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SYNOPSIS

In this thesis, an attempt is made to study some

geometric properties of the discrete plane H = {(qmxo,qnyO);
m, n e Z, the set of integers}» where (xo,yo) is a fixed
point in the first quadrant of the complex plane, X0 f o,
yo # 0, and q e (0,1) is fixed. This discrete plane was
first considered by Harman (‘A discrete analytic theory
for geometric difference functions‘ Ph.D. thesis, University
of Adelaide (1972)) to develop the theory of q-analytic
functions. The theory was a consequence of attempts made
by Isaacs, Duffin, Abdullaev etc. since 1941, to evolve
a discrete analytic function theory analogous to the
classical complex analytic function theory. These theories
are free from the classical notion of continuity. Recently,
concepts like discrete bianalytic functions, q-monodiffric
functions (Velukutty K.K., ‘Some problems of discrete
function theory‘, Ph.D. thesis, University of Cochin (1982))
and discrete pseudoanalytic functions (Mercy K Jacob,
‘A study of discrete pseudoanalytic functions‘, Ph.D.
thesis, University of Cochin (1983)) have been introduced
and studied in detail. All such theories are function
theoretic in nature.
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This motivated us to study the geometric aspects
of the discrete plane H. We have introduced and investi
gated, the notion of metric on H, discrete analogues of
some classical geometric concepts, transformations on H,
characterisation of certain special types of transformation
group theoretic and discrete analytic properties of these
transformations, discrete analogue of convexity and related
concepts. This study, hence will initiate the development
of discrete geometry of H.

In chapter l, we have given the basic principle
of discretization, a sketch of the development of discrete
analytic function theory, a brief description of geometry
of a space and also the summary of results established in
this thesis.

In chapter 2, using the concept of discrete curve
given by Harman, we define the distance between any two

points of H. The distance function a assumes non negative
integral values and we call (H,d) the discrete holometric
space. We define the notion of domain in H and obtain a
metric characterisation of it. Also, bounds for the
diameter of any domain is obtained.

iv
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We then consider the discrete analogues of segments
and circles which are termed, D-linear sets and r-sets
respectively. We prove that, the intersection of two
D-linear sets is also D-linear, but not the union. We
also obtain a necessary‘and sufficient condition for a
subset of H to be D-linear. For r-sets, formulae for
the number of points on it and in its interior are found.
Defining notions of contact set, intersection. discrete
annulus etc. for two r-set, some results are established.
We also bring out some contrasts with the Euclidean case.
We then consider the intersection of discrete Pythagorean
type in analogy with the orthogonal intersection of
circles and some properties are obtained.

One of the most important concepts in the develop
ment of any geometry is that of a transformation. In
chapter 3, we consider bijective mappings of H onto
itself called D-transformations. Special transformations
like D-translation and D-isometry are defined and studied.
Some results obtained seem to be interesting, to mention
one, D—isometries map domains onto domains. We define the
D—linear transformations and characterise them.

v



The D—transformations that take r-sets onto

r-sets have also been studied in detail. In this case,
we need only consider the transformations between r-sets
of equal radii, in order to maintain the bijective
nature of the D-transformation. It is found that these
special type of transformations form a finite, non
abelian, solvable, nilpotent group. In the last section
of this chapter, discrete analytioity properties of
these transformations have been investigated. The
geometry developed here, could be used in the analysis
done by earlier authors like Harman. The guidelines
are provided in this section.

The notion of convexity outside the framework
of linear spaces, has been extensively studied. In
the first two sections of chapter 4, we define D-convexity
for subsets of H and obtain a sufficient condition for a
domain to be not D-convex. Also, concepts like D-kernel
and D—convex hull are considered and some characterisation
theorems are obtained.

In the next section, we present some results
obtained in the course of the investigation, which we
feel are interesting, although not directly along the

vi



main line of thought in the thesis. These include,
a matrix representation of domains, wherein we associate
a matrix for domains, whose entries are the distance
between points of it and the notion of metric content
for subsets of H, which is the sum of elements in the
upper (lower) triangular part of the distance matrix
associated with the subset. The notion of E—set
analogues to the ellipse is also considered.

Finally, we give suggestions for further study.
We hope that, the theory of discrete integration developed
by Harman could be applied to the D-transformations and
obtain some more properties. Also, a combinatorial
geometry could be developed on H analogous to the

combinatorial geometry of the Euclidean plane.
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CHAPTER l

INTRODUCTION

This thesis is an attempt to initiate the
development of a discrete geometry of the discrete

plane H = {(qmxo,qnyo); m,n e Z - the set of integers},
where q s (0,1) is fixed and (xO,yO) is a fixed point
in the first quadrant of the complex plane, xo,y0 ¢ 0.

The discrete plane was first considered by
Harman in 1972, to evolve a discrete analytic function
theory for geometric difference functions. We shall
mention briefly, through various sections, the principle
of discretization, an outline of discrete a alytic
function theory, the concept of geometry of space and
also summary of work done in this thesis.

l.l.THE PRINCIPLE OF DISCRETIZATION AND DISCRE E
MATHEMATICS

Discretization of scientific models dai s
back to a very early origin. Dissatisfaction of any
scientists on the over emphasis of the continuum
structure on the scientific mode1s,and the recognition
of the fact that information can be transmitted in

1



discrete forms and that information change in a system
can be measured in a discrete manner has stimulated

the development of mathematical theories of discrete
structures. Attempts to compare the discrete with
the continuous, to search for analogies between them,
and ultimately to effect their unification were
initiated by Zeno and tried by Leibnitz, Newton and
others. Thus the discrete mathematics, which deals
with finite or countable objects, in which the concept
of infinitesimals and consequently that of continuity
lacks, became the relevant mathematics for many social,
biological and environmental problems. To quote
Bell L10], " The whole of mathematical history may
be interpreted as a battle of the supremacy between
these two concepts ... . But the image of a battle
is not wholly appropriate in mathematics at least,
as the continuous and the discrete have frequently
one-another to progress" .

In discrete theory, the limit of a quotient
of infinitesimal of the continuum structure is replaced
by a quotient of finite quantity and consequently the
differential equation by difference equation. In [60],
Ruack argued that "the differential character of the



principal equations of physics implies that the
physical systems are governed by laws which operate
with a precision beyond the limits of verification
by experiment" . He suggested that more emphasis
should be given to the use of difference calculus
in physics. Many physicists are reluctant to accept
the theory of discrete structures, as the equations
of motion are to be recastec in the form of differ
ence equations, whose solutions are difficult to be
obtained mathematically. Detailed exposition of the
philosophy of the discrete is available in [42], [45],
[49]. L54]. [571 and [60].

The principle of discretization and the
study of discrete structures are employed in different
branches of mathematics. Construction of models and

solving problems associated with discrete arrangement
of objects are the concern of the theory of graphs,
as described in F241. In [59], a detailed study of
other types of discrete mathematical models, with
particular emphasis towards applications, is made.
Another context where discrete mathematics comes into

picture is the theory of discrete functions, functions
with finite domain and co-domain, which find applications



in the design of sequential switching circuits,
communication theory etc., discussed in [19]. Our
attempt here, is just to mention a few branches of
mathematics where the concept of discreteness has
been effectively used.

The term, discrete function , is used by
us in a.different context. We shall now consider
a brief survey of discrete analytic function theory,
a branch of study closely related to the work
mentioned in this thesis.

l.2.0UTLINE OF DISCRETE ANALYTIC; FUNCTION THEORY

Discrete analytic function theory is concerned
-\

with the study of complex valued functions defined only
on certain discrete subsets of the complex plane. This
branch was originated by Isaacs [43,44] in 1941, as an

I

attempt to evcive a discrete analogue of classical
complex analytic function theory. The discrete set
that was originally used, was the lattice of Gaussian

integers {m+in/m,n e Z}-. Functions defined on it,

satisfying, f(z+l)—f(z) = fL§f%)'fizl were called
'monodiffric functions‘.



In 1944, Ferrand [31], introduced the idea of
preholomorphic functions‘ by means of the diagonal

quotient equality f£z+iiil“fL@) = f§z+i)§£§5+l) and

developed a corresponding discrete analytic function
theory. This theory was taken up and further developed
by Duffin in 1956, and since then quite a lot of work
has been done by numerous authors.

In [22], he initiates the development by
considering analogues of Cauchy-Riemann equations,
contour integrals, Cauchy's formula, and applying them
to the study of operational calculus, Hilbert transforms
etc. He, in fact, established a school of discrete
function theory and studied its extensions and generalisa
tions to the other discrete subsets. This include Duris
[24,25], Rohrer [26] and Kurowski [48], who considered

the seni discrete lattice {(x,y), x s'R, y=nh, n e Z}»,
hm>o is fixed. In [23], Duffin himself has considered
the rhombic lattice to study potential theory. Berzsenyi
[ll] analysed the theory along the lines of Isaacs and
has given a comphrehensive bibliography in [12] and so
is Deeter [20]. Zeilberger [74] also has done some
important work.



A Russian school mainly led by Abdullaev [2],

Babadzanov [3], Silic [62] and recently Mednykh [50]
has given considerable contributions to the development
of the theory.

All these works and numerous others,not.mentioned
here, were on the lattice of Gaussian integers. It was
in 1972, Harman [35-40] developed a discrete function

theory on a different discrete set, H = {(qmxO,qnyo);
m,n s Z] , q s (0,1) is fixed and (xO,yO) is also fixed.
The basic tool in developing the theory was that of
q-difference functions. Complex valued functions defined

on H satisfying €Lz)*f193%1) = f£5l3;i5i91) were called(l—q)x (l—q)iy
by him, q-analytic functions. The theory of q—analytic
functions then deals with q—analytic continuation,
discrete line integrals, discrete polynomials, analogues
of Canchy's integral formula, discrete convolution etc,
which are closely allied to that of monodiffric functions,
and has significant advantages and distinctive differences.
He defines a notion of p-analytic function also in [35].

This theory finds its further generalisation in
[41] for radial lattice, Bednar et. al. [9], West [72],;- .
Velukutty [7O,7l], Kritikumar [47], Richard [58], Mercy [52]



and Thresiamma [68]. Velukutty considered discrete
bianalytic functions which are both p—analytic and
q-analytic and q-monodiffric functions which satisfy

f(q"l1.Y) - f(q1.y) f(X.q'ly) - f(X.qy)
rte »»:;I=s~:s s"=e = =:=~=s~;ies—f~~—~— . Mercy(q -q)X (q -q)1y
has studied the discrete analogue of pseudoanalytic
functions and in [68], the discrete basic commutative
differential operators. In [46], Khan has mentioned
the discrete bibasic analytic functions on the lattice

Q = {_(pmIO.qnyO); 111.11 E Z} . P75 <1/= 1- Abdi in [ll]

gives a survey of discrete analytic function theory
with particular emphasis on q—analytic function theory.

All the works mentioned so far are function

theoretic in nature. This motivated us to study in
this thesis, some geometric aspects of the theory.
Details of the work have been postponed to Section 4.

l.3,GEO}‘[ETRY OF A SPACE

We do not intend to give a detailed exposition
of this subject, here. Several authentic books like
[7], [28], [$0]: [53], [73] and many others treat this
subject elegantly. We will Just mention some important



concepts here, based on which we have studied the
geometry of the discrete plane.

Since the origin of geometry, geometers classi
fied the geometric properties into two categories. The
metric properties, in which the measure of distance and
angles intervenes and the descriptive properties in
which only the relative positional connection of the
geometric elements with respect to one another is
concerned. In this thesis, the metric properties of H
are studied.

A remark mentioned in [15], "... any serious
student should, at some time, become familiar with the
great discovery, made at the end of the last century,
that large part of geometry do not depend upon continuity"
makes the study of geometry of the discrete structure,
not totally irrelevant.

The ideas propounded by Klein in 1872, treated
various geometries as theories of invariants under
corresponding groups. In H, we define concepts like
domain, D-linear set, r-set and discrete transformation
and characterise D-linear transformations. We further

,5}



characterise the transformations which leave invariant
the r—sets with origin as centre and study some group
theoretic properties.

l.4.SUMF.ARY OF RESULTS ESTABLISHED IN THIS THESIS

Of concern in this thesis, is the discrete sub

set, defined by'H = .£(q§xO,qnyO); m,n e Zi}, q e (0,1)
is fired and (xo,yO) is a fixed point in the first quadrant
of the plane, xo,yo # o. Studies in the geometry of the
discrete plane start from chapter 2 of this thesis, by
first defining a suitable integer valued metric in H.
We call H, then the discrete holometric space. We
investigate the metric properties of H, introduce analogues
of classical geometric concepts, transformations etc. of
the Euclidean plane.

In chapter 2, we consider the concepts like
discrete curve, path, holometric betweenness, discrete
triangular triples, discrete Pythagorean triple, basic
set, domain, adjacency of basic sets, index and diameter
of domain, D-linear set, r»set etc. D—linear sets and
r—sets serve as a reasonable analogue in the discrete
case, of line segments and circles of the plane. Some
of the important results that are established in this



chapter are:

(1) H is a metric space.

ml n1’ m2 n2(2) TWO Points Zl=(q X0,q Jo), Z2=(q X0,q yo) e H
form with the origin, a discrete Pythagorean triple

if and only if \m1nl\+|m2n2| = \(m1-m2)(nl—n2)\
- mlmz ~ H1“;

t
(3) 1) = U Bi is a domain if and only if it isi=1

connected and Bi, Bi+l are adjacent.

(4) For a domain D of index t, its diameter satisfies,
2 s a(D)s 2t.

(5) If A,B are two D-linear sets, then Af\B is also
D-linear.

mi ni t
(6) A =-{zi = (q xo,q yo) }. 1 is D~linear if and1:t t

only if {mi} 1:1 and tni} i=1 are monotonic,
not necessarily of the same type.



(7) The cardinality of Sr (Z1), an r-set withl
centre zl s H and radius rl, is 4r1 that. . . . 2 2of its interior is rl + (rl-l) .

Defining concepts like contact, overlapping
etc, for two r—sets, we have obtained some results.

-T.“Q“-I

have also considered, the intersection of discrete
Pythagorean type, analogous to the orthogonal intersection
of circles.

In chapter 3, we introduce discrete transfor
mations and define concepts like D-isometry, D—translation
and D—linear transformation. We show that the U-isometries

map domains onto domains and characterise the D—linear
transformations. We further characterise the D-transf0r—
mations leaving invariant an r-set with origin as centre
and show that these transformations form a group. In the
last section of this chapter, we check for discrete
analyticity, these transformations.

Chapter 4 deals with som concepts of convexity.
Using the notion of holometric betweenness, we define
D~convex sets. Some other concepts that we discuss in this



chapter are D-kernel, D—convex hull, matrix representae
tion and metric content for finite subsets of H, E-sets
etc. Some of the results obtained in this chapter are:

(8) Intersection of D-convex sets is also D-convex.

(9) A domain in which there is at least one point
of the form (q§xo,q_my°) or (qmxo,qmyo) for
some m e Z, and which_does not contain the basic
set associated with at least one point of

P(qmxo,q‘my°) or P(qmxo,qmyo) is not D-convex.

(10) D~kernel .of A is A if and only if A is D-convex

(ll) D-convex hull of A, where A is a finite subset
of H consisting of points in general position,
is a domain.

