invisibility of aill mets.
Table 32. Knot strength of vegetabl fibre twines.

Type of knot and directions of pull	\% Retained Strength							
	Cotton		Sunhemp (rough)		Sunhemp (smooth)		Italian hemp	
	dry	wet	dry	wet	dry	wet	dry	wet
Reef knot								
$A B-C D$	86.2	89.8	97.0	91.8	71.3	71.9	68.6	79.7
CA-DB	75. 6	70.0	89.6	85.8	58.8	69.5	55.7	69.2
B-D	78.3	80.2	97.3	82.4	52.4	47.1	64.1	59.6
Trawl knot								
$A B-C D$	66.8	83.1	96.7	95.7	70.0	77.2	54.8	75.3
CA,-DB	82.9	88.2	81.7	83.8	67.9	72.7	68.9	74.9
$B-D$	63.1	74.9	97.7	81.8	50.1	53.0	54.2	70.1
A-D	57.1	72.5	78.7	70.9	51.8	47.8	59.3	55.2
B-C	67.9	85.1	75.7	83.3	51.4	54.3	61.7	53.9

Heat treatment methods either dry or wet heat is mom. used by net manufacturer for setting the knots(Tani I woo 1964).

Klust (oo, cit) opincs that the breaking strength of knot decreases with the angle into which the loops of the netting yarns are forced by the knot and it increases with the number of loops in the knot. Accerding to his on overhond ond reef knot have a sowewhat lower breaking strength than weaver's knot ond double weaver's knot is the strongest. The knot strength of nylon twines when different tyces of knots are tied are presented below.

Types of Knots	* Retalned strength	
	Topumefh	Side-sesh
Freef knot	73.3	72.0
Truwi knot	61.4	72.6
Knot and e helf	63.4	60.0
Double knot	61.6	. 8.0
Leck knot	6:0	69.3

The date on knot strenoth of different syihetic twines presented In tables 12 to 17 were subjected to stetistical malysis to find the relation of knot strength $Y(K g)$ in the wet state and diemeter square $X(w)$. The above relationship is connected by the regression equetions at.

PA multifilezent	= 12.37 x
PE sonofilame nt twines	$Y=9.06 \mathrm{X}$
PE monfilament brolded	$Y=12.69 \mathrm{X}$
PE flet tape twines	$Y=7.53$
PE fibrilloted twines	$Y=10.45$
nultifilament twine	$Y=11.67$

The orophical representation of the recression eavations is ofven in Fioure 20.

Fig. 20

It is evident that the PE braided twines have the hichest knot strength followed by PA multifilanent, PP nultifilament, PE fibxillated, PE monofilament and PE flat tape. A stady of the confidence intervals suggeats that know efficiency based on the thickness of twines show that PE menofilament braided and PP multifilasent heve wider ranges and that knot efficiency relationohips ere different among the other seterials.

Meterials \quad velues 9 g\% confidence interval
PA multifilesent 0.993 (12.22 12.52) PE menofilament
twines 0.979 (9.42 9.80)

PE monofilament
brolded 0.871 (7.68 17.73)

PE flet tepe twines 0.996 (7.42 7.64)
PE fibrillated tape
twines 0.977 (9.81 11.09)

PP mitsfilament twines
0.939 (8.69 14.67)

Abstract

The weighted averace percentage knot efficiency by taking original wet breaking strength ot weight are presented in Figure 21.

Fig. 22

It may be noted that PE braided twines have the soximun (83.7\%) and PP mitifilement the siniman 57.4% knot -fficiency. Between PE monofilaments (82.15\%) and PE braided twines the variation is not much pronounced. The higher knot efficiency of the charactertstic rough surface of the monofilaments and the precess of moking twincs elther by twisting or breldine do not affect the knot efficiency. The other forms of polyethylene euch os fibriLleted tape and flat tape registered knot efficiencies of 77\% and 73.9\% respectively asd PA multifilaments showed only 60\%.

CHAPTER VI
 CAUSES OF DETEPIORATION OF FISH NET TWMES

6.1 Briting:

Rotting is phenomenon do to which vegetable fibres deteriorate by the conbined action of bacteria, fungi and other cellulolytic orgoniems. de Bary (1886), Hutchinsen and C ayten (1919), Bums (1925), Winegredsky (1929), Smith (1938), Batghoom (1942), Stanier (1942) and Gupta (1947) studied the causes of deterioration of vegetable fibres resulted in large scole destruction. Nishiyama and Yemazoe (1914) found that cotton twines rept in an aqupous meditm, fresh or saline, but devold of bacteria did not loose theix orlginal strength for one year. Kawal(1914) and Tersda (1914) recorded that rotting of netting twine In water is related its temperature and that the higher the temperature the quicker was the retting. Bums (1925) observed that the rate of decay was sore in areas of high temperature, dampess and rain. Whiteleather and Brown (1945) pointed out that in tropics the deterioration of fishing gear preceeds were ropidly because of high temperan ture high organic and becterial count of wedium. According to Farrar (1980) deterioration of nets is zuch faster in brackish woter then in sez woter. Brandt (19\%4) studied deterior $\begin{gathered}\text { tion of netting yarns in } \\ \text { Hifferent waters and con- }\end{gathered}$ firmed that eutrophic lakes have greater deterior ating effect on fishing nets than oligotrophic lakes and that flowino water increases the dearee of deterioration.

The common wethod followed in different comptries for preservation of net materials is the application of indigenous preservatives like twigs, barks, leaves, fruits and seed coats of certain tennin yielding treet and plants. (Villedolid and Sulit (1932), Clagwe and Dotingaling (1950). Kuriyan and Wayar (1961)]. Cutch is the extrect obtelned frew the pient Acach eatech which grews in Indie and Burwe. Detalled studies en tanin beth using various bariss of tennin yielding trees to get the aximun effectiveness of preservation, use of fixatives lite copper mulphote and potassius dichrosete on tonnin treated thines and tar treatwent on both tomin treated and tamin fixed vegeteble fihre t whes were carried out by Cecily (1977). The prem sent investigation hes been restricted to the rottinc medium and the fectors influencing the deterioration of fishing nets.

Klust (1982) in his studies on degradation of net saterials in Cuxheven harbour established the influence of water temperature on rotting process. Koure (1963) reported the results of comparetive studies of retting medium at Alexandria in Egypt, subtropical region in Cuxhaven, the estuery of River Elbe in the temperate zone found that the retting rete depend on t empereture of the nediun. Padnelokshmi and Kuriyan (1969) morting on the oveluetion of preservetives at tropical and temperate zones found that the physical fecters of the test sites influenced the rottina
ection. The treated twines underwent deterioretion at - quicker of slower rates ccording to the location of the sites and they found it to be greater at Cochin than at Cuxhaven. Minomote at. A (1962) studied the rotting resistance properties of fishing gear waterials and found thet the coefficient of rotting differs with the nature of fibre with which the twines are made of and correlated the rottine resistance to the diameter of the twines. They also mentioned that sire the hydrogrephical facters of the test site change due to the two nonsocns, it is probebly that these factors would also have effect on the rotting of twines.

Samples of cotton, jute, sisal, manila and coir were subjected to continuous immersion in Cochin backwaters. The mydrogrephical factors such as temperature of the surface water, salinity, oxygen, phosphate, nitrate and rainfall were noted at definite intervals for a period of one year frow January to Mecember. Deterioration due to rotting was measured in terss of loss in breaking strem ngth of the expeted materials ot periodic intervais. Rotting value for the month wes obtained by finding the loss in strenoth on the last day of the wonth as per methed sugeested by Brandt (1959) and Branctend Carrothers (1964). Samples those breaking strenoth decreased by 臽th of their original valve were replaced by freth samples and the total less of strength wes noted as the rotting value for thet particular month. Tables and present the
The hydrographical factors during the difforent months of the year.

Monthe of	Rainfall	$\operatorname{sanin} 1_{x}$		0 oxygen content	$\begin{gathered} \text { Phosphate } \\ \text { mak/1 } \end{gathered}$	$\underset{\substack{\mathrm{Bi} \text { tritite } \\ \operatorname{mol}}}{ }$	pr
January	2.5	27.72	28.2	2.33	0.50	0.018	7.0
Pebruary	6.4	35.21	29.1	2.60	0.52	0	7.1
Maren	23.3	32.83	30.6	2. 34	0.30	0.023	7.2
April	160.9	30.95	31.4	3.96	0.70	0.003	7.3
May	484.9	21.92	29.8	2.07	0.65	0.01	7.2
June	273.1	7.61	29.6	2.72	0.89	0.03	7.1
July	932.8	2. 39	27.9	3.11	0.37	0.053	7.0
August	455.0	1.38	28.2	2.83	0.50	0.06	7.0
soptomber	336.3	7.47	28.2	2.30	0.36	0	7.0
October	117.7	7.57	27.8	2.80	0.26	0.01	7.0
Novembor	183.0	20.03	28.3	3.01	0.30	0.09	7.0
Decenber	${ }^{11}$	28.96	28.4	2.80	0.27	0.0	7.0

hydrogrephical conditions of the test site ond the rettiag per dey values observed for different vegetable fibre twines under continuous imersion charing the different months of the year.

Tobles: 33 and 34

To find out the factors infivencing rotting a correlation analysis of the data on the measurement of the environmental parametres and xotting value was ade. For the sake of distinguishing the correlation coefficients conveniently, the following elphabets are uped to denote the neasurements of the fector indlcated against each.

The simple correlation coefficients betwen rotting and envirommental parametres ore given in the fimets rows and the correlation setrix among the facters. In the rest of the rowe.

Sinple Correlation Coefficients

Material	Safinity	Water temp. (g)	$02 \text { con }$	Phosphate (i)		Nitrite (1)
Cotton(a)	-0.4057	-0.5822*	-0.2043	-0.5703 0		0.2931
Jute (b)	**0.8169	$0.6559 *$	0.0344	$0.1823-0$		0.3850
Sisal (c)	0.1593	0.1576	-0.4410	$0.4599-0$		0.2218
Manila(d)	-0.6992	-0.1461	0.4196	0.14360		0.0160
Coir (e)	-0.3304	-0.2492	0.5271	0.1900		0.1608
			$\text { Water } 02$	$\begin{aligned} & \text { con- } \\ & \text { nt } \end{aligned}$	Phosphate	Nitrite
Salinity			$0.5599 \sim$	0146	-0.0035	5-0.3359
Water temp	ersture			2554	O. 5186	$6-0.3787$
02 content					0.1319	90.2119
Phosphate						-0.2628

* Significant at 5\% level
** Significant at 1% level.

Because of the interrelationship between ealinity and temperature as can be seen frow an almost significant correlation coefficient (0.5599) partial comrelation coefficients which are necessary to find out whether a factor is actually Influencing the rotting or not are presented below.

Partial correlation coefficients obtained when the
effects of me or two environmental factors are kept
cpastent. (The letter given after the dot indicate the factor/factors whose effects are held fixed).

Judged fron the siaple correlation coefficiemt. rotting of cotton shows inverse correlation with water temperature. The significant neastive partial correlation com efficient shows that this inverse relationsi ip is setual and not an apparont one caused by the inter-connection between solinity and temperature. However, it is also possible that the direct reletionship say not be with weter temperature but with sose other factor wich is correlated with water temperature. Though somewhat high correlation with phosphate and roting of cotton is observed. (-0.5703) more observations are necessary to draw a conclusion as the cosputed value and tabulated value for significance alsost colmeide.

The significant volue of $\mathrm{F}_{\mathrm{b}} . \mathrm{g}^{\text {showe }}$ that rotting of jute and salinity are actually correlated. Though there is significant correlation between the roting and water
temperature, non-significance of Fg.f shows that they are not actually correlated. The apparent relationship between these can be attributed to the interoreletionship between selinity and temperature.

Verfations in salinity and temperature do not seem to ffect rotting of sisal as reg.fere not significant.

An inverse relationship with salinity is observed In manila as shown by a significent negative $\mathrm{r}_{\mathrm{df} . \mathrm{g}^{\circ} \text {. The }}$ simple correlation coefficient also showed a ignificant negative value.

Voriations in salinity and tempersture do not seen to effect the rotting of coir, the respective partidi correiation, coefficients being insignificant.

The following conclusions could be derived.

1) Potting of cotton seems to decrease with increase in water temperature or some other factor wich has direct reiationship with weter temperature.
ii) Increases in selinity tends to increase rotting of jute.

1ii) Increases in solinity tend to decrease rotting of manila.
iv) Rotting of coir does not seen to be affected by the variations In any of the actors consldered. v) Oxygen centent and nitrite do not scen to affect the rotting of vegoteble fibres.
Teble 3s. Resistance to continuous imnersion of synthetic twines.

Exposure period (northe)	$\text { Sa }\left\{\ln ^{\ln 2 t y}\right.$	Tempesature (C)	Retatned Strenath (KO) of materials exposted ta continuoun inmersion.						
			PA monom filament	$\begin{gathered} \text { PA } \\ \text { multifil } \end{gathered}$	PA Staple	$\begin{gathered} \text { PES } \\ \text { multifil } \end{gathered}$	PE monofil twines	$\begin{gathered} \text { pp } \\ \text { wul\&i- } \\ f 11 . \end{gathered}$	PVA Stapl
Oxiginal Wet	-	-	13.1	13.5	13.3	15.4	18.4	16.4	13.1
1	30.3	31.1	14.8	15.9	13.3	13.7	20.2	14.1	12.9
2	32.2	31.3	13.4	13.4	12.0	13.7	19.9	14.9	12.2
3	30.7	31.4	12.3	12.7	11.0	13.6	20.7	14.5	11.2
4	21.2	29.6	14.7	14.2	13.0	13.2	20.1	14.7	11.3
3	4.5	28.5	12.2	11.8	10.8	12.9	18.6	14.3	10.7
6	2.1	28.3	12.7	13.2	11.7	13.5	19.8	14.4	11.3
8	7.2	28.4	14.1	14.6	11.9	14.1	21.1	14.4	9.6
9	12.5	29.5	13.6	13.0	8.8	12.4	19.4	15.4	10.6
10	22.4	28.9	14.4	12.5	11.4	12.1	18.6	10.0	7.0

Seven sets of synthetic twines viz. polyanide monofliaant, multifilament and staple twiness polyester multifilament, polyethylene monofilawent, polypropylene multifilament and polywinyl alcohol were expesed in Cochin backwaters for continuous innersion tests. The hydrom grephical conditions of the test site along with the original breaking strengths and retained breaking strengths observed at specific interval upto o period of 10 months are presented in Table 35 .

$$
\text { Table } 35
$$

Whether the breaking strength decreases with the duration of inwersion was investigated by checking up the possibility of an inverse relationship between the numbers of deys of immersion and the corresponding breaking strength. The correlation ceefficient (x), the regression coefficient (b) and the standard error of the regression cofficient (g_{b}) for the seven naterials are shom below. The correlation coefficient (r). rearesston coeffl clent (b) and stindard error of ' b ' for a rearer ssion of breaking atrenath m chrration of

ingersion.

