STUDIES ON PLANKTONIC OSTRACODS OF THE NORTHERN INDIAN OCEAN

THESIS SUBMITTED TO THE UNIVERSITY OF COCHIN IN PARTIAL FULFILMENT OF THE REQUIREMENT FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

By
JACOB GEORGE, M. Sc.

INDIAN OCEAN BIOLOGICAL CENTRE NATIONAL INSTITUTE OF OCEANOGRAPHY REGIONAL CENTRE COCHIN

This is to certify that this thesis is an authentic record of the work carried out by the candidate under my supervision and guidance and that no part thereof has been presented for any other degree.

Cochin - 682016.
calul>

(C.V. KURIANF)

Dean of the Faculty of Marine Sciences,
University of Cochin, Supervising Teacher.

Professorof Marine Biology \& Oceanugraphy.
CONTENTS

			Page
INTRODUCTION	. .	-••	1
Historical	-••	...	3
Work done in the Indian Ocean	-••	-••	5
General hydrography ...	-••	-••	6
Classification	-••	...	12
MATERIALS AND METHODS	-••	-••	16
SYSTEMATICS AND DISTRIBUTION	...	-••	20
FAMILY CYPRIDINIDAE	-••	-••	20
Subfamily Cyprininae	-••	-••	20
Genus Cypridina Milne Edwards...		-••	20
C. acuminata (Müller)	-••	-••	20
C. dentata (Müller)	-••	-••	21
FAMILY HALOCYPRIDIDAE...	-••	-••	23
Terminology and General Morphology		\cdots	23
Subfamily Archiconchoecinae	-••	-••	27
Genus Archiconchoecia Müller	-••	-••	27
A. Ventricosa Müller	-••	-••	28
A. Striata Müller	-••	- .	29
Subfamily Euconchoecinae	-	-••	29
renus Euconchoecia Müller	-	-••	29
E. chierchiae Müller	-••	-•	30
E. aculeata (T. Scott)	-••	-••	31

CONTENTS (CONTD.)
Page
Genus Bathyconchoecia Deevey 33
B. deeveyae Kornicker 36
B. angeli George 36
Subfamily Halocyprinae 37
Genus Halocypria Claus 37
H. globosa Claus 37
Genus Halocypris Dana 39
H. brevirostris (Dana) 39
Subfamily Conchoecinae 40
Genus Paraconchoecia Claus 43
P. oblonga Claus 44
P. echinata (Müller) 47
P. elegens (Sars)... 49
P. discophora (Müller) 51
P. procera (Müller) 53
P. decipiens (Müller) 56
Genus Conchoecetta Claus 58
C. acuminata Claus 59
C. giesbrechti (Müller) 61
Genus Microconchoecia Claus 62
M. curta (Lubbock) 63
Genus Metaconchoecia Granata \& Caporiacco. 65
M. rotundata (Müller) 66
M. kyrtophora (Müller) 69

CONTENTS (CONTD.)

CONTENTS (CONTD.)

TABLE I a,b, \& c.	Data concerning the stations and the number of specimens obtained.
TABLE II	

APPENDICES I - VIII Published papers.

I wish to express my deep sense of gratitude to Prof. C.V. Kurian, Department of Marine Sciences, University of Cochin, Cochin, for guidance and supervision.

I am thankful to Dr. S.Z. Qasim, Director, National Institute of Oceanography, Goa, for permitting me to carry out this work at the Indian Ocean Biological Centre, Cochin and also for the facilities provided. Thanks are due to Dr. N.K. Panikkar, former Director of N.I.O., Goa and to the UNESCO Consultative Committee for permitting me to work on the IIOE material. Thanks are also due to Dr. T.S.S. Rao, Scientist-in-Charge, Regional Centre of NIO, Cochin for Pruitful discussions and valuable suggestions.

I am thankful to Dr. E.M. Poulsen, Danmarks Fiskeri-og Havundersøgelser, Denmark; Dr. M.V. Angel, Institute of Oceanographic Sciences, U.K., and Dr. E.J. Iles, Manchester University, U.K., for the facilities provided during my stay in Denmark and U.K. and also for the suggestions and guidance. I am grateful to Dr. I.S. Kornicker, Smithsonian Institution, U.S.A. and Dr. G.B. Deevey, Dalhousie University, Canada, for the generous gift of publications.

I am deeply indebted to Dr. K.G. Mckenzie, Riverine College of Advanced Education, Australia, who introduced me to the field of ostracod studies, for the facilities given at British Museum, U.K., and also for the continued interest shown during the course of this study.

I wish to thank Mr. H. Krishna Iyer, Scientist, Regional Centre, N.I.O., Cochin, for helping me in the statistical interpretation of the data.

The early marine expeditions have provided material that has made possible the establishment of the majority of species existing today. Claus (1873-1894) and wīller (1890-1912) published a series of papers on Ostracoda but limited their description to main diagnostic features. Later Skopeberg (1920, 1931), Angel (1968-1973) and Poulsen (19621973) have pablished more detailed information on their morphology.

Our information on the Indian Ocean halocyprid ostracods is mainly confined to Muiller's (1906 a) work on" Valdivia" material and Poulsen's $(1969,1973)$ work on "Dana" material which had only a few stations on Indian Ocean area.

No attempt has hitherto been mede for a comprehensive study that involves methodically collected samples from a wider area. The International Indian Ocean Expedition (1960-'65) provided samples from Indian Ocean which form the basis of this study.

During the period of this work, six months were spent in the British Museum (N.H.) and Institute of Oceanographic Scienoes in U. $\mathbb{K}_{.}$, and Zoological Maseum and Piskeri -0g Havundersogelser in Denmark, which enabled me to examine some of the type material.

In the present study the main objectives are; (1) Proper determination of the apecies of planktonic Ostracoda that occur in the area of investigation, (2) to explain the pattern of distribution, (3) to estimate their abundance and to scme extent seasonal variation, and (4) to correlate their distribution with the physico-chemical factors of the environment.

The planktonic ostracods form one of the most important groups in tropical zooplankton. One of the main objeotives of the Indian Ocean Frpedition is the study of the qualitative and quantitative distribution of planktonic organisms in the Indian Ocean. Since the ostracods constitute a large portion of the sooplankton samples, the study has become particularly important.

Planktonic ostracods of the Indion Ocean have not been studied in detail although extensive studies have been made on them Irom other oceans, particularly Atlantic. With this Fiew, the present study was undertaken, to throw some light on the systematics and distribution of planktonic ostracods in this region. This study provides information reganding the distribution of each species in the Northern Indian Ocean, especially in the Bay of Bengal which is the least explored, as far as planktonic ostracods are concerned. It may also furnish us with the data regarding the nature of ostracod production in this area, which directiy reflects on the total
productivity as they play an important role in the rapid recycling of orgenic substances, faecal pellets and even floculants. The distributional studies of this sort will also be helpful in evaluating their adaptation to physicochemical and biological environment and to know more about their commonity structure and species diversity.

Historical

Von Iime (1746) in his "Fauna Suecia" gives a species
 bivalvi" which is the ifrat superficial description of an ostracod. In the later part of 18th century a number of papers have been published which mention, among other things forms belonging to Ostracoda. During the earlier part of 19th century, a greater number of soientists studied Ostracoda, but with comparatively insignificant results.

Milne Edwaids (1840) and Philippi (1840) for the Pirst time, classified species, belonging to the sub-orier Cypmidiniformes and established the genus Cypmidina and Asterope. Most of the other works were also purely taxonomic. Strens (1821) for the first time separated ostracods from other Entomostraca as an independent group for which he give the name "Ostrapoda". Latreille in 1802 called this group "Ostrachoda" inclading ostracods in modern sense and cladocera.

He retained the same classification in his later works (1806 and 1810) but used a different name "Ostracoda". Thus the now generally accepted spelling came into use, Which Stebbing (1910) calls it a great injustice. He wrote "Ostrapoda" Straus as a synonym for Ostraoda Latreille. The name "Ostrapoda" is evidently the right name for this group. But the name "Ostracoda" has been admitted into literature so completely and used in majority of works since the rules of nomenclature does not make it absolutely necessary to use the principle of priority.

From the middle of 19 th century studies on ostracods gained considerable momentum. Nomerous works on marine. ostracods appeared, the most important of which are Baird (1850), Dana (1852), Sars (1865, 1887), Brady (1868, 1880), Claus (1873, 1874, 1876, 1891 and 1894),.Brady and Horman (1889 and 1896) and Müller (1890, 1894, 1906a, 1906b, 1908 and 1912). After the work of Minller, study of marine ostracods entered into a barren period, till the beginning of 20th century with a few exceptions like Skogsberg (1920 and 1931) and Sars (1928). Skogsberg (1920) pointed out the inadequacies of the earlier descriptions as most of them are merely confusing. His descriptions were thorough and the terminology and the classification are widely accepted. Recently, expeditions like Discovery and Dana provided material for further studies (Iles, 1953 and 1961) and (Poulsen, 1962, 1965, 1969a,

1969b and 1973). Angel (1968a, 1968b, 1968c, 1969a, 1969b, 19690, 1969d, 1970a, 1970b, 1970c, 1971, 1972 and 1973) and Deevey (1968a, 1968b, 1970 and 1974) have pablished a series of papers and re-described many species which were helpful to clear the existing confusion in taxonomy.

Work done in the Indian Ocean

Mïller (1906a) is the first author who gave a somewhat detailed report on the ostracods of the Indian Ocean based on the material collected during the round the world cruise "Valdivia" (1898-1899). Cannon (1940) has given a list of planktonic ostracods collected during John Murray Irpedition (1933-34). Recentiy Leveau (1966, 1967 and 1969), George (see appendices), Yerylal James (1972, 1973) have published papers on planktonic ostracods. Poulsen's reports (1962, 1965, 1969a, 1973) on the "Dana" material are more exhaustive reports. Indian Ocean material of the Dana Expedition was mainly from the waters off Sumatra and very few stations in the central and western Indian Ocean. Till now no detailed report on planktonic ostracods of the Arabian Sea, which is the most productive area in the Indian Ocean, and of the Bay of Bengal have been published. Indian Ocean Expedition provides the most methodically collected samples from the Indian Ocean which forms the basis of the present study.

General Hydrograghy

The Indian Ocean is the only major ocean having a land locked northern boundary, lying approximately along the Tropic of Cancer, with the southern end open to the Antartic Dcean. It is almost an enclosed area with the African continent on the west and the Eastern Archipelago on the east. It is connected to the tropical Pacific through the Malacca Strait between Fastern Archipelago and Australia. Iand mass of Asia closes the northern end of the Indian Ocean resulting in an oceanic system with at its closed end fed by large rivers of middle east and also from India and Pakistan flowing into the Arabian Sea and those of India, Bangladesh and Burma into the Bay of Bengal carrying fresh water and sediments. Although the Indian Ocean is about $74,917,000 \mathrm{~km}^{2}$ and covers about 14 percent of the earth's surface, it is still the least known of the three major oceans.

A new phase of oceanographic research was initiated by the "Challenger" Expedition in 1873, organized for the firgt time to make complex oceanographic surveys. Until 1957, Indian Ocean exploration had been carried out independantly by national governments or private institutions. In that year, the idea for international cooperation and large scale oceanographic study was considered which resuited in the International Indian Ocean Expedition.

During the preparation of the atlas on the physical oceanography of the Indian Ocean a comprehensive analysis of its oceanographic conditions have been undertaken to interpret the structure and circulation of the Indian Ocean, which is in many ways different from the other oceans.

The surface water of the Arabian Sea generally ocoupies a layer from the surface to a depth of about $100-150 \mathrm{~m}$. The average surface temperature ranges from $20^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ varying according to seasons. The highest surface temperature in the Indian Ocean excluding Red Sea and Persian Gulf is found in the northern parts of the Arabian Sea during summer. In winter, the surface temperature, here, drops down to $22^{\circ} \mathrm{C}$. The sumar monsoon causes apwelling and the flow of the relatively cool water of the Somali ourrent along the African and Arabian coasts, which reduces the surface temperatures along these coasts. The salinity values are quite high in the Arabian Sea. In the surface layer it varies from 35.8-36.5\%0 as a result of high temperature which causes evaporation.

The sub-aurface water in the Arabian Sea, which is found imediately below the suxface layer to a depth of about 400 m , is formed from the waters of the gulfs of Aden and Oman, and in the adjacent parts of the Arabian Sea, by mixing with the Red Sea and Persian Gulf waters with the surface water of the Arabian Sea. This water spreads through the entire northern part of the Indian Ocean and is bounded near the
equator by a zone of upweliling South Indian Ocean Intermediate water. The temperature in the Arabian Sea sub-surface water varies from 10 to $19^{\circ} \mathrm{C}$ and the salinity ranges from 35 to greater than 36\%o which decreases with distance away from the formation sources near the Persian Gulf and Red Sea, Which has a salinity of greater than $39 \% 0$.

The Intermediate water comes into the Arabian Sea at depths of $400-600 \mathrm{~m}$ and fills a layer up to 1500 m . The temperature ranges from 4 to $13^{\circ} \mathrm{C}$ and salinity 35 to $36.5 \% 0$ decreasing downards.

The Arabian Sea deep water is f ormed as a result of mixing of Arabian Sea Intermediate water, South Indian Ocean Intermediate water and Indian Ocean bottom water. The temperature is higher than $2^{\circ} \mathrm{C}$ and salinity ranges from 34.68 to 34.78\%0.

The Tropical sub-surface layer of minimum oxygen is nost pronounced in the Arabian Sea. This layer is usually found in the northern part of the Arabian Sea at a depth of 75 m , but towards the equator it descends to a depth of 150 m. The layer of oxygen minimum is most pronounced off Bombay at a depth of 50 metres (Schott, 1935). The origin of this layer in the Arabian Sea is not fully understood but it is associated With the high salinity and high temperature (Gallagher, 1966) which accoriling to many authors originate from Red Sea and Persian Gulf.

Another peculiarity of the sea is the reported existence of $\mathrm{H}_{2} \mathrm{~S}$ in the Intermediate waters over an extensive area (Berrakov, 1961). However this needs further confirmation.

The suxface water of the Bay of Bengal occupies a lajer up to a depth of 100 to 150 metres. La Fond (1958) has divided the western part of the Bay into three distinct water masses, which migrate seasonally according to monsoon circulation. They are, northern dilute water, transition water and southern Bay of Bengal water. The range of temperature in the Bay of Bengal in the surface water is found in the northern part as $23^{\circ} \mathrm{C}$ to $29^{\circ} \mathrm{C}$ which is not as great as in the Arabian Sea. Minimum value for salinity is also found in the northern part to a monthly average of less than $20 \% 0$ and maximum value in the offshore water of Bay of Bengal does not usually exceed 34\%o.

The sub-surface water of the Bay of Bengal is found below the surface waters as the result of mixing between high salinity waters from the Arabian Sea and the north Indian Ocean deep water. The temperature ranges between 5 to $15^{\circ} \mathrm{C}$ and salinits 34.1 to $35 \% 0$.

The deep water spreads into the Bay of Bengal at depths greater than 1500 m. Arabian Sea Intermediate water and Indian Ocean Bottom water and Antaric Bottom water contribute to the formation of this water mass. The temperature
is between $1.6^{\circ} \mathrm{C}$ and $2.8^{\circ} \mathrm{C}$ and salinity 34.68 to $34.78 \% \mathrm{o}$.
Wyrtki (1973) has delineated 3 distinct circulation systems for the Indian Ocean (1) The seasonally changing monsoon gyre, (2) The south hemispheric subtropical anticyclonic gyre and (3) The Antartic waters with Circumpolar Current. Since the last 2 systems are essentially similar to the corresponding systems in the other oceans and since the present study includes only Northern Indian Ocean, the seasonally changing monsoon gyre alone is discussed here.

Surface currents of the Northern Indian Ocean as a whole is initiated by the monsoon winds. During the SW mansoon the currents are easterly in a clockrise direction and daring NE monsoon the ourrents are in a westerly and in a counterclockwise direction. The easterly and westerly directions are direct monsoon currents and clockwise and counter-clockwise directions are set during transition periods (Gallagher, 1966).

The SW monsoon begins by April when the water starts flowing north along Somalia and by May, north of equator, water starts flowing east. In July Somali current comes to its peak, the countercurrent shifts north and together with the monsoon current forms'a broad eastward flowing current. South Equatorial Current becomes stronger and most of its water turns north into Somali Current. Off Sumatra the monsoon current crosses the equator and turns into the South Equatorial Current. These 3 currents, South Equatorial Gurrent,

Somali Current and monsoon current form a strong gyre in the equatorial Indian Ocean.

During NE monsoon period, the circulation undergoes a complete change. The water movements to the north of Equator are from east to west, starting in November and ending in April with its peak in February. From November to January a strong branch of this current turns north and flows along the west coast of India carrying low salinity waters from the Bay of Bengal. The NE monsoon drift which is shallow having little influence below the thermocline depth turns south, off the coast of Somalia crosses the equator and forms the Equatorial Countercurrent which at its western origin draws water from the South Equatorial Current also. The countercurrent at its eastern end continues to the southeast or turn directly to the South Equatorial Current or some part of it returns to the monsoon drift (Wyrtici, 1973).

Connected with these seasonalif changing monsoons are extensive areas of apwelling at Somali and Arabian coasts (Currie et al., 1973) and also along the eastern margins of Arabian Sea (Banse, 1968), imaing the Arabian Sea a very mach fertile area during SW monsoon. Upwelling along the east coast of India according to many authors exists from March to May (Jayaraman, 1965). However, the high productive conditions observed in the waters, off west coast of India have not been encountered in the east coast.

Clamaifioation

Baird (1850) was the first to divide this group into familiea viz. Cypridae, Cytheridae and Cypridinidae. Dana (1852) divided Ostracoda into 2 fanilies viz. Cymidae and Halocypridae, which areagain subdivided into families. Frmily - Halocypridae comprises subfamilies Cypridininae and Halocyprinae. Halocyprinae comprises 2 genera, Halocypris and Conchoecia. The classification by Dana forms the basis of the present system of classification of Ostracoda.

Classification put forward by Sars (1865) is mainly based on that of Dana (1852). It is important in that the terms he used for the groups are widely used. He divides Ostracoda into 4 sections. Section I - Podocopa, comprising Cypuidae and Cytheridae, Section II - Kyodocopa comprising Cypridinidae and Conchocdiae, Section III - Cladocopa comprising the family Polycopidae and Section IV - Platycopa comprising the family Gytherellidae.

Müller (1894) classified Ostracoda into 2 tribes:
Tribus I - Myodocopa, comprising Cypridinidae, Halooypmidae and Polycopidae and Tribus II - Podocopa, comprising Cypridae, Nesideidae, Cytheridae, Cytherellidae and Darwinulidae. Muller's system is a modified form of Sars' classification, where four sections, are united to form 2 tribes.

Claus' (1876) classification is of an entirely different pattern. He treated Cypridinidae, Halocypridae, Cypridae and Cytheridae as equivalent families.

The classification of Ostraooda by Skogeberg (1920) modified by Poulsen (1962, 1969a, 1973) is widely accepted. The order Ostracodats divided into 5 suborders. Suborder I Cypidiniformes, Suborder II - Halocypriformes, Suborder III Polycopiformes, Suborder IV - Cypriformes and Suborder V Cytherelifformes.

SUBORDER CYPRIDINIFORMES

Cypidiniformes is divided into 4 fanailies nemely Cypridinidae, Rutidermatidae, Sarsiellidae and Asteropidae. Family Cypridinidae is divided into 2 sub-families Cypridininae and Philomedinae.

The subfamily Cypridinidae Müller includes 19 genera:
Genus Gigantocypris Mailler
Genus Macrocyoridina Skogsberg
Genus Dolaria Skogsberg
Genus Paradoloria Poulsen
Genus Skogsbergia Poulsen
Genus Vargula Skogsberg
Genus Paravargula Poulsen
Genus Bathyrargula Poulsen

Genus Melavargula Poulsen
Genus Hadacymidina Poulsen
Genus Pterocymidina Poulsen
Genus Paracymidina Poulsen
Genus Siphonostra Skogsberg
Genus Amphisiphonostra Poulsen
Genus Cypridina Milne Edwards*
Genus Monopia Claus
Genus Cyprinoides Brady
Genus Codonocera Brady
Genus Azygocypridina Syivester-Brady

* Only Cypridina Milne Edwards is mesent in the Indian Ocean Expedition material.

SUBORDER HALOCYPRIPORMES

Suborder Halocypriformes comprises Family Thaumatocypridae and Halocyprididae. Femily Thaumatocypridae has only the species Thamatocypmis echinata mïller.

Family Halocyprididae oomprises 4 subfamilies:

1. Subfamily Archiconchoecinae

Genus Archiconohoecis Müller
2. Subfamily Euconchoecinae

Genus Euconchoecia Miller
Genus Bathroonchoecia Deevey

3. Subfamily	Halocyprinae
Genus	Halocypris Dana
Genus	Halocypria Claus
Genus	Fellia Poulsen
4. Subfamily	Conchoecinae
Genus	Paraoonchoecia Claus
Genus	Conchoecetta Claus
Genus	Microconchoecia Claus
Genus	Metaconchoecia Granata \& Caporiacco
Genus	Orthoconchoecia Granata \& Caporiacco
Genus	Gansicia Poulsen
Genus	Platyconohoecia Poulsen
Genus	Spinoecia Poulsen
Genus	Conchoecia Dana
Genus	Loricoecia Poulsen
Genus	Fseudoconohoecia Claus
Genus	Mollicia Poulsen
Genus	Boroecia Poulsen
Genus	Paramollicia Poulsen
Genus	Conchoecissa Claus
Genus	Alacia Poulsen
Genus	Conchoecilla Claus

MATERIALS AND METHODS

The present study is based on the analysis of plankton samples collected during the International Indian Ocean Expedition (IIOE). Indian Ocean Biological Centre, Cochin was established in 1962 to receive the plankton samples and to sort them into various taxonomic categories. In the beginning of the IIOE, owing to lack of a standard gear, different types of nets have been used. When the Indian Ocean Standard Net (IOSN) was apecially designed (Currie, 1963) all the participating vessels used the same. IOSN has a mouth area of one square metre and a total length of 5 metres. The straining surface is nylon gange of mesh width 0.33 ma. Collections were taken in a vertical haul of 200 m to the surface. The major part of the samplings were made during 1962-'64. The station list has been pablished (IOBC, 1969). Alongwith the plankton samples temperature and salinity data fram standard depths were also obtained. The temperature, and salinity ranges given under each speaies are the maximum and minimum observed from 200 m to 0 m (IOBC, 1971).