In Section 3 of this chapter, we associate a
distance matrix M for certain subsets of H. We have

expligitly written the distance matrix for Sr (zo) andl
domains of the form D1 = S(zo)k) S(q_mxo,q_myo), m=l,2,

..., s. We note that M(Dl) is singular. An estimate for



the metric content of Sr (zo) is obtained. Next, wel
consider B-sets, which are analogues of ellipses and

denote it by Ep k(zl,z2). For E-sets, we proveQ

(12) For all admissible values of p, the cardinality

of Ep,kflzl,z2) is 2p. Farther, for Ep’k(zo,zl)

where zl = (q@xo,y°) for some m e Z, cardinality

of Int Ep k is (k+l) + 2(n-l) [n+k] where7 ..
___ p-kI1-~ 2 O

We conclude the thesis in the section 5-of

Chapter 4, by giving some suggestions for further study.



CHAPTER 2

METRIC PROPERTIES or THE DISCRETE PLA.NE+

In this chapter, we discuss certain metric

properties of the discrete plane H = {(qmxo,qnyO);m,n e Z
where Z is the set of integers, q e (0,1) is fixed and
(xo,yO) is a fixed point in the first quadrant of the
complex plane xo, yo ¢ 0. This discrete subset was
first considered by Harman [35-40], to develop the
theory of q-analytic functions and subsequently by
Velukutty [70,71] and Mercy [52], for the study of
discrete bianalytic and discrete pseudo-analytic funct
ions respectively.

In section 1, we define the notion of distance
between any two points of H, and study concepts like
betweenness and discrete Pythagorean triples. In
section 2, we consider the notion of domains and obtain
a metric characterisation. Also, defining the notion of
diameter of any subset of H, we obtain bounds for the
diameter of a domain. The discrete analogues of line
segments called D-linear sets, its properties and

+ Some results of this chapter are contained in the
paper " Some metric properties of the geometric
lattice. " J.Math.Phys.Sci.Vol.l'7,No. 5(19s3) , 445-454
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characterisation are discussed in section 5. In
section 4, we define r-sets, analogous to the circles
in the Euclidean plane and obtain some of its properties.

2.1. THE DISCRETE HOLOMETRIC SPACE

Consider H = {(qPx0,qpy0);m,n e Z]-. q is
called the base and zo = (xO,yo), the origin of H. The

points z = (q@x°,qnyo);1n,n s Z are called lattice points
and H, the discrete plane.

We consider now some basic concepts.

DEFINITION 2.1.1. Let z e H and consider
-1

11(2) = {(qm+1Xo,qnyo). (qmXo.qn+lyo). (qm Xyqnyo).-1 . . .
(qmxo,qp yoi} . A discrete curve Joining any two

points zl and zt s H is a finite sequence of points

of H, C = <z1,z2,z3, ..., zt> where zi+l s N(zi)
far i = 1,2, ..., t—l. The sequence of points

<?t, zt_1, ..., z3,z2,zi> is denoted by -C.

DEFINITION 2.1.2. A discrete curve joining two given
points containing minimum number of lattice points is
called a path joining them.



DEFINITION 2.1.3. Consider two points

ml nl m2 n2
zl = (q xo,q yo) and z2 = (q xo,q yo) e H. The

distance d between zl and Z2 is defined as d(zl,z2)=N—l,

where N is the number of lattice points on a path join

ing them. In fact, d(z1,z2) = \m1-m2\+\nl-n2|. These
concepts are illustrated in Figure l.

THEOREM 2.1.4. (H,d) is a metric space.

PROOF. Consider three points zr, zs and zt e H.

(a) d(zr,zs) 3 0. For, d(zr,zs) by definition is
N-1, where N is the number of points on a path joining

zr and zs. Clearly it is greater than or equal to zero
and equality holds if and only if N-1 = o. That is,

if and only if zr = zs.

(b) d(zr,zS) = d(zS,zr). For, let C be a path
joining zr and zs with (a+l) points. Then by definition
2.1.1, -C will be a path joining zs and zr having the
same (a+l) points. So d(zr,zs) = d(zs,zr).
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Figure~l
The discrete plane H

the origin of H, N(z2) = -{zll,zl3,z3,zl} .
<20,-Q-l,ZlO,Zll,z2> is a discrete curve
joining zo and z2.
<Zo1z]-9z2> 18 3 path. d(ZO,Z2) : 2.



(C) d(zr,zt)5§ d(zr,zS) + d(zs,zt). For, let

d(zr,zS) = a and Cl be a path joining them. So there

are (a+l) points on Cl including zr and zs. Now, if

C2 is a path joining zs and zt and d(zB,zt) = B, then

there are (6+l) points on O2 including zs and zt. Now,

the curve Ol+C2 = <<zr,zr+l,zS,zs+l, ..., zt>> contains

atleast one common point of Cl and C2 and hence if

d(zr,zt) = 6 and C5 is a Path joining them consisting
of (n+1) points, then (6+l)§§ a+B+l. That is, 6:5 a+B.

Thus d satisfies all the conditions of a metric
and hence (H,d) is a metric space.

NOTE 2.1.5. By the above theorem, (H,d) is a metric
space in which d takes only integral values and so is
a holometric space in the sense of [6]. We call (H,d)
the discrete holometric space.

NOTATION. We denote by H, both the discrete plane and

the discrete holometric space.



Considering distance as a fundamental concept,
Menger [51] has developed a geometry called the distance
geometry. ‘One of the important concepts of this geometry
is that of betweenness. An exhaustive study of the theory
and application of distance geometry is available in
Blumenthal [13].

Based on the notion of distance defined above,
we shall define in the discrete holometric space H,
certain discrete analogues of classical geometric concepts.

a ml n1 m2 n2
DnFINITION 2.1.6. Let zl = (q xO,q yo), Z2 = (q xo,q yo),

m n
Z3 = (q 3xo,q 3yo) be three distinct points of H. z2 is

said to be holometrioally between zl and z3 if d(zl,z2) +

d(z ,z3) = d(zl,z3). That is |m -ml\ + \n —n | + \m -m3|+2 ' 2 2 l 2
\n2-n3\ = ‘ml-m3‘ + \nl—n3\.

NOTATION. When z2 satisfies the above definition, we write

B(zl,z2,z3).

THEOREM 2.1.7. Consider zl,z2,z3,z4 s H. The holometric
betweenness has the following properties.



(1) B(zl9z29Z3)<=$B(Z3,Z2,Zl).

(2) If B(zl,z2,z3) then neither B(zl,z3,z2)
nor B( z2, zl, 23) .

B(z1!z29Z3) 8-D-d B(ZlsZ3!z4)t B(ZlvZ29z4)
and B(z2,z3,z4).

The proof follows directly from the definitions and is
omitted.

The ternary relation of holometric betweenness
satisfy the above properties of metric betweenness men»
tioned in [13]. The relation of betweenness for triples
on a straight line possesses all the properties of metric
betweenness. In addition, it has the property that, if

zo is between 21,22 and z2 is between 20,23 then zo is
between zl,z3 and also z2 is between z1,z3 [53].

But in H, we find that these implications need
not always hold. As an example, consider the four points

Z0 = (Iowa). Z1 = (qxomo), Z2 = (1<O,qyo) and z3 = (q1<O,qyo)

We have then, B(zl,zo,z2), B(zo,z2,z3), but not B(zl,zO,z3)

and B(z1,z2,z3).



DEFINITION 2.1.8. L8? Zl,Z2,Z3 5 H, If it satisfies

d(Zl,Z2) 4.d(zl,z3) + d(z3,z2) and two other similar

inequalities, then the triple (zl,z2,z3) is called a

discrete triangular triple. Further, if d(zl,z2) =
d(z2,z3) = d(zl,z3) holds true, then it is called a
discrete eqnidistant triple. It is a discrete isodistant
triple with respect to zl if d(z1,z3) = d(zl,z2).

DEFINITION 2.1.9. A discrete triangular triple (zl,z°,zz)
is said to be a discrete Pythagorean triple with respect

to zl if d(zl,z2)2 + d(zl,z3)2 = d(z2,z3)2.

If z1,z2,z3 are the points given in definition
2.1.6, then the conditions mentioned in definition 2.1.8
can be written as

|ml—m2] + \nl~n2\<]m1-m3‘ + lnl-n3\ + [m2-m5] + \n2—n3|

and two other similar inequalities for the discrete tri-
angular triple,

\m1"m2\ * \”1'n2\ = \m2'm3\ * \n2"n5\ = \m1'm3\ * 5n1"“3\

for discrete equidistant triple and \ml-m3\ + \nl-n3‘ =

[ml-m2\+|nl—n2\ for discrete isodistant triple with
respect to zl.



EXAMPLES 2.1.10.-1 -1
(3) <q@x0.q 10>, <q@xO.qyo>, <qm xO.yO>

form discrete equidistant triples.

(b) ( mx *2 ) ( mx 2 ) m # o form' q. Ovq yo 2 q ovq. yo 9
with (xO,y°) discrete isodistant triples.

(Q) (qmXo,q'2yo). (qmXO.q3yO) form with

(qm'lxo,y0) discrete Pythagorean triples.

n
THEOREM 2.1.11. Two points zl = (qmlxo,q lyo) andm n
z2 = (q 2x0,q Zyo) s H form a discrete Pythagorean

triple with respect to the origin if and only if

‘mlnl\ + \m2n2\ = \(m1'm2) (n1“n2)| ' m1m2 ” nlnz‘

PROOF. By definition, zl,z2 form a discrete Pythagorean

triple with respect to zo4;$>d(z0,zl)2+d(zo,z2)2=d(zl,z2)2.P .2 ,2
é=e~[lm1\ + \n1\12 + [lmzl + |n2\1 = [lml-m2l+ln1"n2i12 2 2 2
¢=%» ml +nl + 2|m1nfl + m2 +n2 + 2\m2n2\_ 2 2 2 2 _ _

_ ml -2m1m2 + m2 +nl +n2 - 2nln2 + 2 Kml m2)(nl n2

¢F$’lm1nfl * |m2n2\ = \(m1'm2)(n1”n2)| “ m1m2"n1”2'

Hence the theorem is proved.



2.2. DOMAIN AND ITS PROPERTIES. _ ml nlDEFINITION 2.2.1. Let zl _ (q xO,q yo) 8 H.
m n +1 n m +1 n +1

Then 8(Zl) =-{(q lxo.q lye), (qml .q lyo). (q 1 Xo.q 1 yo).

n +1
(qm1xO,q 1 yol} is called the basic set associated with zl.

NOTATION. Basic sets will be denoted by Bl,B2,B3 etc.

DEFINITION 2.2.2. A finite union of basic sets is called
a region. If a region can be expressed as a union of basic

t
sets, Jgi Bi with Bifl Bi+l f 9, i = 1,2, ..., t-l, then
it is called a domain. The minimum number of basic sets
in a domain is called index.

NOTATION. R denotes a region. D,Dl,D2,D5 etc will denote
domains and I(D), the index of D (See Figure—2).

t
NOTE 2.2.3. If {Di}- is a collection of domains withi=l t
indices ni, which are pairwise not disjoint, then {J .Dii 1pQn-1

t
is also a domain with index §Z_ ni. But, the intersectioni=l
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1 = s(ZO) Z {_ZO!zl9Z29Z3]' 9  :   :
is a region. D1 = S(z5), D2 = S(z4), B4 = S(zlO)

S(Zl4). B2,B5,B4,B5 are adjacent to Bl. B6 : S(z6),
S(z5), B8 =S(zl9), B9 = S(z8), B10 = S(Z21), B11 = S(z1)
Blu B6UB8, D4 = Blu B7UB2, D5 = B1U B6U B81) B9UBlO,
BlU B6UBll.



of two domains, need not be a domain. As an example,

consider D1 ==S(z3), D2 = S(z4). Then Dlfi D2 = {z5,z4}
which is not a domain (See Figpre—2).

DEFINITION 2.2.4. Consider two basic sets Bl and B2.

Then, min {d(zl,z2); zl s B1, 22 e B2} is defined as

the distance between B1 and B2, and written as d(Bl,B2).

If Blfi B2 f w, then clearly d(Bl,B2) = 0.

DEFINITION 2.2.5. Two basic sets Bl and B2 are adjacent

if there are two pairs of points zl,zl' e Bl; z2,z2' e B2

such that d(zl,z2) = d(zl',z2') = d(Bl,B2) = l.

n
DEFINITION 2.2.6. Two points zl = (qm1xo,q lyo) and

m n
z2 = (q 2xO,q zyo) are in the same horizontal (vertical)

set if nl = n2 (ml = m2).

NOTE 2.2.7. If B1=S(zl) and B2 = S(z2) are two adjacent
basic sets, then 21 and z2 belong to the same horizontal
or vertical set. Consequently for a given basic set,



there are only four basic sets adjacent to it. All these
cases are illustrated in Figure-2.

t
THEOREM 2.2.8. If D = [J Bi such that Bi, Bi+l are

P
I-'

adjacent for i = 1,2, ..., t-1, then D is a domain.

t
PROOF. Let D = J51 Bi such that Bi, Bi+1 are adjacent

for i = 1,2, ..., t—l. Then Bi+l is such that, it is
one among the four possibilities mentioned above. In
any case, we can find a basic set (say) B such that

Bifh B f Q and Bt“\Bi+l # Q. Include B also in our
collection of basic sets and proceeding like this, D

T

can be expressed as a union of basic sets{Bi'} withi=1

Bi'(fi Bi+l' # e where T:>t. Hence, D is a domain.

more 2.2.9. Bajaj [8] has defined a subset A of an
integer valued metric space to be connected if there

do not exist nonempty disjoint sets Al and A2, nlC.A,
AZCA ‘such that AIUAZ = A and min{_d'(x,y) :

x a A1, y e Aé}>l. He has also proved that A is
connected if and only if given any pair x,y of distinct

points in A, there exists points x = xl,x2, ..., xp = y
such that d'(xi,xi+l) = l, for i=l,2, ..., p-l,
where d‘ is-the metric in A.



THEOREM 2.2.10. Consider a union of basic sets,
t

R = kj Bi. Then R is connected if and only ifi 1—&$31: ,
{B }» can be relabelled as {hat} such that1 1 1 1
d(Bi', Bi+l') Q 1.

t
PROOF. Let R = LJ Bi be connected. That is, giveni=1

any two points z and Q of R, there are points z = zl,
Z2, 000’  '3 E.‘   d(zi’  = 1, 1 = l’2go0o,
n-l. Consider Bl and choose all other basic sets Bi

in B2,B3, ..., Bt such tha:td(B1,Bi) 5 l. By tracing

back if necessary at each step to Bl, these basic sets
together with B1 can be relabelled as Bi, Bi , ..., Bt'

such that d(Bi', Bi'+l) ~:= 1, 1 = 1,2, ..., t-1. If no

such basic sets exist, then every other basic set BS

is such that d(Bl,BS)>'l. Choose one such BS. So by

definition every pair of points zl e Bl and z2 e BS is

with d(zl,z2)3=2. For any such pair, we cannot find a
sequence of points satisfying the hypothesis and hence
the supposition that there are no basic sets with the



above property, leads us to a contradiction. Now, in
the remaining basic sets of R, if there is at least one

basic set Br‘ which is at a distance Q 1 with atleast
one among B1‘, B2‘, ..., Bt' (say) Bp‘, then we can
similarly relabel the collection of all such basic
sets together with those already relabelled, by tracing

back if necessary at each step to Bp', such that the
distance is less than or equal to 1. Thus, proceeding
likewise the basic sets constituting R can be relabelled

as {eifliil such that d(Bi', Bi+l') a 1.