	Materisi	5	b	6.
1)	Polyamide monofilament	at 0.0776	0.0246	0.1194
2)	Polyanide multifilament twines	0.3926	-0.1542	0.1363
3)	Polyanide staple twines	0.8620	0.2392	0.1331
4)	Polyester multifilament	-0.6071	-0.1267	0.0627
5)	Polycthylene nonefilament twines	-0.36\%7	-0,0971	0.0949
6)	Polypropyiene maitla filarent twines	-0.4472	-0.229	0.1605
7)	Polywinyl alcohol	-00.8589	-0.4*3**	0.1047

"**" indicates significance ot ix level.
The departure of the rearession coefficient from
zere was tested using the appropilate t-test. Only for polywinyl alcohol, the regression coefflcient was found to be sionificantly different from zero. Thus this ret--rial showed a linear reduction in breaking strength with the duration of imersion. For the other six materials no linear reduction in breaking strength with the duration of immersion was observed, as the regression coefficients were not sicnificantiy different frow zero.

Whether there was difference in the sean breaking strength after insersion fron the breaking strength before ispersion was also tested by t-test. The breaking strenath before imersion and the wean breaking strencth fter imperm sion are presented below.

The brenking trength before innersion and the men breaking strenoth after innertion.

Matesting

1) Polyant de monefilasent
2) Polyanide maltifilament
3) Polyouide staple
4) Polyeter
5) Polyethylone
6) Polypropylene
7) Polyvinyl alcohol
Breaking stre Mean breaking
ngth before strength after
innertion. innerstodit inmertion.

$$
13.6
$$

$$
13.5
$$

$$
11.31^{* *}
$$

$$
13.2^{* * *}
$$

$19.8^{* *}$
14.1**
10.7**

[^0]polypropylene and pulyrinyl alcohol, decrease in mean breaking strength after imersion is noticed. Though not significant, somewhat large negative correlation coofficients were noted for these materials. This also suggests a decreasing trend in the breaking strength. Although syntheti twines are considered to be rot-proof, this decreasing trend in strength on continuous imersion for long period is attributeble to friction caused by the flow of mater and adherence and cutting of filaments of twines by animals and plants living in water.

6.2 Wethering of Fish Net Twines.

The term 'weathering' is uned to denote the conbined effect of sunlight, rain, wind, smoke and oases of the atnosphere on the properties of fish net materials. It is rather not possible to study in isolation the effect of each of these factors; but it can be taken for granted that worst deterioration is caused by the uitraviolet rays of the sun. Owing to the seasonal and locational varlations In the intensity of sunlight, the dearee of donage done to fibrous materials may differ and in general oxceed thet caused by iwnersion in water. Both natural and sythetic fibres ore weakened by exposure to sunlight. Fels (1960) conducted investigetions en the photedecradation of textile yems at three different places at Km in Nigeria. Didcot In England and Kanpur in India and found censiderable variations with respect to places, although some of the results in Nigeria hed been in agreement with those in Didcot and
 withstood westhering better then soft-fibre cordage and treatment with lubricant improved resistance to microbial deterioration. He made a comparison of weather deterioration of nylon se monofilement, wultifilament and staple ym and found that the first one was more resistant to weather than the other two. The above findings have reen corroborated by Klust (1985), Koura (1963) and Rachalekshay and Kuriyan (1969). On © mpering the westher reaistance of polyethylene monofilanent and polypropylene monofilement, Ede and Henstead
(1964) found the latter to be less resistant compared to the former. Klust (1959s) expressed the view that resistance to weather varied oniy slightly in the different vegetable fibre twines, whereas synthetics showed great variations from fibre to fibre. According to hia terylene polyester shows better resistance to weathering than polyasides and resembles the best of natural fibres, although polyvinyl alcohol fibre was found to be better. Klust (1989 b) also stated that delustered fibre has considerably lower resien tence against weathering than the nornal (lustrous) one of the sone kind and therefore considers such a fibre as unsuitable for fish nets, Shimozaki (1989) conducted weathering tests with onilen, kurslon, saran, teviron and cottontrines trested with cutch and found that the strength decressed by 16\% in amilan, 24% in kuralon, 10% in saran, 6% in teviron and 8% in cutch treat cotton. The synthetic twines treated with ter did not aive anv orotection anainst weatherina.

Werenzeichenverband (an, oft) reported that monofil displeyed higher degree of resistance to sunlight and weather conditions then vecetable fibre twines wich equalled the iammity shown by polyacrylonitrile fibres. He elso observed that with increase in the diemeter. photodegredation was less noticesble. According to his twines wade of polyanide filament or steple fibre were relatively less resistant to weathering thon those made of cotton. Imperial Cherical Institution (en, cft) reperted that exposure of terylene and nylon to weatheang resulted in 46\% loss in brooking strength in the forwer and 64\% in the latter in the course of 10 months. Remslakshat and Kuriyen (1969) have reperted the weathering tests on fish net twines conducted ot two different stations viz., trom pical site (Cochin) and texperate region (Cuxheven). Results indicated that while at Cochin both perion sonofilement and the polyvinyl alcohol showed high resistance to weatheringe at Hamburg best results were obtained with nonom filaments of perlon and polyethyiene. Polypropyleme showed oniy less resistance to wether ot both test sites. Taking the pelyaside group as whole, the order of preference with respect to weather resistance was monofilament. continuous filasent and staple fibre and the effect was found to be identical ot both tropical and temperate test sites. Molin (an, fit) observed that in certain types of fishing tackle such as bow nets and set nets the sensitivity of nylen nececsitated frequent replacement of the domaged parts and suggested the use of saran, huralon or terylene which
are less sensitive to ultraviolet rays for the upper parts.

Various measures have been suggested by different authore to retard the process of weathering. Sulit and Panganibhan (1984) and Brandt (1987) advocated the use of cutch and subsequent treatment with coal tar to protect the net waterials fron the adverse effect of weathering. Burdon (1987) held the view that chenical preservatives, particularly of copper compounds, hove deleterious effect on the influence of sunlight. Warenzeichenverband (mpenti.) reported thet colouring with Perlition dyes howed remarkable festness in water. But Robinson (1989) is of opinion that dyeing of synthetice has no effect at oll photodegram detion. Shimozaki (an, cit) indicated that the samples treated with ter alone did wot give wach frotection in case of anilan, saran, teviron except kuralon and when tar mixed with an erulsion of alkaline soap water was applied, synthetic twines improved their weather resistance. Rachalakhai end Kuriyan (1969) showed that retention of strength of cotton twines after 37 months of exposure was good when treeted with cutch fixed by : 1) potassiuw dichromote and carboleneum, 2) copper salphate and 3)e combination of cutch, testalin and carbolenerm.

The rates of deterioration of various kinds of fibres on exposure to light and weather vary considerobly. The resistance of fish net twines to weathering is measured In terws of decrease in the breaking strength. It is, howm
ever, impossible to determine precisely the behaviour of each fibre towards weathering, because the results vary with different places and seasons and oleo depend upon the properties of fibres produced by differmit mandacturers. Coal ter derivatives, bitumen, black varnish or similar cents used to increase stiffness, sinking speed, abrasion resistance and knot stability of netting considerably inAluence their weather resistance. Sun's radiations are partly reflected by the water surface and partly absorbed by the water. Even in absolutely clear water, only 47\% of the $s u^{\prime}$: radiations penetrate to depth of 1 . (Kiust 1973). The violet and vitraviolet parts of sunlight which cause the deterioration of textiles undergo maximum absorbpion in water. The deteriorative effect of sunlight is therefore much lower in water than in air. Incorporation of antioxidants and radietion-absorbers into the polymer inproves the weather resistance property of synthetic twines. Polyethylene and polypropylene are difficult to dye by normal methods and hence spin-dyeing is followed by incerporeting pigment in the polymer before the filament is formed.

The rasults of wethering tests conducted are sumarised below.

6.21 Conorrtive weather resistince of differnt vepetable Pre twines.

Veaetable fibre twines such as cottonk Sunhemp. Italian hemp, sisal, manila and colr were exposed to weather continuously for a period of six monthe and the retention of strengths were noted at periodic intervals. The results are presented in table 35. The percentage retention of

```
Table 35
```

strength of the naterials were plotted acainst the number of doys exposed to weathe (Figure 22).

Fig. 22

It may be observed that the afference in percentaoes of retained strenoth between meterials and between periods of exponure to weather were highly significant (p 0.OI). In order to identify the materials having significont weather resistance, critical difference omong meen strength ot "\% level was worked out. It was observed that there is no significant difference between cotton and sisal; and sonila and calc; whereas the percentage of retained strengths ore significentiy different among groups cotton-sisol; sumhemp:
Table 36 Comparative weather resistance of vegetable fibre twines.

$\begin{gathered} \text { El. } \\ \text { no. } \end{gathered}$	Name of naterial	$\begin{aligned} & \text { Die- } \\ & \text { metior } \\ & (\mathrm{mm}) \end{aligned}$		Breaking strength (kg) after exposure to veather for					
				30 days 60 days 90 days 120 days 150 days 180 days					
1	cotton	0.99	5.7	5.2	4.5	3.9	2.9	2.2	1.7
2	Sun hemp;	1.02	8.6	7.3	6.5	6.4	5.7	4.9	4.2
3	Italian hemp	0.91	13.5	10.2	7.9	6.7	5.3	4.2	3.7
4	sisal	3.30	63.1	60.4	51.3	38.7	27.3	19.4	15.7
5	Manila	2.70	43.7	40.9	36.1	32.1	29.3	29.0	29.4
6	Coir	4.40	2 6. 5	24.6	22.6	20.1	19.7	17.2	17.0

WEATHER RESISTANCE OF VEGETABLE FIBRE TWINES FIg: 22

Italisn heap; and manilamcolx. It was also observed that manile and coir exhlaited higher degree of resistence to weather then other vegetable fibre twines tested. The lowest resistance was found in Italian heap although the moterial posesssed very high breaking strength.

6.22 Effest of eatch and gell tor on the weather resintinge of wectable fibre tyines.

Cotton, Sunhemp and Italitw hemp were treated with cutch and coal ter separately and tested to find the effar ctiveness of the preservative treatment by exposing to weather continuously for a period of six months. The data collected are presented in table 37. To coapare the retention of strength bytwines with tretnents and with the period of exposure the date were subjected to tatistical analysis using the three way analysis of veriance technique. The model used for this study 168 $Y_{1 j k}=h+a_{1}+b_{j}+\epsilon_{i}+C_{1 j}+b_{j k}+Y_{j k}+E_{1 j k}$ where k. the overall effect

${ }^{1}$	- $i^{\text {th }}$	trestrent effect $i=1,2.3$
b_{j}	$=9^{\text {th }}$	saterial effect. $j=1,2,3$
c_{k}	$=k^{\text {ch }}$	wonth effect, $\mathrm{K}=1,2,3,4,5,6$
α_{11}	The $g^{\text {th }}$	interaction effect on $i^{\text {th }}$ treatment with meterial.
${ }^{\text {B }}$	the $\mathrm{K}^{\text {th }}$	Interaction effect of $\mathrm{g}^{\text {th }}$ treatmont with month.

$r_{\text {ik }}=$ the interaction effect of $i^{\text {th }}$ treatment with $K^{\text {th }}$ month.
 and $E_{1 j k}=$ random error. Both treatments were compared with control and the analysis of the results are presented in t able 38.

```
Table 38
```

It was observed that the percentage of retained strengths were highly significont ($p<0.01$) between treatments, between periods of exposure and between materials. Also, the interections treatment X material wes highly significant. The treatnent X period of exposure was significant only at 5% level, whereas the material X period of exposure was found to be not sicnificant. The course of weathering of control and treated samples are presented in figures 23, 24, \& 25 .

Figs. 23. 24 and 25.

Cotton and Sunherp were seen to be almost equally efficient when treated with $c u t c h$ and coal tar, the nore effective being the latter. Since coal tar treatment increases the weight of the net, its use is restricted to subnerged nets. There is a steep decrease in retained strength in the first month of exposure for cotton treated with both preservatives
Table 37 weather resistance of vagetuble twines treated with cutch and coal tar.

	${ }_{\text {cotion }}$		${ }_{\substack{\text { Praimam } \\ \text { hepp }}}$	coto	sinh heep	
oricinal	6.1	7.9	9.0	${ }^{6} .0$	${ }^{6} .9$	11.7
eftor 30 avs	5.5	7.2	8.3	5.3	5.9	2.5
" 6 "	5.2	6.6	7.5	4.9	5.6	9.0
" 90"	5.1	6.3	2.3	4.9	6.1	7.8
$\cdots 120$ "	4.9	5.9	6.8	4.8	6.0	6.6
" 150 "	4.7	5.7	5.8	5.1	5.7	5.9
${ }^{180}$ "	4.6	5.6	5.3	5.4	5.5	5.4

TABLE 38

a NOVA

Source of variation	\$.5 df	M.s	F	
Bot. treatments	4743.20262	2371.60	47.17	*
Bet. periods	5238.27935	1047.66	20.84	*
Bet. (naterials)	2268.8015 2	1134.40	22.56	**
TR : PRD	1325. 170710	132.5171	2.6354*	
TR $\equiv \mathrm{VR}$	688.1618 4	172.0408	3.4215	*
$\mathrm{VR} \times \mathrm{PR}$	493.701810	49.3702	<1	
Etrer	1008.680 20	50.2827		
Total	18762.9726 33			

$P \leq 0.08$
$\cdots \mathrm{P} \leq 0.02$

ond thereafter the reduction linastrength wes only marginal. In the case of Italian hemp, treatment with cutch was more efficient than thet with coal tar. In allcases the treated samies were found to be stronger than the control.

6.23 Conoaretive weather restist mise of different sunthetic remsis

Sywthetie yarne belonging to different polywers and different types of yerns of the some polymer were tested by exposing the yoms to weather conditions. Polyanide multifilazent and monofilasent; polyethylene sonofilawent and flat tape; and polypropylene sonofilament were exposed to weather and the data on the retention of strenoth are presented in t able 39 .

Table 38

Coaft. of
The corxiletion between the number of deys of exporure and the percentage retentin of strength wis found to be negotive and highiy significant in all the cases indicating e steady decrease in strength as the period of expesure incressed. The pertentage of retained strengthersoberved -t periodic intervals were plotted aginst number of day of expesure and presented in figure 26.