The zooplankton samples received at IOBC was subiected to the following treatment. The displacement volume was found out. The larger organisms and fish eggs and larvae were first removed from the total sample. Thea the rest of the
sample was sub-sampled either by Leas plankton fractionator (Wiborg, 1951) or by Folsom plankton splitter (Mo Ewen et al., 1954). Three to 5 ml was taken for sorting into various taxa. The sorted taxa preserved in 4% formalin was made available to specialists.

Out of the ostracod taxa thus made available, 712 samples collected from the Northern Indian Ocean forms the basis for the mresent study. The distribution of ostracods based on their numerical data has been pablished (IOBC, 1972 See Appendix V). Besides dealing with the distribution pattern of the various species, short notes on the morphological peculiarities of the specimens in the collections are also given.

Eventhough there was standardisation in the oollection method, there was no uniformity on fixation and preservation. The condition of the samples was not good in a few cases. It is observed that, preservation in formalin for a long period will cause the pigmentation to disappear.

For distribution and abundance studies, collections are compared on the basis of catch per unit standard haul, because the wire angle was not recorded in most cases and no flow meter was used to measure the volume of water filtered.

A few drawbacks of the collection method adopted are worth mentioning; (1) IOSN may tend to clog when the wire angle is high (Tranter and Simith, 1968), (2) there was no flow meter attached, (3) limitation of the depth of haul to 200 making the day hauls incomplete for most of the migratory species and (4) the uneven distribution of stations.

In spite of the above drawbacks the IIOE is the first expedition to have such wide coverage for biogeographical stadies.

The classification and terminology followed in this study is that of Skogsberg (1920) and Poulsen (1962, 1969a, and 1973).

The data for the 10 common species were subjected to statistical analysis using Students 't'. The abundance figures were converted to their log values for the purpose of analysis. The formula used for comparison of the means of the two seasons as well as day and night was:

$$
t=\bar{x}_{1}-\bar{x}_{2} / s \sqrt{\frac{1}{n_{1}}+\frac{1}{n_{2}}}
$$

where n_{1} and n_{2} are number of observations, \bar{x}_{1} and \bar{x}_{2} are the means and S is the combined S.D. calculated by the formula $S^{2}=\sum x_{1}\left(x_{1}-\bar{x}_{1}\right)^{2}+\sum x_{2}\left(x_{2}-\bar{x}_{2}\right)^{2} / n_{1}+n_{2}-2$. The degrees of freedom of this ' t ' is $n_{1}+n_{2}-2$. The values of mean, combined standard deviation, the 't' values
and their respective degrees of freedom are given in the tables II - IV. Since the environmental conditions for Arabian Sea and Bay of Bengal are different, their values are treated separate. Only 10 of the more common species were thas studied. The other species did not provide enough representative samples for application of statistical methods worthwhile.

SYSTEMMATICS AND DISTRIBUTION

SUBORDER CYPRIDINIFORMES Skogsberg, 1920
FAMIIY CYPRIDINIDAF Brady and Norman, 1896
Genus Cypridina Milne Edwards

Cymidina Milne Fdwards, 1840.
Pyrocypris Mäller, 1890, 1906b and 1912.
Cymidina Poulsen, 1962.
The diagnosis of this genus is given by Poulsen (1962). Only 2 species of this genas were encountered in IIOE material.

Ker to the species (IOF) of the genus Cympidina:
Rostrum rounded anteriorly, Second furcal claw
separated from lamella - acuminata
Rostrum acute, second furcal claw united
with lamella - dentata

Cypmidina acumanata (G.W. Müller) (Map XVII)

Pyrocypris acuminata Müllex, 1906b and 1912.
Cymridina acuminata Poulsen, 1962.

Locality:- Station: $\mathrm{Va} 1768-20^{\circ} 00^{\prime} \mathrm{N}, 71^{\circ} 45^{\prime} \mathrm{E}-21$ specimens.

This species is distinguished by its well rounded rostrum. Detailed description is given by Poulsen (1962).

Distribution:- Reported earlier from the Indonesian Sea. In the present material this species was obtained only from a single station off Bombay, where the salinity was $35.6 \% 0$. No data on temperature was available.

Cymidina dentata G.W. Miller
(Map XX)

Prrocymis dentata Müller, 1906b and 1912.
Cypridina dentata Poulsen, 1962.
Localities:- Numerous atations (See Table I).
Description is given by Poulsen (1962). The length of the carapace was $1.6 \mathrm{~mm}-2 \mathrm{~mm}$ in the present material.

Poulsen observed one epipodial bristle on sixth limb for this species. Present material showed variation of having one or two bristles in different specimens or sometimes single specimen having one bristle on one side and two on the other side.

Mäller (1890 and 1906b) has described a momber of species belonging to his genus Pyrocypris, descriptions being incomplete and in many cases referring to classification and pigmentation of the carapace. These characters would be of little use when dealing with specimens preserved in formalin for a long time. This state of matters has created a little bit uncertainty in.
the identification of this specisa. However a careful examination of the present material does not show any marked disagreement with the description of C. dentata (Poulsen, 1962 and Muller, 1906h), eventhough the remote possibility of it being C . chierchiae, an incompletely described species cannot be totally ruled out.

Distribution:- Poulsen (1962) reported this species from the southern Bay of Bengal and Malayan Archipelago. In the IIOB material it was found to be the most abundant planktonic ostracod in the Arabiem Sea. In Bay of Bengal it was present only in a few stations. Statistical analysis showed significant (0.1% level) seasonal variations, being more abondant during NE monsoon period. Day and night variations were found to be not significant. Although this species was found to occur at a wide salinity range, they were abundant only in areas where salinity values exceeded 34\%0. The maximum number of specimens, about 20,600 /haul was encountered off Cochin ($10^{\circ} 29^{\prime} \mathrm{N}$ and $75^{\circ} 31^{\prime} \mathrm{E}$) where temperature and salinity of the sarface layer vamied from $14.3^{\circ} \mathrm{C}-28.8^{\circ} \mathrm{C}$ and $34.9 \% 0-$ $35.8 \% 0$ respectively. Possible range in temperature $10.1^{\circ} \mathrm{C}$ $30.4^{\circ} \mathrm{C}$ and salinity $30.1 \% 0-37.4 \% 0$.

FAMIIY HALOCYPRIDIDAE

Texminology and general moxphology

Halocyprids are characterised by the presence of a bivalve shell having an antennal notch, seven pairs of appendages, and the presence of a frontal organ in most of the species.

Carapace:- In most cases a rostral incisur is present on the anterior edge. Valves of the carapace are joined together along the dorsal edge, which is almost straight in majority of cases. Other margins are rounded or straight.

Sculpture of the carapace in many cases are weak, especially in the preserved material. Selvage is present and runs slightly away from the margin and almost parallel to it, except on anterior margin where it comes closer and at the rostral incisur it runs on the margin itself. Close to the margin of the shell there are nomerous glandular cells. A number of them are concentrated in large groups and open by a common pore. Mäller (1906a) has conveniently described them as "Onsymmetrichen Drusen", "lateralen Eckdrusen" and "Dorsalen medialen Drusen", the location of which are characteristic in many species. Whether the secretion of the gland helps in inmobilizing the prey is yet to be determined with certainty.

Terminology used here is that of Mailler (1906a). Gland groups are referred to as "asymetric glands", "lateral glands" and "dorso-medial glands".

First antenna:- This limb is considered tobe a sensory organ. Since it shows sexual dimorphism in majority of species it is quite possible that it has some secondary function.

Stim of the first antenna is considered as consiating of 5 to 6 or 7 segments (Poulsen, 1969a). The segmentation in many cases are indistinct. The number, shape and size of the bristles, present on this appendage varies considerably within the family. The thin walled, hyaline bare filaments, in most cases are shorter and rounded distally.

Bristles of the first antenna are termed ' a ', ' b ', ' c ', ' d ', ' e ' bristles from proximal to distal position.

Second antenna:- This always shows sexual dimorphism, and is more developed in male. Protopodite is large and bare. Expodite is almost same in both sexes. First segment is long and has a short bristle. Fight distal segments are short and provided with natatory bristles. Fndopodite is comparatively short, with often 3 segments in male and 2 in female. First segment is provided with 2 short pointed bristles and second and third segmenta together carry 5 long bristles of which some are developed as sensory filaments. A clasping organ is present on the endopod of male.

The 2 bristles on the first joint are called ' a ' and ' b ' bristles. Two long bristles of the second joint are 'f' and ' g ' bristles and small spine like bristles which in same cases absent are called ' c ', ' d ', and ' e ' bristles. The three bristles of the end joint are ' h ', 'i' and ' j ' bristles.

Mandible:- Almost similar in both sexes. Protopodite-Pars incisiva of coxale is furnished with broad triangular processes. In addition 2 rows of teeth, which are called proximal and distal tooth list. Proximally of the tooth lists is a cushion like masticatory pad provided with spines or hairs. Basale endite with 6 broad teeth and 2 other tube bristles. The number and positions of the bristles are subject to variation. Epipodial appendage, if present, is small and verruciform process provided with a single bristle. Bropodite has also a single bristle except in Platyoonchoecia on which it is somewhat leaf like. Fndopod consists of 3 segments, bristles of which are subject to alight variation.

Maxila:- This appendage has no sexual dimorphism. Endite on the precorale have from 6 to 10 bristles and carale 12 to 18. These bristles are subject to slight variation and have great constancy within the species. Basale forms a lobe like part provided with a single bristle. Fndopod with 2 segments. First segnent with 4 to 6 bristles on the anterior edge and 2 to 4 on posterior edge. In adition there is a single
bristle on the inside of this segment. Find segment with 5 or 6 bristles.

Fifth limb:- No sexual dimorphism present. Epipodial plate with marginal bristles arranged in 3 groups, with a slight variation in the nomber of bristles. Protopodite with traces of 2 endites. Exopodite has always 3 joints. First segment with slightly varying number of bristles. Ventrally, one long bristle dorsally and one or two laterally. Second segrent always with 3 bristles.

Sixth limb:- With or without sexual dimorphism. Epipodial plate similar to that of the 5th limb with only slight variation. Findopodite with one or two bristles. Bropodite with the 3 proximal joints rather long with bristles. End segment with 3 bristles.

Seventh limb:- Exhibits no sexual dimorghism, consists of 3 articles, in a ome cases often fused into a single segment. Fnd segment with 2 sub-equal bristles.

Copalatory limb:- This comparatively large organ is present in male and situated on the left side and is directed downard and forward. Near its posterior edge runs the vas deferens which opens almost at distal point.

Farca:- With no sexual dimorphism. Furcal lamellae are not clearly separated from the body. Strong or weak claws which slightiy bent or straight are arranged on the lamellae. These olaws gradually decrease in length posteriorly. Number of claws shows slight variation, 6 to 8 were observed on the species examined. Behind the furcal claws there is often an unpaired bristle.

Frontal organ:- With or without semal dimorphism. In Bathyconchoecis it is mach reduced or absent.

PAMIIY HAIOCYPRIDIDAE

Sey to the subfamilies of Halocymididae

1. First antenna terminally with 5 bristles............. 2
2. n more than 5 bristles............. 3
3. First segment of endopod of second antenna with processus mamililaris Conchoecinae
4. This segment without processus mammillaris.. Halooyprinae
5. First antenna, terminally with 6 sensory bristles

Archiconchoecinae
3. This with more than 6 sensory bristles....... Buconchoecinae

SUBRAMIII ARCHICONCHOECINAE
Genus Archioconchoecia G.W. Müiler
Archiconchoacia Müller, 1894, 1906a and 1912.
Archiconchoecia Poulsen, 1969 a.

Poulsen (1969a) has given the diagnosis of the genus, based on A. cucullate and A. rentricosa. A. striata was not present in 'Dana' material. From the present studies it is olear that A. striata with its less developed rostrum, less number of bristles on appendages and 6 pairs of claws of furca stands separate within the gemus.

Eey to the species (IIOE) of Arohiconchoecia

Purce with 6 parrs of claws A. striata
Farca with more than 6 pairs of claws and ventral margin concave................ A. Ventricosa

Archiconchoecia ventricose G.W. Müller

(Map XVII)
Archiconchoecia rentricosa mizller, 1906 a and 1912. Archiconohoecia Ventricosa Poulsen, 1969a.

Iocalities:- Stations Di $5267-06^{\circ} 44^{\circ} \mathrm{N}, 57^{\circ} 59^{\circ} \mathrm{F}$ - 1 specimen Ar $37-06^{\circ} 26^{\prime}$ N, $49^{\circ} 46^{\prime}$ E - 1 specimen.

Only damaged specimens were available and hence no supplementary description is given here.

Distribution:- Reported earlier Irom the Indian, Atlantic and Pacific Oceans (Müller, 1906a; Poulsen, 1969). It was observed only at two stations from the equatorial region of the Arabian Sea. Salinity and temperature values for these stations ranged between 35.1\%o-35.5\%o and 13.9 ${ }^{\circ} \mathrm{C}-27.8^{\circ} \mathrm{C}$.

Archiconchoeeia striata Maller

Description of this species has been given by George (in press - see appendix VII). Angel (per. comm.) feels that I- Atriata is neotenous and has two fewer juvenile stages than other halocyprids as evidenced by the lesser number of furcal claws.

SUBFAMIIY EUCONCHOECINAE

Key to the generglof gubtamily Enconohoecinae

Pirst antenna with a group of 100-250 sensory filaments

Bathrconehoecia
Pirst antenas with about 20-30 sensory filements

Eaconchoecia

Genus Buconchoecia G.W. Mïller

Huconohoecia (Part) Mïller, 1890, 1906a and 1912.
Enoonohoecia (Part) Skogsberg, 1920.
Euconchoecia Poulsen, 1969a.

Most important diagnostic character is the presence of 20-25 sensory filaments on the first antenna. The genus includes 2 apecies, E. chierchiae and E. aculeata, both present in IIOE material.

Key to the species of genas Euconchoecia

Frontal organ longer than first antenna......... E. aculeata
Frontal organ not longer than first antenna..... E. chierchiae

Baconchoecia chierchiae, G.W. Müller
(PI. VII, Fig. $24-25$ and Map XVII)
Faconchoecia chierchiae Mäller, 1890, 1906a and 1912.
Euconchoecia ohierchiae Skogsberg, 1920.
Khconchoecia chierchiae Deevey, 1968a.
Enconchoeoia chierchiae Poulsen, 1969a.
Localities:- See Table I_{i}^{a}
Detailed description of the species is given by Skogsberg (1920).

Carapace:- Length varies Prom 1.2 to 1.5 mm . Posterodorsal cormer of right valve with moderately long spine and left one with a minute spine, the type reproduced by Skogsberg (1920, Fig. CII VIII, 4) and rostrum broad and rounded.

Copulatory limb:- It is slightly different in shape to what is shown by Skogsberg (1920), anterior margin is straight and posterior margin convex.

Frontal organ:- Uniformly thin with a pointed end reaching the disto-dorsal boundary of the second segment.

Kemarks:- Skogsberg (1920) did not include Miller (1906a), in his list of synonyms, becanse he doubted that Mäller had combined and confused two closely related forms. More over, the shape of female specimens of Müller (1906) and Skogsberg (1920) are slightly different. In the present specimens, shape of the female, and the length of frontal organ are more similar to Nuller's figarea. Careful examination of the appendages of the present specimens do not show any remarkable difference to descriptions of Skogsberg (1920). Considering all these factors, E. chierchiae, Miller (1906a) is also included as a synonym.

Distribution:- Distributed over all the oceans (Müller, 1906a, Poulsen, 1969a). In the Arabian Sea, it was present mainly off Somali coast and in the Gall of Aden. In the Bay of Bengal it occurred in the Malacca Strait, and also in Andaman Sea in large numbers (3056 specimena/haul) at random stations. Possible renge in temperature $24^{\circ} \mathrm{C}-29^{\circ} \mathrm{C}$ and salinity $32.4 \% 0-33.8 \% 0$.

Buconchoecia aculeata (T. Scott)
(PI. VII, Pig. 19-23 and Map XVIII)

Haloovpris aculeate Scott, 1894.
別c cnchoeoia acnleata miller, 1906a and 1912.
Enconohoecia aculeata Poulsen, 1969a.
Localities:- Numerous Stations. See Table I_{i}^{a}

Deseription:-

Carapace:- Length 0.95 mm to 1.15 mm in male and 1.15 mm to 1.45 mm in female. Shape of the oarapace is similar to that is shown by Müller (1906a).

The appendages are similar to F . Chierchiae. But the frontal organ is longer over-reaching the stem of the first antenna.
gemarks:- Longer forms of female, which according to Müller (1906a) belonging to E. aculeata var. elongata were present in fair numbers. There are no morphological differences for considering it separately. Poulsen (1969a) observes, that it is possible for it to exist in the female sex only.

It is interesting to compare this aituation with that of S. parthenoda. When Müller (1906a) created it he thought that it existed only in female form, and reproduce by parthenogenesis, which is evident from the name itself. Deevey (1969a) and Angel (1969d) described the males of S. parthenoda which is very close to C. Eagna with which many previous authors might have confused S. parthenoda.

The possibility of confusing males of S. aculeata var. elongata if present with any other speoies is very remote. I feel that it is the same species with a wider range of shell length or as Poulsen (per. comm.) has stated that it may be the result of post maturity moults.

Distribution:- This species was recorded fram the Indian, Atlantic and Paoific Oceans (Kuller. 1906a. Hartmann. 1959 and Poulsen, 1969a). It was found to be the most widely distributed and the most abundant halocyprid ostracod in the Northern Indian Ocean. Its wide range of tolerance in salinity seems to promote its distribution. The maximum nomber of $11,000 / \mathrm{haul}$ were observed in a station $13^{\circ} 03^{\prime} \mathrm{N}$ and $50^{\circ} 00^{\prime} \mathrm{N}$ where temperature and salinity values were 16.3 to $25.3^{\circ} \mathrm{C}$ and 35.5% to $36 \% 0$. Statistical analysis does not show any significant diumal variations. Seasonal variations were significant (5\% level) only in Bay of Bengal, more abundant during $N E$ monsoon period. Possible range in temperature $10.2^{\circ} \mathrm{C}-30.5^{\circ} \mathrm{C}$ and salinity 31.1\%0-37.4\%0.

Genus Bathyconchoecia Deevey

Bathrconchoecia Deevey, 1968a. Bathroonchoecia Poulsen, 1969a.

Two species of Bathyconchoecia viz. B. deeverae and B. angeli are present in IIOF material. Presence of large number of ($100-300$) sensory filaments on the first antenns is the most important diagnostic character of this genus.

George (1967) has reported the occurrence of Grubea 18cunosa in the Arabian Sea. The genus name Grubea was given by mistake. Poulsen (per. comm.) intended to use this genus name at one time but abandoned the idea as Deevey (1968b)
published the genus Bathyconchoecia. The specimen, belonging to probably B. Iacunosa, are not good enough for tax onomic studies and hence left out in the present study.
Key to Bathrconchoecia species (modilied from Poulsen, 1972)

1. Shell with long rostral, lateral, dorsal and posterior spines 2
2. Shell without mach spines 3
3. Shell surface covered with fine 'hairs'.....septemspinosa
4. Shell surface without 'hairs' deeverae
5. Right dorso-posterior shell cormer with point or spine 4
6. Right dorso-posterior shell corner without point or spine 9
7. Each half of male rostrum bifid .dareythompsoni
8. " " " " simple 5
9. Posterior glands open in notahes or level with shell edge, 6
10. Glands open on rounded processes 7
11. Posterior carapace margin with denticles sagittarius
12. No such denticles arotica*
13. Adult length $>4 \mathrm{~mm}$ dareythomesoni
14. n n $<4 m m$ 8
15. First segment of antenna 1 withventrolateral bulgecrosneri
-:35:-
16. Ho such bulge aubzufa
17. Adult length >4 ma 10
18. \quad n <4 mm 11
19. Posterior carapace margin with denticles...foveolata
20. " " " 日mooth .baskiae
21. Iength of adults $<1.5 \mathrm{~mm}(1.0-1.5 \mathrm{~mm})$ 12
22. " " $>1.5 \mathrm{~mm}(1.6-2.5 \mathrm{~mm})$ 15
23. Both posterior dorsal corners of carapace produced into blunt processes nodosa
24. No such processes 13
25. Posterior dorsal carapace corners
sharply right angled, height $55-60 \%$ length...laqueata
26. Posterior darsal carapace corners rounded height 70% of length 14
27. Rostrum margiy bent ventrally, shoulder vauibs not prominent Iatirostris
28. Rostrum strongiy bent ventraliy, shoulder vanits prominent paulula
29. Shell not strikingly sculptured, though punctuation may be present galesta
30. Shell with covering of vertical striations..arctica*
31. Shell strikingly covered with polygonal cells with pits 16
32. Shell sculpturing prolonged as a flange along the posterior margin below the gland openings kornickeri

16. No such flange
 17
 17. Rostrum clearly bent ventrally
 1acunosa
 17. n barely
 "
 angeli
 * B. artioa has a minute spine and so is keyed out on both sides.