Converse can be proved easily. As an illustra

tion, consider R = S(zl2)LJ S(z2)LJ S(z4)LJ S(z6)
(See Figure-2). The basic sets constituting R can be
labelled such that the distance between the basic sets

is less than or equal to 1. Now, any two points, for

example,z30 and 26 of R can be joined by a sequence

<23‘), z29, zl2, zll, 22, 23, zo, zs, z6> with distance
between consecutive points being 1.

NOTE 2.2.11. In the labelling {Bi~} mentioned, if
further Bi‘, Bi+l' are adjacent, then R is a domain.



Conversely if R'is a domain, then it is connected and

there is a labelling {Bi'} such that Bi‘, Bi+l' are
adjacent for i = 1,2, ... . Thus we have a metric
characterisation of domains.

DEFINITION 2.2.12. Let A be a non empty finite subset

of H. Then 6(A) = max d(zl,z2) is defined as the
zl,z2 s A

diameter of A.

For domains, we have the following bounds for
its diameter.

THEOREM 2.2.13. If D is a domain of index t, then
2 Q 6(1)) 521:.

PROOF. If D is of index 1, then it is just a basic
set and we have 6(D)=2. Further 6(D) assumes the
value 2t when it is a domain of index t associated with

points of the form (qmx°,qmyo), (qmxO,q“myO), (q_mxO,qmyO)

or (q'mIo.q_myo); m = 1,2. ---. t

Now, inducting on t, let us assume that the
result holds for a domain of index (t-1). That is
6(D) é;2(t-1). Now, a domain of index t is obtained
from that of (t—l) by adjoining a basic set, which is



of diameter 2. So 6(1)) e 2(t-1)+2. That is, <s(1>)s_2~t.
Hence the result.

Following examples show that there are domains
with same index but with different diameters and domains
with same diameter and different indices.

EXAMPLES 2.2.15 (See Figure--2)

U

(1) Let D3 = BlU B6L)B 4 = Blu B7L)B2.

CD

Then, I(D3) = I(D4) = 3, but 5(Dl) = 5;
6(D2) = 4.

(2) L813 D5 = BlU B6U B9U B8L) B10, D6 = BlU BllU B6.

Then 6(D5) = 6(D6) = 5, but I(D5) = 5;

2.5. D—LINEAR SET AND ITS PROPERTIES

In this section, we shall define the concept
of D—linear sets, analogous to the notion of line seg
ments in classical geometry. The property of being a
D-linear set is referred to as D-linearity.

DEFINITION 2.3.1. Let A be a finite subset of H. A is
said to be D-linear if we can label the points of A

-‘(Q\./
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as A = {z1,z2, ..., zn} such that d(zl,zn) =
n-1
‘2:_ d(z ,z ). If such a labelling is not possible,l1: i i+l
we say that A is not D—linear.

NOTE 2.5.2. When we write the D-linear set

A = {z1,z2, ..., zn}- we mean that zl,z2, ..., zn are
n-l

in that order in which d(zl,zn) = 521 d(zi,zi+l).

EXAMPLES 2.3.3.

2
(1) Ll = {_zO.z1 = (qXo.yo). 22 = (q XO.yo). z3=(q3XO.yO)

is D-linear.

(2) A path is a D-linear set, but not conversely.~1 -1 -2 -2 - 
L2 = {?o»Z1=(q Xo»q yo). z2=(q Io-q yo).Z3=(q 3XO,q 3y0l}
is an example of a D-linear set, which is not a path.

(3) The basic set associated with any point
(definition 2.2.1) is not D—linear.

NOTE 2-3~4~ If {$1.22, ..., zni} is D-linear, then every

the converse does not hold as seen in the case of above



example (3), where all the three element subsets are
D—linear, but not the basic set.

LEMMA 2.3.5. Let A = {zl,z2, ..., Zn} be a D-linear set
If r<;s<:t (r,s,t=l,2, ..., n) then B(zr,zs,zt).

PROOF. Let us suppose that B(zr,zs,zt) does not hold.
s-l

Then a(zr,zs) + c1(z ,zt)>d(zr,z,c). Now  d(z.,z.+l);S 1l=I' 1
t—l

d(zr,zS) and Egg d(zi,zi+1)§> d(zs,zt) by triangle
inequality. Son-l r—l n-l
El d(”1’z1+1)> El d(zi’Zi+l) + d("‘r’Zt) " gt d(Z:.'Z1

)~d(zl,zn) by the definition of distance.

Thus, we have a contradiction to the D—linearity of A.
Hence the lemma.

THEOREM 2.3.6. If A = {zl,z2, ..., zni} is D—linear
and BCZA, then B is also D~linear.



PROOF. We shall prove the theorem by the method of

induction. Let B be that subset of A obtained by

deleting the point zn. So B = {zl,z2, ..., zn_l} .n-l n-2
As A is D~linear d(z ,2 ) = §:_ d(z z ) = §:ld(z. z )+' 1 n 1:1 1' 1+1 1:1 1' 1+1
d(zn_l,zn). So

n—2

ggi d(zi,zi+l) = d(zl,zn)—d(zn_l,zn) .. (l)

Now, by the above lemma, B(zl,zn_l,zn). Hence
n—2

(1>==e» ?g£ d(zi,zi+l) = d(zl,zn_l). Thus B is D-linear.

Same arguments hold when the deleted point is zl.

Now, let B be a subset of A obtained by deleting

any point zs other than zl and zn. Then, the conclusion
follows by the above lemma. Hence, by induction, it
follows that any subset of a D-linear set is also D—linear.

NOTE 2.3.7. It is an easy consequence of the above
theorem, that, intersection of two D-linear sets is also
D—linear. However, union of two D-linear sets need not
be so.

55



Ae em example, let A -= {zo.Zl=(q"lXO.yo), Z2==(q"2XO,yo).

z3=(q'5X0,yo)} and B= {zo,Z4 = (q'lXO,q_lyO).

z5=(q52XO,q_2y°), Z6 = (q'3Xo,q_3yO)} . Then, A and B

are D--linear sets but AUB is not.

NOTATIONS. Let m,n be integers.

H1 = {(qm1o,qn;Yo); nun P; 0}

H2 = {(qmx0,qnyo); m<o; n;o}

H3 = {(qmX0.qnYO); mm, 4 0}

H4 -.-= {(qmxo,qnyo; mao; 1140}

m _ }X1 = {U1 X00370): H130-1- n .
Y1 ‘* {(309 (1 yo)!

:5

\\/
O

k—\"'/

X2 = {(q.nXO9Y0); H140}

Y2 = {(x0,qnyo);n<0}

Then, H = Hlu HZU H3\_)H4.

Following theorem gives a characterisation of D--linear sets.

“*1 “1
20308.  A =3 {Z1,Z2,¢..,Z_b} =  xojq yo)!
m2 n2 mt nt(q xo,q yo), ..., (q xo,q yo)} be afinite subset ofH



Then A is D-linear if and only if the sequencest t . .
{mi} and {mi} are monotonic, not necessarilyi=1 i=l
of the same type. t t
PROOF. Suppose that both. {mi} _and {mi} arei=1 i=1
monotonic increasing. Then d(zl,zt) = \mt-ml] + \nt-n1}t-1 t-1
= (mt“m1) * (nt*n1)' and ggi d(zi’zi+l) 2 Egi (\mi+1‘mfl

+ \ni+1 - ni\ ) = (mt—ml) + (nt—n1) = d(zl,zt). Hence A
is D-linear.

Similar arguments prove that if mi and ni are
both monotonic decreasing or one of them is increasing
and the other is decreasing, then A is D-linear.

Conversely, let us assume that A = {zl,z2, ..., zt} is
a D-linear subset of H. We shall prove the result,
by considering various possibilities.

(a) zl is the origin and 22,23, ..., zt are in H1.
Since zl is the origin, ml = nl = 0. Now d(zl,zt) =
\mt\+\nt\= mt+nt.



Claim: mj; mi; nj;-,ni,f0r every j;i=l,2,...,t- (2)

Suppose not. Then choose mk;>o such that it is the
first, where 3. in (2) is violated. Then
t—l

553 d(zi,zi+1) = lm2\+\n2\+|m3—m2|+\n5-n2| + ... +

|mt_l-mt_2|+|nt_l-nt_2] ¥ mt+nt , since the term

involving mk_l does not cancel. So we have a contra
diction to the initial assumption that A is D-linear.

Hence mj;;mi, nj;.n1. Similarly, when the D—linear
set is wholly contained in H2,H3 or H4, with the origin
as the initial point, we have the other three possibili
ties. If we consider a D-linear set in Hi, i=l,2,3,4,
with the origin as end point, then also the conclusion
follows.

(b) One of the points other than the end points of
the D-linear set is the origin.

Only a sketch of the proof will be given.

Let 5*: {31'Z2, ---¢ Zk, ---, Zt} and one of the points
(say) zk, kfl, t be the origin. Suppose the points
zl,z2, ...,zk_l are in H1 and zk+l,zk+2,...,zt are in H3.



Then, it can be proved that the mis and nis are both
monotonic increasing or decreasing. Also, when the

points are such that the (k-1) points of A are in H2
and the remaining in H4, we have mis are increasing
and nis decreasing or vice versa. Further, if zk is
the point distinct from origin belonging to XlLlX2,
we have that these points are in HlL>H4 or HZLJH3 and

if zk e YlU‘Y2 these points are in H1L!H2 or H3L!H4.
In both the cases, the conclusion follows similarly.

Finally, let A = {zl,z2, ..., zk,zS, ..., at}
If zk a X1, zs e Y1, then AC;HlLIH2LJH4, if zk e X2,

zs s Y1, then A1ZHlL)H2LJH5, if zk s X1, ZS 6 Y2, then

AC.HlU H30 H4 and if zk e X2, zs s Y2, then AC.H2LJH5U H4

In all these cases conclusion follows. A detailed proof
is omitted, being very lengthy. hence the theorem.

NOTE 2.3.9. D-linear sets play an important role in
Chapter 5, while discussing discrete transformations.
In that context, a set of points satisfying the condi
tions of the above theorem is said to be oriented.



2.4. r-SET AND ITS PROPERTIES

In this section, we shall consider a discrete
analogue of circles in the Euclidean plane. Due to the
discrete nature of the metric and of the plane H, the
r-sets have some notable aspects, which are highlighted
in this section.

n
DEFINITION 2.4.1. An r-set with centre zl=(qm1xO,q lyO)a H

and radius rl is defined as, {Z e H : d(z,zl) = rl}'=

{(qmx°,qnyo) s H :|m-m1\ + \n—n1\ = rl} . Also,

is s H : d(z,z1)<Lrl} is called the interior of the r-set.

NOTATIONS. Sr (zl)—the r-set with centre zl and radius rl.l
Int Srl(zl) - the interior of Srl(zl) and TSrl(zl) =

Int Srl(zl)\J Srl(zl).

NOTE 2.4.2. Let us take the centre of the r-set to be the

origin and rl, the radius. Let X = qmxo, Y = qnyo. Then
log X = m log q + log xo; log Y = n log q + log yo. So

U, ,,, }_‘1§_(_}E.{..x_9.) ; ,1 ,., l°g(Y/yo)log q log q



Hence, the equation of Sr (20) can be written asl

‘log (X/xo)\ + \log (Y/yo)‘ = r1\l0g ql

In figure 3, the distribution of points of

Srl(zO), for rl = 1,2,5, is illustrated.

Now, we shall find a formula for the number

of lattice points in the sets Sr (zl), Int Sr (zl)l l
and TSr (zl) where zl e H and call the number of pointsl
on it, their cardinality.

THEOREM 2.4.3. The cardinality of Srl(zl), Int Srl(zl)

and TS (Z ) are 4r :2 + (r -1)2 r2 + (r +1)2 res ectivel1-1 1 1' 1 1 ' 1 1 P
PROOF. Without loss of generality, let us take the centre

of the r-set to be the origin zo. Then by definition,

Srl(zo) = &(qpxo,qnyo) e H : \mg+\n| = rl]- . The points

of Sr (20) can be classified into a disjoint union of fourl
sets as

1' -a r -on -oz1 1
Ll = {Q(qaXO»q yo)} . L2 = {(q XO,q. 10)} .
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_ —r +a —r1+a
I-'3 = {U1 axovq 1 1/0)} a L4 = {(q. X02qayO)}

4

where a = 0,1,2, ..., ri—l. Then gig Li = srl(zO).

(In Figure 3, for S3(zO), Ll = {p15, 214. z15}»,

L2 = {Z16* Z17’ Z18} ' L3 = £219’ Z20’ Z21}"

L4 = {z22, z23, z24}. ). Further, each Li is D-linear

and has rl points. So cardinality of Srl(zo) is 4rl.

Now, Int Srl(z0) = £2 a H : [m\+|n\<1rl} .

Hence, Int Srl(zo) = Srl_lLJ Srl_2\J Srl_3 ... L)SlL}SOI

where So is the centre. Therefore, cardinality of

Int Srl(zl) is 4(rl-1) + 4(rl-2) + ... 4+1.

4(r1'l)r1 2
= —~--:2 ——  — + 1 = 21:1 -- 21:1 + 1

=  + I12

AJ-SO,  = Int  Srl, SQ’  of  :'..
Cardinality of Int s + cardinality of S : (r _1)2+r2 +rl I1 1 1_ 2 2 2
4rl _ 2r1 + 2rl + 1 = (rl+l) + rl.



NOTE 2.4.4. It is noted that, there are two D—linear

sets Ll = {§qSXO.yo)} and L2 = {(xO.qsyO)} . tslearl.

with respect to which the points of Sr (zo) are distributedl
symmetrically. These two sets have (2rl+l) points each andrl -rl
have end points (q xO,yo), (q xO,yo) for Ll andrl r1 . .
(xO,q yo), (xO,q yo) for L2. Unlike in the case of
circles, these are the only two sets with these properties.

THEOREM 2.4.5. For a given Sr(zO), there is one and only
one (r-1) set that is contained in Int Sr(zo) and there
are five (r-1) sets contained in TSr(zo).

PROOF. Consider Srl(zo). If Srl_l(zl)c; Int Srl(zO),

then we claim zl = 20.

ml n1
If possible, let zl = (q xO,q yo), ml,nl not

both zero. Then, we show that there are points in

Sr1_l(zl) which are not interior to Srl(zo). This is
done as follows. Let us first suppose that zl e H1.

Then the points of S (z ) lying in H of the formrl-1 1 l
a +m r —a -l+n1 l l l

{(q. xovq 1 yo); al = or]-929 *'°! rl"'2}



are not interior to Srl(zO). For if (q@x0,qnyo) is
such a point, then

Im-ml\ + \n-n1\ = rl-1 (3)
\m\ + \n].4 rl (4)

(3) is (m-ml) + (n—nl) = rl—l, since mzml, ngnl and,

(4) is m+n<;rl. Now,(5) =;»m+n = (rl+ml+nl)-1

3 rl since m1+nl;, l

which contradicts (4). Thus srl_l(zl)<¢; Int Srl(zO).