FIg. 26

182
Tables 39. Comparative weather resistance of different aynthotic yams.

No. of days exposed to weather	Pereentage Retention of strength after axpogure to weather				
	$\begin{aligned} & \text { PA multi- } \\ & \text { filament } \end{aligned}$	PA monofllancat	PP mono fil	PE monofilamont	HDPE flat tape
10	86.5	68.5	84.0	87.5	85.0
20	85.4	67.5	83.5	83.0	70.5
30	69.0	66.5	82.0	87.5	69.5
40	62.0	65.5	77.0	76.0	65.5
50	53.5	67.5	78.0	79.5	66.5
60	38.5	59.0	72.0	79.5	49.5
70	36.0	58.0	64.0	72.5	41.5

Polyethylene nonofilament was found to be the most resistant aaterial anost the yams exposed to weather, followed by polypropylene monofilament. Amone polysilde multifilament and nonofilawent yarme, reduction inrstrength is rapld in the case of the f orrer. reaching 00% after 50 days exposure to weather while in the latter case there was ateadyderease in first 10 days , upte 68.0\%, and thereafter the reduction was ceaparatively slew. Comparing polyethylene monofliament and polyethylene flat tape yarn, sonofilament was found to be more relistant.

6.24 Conperative weather restistence of different synthatis tyinctis

The retained strengths of seven different tyres of sythetic twines, viz. polyaaide sonofilament, multifilament ondstaple twines, multifilament twines of polyester and polypropylene, polyethylene nonofliament t wines and polywinyl alcohol staple fibre twines exposed to weather conditions continuousiy for a period of 10 wonths are prosented in table 49. The corresponding retention of stre-
Tahle 49
ngths in each type of twine at pei odic intervals were plotted as shown in Eigure 27.

Fig. 27
Table 40

S1.No	Twines exposed $\begin{gathered}\text { B } \\ \\ \\ \\ 0\end{gathered}$	Breaking strength orfoinal (kg)	Retained Breaking strength(kg)after exposure						
			1 nonth		3 no	Ens	on 7 onth	$\begin{gathered} 9 \\ \text { non } \\ \text { the } \end{gathered}$	$\begin{gathered} 12 \\ \text { nonn- } \\ \text { ths } \end{gathered}$
1.	Polyamide staple	15.3	12.65	9.65	7.90	4.25	3.2	1.95	1.68
2.	Polyamide nultifilament	17.2	17.85	17.15	13.0	9.46	6.78	6.18	4.88
3.	Polyailde monofil. anent	17.6	21.3	20.88	19.3	18.08	15.35	13.85	13.05
4.	Polyester nultifilament	17.1	14.45	12.70	11.5	10.1	9.15	8.0	6.85
5.	Polyprogylene multifilament	18.6	14.45	11.4	7.65	2.9	0.35	ro	ten
6.	Polyethylene monofilanent twisted	19.1	18.96	15.76	14.6	9.1	6.45	4.8	2.48
7.	Plywiyl alcohol staple	14.1	17.25	14.85	14.0.5	10.95	11.2	10.5	9.58

The polyamide nonofilament and polyvinyl alcohol twines showed better resistance than the others. Both resistered an increase in the breaking strength during the first month and then gredually decreased. Even after 10 months of expos ure to weather pclyamide monofilanent and polyvinyl alcohol twines retained 74\% and 68\% breaking strength reppectively. Polyamide staple and polypropylene multifilanent reached 50\% strength level in aperiod of 3 months of exposure. In both cases there was steep decrease from the date of exposure. Polyethylene nonofilament t wines took 5 wonths to reach 50% level of strength, compared to 5 to in polyamide multifilament and 7 to 8 months in terylene multifilament.

6.25 Weather resistance of sinthetic twines of different dianeters

Polyanide nuitifilanent and polyethyiene twisted nonofila ments and flat tape twines of different diameters were exposed to weather conditions to study the effect of thickness of twines on the resistance to weather. The data collected are presented in table 4 . The relation between retention of strength and number of days exposed is presented in figure 28 .

Table 49
\qquad
188

189

1	2	3	4	5	6	7	8
146	51.0	61.5	26.4	84.5	88.5	51.0	61.5
164	48.0	63.0	18.0	80.5	88.0	48.0	63.0
185	46.0	63.0	23.2	81.5	88.0	46.0	63.0
201	49.5	65.0	15.7	79.0	86.5	48.5	65.0
215	43.0	62.0	13.5	79.0	83.5	43.0	62.0
230	37.5	56.0	15.7	78.5	80.0	37.5	56.0
245	34.6	55.0	-	76.5	79.0	34.6	55.0
262	34.0	54.0	-	73.0	78.0	34.0	54.0
275	29.6	47.5	-•	73.0	72.5	29.6	47.5

```
COMPAFATIVE, WEATHER RESGSANCE OF SYNTHETIC TWINES OF
OGFERENT DIAMETERS - FIg:2E
```


The sample of nylon twine $210 / 9 / 3$ coloured in blue reached 50% strength in a period of 140 days, whereas white nylon $210 / 12 / 3$ took 280 days of exposure to weather to reach the same strength level. In the case of PE monofilanent twines, 1×3 white reched 50% strength in 80 days' tive wille $x 3$ coloured in green retained 60% strength and 6×3 coloured in blue retained 70% strength after exposure to weather continuously for period of 300 days. In the case of tape twines, 1 madiameter twine reached 50% strength by exposure to weather for 150 days and 1.8 m diameter twine after 260 days.

It is evident from the f igure that the diameter has got definite influence on the weather resistance in all the cases. This finding corroborates results of Klust (op. cit) that the thicker the twine, the better the prom tection given by the outermost covering to the inner layers when suhjected to weathering. Recarding the effect colour of twines on weather degradztion it cannot be confirmed by this experiment since the diameter of t wines are different. However, it seens that the colour has no deteriorative effect in the case of polyethylene twines.

6.26 Effert of colervend chenicals matherwhor setintince of nxica tyinest

Nrien twines of $210 / 9 / 3$ dyed in different colours
in the leboratory were expesed to weathor aleng with control
for a period of 1:0 days. The data collected for different periode of weathering are presented in table 42. The data

Table 42
were analyed by using the analybis of variance technique. It wes observed that the Hifforwee between treatnents wes highiy significont (P 0.01). The exitical differmce was worked out and the nean breaking strength valuas were grouped. The breaking strength of undyed sample (white) and sauple dyed in vollew coleur showed similar resistance to weathering. whereas growp censlisting of biue, orey, orange and brown behowed simileriy showing alightly lewer resistance compered to the first group. Nylon twines dyed in grem and red colour showed very peor resistance to weather.

Frow the results it is elear that dyeing has not inproved the resistance to weather of nyion twines. On the other hand dyoing with moot of the colours showed only adveree effect.
Tables 42 feather resistance of nylon twines dyod in different shades, and

IO. of days exposed to venther	white	Breaking strength valuen (Ks) polyamide miltifilament twinas dyod biue green yellow grey orange					red	browa	trasted Chemi- 801	whth coal tar
oricinal atrength (dry)	21.5	20.4	20.5	20.5	20.5	20.8	20.6	20.7	21.8	21.8
30 days	18.1	17.6	15.7	19.3	17.0	17.6	15.6	17.9	19.8	16.6
60 "	17.5	16.2	15.0	18.1	16.3	16.5	10.6	15.5	17.9	14.2
$90 \quad 1$	16.0	13.4	11.8	15.4	13.6	13.0	8.1	14.1	16.9	13.7
120 "	13.7	11.5	8.3	12.4	12.1	9.8	4.8	11.3	14.9	10.8
150	14.2	10.9	7.6	11.5	11.2	8.3	4.4	10.6	14.6	11.8

Nylon twines of the seme specification as these treated with colours were also treated with chenisol, e weather retasdi preservative and coal tar and subjected to expesure testa aleng with the coloured nyion twines (table 42). It was observed that the chentsol treated twines exhibited resistence equal to the first group 1.e. without colour and yellicw coloured nyion twines; whlle the resistance of conl tar treated twines wee sisiles to the second group comprising of blue, grey, orenge and brown. Hence it can be concluded that both treatnents did not show extraprotection to nyion twines against weathering.

Anether set of nyion twines (210/4/3) treated with 5x cutch, cutch fixed by ansoniacal copper sulphote solution and cosl tar were exposed to weather aleng with untreated twines. The retained strength at periodic interval are presented in table 43. Frow e plot of the number of months of exposure to wather on the rotoined strength (figure 29) en exponential decry relation of the form $Y=\cos ^{\boldsymbol{- X}}$ wes observed.
Table 43

F29 29
table 43 WEATYER RESISTANCE OF NYLON TNINES(210/4/3) TREATED

SI.	Treatmente	Freakiphat ${ }_{\text {frength }}$		Retention of strength (hg) after expesure to wepther for different pentode (monthis)					
		reatme	reatment		4		\%	10	12
1.	untrested	14.2	14.2	10.6	9.7	7.6	6.0	4.8	4.0
2.	treated with 5% euteh	14.2	18.4	12.0	10.6	7.6	6.3	4.8	4.8
3.	cutch fixed by amoniacal copper sulph ate	14.2	18.1	11.6	11.1	8.6	7.3	E. 1	4.4
4.	Coal tas	14.2	15.4	10.9	8.9	6.7	6.4	3.0	5.1

Therefore between legaritha of retained strength and the number of ronths of expesur e Innear relationship is expected. This wes confixmed by the highly slgnifiemt correlation coefficients betwem logaritha of retained strangth and number of months of exposure (Table 44). Whether the rate of docay is the sane for all the four types of treatwents wes tested by using analyeis of covarime method as given in table 44.

Table 44

As shown by the "E-tests" there is no significant difference in the rate of doteriorstion due to different treatments and alse there is no significant difference in the initial breaking strength corresponding to different treationts. Thu - common relotion between the retelned stivength and the nenths of expesure. regardiess of the four treatmonts can be expressed es
$\log ($ reteined strength $)=2.1603-0.0442($ menths of
expesure $)$
or

> se In the expenential decay seletion

$$
Y=14.46(1.11)
$$

Table $: 44$ Comparison of seoression lines - len Retained strenoth on number_ef

d.f		x^{2}	x	y^{2}	$\begin{gathered} \text { Ree. } \\ \text { Coef. } \end{gathered}$	$\text { d. } \varepsilon$	$\begin{gathered} \text { tions fre } \\ \text { S.S. } \end{gathered}$	gression m
1. within								
1 untreated	6	112	-8. 2070	0.2447	0.0465	5	0.00269	$0.00083(8)$
2 5\% cutch	6	112	-8.0818	0.2368	-0.0484	5	0.0089	0.00119
3 Cutch fixed	6	112	-5.0046	0.2287	-0.447	5	0.00503	0.00101
4 Coal tar	6	112	-4.5200	0.1946	-0.0403	5	0.01220	0.00244
5						20	0.02290	0.00129
6 Pooled, W	24	448	-19.8132	0.9045	0.0442	23	0.02824	0.00123

Table 44. Contd.

\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline 7 \& \& \multicolumn{3}{|l|}{Difference between slopes} \& 3 \& 0.00234 \& 0.00078

\hline 8 Eetween, B \& 3 \& 0 \& -0.0002 \& \multicolumn{4}{|l|}{0.0104}

\hline 9 $W+B$ \& 27 \& 448 \& -19.8134 \& 0.9149 \& 26 \& 0.03863 \& 0.00149

\hline 10 \& \& \multicolumn{3}{|l|}{Between sdjusted means} \& 3 \& 0.01039 \& 0.00346

\hline \multicolumn{2}{|l|}{\multirow[t]{4}{*}{Comparison

x^{2}.
Comparison
y^{2} end}} \& \& \& \& \& \&

\hline \& \& \& \& 0.0 \& 0.631 \& $=3,20)$ \&

\hline \& \& f ele \& $$
\text { ons : } \mathrm{F}
$$ \& 0.0 \& 2.81 \& = 3,23) \&

\hline \& \& \multicolumn{3}{|l|}{ore the corrected sums 0 .} \& \multicolumn{3}{|l|}{of equarps and eross products.}

\hline
\end{tabular}

Where Y is the retained strength and X is the number of months of expesure, 14.46 and 1.11 being estimates of the constants A ond B.

The regreasion lines for the four treatments and the combined regression ilne along with the plot of log retained strength on the number of wonths of expesure sre presented in figure so

Fig. 30

The figure shows that the straight lines correaponding to the ilfferent treatments are very clese to the conbined line. The following conclusions are dram.

1. The relationship between retained strength and number of months of exposur is found te follew the exponential decay 1 ew

$$
Y=A A^{-X}
$$

2. There is no significant difference between the rates of deterioration for the four treatments considered.
3. There is no sigificent difference in the intial breaking strength corresponding to different treatnonte.
```
            WEATHER GESRTRBCE OF MYLON-
                                    REGREGSION LINES-FIG:3O
```


6.3 FATIGUE DUE TO STATIC LCADING:

Honda (1965) carried out experiments on fatigue on netting twines with various static loads for about a week and found that polyethylene, polypropylene and cremona twines are unable to recover the elongation caused by fatigue conpared to amilan and tetiron. It was also noted that fatigue by smaller loads does not affect the strength of t wines and when greater loads were applied, the strength loss was rapid.

Different samples of fish net twines were subjected to fatigue due to static loading test (photograph 8) by suspending a load of 5 kg . for varying periods such as 4 hours, 18 hours. 24 hours and 48 hours. The elongation of the samples was noted and they were tested for stressmstrain behaviour. Figures 31 to 37 show the results of load-elongation of cotton t wines, PE menofilament twines, PE braided twines, Pr fibrillated twines, PE flat tape twines and PP multifilament twines before and after the static loading tests for different periods. Table 45 shows the elongation caused by static leading, the breaking strength and stretch of the different naterials.

Figures 31, 32, 33, 34, 3x, 36 and 37

Table: 40

FIg. STRESS - STRAIN BEEHAVIOUR OF NETTING TWINES AFTER FATIGUE DUE TO STATIC LOADING.

FATIGUE DUE TO STATIC LOAD (5 kg) - PA MULTIFILAMENT TWINES- Fig: 32

FATIGUE DUE TO STATIC LOAD (5 kg) - PE MONOFILAMENT TWINES Fia 33

$2 \% 6$

207

FATIGUE DUE TO STATIC LOAD (5kg)- PE FLAT TAPE Fig: 35

208

FATIGUE TUE TO STATIC LOAOING (5kg)-PE FIBRILLATEO
TAPE FIG: 36

FATIGUE OUE TO STATIC LOAD (5 kg) - PP MULTIFILAMENT TWINES - Fig: 37

Table 145 Eloncition, breaking strongth and atroteh on fathope due to statle

Materials	Tine of fatigue	Elengetion	Brecking ${ }^{\text {St }}$ (Kghth	Sketch
cotten	$\begin{aligned} & \text { eriginal } \\ & \text { inours } \\ & \text { it } \\ & 24 \end{aligned}$		20.2	21.6
		9.5	24.2	21.6
		12.5 12.0	27.5	14.0 13.8
		12.3	26.0	11.6
PA multifilment				
		6.8	43.0	27.6
		7.0	44.5	24.4
		987	44.0	$3 \mathrm{36.5}$
PE monoflisment	$\begin{aligned} & \text { original } \\ & 20! \\ & 24! \end{aligned}$		14.0	
		11.0	14.7	420
		11.3 16.1	14.2 14.5	29.8
		16.9	14.8	29.1
PE bralded	eriginol18 mours$24:$$40:$	-	16.8	
		2.2	16.6	72.3
		2.3 3.2	16.4	75.0
		4.0	17.0	74.5

It would be seen that different waterials react differently under the fatigue tests. The stress-strain behaviour shows that the original strotch of twines is affected by static loading for different periods. The load-elongation curves of different naterials take up a compe towards the ordinate depending upon the fatigue time in the case of cotton twines while the others follow sinilar course with increase in the duration of fatigue time.