Bathrconchoeoia deeverae, Kornicker(Map XVII)
Bathyconchoecia deeverae Kornicker, 1969.
Bathrconchoecia deeverae George, 1971.
Iocality:- Station Co $62-10^{\circ} 39^{\circ} \mathrm{N}-75^{\circ} 22^{\prime} \mathrm{E}$ - 1 specimen
The only male specimen obtained so far, is from IIOS
material, the description of which is given by George (1971).(See appendix II).
Bathrconchoecia angeli, George (Map XVII)Bathyconchoecia angeli George (in press).Locality:-Station Ki $519-06^{\circ} 36^{\prime} \mathrm{N}, 98^{\circ} 03^{\circ} \mathrm{E}-1$ specimen.The description (see appendix VI) is based on a singlefemale specimen.

SUBFAMILY HALOCYPRINAE Claus

Key to the genera of subfamily Halocyminae

1. Carapace with spines or processes Pellia
2. Carapace without spines or processes 2
3. Rostrum well developed Haloovpria
4. Rostrum low and flattened Halocypris
Genus Halocypria Claus

Halocympia Claus, 1874 and 1891.
Halocypmis (part) Mäller, 1906 a and 1912.
Halocypris (part) Skogsberg, 1931.
This genus includes only one species H. globosa.

$$
\frac{\text { Halocympia globoss Claus }}{\text { (Map XVII) }}
$$

Halooymia globosa Claus, 1874 and 1891.
Halocypis globosa Müller, 1906a and 1912.
Halocymis globosa Skogsberg, 1931.
Halocypris globosa Deevey, 1968a.
Halocypria globosa Poulsen, 1969a.
Iocalities:- Station Ar $47-08^{\circ} 53^{\prime} \mathrm{K}, 53^{\circ} 09^{\prime} \mathrm{E}-80$ speoimens
Di $5267-06^{\circ} 44^{\prime} \mathrm{N}, 57^{\circ} 59^{\circ} \mathrm{E}-2$ "
Ki $360-00^{\circ} 14^{\circ} \mathrm{N}, 86^{\circ} 06^{\prime} \mathrm{E}-10 \quad$ M
Me $126-05^{\circ} 44^{\circ} \mathrm{N}, 49^{\circ} 30^{\circ} \mathrm{E}-22$ ท

Description of Female:

Carapace:- Length 2.0 mm in all the adult specimens examined. Dorsal margin more or less straight, other margins rounded. Rostrum broad and pointed and bent ventrally.

First antenna:- Similar to the type described by Hüller (1906a) with a longer darsal bristle on the second segment.

Mandible:- Toothed edge of coxale with 10 teeth - anterior most tooth broad and flat, followed by 8 pointed teeth of which the distal ones are smaller; posterior-most tooth is bigger and pointed. Distal tooth list with 1 large and about 15 smaller one. Proximal tooth list is slightly narrower than the distal list with about 6 teeth of different size.

Furca:- Poulsen (1969a) described it having 7-8 claws. But all the adult specimens examined by me had 8 pairs of clawe: Unpaired bristle present.

Frontal organ:- Proximal part is bent at an angle with the distal part as shown by Müller (1906a). Proximal part is straight and uniformily thick with a rounded end. This part has a weak suture, a little proximally of its middle.

Remarios:- Males of H. globosa are rare which is evident from the fact that Claus (1874, 1891) and Skogsberg (1931) described only females and Müller (1906a) had only one male. H. globosa as such is exceedingly rare in IIOE material and males were not observed.

Distribution:- Poulsen (1969) reported this species to be most frequent in the tropical parts of all the oceans. In the IIOE material this species was very rare, present in the equatorial region where the temperature and salinity ranges are $13.3^{\circ} \mathrm{C}$ $29^{\circ} \mathrm{C}$ and $33.380-35.6 \% 0$.

Genus Helocymis Dana

Halocypris Dana, 1852.
Halocypris Mïller, 1890.
Halocypris Claus, 1891.

Halocypris brevirostris (Dana)

(Map XIX)
Conchoecia brevirostris \& C. inflata Dana, 1849.
Halocymis concha \& H. pelagioa Claus, 1891.
Haloornis inflata Mäller, 1906a, 1908 and 1912.
Halocypmis brevirostris Skogsberg, 1920.
Halocymis brevirostris Deevey, 1968a.
Halocypris brevirostris Poulsen, 1969a.
Localities:- See Table I_{i}^{a}
Description: In males, length varies from 1.4 - $1.5 \mathrm{~mm} ;$
height about 70% of its length. In female, length varies from $1.4-1.6 \mathrm{~mm}$ with height more than 80%. Shape differs from Halocypria globosa in having ahess developed rostrum.

This species has been described in detail by Skogsberg (1920).

Remariss:- Morphologically this species has close resemblance to H. globose. Furcal lamellae has only 7 pairs of claws against 8 in H. globosa.

Distribution:- Reported earlier from all the tropical parts of all the oceans (Poulsen, 1969a). They were encountered in the western Arabian Sea and Bay of Bengal in the equatorial region. Statistical analysis failed to show any significant seasonal or diurnal variations. Possible range in temperature $11.9^{\circ} \mathrm{C}-30.3^{\circ} \mathrm{C}$ and salinity $32.1 \% 0-36.1 \% 0$.

SUBFAMIIY CONCHOECINAE

Key to the genera of Conchoe cinse (Adapted Irom Poulsen, 1973)

1. One or more sensory bristles of the

1st antenna deeply furcate Microconchoecia

1. None of the bristles of the 1st antenna furcate..... 2
2. Bight asymotric gland on anteroventral shell corner Conchoecilla
3. This gland on or near the posteroventral shell corner 3
4. Left asymmetric gland on rostrum or on first-third of dorsal margin

Metac nonoeoia
3. This gland near postero-dorsal shell cormer or an posterior half of dorsal margin 4
4. A compound gland at middle of ventral margin. Gaussicia
4. No such gland present 5
5. Expodite of mandible elongate, flat, leaf-like Platyconchoecia
5. Eropodite of mandible a small kmob with a long bristle 6
6. Masticatory pad of mandible coxale a roughly triangular plate with an undivided, straight, ventral margin Paraconchoecia
6. This pad with a divided ventral, straight margin or with flaps 7
7. The straight ventral margin of this pad divided into an anterior and a posterior part, both with long, spine-like papillae.. Conohoecetta
7. Ventral part of masticatory pad consists of 2 or more partiy overlying ridges or flaps with rounded margins 8
8. Basale of mandible short, less than $1 / 5$ of total length of the mandible Pseudoconchoecia
8. Basale longer, more than $1 / 4$ of the mandible. 9
9. Shell of about the same height anteriorly and posteriorly; ventral margin slightly concave. 10
9. Shell highest at the middle or posteriorly, ventral margin or convex. 11
10. Shell with a more or less distinct concentric striation or with hardly any striation Conchoecia
-:42 :-
10. Shell with a distinct striation anteriorly, the striae ranning parallel to the antero-ventral margin Mollicia
11. Lateral corner glands absent 12
11. Lateral corner glands present 13
12. Ventral margin of 1st endopodite segment of mandible with only one or two bristies Spinoecia
12. This margin with 3 or 4 bristles Orthoconchoecia
13. More than one lateral comer gland, either on both valves or only on one of the valves Alacila
13. Only one lateral corner gland an each valve 14
14. The right lateral gland opens on the right asymmetric gland Ioricoecia
14. This gland opens dorsally of the right asymmetric gland 15
15. Shell sculpture strongly reticulate with a pattern of rectangles or posteriorly of round "scales"; dorso-posterior spines present on both valves Conchoecissa
15. Shell not with either strong reticulation or dorso-posterior spines 16
16. Dorso-posterior shell corners rounded, each with 3-4 small, pointed teeth Boroecia
16. Dorso-posterior corners rounded and bare or each with a short apine Paramollicia

Genus Paraconchoecia Claus

Pareconchoecia Claus, 1891.
Peraconchoecia Poulsen, 1973.
Paraconchoecia is differentiated from other genera by the shape of the masticatory pad of the mandibular endite, being an undivided triangular plate with a broad ventral margin. Shape of the carapace and frontal organ varies. Asymmetric glands open at the usual places, right one near the postero-ventral and left one near the postero-dorsal cormer.

Six species oocur in the present material P. oblonga, P. achinata, P. elegens, P. discophora, P. mrocera and P. decipiens.

Key to the speoies (IIOE) of Paraconchoecia

1. 'e' bristle of the first antenna with oval plate 2
2. n without 3
3. Female first antenna with dorsal bristle discophora
4. Female first antenna without elegens
5. 'b' bristle of first antenna with adouble comb of spinesechinata
6. 'b' bristles with no camb 4
7. Postexior margin of the shell arched reocera
8. Posterior margin sloping 5
9. Shoulder vaults less developed, carapace margin where the opening of the right asymetric gland is located, distinct and almost triangular decipiens
10. Shoulder vaults well developed carapace margin where the opening of the right asymmetric gland is located less distinct.... oblongs

$$
\frac{\text { Paraconchoecia oblonga Claus }}{\text { (Pl.I, Figs. 1-9 and Map I) }}
$$

Pargeonchoecia oblonga Claus, 1891.
Conehoecia oblonga Hüller, 1906a and 1912.
Conchoecia oblonga Skogsberg, 1920.
Gonchoecia oblonge Deevey, 1968a.
Parachoeaia oblonga Poulsen, 1973.
Localities:- See Table I_{i}^{a}

Desoription:

Carapace:- Dorsal margin more or less stradght with well developed shoulder vaults. Dorso-posterior corner of the right valve déveloped into a small spine. Postero-ventral and antero-ventral corners rounded. Asymmetric glands open on the usual place. Length of adult male 1.45 mim and height 47% of length. Length of adult female $1.6-1.7 \mathrm{~mm}$ and height 43% of length.
-:45:-

Pirst antenna:- Male - The 'e' bristle with a relative length of 49% armed with about 30 pairs of narrow and pointed spines, which becomes smaller distalwards. Two or 3 pairs of distally bent spines are present distally. The ' b ' and ' d ' bristles are slightly shorter than the ' e ' bristle and their distal one-third are slightly bent at an angle with the remaining portion as in the case of 'e' bristle.

Pemale: The dorsal bristle of the second segment is as long as the stem itself. The ' e ' bristle long and provided with hairs on the distal two-third part.

Second antenna:- Male - Clasping orgen of the right second antenna is powerful and uniformily curved, left one small with its distal part bent at right angle to the proximal part.

Mandible:- Toothed edge of the coxale with 8 teeth. Distal tooth list with 2 long and about 14 smaller teeth. Proximal tooth list also with same number of teeth. Masticatory pad is undivided and provided with spines and hairs. Basale endite with 6 serrulated teeth.

Maxilla:- Anterior edge of the first endopodite segment with 5 and posterior edge with 3 bristles. Find segment with 5 bristles of which 2 are olaw-like.

Copulatory 1imb:- Uniformily narrow. Vas deferens runs near the ventral margin of the appendage and opens at the ventrodistal part which bears a transversely placed spine.

Furca:- With 8 pairs of claws. First pair is slender. Second to fifth are thick and curred with short spines. Last 3 pairs are smaller.

Prontal orgen: - Male - Shaft reaches the distal end of the first antenna. Capitulum as long as the second segment of the first antenna and with small hairs proximally.

Female: Shaft reaches far beyond the first antenna and capitulum, provided with hairs, ends in a pointed tip.

Remarics:- Müller (1906a) shows a varying shapes of frontal organs for P. oblonga. Capitulum of the frontal organ of the present specimens agrees with Müller's Fig. 17 of Plate IX and figures of Skogsberg (1920) and Claus (1891). But differs from the capitalum shown by Poulsen (1973).

Distribution:- This species has been previousiy reported fram Atlantic, Indian and Paodific Oceans (Poulsen, 1973). The present study shows its occurrence off Somali coast, south weat of Ceylon, along the equatorial region. It was absent in the Northern Arabian Sea and Bay of Bengal. Examination of the hydrographic data of the areas of ocourrence of this species shows a possible range in temperature from
$11.5^{\circ} \mathrm{C}$ to $30^{\circ} \mathrm{C}$ and in salinity from $34.2 \% 0$ to $36.4 \% \mathrm{o}$.

> Paraconchoecia echinata (Müller)
> (PI.I, Pig. 10-17 and Map I)

Cochoecia echinata Müller, 1906a and 1912.
Paraconchoecia echinata Poulsen, 1973.
Localities:- See Table I_{i}^{a}

Description:

Carapace:- Shape of the carapaces somewhat similar in both sexes. Posterior margin straight. Postero-dorsal corner of right valve with a small spine. Asymmetric glands present in the usual place. Dorsomedial glamis present in both sexes. Parallel striations present near the ventral margin.

Abstract

Firgt antenna:- Relative length of the stem is 32% in male and 20% in female. Male - The 'e' bristle is also similar to that of P. oblonga but the number of spines is only about 15. The 2 pairs of distally bent spines of 'e' bristle very much pointed. The ' b ' bristle with $10-12$ short spines arranged like a comb plate.

Second antenna:- Male - Right clasping organ well developed with 2 small finger-like processes on its inner side proximally and the distal part is very much curved.

Iandible:- Pars incisiva of the corale with about 10 teeth. Proximal and distal tooth list with 2 large and $14-18$ small uniform and blant teeth. Epipodial bristle spines like. Bropodite and the setation of the endopod similar to that of P. oblonga.

Maxilla, 5th, 6th and 7th limbs similar to other species of the genus.

Purca:- Furca differs from that of P. oblonga. Furcal claws of P. echinata are uniformly curved and with fine hairs. 4th pair is twice as long as the 5th pair. There is no unpaired bristle.

Copulatory Ilmb:- Narrow with a broad middle portion and somewhat rounded tip.

Frontal organ:- Shaft reaches beyond the first antenna. In male, capitulum is separated from the shaft and bent, in female it is united. Capitulum is provided with hairs and with a rounded end in both sexes.

Remarks:- P. echinata is distinguished from other species by the shape of the frontal organ and copalatary limb, the presence of camb-like spines on ' b ' bristle and the straight posterior margin.

Distribution: - Previously recorded from Atlantic, Indian and Pacific Oceans (Muller, 1906a; Poulsen, 1973). The distribution of this species closely resembles that of another member of the same genus, \underline{P}. oblonga. It was found to occur along the equatorial belt, off Somali coast and off South-west of Ceylon, but was absent in the northern Arabian Sea and Bay of Bengal. Possible temperature range, $11.5^{\circ} \mathrm{C}$ $28.7^{\circ} \mathrm{C}$ and salinity range 33.9% to 35.3%.

> Faraconchoecia elegens (Sars)
> (PI. I, Figs. $18-23$ and Hap II)

Conohoecia elegens Sars, 1865.
Paraonchoecia gracilis Claus, 1891.
Conchoecia elegens Mäller, 1906a and 1912.
Conohoecia elegens Deevey, 1968a.
Paraconchoecia elegens Poulsen, 1973.
Localities:- See Table I_{i}^{a}

Descmption:

Carapace: - Length 1.1 to 1.3 mm and 1.1 to 1.5 mm in rale and female respectively. Elongated shape narrowing anteriorly very much similar to P. disoophora.

Mandible:- Toothed edge of coxale with 11 teeth. Distal tooth list with 2 large and about 14 amaller teeth. Proximal
-:50:-
tooth list with about 20 teath, 2 or 3 posterior ones are larger.

Copulatory limb has a curved tip very much similar to the figure given by Deevey (1968a).

Descriptions are given by Claus (1891), Müller (1906a) and Skogsberg (1920).

Romarks:- This apecies closely resembles P . discorhora. The important differences are discussed under P. discorhora. P. elegens eventhough not as numerically abondant as many other species, has been reported by most of the previous authors and it is known to have a very wide distribution.

Distribution:- This species is widely distributed over all the three oceans. It is found to be present in the Arabian Sea and Bay of Bengal irrespective of seasons, but in the Bay of Bengal distribution is rather sporadic. It is more abundant along the Arabian coast and the mouth of Persian Gulf. The wider range of tolerance exhibited by the apecies could well explain its wide distribution. Temperature range $10.2^{\circ} \mathrm{C}$ $30.5^{\circ} \mathrm{C}$, salinity range $33.2 \% 0-37.4 \%$.

Paraconchoecia discophora (Müller) (PI. I, Fig. 24-29 and Map I)

Conchoecia discophora Miller, 1906a and 1912.
Conchoecia discophora Deevey, 1968a.
Paraconchoecia discophora Poulsen, 1973.
Locality:- Station D1 $5383-09^{\circ} 58^{\prime} \mathrm{N}, 67^{\circ} 32^{\circ} \mathrm{F}$ - 120 specimens. Description of male:

Length 1.1 mm and height about 45% of carapace length. Shoulder vault well developed. A minute spine present on the posterodorsal corner of right valve. Left asymmetric gland on the usual place, but the right one shifted more dorsalwards from the postero-ventral corner.

First antenna:- Length of stem 35\% and 'e' bristle 39% of carapace length. The hyaline ' a ' bristle as long as the stem and extended backwards. Distal half of the ' b ' bristle with 2 rows of hairs. The 'e' bristle provided with an oval plate of hairs.

Second antenna:- Length of protopodite 60% and exopodite 26% of carapace length. Fradopodite with curved subequal ' a ' and ' b ' bristles and thin and straight ' c ' and ' d ' bristles. The ' f ' and ' g ' bristles equal in length, strongly developed with their base slightly swollen. Right clasping organ curved more proximally, with a rounded end and with 8 or 9 furrows near the tip. Ieft one very small as in other species.

Mandible:- Pars incisiva of coxale, with 12 teeth, proximal and distal tooth lists, as in other species of the genus. Epipodite in the form of a verrucciform process. First endopodite ventrally with 3 bristles, one of them reaches bejond the end segment and dorsally a single bristle. Second segment with 2 long ventrally and one long and 2 short bristles dorsally. Fnd segment with 7 bristles, 2 of ther are claw-like.

Maxilla:- First endopodite segment with 6 bristles anteriorly and 3 posteriorly. Of the 5 bristles of the end segment, 2 are claw-like.

Furca:- With 8 pairs of claws gradually decreasing in size. Except the first pair, all the claws are bare. No unpaired bristle behind the claws.

Copulatory organ: - Resembles the copulatory organ of P. elegens. Iength 3 times its breadth; tapering distalwards, it has a narrow rounded end.

Fenale: The female is similar in size and appearance to the female of P. elegens. Postero-dorsal corner of right valve showed variation, ending in either one, two or vary rarely without spines.

Second segment of first antenna with a short dorsal bristle; second antenns with straight ' a ' and ' b ' bristles. Capitulum of frontal organ reaches far beyond the stem of first antenna.

Remarks:- P. discophora is a very rare species and Poulsen (1973) even doubts its validity. However, P. discophora can be separated from $\underset{\sim}{P}$. elegens by the longer frontal organ and shape of the clasping organ, the tip of which is rounded in P. disconhora and flattened in P. elegeng. Dorsal bristle of first antenna in female was present in P. discophora and absent in P. elegens.

Distribution:- This species is reported to be exceedingly rare. Previous records include Mailler (1906a) in Atlantic and Indian Oceans, Deevey (1968a) in Atlantic Ocean and Poulsen (1973) in Pacific Ocean. During the present study this species was encountered only at a single station, in the southern Arabian Sea where the tealperature values range between $14.6^{\circ} \mathrm{C}$ $29.4^{\circ} \mathrm{C}$ and salinity $34.8 \% 0-35.9 \% 0$.

> Paraconchoecia mocera (Müller) (PI. II, Fig. 1-7 and Map III)

Conchoecia mocera Müller, 1894.
Conchoecia mrocera Deevey, 1968a.
Conchoecia procera Angel, 1971.
Paraconchoecia mocera Poulsen, 1973.
Localities:- See Table I_{i}^{a}

Description:

Carapace: - Length 0.95 to 1.05 mm in male and 1.05 to 1.15 mm in female. Height about 47% of length. Dorsal margin almost straight and posterior margin smoothly rounded. Postero-dorsal corner of right valve with a small spine, opening of the right asymmetric gland very trominent.

First antenna:- Male - The ' a ' bristle as long as the limb itself and ' c ' bristle very short. The ' e ' bristle slightly longer than ' b ' and ' d ' bristle provided with 16 to 17 pairs of spines, decreasing in length proximally and 2 distally pointing spinules in addition to it. Relative length of the stem is about 36%. In female, stem is shorter, only one-third of the frontal organ.

Second antenna:- The ' a ' bristle of endopodite half as long as 'b' bristle, both provided with hairs. The more curved right blasping organ and the smaller left clasping organ with a pointed lip.

Mandible:- Toothed edge of coxale with 10 teeth. Distal tooth list with 2 large and 10 to 12 smaller teeth and proximal tooth list with 1 large and about 15 smaller teeth. First endopodite segment with one bristle on its ventral margin. Setation of the other segment is typical for the genus.

Maxilla:- First endopodite segment with 6 bristles on its anterior margin, 3 on its posterior margin and one laterally.

Pifth, sixth and seventh limbs are of the usual type.

Caudal furca:- Claws gradually decreasing in length and with fine hairs, unpaired bristle absent.

Frontal organ: - Male - Shaft is as long as the first antenna. Capitulum slightly bent downards, with small hairs proximally.

Female:- The long capitulum, distal part of which is swollen and with a pointed end, is not well differentiated from the shaft.

Remarks:- Angel (1971a) described 2 new species Paraconchoecia micrompocera and P. macroprocera and shows that Muller might have confused P. mocera with these 2 closely related species. The present material is identified as P. mocera taking into consideration the important factors, like size, shape of frontal organ and the armature of the ' e ' bristle.