Hence our claim. Similar argument works when zl s H2,

H5 or H4. Now, clearly there is one and only one (rl—l)

set centered at zo and hence there is one and only one

(rl-1) set contained in Int Srl(zO).

Now, to prove that there are five (rl—l) sets
contained in TSr (zo). The technique used above can bel
employed to show that, if Srl_l(zl)(1 TSrl(z0), then
zl s TSl(zo) and hence there are five (rl-1) setacontained
in TS (z ).rl o



NOTE 2.4.6. For a given Sr(zo), p, the number of (r+k)
sets that are contained in Int Sr(zO) and P , the number
of (r-k) sets that are contained in TSr(zo),seems to be
independent of the value of r. This constant value for

some values of k are found to be for k=l, p=l,f>=5, for
k=2, p=5,f>=l3, for k=3, p=l3,p==25, for k=4,p=25,fi =41
etc. We could however prove ondy for the case k=l, in
the above theorem.

DEFINITION 2.4.7. Consider S (2 ) and S (z ). Theyrl l r2 2
are said to touch each other, if srrw Sr # Q and1 2
TSrO Int sr -= (P. {Z 8H = z 8 srfi sr } is called1 2 1 2
the contact set.

NOTATION K — the contact set
n — the cardinality of K

NOTE 2.4.8. In the place of the conditions mentioned in

the above definition,we could have given Sr Fl Sr f Q1 2
and TSrrfi Int Sr = Q. We believe that these two are2 l
equivalent, however we do not have a proof. Also, for
circles in the Euclidean plane, it is true that
TS F! Int S = Q if and only if Int S l“\Int S = Q.rl r2 rl r2



(here TSr means the closed circular disc). But, for
r-sets which are discrete analogue of circles,
TS mints = (p=$IntS mints =qJ,butther1 r2 *1 r2
reverse implication need not hold. For, consider the

r-sets S2(zl) and S2(z2) where zl = (qxo,yo),
-2

z2 = (q xo,yo). Then, Int S2(zl)(W Int S2(z2) = Q,

but (q"lxo,y0) 5 Ts2(z1)rw Int S2(z2). Based on this
fact, if we define the overlapping of two r-sets
(definition 2.4.14) in terms of the interior, we will
get some results which differ from what we have
obtained in theorem 2.4.20. However, for obvious
reasons we prefer the weaker conditions.

In the following theorem, some formulae for
the cardinality of the contact set is obtained, for
certain choice of the centres.

NOTE 2.4.9. In the sequel, unless otherwise specified,
without loss of generality, we take one of the centres
to be the origin.

THEOREM 2.4.10.

(a) If the two r-sets, Srl(zO) and Sr2(zl)



zl s H1 touch, then the contact set K is a unique

point and is in X1 if and only if 21 a X1.

(b) If the r-sets have equal radii r and

zl = (qirxo, qiryo), then they touch and the dimension

of contact n is equal to r+l.

(c) If the r—sets of equal radii r, Sr(zO) and

Sr(z1), zl a H1 touch and n is equal to r+l, thenr r
Z1 = (q IO,q Yo)

PROOF (aj) Let Z1 = (q°‘1o,yo) for some a>o. Then,

first note that a;>2. For, if we take the least possible
values for rl and r2, rl = r2 = 1, then Sl(zO) and Sl(zl)
touch means that d(z ,z ) = r + r = 2, while z eo l l 2 1
implies that zl = (q2xO,yo). Now, let z = (qmxo,qnyO) e K.

Then, \m\+\n\ = rl, \m—a\+\n|= r2 and \a| = r1+r2. That

is, m+n = rl, a-m+n = r2 and a = rl + r2. So, n = 0 and

hence Z 6 X1. But Srl(ZO) has only one Point common withr1
H1. viz. (q xo,yo).



Conversely, let the unique point of contactm n
belong to X1. If possible, let zl = (q lxO,q lyo),

nl ¥ 0 be the centre of the other r-set. Since zl s H1

and nl # o, we have nl>»o. Let m1> nl. Then

rl ml+nl—r2 .(q xO,yo) = (q xo,yO) is a point of contact.
ml—l nl+l-r2 rl—1 .In addition)(q x0,q yo) = (q xO.qyo) W111

also be a point of contact. So there are at least two
points of contact, contradicting the uniqueness. The

case ml<:nl can be done using symmetry arguments.

Hence zl e X1.

(b) Consider Sr(zO) and Sr(zl) where zl = (qrx0,qry0

By theorem 2.4.3, there are 4r points on Sr(zo), of which
al r-al

the set of points of the form (q x0,q yo); al= o,1,2,
..., r,is contained in H1. The set of points of the form
r-cl al(q xo,q yo); al = 0,1,2, ..., r,is the set of points

of Sr(zl) coinciding with the above set of points.

Hence Sr(zo)(\ Sr(zl) has (r+1) points and since

TSr(zo) n Int sr (zl) = q>, they touch. So n = 1-+1.



The proof for the cases when zl = (q_rxO,q_ryo),

(qrxO,q ryo) or (q rxo,q rye) are on similar lines.

m Sn _ “*1 n1(0) ppose not. Let zl ~ (q xo,q yo), both
ml,nl f rl,0. If ml<_n1, the point Q1 = (xO,qryO)

is a point of Sr(z0) which is not a point of contact

for Sr(zl), since d(zl, 6,1) = ml + nl -r f r. If

ml)-nl, Q2 = (qrxo,yo) serves the role of £1 and if

ml = nl no point of Sr(zo) is a point of contact.
Hence in all cases we reach a contradiction to the

hypothesis that n = r+l. Hence zl = (qrxo,qryO).

NOTE 2.4.11. In (a) of the above theorem, it is also

true that for zl e H1, K consists of a unique point in
Y1 if and only if zl e Y1. Further, if zl e H2 or H4,

then K is a unique point in X2 or Y2 if and only if

zl e X2 or Y2. In [0], it is also true that for

zl e H2 (H3 or H4) and n is equal to r+l, then4-us tr 1
Z1 "' (<1 Xovqryo), (q rxO’q-rye) or (q1?xo’q"'I'yo),

These results have not been proved for the reason that
this can be done along similar lines mentioned above.



NOTE 2.4.12. It is seen from the above theorem,
that the minimum value of n is 1 and in the case of
r-sets of equal radii r, for the proper choice of
centres, n assumes the value (r+l) also. It is

further noted that for a given r—set Sr (zo), we can1

find an S (z ) (r ;>r ) which has as its contact setr2 l 2 1
any subset of the (rl+l) points of Sr (20) lying in1

H1 (H2, H3 or H4 as the case may be). This observation
in its most general case is difficult to be proved.
But in the following theorem, we state a particular
Ci-3.56.

THEOREM 2.4.15. If zl = (qmlxO,qyO), ml; rl, then
r

there exists an Sr2(zl) for which K = {Q(q lx0,yo),
r -1

(q 1 xo,qyo)} and conversely.

DEFINITION 2.4.14. Sr (zl) and Sr (22) are said tol 2
overlaP if srl(zl)('\ Sr2(z2) # qv and Tsrln Int Srzyl q»

(as well as Int Sr f\ TS # Q ).rl 2
6 5 f\ , and by U = E 8. F11

NOTATION. When Sr and Sr overlap, we denote by I1 2
z H : z S S } {Z Hzz ‘S n{ r1 1'2 r1 t S



DEFINITION 2.4.15. Sr and Sr are seperated if I=¢=U.l 2
DEFINITION 2.4.16. Consider Sr and Sr with Sr(W Sr ¥ Q.l 2 l 2
Then Sr is said to be indispensable for Sr ifI 2
IntS O TS -=IntS (ifr<r).If TS fiIntS =rl r2 rl 1 2 rl r2
Int S (if r >-r ) then S is said to be indispensabler2 l 2 r2
for S .r1

DEFINITION 2.4.17. Consider Sr and Sr with1 2
SFIS =<p.IfTSfiIn’cS =-TS (r4r)0rrl r2 rl r2 rl l 2
TSr£W Int Srz = TSr2 (rl;> r2) then the r-sets are said
to form a discrete annulus.

EXAMPLES 2.4.18.

(1) Let zl = (q;o,y0), 22 = (q“2x0,y°). Then

S2(zl) and S2(z2) overlap and I = .{(xo,q_ly0), (xo,qyO)} ,_ -l
‘U * '£(Xo9yo)¢ (q xo,y°)} ,

(2) Let zl,z2,r1 be as in (1) and r2 = 2, then
S2(zl), S2(z2) are seperated.



(3) I-81$ Z1 = (qXO.q'3yo). Z2 = (q-5XO.q'5yO).

then S2(zl) is indispensable for S8(z2)._ _ 2(4) Let zl - (qxo,y0) and z2 _ (q xO,yo), then

b4(zl) and S2(z2) form a discrete annulus.

NOTE 2.4.19. If Sr (zl) and Sr (Z2) are either over~1 2
lapping, seperated or indispensable or if they form a

discrete annulus, then d(zl,z2)5; rl +r2. Converse

need not hold true. As an example, let zl = (qxo,yo),
-2

22 = (q xo,yO), rl = r2 = 2. Then d(zl,z2)=3<:rl+r2=4.

But S (zl) and S (z ) satisfy none of the aboverl r2 2
conditions.

THEOREM 2.4120.

(al Sl(zo) and Sr2(zl) are seperated if and only if

r215 d(zo,zl)—2, Sl(zo) is indispensable for 6r2(zl) if

and only if r2 = d(zo,zl) + 1 and they form a discrete

annulus if and only if r2;>»d(zo,zl) + 2.

ml
(b) If Sl(zo) and Sr2(zl) where zl = (q xO,y0)

for some ml e Z overlap, then the cardinality of I is 2.



(c) S2(z ) and S (z ) are seperated if and only if0 1:21
r2.g=d(zO,zl)~3, for r2 = d(zo,zl), they overlap and

cardinality of I is 2, for r2 = d(zO,zl) + 2, S2 is

indispensable for Sr (zl) and its cardinality 5. Further
2

for r2;;d(zO,zl) + 2, they form a discrete annulus.

PROOF. Only (a) will be proved here. Proof for (b)
and (c) being on similar lines, are omitted.. ml n1

(a) Consider Sl(zo) and Sr2(zl), zl = (q xO,q yo).

I-at r2 2 d(zo.-Z1)-2 = ]ml| + \nl| - 2. If possible, let

(@mxO,qnyo) e Slfl Sr2. Then

|m\ + lnl == 1 (5)
\m-nfl + \n-n1Lg\ml\ + \nfl — 2 (6)

Solutions of equations (5) and (6), gives a contradiction

Also TSl(\ Int Sr2 # Q requires \m'| + \n'h§l and \m'-m2}I I
+ \n'-n2\$\m2\ + |n2\ — 2 for some (qm xo,qn yo) e H,

which is not possible. So, Slfl S = Q, TS F\Int S =@r2 l r2
and hence S1 and Sr (zl) are separated.

2



Conversely, suppose if possible r2;>d(zo,zl)-2.

Consider (qxO,yo) e S1. We have ll-ml\ + |nlp4ml\+[nl|—2.

So (qxo,yo) s Sltfi Sr and hence contradicts the hypothesis2

NOW, l8t I2 = d(Zo,Zl) + l = \m1\+|nl|+ 1.

Required to prove that Sl(zo) is indispensable for Sr (zl).2
-1

We have, (q xo,yo) e Sl(zO). Also, \-l-ml\ + \nl| =
-1

\ml|+\n1\+ l. S0, (q xo,yo) s Sr2(zl) also. Thus there
is atleast one point (for some choice of zl as many as

three points) in S1F\ Sr . Since Int S1 = (xO,y0) e TSr ,2 2
Int SlF\TSr2 = Int S1.

Conversely, let Slfl Sr # ¢ and Int Slfl TSr =2 2
Int sl. So there exists (q9xo,qny0) such that |mI+|n| = 1

and lm-mll + |n—nl| = r2. This gives, r2 = d(zO,zl)+ l.

Finally, let r2@;.d(zo,zl)+2 = |m1[+|nl|+ 2.

If there exists a (qmxO,qnyo) e Sl(\ Srz, then |m|+\n|= 1
Im-mfl_+\n—n1\= rzgqmfl +|n1\+ 2 gives a contradiction.

Also, for every (qmfixo,QnfiyO) s TSl,]m'—m1\+\n'-nl[< r2.

J)'7



So TSr F1 Int Sr = T81. Hence S1 and Sr form al 2 2
discrete annulus.

Conversely, Slffi Sr = @_and \m'l+!n'1s.l
2 I I

implies Km‘-ml] + \n'-n1\<.r2 for every (qm xo,qn yo) e T

yields that r2 3 d(z0,zl) + 2.

Thus (a) is proved.

NOTE 2.4.21. In the above theorem, we have proved the
results only for certain values of the radii. A more
general result in this direction is yet to be obtained.

We shall now consider an analogous notion in the

discrete case, of the notion of orthogonal intersection
of circles in the Euclidean plane. We recall the
definitions 2.1.9 and 2.4.14.

DEFINITION 2.4.22. Let s (Z ) and s (z ) overlap andrl 1 r2 2
consider I. Then, S (z ) and S (z ) are said to haverl l r2 2
discrete Pythagorean type intersection if each point of I

forms with z1,z2, a discrete Pythagorean triple.



So, for every zi a I, d(zl,z2)2 = d(zl,zi)2

+ d(z2,zi)2.

-2
EXAMPLE 2.4.23. S3(zl) and S4(z2) where zl = (qxo,q yo),

z2 = (qxo,q5y°) have intersection of discrete Pythagorean

type.

We conclude this chapter, with the following
result.

THEOREM 2.4.24. Consider two r-sets having discrete

Pythagorean type intersection and I be their intersection.
Then,

(a) centre of each r—set lies outside the other

(b) centres of r-sets belong to the same horizontal
or vertical set

(c) the cardinality of I is 2.

PROOF. Proof of (a) is easy.

ml ‘*1
(b) Let the centres be zo,zl = (q xo,q yo) e H1.



a B.
So if .21 .-_— (q ixo,q lye) is any point in 1;, then it

is in H1 or H2. Let us take it to be in H1. Then m2>.ai

and n2> Bi.

Claim: If either of m2 or n2 is not zero, then

(zl, £,i,z0) does not form a discrete triangular triple.

For, then d(zl, &i)+-dl &i)z0) = |ml—ai| + \n1—Bi|+]ai[+ B

= d(zl,zo)

Thus B(z0,£§i,zl). Hence, the points of intersection
does not form a discrete Pythagorean triple, contradicting
the hypothesis. Thus, the centres are in the same hori—
zontal (vertical) set. Similar arguments can be made,

when ii s H2 or when z2 e H2, H5 or H4.