The effect of fatigue on the elongation of twines depends upen the inherent quality of the fibre. However irrespective of the material, it would be evident frow the figures that the elongation is affected, while the strength of t wine Is not reduced by static leading. In fect, the strengths of the fatigued samples were found to be a little higher than those of the unfatigued. The decrease in the breaking stretch is attributed to the increase in the extension of net materials by static loading which is timeadependent.

6.4 ABRASTCX:

The wearing away of any part of aterial by rubbing against another surface is known as abrasion. Vegetable fibres are wostly destroyed by rotting rather than abrasion and so fishermen did not pay much attention to this problen before the introduction of synthetics. Resistance to wear is an important property deciding the durability of the naterial. The nets come into contact with abrasive surfaces of different kinds such as mood, rusty metal, nechanically driven blocks, sharp
edges, nails, rivets and others on the vessel and sand, gravel, shell, sponge, rock and other obstacles at the bottom of the sea. Internal abrasion is caused by the friction of fibres against each other. Rubbing of netting yarns against each other also causes abrasion to lesser degree. Fyke nets ort rap nets used in stagnant waters are not subjected to considerable abrasive wear nor to strong stress, whereas trawls, particularly botton trawls are exposed to intensive wear and tear. Damage caused to midwater trawl net is mainly attributable to the chafing of the net when it is hauled up over the ramp of a stem trawler. Shinozaki (en. sit) is of opinion that it is not feasible to compare the abrasive resistance of one type of fishing net with another that has different characteristice. However, for general purposes, conparison between various net twines having the same twist renge can be made under identical conditions. He has also pointed out that results of laboratory tests cannot be taken as conclusive for fudging the abrasion resistance of net materials and the only reliable test of this property is actual endurance in comnercial fishing operations.

Studies conducted by Bonbeke (1964) showed the resistance to abrasion of cabled nylon was seven times higher than that of manila and sisal in the dry state, but only silightiy more resistont than sissi in the wet state. Warenzelchenverband (op, cit) tested the comparative abrasion resistance of twines made of vegetable fibres such as hemp and manila and synthetic fibre, nerion. With increase in the thickness of
these twines the abrasion resistance in the wet state increased. According to him staple fibres showed a lower rem sistance than those made of continuous filament. The breaking strength showed 62% loss in the case of manila cord compared with 19\% in the braided perion cord. Klust (1959) studied the conparative abrasion resistance of both vegetable and synthetic fibres and found the latter to be superior to the former. Further, he found that the abrasion resistance decreased with the loss in breaking load caused by rotting of vegetable twines. When the lose in breaking load by rotting was 80%, the loss of abrasion resistence was found to be 23% and 15% for henp and manila respectively. Rotween stanle and continuous filawent t wines in case of both polyanide as well as polyvinyl alcohol Klust (1973) observed the abrasion resistance to be alnost double in the case of filamentous type conpared to staple twines. The conparative abrasion properties as studied by hia have shown that the resistance to abrasion was more for synthetics than vegetable twines. Between polyester and polyaide contincous fibre twines, the resistance of polyester was found to be 50% of that of polyamide twines. The finer t wines of other synthetic naterials like polyvinyl chloride, polyvinyl alcohol and polyacrylonitrile showed only lesser abrasion resistance than cotton. Regarding the hardness of t wines and the abrasion resistance, Klust found that hard twisted twines of polyanide had less abrasion resistance than soft twisted twines. The same trend was observed in the case of braided type of construction. Contrary to this observation,

Shimozaki (op. cit.) found that the twists of strands play on inportant role in increasing the rigidity of the t wines in parts of nets which causes friction against hard objects. He suggested that the number of twists applied to strands should not be too much as to sacrifice tensile strength for improving obrasion resistance. Myanoto and Mori (1957) observed that rubbing of hard synthetic twines against each other resulted in quick snapping of both twines, while a hard twine rubbed against soft one broke the latter first. When both the twines mere soft, the resistance to abrasion was found to inprove. Shimozaki (ope cit) has shown that when cotton and kuralon were rubbed against each other, cotton withstood 260 rubbings while Kuralon withstood 530. But when Kuralon was rubbed ageinst saran, it could withstand only 60 rubs.

The abrasion tests were conducted in the laboratory using an abresion tester shown in photograph Z.......... One end of the twine is fixed on hook and the other end carries standard tension. The twines were set on pulleys enabling the twines to touch the moving oilstone abradant. The number of to and fro motions of the abradant (cycles) are noted on the counter. The twines subjected to obrasion were tested for breaking strength and stretch.

Nylon t wines of different thicknesses were tested for resistance to abrasion. The breaking strength of the samples are niven helm.

Ercaking strenath $\left(\mathrm{K}_{\mathrm{a}}\right)$ _of abraded nulon twines

No. of cycles	$210 / 3 / 3$	$210 / 6 / 3$	$210 / 9 / 3$
5000	6.9	13.9	17.9
10000	5.6	10.8	13.1
12000	2.7	7.2	13.1

The data reveal that the breaking strength reduced considerably, ith increase in the number of frictions. It is also noted that with increase in thickness of twines the resistance to abrasion was more. It was noticed that strength of $210 / 3 / 3$ twine reduced to 39% after 12000 , while in the case of twines of $210 / 6 / 3$ and $210 / 9 / 3$ the reductions were 52% and 73% respectively.

The stress-strain behaviour of nylon twines before and after abrasion tests is presented in Figure

Figs. 38 and 39

It is evident that the area under the loadmelongation graph is considerably affected by increase in the number of frictions both in try and wet conditions.

A comparison of the atrasion resistance of nylon and terylene is given in toble 46

Table 46

215

Both nylon and terylene twines showed decreasing strength and stretch values with increasing number of frictions. It is evident fron the tahle that nylon exhibits better abrasion resistance in the wet state than in iry which is further confirmed by the number of frictions observed upto break. On the contrayy, terylene twines showed better resistance in the dry state. Between the t wo samples studied, nylon possessed superior abrasion resistance especially in the wet condition.

The number of cycles observed for breaking samples of PE nonofilarent twines, $P A$ multifilament (210/9/3), PE flat tape (2×3) and cotton twines of $210 / 12 / 3$ are given below.

Materials	No. of cycles unto break	
PE monofilanent	$\begin{gathered} \text { Dry } \\ 44,74 E \end{gathered}$	$\begin{gathered} \text { wet } \\ 27,312 \end{gathered}$
PE flat tape	1.15,880	28,974
PA wultifilament	22,258	32,194
cotton	16,443	9,683

Although PE sonofilanent twines and flat tape twines show very high resistance to abrasion in the dry state, nylon twines seea to exhibit better resistance in the wet state than all the other matrrials tested.

A comparative account of the abrasion tests cenducted on the different waterials such as cotton, PA multifilament, PE monofilament twines, PE braided twines, PE flat tape twines, PE fibrillated tape and PP multifilanent twines is presented in table 4\%. The to and fro movements (cyale) of the oflstone
Toblet 47 Ereokine trongth and etrotch of different net meteriale subjected te

51.	Meterial	Origimal Stringth (m)		Samplee obraded for 1 hr ot the rate of 100 cyci ser peraute			
				Exeatige Seremgth		8rebing streteh (x)	
				Dry	wet	Dry	not
1	Cotten	14.3	12.2	2.6	4.2	15.6	21\%
2	PA multifilsment	12.*	11.6	8.4	**	34.0	26.0
3	PE menoflimment	16.0	17.2	12.0	9.6	24.0	18.3
4	Pribresded	14.9	14.4	10.2	2.6	23.0	14.0
!	PE flet tape	9.1	9.8	-6.	3.3	14.0	12.0
6	PF fibrillated tape	100.	12.3	8. 1	7.2	15.0	14.0
4	$p p$ mitifilament	12.7	12.\%	9.0	4.7	20.0	10.0

- abreded fer 20 minute
- cbraded for 10 mintes.
abradont were noted as 110 per minute. The materials were

$$
\text { Table } 47
$$

put to abrasion continuously for a period of one Yout in dry and wet conditions and their breaking strength and stretch were noted before and after the tests. Since polypropylene multifilament t wines and cotton twines could not withstand the test for one hour the time of abresion was reduced to 10 minutes and 20 minutes respectively.

It would be evident from the table that the resistance to abrasion is more in the dry state when compared to wet in case of all the materials studied. Of the neterials PF monofilament twines exhibited good resistance to abrasion both in dry and wet states. PE monofilenent braided twines although exhibited good resistance in the dry state. poor performance was noticed in the wet enndition. Flat tape twines showed lesser resistance than fibrillated tape twines. Fibri1lated tape twines exhibited higher resistance to abrasion then nylon. Anong the synthetic fibres polypropylene multifilament twines showed poor resistance to abrasion.

6.E ACTION OF HEAT AND CHEMICAIS :

Concentrated nitric acid, hydrochloric acid and sulphuric ecid cause rapid disintegration of nylon fibre. Phosphoric acid degrades the net materials at elevated temperature and formic acid above 80 dissolve the fibre (Klust
1973) Japen Chenlcal Fibres Association (1989) reported the effect of heat, effects acids and alkalis and organic solvents on vinyion, nylon, vinylidene and polyvinyl chloride fibre. It is reported that polyester has got high level of resistance to chenical attocks like thos of oxidising agents and organic solvents while phenols dissolve the fibre. Polyvinyl chloride is resistant to acids and concentrated caustif soda. while the fibre dissolvas or swolls in some arnmetics, chlorinate? hydrocarbon, ketones etc. Vinylidene chloride is aifected by sunlight but unaffected by most acids. /lkalis like annoniun and sodiun hy'roxide affect the strength of t wines while they showed good resistance to other chenicals and inert to organic solvents. Renarkable resistance to attack by alkali, acids, solvents and organic salts by poiyethylene is roported while the twines flex at temperature of 70 C. Vinyl alcohol cause decosposition or swelling in concentrated nitric acid, hydrochloric and formic acids. Strong alkalis cause yellowing but do not affect the strength; good resistance to organic solvents and oils is reported.

Since the effects of most of the chenicals hove olready been reported, experiments are restricted to assess the effect of fish net twines by dry andwet heat at different temperatures, action of grease, diesel oil and detergents with which the nets often come into contact on the boat deck. Table 48 presents the breaking strength and stretch of
Teble: 48 setion of heat and thent cals on fish net wimes.

5). ne.	Aetion of heot and Erealcols	Retained breaking etrength (Kg)						
		cotten	PA nuitifilatent	$\begin{gathered} \text { PF } \\ \text { filenement } \end{gathered}$	PE brested	$\begin{gathered} \text { pe } \\ \text { 2at } \\ \text { tape } \end{gathered}$	$\begin{gathered} p \varepsilon \\ \text { fobzi- } \\ \text { lloted } \end{gathered}$	$\begin{gathered} \text { PP } \\ \text { filiti- } \end{gathered}$
1	Oc	14.8	12.3	- 2	14.0	9.4	10.4	12.0
2	Dry heot 90	14.2	11.8	E.0	14.2	0.2	20.2	12.0
3	- 70 C	14.2	12.1	7.9	14.3	9.0	10.2	12.1
4	- 200 C	14.3	12.4	8.6	14.1	9.2	10.4	10.8
3	wot heot 50 C	14.7	11.7	8.3	14.2	8.8	10.9	12.2
6	- 10 C	14.8	11.4	8.7	13.4	9.3	10.4	12.0
7	- 100 C	14.9	11.3	9.2	14.4	9.1	10.8	12.5
8	Hoer temp Dry	14.3	12.8	8.8	14.8	9.8	30.*	12.7
9	- wnt	25.2	11.6	9.6	14.	9.6	11.3	12.
10	Dacel ollmeold	13.9	12.4	7.9	13.9	8.8	10.3	12.1
11	Olorine wuter (soco ppe)	18.0	11.*	8.8	14.2	8. 4	20.7	12.2
12	Greate	14.2	12.0	3.4	14.1	6. 6	10.2	12.3

different kinds of net neterials on action of dry and wet heat, grease, diesel and chlorine water.

Table 48

It would be evident that the strength and stretch of common net materials are not affected by dry and wet hea upto 100 C. The results corroborates the earlier observati by Kuriyan and Cecily (1961). It is also noted that chemicals that come in contact with the deck surfaces do not affect the nronerties of fish net t wines.

CHAPTER VII

MIXING OF SYNTHETIC FIBRES FOR FISH NETS :

Klust (1973) reported inixing of soft continuous filament waterial with split fibre or monofilaments results in an increase in stiffness could be obtained. The fliexibility indices observed in the cosbinations reported by his ere as follows.

Propertien of nixture
PA cont. fil. 50\% + PP fil. 50\% braided
Pf cont. fil. $78 \%+\mathrm{P}$ P split 22%
PP cont. fil. $50 \%+$ PP spift 50%
PrS cont. fil. 75\% + PP split 25\%

Flexibility

 24 49 91 61PA cont. fil. 66\% + PF Monofil. twisted 12

Combination twines for fishing gears which consist of two synthetic components nroduced in Japan are the following.

Trade name	Conbination
Kyokurin	PA fil + Sarm
Livion	PA fil + Saran
Marlon A	PR fil + PVA staple
Marlon B	PA fil + Sarm
Marlon C	$P A+p V C$ fil.

method to improve the specific gravity of nylon for use in deep weter gill nets and seines by hanging a strip of vinylidene net $360 d / 30$ ply on a ratio of $4: 1$ of nylen and vinylidene under the nylon. This method was not entirelv entis.
factory. Laterimylon and vinylidene fibres were combined during manufacture of yam andt wine. This product is known as Livion and possesses which had considerable advantage for deep water gill netting operations. The seine to be pursed should sink within two minutes to catch the entire school. 1.e. the sinking must be at the rate of 1 fathon per second which is difficult to accorplish with ordinary material. However, Livion sfine netting of smaller diameter twine manufactured with a special twisting method was found to be equal in specific gravity to cotton and hence is able to meet the requirenents. Marlon netting was first put to conmercial use in 19… Its rost notable charect ristics are derive? frow the contination of the best features of nylon and vinyion fibres. The advantages of such combinations are increased specific cravity, raintenance of strength by the predouinance of nylon fibre and decreased knot slippage. Marlon and other combination synthetic twines ere recommended for purse seines, beach seines, lasparas and trap nets.