Digtribution:- Reported earlier from Atlantic, Indian and Paci fic Oceans (Mäller, 1906a; Deevey, 1968a; Poulsen, 1973). This apecies was found to be distributed throughout the Arabian Sea and the Bay of Bengal as well as in the Red Sea. Its occurrence was noticed throughout the jear. Etatistical analysis of the data showed significant diurnal variations (significant at 5\%, level). This species also exhibited marked seasonal variation (significant at 0.1% level) in the Arabian Sea, being more
abondant during $5 W$ monsoon. The wide range of tolerance of the species probably helps it to extend its range of distribution. Range in temperature $10.2^{\circ} \mathrm{C}-30.5^{\circ} \mathrm{C}$ and in salinity 31.180-37.4\%0.

Paraconchoecia decipiens (Mũller) (PI.II, Figs. 8-14 and Map IV)

Conchoecia decipens Müller, 1906a and 1912. Paraconchoecia decimens Poulsen, 1973.

Iocalities:- Set Table Ib.

Description:

Carapace:- Length 1.15 - 1.3 mm in rale and 1.35 - 1.6 mm in female. Height 50% of length. Shoulder vaults well developed. Dorsal half of the posterior margin somewhat straight, posteror ventral corner atrongly rounded. Postero-dorsal corner of right valve with a small spine. Right asymnetric gland opens on the ventral margin more anteriorly than in the other species of the genus.

First antenna:- Similar to that of P. procera, ' e ' bristle in male with about 30 rows of spines increasing in length proximally.

Second antenna:- Male - Fndopodite of second antenna with straight and subequal ' e ' and ' b ' bristles. The ' g ' bristle, 4 times as long as ' h ', ' i ' and ' j ' bristle. Clasping organ more or less similar to that of P. procera, but the tip of right clasping organ is not as pointed as in P. procera.

Mandible:- Proximal tooth list with about 10-12 teeth. Ventral margin of the first endopodite segment with 2 bristles. Other appendages are as in P. procera.

Frontal organ:- Shaft reaches level with the first antenna. Capitulum with more or lesspuiform thickness and with a rounded ond. In female, even though the shaft and capitulum are fused together, the differentiation is more visible than in P. mocera. Tip of capitulom is rounded in female also.

Remarks:- P. decimiens is very much similar to P. procera morphologically, but can be distinguished by the shape of the carapace, frontal organ and by the armature of ' e ' bristle. The ventral margin of the first endopodite segment of mandible has a single long bristle in \underline{P}. procera but 2 in decipiens.

Distribution:- Earlier records show its occurrence in the tropical parts of Indian and Pacific (Miller, 1906a; Poulsen, 1973). It is distributed throughout the Arabian Sea and the Bay of Bencal. The pattern of distribution is generally/
similar to that of \underline{P}. elegens. In the Arabian Sea the species exhibited seasonal variation, which was found to be significant at 1% level; more abundant during NE monsoon. Diurnal variation was also significant at 1% level. Possible range in temperature $10.2^{\circ} \mathrm{C}-30.3^{\circ} \mathrm{C}$ and salinity $32.3 \% 0-37.4 \% 0$.

Genus Conchoecetta Claus

Conchoecetta Claus, 1891. Conchoecetta Poulsen, 1973.

The genus Conchoecetta includes two species C. acuminata and C. giesbrechti, characterised by an elongated shell with an acute dorsoposterior angle, hairs across the posterior part of shell, female first antenna with short dorsal bristle, 'e' bristle on male with 20 pairs of spines having broad base and pointed tip.

Key to the species of Conohoecetta

The ' h ' bristle of 2nd antenna with a
buibous basal part giesbrechti
This bristle without a bulbous basal part acuminata

Conchoecetta acuminata Claus

 (P1. II, Fig. 21-26)Conchoecetta acuminata Claus, 1891.
Conchoecia acuminata Müller, 1906a, 1912.
Conchoecia acuminata Skogsberg, 1920.
Conchoecia acurainata Deevey, 1968a.
Conchoecetta acuminata Poulsen, 1973.
Localities: - Stations - $\mathrm{AB} 30-12^{\circ} 17^{\prime} \mathrm{N}, 93^{\circ} 21^{\prime} \mathrm{E}-120$ specimens

Description:

Carapace:- Jength 2.0 to 2.2 mm in male and 2.4 to 2.8 mm in female. Height about 40% of length in male, only one-third of its length in female. In male posterior shell margin with a series of hairs. Postero-dorsal corner forms an acute angle. Asymmetric glands on the usual place.

First antenna:- Male - The 'e' bristle with about 20 pairs of spines having broad base and pointed tip. Female - Dorsal bristle of the 2nd segment comparatively short.

Second antenna:- Male - Process mamillaris is not pointed. Distal two-third part of right clasping organ curved and at right angle to proximal part and straight in left clasping organ. The ' h ', ' i ' and ' j ' bristles with uniform thickness.

Kandible:- Masticatory pad divided into 2 clear parts each provided with more than 6 thick and long spines. Pars incisivalof coxale with 10 teeth. Distal tooth list with one large and 10 small teeth and proximal tooth list with 10 teeth of varying size and shape.

Maxilla:- Basal bristle present. First endopodite segment with 5 bristles anterioriy, 3 posteriorly and one laterally. This segment possesses 5 or 6 short and sharp spines distally. Fifth and sixth limbs do not show variation from the usual pattern.

Seventh limb:- Of the 2 sub-equal bristles, the longer one has a few short spines proximally.

Furca:- Claws gradually decrease in length, but the last 3 pairs are very thin. Unpaired bristle present behind the claws.

Copulatory limb:- Shape is somewhat similar to that of P. decimiens and P. procera.

Prontal organ:- Male - Shaft reaches the end of first antenna. Capitulum with a square out end and spines over the proximal half. Female - Long and slender with uniform thiokness but with a narrow end. ,

Remarks:- C. acuminata resembles C. giesbrechti in the shape of the shell. The females of the former speoies is distinguished by the acute angle of dorso-posterior corner and the pointed
rostrum. The important difference between these 2 species is that the base of the ' h ' bristle of second antennal endopodite is thin walled in C. acurainata and with a bulbous base in C. gieabrechti. Frontal organ in male has a square out end in G. acuminata whereas it is rounded in $\underline{\text { G. giesbrechti. }}$

Distribution:- This species was previously recorded from all the three oceans (Muller, 1906a; Poulsen, 1973). The species was not common. The range of temperature $11.9-20^{\circ} \mathrm{C}$ and salinity $32.3 \% 0-35.4 \% 0$.

> Conchoecetta gieabrechti (Müller)
> $($ PI.II, Fig. 15-20 and Map V)

Conchoecla giesbrechti Müller, 1906a and 1912.
Conchoecetta giesbrechti Poulsen, 1973.
Localities:- See Table Ib.
Distribution:
Carapace:- Length 1.7 to 2.00 mm in male and 2.1 to 2.2 mm in female. Shape of the carapace more or less similar to C. acuminata.

First antenna:- Male - The 'e' bristle with about 35 pairs of spines, ' b ' and ' d ' bristles with a few pairs of apines as in C. acuminata.

$$
\text { -: } 62 \text { :- }
$$

Second antenna:- The ' h ' bristle of the endopod with bulbous proximal part.

Frontal organ:- Male - Frontal organ has a rounded end. Female: - Frontal organ is similar to that of C. acuminata. Remarics:- Poulsen (1973) desoribes C. giesbrechti with the 'b' and ' d ' bristles of first antenna without any spinules. The present material shows their presence as in C. acuminata. Distribution:- Müller (1906a) observed the species from the Atlantic, Indian and Pacific Oceans, so also Poulsen (1973). They were found distributed in the Arabian Sea and Bay of Bengal in large numbers. Seasonal variation was significant at 1% level in Bay of Bengal being more abundant during SW monsoon period. Diurnal variations were far more pronounced (significant at 0.1% level). They ocourred in a wide range of salinity $32 \%-37 \%$ and temperature $11.5^{\circ} \mathrm{C}-30.4^{\circ} \mathrm{C}$.

Genus Microconchoecia Claus

Microconchoeöia Claus, 1891.
Microconchoecia Poulsen, 1973.
Small shell with conspicuous reticulations and striations, dorsally placed right asymmetric gland. First antenna in male with forked ' a ' bristle and ' e ' bristle having a single row of spines. In female ' a ', ' b ' and ' c ' bristles are forked.

Masticatory pad of the mandible with a broad and straight ventral margin with 2 or 3 ridges.

$$
\frac{\text { Microconchoecia curta }}{(\text { Pl.III, Fig. 1-9 and Map VI) }}
$$

Conchoecia curta Labbock, 1860.
Kioroconchoeoia clausii var similis Claus, 1891.
Conchoecia curta Miller, 1906a, 1912.
Conchoecia curta Skogsberg, 1920.
Conchoecia curta Deevey, 1968a.
Mioroconchoecia curta Poulsen, 1973.
Localities:- See Table Ib.

Description:

Carapace:- Length 0.7 to 0.9 mm . Height two-third of its length. Postero-dorsal carner distinct. Postero-ventral corner rounded. Carapace reticulated. Right asymmetric gland opens on the posterior margin dorsaliy of the postero-ventral corner, left one or the usual place.

First antenna:- Male - The hyaline ' a ' bristle is forked. The ' b ', ' d ' and ' e ' bristles equally long. The ' e ' bristie with 13 spinules. The ' b ' and ' d ' bristles with a few spines. Female - The dorsal bristle of the second segment only slightly shorter than this segment.

Second antenna:- Male - Protopodite about half as long as shell. Subequal ' a ' and ' b ' bristles very much curved. The ' g ' bristle is longer than ' f ' bristle and flattened distally. The ' h ' bristle has a little swollen base of spinous nature. Right clasping organ curved with a broad base and narrow distal end.

Mandible:- Toothed edge of pars incisiva of coxale with 10-12 teeth. Distal tooth list with 2 large teeth, one of which is serrate and about 15 small teeth. Proximal tooth list with about 10-12 irregular teeth decreasing in size. Masticatory ped divided into 2 (or 3) ridges; 2 spines also present at its base. Two bristles of the 2nd endopodite segment comparatively long. Second and third segment with group of hairs.

Maxilla:- Basale without any bristle. First endopodite segment with with 6 anterior and 4 posterior bristles.

Copulatory limb:- It has a rounded end with the pointed appendage protruding out.

Furca:- Claws bare. Unpaired bristle absent.

Frontal organ:- Male - Shaft reaches about the distal end of the second segment of first antenna. Capitulum somewhat narrow at the midde and has a rounded end. Female - Not separated into shaft and capitulum and is only as long as the first antenna. It has a rounded end.

Remarks:- Only one species of the genus Microconchoecia is present in the present material. The unique feature of having forked bristle on the first antenna, makes Microconchoecia, a well defined genus.

Distribution:- Reported earlier from all the three oceans (Müller, 1906a; Poulsen, 1973). It was found off Somali and Arabian coast, off south west coast of India and southern Bay of Bengal. Most of the specimens were collected during the SW monsoon period, both fram the Arabian Sea and Bay of Bengal eventhough statistical analysis failed to show any significant seas anal or diurnal variation. Possible range in temperature $11.5^{\circ} \mathrm{C}-30.5^{\circ} \mathrm{C}$ and salinity $32 \%-36.9 \% 0$.

Genus Metaconchoecia Granata \& Caporiacco
Metaconchoecia Granata \& Caporiacc 0, 1949.
Metaconchoecia Poulsen, 1973.
This genus comprises those species which Müller (1906a) included under his "Rotundata" group, characteristic features are, the location of left asymmetric gland antero-dorsally or on the rostrum, and the upper lip with weakly developed combs and narrow deep notch in between the combs.

Key to the species (IIOE) of Metaconchoecia

Right asymmetric gland opens close to the
postero-dorsal corner rotundata
Bight asymmetric gland opens more posteriorly.... kyrtophora

Metaconchoecia rotondata (Müller)
(PI. III, Fig. 10-17 and Map VII)
Conchoecia rotundata Mäller, 1890.
Conchoecia rotundata Deevey, 1968a.
Yetaconchoecia rotundata Poulsen, 1973.
Localities:- See Table Ib.
Description:
Carapace:- Length 0.9 to 1.1 mm . Height 46% of length in male and 53% in female. Posterior and ventral margins and the corners rounded. Right asymmetric gland opens.close to the postero-dorsal corner and the left one just behind the rostrum.

First entenna:- Male - The ' a ' bristle curved proximally and only a little shorter than the limb. The ' b ' and ' d ' bristles shorter than 'e' bristle. The ' e ' bristle furnished with 10-11 pairs of proximally pointing spines decreasing in length distally. The 'e' bristle is distinctly bent distally to its armature.

Second antenna:- Male - Protopodite about 50% of carapace length. The ' a ' and ' b ' bristlesjof endopodite are longer and less curved than in female. The ' c ' and ' d ' bristles extremely short. The ' f ' and ' g ' bristles 3 times as long as the irregularly curved ' h ', ' i ' and ' j ' bristles and have their distal half a little flattened and hyaline. In female these 5 bristles are more or less of the same length.

Mandible:- Toothed edge of coxale with about 15 teeth with the anterior one flattened. Remaining teeth are rather small and of different shape and aize. Distal tooth list with one large and about 20 small teeth. Proximal tooth list has 2 or 3 large teeth with smaller teeth in between them posteriorly and about 15 smaller ones.

Maxilla:- There is no basal bristle. Endopodite with 4 bristles anteriorly, three posteriorly and one laterally.

Copulatory organ:- Posterior margin is convex and the tip is obliquely rounded.

Furca:- Unpaired bristle present behind the furcal claws.

Frontal organ: - Male - Shaft ends level with the end of the first antenna. Capitulum is deep with its proximal $1 / 4$ part, bent at an angle with the distal part. The tip is rounded.

Hairs present, throughout ventrally and only few are present dorso-proximally. Female - Frontal organ is long
and straight, capitulum, has hairs ventrally and the distal ond is slightly bent downwards and has a rounded tip.

Remarics:- What Müller (1906a) described as Conchoecia rotundata ,vas later on found to consist of 3 different species. From it, Iles (1963) separated C. skogsbergi and C. teretivalvata. The present specimens are identified as M. rotundata considering mainly the armature of the ' e ' bristle of first antenna and its relative length with ' b ' and ' d ' bristles. The differences between these 3 closely related species have been discussed by Deevey (1968a) and Poulsen (1973).

Distribution:- This species was previously reported from Atlantic and Pacific Oceans by Müller (1890), Skogsberg (1920), Poulsen (1973) and from Indian Ocean by George (1969). Distribution of this species was similar to that of P. procera. It was present in the entire Arabian Sea, Red Sea and in the Bay of Bengal. This species was found to establish itself on the comparatively low saline waters of the Bay of Bengal and reach high abundance as could be seen from their distribution within a wide range of salinity. It was recorded throughout the year. Statistical analysis failed to show any significant seasonal or diurnal variation. Possible range in temperature $10.1^{\circ} \mathrm{C}-30.5^{\circ} \mathrm{C}$ and in salinity $31.1 \% 0-37.4 \% 0$.

Metaoonchoecia kyrtophore (Müller)

(PI. III, Fig. 18-26 and Map XVI)
Conchoecia kyrtophora Müller, 1906a, 1912.
Conchoecia kyrtophora Deevey, 1968a.
Metaconchoecia kyrtophora, Poulsen, 1973.
Localities:- Stations

AB 10	$-16^{\circ} 36^{\prime} \mathrm{N}, 64^{\circ} 00^{\prime} \mathrm{E}-8$	specimens
Co 45	-09*52'N, 75*39'E - 3	
Co 58	$-10^{\circ} 29^{\prime} \mathrm{N}, 75^{\circ} 31^{\prime} \mathrm{E}-\mathbf{c}^{-1}$	"
Co 62	$-10^{\circ} 39^{\prime} \mathrm{N}, 75^{\circ} 22^{\prime} \mathrm{E}-10$	"
Di 5267	-06* $44^{\prime} \mathrm{N}, 57^{\circ} 59^{\prime} \mathrm{E}-3$	\cdots
Di 5269	-03.59'N, 57'59'E -18	
Di 5404	-08*20'N, 57*59'E - 2	"
Di 5560	$-13^{\circ} 12^{\prime} \mathrm{N}, 50^{\circ} 19^{\prime} \mathrm{E}-8$	"
Ki 531	$-06^{\circ} 00^{\prime} \mathrm{N}, 96^{\circ} 00^{\prime} \mathrm{E}$	"

Description:

Carapace:- Length $0.75-0.8 \mathrm{~mm}$. Height, greater posteriorly 57% of length in male and 60% in female. Antero-ventral and postero-ventral corners rounded. Postero-dorsal corner is distinct especially in male. Striations faintly visible. The left asymmetric gland opens just behind the rostrum and right asymmetric gland near the posterior shell fusion.

First antenne:- Male - The 'a' and ' c ' bristies as in

 M. rotundata. The ' b ' and ' d ' bristles only a little shorter than ' c ' bristle. The ' e ' bristle with 7-8 spines with a blunt end.Second antenne:- Right and left clasping organs with more or less the same size. The distal two-third portion is curved and forms a right angle with the proximal part. It has an
obliquely pointed end and has furrows. Left one is curved proximally and with narrower distal end.

Frontal organ:- In male, shaft reaches the end of first antenna. Capitulum has awollen distal portion with a rounded end.

Remarks:- A careful study of the appendages clearly showed its close similarity with M. rotundata. Skogsberg (1920) considered "Roundata" group as a natural one. It appears that Metaconchoecia is one of the few well defined genera coming under Conchoecina:

Distribution:- This species was recorded from Atlantic and Indian Oceans (Mäler, 1906a) and it is considered to be a rare one. This species was found mostly in the southern Arabian Sea. It does not seem to withstand large fluctuations in salinity, as evidenced by its absence in the low saline waters of Bay of Bengal. Possible range in temperature $12.2^{\circ} \mathrm{C}-29^{\circ} \mathrm{C}$ and salinity $33 \% 0-36.5 \% 0$.

Genus Orthoconchoecia Granata \& Caporiacco

Orthoconchoecia Granata \& Caporiacco, 1949.
Orthoconchoecia Poulsen, 1973.
This genus includes species of Müller's (1906a)
"Bispinoss" group. Granata and Caporiacco (1949) removed Conchoecia gaussi and C. incisa from it and proposed the genus name. Characteristic features are longer size, presence of pad on 'b' bristle of first antenna; exceptionally long ' c ' bristle of endopodite of second antenna; 'h', 'i' and 'j' bristles with spinous shafts, masticatory pad of mandible with 3-4 semicircular flaps.

Ker to the speoies (IIOE) of Orthoconchoecia

1. Postero-dorsal corner without spines.......... atlantica
```
1. " " with spines ................ 2
```

2. Shell with distinct striations, spines of ' e ' bristle of ficst entenna at right angle to the bristle striola
3. Shell without distinct striations, spines of ' e ' bristles slanting bispinosa

Orthoconchoecia striola (Müler)
(PI. IV, Fig. 7-15 and Map VIII)
Conchoecia striata Mïller, 1890.
Conchoecia striola Mäller, 1906a, 1912.
Orthoconchoecia striola Poulsen, 1973.

Localities:- See Table Ib.

Description:

Carapace:- Length of male 2.0 to 2.2 mand female 2.2 to 2.4 mm . Height about half of its length. In female height increases posteriorly. Antero-ventral and postero-ventral corners rounded. Postero-dorsal corner of both valves produced into broad spines. Shoulder vaults powerful. Longitudinal striations parallel to the margin, clearly Visible. The asymmetric glands open in the usual places.

First antenna:- Male - The ' a ' bristle swollen at its base and directed backwards. The ' b ' bristle with a pad, level with the armature of ' e ' bristle. Armature of ' e ' bristle consists of about 15 straight, conical spines. The size and shape of spines not uniform.

Second antenna:- The ' c ' bristle as long as the first endopodite segment. The ' h ', 'i' and ' j ' bristles with spines on their base, ' h ' bristle with more spines. Both right and left clasping organs well developed and smoothly curved, the distal ends provided with furrows terminating in small spines.

Mandible:- Toothed edge of coxale with 11-12 teeth. Distal tooth list with 2 larger and 10-12 small teeth. Proximal tooth list with 3-4 large teeth followed by 13-14 small teeth.

Maxilla:- Basal seta present. First endopodite segment with 6 anterior, 3 posterior and one lateral bristle.

Copulatory limb: - Anterior margin almost straight and posterior margin slightly convex. Distal end rounded.

Caudal furca:- First pair of claws reaches level with the second pair. Fine hairs present on the furca. Unpaired bristle not present.

Remaining limbs agree with 0. bispinosa (Poulsen, 1973).

Frontal organ:- Dorsal margin concave. Distal and square-cut or truncate, provided with hairs about $1 / 2$ to $3 / 4$ of its proximal portion. In female the distal end is rounded.

Remarks:- . striola is very similar to $\underline{0}$. bispinosa but can be distinguished by the following characters: Armature of 'e' bristle of first entenna with only 15 pairs of spines, smoothly curved clasping organs, shape of the frontal organ and the conspicuous striations of the shell.

Distribution:- This species has been reported from the Indian and Pacific Oceans (Häller, 1906a; Poulsen, 1973). In the Indian Ocean O. striola is a very common species, though it did not attain very high numbers. It was present off Somali and Arabian coast, in the equatorial region, east of Andaman Islands and at the mouth of Malacca Strait. They seem to prefer higher salinity. Possible range in temperature $11.5^{\circ} \mathrm{C}$ $30.5^{\circ} \mathrm{C}$ and salinity $33.2 \% 0-36.1 \% 0$.