(c) Let Srl(zo) and Sr2(z1) where zl = (xo,qByO);
5'7 0 be two r—sets having a discrete Pythagorean type

intersection. Then, we can express d(zO,zl) = B as

p(s2 + t2) for some non negative integers p,s,t. Now
m n

by a theorem.in [67], 5 = ( lx ,q ly ) e H forms withl q o o l
I‘

| 1



zo and zl a discrete Pythagorean triple if and only2 2 .if \ml| + |nl| = p(s -t ) and \ml| + [n1-a| = p.2st.
The combined solution of these two equations, gives2 2
the required point to be iil = (qst_t xo,qS 'Sty0).2 2
By symmetry, £12 = (qt 'stx0,qs _Sty0) s H2 will also

be a point, with the properties of €,l. There is no
loss of generality in assuming B > 0, since the only

difference, if we change the centre zl to some other
part of the horizontal or vertical set, say to Xl,X2
or Y2, is that the location of 3,1 and Q2 will be in
some other part of H, say in H1 and H3 etc. In any
case the required cardinality is 2.

COROLLORY 2.4-25.

(l) If two r-sets have discrete Pythagorean type
intersection, then the sum of squares of the radii is
a perfect square.

(2) Maximum number of r-sets having a discrete
Pythagorean type intersection with a given r-set is 4.

NOTE 2.4.26. By corollary (1), there are no r-sets
having a discrete Pythagorean type intersection with

Sl(zo). The contrast with the Euclidean plane is
obvious.

5/



CHAPTER 3

TRANSFORMATIONS ON THE DISCRETE HOLOMETRIC SPACE+

In this chapter, we introduce the concept of
transformations on the discrete plane. We further
investigate those, which preserve certain metric rela
tions. Of principal interest are the discrete trans
formations which preserve distance, domains, r-sets etc
and D-linear transformations. These are discussed in
sections l and 2. In section 3, certain group theoretic
properties are investigated. Section 4 deals with
discrete analytic properties of these transformations.

3.1. DISCRETE TRANSFORMATIONS

DEFINITION 3.1.1. A bijective.mapping of H onto itself
is called a D-transformation.

NOTATION: D—transformations will in general be denoted

by T,Tl,T2,T3 etc.

DEFINITION 3.1.2. A D-transformation T with the property

that for every zl,z2 e H, d(zl,z2) = d(T(zl), T(z2)) is
called a D-isometry.

+ Some results of this chapter were presented as a
paper entitled " Geometry of the discrete plane"
in the 50th Session of IMS during February 1985.
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DEFINITION 3.1.3. A D-transformation T defined by- b b .
T(qmxo,qnyo) = (qm+axo,qn+ yo) where (qaxO,q yo) 1S

a fixed point in H is called a D-translation.

EXAMPLES 3.1.4.

— —l
(1) Tl(q@x0,q§y0) = (q m xO,qn+2yo) is a D-isometry

(2) T2(qmx0,qpyo) = (q@+nxo,qm_nyo) is not a D—isometry

(3) T5(q9zo,qnyo) = (qP*3yo,qn*4yo) is a D-translation

Figures 4 and 5 illustrate the transformations

Tl and T2. We shall denote by zo the origin of the image
plane also and by w1,w2, ..., the image of 21,22, ..., .

THEOREM 3.1.5. All D-translations are D-isometries.

PROOF. Let T : H-——9> H be a D-translation. That is, there. b b
exists (qaxo,q yo) a H such that T(qpx0,qpyO)=(qm+axo,qn+ yo)

ml n1
for every m,n s Z. Now let zl = (q xo,q yo) and

m2 n2
22 = (q x0,q yo) be any two Points of H. Then
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+a n +b m +a n +b
d(T(z1). T(z2)) = d((qm1 I q 1 Y ). (q 2 I ,q 2 Y0’ 0 0 o

= \(m2+a)-(ml+a)[ + \(n2+b)-(nl+b)\

= |m2'm1\ * \n2'nfl

= d(zl,z2).
Hence T is a D-isometry.

THEOREM 3.1.6. If D is a domain and T:H ———$> IH is a

D—isometry, then T(D) is also a domain.

t
PROOF. Let D = \_) Bi be a domain. Then the basici=1

sets Bi and Bi+l are adjacent and for any two points

z,e)of D, there are points z = zl,z2, ..., s;= zn in D

such that d(zi,zi+l) = 1. Since T is a D-isometry, the

points 21,22, ..., zn s D will be mapped onto points

wl,w2, ..., wn with d(wi,wi+l) = l and further the
adjacency of basic sets will also be preserved. Hence
T(D) also is a domain.



3.2. SOME SPECIAL TYPE OF D-TRANSFORMATIONS

In this section, we shall characterise
D-linear transformations and the transformations which

preserve the property of being an r-set.

t
DEFINITION 3.2.1. Let Ll be the D-linear set {Z1} =i-"=1mi n. t t
£(q xo,q lyo)} _ 1 and L2 be the D—linear set, '{wi}i l=1: :a 5 t
(q lx ,q iy ) . Consider a D-transformation0 o 1:1

T : H ——%- H taking Ll onto L2. Then

t
(1) T is called a horizontal reversal (on L ), if {mil 1-"=1

t
is monotonic increasing (decreasing) implies that {ai:) i=1

is monotonic decreasing (increasing). It is called a
t

vertical reversal (on Ll) if -{ni} is monotonic increasingi-=1t
(decreasing) implies that-{Bi} is monotonic decreasingi l
(increasing).

(2) T is called a horizontal enlargement if \mi-mj|4
)ai—aj(, and a vertical enlargement if \ni-njhglfii-B3] ,
for every j>»i = 1,2, ..., t.



(3) T is called a horizontal contraction if [mi—mj|>.
lai-aj|, and a vertical contraction if \ni-nj|>\Bi-53'
for every j:>i = 1,2, ..., t.

DEFINITION 5.2.2. A D—transformation T : H ——9~ H
is called a D-linear transformation if it takes D-linear
sets onto D—linear sets and is a reversal, enlargement or
contraction, on any D-linear set L, horizontally as
vertically (not necessarily of the same type).

THEOREM 5.2.3. A D—transformation T : H -9’ H takes

the D-linear set Ll onto the D-linear set L2 and is a
reversal, enlargement or contraction, horizontally as
well as vertically (not necessarily of the same type) ifp. s. t
and only if ai=mi+pi, Bi=ni+si where {(q 1xo,q 1yo)} _ 11:
is D-linear.

PROOF. Let us suppose that T : H ——$> H is a D~transf0rma—

tion taking Ll onto L2 and is a reversal, enlargement or
contraction, horizontally as well as vertically, then we

have to prove that ai = mi+pi and Bi = ni+si, where
Pi 8;;

(q xO,q yo) is D-linear.



Since, T is a horizontal reversal, we have mis are
monotonic increasing (decreasing) implies that ais are
monotonic decreasing (increasing). Suppose that mis

'—l
are increasing and a s are decreasing. Then m@=m + %[; a ,i 3 l 1:1 i

j-1
aigo and aj = al+ Z1 oi, cié 0. Further, since T is a1=

D—transformation, we can express ajs and Bjs in terms of
mjs and njs as, aj=mj+pj and Bj=nj+sj where pj, sj e Z.21Therefore, aj = ml + 1:1 a1+pj. That is, al + Zia oi =

-1

ml + fjjl 8.1+-pj. So for J>k we have

'—l j-lPj"'Pk = kl Ci _ Z a1-=1! i=-"K i

<1 o since cig o and ai; 0.

t
Hence ~{pj} . 1 is monotonic decreasing. Now, if misJ:

are decreasing and ais are increasing, then pj-pk in (7) is

greater than zero and consequently pj t is monotonicj 1
increasing.



Now, if T is a horizontal enlargement, we have
as above, an expression (7), where we do not have any

condition on the signs of cis or ais, but then being a
horizontal enlargement, we have, ci>»ai for every

I
Jib$0

t
i = k, ..., j-1 and so {pj}. 1 is monotonic increasing.J t
Further, if T is a horizontal contraction, then -{pj} J=l
is monotonic decreasing.

Also, when T is a vertical reversal it can be

proved along similar lines that {sj} t is either monoJ=l
tonic decreasing or increasing, when T is a vertical

enlargement isj} t is increasing and when T is aj l
vertical contraction, {ej} t is decreasing. Thus, itj 1
is proved that tpj} , {sj} are either monotonic increasing
or decreasing,not necessarily of the same type. Hence byp s. t
theorem 2.3.8, it follows that {(q_ix°,q lyo)} isi=l

Conversely, suppose that T maps the D-linearm n a B ti t i
set Ll = '&(q Ioaq 170%} 1 1 Onto L2 = &iq Xoaq iY0)} 1Z i2‘:



p si t
and let ai = mi+pi, Bi = ni+si where %§q lxo,q yo)}. . <11 $1 *=
1S D-linear. Then, required to prove that, {(q xO,q yol}

1:

j_-.-=

is D-linear and T is a reversal, enlargement or contraction,
horizontally as well as vertically. We have

In D1 1 t P1 S1 tXoyq  and  X ,q  are D-linear.1 1 1. O1: ':
_/

S0, let us suppose that mi,ni,pi,qi,all are monotinic
increasing. Then

Z

—i

t—l t—l
ii: d(“1'"i+1) “ ZZL ( \“'+1'“i\ * \5' 1'5 \ )1:1 i=1 1 1+ i
t-1
fii ( \m1+1*P1+1‘m1'P1\ * \n1+1*S1+1"”1'si\ )'

t-1
iii [(m1+1"m1)*(P1+1’P1)*(ni+1'ni)*(81+1“S1)§

[(mt-m1)+(pt—Pl)+(nt—nl)+(st-S1)l

|“1'“t\ * \91“5tl

d(wl,wt). Thus, {vi} t is D-lineari=1



Now, let us take mis to be decreasing and pie to be

increasing. So, we have ml>m2> m3  >mt and

pl‘: p2 ... <,pt. So from (7), without any restriction

on the signs of cis but ais 5,0, cl<: a1, cl+c2<; al+a2,

..., ol+c2+c3 + ... ct <1 a1+a2+a3+ ... at. Hence,

a2-al.1 m2-ml<_o; a3-a2 = cl+c2.< al+a2 = m5-m2.< o etc.

That is, ais are increasing. Similarly, when nis are

decreasing and sis are increasing, then Bis are increasing
on B

and so {tq ixo,q iyo)} is D-linear. These are the only
typical cases and for all other cases, the result can be

proved on similar lines.

Now, if mis are increasing and piS are decreasing,

then dis are decreasing and hence T is a horizontal

reversal. If mis are decreasing and pie are increasing,

then T is a horizontal enlargement and if mis are increasing

and pis are decreasing, then T is a horizontal contraction.

Similar conditions imposed on nis and sis will prQVe that

T is a vertical reversal, enlargement or contraction.



Thus, converse part also is proved. Hence
the theorem. In the following theorem, we characterise
D-linear transformations.

THEOREM 3.2.4. A D—transformation T : H ——9~ H'is a

D-linear transformation if and only if T(qpxo,qny0) =

(qaXO,qBy0), where a = m + am, B = n + bn and{ai} jroioo,
oo

{Ply} are monotonic increasing or decreasing, noti=--on

necessarily of the same type.

Proof follows from the above theorem, and is
omitted.

NOTE 3.2.5. Any D--isometry T = H —--> 1~1 carries D-linear

sets to D-linear sets, but not necessarily a D-linear
transformation. Converse also is not true.

NOTE 3.2.6. We shall now consider certain transformations

which map r-sets onto r—sets. Clearly, D-transformations
need not carry r-sets onto r-sets. In the study of
transformations of this type, since D-transformations are
bijective, we need consider only r—sets of equal radii.



NOTE 3.2.7. A set of points of H satisfying the
conditions of theorem 2.3.8 in this context are called
oriented set of points.

THEOREM 3.2.8.‘ A D-transformation leaves invariant

an r-set with centre at the origin and preserve the
centre and orientation of points on it if and only if
it is one among the eight transformations belonging to* 8 .
T = '£Ti}-1:1 where Ti carries (qmxO,qnyo) to

(QIHXO9 qnyo) 9 (Q,-mxo9 qnyo) 9 (Q-mxO9 Q-nyo) 9 (qmXo» q-nyo) 9

(qnxo, qmyo) 9 (Q,-nxo 9 qmyo) 9 ((1.-nxo 9 Q.-myo) and (qnlo 9 rfmyo)

for i=l,2, ..., 8, respectively.

PROOF. Consider the r-set with origin as centre and

radius rl, Sr (zo). It is clear that every transformationl
in T* leaves invariant the r-set and preserve the centre.
It remains to show that they preserve the orientation of

points on the r-set. We know that the 4rl points on
1

Sr (20) can be classified into a disjoint union of fourl
sets as,



r -(I r “(Z -Q1 l
Ll = {(qax0!q Y°)} 0 L2 = {(q xovq yo)} 2

_ -I‘ -I-C! -1‘ -H1
L3 == £(q_ “x°,q 1 Y°)}8.I1d L4 ={(q_ 1 xo,qayo)}

where a = o,l,2, ..., r-1. It is an easy consequence
of the definition that all the Lis are D—linear sets.
Each Ti in T* carries a Li to some Lj. For example,
under T3, Ll (-——) L3 and L2 4-%~ L4. Thus each

Ti preserve orientation.

Conversely, if T is a D-transformation which

leaves invariant Sr (zo), preserving the centre andl
X’orientation then T e T . For, since the centre has

to be preserved, the transformations should be of the

farm (q@I0»qFYo) -—-9 (q“mXo,qBnyo); Q, B E Z

But a,B have to be either +1 or -l, since the transfor

mations are bijective. Hence by definition of Sr (zo),1

it is preserved under a D-transformation only if the
transformatun1is one (1) which keeps m and n fixed,
(2) which changes the signs of m and h, or (3) which
changes the points as well as signs of m and n.
That is, the required transformations are in T*. Hence
the theorem.



We shall now discuss two more situations

concerning the transformations of r-sets. They are
those (1) which take an r-set with centre origin onto

an r-set with centre (qaxO,qbyo); a,b # 0, and (2) in
ml nl

which an r—set with centre zl = (q xO,q yo), ml,nl¢o.  . “1 B1
18 mapped onto an r-set with centre wl = (q xo,q yo),

al,B1 # 0. These two cases exhaust all the possibilities

becanse'fh8 transformation which takes an Sr (zl) ontol
S (w ) maps z to w . The result obtained in thisrl 1 1 l
direction is a consequence of the above characterization

theorem and are considered in the following corollories.

COROLLORIES 3.2.8.

(1) A D—transformation takes an r-set with centre

at the origin to an r-set with centre (qax0,qbyo),

a,b # 0 and preserve the orientation of points on it,

if and only if it is one among the transformations. 8 .
belgnglng to G»= {gi} ifil where gi carries (qmxo,qnyo)- - - b
to (q9+aIo.qn+byo). (q m+aXo,qn+by0), (q m+aX0.q n+ yo),



m+a - +b b - b
(q. xoiq n yo): (qn+aXo,qm+ Yo), (Q n+aXO,qm+ yo):— — b - b . A
(Q. IH-axorq. m+ Yo) and (qn+aIo,q m+ Yo) for 1 = la4v"'98)

respectively.

ml n1
(2) An r-set with centre zl = (q X0»q Y0);

ml,nl # 0 is mapped to an r-set with centre wlr= é‘(zl) =
“1 51

(q xo,q yo), al,Bl ¥ o and preserve the orientation of

points of it if and only if g“ is one of the transforma

tions belonging to* 8 * .
G = {g;fl}i=l where gi carries (qwxO,qny0) to( ~ ) ( - ) - ( ) (B )
(qm+ al ml X0’ qn+ Bl 111 yo), (q m+ al-a-ml xo,qn+ 1+-:1 yo)’

-m+(al+m1) -n+(Bl+nl) m+(al—m1) -n+(Bl+nl)(q I0, q yo),(q xo,q yo),
n+(a -m ) m+(B -n ) -n+(a +m ) m+(B -n )m llxwq 11yg.m 1 l%A llyg.
—n+(a + ) -m+(B +n ) n+(a -m ) -m+(B +n

(q 1 ml X0, q 1 1 yo) and (q 1 1 X°,q 1 1

for i = 1,2, ..., 8,respectively.
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3.3. GROUP THEORETIC PROPERTIES OF SOME SPECIAL
TYPE OF D-TRANSFORMATIONS

DEFINITION 3.3.1. Let Tl and T2 be two D-transformations.