ICI (one cit) reported wixing of high tenacity terylene filament and spun acetetc netting t vines for pilchard nets. The net vas quite suitable and did not bruise or danage the fish. The knots wero almo found to be stable. Terylene core spun cotton yams also were tried for sinilar reasons, but because of the prosence of cotton, the twines could not be rot-resistant as the mixed twines made with s pun acetate yarn. Arzeno (op, cit) has mentioned about blend with nanmade
fibre with viscose staple and acetate staple and blends with viscose staple with nylon and wool. Du Pont De Nemours (1959) mention about the corbination of twines made of nylon and spun acetate used for trap netting.

As synthetic fibres are manmade they con be tailored to produce the required properties. A programse on maxing of synthetic fibres was therefore tried in the laboratory the results of which are indicated below.
7.1 Mixing of monofilanents of polyant de, polyethylene and polyoronylene :

The monofilaments of size $0.20,0.15$ and 0.20 of polyethylene, polyanide and polypropylene were twisted in the ratio of 1:1:1 and the resultunt twines were subjected to analysis of physical properties. In order to study the merits and demerits of blending twines were mede exclusively with each of the components. Tobles 40,50, 1 and 5.2 present the physical properties of twines prepared in the above namer.
Tables $49,50,51$ and 52

The averzor sirength per denier of different specifications of polyomide monofliamenttwines were worked out to be $2.9(0)$ in the dry state and $2 . x(a)$ in the wet state. A reduction in strenoth of 13.2% wes observed hy wetting.

In the case of polypropylene twines the average strenoth oer denier in the dry and wet states was $4.2(\mathrm{a})$ and
Table 49 Physicel properties of PE monofilament twines (size of monofilament 0.2 mn)

So.		TMat per metre						
		outor	Imor	ary	m	ary	+	
13×3	0.40	210	10	18.6	18.7	43.8	0.2	16.9
6×3	0.91	126	40	32.8	3.4	3.6	36.6	19.4
- 3	1.24	100	62	80.6	4.4	0.6	4.6	24.8
12*3	1.68	138	6	80, ${ }^{\text {\% }}$	63.1	41.2	41.6	3.1
18x	2.14	${ }^{106}$	${ }^{4}$	${ }^{6.1}$	T.0	0.8	4.4	4.1
18×3	2.58	104	5	86.9	87.4	0.0	$\infty .0$	4.1

Tablet 50 Physical properties of polyanide monofliament trines (sise of mono-

$\begin{aligned} & \text { 81. } \\ & \text { H0. } \end{aligned}$	specification	Mass por metre (8)	Tust per outer	motre inner	Brenking $s t r e n g$ th dry (kg) vet		Broakin dry	reteh vet	$\begin{aligned} & \text { Knot } \\ & \text { treagen } \\ & \text { (kg) } \end{aligned}$
1	6×3	0.63	187	160	16.0	14.0	61.6	65.6	9.8
2	9×3	0.94	192	134	25.9	21.9	69.6	69.6	15.3
3	12×3	1.31	172	116	37.0	30.6	74.6	67.8	21.4
4	15×3	1.72	143	98	46.2	41.4	86.6	71.0	28.9
5	18×3	2.13	96	70	53.8	49.0	80.1	75.3	34.3
6	30×3	3.48	100	92	84.8	74.0	92.4	80.2	51.8
7	45×3	4.71	96	84	115.0	94.5	108.0	85.2	66.1

Tablet 5 (Plaseical propartion of poispropylene monofilament twines (aise of mono-

$\frac{82}{10 .}$	speetrlcation	$\begin{gathered} \begin{array}{c} \text { Kase por } \\ \text { notetre } \\ (E) \end{array} \end{gathered}$	Tulst per outer	notre	$\underset{\text { arry }}{\substack{\text { arackir }}}$	$\int_{\text {Bot }}^{\text {gtrength }}$	dry $\mathrm{araencln}_{\text {dry }}^{6}$	$\mathrm{s} \text { trotel }$ vot	
1	3×3	0.21	292	130	9.6	9.6	49.4	48.0	11.0
2	6×3	0.42	236	128	15.7	15.9	50.0	49.3	16.7
3	9×3	0.61	176	92	23.7	24.4	53.2	47.4	26.4
4	12×3	0.83	150	8	32.4	32.7	52.2	49.0	34.4
5	15×3	1.03	130	84	39.4	41.2	52.2	46.2	43.0
6	18×3	1.21	120	54	46.4	45.9	49.4	44.0	48.6
7	30×3	2.08	192	58	62.2	63.4	53.4	43.4	63.8

Tablet 52 Pbesical proporties of oombination twine made of monortianemts of

81. spectreation			Tvist outar por notre 1mare		Broakd dry	$\begin{aligned} & \text { reasth } \\ & \text { wot } \end{aligned}$	Brank dry	$\begin{aligned} & \text { roteh } \\ & \text { wot } \end{aligned}$	
1	3×3	0.35	595	535	13.5	13.6	39.5	39.9	8.0
2	6×3	0.79	161	245	24.5	: ${ }_{\text {a }} 3$	42.4	40.0	18.3
3	9×3	1.12	153	285	34.5	34.7	40.8	45.8	25.0
4	12×3	1.52	129	102	45.4	45.0	45.2	43.4	36.0
5	15×3	1.96	136	114	54.8	52.4	50.8	49.2	40.0
6	18×3	2.39	138	122	66.2	68.8	54.8	55.6	46.0
7	30×3	3.67	88	60	99.5	110.0	53.5	51.4	81.4

and 4.5 (g) respectively showing siight improvement in strength in the wet condition". Plyethlese monofilasents twisted exclusively showed a tenacity value of $2.5-3.5 \mathrm{~g} / \mathrm{d}$ with no reduction in strength in the wet condition. Differei specifications of combination twines made with PE, PP and PA monofilaments showed improvenent in strength in both dry and wet conditions when compared to PA monofilaments twisted alone. The method of preparation of combination twines improves the specific gravity of material as one of the components is polyanide. Since nonofilaments are widely used in the preparation of ropes, the sethod of sixing of monofila ments is expected to bring out added properties to the resultant product.
7.2 Mixing of multifilaments of Polyomide and Polyprophylene:

Multifilaments of 210 denier polypropylene were combined to product different specifications of mixed twines as shown in photograph 11

$$
\text { photograph } 11
$$

Earlier studies have proved that polyanide multifilaments loses strength in the wet state, while polypropylene twines gein in strength. Nylon is highly elastic possessing good stretching properties, while the extension in the case of polypropylene twines is low when compared to other net materials. Mixed twines prepared in the above manner were analysed for physical properties. The stresestrain readings were plotted and are presented in figure 40

Flg. 40

The area under the curves, breaking strength and breaking stretch in dry and wet conditions are as follows.

$\begin{aligned} & \text { S1. } \\ & \text { No. } \end{aligned}$	Twines prepared	Area the (sa dry	under urve (7.) rithe	$\begin{aligned} & \text { Breaking } \\ & \text { strength } \\ & \text { (kg) } \\ & \text { dry wet } \end{aligned}$	Break dry	stretch wet
1	$\begin{aligned} & \text { PA nultifila- } \\ & \text { nent } \\ & \text { 210x8x3 } \end{aligned}$	109	62	25.221 .0	20.0	16.2
2	PP mitifilo ment $190 \times 8 \times 3$	153	148	27.628 .2	21.2	20.5
3	Combination of PA and PP multifilanents		129	27.225 .4	19\%.	23.2
	$\begin{aligned} & 210 \times 4 \times 3+4 \\ & 190 \times 4 \times 3 \end{aligned}$					

STRESS-STRAIN BEHAVICHIR OF PA MULTIFILAMENT, FP MULTFILAMENT ANO CGBGINATICN OF FA ANO FF MUITIFILAMENT TWINES. FIG. 40

In PA multifilaments the breaking strength in wet condition is reduced while PP nultifilaments inprove strength in the wet slate. Combination twines show better strength in dry and wet conditions when compared to PA multifilaments twisted alone.

Different specifications of combination twines nade of multifilaments of polyanide and polypropylene by experinental twisting in the laboratory were subjected to analysis of stressestrain behaviour and the same is presented in figure 41

Fig. 41

The cowination twines wade of PA and PP nultifilaments were found to be quite flexible when compared to twines made of PP multifilaments alone. The specific gravity of the mixed twines was found to increase when compared to twines made of PP multifilaments alone os the former sink in water while the latter floet. It is expected that the blending of PA and PP nultifilaments may offer new naterial to the fishing industry especially for gill nets where the requirements of pliability, strength and stretch are covered by this new product. By tixing of these fibres in the above

STRESS-STRAIN BEHAFIOUR OF DFFERENT THWKGGOESOF COMANATION TWINES MAGE OF POLYFROPYLFNE ANO HOLYAMIDE MULTFILAMENT YARNS Fig. li_{r}

manner the cost of nylon can be brought down by the inclusion of cheap polypropylene fibres.

1.3 Mixing of polyamide multifilament with pelyethiene fibrillated tape yarns

The mixing process fs similar to the one discussed earlier. Polyamide mitifilaments and polyethyene
fibrillated tape were twisted in the laboratory using hand driven twine twisting machine. Photograph 12 showa the combination twines prepared in this manner.

Photograph 12

Since the denier number of polyethylene fibrillated tape is 1000, nylon multifilaments of 840 denier were selected for this study.

Twines prepared
 filement $840 \times 4 \times 3$
2. PE fibril$\begin{array}{llll}\text { lated tape } & 6.7 & 7.2 & 46.0\end{array}$ 1000×1x3
3. Conbination twine of PA $\begin{array}{llll}\text { and PE 840x 24.8 24.0 21.0 } & \end{array}$ $1 \times 3+$ $1000 \times 1 \times 3$
4. Combination twine of PA and PE 840x 30.3 29.7 $1 \times 3+$ $1000 \times 2 \times 3$

The strength per denier of combination twines morked out to be . 33 grams. It is also ovident that by combining polyawide fibres with polyethylene fibrillated tape, the strength of the resultant product in the wet condition is obsezved to be the same as that of dry state which is also a positive sign when compared to twines made exclusively with pelyanide fibres. Again the twines of this combination improved the specific gravity of polyethylene fibrillated twines which otherwise float in water.

It is expected that this material weuld be a substitute for Italian hemp used for Dara fishery as well as in place of sun hemp twines used in ramponi nets where bast fibres have established their utility and so far no symthetic material could be selected as a substitute. The combination of PA maltifilaments with PE fibrillated tape can also be tried for deep watdr gill nets for the capture of seer and sharts, apart from using this combination twine for other types of nets. The inelusion of cheap polyethylene fibres brings down the cost of preparation of sixed twines when compered to twines made of nylon alone.
7.4 Mixing of polyanide mitifilament polyethylene fibrillated tape and polypropyiene multifilements

The twhes prepared by wixing multi filaments of
polyazide and polyprepylene with those of polyethylene fibrillated tape yams are shom in photograph 13

Photograph 13

The strength and stretch values obsezved in the case of combination twines prepared are as follows:

Specification of Combination twine		$\begin{gathered} (210 \times 4 \times 3+ \\ 190 \times 2 \times 3+ \\ 1000 \times 1 \times 3) \end{gathered}$
Br.strength	$d r y$	24,2
	met	23.2
$\begin{gathered} \text { Er.streteh } \\ \text { wet } \end{gathered}$	dry	44,6
	wet	50.8

The strength per denier worked out to be 2.8 and 2.7 in the dry and wet condition respectively.

Twines aade of polyethylene and polypropylene float In water since the specific gravity of the material is less than water. Hence nets made of these material are rigged with suitable weights te keep the net at concemed fishing positions. Although the production cost of polyethylene and polypropylene is cheap when compared to nylen the material is out of use in such type of nets where a high sinking speed

\because

12
is required. The present studies tend to show that these naterial can be consumed in large scale by suitably mixing with nyion multifilawents so that the negative features of each of the compenents con be improved. However the present investigation will be complete only after testing the material in the filecconditens. The introduction of uixed twines for fish nets is expected to be new venture and in indien fishing industry and this study on the production of comibination of twines by making use of multifilaments of polypropylene. polyethylene fibrillated tape yerns and polyawide multifilament not only increase the potential use of polyolefins but also reduces the investment onfishing gear.

CHAPTER VIII

SKLECRIOM OF HET MATERIALE FOR FIEHIMG GEAR AID RECOMENDATIONS

Klust (1959) categerimed the fishing note into thret mejor eroups Viz. mete of lov strain like eill mets; mete of medium strain such as drift neta, boI net, stake met, dip net, lift not, falling net and seines and mets of heavy atrain lixe gape neta and trawla. aill mote are paceive coara into which the fish swin by accident and becose gilled in thoir mestees. Tvines of amall diameter having aufficiant breaking strongth depending on the spoeies of flat to be aptured are to be seloeted for gill mete. Daring gilling the live fiehes druggle to escape and the twinea should yield to the preanure axarted by the IIsh. Retaining the correct meah aize is an important factor ingill mets, as alterations caused by loeseness of mot or extension of trine may canee the escape of the gilled fish. Cotton, ranie and hemp were the materifis used for fabrication of fish nets prior to the introduction of symbetic tuanes. Mugat (1959) reperted that in Norvesian fisheriea cetton and hemp were completely reslaced by nylon 66 and 6 and texylame for cod and ceal fish gill nets. While replacing cotton with synthetic material, he bas suggested that wet knot atrength should be the main criterion as vetting and knotting are likely to affect the strength of synthetic materials (Bobinama 1959). warncko (1959) suggested replacement by 258 1ighter synthetic material for coarser twines and the same runniag Iencthes the natural fibre twines in the case of Iner twines
to evoid extra strong and heavy twines, wille Mugaa: (1959) aucgested 50% more rumage than cotton so that a setiafactory wet knot strength could be obtained. Firth (9950) meationed that one of the firat comarcial application of mylon is for the construction of cill nete. The wee of perlon monofilament for hand linee and gill nete and perion continuous filaments for tuna long lines and whale tow varps his been cited by Kiust (1952t. Amano (gne att) roported the capture of salmona and troets in Yorthern Pacific using anilan sill nets and found the material to be ceonomical oven though the price of nylon was twiee as that of rame. Contrary to this observation, saetersdal (9959) fomad cod caught in nylon net inferior to those canght in cotton nets as the fish died quidely in the former. Gundry (1959) obsorved manade fibres used for berring net to be not satisfactory as the fish got so deeply enmeshed that they could be extracted only wth a creat anount of labour. In the case of bottom set gill nete, the rocky sea bottom is ilicely to tear and pull loese an expensive synthetic net and bence be advecated the ape of vegetable twines as they vere more serviceable as long an the nets vere maintained in the proper way. Experiment eomducted with mylon gill mets in marine and inlund waters in India bowed their superiority over cotton nete minly in matters of strength, elasticity, pliability and rot-proofness So e cominte chanme over comid be offacted in Indian fisharl

In the case of gill mete even by the traditional fishermen Both for marine and inland raters.