Oxthoconchoecia bispinose (Claus) (PI. IV, Fig. 1-6 and Map XVI)

Conchoecia bispinosa Claus, 1891.
Conchoecia bispinosa Müller, $1906 a$ and 1912.
Conchoecia biapinosa Skogsberg, 1920.
Orthoconchoecia bisminoss Granata and Caporiacco, 1949.
Conchoecia bispinosa Deevey, 1968 a .
Conohoecia bispinose Angel, 1970a.
Orthoconchoecia bispinosa Poulsen, 1973.
Localities:- Stations - $\mathrm{AB} \quad 16-07^{\circ} 31^{\circ} \mathrm{N}, 96^{\circ} 11^{\prime} \mathrm{E}-12$ specimens $\begin{array}{lrl}\text { Ar } & 29-95^{\circ} 92^{\prime} N, & 53^{\circ} 01^{\prime} \mathrm{E}-8 \\ \text { Ar } & 31-00^{\circ} 57^{\prime} N, & 62^{\circ} 19^{\prime} \mathrm{E}-10 \\ \text { Di } 5089-13^{\circ} 14^{\prime} N, & 50^{\circ} 15^{\circ} \mathrm{E}-4 & \text { " } \\ \text { Di } 5559-11^{\circ} 25^{\prime} \mathrm{N}, & 52^{\circ} 42^{\prime} \mathrm{E}-8 & \text { " }\end{array}$

Description:- Length varies from 1.6-2.1 mm. This species is very much similar to O. striola differentiated by the presence of about 30 spines on ' e ' bristle of first antenna, rounded end of male frontal organ and the less conspicuous striation of the carapace.

Distribution:- According to Müller (1906a) and Poulsen (1973), this species has a very wide distribution in all the three oceans. Surprisingly the IIOE samples contain only a few representatives. These were collected from the mouth of Malacca Strait and the Arabian Sea. A comparison of the pattern of distribution of a closely related species, o.striola with the present species suggest the possibility that this has been replaced by $\underline{0}$. striola. Possible range in temperature
$12.5^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$ and salinity $32.9 \% 0-36.4 \% \mathrm{o}$.

> Orthoconchoecia atlantica (Iabbock)
> (PI.IV, Fig. 16-19 and Map IX)

Halocypris atlantípa Iubbock, 1856.
Conchoecia atlantica Müller, 1906a and 1912.
Orthoconchoecia atlantica Granata \& Caporiacco, 1949.
Conchoecia atlantica Deevey, 1968a.
Orthoconchoecia atlantica Poulsen, 1973.
Iocalities:- See Table Ib.

Desoription:

Carapace: - Length 3.2 to 4.5 mm . Females are langer in size than male. Height of carapace about half of its length. A large species, distinguished by the size and characteristic shape of carapace. Antero-ventral and postero-ventral corners rounded. Postero-dorsal corner distinct. Height of carapace increase posteriorly. Asymmetric glands in the usual place. First antenna:- Male - The ' e ' bristle longer than the carapace, provided with about 65-75 pairs of more or less uniform proximally pointing spines and just distal to it, 4 distally pointing slender spines and more distally 1 or 2 spines present. The ' d ' bristle provided with 14-16 spines increasing in length distalwards, level with the distal half of the armature of ' e ' bristle. At the same level ' b ' bristle has 4-5 closely
placed spines and more proximally 4-5 irregularly placed spines. The ' c ' bristle is slender and half as long as 'b' bristle. The 'd' bristle is slightly longer than 'b' bristle and half as long as ' e ' bristle. Female - The ' e ' bristle with 12-15 spines posteriorly and very few anteriorly.

The surface of the stem in both male and female covered with minute spines and the distal end with longer spines.

Second antenna:- Male - Both ' a ' and ' b ' bristles provided with hairs. In some ' c ' and ' d ' bristles or one of them is long. The ' h ', 'i' and ' j ' bristles with shafts. Shaft of the ' h ' bristle bulbous. Right clasping organ with 2 small processes on its inner side and with about 10 furrows and a bent papilla. Left clasping organ has no furrows but papilla present. Female - The ' h ' bristle not bulbous. One or two bristles present at the 'c' - 'd' bristles position.

Mandible:- Toothed edge of coxale with 9 teeth. Tooth lists with a lesser number of teeth than other species of the genus. Distal list with about 12 and proximal list with about 15 teeth. Masticatory pad with 3-4 narrow round flaps. Epipodial bristle is long and spine-like. The bristles of the ventral margin of first endopodite segment are also comparatively longer.

Maxilla:- Of the 6 anterior bristles, 2 are extremely long.

Copulatory limb:- More or less straight organ with rounded end and triangular appendage.

Furca:- Unpaired bristle present behind the furcal claws.

Frontal orgen:- Proximal part broader and covered with spines and the distal end is rounded in both male and female.

Discussion: The species of the genus are supposed to be characterised by long ' c ' bristle and short ' d ' bristle of second antenna. In females only one long bristle is present and the assumption is that it is ' c ' bristle. A variation of this rule is observed in ferales of 0 . atlantioa. In same female specimens both ' c ' and ' d ' bristles are long, of which 'd' bristle is longer. So it is quite probable that when one long bristle alone is present it may be 'd' bristle.

Distribution: - This species has been reported to be widely distributed in the Atlantic, Indian and Pacific Oceans (Müller, 1906a, Poulsen, 1973). The present study confirms the earlier observation (Poulsen, 1973), that this species is very abundant in the Indian Ocean. It occurred in the whole of the Arabian Sea and Bay of Bengal throughout the year. But the statistical analysis of the data did not show any significant seasonal and day and night variations. The very wide geographic distribution enjoyed by this species is perhaps not surprising
as it is capable of tolerating a considerable range of salinity. Possible range in temperature $12.1^{\circ} \mathrm{C}-30.4^{\circ} \mathrm{C}$ and salinity $31.1 \% 0-36.7 \% 0$.

Genus Platyconchoecia Poulsen

Platyconchoecia Poulsen, 1973.
The genus is characterised by the leaf-like exopod of the mandible.

Platyconchoecia prosadena (Müller)

> (P1. V, Pig. 1-9 and Map XVI)

Conchoecia prosadena Müller, 1906a and 1912. Platyconchoecia mrosadena Poulsen, 1973.

Description:

Carapace:- Length of male 2.25 mm and female 2.5 mm . Height about half of its length. Antero-ventral and postero-ventral corners very much rounded. Right asymmetric gland opens on the ventral margin anteriorly of the postero-ventral corner on a distinct bulge. Lateral cormer glands present.

First antenna:- Male 'e' bristle armed with about 10 pairs of spines distally and 10 spines in a single row proximally. Spines are proximally directed and placed at an acute angle with 'e' bristle.

Second antenna:- The ' h ', 'i' and ' j ' bristles with shafts. Right clasping organ is bent more than at right angle at its base and then curves smoothly ending in a slightly awollen, ridged rounded end. Two processes present on its inner side. The left clasping organ is straight beyond the angle.

Mandible:- Toothed edge of coxale with 9 teeth. Distal list with 2 large and about 12 smaller teeth. Proximal list with about 17 teeth, 2 large followed by 4 or 5 small teeth and then 2 large and the remaining smaller teeth. Exopod of the mandible is large and leaf-like with a pointed tip.

Sixth limb:- Findopod with one bristle, with swollen base. Copplatorr limb:- Long and slender with a narrow rounded end.

Purca:- Furcal claws suddenly decrease in length from fifth pair onward. The seventh and eight pairs are exceptionally thin. Unpaired bristle absent. Usually 8 claws are present on a lamella. But in a male specimen, 9 claws were observed.

Frantal organ:- Male capitulum with narrow middle part and with a rounded end. Female capitulum with pointed, down torned tip, provided with only a few hairs:

Remarks:- The genus Platyconchoecia comprises only one rare species viz. P. prosadena. The flattened exopodite of the mandible is a unique character along species of Conchoecine, making the genus a well defined one.

Distribution:- A rare species, reported earlier from the Indian, Atlantic and Pacific Oceans (Muller, 1906a; Poulsen, 1973). This species was mostly collected from the Bay of Bengal except for a few stations in the Arabian Sea. Probable range in temperature $12.1^{\circ} \mathrm{C}-29.7^{\circ} \mathrm{C}$ and salinity $32.5 \% 0$ $36.2 \% 0$.

Genus Spinoecia Poulsen

Spinoecia Poulsen, 1973.
Main distinguishing features are: the male 'e' bristle with a distal group of short stout spines and proximally thinner ones.

Rey to the species (IIOE) of Spinoecia
Opening of the left asymmetric gland placed more anteriorly of the posterodorsal corner on a distinct bump parthenoda

Opening of the left asymmetric gland in the usual place and bump absent porrecta

Spinoecia porrecta (Clams)
(PI.V, Fig. 10-16 and Map X)

Conchoecia porrecta Claus, 1891.
Conchoecia porrecta Deevey, 1968a.
Conchoecia porrecta Angel, 1969c.
Spinoecia porrecta Poulsen, 1973.
Localities:- See Table Ib.

Description:

Carapace: - Length 1.25 mm in male; 1.3 - 1.7 mm in female. Height less than half of its length. Unsymmetric glands in the usual places.

First antenna:- The 'a' bristle reaches the end of the first segment. The ' b ' bristle slightly shorter than ' d ' bristle slightly shorter than ' e ' bristle. The ' e ' bristle armed with 10-11 pairs of broad but pointed spines followed proximally by about 25-30 pairs of alternating thinner spines.

Second antenna:- The ' b ' bristle of endopod carries long hairs. The shafts of 'h', 'i' and 'j' bristles weakly developed. The right olasping organ is bent at right angle proximally and the distal portion smoothly curved.

Appendages are as described by Angel (1969c).

Remarics:- Angel (1969) has discussed about the confusion existing in earlier literature between the closely related S. porrecta and S. spinirostris. Angel (1969c) describes S. porrecta as having 14-15 pairs of larger spines and S. spinirostrishaving $7-8$ pairs, on 'e' bristle of first antenna. The present specimens carry about 10-11 pairs. Similarly ' b ' bristle of endopodite of second antenna carries 2 bristles, which he considers as a character of S. spinirostris. The size of the present specimen is slightly smaller than what is reported by Angel (1969c) and Poulsen
(1973) but larger than what is given for S. spinirostris. The comparative length of 'a' bristle of first antenna seems to be a very relevant identifying character.

Distribution:- Earlier records are not reliable as many authors including Müller (1906a) considered S. porrecta and S. spinirostris as a single species as pointed out earlier. Angel (1969) and Deevey (1968a) have reportod it from the Atlantic and Poulsen (1973) from the Pacific. This was found to be one of the most common species, in the Indian Ocean. It was present in the Arabian Sea and Bay of Bengal throughout the year, more abundant along the Somali and Arabian coasts. The abundance of this species seems to have a negative influence on another closely related species S. spinirostris. Like other common species of ostrac ods this species exhibits a wide range of tolerance to salinity. Significant (1% level) diurnal variations were obtained from statistical analysis but not so for seasonal variations. Possible range in temperature $10^{\circ} \mathrm{C}-30^{\circ} \mathrm{C}$ and salinity $31.1 \% 0$ - 37\%o.

> Spinoecia parthenoda (Müller)
> (PI. V, Fig. 17-23 and Map XI)

Conchoecia parthenoda Müller, 1906a and 1912. Conchoeciaparthenoda Deevey, 1968a. Conohoecia parthenoda Angel, 1969d.

Spinoecia parthenoda Poulsen, 1973.
-:83:-

Localities:- See Table IC If

Description:

Carapace:- Length $1.4-1.5 \mathrm{~mm}$ in male and $1.6-1.8 \mathrm{~mm}$ in female. Shape of male similar to other species of Muller's "Magna" group, but shape of female is different, the height increasing posteriorly and with very much rounded posterior margin. The right asymmetric gland opens on the usual place, left one anteriorly of the postero-dorsal carner on a distinct bulge.

Pirst antenna:- The distal spines of ' e ' bristle are not as broad as that of S. porrecta. Counting from distal end, the alternation of spines begins from 7th or 8th pair.

Secom antenna:- Only 2 or 3 hairs present on the ' b ' bristle. Right clasping organ is right angled at its base and smoothly curves to a swollen end with a pointed tip.

Other appendages are well described by Angel (1969d) and supplemented by Poulsen (1973).

Distribution:- Previously recorded from the Atlantic, Indian and Pacific Oceans (Müller, 1906a; Poulsen, 1973). Poulsen (1973) considers this species as a rare one in the Indian Ocean. But the IIOE material provided adequate number of specimens to consider this a fairly common species. It was present in the western Arabian Sea and southeastern Bay
of Bengal. Possible range in temperature $11.5^{\circ} \mathrm{C}-28.9^{\circ} \mathrm{C}$ and salinity $32.1 \% 0-36.4 \% 0$.

Remarks:- Since Mïller could not identify the males of S. parthenoda he placed it in his "Obtusata" group. Deevey (1968) described the male but placed it in the same "Obtusata" group. Angel (1968) felt that it belongs to Magna" group as it is intermediate in many characters between S. porrecta and C. magna. However Poulsen (1973) put it along with S. porrecta in his new genus Spinoecia, but admits that S. parthenoda and S. obtusata stand apart from other species of the genus. In the present study S. parthenoda is retained in the genus Spinoecia, following the classification proposed by Poulsen (1973). The limited number of species in the IIOE material prevents me from attempting a revision of the classification.

Genas Conchoecia Dana

Conchoecia (part) Dana, 1849.
Conchoecia Poulsen, 1973.
This genus includes species included under Muller's "Magna" group except Spinoecia spinirostris and S. porrecta. A diagnosis of this genus is given by Poulsen (1973).

$$
\begin{aligned}
& \frac{\text { Conchoecia magna Claus }}{\text { (PI. VI, Fig. } 1-8 \text { and Map XII) }}
\end{aligned}
$$

Conchoecis magna Claus, 1891.
Conchoecia magna, Müller, 1894.
Conchoeciamagna Deevey, 1968a.
Conchoecia magna Angel, 1969 d.
Conchoecia marna Poulsen, 1973.
Localitiea:- See Table licír.
Description:
Carapace:- Size 1.5-1.6mm for male and 1.6-1.8 mim for females. Height about half of its length. Postero-dorsal corner distinct. Antero-ventral and postero-ventral corners rounded. Ventral margin slightly concave. Posterior margin almost straight in male and rounded in female. Asymmetric glands in the usual places.

First antenna:- The 'a' bristle is curved proximally and the distal end reaches the distal part of the first segment. The 'b', 'd' and 'e' bristles are with more or less same length. Armature of the ' e ' bristle with 13-14 pairs of spines and 15-16 alternating spines. In female, dorsal bristle of sec ond segment long and hairy.

Second antenng: - The ' b ' bristle of endopodite with short spines; longer hairs present obly in male specimens. The ' h ',
'i' and 'j' bristles with shafts. The right clasping organ with a basal part bent at right angles, the distal part again bent at right angles. The smaller left clasping organ is straight after the basal bent. Both right and left organs with ridged end and the left one very much pointed.

Mandible:- Toothed edge of coxale with 10 teeth. Distal list with 2 large teeth, of which second serrated, followed by 13-14 small teeth. Proximal list with a total of about 16 teeth, the 3 larger teeth have 2 smaller ones in between.

Copulatory limb:- Broad at middle, more convex anterior edge. The distal end rounded.

Prontal organ:- In male, distal part is bare and the end rounded. Dorso-proximally there are 5-6 spines and more spines are present and more ventrally spreading up to two-third of capitulum. In female, shaft and capitulum are not separated, the tip is pointed and turned downwards. Spines present on distal half of the ventral side, very much atronger than those present on the proximal part of the dorsal side.

Remarks:- Most of the species coming under this ernas are somewhat similar in general shape but identified by their size, and armature of 'e' bristle of first antenna.

Distribution:- Reported earlier from all the three oceans (Müller, 1906a; Poulsen, 1973). The distribution of this species in the Indian Ocean is sporadic. It was present along the

Somali and Arabian coasts, mouth of Persian Gulf, Andaman Sea and southwest Bay of Bengal. It can be seen from the vertical distribution table of this species, given by Poulsen (1973) that it is more abundant in the depth of $350-1000 \mathrm{~m}$, which probably provides an explanation for their scant occurrence in the IIOE material. Possible range in temperature $11.5^{\circ} \mathrm{C}$ $30.1^{\circ} \mathrm{C}$ and salinity $32 \% 0-36.4 \% 0$.

Genus Pseudoconchoecia Claus

Pseudoconchoecia Claus, 1890.
Pseadoconchoecia Poulsen, 1973.
This genus includes 2 species P. serralata and P. concentrica Only P. consentrica was available in IIOE material.

$$
\frac{\text { Pseudoconchoecia concentrica (Müller) }}{(\text { PI.VI, Fig. } 9-17 \text { and Map XIII) }}
$$

Conchoecia concentrica Müller, 1906b, 1912.
Conchoecia pectinata, Leveau, 1966.
Conchoedia concentrica Deevey, 1968a, 1970.
Pseudoconchoecia concentrica Poulsen, 1969.
Ic
Localities:- See Table IfI.

Description:

Carapace:- Length $1.3-1.5 \mathrm{~mm}$. Height about 60% of length. Longitudinal striations present. The shoūlder vaults more pronounced. Postero-dorsal corner of right valve produced
into a small spine. Asymmetric glands as usual. Dorsomedian glands present only in male at postero-dorsal corner of each valve.

Pirst antenna: - Male - Armature of ' e ' bristle consists of 35-45 pairs of proximally directed simple spines, of uniform length. In female ' e ' bristle with short hairs ventrally on two-third of its distal part.

Second antenna:- The ' a ', ' b ', ' c ' and ' d ' bristles with short hairs. The ' c ', ' d ' and ' e ' bristles absent in female.

Right clasping organ curves almost at 180°, with distinctly ridged end. Left one with basal bent at 90° and the distal part only slightly curved.

Mandible:- Toothed edge of coxale with 9 teeth. Distal tooth list with 2 large, second of which is serrated and 12-14 small teeth. Proximal list with 2 or 3 large and about 11-12 smaller teeth.

Furca:- Unpaired bristle present behind the claws.

Copalatory limb:- Very broad. Both anterior and posterior edges convex. The appendage is large. The distal end is rounded.

Frontal organ:- In male it is separated into shaft and canitulum. Canitulum down-turned. Thin walled and bare
-:89:-
distal part is bent a little forwards with a rounded end. Female frontal organ almost straight with a narrow and bare distal part and pointed tip.

Remarks:- The juveniles are characterised by the presence of 10-12 triangular plates on their shoulder vaults. The specimens described by Leveau (1966) as Conchoecia pectinata are probably immature stages of P . concentrica.

Distribution:- Earlier recorded from Atlantic, Indian and Pacific Oceans (Poulsen, 1973). This species though present in the Arabian Sea, was absent in the Bay of Bengal. This pattern of distribution seems to support the suggestion that it prefers high saline canditions. Possible range in temperature $10.2^{\circ} \mathrm{C}-30.3^{\circ} \mathrm{C}$ and salinity $34.8 \% 0-37.4 \% \mathrm{o}$.

Genus Conchoecissa Claus
Conchoecissa Claus, 1891.
Conchoecissa Poulsen, 1973.
Characterised by long processes on rostrum, posterodorsal and postero-ventral corners of reticulated carapace. Only one specieswas present in IIOE material.

$$
\begin{gathered}
-: 90:- \\
\frac{\text { Conchoecissa imbricata (Brady) }}{\text { (PI. VI, Figs. } 18-24 \text { and Map XVI) }}
\end{gathered}
$$

Halocypris imbricata Brady (part), 1880.
Conchoecissa armata Claus, 1891.
Conchoecia Imbricata Müller, 1890, 1906a.
Conchoecia imbricata Deevey, 1968a.
Conchoecissa imbricata Poulsen, 1973.
Localities:- Station Ar $11-00^{\circ} 03^{\prime} S, 76^{\circ} 56^{\prime} \mathrm{E}-16$ specimens

Distribution:
Carapace:- Length 2.2 mm in male and 2.2-2.4 mm in female. Rostrum long and symmetrical. Postero-dorsal corner of each valve produced with long processes of which left one is longer. Postero-ventral processes are short and blunt. Carapace is distinctly sculptured, in the form of rectangular blocks. Antero-ventral margin is more spinous.

First antenna:- Armature of male ' e ' bristle consists of 11 pairs of pointed spines, the middle ones slightly alternating.

Second antenna:- Male - The ' a ' and ' b ' bristles are bare. One bristle ('c' or 'd') of 2nd endopodite segment is exceptionally long. Clasping organs resemble that of \underline{C}. symmetrica
(Skogsberg, 1920). The 'f' bristle is sword-shaped distally. The ' h ', ' i ' and ' j ' bristles with shafts and at the joint of the shaft ' h ' bristle is swollen. In female ' h ', ' i ' and ' j ' bristles with spines proximally.

Frontal organ:- Both male and female capitulum are long and slender. Capitulum is separated from shaft and with a rounded end. The proximal spines on ventral margin of female capitulum are larger.

The setation of appendages are about the type described for C. symmetrica (Skogsberg, 1920).

Remarks:- This species can be identified by the characteristic shape of having long processes. The presence of long processes are very rare among halocyprids.

Distribution:- Poulsen (1973) reported this as a common species in all the three oceans. But in the IIOE material it was found to be restricted to the equatorial belt. Their total absence in the Arabian Sea and Bay of Bengal defies explanation and is worthy of further consideration. Possible range in temperature $12.8^{\circ} \mathrm{C}-28.7^{\circ} \mathrm{C}$ and salinity $34.3 \% 0-35.6 \% 0$.