Then, we define Tl o T2(z) = Tl(T2(z)).

THEOREM 3.3.2. (T*,o) is a finite, non commutative,
solvable, nilpotent group.

PROOF. T* consists of transformations leaving invariant
an r-set with centre origin and preserve the centre and
orientation of points on it, and by theorem 3.2.8 theseznxa
transformations defined by

w1<z> = Z, w2<z> = <q*“1o.q“yO>, w5<z> = <q'”x0.q'“yo>,

w4(z> = <qFxo.q'“yO>. w5<z> = (q“x°,q@vo>. w6<z> = <q'”xo.qmyO>

T7(z) = (q'nxo.q-QYO) and T8(z) = (qnx0,q~myo) where

z = (qpxo,qny0). The transformations satisfy the composition

table given in page 75. The transformations satisfy all the
group axioms and hence (Tao) is a group, which is clearly a

finite group. The transformations T4 and T5 give. a pair of
non commuting elements of T* and hence the group is non

abelian. Further by a result in [16], since the order of
,



O T1 T4 T5 T6 T7 T8I '
T1

T2

T5

T4

T5

Te

T7

Ta

T1

T2

T5

T4

T5

T6

T7

Ta

ill
T4

T5

T2

T1

Te

T5

Ts

T7

T5 T6 T7 T8
Ts T5 Ts T7
T7 T8 T5 T6
T8 T7 T6 T5
T1 T4 T3 T2
T2 T3 T4 Tl
T3 T2 Tl T4
T4 Tl T2 T3



the group is 8, which is a prime power, it is solvable.

Also, the centre of the group is c = {Tl,T5}- and T/c
is abelian. Hence T is nilpotent. Hence the theorem.

Let us further analyse the properties of the
R

group (T ,0). It has the following sub-groups.

sl = {Tl} , s2 = -{T1,T2}-, s3 = {Tl,T3}-, s4 =-{Tl,T4}

S5 = {crl,T5} , s6 = {@137}, s7 = {:1rl,T2,T3,'1:4},
w

s8 == {'rl,T3,T5,'i:7} , s9 = {tnl,T3,T6,T8} and T .

Among these subgroups s7, s8 and s9 being of index 2,

are normal subgroups.

Further, consider the elements T5 and T8.

T o 1* = T - the identit of T‘ and (T )4 - (T )2 o (T )25 5 1 Y s ' e e '"
ToT=T Also(T oT)2—T2—T Henee('.§' 0)3 3 1' 5 s "* 2" 1' '
has the defining relation, " 14 = I; B2 = (AB)2 = 1"
and so T* is isomorphic to the octic group.

NOTATION. F - the set of D-translations.

THEOREM 3.3.3. (F,o) is an abelian group.



PROOF. Consider any two D-translations, Fl(qmxO,qnyO) =m+ n+bl m+a n+ba1 2 2
(q I0-q Yo) and F2(qmXO,qnyo) = (q Xo,q yo)b a b
where (qa1x0,q lye) and (q 2xo,q Zyo) e H. Now, to prove

the result, it is enough if we prove that F1 0 F2'l is

also a D-translation. F2 1 the inverse of F2, is defined_l m-a2 n-b2 _lby F2 (2) = (q xo,q yo). Hence Fl o F2 (z) =
m+a1-a2 n+bl-b2(q xO,q yo) is also a D-translation. Further,

(F,o) is isomorphic to the additive group of integers and
hence is abelian.

3.4. DISCRETE ANALYTIC PROPERTIES OF D—TRANSFORMATIONS

For complex valued functions defined on H,

various notions of discrete analyticity are available
in [35] and [70]. Consider f : H -9’ ¢, where Q is-- 0
the OOmpl6X plane. Then

(1) f is q-analytic at z = (x,y) if

9 .-= flz)-_f( qx'y)- and 9 == f(Z)-fuiqy) are equal" <1-<1): Y (1-qm



(2) f is p—analytio at z if

W f(z)—f(P1.y) H f(z)—f(X.Py)
9x = sees =11» he and 9 = »<»»~ W-~=ee are equal,(1-9)! y (l—P)iY
where p = q-1.

(3) f is bianalytic at z if it is both q—analytic
and p—a.nalytic at z.

(4) f is q-monodiffric at Z if-1 -1f(q xaY)“f(QxrY) f(X1Q Y)“f(XvqY)

(q7l—q)r (q'l-q)iy

The first two discrete analyticity is due to
Harman [35] and the other two due to Velnkutty [70].
We apply these definitions to the D-transformations
considered in the previous section. Further, by a
theorem in [70], the set of bianalytic functions is a

'

proper subset of the set of q-monodiffric functions.

THEOREM 3.4.1. D-translations are bianalytic if and
only if a = b.



PROOF. Consider the D-translation

m n m+a n+b a b
gl(q Io,q yo) = (q X°,q yo) Where (q XO,q Y0) Eb l b
6 (qm+axo’ qI1+ yo) _( qm+8.+ X0 ’ qI1+ yo)g 3 :- (-   =- *;__-—  ~-(  (-  X 1  qmxo

, °1M"@‘1"°~’ , qa
(l—q)qmI0

(qm+axo,qn+byo)_(qm+axO,qn+b+lyo)eygl =  ~  i »    (
i(l-q)qnyo

b
qn+ yo(l—q) b= ~~~{=1=—="— = q
(l~q)qnyo , b

Therefore, 51 is q-analytlc <=? qa = q 4:9 a = b

- b
‘a (qm+ax0’qn+byo)_(qm+a lxO,qn+ yo)NOW  = "  "'""_" "'23-   j ' *" A j

(1-q )q X0

m+a -lq XO(l-q, ) a= W””‘i1'"" "* = q
(1-q )qmXo



“ _ beygl - q
a b

So, gi is p-analytic ¢=9 q = q 4;; a = b,

Since gl is both p—analytic and q—analytic
if and only if a = b, the theorem follows.

THEOREM 3.4.2. g2 : H ———9' H defined by g2(qmxo,qnyo) =

(q*m+axo,qn+by°) is bianalytic at the points of the form
a—b——— -b

(Q. 2 x°aqnY°)§ §'§" 5 Z~ - b
PR°°F- s2(qmI°.qnYo) = (q m+axo.qn+ Yo)

—m+a n+b -m+l+a n+b(q X <1 Y)-(<1 X q Y)9 g =  .m;_0e’ _  _:o.’_  so 2 q--2m+a

_ bBygz - q .
_ —2m+a _ b _ g;QHence,9x-0y 4-:.=:;> q -q<=e/m-2.

Thus, g2 is q-analytic at all points of the forma—b _b
((1 2 3500‘-1nY°)§'§'_5_"" 5 Zv



‘6'g (q—m+axo’qh+byo)_(q-m—l+aX0,qn+byo) q_2m+aX 2 Z "‘-_--.- " ">1-K" r ._ t ___  _:_._.___*" (1--~  —~  2
(1-q_l)qmXo

“ b
9yg2 - q

Hence, EX = 6y if and only if m =*§%§. Hence g2 is
a-b

bianalytic at all points of the form (q 2 xo,qnyo).

THEOREM 3.4.3. The D-transformation g3 defined by~ — b
g3(dmxO,qpyo) = (q m+axo,q n+ yo) is bianalytie at points

of the form (qmxo,qny°) such that m-n = 352.

_ -2m+a _ —2n+bPROOF. Bxga - q , 6yg3 - q . Therefore,
-2 *2 b —b

9x=9y<==>;.q m+a=q n+@=} In-IJ.=§'-é--.
\--'\ \-. ar

Also, 9X = 9y.g=; m-n = -Eh. Hence g3 is bianalytic at

points of the form (qmx0,qnyo) such that m-n =-552 e Z.

THEOREM 5.4.4. The D~transf0rmati0n g4(qmXo,qnyo) =

(qm+ax q-n+byo) is bianalytic at points of the formO7

b-am '*-" , b-a(qX°,q 2yo)9?3 Z.



EXAMPLES 3.4.5.

(1) s2(qmX°.qnyo) = (q'm+4xo.qn+6yo) is bianalytic at

points (q_lx°,qPyo), n e Z.

(2) g3(qmxo,q?yo) = (q'm+lx°,q-n+5yo) is bianalytic at

points (qpxo,qm+2yo); m s Z.

(3) g4(qmxo,qnyo) = (qm+2i°,q—n“8yo) is bianalytic at
points (qpxo,q Syo), m e Z.

NOTE 3.4.6.

(1) Since bianalytic functions are q-monodiffric also,
the transformations considered above are q-monodiffric in
the respective set of points. Also, the discrete analyticity
of the D-translations do not impose any condition on m and n
and hence defines an entire function subject to the only
condition that a = b.

(2) Consider the q-analyticity of g5(qmx0,qnyo) =b qazb
(qp+axo,qm+ yo). We have Gxgs = i_g;ZQ and Qygr = "I55 0

So Ox=0y if and only if qzaxg = qzbyg. The condition on q
is undesirable from the point of view of the theory considered

so far. Similarly, for gs, g7 and g8. Hence the only transfor
mations, among those mentioned in Oor.3.2.8(l) of interest

for discrete analyticity; are g1,g2,g3 and g4.



can-ran 4

sons OTHER PROPERTIES or THE DISCRETE HOLOMETRIC SPACE+

Theory of convexity outside the framework of
linear spaces has been extensively studied by various
authors. Convexity in metric spaces, based on the notion
of betweenness was first considered by Menger [51]. For
details see Blumenthal [15]. A survey of various other
notions of convexity is available in [18]. Notion of
convexity for finite dimensional normed linear spaces
was studied by Aleksandrov et. al. [5], Soltan P.s.[63,64],
Boltjanski [14]. Later on, this notion was further
extended and generalised by German L.F. et. al. [52],
Soltan V.P. [65,66] etc. for ordinary connected graph [54],
using its natural netric and by Sampath Kumar [61], using.
the concept of a path in a graph. Dooley [21], Narang [56],
Abuja [4], Danzer [17] and many others also have made

significant contributions to the development of convexity
theory in metric spaces.

In the first two sections of this chapter, we
study some convexity concepts in the discrete holometric
space, using the notion of holometric betweenness.

+ Some results of this chapter was Presented as a paper
entitled ‘Some characterisation theorems for the discrete
holometric space‘ in the 54th Session of National Academy
of Sciences, India,at Madurai during October 1984.
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In sections l and 2, notions of D-convexity,
D-kernel and D-convex hull etc. are considered and some

of its properties are investigated. In the next section,
we have presented some results obtained in the course of
the investigation which we feel are interesting, although
not directly along the main line of thought in the thesis.

These include, a matrix representation of domains, along
the lines of [27] and [33], and the notion of metric
content for subsets of H. We have considered an analogue
of ellipses also, called E-sets and some of its properties
are investigated in section 4.

We conclude the thesis with section 5 of this

chapter in which som suggestions for further study are
also mentioned.

4. 1. D-COIWEXITY

We recall the definition of holometric betweenness

(Definition 2.1.6) and the notation B(zl,Z2,Z5) as given
in chapter 2.

DEFINITION 4.1.1. Let A be a subset of H. A is said to

be D-convex if for every zl,z2 s A, [zl,z2] =

{Z 1: H : B(zl,z-,z2)}g A.



In particular, if A is a domain satisfying the
above conditions, we call it a D-convex domain. We take
the empty set to be D-convex.

EXAMPLES 4.1.2.

'7

(1) Al = {zotzl = (qxorY0)a Z2 = (Q¢x0syO)r

25 = (q3xo,yo)} is a D-convex set.

(2) The basic set associated with any point is D-convex.

(3) S1(zo) is not D-convex. As, zl = (qxo,yO),

Z2 = (Xo,qYo) e Sl(zo) and Z3 -= (qxO,qyO) s [zl,z2],

but Z3 i Sl(z0).

In I1 I11 fl
NOTATION. For any Z = (q xO,q yo) E H, P(z) = {(q Xo,q yo)’m+l n 1
(q X0.q yo). (qmXo.qn+ yo)} .

THEOREM 4.1.3. The intersection of two D-convex sets is
also D-convex.

THEOREM 4.1.4. If a domain, in which there is at least one

point of the form (qmx°,qg§°), m e Z, is D-convex, then it

contains the basic set associated with atleast one point of

Pc qmxo. q"‘yO>.

5



t
PROOF. Let D = U S(zi) be the domain and1=1

zl = (qaxO,qayo), a # 0, e Z, be a point such that
l

s<z1>c D. Now. ml) ={<q“=<O,q“yo>. <q“* zo,q“yo>.

(qax°,qa+lyo)} . Let us assume,for the sake of argument,

without loss of generality, that D contains the basic set
associated with the origin.

Case 1. Let D does not contain the basic set associated. l
with z2 = (qaxo,qa+ yo) E P(Z1)- Then Z2,Z3 = (xo.qyo)
is a pair of points of D for which points between them
are not in D. For,

-2a a<:0
d(z , ) = 2\a\ = ’ . If a<:o, take z = (qax ,qa+2y )2 Z3 2a, a>-0 4 O O
Then d(z3,z4) = |a|+|a+l\= -2a-1, d(z4,z2) = l. Therefore

d(z5,z4) + d(z4,z2) = -2a = d(z5,z2). Hence, z4 e [z2,z3],

but z4 f D. For a:>o, take z4 = (qa"lxO,qa+lyo). Then

d(z3,z4) = 2a—l, d(z4,z2) = 1, d(z3,z2) = 2a. Therefore,

z4 e [z2,z3], but 24 ¢ D.



Case 2. Let D does not contain the basic set associated1 l
with 22 = (qa+ xoyqayo) e P(zl). Then z2 = (qa+ xO,qayo),

Z3 = (qxo,y°) is a pair of points of D for which no point

between them is in D. For @410, take z4 = (qa+2x0,q“y0)

and for a;>o, z4 = (qa+lxo,qa_lyo). Arguments are as
those in case l.

NOTE 4.1.5. It can be proved similarly that if a domain

m "m ).in which there is at least one point of the form (q xo,q yo
m e Z, is D-convex then it contains the basic set associated

with at least one point of P(qmx0,q'myO). The above theorem

further illustrates that a finite union of D—convex setst . _ _
-{Di}-1 1 with Dirfi Di+l # Q, 1 _ 1,2, ..., t 1, need not

/'

be D-convex.

4.2. D—KERNEL AND D-CONVEX HULL

DEFINITION 4.2.1. Let A be a non empty subset of H. Then

{hi e A : for every zj E A, all the D—linear sets with zi

and Z3 as end points is contained in A} is called the
D—kernel of A.