Nylon is produced in India in the form of monofilament e continuous filaments and staple fibres of which the last one finds utility only in textiles. The translucent monofilament is almost invisible under water and this property helps to increase the catches.

Momofilamente of sike group 0.20 to $0.25=$ are suitable for gill nets, beyond which the flexibility of the materiel is considerably affected. Kuztyan (1973) and Khan at. <compat>ᄅ<compat>ᅭ (1975) found monofilament gill met more effective in Gobindsagar reservoir than maltifilament nylon nets. IS (1975) present the guidelines for the preparation of monofilament nylon. However, bulkiness and knot looseness were the main problems met with in monofilament gill nets and hence malifilament twines have taken the piece of monofilament as suitable material for gill nets. Polyamide continuous filemont is the softest of all synthetic materials in the wet state, but since its natural white colour is far too visible in clear water, the material is dyed in green, blue, grey and brownish colours in commercial fisheries (lust 1973). Experiments in India too showed the varying eff oct of colour on the capture of certain aperies of shes. Kist advocated the use of soft twisted maltifilament nylon for gill nets, as the hardness increases the elongation at increasing low loads which is undesirable for the functioning of gill nets.

I8; (1967, 1976, 1981) give the guidelines for the apecifications of soft twisted polyamide maltifilament trines for sill nets. Polyande contimeous filament twines are used for stronger or fine gill mets. Plaited twines of continuous filament perlon are apecially atrong and auited for large stow nets in river fishery. When lowest possible extension is called for as in pound nets, lift nets, gill nets and tramel nets, polyamide and polyester are the two groups of chemical fibres of choice (Klust 1960).

When lowest possible extension is required as in the case of pound nets and lift nets, twines of polyester are preferred. KIust (op cit) described the use of polyanide staple fibre twines for lines, scoop net, fyke net, cast net, drift net, river stow net and irag net.

Klust (op, eit) is of opinion that medium atrain fishing gear do not require very atrong and costly material like polyamide while in the case of purse seinez, the important properties to be looked for are good ainking speed, high breaking atrength and low resistance to water flow. Aecording to Klust (1973), high specific gravity, smooth murface and small diameter of netting accelerate the sinking speed and reduce resistance to water flow. Teo material used in India for indigenous two beat setne (Kolachivala) for gar fishes and single beat seine (thanguvala) of kerala was hand twisted cotton twines (Deshpande and George, 1962 and Kuriyan atali
1962). The only suitable synthetic material available in India at present is polyanide maltifilament, although aynthotie materials of higher apecific gravity than nylon are available in other comberien. In India knotless nots are being introduced recentily. The performance of a smaller purse seine designed by Central Institute of Fisheries Techmoleg and opereted frow indigenous 'Thanguvallang' was quite astisfactory. (Photographs 14 U15).

Photograpls 14 and 15

Going to heavy strain nets, cotton was the material used for fabrication of smaller trawl nets and aisal and manila for deep water trawls as indicated already. Irawl net material requires high wet knot strength; high extensibility, small diametor and high abrasion resistance. Lever toving resistance in such nets regults in a reduction in toving power with consequeat savings in fuel for increased towing speed, enabling the use of larger net by which the eateh officiency is increased (Kinet 1973). The high elongation, elasticity and wet knot breaking load of polyamide continuous filament twine enable the met to withstand rough treatment during fishing and to baulifin larger catcbes gafely. Hylon in staple and continuous fibres was found to be a suitable material for German bottom trawls for herring and round ILeh and large gape nets of Germen rivers. Luayne(1959)

14

15. Thampuvala operation.
recorded that the strain in the met ghould be apread acroas the knots and the trane should be atrong caough to withatand the complex streas-strain reactions acting upen the webinge While reviewing the properties of a particular type of aynthetic twine, ita application and gaitalulity or othorwise to different classes of mets like purse seines, tranis, dil mets, Pligg note, id vater travis, drag nets etc. have boen atreased by varions anthors (Anon 1957, Toilckkajen C0. 1959, Anen 1959. Carrethars and west 1964). Bueserio (1960) memtioncd that trawl made wholly of 4.76 m braided cords were uped in bottom traming in place of nataral fibres in oulf of Mexiee. Eventhough symaties are widely uad for gill mets, their use for the fabrication of travis is of a restricted nature. In experimente conducted in India on travi nets for capture of prawns, the seft twisted nylon twines were found wot suitable while the hare twisted twines hed a better abrem sion resistance, total elongation and toughess index in spite of reduced treaking strength dae to twist harineas. Iss (1967) presont the guidelines for the proparation of hard twisted nylom twines cuitable for travi neta. Da Pont De inemonrs (9959) montioned that larger travi nets may be atther loat or bady torn and the oxtra eost opeat on myion may not be justifiable and hence cheaper material is recemmenced for travi gear. Dut for cod ends of trawl nets, Kinst recommends pelyamile or polyester filament or staple as ideel material to absorb the kinetic onergy. In anch cases the unloading of
cod and need be done in fower operations.

The use of perion monofilamot for hand lines and perlon continuous filamots for tuma long lines and wale tov warps bas beon cited by Klust (1952). Rankovien (1957) described mylon as erriceable for cel long lines in lake scutary. Examples of whale runners and purse lines for cacireling mets with mylon are cited iy Klust (1958). Cetton mas the material used traettonally in India for hand lines and long lines by IIshermen of India (Emlasubramanyan 1964). Deshpande at al (1970) and Karthe 1 ticl (1973) earriod out shark long line experimente and bottom erift leng linea for sharks, rays and cel uging cotton lines. Further, Dechpande and Bivan (1969)
 have done troll-1ine experiments succesafully with nylen lines. The maitable mierial for lines is hard twisted mylon.

The matorial introdneed in Indian fisining industery after nylon for preparation of trines vas palyethylene in monofilamont form valch had beon fully accoptod as a travi gear material in Japan and other advaneed countrios. The main advantage is its lover price compared to mylon as it can be manusactured by simple inexpensive teebniques. The oxtruaion and orientation can be tone in a sincle 'in-line' mit or two soparate units. Kloppemburs and Roator (196 af) mentioned that the processes of extrasion and orlatation have a significant effect on the properties of the filamont. Monofilanonts of
polyothylene cun be twisted into twines of varying thickneaces for utilisation in fighing nets and ropea. Phaical propertien of tyinea made out of then have already been discussed in the earlier chapter.

The moogant mature of the material coupled with rigidity makes polyethylene manitable for gill nets and purse sainen, where the main properties required are fleximility and sinking apeed. However, the material is muited for trawl nots and other types or dragsed and stationery gear. The lower apecifie gravity heips in reducing the number of floats and consequent reduction in dras. These nota are easier to mandle and clean. With proper rigging and velghting on the lower side of both botton and midvater travia, thay can be maintained at the required fishing position. stadies conducted on the utility of this material for trawi fishery and ropes at the Contral Ingtitate of Iisheries Tecmology, Integrated Fiaheries Project and Exploratory Fisheries Project clearly proved that it cem be used for madiwn and large trawl nete (Subramania Pilini at Ale, 1978, Kmajipalu at al. 1979, Subramania Pillai etale, 979 and Kartha 1980). Experiments conducted by Kertha et ake (4974) with three types of gimilar denims of nete made of eotton, polyetingleae and a combiantion of these two for the lover and upper parts of the net showed mo sigificant differeace in the catch rate of prams in three nets, while the total catel were more in the exclusive polyethylene net and combination net than

In cotton met. Is: (1971) dive cuidelines fer the proparation of polyethylem monofilament twines in differmt specirleations.

Abstract

Pelyethyleae as flat tupes for the veaving industery hes already been introctuced. These flat tapes wore tulated into difforent thickesses in the laboratory and mbjected to physteal teste, the resulte of which have already been diecussed earlier. since the material possessed properties comparable to twsted monofilaments, it vas tested in the field. Comparative officiency studios of ideatical desigas of trauls made of nylen, polyethylone monofilanent and polyothylene flat tape twines owed highest catch in the tape net followed by monofilament and nylon nets (Kartha et eke, 1977) proving the auitability of veaving tape as a trawl gear miterial. Is (1973) dive the guidelines for the preparation of different specifications of flat tape trines.

Fibrillation of the flat tape vas the nozt develepment in polyethylae and the trines made out of this were found to be more pliable than flat tape tuisted twines, the properties of which have already been discussed cariler. Although field trials heve mot been conducted sofar, it is expected that the twines can be utilised for nets in the place of bast fibres for rampani net of Xarnataka or dara nets of Gujarat. The only drawbeck in utilising this matorial in gill nets is its lightaess which may have to be overeome by
adjugtmont in the rigging mathode. since polyothyleme fibri11ated tape is in the initial atage of prodnetion the material has to be teated under P1eld. Howcver, it is axpeeted that these twine: vould be more suitable for trall nots, dip mete, iift nots, atake nets and trap mets than other varieties of polyethyleae twines. Is(1977 present guidelines for the preparation of different apecifications of fibrillated tape tulnes.

Polypropyle beloncing to polyolefin grove is the next material to be introdnced for fish nets in India. This is also in the initial stages of production and the samples in the form of monofilament and maltifilamont have beon analysed for physical properties, the details of vaich have beta already discussed cariler. The twines can te made in the same way as other synthetic materials and lower liveliness of tuiste was observed compared to mylon. This nov material has many chare cteristics of polyethylene wich is now well establishod as travi turine material and certain characteristice of polyand de twines auch as Nexibility and strength. Pelypropylene has the lowest density of all matorisis maed for tofne manfactare and the same streagth in $d y$ and vet cenditions as indicatod already. A remarkable difference from nylon is extencibility boing relatively nore in polyanide and comparatively mall for polypropylene. Trials with polypropylene cede gill mets
carried out by Horwegien fishorman ghowed that the mots are 10\% lighter and lost lass strength daring Iishing than myom mete, with about equal catehing officicney.

Iravis made with polypropylene on top ving 8, top belly and equare was compared ulth trawl entirely maco of manial trine showed imercased cateli of 57\% fish in poiypropylene equipped net compared to 438 with all manila meto It also ceve easier handing, lower water resistonce and casier toving. Experiments comencted uith malmen gill mets the thee anthors shoved that polypropylene net could eatel more of fish swiming mear the surface. Cod dill nets made of polypropyleas and nylon shoved mo significant difforemee in catching power. Although silghtiy thickor then equivalent nylen, Eletron did not show any detrinental effect on shark gill nots. Danish seine and Ming note for berringe in scet land, porformed wall in apite of the buoyancy of polyprepylene. It is likely, therefore that whth proper rigying and weighting it will be poselble to produce paree seinet in polypropylene which may offect reduetion in weight, cost less price and be handled easily.

Carter and Weat (1944) recomended polypropyle for botton trawls. As in the case of polyothylene, lover dras and reduction in the number of foate on the head lines are favourable points. These authors observed 50% advantage
over manila travls on a price-life basis. It is easier to hande because of the low molsture absorption. For midvater travis, the frel consumption was found to be lese than that for moavior materiels. In India the prospeets of this matorial may be outstanding, constering the lover price, Naxibility and equal strength in dry and wet conditions and availability of rav matesials.

CHA PTER IX

sUMAETI AID COMCLUSIONS
Chapter I gives an introduction to the stady of the materiala for fish nets, their propertion, selection and preservation along with a historical rovume of the use of fish net materials all over the verld with spocial reference to Indiw. Cotton, hemp ramie, Max and jute are the vegotable fibre materials used for the fabrication of fishing nets by fishermen in the different maritime states of Finda. Manila, sisel and coir are extensively used for making set nete and ropes. The problea of rotting is the main drav back of vetetable fibres which is overcome to a certsin extent by treating the nets at frequat intervals with preacrvatives containing tamin and chemical aubstances like copper silphate, eopper naphthenate, coal tar and resin. since these treatments did not give permanent protection againgt rotting, acetylation and 'arigal-c' proeesses vere developed in foralan countries by which the vegetable Ilbres could be rendered rot-proof. But because of their complicated nature of application together with high costs, these methods did not gain much popu larity with fishermen. Utilisetion of man-made fibres was anaver to the serious problem of deterioration of vecetable fibres and as seon ws they vere made known, the re wes a growing demand for syathetic fibres from the fimbing industry. After the second vorld var, many aynthetic fibres started
belng mamifetrared from different polymers and it vas the beginntin of revolution leadng to the nse of syathetios in place of vegetable fine tuines in rishing induntry on a eloba Level. Mylon betame very popular menget the Eanminde fitree
 1ity vienmic rot-proofnese at an oasy ontry in the ilald of cill nets followed by zet nets, selnes and lens line fishories all over the world. The veriety of man-inde fibres used in the fishing industry ineluse polyenide, polyethylene, polyo propyene, polyester, polyvinyl chlorie, polyvinyilan chle ride, and polyvinyl alcohol. Amons these. polymerizetion plames have boen eet up in India for prodnction of mylon and poly thyle only. Until suen time minthetic twines were imported to mett the requipenchts of the IIshing inductry.

The manufacture of polypropylene mss been just then ap in the country and the products are under iavoratory testa. other fibres such as terylene, kureion and saran have mot jet h produced in India, thoug they are extensively aned in many other parts of the woris.

Chapter II presente the detaile of dirferent vegetame and aymethote fibre tuines. their extracte on manuracture and properties. Yaras of mylen are produes in sevenal trpes Like monefilament, multifilamant and staplef polyethime s monofllament, flat tape and fibrillatod tape man polyprom price in the form of monofilamont and reeontiy in mith-
filament forme in the country to meet the requircmente of synthetic fibres for the marufacture of fish net tralnes and ropes. The congtruction of twines bry the process of twisting and mraiding have been deseribed with apecial reference to the mumbering aystena of yarns and destgnition of tuines.

Chapter III cives the terminology as applied to fibras, yarns and twines. Chapter IV presents the aporimental procedure for the evaluation of the data oollected en the physical properties of fish net twines used iy indigenoms fishermon in the different maritime states of India prior to introduction of synthetic fibre and those of aynthetic fibre tuines ased in the Indion fishiag indastey. The physicel teate undertaken were limear density, diameter, tuist, breaking gtrongth, breaking streteh, stress-strain behaviour and knot strongth on different specificetions of fish nettwines.

While determining the linear density of netting materiala it was found that among the vegetable fibres, Ita1ian heap is heavier than other materials of the same thiokness with aunhemp, flax, sisal, manila and coir following in the order, coir being the lightest among the materiala tested. In the case of syathetic trines PR monofilament braided twine was found to be the heavient, followed by PE fibrillated twine, $P A$ maltifilement, $P E$ monofilament, PI flat tape and PP multifilament trines. PI Pibrillated,

Pr monofilament and Ph meltifilament twines shared more or less the same linear densities, while PP miltifilement trimes had the least value amonget the mythetic trinea tested. since the denat ty and apecifie volve are inversely proportional, the thiclmess of trine on equal velght per metre increases with decreasing donsity of fibres. It was shovn that PP miltfilament had bigher diameter for a given mass vica compared to PA maltifilamont twines. Polyethy ene fibrillated tape and monofilament twines shoved almost the same diameter and are thinner than PE flat taje twines. PE braided tudnes showed the least diametor among others when sample of equil mase vere compared.