Genus Alaoia Poulsen

Alacia Poulsen， 1973.
This genus includes species included under Mullaria （1906a）＇Alata＇group，characterised by the presence of two or more groups of lateral glands on the posterior margin．

$$
\text { (PI. VII, Fig. } \frac{\text { Alacia }}{\text { alata }} \text { (Müller) }
$$

Conchoecia alata Müller，1906a and 1912.
Alacia alata Poulsen， 1973.
lc
Localities：－See Table $𤣩 ⿰ 𤣩 ⿱ 一 土 寸$ ．

Description：

Carapace：－Length 1．8－2．00 man in male and 2．00－2．4 mm in female．In male height is more or less uniform，about 56\％ of length．In female height inoreases posterioriy to about 61% of length．Shoulder vaults produced into wing－like expansions，laterally ending in apoint．Both right and left valves have postero－dorsal spines．Asymmetric glands in the usual places．Lateral glands present，one postero－dorsally and 2 postero－ventrally on both valves．Dorso－median glands present in male only．

First antenna：－Armature of male＇e＇bristle consists of about 22 pairs of plates twisted in the form of a＇T＇．

Second antenna:- Male - The 'a', 'b', 'c' and 'd' bristles bare, ' h ', ' i ' and ' j ' bristles with shafts having spines. Right clasping organ uniformiy curred and long. Left one more or less straight after the basal bent, the distal ends ridged and a small process present at the tip.

Mandible:- Toothed edge with 11 teeth. Distal tooth list with 2 large and 12-14 smaller teeth. Proximal list with 16-18 teeth of which 4-5 are larger.

Copulatory 11mb:- Anterior margin somewhat straight and posterior margin slightly convex, tapering to a narrow end.

Furca:- Posterior claw is bare. Unpaired bristle present, double the length of posterior claw.

Frontal organ:- Frontal organ of male with bare distal part and rounded end. Frontal organ of female also separated into shaft and capitulum. Distal part is very narrow with pointed tip, strong spines up to about $3 / 4$ ventrally, only very few spines present dorsally and laterally.

Remarks:- Poulsen (1973) pointed out that A. alata Müller differs from A. alata major Rudjakov, 1962 and A. alata minor McHardy 1964 in having larger points or spines on the posterodorsal cormer and posterior points on wing-like shoulder vaults. But absence of spines on postero-dorsal corners and variation in the shape of fenale frontal organ have been observed in a few specimens.

Distribution:- This species has been recorded from the tropical zones of all oceans (Poulsen, 1973). Present study showed its occurrence in the Persian Gulf regions, off Arabian coast, south-west coast of India and west coast of Ceylon. This species was absent in Bay of Bengal. Possible range in temperature $13.3^{\circ} \mathrm{C}-30.4^{\circ} \mathrm{C}$ and salinity $34.8 \% 0-36.9 \% 0$.

Genus Conchoecilla Claus

Conohoecilla Claus, 1891. Conchoecilla Poulsen, 1973.

This genus is characterised by elongated shell and location of the openings of right asymmetric gland below incisur and that of the left on posterior margin.

Conchoecilla daphnoides Claus
(P1. VIII, Pig. 10-18 and Map XV)

Conchoecilla daphnoides Claus, 1891.
Conchoecia daphnoides Mïller, 1906a and 1912.
Conchoecia diphnoides Skogsberg, 1931.
Conchoecia diphnoides Deevey, 1968a.
Conchoecilla daphnoides Poulsen, 1973.
Ic
Localities:- Many stations (See Table IIf).

Description:

Carapace:- 2.3 mm in male and $3.5-4.3 \mathrm{~mm}$ in females (length). Distinctly striated. Dorsal margin almost straight. There are no definite antero-ventral and postero-ventral corners. Rostrum of male is normal, in female long, pointed and asymetrical. The postero-dorsal corner is produced backward, longer in female. Right asymmetric glands open below rostral incisur and left postero-dorsally.

First antenna:- Male - The ' a ' bristle is ' T ' shaped. The 'b' bristle with about 10 spines situated at equal intervals and ' d ' bristle with about 10 apines closely placed. The longer ' e ' bristle with a knee bent having a few distally pointing spines and proximally it has about 45 pairs of equally long and slender closely placed spines.

Second antenna:- Both ' a ' and ' b ' bristles with hairs. The 'h', 'i' and ' j ' bristles have shafts and are narrowed distally. They are bare in male and have small spines proximally in female. The ' c ', ' d ' and ' e ' bristles absent in female. Left clasping organ somewhat straight distally often with a basal bent, but right one uniformly curved. The distal ends of both right and left organs swollen, indistinctly ridged and with small papillae.

Mandible:- The toothed edge of coxale with 9 diatinct and 2 less prominent teeth. Distal tooth list with 2 large, one of which is serrated and about 14 smaller ones. Proximal tooth list with 3 large and about 18 smaller teeth.

Copulatory limb:- Posterior edge convex, distal end rounded. The appendage has a square cut tip.

Purca:- Unpaired bristle absent.

Prontal organ:- Male frontal organ with very small spines up to $2 / 3$ of the ventral region and lesser laterally, absent dorsally. The distal end is rounded. Female frontal organ with apointed down-turned tip. Hairs present throughout the ventral margin decreasing laterally to $1 / 2$ of dorsal margin.

Remarks:- Müller (1906a) described 2 varieties of C. daphnoides Viz. var. typica and var. minor, subsequently synondmized by Skogsberg (1920), which is adopted in the present work. C. daphnoides of IIOE material belongs to the size grouping which Muller called as C. daphnoides minor.

Distribution:- Poulsen (1973) reported this to be one of the most common species of Conchoecinae in all the world oceans. Present investigation showed the occurrence of this species in the equatorial region, Andaman Sea and mouth of Malacea Strait in small numbers. Stray occurrences were
noticed in the Arabian Sea and Bay of Bengal. Poulsen (1973) examining the north-south distribution of this species considered it to be more abundant in the temperate and sub-tropical zone, than in the tropical zones. Possible range in temperature $11.9^{\circ} \mathrm{C}-29.5^{\circ} \mathrm{C}$ and salinity $32.3 \% 0-$ $36 \% 0$ 。

DISCUSSION

A comprehensive study of the planktonic ostracods of the Northern Indian Ocean based on the International Indian Ocean Expedition collections has been attempted with a view to study the species composition and pattern of distribution, to estimate their abundance and to correlate their distribution with the physico-chemical factors of the environment.

Ostracods form a major group of the plankton of the Indian Ocean, and numerically they are the third most abundant group, the first being copepods and second chaetognaths. Cypridina spp. are known to form swarms in the Arabian Sea. The author during the course of his investigations has observed (Tranter and George, 1972) a peak density of 2076 specimens $/ \mathrm{m}^{3}$ in the Laccadive Sea. An examination of the overall distribution of this group shows that the areas of their high abondance coincides with the areas of high plankton biomass, off Arabian coast, northern Arabian Sea and off south-west coast of India.

No attempt has been made to alter the classification put forward by Poulsen (1973) because of the limited number of species in the present material, eventhough the limitations of the system has been pointed out in the concerned discussion
part. The new generic classification has many unresolved taxonomic problems.

Certain species like Conchoecia macrocheira, C. parsidentate and C. subarcuata, eventhough occurred rarely, have been left out from the present study, mainly owing to the absence of adult males. A few genera like Loricoecia, Mollicia, Boroecia and Paramollicia were not at all encounteared in the present material. Many of these species are reported to occur in deeper waters and their absence in the present material may be more of a result of limited sampling depth rather than their being uncommon or absent from the area of investigation.

Of the 32 species belonging to 18 genera discussed, Euconchoecia aculeate was the most dominant species in the Northern Indian Ocean. However, for the Arabian Sea alone Cypridina dentate was the most abundant speoipp George et al.

 less common beyond the edge of the cont Euconchoecia aculpata occurs both in nerity E oceanic waters whereas all the other species occurred only in the oceanic waters.

The occurrence of juveniles and ripe females in most of the samples indicates that breeding is continuous in the tropical waters. Incidence of dense patches of juveniles
in certain collections suggest that periods of heavy spawning are superimposed on what may be called continual spawning. Such peak spawning periods were observed for C. dentata off Cochin and in the Laccadives, where, of the large number of specimens collected about half of them were juveniles. The halocyprids which are comparatively less abundant, had their juveniles in about the same number as that of adults. The ITOE mamples were collected from widely separated geographical locations and in different seasons of the year and hence they are of limited value for assessing the breeding periods of zooplankton organisms.

The species fall into 4 categories depending on zoor geographical ranges:

1. Widely distributed species
2. Equatorial species
3. Species restricted to Arabian Sad
4. Patchy.

Widely distribuţ̧ apecies

Paraconchoecia elegens, P. mocera, P. decipiens, Conchoecella giesbrechti, Microconchoecia curta, Metaconchoecia rotundata, Orthoconchoocia atlantica, Spinoecia porrecta, Euconchoecia aculeata and Halocypris brevirostris belong to this group. Most of these species are found to tolerate salinity from 32\%o-37\%o. Orthoconchoecia atriola and

Spinoecia parthenoda eventhough present off Arabian coast, and in Andaman Sea, were found more abundant in the equatorial region. These 2 species occurred only in salinities less than 36\%0.

Equatorial species

Paraconchoecia oblonga, P. echinata, Conchoecissa imbricata and to some extent Conchoecilla daphnoides also can be put under this category. These species are already reported from the Atlantic and Pacific and known to have a wide zoogeographical range of distribution. The reason why they are absent in the Northern Arabian Sea may be assumed as their inability to withstand high salinity ($>36 \% 0$).

Species restricted to Arabian Sea

Paeudoconchoecia concontrica, Alacia alata and Cypridina dentata were confined to Arabian Sea. P. concentrica has mainly been reported from tropical parts and Poulsen (1973) has recorded it in the Indian Ocean close to equator. A. alata is known to have a wide geographical range (Angel, 1969a). However these 2 species were found to occur mostly in the high saline conditions ($34 \% 0-37 \% 0$) in the Arabian Sea. Occurrence of Cypridina dentata in the Arabian Sea has already been discussed. Even with its tolerance to wide salinity ($30.8 \%-37.4 \%$) why they are not frequent in other parts of the ocean is worthy
of further investigations. The large amount of fresh waters, bringing suspended matter from rivers perhaps make the Bay of Bengal very much turbid and unfavourable for it to thrive.

Patchy distribution

The distribution of Conchoecia magna, Platyconchoecia prosadena, Metaconchoecia kyrtophora and also to some extent Euconchoecia chierchiae may be considered as Patchy. The reasons for C. magna having patchy distribution is more because of it being mesoplanktonic. P. prosadena and M. kyrtophora are extremely rare species. E. chierchiae was earlier recorded close to the equator. In the IIOE material most of the stations where this species was present, are off Somali and Arabian coast, appearing with a localised distribution. E. chierchiae, unlike most of the species shows a preference to low salinity ($32.4 \% 0-33.8 \% 0$).

Seasonal variations

Statistical analysis showed significant seasonal variations for 5 apecies. In the Arabian Sea, Cymidina dentata was more abundant during NE monsoon period. The other 2 species that showed seasonal variation in the Arabian Sea are Paraconchoecia procera and P. decipiens, the former being more abundant during SW monsoon period and latter during the NE monsoon period. In the Bay of Bengal significant ' t '
values were obtained only for 2 species Euconchoecia aculeata being more abondant during NE monsoon and Conchoecetta glesbrechti during $S W$ monsoon period. The reported abundance (George, 1969) of ostracods during the NE monso on in the Indian Ocean could largely be the result of swarming of Cypridina dentata in the Arabian Sea and Baconchoecia aculeata in the Bay of Bengal.

Day and Hight variations

Significant 't' values for day and night variations were obtained for Paraconchoecia procera, P. decipiens, Conchoecetta giesbrechti and Spinoecia porrecta. Because of the limitation of the depth of the present sample up to 200 m , it is not possible to draw any definite conclusions on their vertical movements, except for the species which do not migrate to deeper parts or which do appear in the apper zones at night for the sampling to be effective. George (1967) has reported the nocturnal abundance of ostracods in general. These 4 species could largely be responsible for the larger bulk of ostracods coming up to the surface at night.

Comparision of IIOE material with their

 distribution in the Atlantic and Pacific Oceans.Poulsen (1973) has compared halocyprid species of the Indian, Atlantic and Pacific Oceans. Angel (1973) has summarlsed the occurrence of the ostracod species in all the world oceans and attributed the richness of Atlantic fauna to the disparity of the scientific effort employed. Comparison of the distribution of the 32 species, in the present collection from the Indian Ocean with their distribution in Atlantic and Pacific showed that only 2 species are Indo-Pacific viz. Paraconchoecia decipiens and Orthoconchoecia striola. Species of Bathyconchoecia cannot be taken into account, as they are bathypelagic and hence not easily sampled by plankton nets. Therefore their not being reported from any particular ocean cannot be considered as their total absence. Angel (1972) in his summary has included 0 . striola as belonging to these 3 oceans, probably taking into account the single record of O. striola by Müller (1906a) in the Atlantic Ocean, which could very well be a mistake (Poulsen, 1973). The fact that Skogsberg (1920), Angel (1969a), Deevey (1968a), Poulsen (1973) have not reported it from Atlantic shows its possible absence in the Atlantic Ocean. The case of Platyconchoecia prosadens is also doubtful, since it is a comparatively rare species,
and so assumption of this sort may not be conclusive. Hence only Paraconchoecia decipiens and Orthoconchoecia striola are considered Indo-Pacific.

Ostracods in the Red Sea

No reliable data is available on the ostracod fauna of the Red Sea. During IIOE, only 2 samples were available from the Red Sea. Erenthough it is not possible to draw any conclusion on the ostracod fauna of the Red Sea based on these 2 samples, it is worthwhile to examine the species that were present. Paraconchoecia elegens, P. procera, Metaconchoecia rotundata, Spinoecia porrecta, Pseudoconchoecia conoentrica, Euconchoecia aculeata and Cypmidina dentata were encountered only in very few numbers. The hydrographic canditions prevailing in the Red Sea (salinity 36.6\%o-40.5\% and temperature $21.9^{\circ} \mathrm{C}-29.5^{\circ} \mathrm{C}$) down to 200 m depth, may not be congenial for all the species occurring in the Arabian Sea and Gulf of Aden. Investigations of Kimor (1973) indicate that most of the apiplankton of the Red Sea are dependant on recruitment of individuals for population maintenance from adjacent Gulf of Aden and Arabian Sea. The hot galine waters of the Red Sea and perhaps other physical and chemical factors are a barrier to the successful maintenance of many ostracod
apecies. The few species which are able to withstand this particular environment might have maintained the population due to lack of competition and the availability of food as is evidenced by the copepod distribution in this area (IOBC, 1970).

Angel (1972) summarising the recent literature pointed out that apart from North Atlantic and Mediterranean, the oceanic coverage, with regard to planktonic ostracods is incomplete. The present study provides some information regarding the ostracods of the Northern Indian Ocean especially that of the Bay of Bengal, one of the least explored areas as far as ostracods are concerned.

SUMMARY

1. A brief account of the historical aspects, general hydrography, classification and terminology of the planktonic ostracods of the Northern Indian Ocean is given.
2. The material dealt with here was collected during IIOE (1960-'65) from 200 m to 0 m using IOSN.
3. Poulsen's (1973) new generic classification has been adopted, but some of the limitations are mentioned.

- . 32 species have been identified from the samples, their number and locations are given in Ia - Ic, two of them belonging to Cypridinidae and the rest to Halocyprididae.

5. Systematics of the species has been discussed giving importance to diagnostic features and illustrations given (Plates I-VII). Comparison of the morphology of the species with one another and also their individual vamiations are discussed.
6. Distribution maps of the species have been prepared (Plates I-XX). Arabian Sea was found to have a rich ostracod fauna compared to Bay of Bengal or equatorial region of the Indian Ocean.
7. Based on their distribution, ostracods are categorised into four groups - widely distributed, equatorial, restricted to Arabian Sea and Patchy.
8. The reduction in the number of ostracod species in the Red Sea is attributed to the hot saline waters of the area.
9. Cypmidina acuminata is restricted to the area off Bombay.
10. Cypridina dentata is found to be the most abondant species in the Arabian Sea. Considering the Northern Indian Ocean as a whole, Euconchoecia aculeata is the most frequent and dominant species. Other common species are Paraconchoecia procera and Metaconchoecia rotundata.
11. Except Paraconchoecia decipiens, Oxthoconchoecia striola, Bathyconchoecia deeveyae and B. angeli, all other apecies reported here are common to Atlantic and Pacific Oceans.
12. The abundance in the distribution of ostracods correspond to that of other crustaceans and also to the areas of high productivity.
13. Statistical analysis of the data using Students 't' test shows significant seasonal variations, for Cypridina dentata, Euconchoecia aculeata, Paraconchoecia procera, P. decipiens and Conchoecetta giesbrechti and day and night variations for Paraconchoecia mrocera, P. decipiens, Conchoecetta giesbrechti and Spinoecia porrecta.
14. Breeding, as deduced from the occurrence of juveniles and ripe females, in the samples is found to be continuous.

Angel, M.V.,	1968a	The thermocline as an ecological boundary. Sarsia, 34 : 299-312.
,	1968b	Bioluminíséence in planktonic halocyprid ostracods. J. mar. biol. Ass - U.E. \cdot 48: 255-257.
-'	1968c	Conchoecia skogsbergi (Iles) a halocyprid ostracod new to the Norwegian Sea. Sargia, 34: 1-6.
-'	1969a	Planktonic ostracods from the Canaty Island region, their depth distributions, diurnal migrations and community structure. J. mar. biol. Ass. U.K., 49: 515-553.
,	1969b	Repeated samples from a deep mid water planktonic ostracod community. J. mar. biol. Ecol, 3: 76-89.
,	1969c	The ostracod Conchoecia porrecta Claus redescribed and compared with C. spinirostris Claus. Crustaceane, 17: 35-44.
,	1969d	The redescription of three halocyprid ostracods, Conchoecia hyalophyllum Claus, C. magna Claus, and C. parthenoda MuIler from the North Atlantic. Crustaceana, 17: 45-63.
-'	1970a	The redescription of Conchoecia bispinosa Claus, \underline{C}. haddoni Brady \& Norman and C. secernenda Vavra fram the North Atiantic. Crustaceana, 18: 147-166.
-'	1970b	Observations on the behaviour of Conchoecia spinirostris. J. mar. biol. Ass. U.ㅌ․ . 50: 731-736.
-'	1970c	Bathyconchoecia subrufa n. sp. and B. septems pinosa n. sp., two new halocy prids (Ostracoda, Myodocopida) from the tropical North Atlantic and the description of the larval development of B. subrufa. Crustaceana, 12: 181-199.

Angel, M.V.,	1971	Conchoecia from the North Atlantic. The 'procera' group. Bull. Br. Mus. nat. Hist. (2001.), 21: 257-283.
-'	197?	Planktonic ostracods - historical, present and future. Proc. R.S.E. (B), 73: 213-228.
_'	1973	The description of the female of the ostracod Bathyconchoecia sagittaxius Deevey (Myodocopida; Halocyprididae), Crustaceana, 25: 211-219.
*Baird, W.,	1850	The natural history of the British Entomostraca. Ray Society, Iondon.
Banse, K.,	1968	Hydrography ofthe Arabian Sea shelf of India and Pakistan and effects on demersal fishes. Deep Sea Res., 15: 45-79.
*Brady, G.S.,	1868	A monograph of the recent British Ostracoda. Trans. Linn. Soc., $2 \underline{=}$ (2).
*	1880	Report on the Ostracoda dredged by H.M.S. Challenger during the years 1873-1876. Sci. Res. Vovage H. M. S. Challenger, Z001. $1(3): 1-18 \overline{4}$.
$\text { * } \overline{\text { Norman, A.M., }}$	1889	A monograph of the marine and fresh water ostracoda of the North Atlantic and of North-western Europe. Section I. Podocopa. Sci. Trans. R. Soc., 4 .
-'	1896	A monograph of the marine and fresh water ostracoda of the North Atlantic and North-westerm Europe. Sections IIIV. Myodocopa, Cladocopa and Platycopa. Sci. Trans.R. Soc., 5: 1-125.
Bezrukov, P.I.,	1961	Investigations in the Indian Ocean on the 33 rd cruise of 'Vitiaz'. Trans. Okeanologia, 1 (4) (Moscow).
Cannon, H.G.,	1940	Ostracoda. Scient. John Murray Exped., 6: 319-320.

*Claus, C.,	1873	Neue Beobachtungen uber Cypriden. Zs. Wiss. Zool., 23 Wien.
*__	1874	Die Famile der Halocypriden. Schriften Zool. Inh.: 1 Wien.
* ${ }^{\text {² }}$	1876	Untersuchungen mur Enforschung der geneologischen Grund Lage der Crustacean - Systins - Wien.
_'	1891	Die halocypriden des Atlantischen Ocean und Mittalmeeres - Wien.
*	1894	Die Halooypriden und witwickiungsstadien. Denkschr. Ak. Wiss., ${ }^{[1} 1$ Wien.
Currie, R.,	1963	Indian Ocean Standard Net. Deep Sea Res. . 10: 27-32.
Currie, R.I., A.E. Fisher and P.M. Hargreaves.,	1973	Arabian Sea Upwelling. The biology of the Indian Ocean. Ecological Studies, 3: 37-52.
*Dana, J.D.,	1849	Conspectus Crustaceorum quae in Orbis Terrarum ci rcumnavigationae, Carolo Wilkes e classe Reipublicae Focderate Duce, Lexit et descripsit J.D. Dana. Pars. II. Proc. Amer. Acad. Arto. Sci., 2: 9-61.
* ${ }^{\text {, }}$	1852	Crustacea. Part II. United States Exploring Exped. during the years 1838-1842. 8: 691-1618, Fhiladel phia.
Deevey, G.B.,	1968a	Pelagic Ostracods of the Sargasso Sea off Bermuda. Bull. Peaboady. Mus. nat. Hist., 26: 1-125.
-'	1968b	Bathyconchoecia, a new genus of pelagic ostracods (Myodoco pa, Halocyprididae) with six new species from the deeper waters of the Gulf of Mexic o. Proc. biol. Soc. Wash., 81: 539-570.
,	1970	Pelagic ostracods of the North Atlantic off Barbados. Proc. biol. Soc. Wash ${ }^{2}$, 82: 799-824.