NOTATION. D—ker(A) -_ the D-kernel of A.

EXAMPLES 4.2.2.(See Figure-6)

(1) Let Al=£zor Zl==(qXO,YO), Z2=(qXo.-qyo), Z5:(XOaq_.‘/O):l l l l
z¢4q x0,yo), z5 = (q xo,q yo), z6=(x0,q yO)} . Then

D*k8I (A1) = {Z0} .

(2) Let A2 = Al LJ-{z7=(qxO,q lyo)} . Then D—ker (A2) =

{so,zl,z6,z7}-.

(5) Let A3 = A2 L; {g8e(q"lx0,qyO)} . Then D-ker (A3)=A3.

In the above examples, it turns out that D—ker(A2)

is D-convex, A5 is D-convex and its D-kerneli§;itself. so
we expect the following questions. Is it true that

(i) for any non empty set, its D-kernel is D-convex?

(ii) D-ker (A) = A if and only if A is D—convex?

In the following theorems, it is proved that, answers
to both the questions are affirmative.
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THEOREM 4.2.3. For any non empty subset A of H,

D—ker(A) is always D-convex.

PROOF. Consider any two points zl,z2 e D—ker(A). That

is, for every zj e A, all the D—linear sets joining zl

to zj and z2 to zj are contained in A. Required to prove

that all the points between zl and Z2 are in D-ker(A).

That is, if £5 is any such point, then all the D-linear

sets joining gand zj, for every zj e A,is containec in
A? Suppose not. That is, there exists atleast one point

T) 1-: A such that the D-linear set joining E) and 11 is not

contained in A. That is, there exists a D—linear set

(say) L1 = £5, ,al,a2, ..., 131- joining § and n of A
containing som points not in A. Now § is a point between

zl and z2. So there exists a D-linear set joining zl

and g viz. L2 = -£zl,B1)B2, ..., g} . Now,

L3 == {_zl,Bl,B2, ...,§ , al,a2, ..., 1}} gives a D-linear

set joining zl and n (this works since g is a point between

zl and zz) which is not contained in A and n s A, which

implies that zl ¢ D-ker(A). This leads us to a contrhdic
tion. Hence the theorem.



THEOREM 4.2.4. Let A be a non empty subset of H.

Then, D—ker(A) = A if and only if A is D-convex.

PROOF. Let D-ker(A)=A. Then by the previous theorem

A is D-convex. Conversely, let A be D-convex. So by

definition, for every zi,z. e A, &z e H : B(zi,z,zjl}g; A.J

Now, D-ker(A) = {lzi e A : for every zj s A, all the

D-linear sets joining zi and zj is contained in A]- = A,
since A is D-convex. Hence, D-ker(A)=A if and only if
A is D—convex.

THEOREM 4.2.5. Let A and B be two D—convex sets. Then,

A (W B C. D-ker(AL)B) .

PROOF. Since A and B are D-convex sets,_A(lB is also
D-convex. Let z s A(\B. To prove that z e D-ker(AL)B).

That is, to prove that for any zi s ALJB every D-linear
set from z to zi is contained in ALJB. Without loss of
generality let zi s B. Then,z, zi e B and B is D—convex
So the result follows.

NOTE 4.2.6. In the above theorem, the requirement that
A and B are D-convex cannot be relaxed. For, consider



* _ -1 -1 w -2 -2Al — {zo. Z1 - (q 1o.q yo). Z2 — (q Xo»q yo).

__ ‘"2 "5 d _ __ “'3 "2Z3 -' (q XO.q yo)} 311 A2 --{Zo9Zl9Z2!Z4"" (Q xoiq yo)}°

Then A1 and A2 are not D-convex, Alf\A2 = {zO,zl,z2}-.

But D-ker(A1LJA2) = Q. Also, equality need not hold in

the above theorem. As an example, take A3 = S(zo)L)

S(z5=(q'lX0.yO)) and A4 = S(z6=(q'1X0.q'lyo))LJ

S(z7=(xo,q_lyo)). Then A3(\A4 = -{zO,Zl,z5:} and

D-k8I?(A3U  =2  A4.

DEFINITION 4.2.7. Let ACZH. The intersection of all

D-convex sets containing A.is called the D-convex hull of

NOTATION. D-conv(AJ —— D-convex hull of A.

EXAMPLE 4.2.8. (See Figu.re—6)

Let A = {zl,z3,z4}. Then D-conv(A) =

{zo9ZlvZ2aZ3aZ4a3-7'8} '

If A is a subset of the horizontal (vertical) set,

then its D-convex hull is also a subset of the horizontal



(vertical) set. In the following theorem we take A

to be a subset of H such that not all points of it are
in the same horizontal (vertical)set and then say that A
has points in general position and prove that its
D~convex hull is domain.

THEOREM 4.2.9. For a non empty finite subset of H
consisting of points in general position, its D-convex
hull is a domain.

PROOF. Let A be a non empty finite subset of H consist
ing of points in general position. Let B=D-conv(A). It
is required to prove that B is a domain. By definition,
B is the smallest D—convex set containing A. So, for
any two points of B all the points holometrically between
them are also in B. That is, for any two points in B all
points on all paths joining them is in B. That is, for
any two points of B, we can find a sequence of points in B
with distance between consecutive points of the sequence
being l and which joins the two points. Hence B is
connected. Further, B can be expressed as a union of

basic sets Bi with B B. adjacent, since B is D-convexi’ 1+1
and by theorem 4.1.4. Hence, by note 2.2.ll.\1e conclude
that B is a domain.



NOTE 4.2.10. By the above theorem, for a finite subset
A of H consisting of points in general position, its
D-convex hull is a domain. We note that this domain

need not be the smallest domain containing A. For

example, take A = -{z0,z2,z5} (See Figure-6), then

the smallest domain containing A is 1>={ zO,zl,z2,z4,z.5,z6]

and B .-= D-conv(A) = D U {z7,z8} .

4.3. MATRIX REPRESENTATION AND RELATED CONCEPTS

In this section, we shall associate a distance
matrix to finite subsets of H, and obtain some properties
of those associated with certain special types of domains.
The idea of associating distance matrices for digraphs
is discussed in L27], [33] and [59j. Also, we define
the notion of metric content and some properties are
obtained. An estimate for the metric content of an r—set
is also found.

DEFINITION 4.3.1. Let A be a non empty finite subset of H
consisting of n points, labelled in a definite order as

zl,z2, ..., zn. Then the n x n matrix M(A) where (i,j)th

element is the distance between zi,Zj of A, 1,3 = 1,2,
..., n, is called the distance matrix associated with A.



That is,

) d(zl,z1), d(zl,z2), ... d(zl,zn)

Me-> = ~ : : I *”
vd(zn,zl), d(zn,z2), ... d(zn,zn) 1

NOTE 4.3.2.

(1) The distance matrix so obtained depends on the
way we order the points of A. Any of these matrices
will be called the distance matrix of A. Also, whenever
we mention the distance matrix of A, we shall mention
the order of points of A.

(2) The distance matrix is symmetric, integral matrix
with diagonal elements zero.

EXAMPLES 4. 3. 5.

(1) Consider the basic set associated with a pointR l n
Z1 (qmlloiq. yo):  = {ZILIZ2 =  1 XO,q_ yo),



m +1 n +1 m n +1l l l l
Z3 --"(<1 Xoaq yo): Z4 = (Q xovq 0}

Then,M(S( 21)) =

The distance matrix of the basic set with the points of
it labelled in this way is called the_bas1c matrix

ml
(2) Consider Sl(zl) = {’z2 = (q xO,q yo ,n +1 m -1 n m n 
Z3=(qm1Io,q 1 yo), Z4=(q 1 Io,q lye), 5= q X0, 1

Then,

zl)) =

We shall_now write down explicitly the distance

matrix associated with Sr (zo). It was noted in the proofl
of theorem 2.4.3.that the 4rl points of Sr (z ) can be
labelled and classified into a disjoint union of four
D—linear sets as,

F

»1
2
1

?1

NNNO

L_..

POI-‘OI-'f\Jl\)C3l\)

l-‘OI-*'I\Jl\)C)l\)f\)

Oi—'I\>I--‘J

\--J

+1

Ql\Jl'\JI\),_i_ , i?_l

AL



a rl-a }' rl—a _aLl = (Q xo!q yo) 1 L2 = (Q XO,q yo)

L3 = {fq XO~q 1 30)}, iL4 = {(q XO»q“yO)}',

Where a = 0,1,2, ..., rl-1.

The order of points of Sr (zo) is the natural order1

of points of Ll,L2,L3 and L4.

Now, M(Srl(zo)) is a matrix of order 4rl x 4rl
which can be partitioned into a 4 x 4 matrix as

O

T“ M "WM1 5 M9 M15 I
; M2 M6 M10 M14 a

P M M M MA, 8 12 16 1
u“ 4 .4

k = 1,2, ..., 16, is a matrix of order rl x rl. Also,

these matrices are generated by ml,m2, ..., ml6, where

ml = \i—al‘ + ‘cl-1‘

E2 = lr1"(a1+a2)l + ‘(cl-a2)-rlu

~ 7 where each Mk,



E3 = \a3+al\ + \(a5+al) - 2rl 1

m4 = \a4 - (rl+¢l)\+ ‘a4+al—rl\

ms = 2 lag-11

m7 = taz-(a3+rl)\ + \a3+a2-r1]
1 |

ms = la4+a2—2r1 \+ \a2+a4\

mll = l“3'1\ * \i'“3\

mlz = ia4+a3—rll + ‘a4-a3+rl‘ )

where i, al, a2, a3, a4 varies over 0, 1, 2, ..., rl-l.

Due to symmetric nature of the distance matrix, M5 can
be obtained from M2, M9 from M3, etc.

Now, we shall write the matrix for certain

special types of domains. Consider the domain Dl=S(zO)L)

S(q_mro,qfmyo), m = 1,2, ..., s. The order of points

for D1 is the order of points of the basic matrix for- - -1
S(zo) and for S(q mxo,q myo), z4 = (q xo,y0),1 1 1 2
Z5 = (Q Xo,q yo): Z6 = (Xo,q yo) and then Z7 = (Q X09370):

_ -2 --2
Z8 — (q Ioaq yo) and so on. The distance matrix

corresponding to D1 will be a matrix of order (3s+4) X (3s+4)



-G» 850:

given by,

M1 M2M91) = h M ' 11 b 'M M , w ere 1 is t e asic3 4
matrix, M2 is the 4 x 3s matrix given by,

r" ~1¢
, <21-1. 2:. 23-1) 1;
§<2a'. 2;1+1. 25 >iM2 = i, the symbol; <2;1+1, 2;i+2, 2;j+l> A

"<23. 2a+1, 21 >in-0-0 A
<?j-1, 2j, 2j€€>for J = 1,2, ..., s inside M2 means that
the 3s elements in that row is generated by 2j-1, 2j, 2j-1

M3 can be obtained from M2 due to symmetry and M4 is the
(3s x 3s) matrix given by,11"“ ‘

<z|j-kl, [3-1<+1| + "3-k|,|j-1:-1[ +[j-k+1[> -1
M4 = <|;1-k|+|_-1-k+1l , 21;;-kl, Ij-k|+ [3-k-1|> t

<|;;-k-1| + [3-1¢+1L, [3-k-1I+\j-kl, zlj-k[>1... _¢l
where j,k = 1,2, ..., s. The symbol .(_ ‘> inside M4
has the same meaning as for M2. For the matrix M(Dl)We have’ 



THEOREM 4.3.4. M(Dl) is singular.

PROOF. Consider the determinant of M(Dl). To the
elements of it, do the following transformations.

(1) R2-R4, that is to the elements of second row
add (-l) times that of the fourth row.

(3) C2 + C4. Then we have a determinant for which' -.

only (2,4)th element is non zero. Expand with respect
to that element. Denote by V, the resulting determinant
of order (3s+2) x (3s+2).

(4) For V, Rl+ R2.

(5) Then R1 of the resulting determinant has all the
elements zero. Hence, determinant of M(Dl) is zero.
So M(Dl) is singular.

As an explanation for the symbol <1 j>mentioned
earlier, consider the following example.

EXAMPLE 4.3.5. In the above discussion, we take s = 2-1 -1 _ _
and consider Dl=S(zo)LJS(q xo,q yO)L)S(q 2xO,q Zyo).

100



Then D1 is a domain consisting of ten points,

D1 = { 20,11-=(qXo,yo), Z2-=(qXo,qyo), Z3"=(Xoaqyo)9-1 -1 -1 -1
Z4 = (q 10,30). z5=(q x0,q yo). Z6=(10,q yo),-2 -1 -2 -2 -2
Z7 = (Q 1°vQ Yo)» Z8=(q Xovq Yo), Z9=(Xo9q Y0)} ~

M2 by formula is given by,r--' _T

l\)\.>l N F’

\J~1 -P D1 N

N vi N I-'

-P~ U1 -Pb U1

U1 0\\-T! -§

-P U1 -F U1

, ll ,
\

\

1M2 = A
i1 ‘ Iin-I

The symbol <?j-1, 23, 23-1)> for 3 = 1,2, giving the
first row [1,2,1,3.4,3]. <?j, 2j+l, 2j)> for j = 1,2,
giving the second row p[2 3 2 4 5 4] etc. Also M4,
the (6 x 6) matrix is given by, P'— q

| .

kJro elre c>|~

n>\fl n><D klro

maid C>rv PJIv

I-"CD|'-'\mIl'\)\>~I

c>1~ m>Iu P4Iv

k

iM4= .Toget
1A i

the first three rows, fix j=l and k=1,2 in the generating
elements and fix j=2; k = 1,2 to get the next three rows.

101
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Finally, we have the (10 x 10) matrix given by,?_ “W

xx A»\n P*Puih'F4l§—;’<D

-l>U‘I-F~l\)\.>ll\)I\Jl-‘O!--'

kfl ¢\\fl ul-P xx P'<D FJIU

-l>U'l-P-f\)\>lI\)C>!-'l\Jl--'

RJ\£ h>rn F*<D hJ\fl maifl

P-‘NI-'l-‘O!-'\n4>\,4r\>

I\J\Nl\)CD|-'I'\)l\J\Jll'\Jl'-'

RJIH c>rv Flru ¢-xn a-gs

I4 C>i# uasv ulxn O\\n.p

C>!4 fi>Iu blru b-\n.p gg

mnl) .= y
L.

NOTE 4.3.6.

H1

(1) For the domains n2= S(z0)L)S(q x°,qmyo),

D3=S(z°)LJS(q5mr°,qmyo) and D4=S(zo)LJS(qmxo,q-myo),

m = 1,2, ..., s, their distance matrices are same as

(2) The diameter of all these domains is even.

(3) The distance matrix corresponding to any domain
could not be written down explicitly, as we could not
enumerate the domains with any number of points. But

following facts are noted. Let N(D)r denote the number
of domains containing the basic set associated with the



origin and consisting of r lattice points. Then

N(D)4=l and its distance matrix is the basic matrix.
As there are no domains with 5 points, N(D)5=O.
N(D)6=4 and points in these domains can be labelled
in an order in such a way that all of them have the
same distance matrix given by,

..... -"-7’, O l 2 1 2 l 2‘l0 1 2 3 2{ .|P 2 1 O 1 2 3 PM(D)6 r: l’ ‘LA 1 2 l 0 1 2 i
2 2 3 2 l O l "
: 1 2 3 2 1 OL_ ~J

N0w,N(D)7 is also 4 and the points of it can be labelled,
so that all the four domains have the same distance matrix.