Evaluations of physical properties of vegetable and synthetic twines used for indigenous nets revealed the need for uniform twists and stability of twines by maintainiag the correct ratios for inner and outer twists. The formalae for the angle of twist led to the conelasion that when the diamster of the twine is constant, the mumber of twists per unit leagth ia proportional to the angle of twist and whon the angle of tutet remains constant, number of twiste per unit lens th is inversely proportional to the diameter. Voing a mand driven trine toristing machine, the optimain toriats required to produce the maximan atreagth were worked ont Por cotton twines of two directions of twists vis. 28% and 2Z8. The relations between inner to outer twists and outer tyist and total number of yerms wore also stulled. Based en
these tadies, the twist factors for soft, medium, hard and extra hard cotton twinea were found out incorporating the total muber of jarna and count number of jarns. similarly tuist epecifications were woriked out for nylon twines of soft and hard lay and madiun tolsted twines made of polyethylame monofliaments. The twist specifications preseribed more can be used as guidelines for the manufacture of bilanced twines of multifilament nylon and polyethylene monoflament twines without any twist setting process. Soft twisted nylon finds utility in gill nets while hard twisted nylon and polyethrieae twines are widely used as trewl net material, the letter being more commonly used the to the cheapacss of the material. High density polyethylene flat tape (weaving tape) used mainly for sack and carpet backing was twisted in the laboratory in to twines of different specifientiong. The product wan found to be more ir less like polyethylene monofilament twines and quite suitable for nets vere aliability is not a criterion for selection. Comprative studies of trawl mets made of different materials tncluding PR monofilament and PE flat tape twines proved the utility and cheapness of these mat orial for bottom travis.

As a next step, fibrillated yarn was used as the basic material for making fish net twines. Twimes of fikerllated tape were found to be more flexible than twines made of twisted monofilaments and flat tape trines and resembe
twines made of best fibres. These toines ap be triad as a substitute for hong twines with proper Ficxing attachmente, sine the dngity of the marial is less than that of water.

Regarding the atrength property of netting twines. a comparative that showed that amons vesetable fibres, Item IIan hemp is more than trite as strong as sunhemp. Tho stre ogth decreased in the ordor of Nax, mania, stimong and sisal. Coir twines exhibited poor streagth eompared to other materials. The incresses in etrength in wot condition
 cotton, 8.18 in sisal and 6.9% in manila. The increase in strongth of Italian hemp by wetting was only 2.9% walle coir showed a reduction in strength of 7.5% in the vet state. In the case of eynthetic tuines. PA maltifilament showed the maximan strength foliowed by PP maltifilament. PR Eraided, PS flbrillated, PL monofilament twinos and PE Rat tape Brines in the descenalng order. Tho vet strength of rulom twines shoved highly significant recuetion(-10. \&) while PE monofilament bowed improved strength ly wetting by 15.0%. PI Dridict tuines also showed an inerease of 19.9% in stro ngth in the wot state. The rate of increase in strongth in the case of flat tepe twines wa 10.33 and that in fitri11ated twine 11.8\%. It is evident that polyethylene twines, whatever be the for of yarn used for making twines show inprovement of strength by wetting. In the case of polyprom
pylene multifilament, no reduction in strength could be noticed in the wet atate.

Regarding the comparative breaking stretch values of differeat vecotable fibre twines, it was ovident that the extensibility of sanhemp was lower than those of Italian momp and flax. siaal and manila twines exhibited almost the same breaiding atretch, watle cotton and coir ghowed greater clomsation an compared to other vegetable fibre tyines. In all the regetable fibres tested, the breaking atretches vere found to be more in wet condition that in dry condition. In the case of synthetic tuines, the corralation between tiameter and dry and wet breaking streteh was found to be mon-significant in all types of torlmes tested. one possible exple n_{a} tion 1a that the stretehes of twinea are independent of thickness. This is an impertant fiadiag since in gill neto, the streteh of twine is an important factor for the captare of suitable mpecies. Based on this finding sllowance need be given only to the interent stretching property of the Pibre and the thod of construction of twines. Observations on the effect of wetting on synthetic twines showed a marginal deerease in stretoh in wet condition compared to dry atretel in the case of nylon twines. The poreentage breaking streted of polyande maltifilament in the dry state was in the range (23\%, 29\%). In polyethylene monofilament twines, the percentare breaking gtretch in the dry condition was obserred to
be in the range ($230,48 \%$). The decrease of streteh from diy to vet condition in the case of polyethricae monarilamont mas found to be hishiy sicaificant. In wet state, the brocking stretch vas mestly in the range 23\% - 38\%. As regards polyethylene monofilament braided twines, the deerocee in gtretel In the wet state vas significant at 58 level. The braided twines registered a very bigh meaking stretch ranging from 50 to 98k in the dry state which decreased to 40 to 84% in wet condition. Great variations of gtretch were observed in case of polyathriene twisted monofilament and banided twines which were attributable to the stretching tendency of sumples at the field point, which was found to vary considerably anong samples. The polypropylene multifilament twine is found to have the minimum breaking atretch of 23 to 294 in the diry condition and the difference between dry and wet breaking stretches was non-significant.

The strength at knot in wet condition is an inportant property of a net material while selecting netting twines for fishing gear. PE braided twines sboved the highest knot efficiency (33.7) and PP multifilament the mimimum (57.4\%) among the matrials tested. The knot efficiency of PE monofilament twines showed 82.2%, PE fibrillated 77.0%, and PF flat tape 73.9\%. The knot officiency of nylon multifilament was found to be \boldsymbol{e}.

In Chapter VI, the causes of deterioration of figh not twines auch as abrasion, weuthering, rotting, fatigue and action of chenicals bave been stadied in detail with particular reference to conditions prevailing in India.

Chapter VII describes the ixing of gynthetic fibres such as polyanice maltifilament and polyethylene fibrillated tape yarnsi polyanide miltifilament and polypropylene maltiSilament yarns and lestly polyamide malifilsment, polypropylene mitifilament and polyethylene fibrillated tape yarns for the manufacture of fish net twines. This study is very im portant since mixing of yarns in the above lines has not bean reported earlier elsewhere for fish net twines although in Japan combination twines of saran - nylon and nylon filament ond kuralon staple have been tried. It was found that by mixing of yaras it is possible to produce a nev yarn which has got a different property from that of the componeat yarac. Polyethylene and polypropylene are comparatively cheaper then polyanide twines ad mixing of these fibres with nylon reduces the consumption of nylon, wich is a costiy material. Polyethylene and polppropylene are light materials, float in water due to their low apecific gratity and as auch are unsuitable for mets which require a higher sinking speed. Cembination of these yarns with myon yarns make it aink in water with edded specific cravity. It bas already been shovin that mylon loses strongth in wet state, while polyethylene
sains it in wet coadition, will polypropylat does mot shov any change in strength by vetting. Hence combination of chara cteristies of incovidual yarms yield trines with aixed properties of the component fibres and combinations tried in varying ratios holp their utilisation in different types of fishing cears.

Monofilaments of polyamide, polypropylene and polyethylene were mixed and the combination twinez proved to be a better product and it is expected that the infed monofilanomes can be used for lines ank ropes.

Chapter VIII deseribes the selection of net materials for use in different types of fishing gear, dithough it is possible to broady classify net materialef 25 is difficult to recomsend a tyo of material as suitable for use in a particular type of fishing gear. The reason is that selection of material depends not only on the inherent properties of the fibre but also to a large extent on the processing teokalques for the preparation of fibres, yarns and twines. It is comcluded that by guitable adjustments, material can be tailored to suit the requirement of any speciric sear for which more intensive research work is needed.

BALASURAMMNYAN. R SATYANARAYANA. AW and SABANANDN: KA	1960	Preliminory account of the experimental roek lobster fishing conducted slong the southmest coast of Indie with botton set gill nets. Indten J. Eish. I (2) 1960: 407-422
balasurramanyan. setranapayana, aw and SADANANDAN, KA	1961	Further account of the rock lobe ster fishing experiments with bottem set till net. Indien I. Eich. $\mathrm{B}(1)$. 1961: 269-290
eflastsramanymin R	R 1964	On the wee of different notural baits for ses fisting in India. Fith Intrael. $\mathbf{1}^{(1)}: 41$
balasteramanyan, R	RH 1964	Prelidinary experiments to eveluate the relative efficiency of different naturel boits in line fishing. Elsh. Iechacl. $1(1): 80$
BALIS W.L.	1928	Studies of quality in cotton. Marallan, Lenden
BARCHOOFN, E.S.	1942	Setences 96: 3xt
BARY, A.de.	1836	Batan. rtcon A4: 3T7
BCABEKE. ${ }^{\text {m }}$	1964	Etudes sur Ie Freinage et L." Uure des Fils de Peche Modem Fishing Gear of the

CrCIIY, P.J. and KUNJAPPAN, M.K.	1971	Preservation of cottion fish net twines by tanning : Optiwum concentration of tanning beth. Eleh. Tecinel.: \& (2): 156-166.
CFCIIY, P.J. and		Preservetion of cotten net
	1973	twine by tanning : II - Fixation of tamnin. Fiche Technol. 10(1):24-32.
CECILY, P.J.	1977	Rotting of Fith Net Twines and
		ite prevention. Thesis subo atited to the Univeritive of
		coshin for the waxtinf M, S (
		degree.
CLAGUE, J.A. and		Fishing gear preservatives
DATINCALINC. ${ }^{\text {B }}$	1950	for Philippine woters. Ees. Bent: 22
DESHPANDE. S.D	1962	An Account of "Dere" (Polydactylus indicus shay)
		Fishery of the Boxbay coest with particular reference to the fishing wethed by botton drift nets.
		Indo-Pactif. Eith. Coun: Pan. 63(7).
DESHPANDF, S.D. and		Design and operation of
	1963	Kolechivala. A two bootwseine

DESHPANDE. S.D.		Comperative cotch efficiency studies between two seaw and four sean otter trawls.
KAPTHA K.N		
and RAMA faO, S.V.S		Prace Inde - Pacif. Eich. Conn.
		13 (3) : 444m449
DESHPNDDE, S.D and		On the troll line investigations
SIVAN, T,M.	196	of Cochin during five fishing
		scasons : Investiostions during
		1960-61 and 61-62 seasons.
		Fith. Terhnol.0 $\mathrm{S}^{(1)}$: 26 -35
DESMPANDE, S.D.		On the results of prelininary
RAMA RAO S.v.s and	1970	fishing trials, with shark long
SIVAN T.M		lines in Veraval waters. Fithe
		Technol., $\mathcal{Z}(2): 150-157$.
Du PCont de nemouns		Syithetic ribre in the fishing
AND ${ }^{(1)}$	1989	Industry. Nodem Fishing Geer
		of the world : 147-149.
		Ed. Kristjonssen, H.
		Elshing Ners (Bonks) Litco London.
EDE, D.F.C and		Menofillament in fiching. Modern
MENSTEAD,	1964	Fishing Gear of the werld, 2
		Fishing Meme (Boak) Ltan Lendon
FARFAR, ${ }^{\text {a }}$	1980	Studies on t he prevervation of
		fish nets.
		Extith Columia Besearth Conntl
		Inth. Bull: SA.

FARRAR B	1980	Studies on the preservition of fist nets. Britith Columbia
		Besesrch Council Tech. Eull: 4
FELS, M	1960	Weathering of textile yams. Proc. 2. Text. Inst. 31 (11)
FIRTH, F.E	1980	Nylon gill netting proves successfun. Athmatic Elsherand $31(30): 16-20$
GEORGE, N, A, and	1962	Prelininary studies on the pre-
TACHALAKSHMI, X	1862	servation of sunheap fishing net twines-Indian 3. Ehh, $2(1) \text {. B. 23-31 }$
GEOPGE, V.C	1971	An account of the Inland Fishing eear and methods of India Soectal Bulletin - 1. Contral
		Institute of Fisheries Technolesy. Cechin.
GEORGE, V.C		Exploratory fishing experiments
NAIDU. R.M. and	1973	in Hirakud reservols, Orissa
KLNJIPALU, K.K		State (1967-70) Eigh. Iechnol. 10(1), 71-78.
GEORGE. N.A. KHAN, A.A and PMNDEY, O.P	1975	Catch efficiency and selective ection of coloured gill nets. Eish. Tecthnol. $12(1)$: 60-63
GECRCE, N, A, KHAN,		Productivity and seasonal abun-
A.A. PAYDEY, O.P and	1977	dance of conmercially inportant
mathar (T. Joseph)		fishes of Gobindsagar reservolr.
		Eish. Technol. 14(1) : 7-12.

GECPGE, V.C		Retional exploitetion of Catle-
KHAN, A.A and	1979	Cethe (Hap) fron Hirakud reser-
VARGMESE, M.D		voir. A prelininary account.
		Fish. Technol. 16. (2), 87-90
CULATI. A.N.	1957	- The physical properties of cotton'. Asit Pusithing Homes.
GULBADAMON, P.P.	1962	Supplewent to report to the Cevt. of Incha on the improvenent of fishing techniques in iniand re-
		servolrs of Indie. FAO/ETAP, Ren. 149e.
CUNPYY, E.F	1989	Discussion on the properties of twines and testing methods. : 96 Medorn Fisting Gear of the
		Werid. Fishing Nows (Books)
		Led., London.
CUPTA, B.M.	1947	Cury. Sels $16: 94$.
HANS STUTZ	1989a	Terainology and count of
		synthetic film twines for
		fishing purposes. Modem Fishing gear of the Werid : l-3
		Ed. Krietjonssen
		Fishtig New (Bonke)Ithe, Leaden
Havis STuTt	198\%	Latarel strength and knot-firmness of synthetic twines for fishing purposes. I bid.

RRIS MIL TON	1984	Hand book of Textile fibres. Haryis Researeh Leporatories,
		INC machington D.C.
MAYHURST. C.A and	1989	Conetruction and numbering of
POBTNSON, ${ }^{\text {a }}$		sythetic net twines. Modem
		Fishing Gearof the World : 4-8
		Ed. Krietjonsson, H.
		Elshing Newn (Books) Lideolondrn.
fiImaElfart, DAVID	1909	The tectnolegy of Cordage fibres and fopes. \qquad 411 (geoks)
		Leds, Londen.
HONEA, K	1986	Influence on the length of test
		plece on the breaking strength
		and elongetion of netting cord.
		BuLI. Jen. Soc. Sef.
		Fish.. 22 (6).
HONDP K and		Polypropylene twines in Japen
osada. S.	1964	Modem Fishing Geer of the
HONDA,K.	$1965 L$	World, 2: 5 -56 Fithing
		Mews (Books) Ltde, Lenden.
HORNELI. 3.	1937	The fishing methods of Madras
		Presidency - Part II Malabar
		const. Med. Efeh. Bun. 27(1):
		1-69.
HUTCHINSOU, H.B and		I. Anxi.
	1919	
CLAYTON, J.		Sci. 2: 143
		On the fatigue of neting twings. Bull. Jap. Soe. 'Sei. Fish. 3)
		(1) : 8-17.