-:113:-

Deevey, G.B.	1974	Pelagic Ostracods ofllected on Hudson 70 between the equator and $55^{\circ} \mathrm{S}$ in the Atlantic. Proo. biol. Soc., Wash., 87: 351-380.
Gailagher, J.F.,	1966	The variability of watermasses in the Indian Ocean. Nat. Oceanogr. Data Centre, General Series Publ. G. 11: 1-74.
Granata, I. and I. di Caporiacco,	1949	Ostracodes marins recueillis pendant les oroisieres due Prince Albert I de Monaco - Res. Camp. Sci: Albert I Prince de Monaco, 102: 1-51.
George, J.,	1969	A preliminary report on the distribution and abundance of planktonic ostracods in the Indian Ocean. Bull. natn. Inst. Sci. India, 38: $64 \frac{\text { natn }}{1-648}$.
,	1971	On the occurrence of Bathyconchoecia deeverae Kornicker (Ostracoda, Halocyprididae) in the Indian Ocean. Crustaceana, 21: 141-144.
\ldots _, (in Press)		Bathyconchoecia angeli n. sp. a new halocyprid Ostracod from the Malacca Strait, Indian Ocean. Crustaceana.
, (in Pres		Redescription of Archiconchoecia striata Muller (Halocypmdidae, Ostracoda) and its distribution in the Northern Indian Ocean. Crustaceana.
George, J., Purushan, K.S., and Madhupratap, M.,	1975	Distribution of planktonic ostracods along the Southwest coast of India. Ind. J. mar. Sci., 4: 201-202.
Iles, E.J.,	1953	A preliminary report on the Ostracoda of the Benguela Current. Discovery Rep., 26: 259-280.
[,	1961	The appendages of the Halocyprididae. Discovery Rep., 31: 299-326.
I.O.B.C.,	1969	```Handbook to the Intermational Zooplankton Collections. Indian Ocean Biological Centre, 1:Station Iist.```

I.O.B.C.,	1970	Distribution of Copepoda and Decapod larvae in the Indian Ocean. IIOE Plankton Atlas, $2 \cdot$
-'	1971	Handbook to the International Zooplankton Collections. Indian Ocean Biological Centre, 2: Environmental Data.
-,	1972	Distribution of Planktonic Crustacea (Cladocera, Ostracoda, Cirripedia, Mysidacea, Isopoda, Amphipoda, Euphausiacea and Stomatopoda) and Insecta (Halobatidae) of the Indian Ocean. IIOE Plankton Atlas, 3 .
Jayaraman, R.,	1965	Upwelling off the east coast of India. Curr. Sci., 34: 121-122.
Kimor, B.,	1973	Plankton relations of the Red Sea, Persian Gulf and Arabian Sea. Ecological Studies, $3: 221-232$.
Kornioker, I.S.,	1968	Bathyconchoecia deeveyae, a highly ornamented new apecies of Ostracoda (Halocyprididae) from the Peru-Chile Trench System. Proc. biol. Soc. Wash., 82: 403-408.
La Fond, E.C.,	1954	On upwelling and sinking of the east coast of India. Andhra Univ. Mem., Oceanogx., 1: 117-121.
-'	1958	On the ofrculation of the surface layers off the east coast of India. Andhra Univ. Mem. Oceanogr., 2: 1-11.
*Latreille, P.A.,	1802	Histoire naturella, generale et particuliere des Crustaces et des Insectes, 3 , Paris.
[${ }^{\text {- }}$	1806	Genera Crustaceorum - T. I, Paris.
ـ'	1810	Considerations generales sur Lordre natural des animaux composant les classes des Crustaces des Arachnides et des Insectes etc. Paris.
Leveanif M.,	1966	Conchoecia pectinata: Nouvelle espice D'ostracode Pelagique. Rec. Trav Sta. mar. Endoume Suppl., 40: 249-252.

-:115:-		
Leveau, M.,	1967	Ostrac odes pelagiques du sud-ouest de I'Ocean Indien (Regeon de Tulear). Rec. Trav. St. mar. Endoume Suppl., 6: 63-70.
	1969	Ostracodes pelagiques recuellio lors de la 3 e compagne de laviso 'Commandant Robert Giraud'. Rec. Trav. St. mar. Findoume Suppl., 8: 127-280.
*Iinne, C.V.,	1746	Fauna Suecia. Stockholm.
Lubbock, J.,	1856	On some Entomostraca collected by Dr. Sutherland, in the Atlantic Ocean. Trans. Fint. Soc. London, 4: 8-37.
	1860	On some oceanic Intomostraca collected by Captain Toynbee. Trans . Linn. Soc. London, 23: 173-197.
Mo Ewen, G.F., Johnson, M.W., and Folsom, T.R.,	1954	A statistical analysis of the performance of the folsom plankton splitter based upon test observations. Arch. Met. Geophys . u. Klimatol., 7: 502-527.
McHardy, R.A.,	1964	K Marine Ostracod from the plankton of the Indian Arm, British Columbia including a Dimunite subspecies Besembling Conchoecia alata major Radjakov. J. Fish. Res. Bd. Canada, 21: $555-57 \overline{6}$.
*Milne Eawards, H.,	1840	Histoire naturelle des Crustaces etc. Tome Triosieme, Paris.
Merrylal James, E.,	1972	Conchoecia indica, a new ostracod from the South west coast of India. J. mar. biol. Ass. India, 14 (2): 819-826.
	1973	On Bathrconchoecia lacunosa (Naller), a rare halocyprid from the Arabian Sea. J. mar. biol. Ass. India, 15 (1): 433-438.
Moguilersky, A. and Angel, M.V.,	1975	Halocyprid ostracods in Atlantio Neuston. Marine Biology, $32: 295-302$.

Maller, G.W.,	1890	Uber Halocypriden. Zool. ib. Abt. System., 5: 253-280.
,	1894	Die Ostracoden des Golfes von Neapel und der Angrenzenden Meerco-abschnitte. Fanna Flora Golf. Neapel, 21: 1-404.
,	1906a	Ostracoda. Wiss. Ergebn Deutsch. Tiefsee-Exped., 8: 29-154.
,	1906b	Ostracoden der Siboga Expedition. Siboga Exped., 30: 1-40.
,	1908	Die Ostracoden der Deutschen Sudpolar Expedition. Deutsch. Sudpolar Exped., 10: 51-182.
	1912	Ostracoden. Das Tierreich, 31: 1-434.
*Philippi, A.,	1840	Zoologische Bemerikungen. Arch. F. Naturg. Jahrg., 6.
Poulsen, E.M.,	1962	Ostracoda - Myodocopa Part I. Cypridiniformes - Cypridinidae. DaneRep. 57: 1-414.
-'	1965	Ostracoda - Myod oc opa Part II. Cypridiniformes - Rutidermatidae, Sarsiellidae and Asteropidae. Dana Rep., 65: 1-484.
-'	1969a	Ostracoda - Myodoco pa Part III A. Halocypriformes - Thaumatocypridae and Halocypridae. Dana Rep., 15: 1-100.
-'	1969b	Ostrac oda - Myodocopa from the Eastern Tropical Atiantic. Vidensk. Meddr. dark. Foren., 132: 129-197.
- ${ }^{\text {, }}$	1973	Ostracoda - Myodocopa. Part III B. Halocypriformes - Halocy pridae, Conchoecinae. Dana Rep., 84: 1-224.
Rudjakov, J.A.,	1962	Ostrac oda Myodocopa of the Family Halocypridae from the North-Western Pacific. Trudy. Inst. Okeanol., 58: 172-201.

-:117:-		
*Sars, G.0.,	1865	Oversight of Norges Marine Ostracoder Sectis 2. Myodoco pa. Farh. Vid. Selsk., 1865: 99-120.
* ${ }^{\text {² }}$	1887	Nye Bidrag til Kundskaben om Middelhaveto Invertibrat Fauna. IV. Ostracoda mediterranea. Arch. Math. Naturv., 12: 173-324.
-'	1928	Ostrac oda. An account of Crustacea of Norway. 2: 1-277.
Schott, G.,	1935	Geographie des Indioschen und slitten Ozeano. Hamburg.
Scott, T.	1894	Report on the Intomostraca from the Gulf of Guinea, collected by John Rattray. Trans. Linn. Soc., 6: 1-161.
Skogsberg, T.,	1920	Studies on marine ostracods, Pt.I. Cypridinido, hal oc yprido and Polycopido. Zool. Biddr. Uppsala Suppl. I: 1-782.
-,	1931	Ostracods. Rep. Scient. Res. Michael Sars N. Atlant. Deep Sea Exped., 5: 1-26.
*Stebbing, T.R.R.,	1910	General catalogue of South African Crustacea. Ann. S. Afric. Mus., 6 (4).
*Strans, H.E.,	1821	Memoire sur les Cypris, de la classe des Crustaces. Mem. Mus. d'Hist. Nat., 그․
Tranter, D.J., and Smith, P.E.,	1968	Filtration performance. Reviews on Zooplankt on sampling methods. Monographs on Oceanographic methodology, $2: 29-58$.
Tranter, D.J., and George, J.,	1972	Zooplankton abundance at Kavaratti and Kalpeni atolls in the Laccadives. Proc. Symp. Corals and Coral Reefs 1969, Mar. biol. tss. India, pp. 239-256.
Varra, V.,	1906	Die Ostracoden (Halocypriden und Cypridiniden) der Plankton-Expedition. Ergebn. Plankton-Exp., 2: 1-76.
Wiborg, K.F.,	1951	The Whitling Vessel, an apparatus for the fractioning of plankton samples. Fiskeridir. Skr. Havanders, 11(3):1-16.
Wyrtki, K.,	1973	Physical Oceanography of the Indian Ocean. Ecological Studies, 3: 18-36.

TABLE - I a: Data concerming the stations and

Name of Ship, Cruise No. \& Station No .		Name of Species and No. of specimens						
		C.dent	E.acu-	E.chier-	H.brevi-	P.echi-	P.ele	P.pro-
		- ta	leata	chiae	rostris	nata	grans	cers
		1	2	3	4	5	6	7
Anton Bruun								
Cr.A. 1	$12^{\circ} 00^{\prime} \mathrm{N}, 45^{\circ} 51^{\prime} \mathrm{E}$	-	1075	-	-	-	-	80
2	$12^{\circ} 41^{\prime} \mathrm{N}, 48^{\circ} 00^{\prime} \mathrm{E}$	500	-	-	-	-	-	-
3	$13^{\circ} 03^{\prime} \mathrm{N}, 50^{\circ} 00^{\prime} \mathrm{E}$	-	11000	-	-	-	-	-
4	$13^{\circ} 34^{\prime} \mathrm{N}, 52^{\circ} 01^{\prime} \mathrm{E}$	385	885	-	5	-	-	-
5	$14^{\circ} 03^{\prime} \mathrm{N}, 54^{\circ} 00^{\prime} \mathrm{E}$	8	128	-	-	-	40	-
6	$14^{\circ} 35^{\prime} \mathrm{N}, 56^{\circ} 00^{\prime} \mathrm{E}$	350	895	10	15	-	65	95
7	$15^{\circ} 05^{\circ} \mathrm{N}, 58^{\circ} 00^{\prime} \mathrm{E}$	10885	1075	-	-	-	-	25
8	$15^{\circ} 35^{\prime} \mathrm{N}, 60^{\circ} 00^{\prime} \mathrm{E}$	622	403	-	-	-	-	33
9	$15^{\circ} 02^{\prime} \mathrm{N}, 62^{\circ} 00^{\prime} \mathrm{E}$	25	20	-	-	-	10	200
10	$16^{\circ} 36^{\prime} \mathrm{N}, 64^{\circ} 00^{\prime} \mathrm{E}$	9128	16	-	-	-	-	-
11	$17^{\circ} 08^{\circ} \mathrm{N}, 66^{\circ} 00^{\prime} \mathrm{E}$	5575	180	-	-	-	-	110
12	$17^{\circ} 36^{\prime} \mathrm{N}, 68^{\circ} 00^{\prime} \mathrm{E}$	-	850	-	-	-	-	-
13	$18^{\circ} 09^{\prime} \mathrm{N}, 70^{\circ} 00^{\prime} \mathrm{E}$	1250	1250	-	-	-	-	-
Cr. 1.14	$07^{\circ} 27^{\prime} \mathrm{N}, 49^{\circ} 21^{\circ} \mathrm{E}$	-	-	-	40	-	-	50
15	$07^{\circ} 27^{\prime} \mathrm{N}, 95^{\circ} 18^{\prime} \mathrm{E}$	-	-	-	10	-	-	30
16	$07^{\circ} 31^{\prime} \mathrm{N}, 96^{\circ} 11^{\circ} \mathrm{E}$	-	-	-	25	-	-	80
17	$07^{\circ} 40^{\prime} \mathrm{N}, 97^{\circ} 09^{\circ} \mathrm{E}$	-	-	-	40	-	-	80
19	08*29'N,97*59'E	-	4	-	-	-	-	-
21	09*54'N,97* $42^{\prime} \mathrm{E}$	-	-	4	-	-	-	-

TABLE - I a (Contd.)

Station Name of Cruise N	$h i p \&$	1	2	3	4	5	6	7
Anton Bruun								
Cr.1. 24	$10^{\circ} 36^{\prime} \mathrm{N}, 95^{\circ} 39^{\prime} \mathrm{E}$	-	-	-	25	-	-	- 62
25	$10^{\circ} 41^{\prime} \mathrm{N}, 94^{\circ} 40^{\prime} \mathrm{E}$	-	-	-	25	-	20	24
26	$10^{*} 39^{\prime} \mathrm{N}, 93^{\circ} 49^{\prime} \mathrm{E}$	-	-	-	10	-	-	50
27	$10^{\circ} 37^{\prime} \mathrm{N}, 92^{\circ} 59^{\prime} \mathrm{E}$	-	38	-	-	-	35	30
28	$11^{\circ} 49^{\prime} \mathrm{N}, 92^{\circ} 53^{\prime} \mathrm{E}$	-	-	3056	-	-	-	-
29	$11^{\circ} 23^{\prime} \mathrm{N}, 93^{\circ} 31^{\prime} \mathrm{E}$	-	6	-	-	-	-	-
30	$12^{\prime} 17^{\prime} \mathrm{N}, 93^{\circ} 21^{\prime} \mathrm{E}$	-	12	-	-	-	-	-
31	$12^{\circ} 53^{\prime} \mathrm{N}, 93^{\circ} 23^{\prime} \mathrm{E}$	-	30	-	20	-	-	60
32	$12^{\circ} 52^{\prime} \mathrm{N}, 94^{\circ} 13^{\prime} \mathrm{E}$	-	-	-	30	-	25	30
33	12*57'N,95*01'E	-	1656	-	10	-	-	82
34	$12^{\circ} 50^{\prime} \mathrm{N}, 95^{\circ} 56^{\prime} \mathrm{E}$	-	-	-	-	-	-	78
39	$14^{\circ} 42^{\prime} \mathrm{N}, 96^{\circ} 47^{\circ} \mathrm{E}$	360	10	-	-	-	-	10
41	$15^{\circ} 04^{\prime} \mathrm{N}, 95^{\circ} 51^{\prime} \mathrm{E}$	1157	-	-	-	-	-	-
52	$18^{\circ} 55^{\prime} \mathrm{N}, 91^{\circ} 59^{\prime} \mathrm{E}$	-	25	-	-	-	-	-
53	$18^{\circ} 33^{\prime} \mathrm{N}, 91^{\circ} 16^{\prime} \mathrm{E}$	-	675	-	-	-	-	-
54	$18^{\circ} 24^{\prime} \mathrm{N}, 90^{\circ} 45^{\prime} \mathrm{E}$	-	50	-	-	-	-	20
55	$18^{\circ} 20^{\prime} \mathrm{N}, 90^{\circ} 06^{\prime} \mathrm{E}$	-	3	-	-	-	-	-
56	$18^{\circ} 15^{\prime} \mathrm{N}, 89^{\circ} 20^{\circ} \mathrm{E}$	-	35	-	-	-	-	25
58	$18^{\circ} 11^{\prime} \mathrm{N}, 88^{\circ} 04^{\circ} \mathrm{E}$	-	394	-	-	-	25	-
59	$18^{\circ} 00^{\prime} \mathrm{N}, 87^{\circ} 16^{\prime} \mathrm{E}$	-	50	-	-	-	-	10
60	$17^{\circ} 54^{\prime} \mathrm{N}, 86^{\circ} 31^{\prime} \mathrm{E}$	-	240	-	15	-	-	-
61	$17^{\circ} 53^{\prime} \mathrm{N}, 85^{\circ} 56^{\prime} \mathrm{E}$	-	10	-	-	-	-	10

TABLE - I a (Contd.)
Station No.
Name of Ship $\&$
Cruise No.
TABLE - I a (Contd.)
Station No,
Name of Ship \&
Cruise No.
Station No.
Name of Ship $\&$
Cruise No.
(•Pquon) B I - GTgV

TABLE - I a (Contd.)

Name of Ship, Cruise No. \& Station No.			1	2	3	4	5	6	7
Anton Bruun									
Cr.5.	287	$13^{\circ} 11^{\prime} \mathrm{N}, 50^{\circ} 22^{\prime \prime} \mathrm{E}$	50	125	5	-	-	-	60
	288	09* $28^{\prime} \mathrm{N}, 54^{\circ} 52^{\prime} \mathrm{E}$	-	-	-	52	-	4	12
	289	$07^{\circ} 10^{\prime} \mathrm{N}, 55^{\circ} 05^{\prime} \mathrm{E}$	-	-	-	7	-	-	46
	327	06*51'N,75*02'E	2	50	-	14	-	-	20
	328	18*02'N,65*08'E	2505	278	-	-	-	-	85
	329	15*36'N,64*59'E	4128	112	-	-	-	-	180
	330	$13^{\circ} 36^{\prime} \mathrm{N}, 65^{\circ} 03^{\prime} \mathrm{E}$	1334	63	-	-	-	-	69
	331	$11^{\circ} 28^{\prime} \mathrm{N}, 65^{\circ} 04^{\prime} \mathrm{E}$	1149	24	-	3	-	-	86
	332	10*01'N,65* $01{ }^{\circ} \mathrm{E}$	11	-	-	2	-	2	5
	334	06*01'N,64*59'E	-	-	-	11	-	10	90
Argo									
Cr.Dodo	29	03* $52^{\prime} \mathrm{N}, 48^{\circ} 18^{\prime} \mathrm{E}$	-	-	-	8	-	40	-
	32	$05^{\circ} 11^{\prime} \mathrm{N}, 49^{\circ} 44^{\circ} \mathrm{E}$	-	-	380	-	-	150	-
	37	$06^{\circ} 26^{\prime} \mathrm{N}, 49^{\circ} 46^{\prime} \mathrm{E}$	10	-	950	80	10	290	240
	40	07* $05^{\prime} \mathrm{N}, 49^{\circ} 39^{\prime} \mathrm{E}$	-	-	20	49	80	30	50
	47	$08^{\circ} 53^{\circ} \mathrm{N}, 53^{\circ} 09^{\circ} \mathrm{E}$	-	-	200	40	-	640	240
	51	$11^{\circ} 08$ 却,53*02 ${ }^{\circ} \mathrm{E}$	-	-	240	-	-	25	20
	58	08* $27^{\prime} \mathrm{N}, 53^{\circ} 23^{\prime} \mathrm{E}$	-	7	14	14	20	50	40
	67	05* $02^{\prime} \mathrm{N}, 55^{\circ} 06^{\prime} \mathrm{E}$	-	-	-	45	-	44	980

TABLE - I a (Contd.)

TABLE - I a (Contd.)

Name of Ship, Cruise No. \& Station No.		1	2	3	4	5	6	7
Argo								
Cr. Iusiad 43	03*00'S,53*00'E	-	-	-	350	-	-	-
44	03*56'S.52*59'E	-	-	-	50	-	-	-
45	05 ${ }^{\circ} 00^{\prime} \mathrm{S}, 52^{\circ} 00^{\prime} \mathrm{E}$	-	-	-	14	-	-	-
46	04*07'S,62* $10^{\prime} \mathrm{E}$	-	-	-	60	-	-	-
47	03*00'S,62*20'E	-	-	-	25	-	-	12
48	02*29'S,62*20'E	-	-	-	101	10	2	-
49	02* $00^{\prime} \mathrm{S}, 62{ }^{\circ} 20^{\prime} \mathrm{E}$	-	-	-	50	-	-	-
50	01*28'S,62*20'E	-	-	-	28	30	-	-
51	00*57'S,62*19'E	-	-	-	33	-	-	-
52	00* $28^{\prime} \mathrm{S}, 62^{\circ} 19^{\prime} \mathrm{E}$	-	-	-	42	45	-	40
53	00*05'N,62*201E	-	-	-	45	-	-	-
54	00* $29^{\prime} \mathrm{N}, 62^{\circ} 19^{\prime} \mathrm{E}$	-	-	-	25	30	25	-
55	01*02'N,62*20'E	-	-	-	12	-	--	-
56	01*32 ${ }^{\prime} \mathrm{N}, 62^{\circ} 20^{\prime} \mathrm{E}$	-	-	-	-	-	4	8
57	02* $05^{\prime} \mathrm{N}, 62^{\circ} 15^{\prime} \mathrm{E}$	-	-	-	24	-	-	-
58	02*31'N,62* $20^{\prime} \mathrm{E}$	-	-	-	10	-	-	30
59	03* $06^{\prime} \mathrm{N}, 62^{*} 19^{\prime} \mathrm{E}$	-	-	-	4	-	-	-
61	05*02 ${ }^{\circ} \mathrm{N}, 62^{\circ} 20^{\prime} \mathrm{E}$	-	-	-	8	-	-	-
62	04*51'N,79*04'E	-	-	-	28	-	-	-
64	02* $55^{\prime} \mathrm{N}, 78^{\circ} 58^{\prime} \mathrm{E}$	-	-	-	10	-	-	-
65	02* $26^{\prime} \mathrm{N}, 78^{\circ} 56^{\prime} \mathrm{E}$	-	-	-	25	-	-	-
66	01*54 ${ }^{\circ} \mathrm{N}, 79^{\circ} 01^{\prime} \mathrm{E}$	-	-	-	10	-	-	-

TABLE - I a (Contd.)