But for r = 8, the situation is different. N(D)8 = l4.
They, with reference to Figure-7, are

D1 = {zorzlszzaZ3vZ4aZ5aZl01zl1}'

D2 = {zo,zl,z2,z3,z7,z8,zl3,zl4}

D3 = {Zo!zl9z29z59z4oZ5aZl6vzl7}
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D4

D5

De

D7

De

D9

D10

D

D12

D13

D14

These domains have essentially two distinct matrices,

one typically for D1 and the other for D7. They are
given by,

M(Dl) =

ll

jQ-it

1i
1"

ij
jin
Ikt

'{”o'z1'“2'Z3'z1o'z11'z20'Z21}

.[zo,z ,z ,z ,z7,z8,zl8,zl9}

{Zo'z1'”2'”3'z13'“14'Z22'Z23}

{z0,zl,z2,z3,z4,z5,z6,a7}

l 2 3

l 2 4' 4{.zo,z ,z ,z3,z z5,zl ,z15}

'{zo' 8 Z11}

l'\Jl-'f\)l-'l'\)l—'C')‘l

|

i

kfl

‘ ‘

F*“ "“" r*“ r*" r*WN N N NO O Q Qm>|~ n>\x RJIJ <3 P’

3195295393 95993100

zo,zl,z2,z3,z7,z8,zl0,211}

l 2’ 3 10' ll l2 13}
z ,2 ,2 z ,z ,z ,z1 2 3' 10 11 15 14}
Z1, Z2,Z3,Z4,Z5, Z7,Z8}

Z]-,Z2,Z3,Z4,Z5,Zl3,Zl4.l> O

I-'l\)\>lI\)l-‘C3!-'I\J

l\)\>ll\)l-‘Q!-'l\)F-'

\)I-¥>i-‘OI-'l\J\)3I\J

-b\.>lC)!-'|'\J\)~1|'\J}"’

P-'O\)~l-D-\)ll'\)I-'l\J

*“'? 9"“ *’7? “*1
c>L

an

10



M(D.7) =

?

l-it--'I\Jl-'f\.>I—'l'\)l-‘CD

f\J\)lf\J\)ll"O|"-'CD|"’

\>I-P\>ll'\)l-‘C)l-'l\)

l\)\:1f\Jl-‘OI-'l\)i'-"

\)lf\)l—'Ol-‘l\)\>ll\)

I\)}"-"C')|-'l'\J\NI\Jl-'

k'CDl# n>\» p»\nlv

“T

OI-'f\)\)lI\)\Nl\Jl'-'

I-_J

However, for larger values of r, the above type of analysis
seems to be difficult.

Based on the notion of the distance matrix we

consider the following related concept.

DEFINITION 4.3.7. Let AIZH be finite. Then,

p(A) = '§:_ d(zi,z ) for every 21,2. e A is called the

the metric content of A.

NOTE 4.3.8. p(A) is the sum of the elements in the upper
(lower) triangular part of the distance matrix M(A) associa
ted with A.

EXAMPLES 4.3.9.

(1) For the basic set,

M($(Z))=

I-'I\)l-‘O

I\Jl—‘C)l-'

E-‘OI-'I\)

OI-'l\)F-'

and hence p(S(z))=8

l0



(2) For the Sl(z),

M(S1(z))=

f\JI\)I\)O

l\)l\)Ol\J

l\)C)f\Jf\J

ORJNN

and hence p(Sl(z)) =

t
THEOREM 4.3.10. Let D = {J Bi be a.d0main. Then,i=1

t
MD) zgl u(Bi)

PROOF. Let the domain D be just the basic set Bl.

Then p(D) = p(B1) = 8 and we have the equality. Since

= 8  i = 1,2’ O00, t, fi  = 81:0 NOW,i=1
suppose that the result holds for a domain D of index (t-1).

-1

I-" c+
PM

That is, p(D) Z p(Bi) = 8(t-l). It is clear that we
can obtain a domain of index t from that of (t-1) by the
addition of at least one and atmost three points. Let

the points of the domain of index (t-1) be zl,z2, ..., zn.
Let z be a point added so as to make the index of the domain
to be equal to t. Now, in the metric content of the new

domain, the quantity that gets added up is B = d(zl,z) +

d(z2,z) + ... d(zn,z). The result is proved if we prove
that B1; 8. Now, apart from atmost two points among

10
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21,22, ..., Zn of D, d(z,zi);>l, i = 1,2, ..., n. That
is,the distance is greater than or equal to 2. So,
B; (n--2)2?,8, since there is no domain with five lattice
points, n>;6. Hence the result holds for a domain of
index t also and the result is proved.

EXAMPLE 4.3.11. As an illustration of the above theorem
consider a domain of index 2. There are 8 domains with

index 2, in which 4 has 7 points and 4 has 6 points.

With reference to Figure-7, they are D1 = S(zo)LJS(z6),

n2 = S(zo)lJ S(z8), D3 = S(zo)tJ S(z2), D4 = s(z0)1J S(z4)

belonging to the first category and D5 = S(zO)LJ S(z5),

D6 f S(zo)U S(Z7)a D7 '-'-‘ s(Zo) U S(Zl)o D8 = s(Zo) (J S(Z3)

belonging to the second. The metric contents are respectively
40 and 25, both greater than 8 x 2 = 16.

Attempts were made to find a formula for the metric
content of an r-set. Though, we could explicitly write

down M(Sr (z0)), a formula for p Sr (zo) could not bel l
obtained.’ However, we were successful in obtaining an upper
bound for the same, working out along the lines of problems
1 and 2 of [55].



In the problems l and 2, the following situation
is considered. Let (P:X) denote a set P of n points

satisfying a condition X and fn(P:X) denote the number
of different distances determined by (P:X). The condi
tions X that are considered are, the points are vertices
of a strictly convex polygon etc. Several references
and a survey of related results including those in [29]
are mentioned in [55].

We asked the following question. When the condi

tion X mentioned above is that, the points are in Srl(z),
how many and what are the different distances assumed by

points belonging to Srl(z)? An answer obtained is proved
in the following lemma.

LEMMA 4.3.12. The number of distinct distances assumed

by the points of an r—set with radius rl is rl. The rl
distinct values are the even integers between o and Zrl.

PROOF. Consider Sr (zo). We know by theorem 2.4.3.that1
the points of Sr (zo) can be classified into a disjointl
union of four D-linear sets Ll, L2, L3, L4. Considerr -11 r1Ll =  1‘-"    =2   000'

10



zt = (xO,qp1yO) . Hence, d(zl,z2) = 2, d(Zl,Z5) = 4,

..., d(zl,z7) = 2rl. Thus, there are rl distinct distances

they being 2t for t = 1,2, ..., rl. Also, these values
are repeated for any two points belonging to any of the

other three D-linear sets L2, L3 or L4. Now, it remains
to prove that these are precisely the values taken by the

llO

distance function. That is for any two points zl,z2 e Srl(zO),
d(zl,z2) = 2t, t = 1,2, ..., rl. When these two points are
in the same D—linear set, the assertion has been already
verified.

rl—a2 -a2
Suppose, zl s Ll and z2 e L2 = {(q x0,q yo);

(I2  O, 1,2’ 000'  O

Then, B = d(zl,z2) = |al—l\- rl+a2\ + |rl—al+l+a2|

= [(al+a2)—(rl+l)l+ka2-al) + (rl+l)\

2' 1,2, Q90’    = O, 1, 2’ Q00,
Note that al=l, <12:-o gives 5-=2rl, <11.-=r, a2=0 gives 5:2.

Now, B is easily seen to be always even. Similarly for

all other choice of zl and 22. Thus, for any two distinct
points of Sr (zo), the distance between them will be some1



2t, for t = 1,2, ..., rl. Hence the lemma is proved.

NOTE 4.3.13. Since the distance between any two points

of S (z ) is an even integer, p S (z ) is also even.

Using the above lemma, following estimate for the
metric content of an r—set is an easy consequence.

THEOREM 4.3.14. ,1 Sr1(z) 5   where n = 41:1.

NOTE 4.3.15. Computer evaluation of u Sr (z), forl
values of rl = 1,2, ..., lO was done, which gave the
following values for p Sr (Z0). We shall denotel
p Sr1(zo) by prl. We have, pl = 12, p2 = 88, pg = 292,
P4 : 6889 P5 2 1340: P6 = 2312: P7 = 36689 P8 = 54729

pg = 7788 and “lo = 10680.

49 40
In analogy with the notion of ellipses in the

usual geometry of the plane, we consider here the notion
of E~set. Only very limited study of E-sets could be
carried out, due to lack of uniformity of distribution of
points of it in comparison with that of r-sets.

I
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DEFINITION 4.4.1. Let p,k be positive integers and

21,22 be two points of H such that d(zl,z2) = K, Then

{Z e H : d(z,zl) + d(z,z2) : p}- is called an E-set with

fixed points zl and 22 and {Z e H : d(z,zl) + d(Z.Z2)<jp}
its interior.

NOTATION. Ep’k (zl,z2) or Ep,k will denote an E—set and
Int Ep K, the interior.. 9

E3’l, E5’l are illustrated in Figure-8.

LEMMA 4.4.2. If k is odd (even) then Ep k = Q for p even9

(odd).

PROOF Consider the E—set E (z z ) where 2 — ( mlx nl )’ p,k l’ 2 1 ' q 0’q yom2 n2 m n
and z2 = (q Xo,q yo). Suppose that z =.(q xO,q yo) e Ep’k.

Then d(zl,z2) = k and d(z,zl) + d(z,z2) = p implies that

\ml-m2\ + ‘n1-n2| = k and

\m—m1\ + \n—n1l + ‘m-mg‘ + |n—n2| = p.

But there are no values for m,n satisfying simultaneously
both these equations when we assume that either p or k is

even, and the other is odd and hence Ep k = Q.9
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NOTE 4.4.5. For p = k = 1, El 1 consists of just theI

fixed points. Let k = 2. If the fixed points are in
the same horizontal (vertical) set, then E2 2 has three9

points and when the fixed points are in the set {(qmxO,qmyOl}

or {(qmxo,q”myo)} , m e Z, then there are four points in

E2’2. Thus the cardinality of E-sets when p = k heavily
depends on the location of the fixed points. This situation
is illustrated in Figure-9. Here we avoid this situation

and assume that p;>k. Regarding the cardinality of Ep,k
we have the following theorem.

THEOREM 4.4.4. The cardinality of Ep’k( z1,z2) is 2 p, if
not zero.

THEOREM 4.4.5. Consider Ep k1(zo,zl) where zl s X1 =1’

{(qmxo,yo); m e Z)". Then Epl’klf] X1 has only two points.

ml
PROOF. Consider Epl,kl(zo,zl) where 21 = (q x0,yo).
Suppose first that ml is positive. Then consider the

P1*k1

point El = (q 2 xO,yo). Since Epl’kl exist, by

lemma 4.4.2. both pl,kl are either odd or even.
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P +k1
In addition, since both pl,k1 are positive, -l§- e Z+.

NOW; €l e Epl’k1(zo,z1)?

13+ P+
F°r' d(Zo’ 51) * d(z1' g1) = "£55; “ ‘mi “ 'l§El|

= pl since ml = K1 and p1;>kl.

k1“P1
Now, if ml is negative, §2 = (q “é‘“x0,yo) satisfies all

the above conditions. Thus fil, €2, e Epl’kl(\ X1. Hence
the required cardinality is 2.

THEOREM 4.4.6. Consider Epl,k1(zo,zl) where zl e X1.

Then the cardinality of Int Epl’kl is (k1+l) + 2(n-l)[n+kl
where pl = k1+2n.. ml
PROOF. Consider Epl,k1(zO,zl) where zl = (q x0,yo) c Xi.

Since d(zo,zl) = kl, by definition of distance, there is

a path joining zo and zl containing (k1+l) points which

are points between zo, zl, e X1. So these (k1+l) points

are interior points of E k . Now, pl = kl+2n for some nPl: 1

So points on Ep,ks with fixed points zo and zl where p<;pl



will also be interior points of Ep k . Thus the number1’ 1
of interior points of

n-l
Epl,kl = (k1+1) + 2 gg& 2(kl+21)

= (k1+l) + 2(n-l)k1 + figfill)

P1“k1
= (kl+l) + 2(n—l) [k1+n] where n = —~§—- 

Hence the theorem.

NOTE 4.4.7. Above results remain true when X1 is replaced

by Y1 = {(xO,q§y0); n s Z}-, with points being different

and the cardinality same. The case when zl is any point
in H could not be solved. So are the concepts like over
lapping etc. considered for r-sets in chapter 2.

4.5. CONCLUDING REMARKS AND SUGGESTIONS FOR FURTHER STUDY

This thesis is an attempt to introduce and investigate
the analogues of some geometric concepts in the discrete
plane H and thereby to initiate the development of a discrete
geometry of H. This has been carried out to the extent
possible, as follows.

ll?



By first defining an integer valued metric on H,
and studying some metric properties of it, we considered
the notion of domains, D-linear sets, r-sets and their
characterisation. Then we introduced the idea of
discrete transformations on H. The group theoretic
properties of those which leave invariant, the propertycd‘
an r-set, it's characterisation and discrete analytic
properties are also considered. Finally, we discuss
some convexity and related concepts for subsets of H.
Naturally a metric approach is preferred. We considered
a matrix representation of domains, metric content etc.
and analogous notion in the discrete case of the concept
of ellipses of the classical Euclidean geometry.

The study mentioned in this thesis is far from
complete. Several problems are left unanswered, either
due to the lack of sufficient tools or due to certain
other limitations. Some interesting problems that we
have come across during our investigation, solutions of
which either have not been tried or could not be obtained,
are indicated below.
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Our study is mainly focussed on the metric
properties of H. Another fundamental concept of the
usual geometry is that of angles. Suitable notion
of angles and consequently the notion of conformality,
it's relation with various discrete analyticity notions
can also be considered. Some guidelines in this direction
are available in [69].

Applications of discrete transformations to the
theory of discrete integration developed in [55] can be
attempted. Discrete analogues of periodic functions
etc. can be defined in terms of the special types of
discrete transformations. Discrete transformations
taking D-linear sets onto r-sets and vice versa can be
studied. All these taken together can then be an
analogue of the classical fractional linear transforma
tions. Transformations which take r~sets onto E—sets
can also be looked into.

Among the various generalizations of convexity,
we have preferred that due to Menger in [51] and defined
D-convexity. Analogues of Helly's theorems and it's
relatives of the classical convexity theory can be
tried for D—convex sets also. Still different attempt
to define convexity in H can be made along the lines
mentioned in [17].

ll



Answer to the question, how often can the same
distance be realised by points of an r~set, may be help

ful in obtaining better estimates for u Sr (zo). Matrixl
representation and the metric content of any domain can
be discussed if a complete enumeration of domains with
n lattice points is done. Several problems of combinatorial
nature and others related to finite metric spaces mentioned
in [55] can be attempted.
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