INDERFUFTH. K . H	1923	Nyion Technolegy. Mc Grewiflil Beok Co TwC Nex Yon
INDTAN STANDARES INSTITUIION	1967	IS : 4401. Specificetion for
		Nylon fish net twines. Indies
		Stendards Instituticn. New Delhi.
INDIAN STANDARDS INSTITUTIO	1963	IS : 4640. Methed of designatine
		netting yorns in the tex sybtem.
		Ibid.
INDIAN S TANDATDS INSTITUTICN		IS : 4641 Method of describing
		and designating linotted netting
		for fishing nets. Ibid.
INDRAN STANDARDS INSTITUTIO:		IS : sale Part 1
	1970	Wethods of test for fishing grer
		waterials, Deternination of thickness. Ibid.
INETAN Stammands INSTITUTION		Methods of test for fiching aeer
	1970	saterials.
		Deterwination of ilpear density (wass per unit length)
		IS : 88.5 Pert II Ibids
IUDIAN STANEARES	1970	IS : 8818 Part III
INSTITUTICN		Wethods of test for fishing gear
		materisis -
		Deternination of wist. Mbide
INDIAN STAMDARDS		IS 3 -815 Pert IV
INSTITUTECN		methods of test for fishing gear
		materials -

KA NTHA, K,N, GEORGE, V,C and RADHALAKSHMI, K		On the comperative efficieney of trawis made of cotton. polyethylene and combination of both the materials Fish. Tachnol. 11 (1) : 43-49
KARTHA. K.N. HRIDAYAVATHAN. C	1977	Comporative efficiency of trawis aede of nyion, polythyte
and CrCLIY, P. 3		mon fllement and tape twines. Fish. Iechnol. 14(1), 21-26
RARTHA - K,N.	1900	Prospects of introducing ind water and pelagie trawling along the Indion Cosst frem Fisherman, 1 (2):27-29
rawal. R.	1924	J. Ing. Fish. Inst. 2 (6).
KHAN, A.A. GEOREF, N.A and PANDEY, $0 . \mathrm{P}$	197*	On the fishing power of monofilament and wilifilament gill nets Efth. Tectinal: 12(1): 64-69
KHAN. $A_{9} A_{0}$ CEORGE. $\mathrm{M} . \mathrm{A}$ and PANDEY. $0 . P$	1980	Column, set gill net fishing in Cebindsagar reservelr, Fish. Trehaol., 17(1): 66
KHMN, $A_{0} A_{*}$. GECRGE, V.C and VARCMESE, M.D	1980	Eredication of uneconomical fishes with simple gill nets of Hirakud reservoir. Eish. Techael. 17(1), 15-19

KLOPPENBUC, C.C and	1964	Repes of polyethylene menofilem
FEUTER, J		ments Modem Fishing Cear of
		the World 2: 81-87. Eishing
		Hexs (Boels) Ltde Lendone
Klust, 6	1982	Review of the present pessibllities for the use of perion in
		Fishertes. Pratetolle Zur
		Fischeretiteptuit. $2(12): 1-8$
kLUST, G	1983	Influeace of light and water on
		the IIfetime of perion. Protem
		tolle Zuxpischerel technis:
		3(13) : 217-19.
kiust, e	1988	On lines and ropes sede of synthetic. fibres. Axchivfur
		Eishert wissen shaft 9 : (2)
KLUST, 6	1988	New net twine of centinuous
		perion. Wissen staft infor-
		metionen fur die Fischert mexts
		E (6) 202.
Kitst, 6	1989a	The efficiency of synthetic
		fibres in fishing, especially in
		Germary. Modam Flehting Goer of
		the persd : 139-146:
kitst, ${ }^{\text {a }}$	198\%	Choice and use of synthetic fibres
		for fresh water fiehery.
		Eisetrutet. $2(8): 221-34$

		279
		pared cotion and man-mede fibse twines. Protokolle 3ur Eiewheri technist
		38 (8) : 261 l 91
KUNJIPALU, K.R.		Now large wesh trawl for dewersel
KUTTAPPAN, A.C and	1979	fishery. Eish, Iectinel $16(1)$: 19ad
MATHAI, P. Ceorge		
KUREHA RASEI 0	1989	Krehalon fishing nets and repes.
LTD.		Modern Elthing Gear of the world:
		37-58 Fishing Newn (Books) Ltd.,
		London.
KURTYAN, G.K and	1989	Common cheracteristles of cotton
CECILY, P.J.		fishing net t wines - A preliminary
		eccount. Indien I. Eish
		$6(2): 399-109$.
KURIYAN, G.K and	1960	Common characteristies of cotton
CECIIY. P.J		fishing net twines - Experiment
		series II, Indian S. Eith
		I (2) : 471-482.
KURIYAN, C.K and	1960	Comparative study of certein chars-
Radhalarshany K		cteristice of the common vegetoble
		fibre twines for fishing nets.
		Indian 1. Etsh $7(2)$: 448-ac7
KURIYAN, C.K and	1961	Effect of bolling fishing net
CECILY, P. 3		twines. Current Science. 30i319-20

NAIR, R.S and GEORTE N.A.	1964	Four aran traml nete eperated off Cochin. An analysis of the design aspectst the integration of the various parts of trawl. Fish. Techach . $\mathbf{I}(1): 1 \mathrm{~m}$
NAIR, R.S		On the operation of mall shrimp
VARGHESE. C. P	1966	trewis in shallow weters - scepe
FAMICHANERAN NAIR.C and KRISFTVA TYER. 1		rotio and size depth reletion. Eish Technel. 3(1):59-71
MAP. R.S	1969	Ceneral principles of the desigh of trowl net. Elth. Technol. 6(1). $1969: 1-0$
MAYAR, S Gopalan	1909	Prelininary studies on the charecteristics of coir twines. Indien ․ Figh. $5(2)$: 410-4is
MAYAR. S. Gopwlen and NAIDU, R.m.	1960	A note on the preservative quan iities of certain indigenous fich net preservatives on coir twines. Sef and Cuits 26 : 271-72.
NAYAR, S. Gopalen	1962	Studies on the ffectiveness of certain chealcal preservatives on cotton twines. Indim 1. Elth. g(1) : 47-31
NAYAR. S Copalen and WAIDU, n.m.	1962	Studies on the preservation of manila twines. Indien I. Eleh 2(1) : 37-46
NAYAR. S. Copolen. GECREE, N. A and WIRAYANAN. K.P	1962	Studies on the preservation of sisel twines. Indics I. Einh g(1) $B: 16.22$

NAYAR, S. Gepalan and VANATA, M	1962 shas	Studies on the efficacy of chemical preservatives on colr twines Indles 1. Einh $2(1)$: 32-36
NAYAR, S. Gopelan	1969	Experisentel fishing in Gendhl-
SHAHL HMEED, M		segar reservoir, Madye Pradesh.
and VARGHESE, M.D.		Poper presented at thes ginax
		on ccolony and Fisheries of
		freth rater reservolir condurted
		Dythe ICAR et the CTFRI.
		Eacmetrore.
NARAYANAPPA, \mathbf{G}.KHAN.	1977	coloured gill mets for reservoir
A, A and $\mathrm{NAIDU}_{*} \mathrm{R}_{*} \mathrm{M}$		fishing. Fish. Technol. 1(1) : 44-48
NARAYANAPPA, G	1968	On the relative catch efficiency of different shaped otter boards
		In botton trawling. Elsh
		Technol. $\mathrm{S}(1): 18-20$
NARAYANSPA, G*	1974	On the resources of deversal
STEEKRISHN: Y and		fishes for bottont ranling in
SATMANANDAN, K.A		Inshore waters off Kokinde by
		amall mechenised beate.
		Fish Tehnol. 11(2) : 137-14i
NISNIY/MA, T and	1914	3. Ing. Eish. Ingt 2 (6)
Yamazor. M		
PANICKTR, P, A	1978	Solectivity of gill nete for
SIVAN. T.M		Hilse Toll and Parout emonters
mbalathikaf. H.N and		Fish. Techaol, 1E(1) : 61-6e

PRINGRE, A.V	1951	Theery and Practice of Flax spinning- Part II Mechanics of Flax spinaing H.R. Carter Pibllsations Ltde. Belfaxt.
RADhalakstur K .	1964	Nethod of estiastion of velight of fish net webbing. Indinath य(2) B : 15-21
RADHALAKSHMY, K end KURTYAN, C.K	1969	Experiwent on preservation and veathering of net twines. Finh Technol. $6(2): 100-116$.
RADHALAKSHMI, K and Mayar. S. Copolm	1973	Syntretic fibres for fishing gear Fish Techno ocy 10(2): 142-16k
EANKOVIF. ${ }^{\text {R.J }}$	1989	Yugosiav experinents with eel 1ines. Dexfischuint, $Z(1): 15-17$
PEtMEP. J	1989	Same physical properties of manile rope. Wodern Fishing Gear of the Werld : 59-61 Ed. Kristjonssen Fishian Nemes (Eank) Itda Londen
REUTER, J.	1959	Tenting of neterials used in fishing. Nodem Fishling Gearof the Werld': 82-36. Ibid.
REUTER. J	1959	Discussion on the properties of twines and testing wethode. Modem Fishing Gear of the wherd
		: 96 Ibla.
PCR TNSON, B.B and	1933	
SOMASCN. F.L		Aory. Mencofrenh 21.

		286
RCATNCOM. A	1099	Discussion on rational memufacture of fishing gear. Modem Flahing
		Gear of the Morld : 111
		Fishing Mens (Books) Leda Landon.
Ruccenio. M	1960	Braided oynthetic twines and their ose in New Enigi and trawl fighery.
		Cons. Fish. Eexme, 22(3): 6-11
RUPERTI. ${ }^{\text {a }}$	1989	Ret-resistent fishing nets by the "Arical" process. Modern Flithing
		Gearafthelmerid: 123-154
		Fishing News (Books) Ltd., Lenden.
CAETEFSAL, 6	1989	On the fishing power of nylen gill nets. Nodem Fishing gear of the
		Werld : 161-163 Kristjonsson
		Exhing News (Bookt) Lede Lendon.
SANDOZ LTD	1999	Applicrtion of acetylated collviose
		for fithing gear. todern Flthing
		Gear of the Forld : Vex-127 Inid.
SATYAMAFAYAMA, A.V.V and Sadananidan, K.A	1962	'Chalevela' encircling gill nets
		for sardines and nackerels of the
		Kerala Coast with special reference
		to theirdesign, and emetruction,
		Indien 1. Fish g(2) B : 1962: 148-1
SATYANARAYANA, A.V.V 1962 and SADFANADAN, K,A		Design and operation of bottom set
		gill nets for lebster. Indite
		Elah. Eull $2(4): 1-4$.
SATYANCPAYANR, $\mathrm{O}, \mathrm{V}, \mathrm{V}$ 1962KUIIYAN, G.K and		Comercial proma trewiling gear of
		Cechin (Imda). Proc. Inde. Reats
NAIR. R.S		Efth. Cotn. $10(2)$: 226-263

TARENEETCHES	1989	The technological charecteristics of Perion for fishing equipeent.
		Morforn Fishing cear of the morid : 34-42 Ed. Kristjonseon.
		Eshlng Mexat (rota) Itatu Leatm.
WAFWCNO, H	199	Discussion on ratiansl manu-
		facturing of fishing gear. Moder
		Fishing cear of the Werld.
		Ed. Kristjonsson.
		Fishing Mern(Boolta) Leto Landon.
WEINDETWG LUMIG	1947	Leng vegeteble fibres Solurble
		Heverstis prest, New York.
\% ETT.K	1962	veathering of textile fibres.
		Bras. 1. Text. Inst. E3(2)
Whiteleathen. n.t.	194.3	tn experimental fishery ot Trinio
and mpran. H		ded. Tembege and Brielish Cuime
		with recommended Inprovemento
		in methods and gear. Laonet if
		Anolomatich Carcibean Commp
		Alon. whatrates.
WTHCABPDEM, J.K.V	1909	Testing metheds for net twines
		and nets expecially those monu-
		factured from synthetie materiols
		Modem Fishing Geor of the World:
		73-97. Ed. Kristjonseon.
		Eishing Heng (gnes) Leto. Lenden.

POLICATLOLS

I. Intintick Pamere:

1. Propertiee ef Indian IM min Cons Materlate - A paper cabcitten at the lympeotum in harveet and peot hourvest techiolest of Ildm. Cochin 24 to 27 Ilovemter 1982
2. A cemparative effieleney of tmanle mone of myion pelythylemo.
 P.J. Cecily - Hidne Technel.14(1). 1977
3. Solection ef materiale lor ricmint coar -Foj. Ceelly Paper procentef at the mamer Inctitato of Goantal Hidming

4. Charaeterletien of Riminc Rloate P.J. Cecily - Paper prementel at the mamer Inctitwto of Comatal Minime Nothede - Contral Imotitute of II merlee Tochaclecy, Jmeo-July 1976
5. Precorvation of cotson fich mot toinoc by tamine - Mantion
 10(1):24. 8973

 Met-Tertad. $8(22): 156.1971$
6. A comparative aseount of retting roctetaneo of notting tolme
 P.J. Coek1y - Jap. Soc. Man 28(7):655. 1962
7. Chapatteri milec of cotton tuime of 20 count yaum fer flabing mets - O.K. Incigan and P.J. Cetily - Ind. Fide.inli 9(3).1962
8. Errect of beiling flam mot tolmea by G.K. Impiyan and P.J. Ceeily. Cums. Sei. $30(8) 1961$
9. The commen eharattoribtice of cetten rimine net twine oxperimontal meriea II - E.K. Furiyan A P.J. Cecily -

10. Charasteriatice of otton fichine met twino - A prolimiany accennt-CX muriyan and PJ Cecily-Imilan J.Fieh 6(2):399.1959
II. Antal milatinnpulinge:
11. ADetracte of CIM Publieatione (1958-80) cx mimesial milotin 15.8-1980
12. Catalocue of implomentalmachinery for ifla movest and filita peet marveat technelecy - CIFT Epectal Iallotin Ho.7-1979.
13. Theate:
14. Rotilng of gian met twimen and ise provention. Inmaitted to the Univertity of Cechis for the marn of M. st pegree.

[^0]: "an" indicates significonce ot 1% level on the basis of t-test.
 **** indicates sionificance at 0.1\% ievel on the basis
 of t-test.
 For nylon cart and Nyion monofilament, no sigfificant change in the breaking strength was noticed as judged frow the t-test. For the other five reterials, t-test showed differences in the mean strength efter immersion. For polyamide staple and multifilament twines of polyester and