Name of S Cruise No Station	ip,		1	2	3	4	5	6	7
Argo									
Cr.Iusiad	68	00* $55^{\circ} \mathrm{N}, 79^{\circ} 04^{\prime} \mathrm{E}$	-	-	-	28	-	-	-
	69	$00^{\circ} 30^{\prime} \mathrm{N}, 79^{\circ} 01^{\prime} \mathrm{E}$	-	-	-	36	-	-	-
	70	00* $02^{\prime} \mathrm{N}, 79^{\circ} 04^{\prime} \mathrm{E}$	-	-	-	33	-	-	-
	71.	00* $30^{\prime} \mathrm{S}, 79^{\circ} 02^{\prime} \mathrm{E}$	-	-	-	55	-	48	45
	72	00* $56{ }^{\prime} \mathrm{S}, 79^{\circ} 03^{\prime} \mathrm{E}$	-	-	-	25	-	-	-
	74	01*55S,78.54 ${ }^{\circ}$ E	-	-	-	60	-	-	-
	75	02*30'S,78*59'E	-	-	-	-	-	35	-
	76	03***'S,79** $01^{\circ} \mathrm{E}$	-	-	-	25	30	-	-
	77	$04^{\circ} 00^{\prime} \mathrm{S}, 79^{\circ} 00^{\prime} \mathrm{E}$	-	-	-	130	-	-	-
	79	$00^{\circ} 01^{\prime} \mathrm{N}, 88^{\circ} 56^{\prime} \mathrm{E}$	-	-	-	12	-	-	-
	81	01* 08'S,89* $05^{\prime} \mathrm{E}$	-	-	-	7	-	5	7
	84	03* $03^{\prime} \mathrm{S}, 89^{\circ} 03^{\prime} \mathrm{E}$	-	-	-	18	-	-	16
	86	$05^{\circ} 00^{\prime} \mathrm{S}, 89^{\circ} 00^{\prime} \mathrm{E}$	-	10	-	50	-	45	60
	91	$01^{\circ} 30^{\prime} \mathrm{N}, 89^{\circ} 00^{\prime} \mathrm{E}$	-	-	-	80	-	-	-
	92	$02^{\circ} 01^{\prime} \mathrm{N}, 88^{\circ} 58^{\prime} \mathrm{E}$	-	-	-	32	-	42	-
Conch									
	45	$09^{\circ} 52^{\circ} \mathrm{N}, 75^{\circ} 39^{\circ} \mathrm{E}$	4920	117	-	13	-	187	88
	49	$10^{\circ} 00^{\prime} \mathrm{N}, 75^{\circ} 39^{\prime} \mathrm{E}$	6640	60	-	-	-	36	59
	52	$10^{\circ} 10^{\circ} \mathrm{N}, 85^{\circ} 46^{\circ} \mathrm{E}$	18750	100	-	-	-	10	50
	55	$10^{\circ} 19^{\prime} \mathrm{N}, 75^{\circ} 37^{\prime} \mathrm{E}$	7300	48	-	-	-	8	72
	58	$10^{\circ} 29^{\prime} \mathrm{N}, 75^{\circ} 31^{\prime} \mathrm{E}$	20600	120	-	-	-	12	168
	62	$10^{\circ} 39^{\prime} \mathrm{N}, 75^{\circ} 22^{\prime} \mathrm{E}$	1703	-	-	-	-	13	36

TABLE - I a (Contd.)

Name of Shi Cruise No. Station No.		1	2	3	4	5	6	7
Discovery								
Cr.1. 5002	$20^{\circ} 19^{\prime} \mathrm{N}, 38^{\circ} 21^{\prime} \mathrm{E}$	14	-	-	-	-	-	114
5009	$15^{\circ} 10^{\prime} \mathrm{N}, 52^{\circ} 32^{\prime} \mathrm{E}$	-	112	-	4	-	-	216
5016	$13^{\circ} 16^{\prime} \mathrm{N}, 53^{\circ} 30^{\prime} \mathrm{E}$	72	-	-	7	-	67	53
5017	$12^{\circ} 56^{\prime} \mathrm{N}, 53^{\circ} 44^{\prime} \mathrm{E}$	80	60	-	-	-	-	106
5018	12*50'N,53*52'E	344	136	-	4	-	-	112
5026	$16^{\circ} 31^{\prime} \mathrm{N}, 54^{\circ} 08^{\prime} \mathrm{E}$	10	670	-	-	-	-	60
5030	$15^{\circ} 54^{\prime} \mathrm{N}, 54^{\circ} 31^{\prime} \mathrm{E}$	-	224	-	-	-	20	252
5031	$15^{\circ} 26^{\prime} \mathrm{N}, 54^{\circ} 46^{\prime} \mathrm{E}$	2	50	4	10	-	19	57
5036	$17^{\circ} 32^{\prime} \mathrm{N}, 57^{\circ} 00^{\prime} \mathrm{E}$	-	40	-	-	-	-	80
5037	$17^{\circ} 28^{\prime} \mathrm{N}, 57^{\circ} 03^{\prime} \mathrm{E}$	-	133	-	-	-	67	233
5038	$17^{\circ} 18^{\prime} \mathrm{N}, 57^{\circ} 09^{\circ} \mathrm{E}$	-	595	-	-	-	80	528
5039	$17^{\circ} 09^{\prime} \mathrm{N}, 57^{\circ} 15^{\circ} \mathrm{E}$	-	445	-	5	-	25	255
5041	$16^{\circ} 45^{\prime} \mathrm{N}, 57^{\circ} 30^{\prime} \mathrm{E}$	-	60	-	-	-	-	120
5047	$19^{\circ} 11^{\prime} \mathrm{N}, 57^{\circ} 55^{\circ} \mathrm{E}$	5	220	-	-	-	-	20
5048	$19^{\circ} 03^{\prime} \mathrm{N}, 58^{\circ} 04^{\circ} \mathrm{E}$	30	1590	-	-	-	90	270
5050	$18^{\circ} 51^{\prime} \mathrm{N}, 58^{\circ} 19^{\prime} \mathrm{E}$	120	3173	-	-	-	-	253
5051	$18^{\circ} 46^{\prime} \mathrm{N}, 58^{\circ} 23^{\prime} \mathrm{E}$	40	1653	-	-	-	53	333
5052	$18^{\circ} 39^{\circ} \mathrm{N}, 58^{\circ} 31^{\prime} \mathrm{E}$	10	140	-	-	-	10	150
5053	$18^{\circ} 20^{\prime} \mathrm{N}, 58^{\circ} 59^{\prime} \mathrm{E}$	-	670	-	10	-	-	270
5054	$17^{\circ} 51^{\circ} \mathrm{N}, 59^{\circ} 20^{\prime} \mathrm{E}$	34	50	-	5	-	6	37
5055	$17^{\circ} 33^{\prime} \mathrm{N}, 59^{\circ} 45^{\prime} \mathrm{E}$	13	40	-	-	-	-	14

TABLE - I a (Contd.)

Name of Sh Cruise No. Station No		1	2	3	4	5	6	7
Discovery								
Cr. 1.5056	$17^{\circ} 12^{\prime} \mathrm{N}, 60^{\circ} 05 \mathrm{E}^{\circ}$	60	-	-	-	-	18	200
5057	$16^{\circ} 45^{\prime} \mathrm{N}, 60^{\circ} 31^{\circ} \mathrm{E}$	305	34	-	-	-	-	24
5062	$20^{\circ} 52^{\prime} \mathrm{N}, 59^{\circ} 25^{\prime} \mathrm{E}$	5	480	-	-	-	25	160
5063	$20^{\circ} 43^{\prime} \mathrm{N}, 59^{\circ} 36^{\prime} \mathrm{E}$	26	253	-	-	-	200	427
5064	$20^{\circ} 38^{\prime} \mathrm{N}, 59^{\circ} 45^{\prime} \mathrm{E}$	-	1400	-	-	-	10	300
5065	$20^{\circ} 32^{\prime} \mathrm{N}, 59^{\circ} 55^{\prime} \mathrm{E}$	40	507	-	-	-	105	280
5066	$20^{\circ} 26^{\prime} \mathrm{N}, 60^{\circ} 03^{\prime} \mathrm{E}$	20	410	-	-	-	-	300
5067	$20^{\circ} 13^{\prime \prime} \mathrm{N}, 60^{\circ} 20^{\prime} \mathrm{E}$	950	490	-	-	-	34	270
5068	$19^{\circ} 58^{\prime} \mathrm{N}, 60^{\circ} 48^{\circ} \mathrm{E}$	820	10	-	-	-	90	320
5069	$19^{\circ} 34^{\prime} \mathrm{N}, 61^{\circ} 14^{\prime} \mathrm{E}$	780	560	-	20	-	-	260
5089	$13^{\circ} 14^{\prime} \mathrm{N}, 50^{\circ} 14^{\prime} \mathrm{E}$	-	40	-	-	-	35	136
5094	$15^{\circ} 45^{\prime} \mathrm{N}, 53^{\circ} 11^{\circ} \mathrm{E}$	-	70	10	-	-	90	170
Cr.3. 5251	$13^{\circ} 12^{\prime} \mathrm{N}, 50^{\circ} 19^{\prime} \mathrm{E}$	80	1750	80	-	-	30	150
5265	09*39'N,57*57'E	8	-	16	8	-	-	40
5267	06* $44^{\circ} \mathrm{N}, 57^{\circ} 59^{\prime} \mathrm{E}$	-	-	-	7	-	9	46
5269	03*59'N,57*59'E	-	204	4	31	5	31	48
5380	$10^{\circ} 03^{\prime} \mathrm{N}, 70^{\circ} 37^{\prime} \mathrm{E}$	-	-	-	-	-	78	-
5381	09*57'N,74*27 ${ }^{\circ} \mathrm{E}$	-	-	-	4	-	46	120
5383	09*58'N, $67^{\circ} 32^{\prime} \mathrm{E}$	566	-	-	-	-	-	4

TABLE - I a (Contd.)
Name of Ship,
Cruise No. \&
Station No.
TABLE - I a (Contd.)
Name of Ship,
Cruise No. \&
Station No .
TABLE - I a (Contd.)
Nene of Ship,
Cruise No. \&
Station No.
TABLE - I a (Contd.)
Name of Ship,
Cruise No. \&
Station No.

Name of Ship, Cruise No. \& Station No.			1	2	3	4	5	6	7
Kistna									
Cr. 20.		$08^{*} 47^{\prime} \mathrm{N}, 92^{\circ} 56^{\prime} \mathrm{E}$	90	400	-	-	-	-	-
	539	$10^{\circ} 00^{\prime} \mathrm{N}, 92^{\circ} \mathrm{O} 0^{\prime} \mathrm{E}$	343	25	-	30	-	-	27
Cr. 21.	541	$17^{\circ} \mathrm{O} 0^{\prime} \mathrm{N}, 84^{\circ} 55^{\prime} \mathrm{E}$	-	360	-	-	-	-	-
	542	$16^{\circ} 42^{\circ} \mathrm{N}, 86^{\circ} \mathrm{O} 9^{\circ} \mathrm{E}$	-	558	-	-	-	-	20
	543	$16^{\circ} 00^{\prime} \mathrm{N}, 87^{\circ} 00^{\circ} \mathrm{E}$	-	330	-	-	-	-	-
	546	$16^{*} 53^{\prime} \mathrm{N}, 88^{*} 23^{\circ} \mathrm{E}$	-	242	-	-	-	-	36
	549	$18^{\circ} 90^{\prime} \mathrm{N}, 90^{\circ} 00^{\prime} \mathrm{S}$	-	330	-	-	-	-	2
	550	$18^{\circ} 17^{\prime} \mathrm{N}, 88^{\circ} 30^{\prime} \mathrm{E}$	-	301	-	2	-	-	40
	551	$18^{\circ} 54^{\prime} \mathrm{N}, 88^{\circ} 37^{\prime} \mathrm{E}$	-	49	-	1	-	-	-
	552	$19^{\circ} 18^{\circ} \mathrm{N}, 88^{\circ} \mathrm{O} 3^{\prime} \mathrm{E}$	-	621	-	-	-	-	-
	553	$19^{*} 37^{\circ} \mathrm{N}, 87^{\circ} 19^{\circ} \mathrm{E}$	-	109	-	-	-	-	15
	558	$18^{\circ} 59^{\prime} \mathrm{N}, 85^{\circ} 15^{\prime} \mathrm{E}$	-	42	-	-	-	-	45
	559	$18^{\circ} 52^{\prime} \mathrm{N}, 85^{\circ} 30^{\prime} \mathrm{E}$	-	2434	-	-	-	-	54
	560	$18^{\circ} 36^{\circ} \mathrm{N}, 86^{\circ} \mathrm{O} 0^{\circ} \mathrm{E}$	-	430	-	-	-	-	135
	561	$17^{\circ} 56^{\prime} \mathrm{N}, 87^{\circ} 00^{\prime} \mathrm{E}$	-	590	-	-	-	-	160
	562	$17^{\circ} 28^{\prime} \mathrm{N}, 86^{\circ} 00^{\circ} \mathrm{E}$	-	450	-	-	-	-	45
	563	$16^{\circ} 58^{\prime} \mathrm{N}, 84^{\circ} 58^{\prime} \mathrm{E}$	-	1039	-	2	-	-	-
	564	$16^{\circ} 53^{\prime} \mathrm{N}, 83^{\circ} 56^{\prime} \mathrm{E}$	1	1728	-	-	-	-	19
	566	$17^{\circ} 30^{\circ} \mathrm{N}, 83^{\circ} 41^{\prime} \mathrm{E}$	-	90	-	-	-	-	
Cr. 22.	570	$16^{\circ} 00^{\prime} \mathrm{N}, 84^{\circ} \mathrm{O} 2^{\prime} \mathrm{E}$	-	700	-	-	-	-	46
	571	$16^{\circ} 27^{\circ} \mathrm{N}, 83^{\circ} 02^{\prime} \mathrm{E}$	-	685	-	-	3	-	228
	572	$16^{*} 31^{\prime} \mathrm{N}, 82^{\circ} 53^{\prime} \mathrm{E}$	-	364	-	-	-	-	120

TABLE - I a (Contd.)
Name of Ship,
Cruise No. \&
Station No.
TABLE - I a (Contd.)
Name of Ship,
Cruise No. 8 ,
Station No.
TABIE - I a (Contd.)
Name of Ship,
Cruise No. \&
Station No.
TABIE - I a (Contd.)

TABLE - I a (Contd.)

Name of S Cruise No Station N		1	2	3	4	5	6	7
Meteor								
Cr.1. 180	05* $12^{\prime} \mathrm{N}, 66^{\circ} 03^{\prime} \mathrm{E}$	-	-	2	-	-	16	89
181	$07^{\circ} 24^{\prime} \mathrm{N}, 70^{\circ} 50^{\prime} \mathrm{E}$	-	-	-	4	-	20	10
182	08* $45^{\prime} \mathrm{N}, 73^{\circ} 37^{\circ} \mathrm{E}$	-	107	-	-	-	-	5
183	08* $43^{\prime} \mathrm{N}, 73^{\circ} 58^{\prime} \mathrm{E}$	11550	10	-	-	-	-	-
184	$09^{\circ} 01^{\prime N} \mathrm{~N}, 74^{\circ} 17^{\prime} \mathrm{E}$	4906	12	-	-	-	-	12
185	09*09'N,74*35'E	2478	5	-	-	-	-	-
186	$09^{\circ} 23^{\prime} \mathrm{N}, 75^{\circ} 02^{\prime} \mathrm{E}$	4862	6	-	-	-	-	20
187	09*34 ${ }^{\circ} \mathrm{N}, 75^{\circ} 16^{\prime} \mathrm{E}$	3236	136	-	-	-	-	8
188	09*37'N, $75^{\circ} 31^{\prime} \mathrm{E}$	945	45	-	-	-	-	2
189	09 $0^{\circ} 40^{\prime} \mathrm{N}, 75^{\circ} 40^{\prime} \mathrm{E}$	1933	44	-	-	-	-	\cdots
194	$14^{\circ} 34^{\prime} \mathrm{N}, 73^{\circ} 25^{\prime} \mathrm{E}$	927	-	-	-	-	-	-
195	$14^{\circ} 25^{\prime} \mathrm{N}, 73^{\circ} 13^{\prime} \mathrm{E}$	4604	-	-	-	-	-	25
196	$14^{\circ} 25^{\prime} \mathrm{N}, 72^{\circ} 58^{\prime} \mathrm{E}$	3112	-	-	-	-	-	-
197	$14^{\circ} 18^{\prime} \mathrm{N}, 72^{\circ} 44^{\circ} \mathrm{E}$	2020	12	-	-	-	-	92
198	$14^{\circ} 14^{\prime} \mathrm{N}, 72^{\circ} 19^{\prime} \mathrm{E}$	1396	36	-	-	-	-	25
199	$14^{\circ} 03^{\prime} \mathrm{N}, 72^{\circ} 00^{\prime} \mathrm{E}$	2502	-	-	-	-	-	-
200	$13^{\circ} 53^{\prime} \mathrm{N}, 71^{\circ} 36^{\prime} \mathrm{E}$	6108	48	-	-	-	-	25
201	$13^{\circ} 40^{\prime} \mathrm{N}, 71^{\circ} 09^{\circ} \mathrm{E}$	5755	60	-	-	-	-	-
202	$13^{\circ} 36^{\prime} \mathrm{N}, 70^{\circ} 50^{\prime} \mathrm{E}$	5889	4	-	-	-	-	10
205	$16^{\circ} 19^{\prime} \mathrm{N}, 68^{\circ} 52^{\prime} \mathrm{E}$	3922	6	-	-	-	-	10
206	$16^{\circ} 35^{\prime} \mathrm{N}_{\text {\% }} 69^{\circ} 15^{\prime} \mathrm{E}$	1308	-	-	-	-	-	12

TABLE - I a (Contd.)

Name of Ship, Cruise No. \& Station No.		1	2	3	4	5	6	7
Meteor								
Cr.1. 208	$17^{\circ} 11^{\prime} \mathrm{N}, 70^{\circ} 10^{\prime} \mathrm{E}$	2314	86	-	-	-	-	6
209	$17^{\circ} 23^{\prime} \mathrm{N}, 70^{\circ} 34^{\prime} \mathrm{E}$	6733	10	-	-	-	-	-
210	$17^{\circ} 40^{\prime} \mathrm{N}, 70^{\circ} 57^{\prime} \mathrm{E}$	3238	-	-	-	-	-	-
211	$17^{\circ} 43^{\prime} \mathrm{N}, 71^{\circ} 04^{\prime} \mathrm{E}$	2000	222	-	-	-	-	-
213	$19^{\circ} 32^{\circ} \mathrm{N}, 71^{\circ} 07^{\circ} \mathrm{E}$	872	-	-	-	-	-	-
217	$18^{\circ} 45^{\prime} \mathrm{N}, 70^{\circ} 18^{\prime} \mathrm{E}$	4838	78	-	-	-	-	6
218	$18^{\circ} 37^{\prime} \mathrm{N}, 70^{\circ} 08^{\prime} \mathrm{E}$	5048	144	-	-	-	-	12
220	$18^{\circ} 20^{\prime} \mathrm{N}, 69^{\circ} 40^{\circ} \mathrm{E}$	1372	236	-	-	-	-	44
222	$19^{\circ} 35^{\prime} \mathrm{N}, 68^{\circ} 35^{\prime} \mathrm{E}$	7066	620	-	-	-	-	80
223	$19^{\circ} 58^{\prime} \mathrm{N}, 66^{\circ} 51^{\circ} \mathrm{E}$	10160	225	-	-	-	-	75
224	$20^{\circ} 19^{\prime} \mathrm{N}, 67^{\circ} 03^{\prime} \mathrm{E}$	11355	470	-	-	-	140	300
225	$20^{\circ} 44^{\prime} \mathrm{N}, 67^{\circ} 32^{\circ} \mathrm{E}$	2688	4	-	-	-	-	48
226	$21^{\circ} 41^{\prime} \mathrm{N}, 67{ }^{\circ} 7^{\prime} \mathrm{E}$	1480	55	-	-	-	35	160
228	$21^{\circ} 50^{\prime} \mathrm{N}, 68^{\circ} \mathrm{O} 2^{\circ} \mathrm{E}$	4268	73	-	-	-	-	-
Umitaka Maru								
Cr.23. (1-1)	07*39 ${ }^{\prime} \mathrm{N}, 78^{\circ} 09^{\circ} \mathrm{E}$	-	-	-	10	-	10	45
(1-2)	$06^{\circ} 04^{\prime N}, 77^{\circ} 46^{\prime} \mathrm{E}$	-	264	-	10	-	12	114
Varuna								
Cr.30. 1765	$20^{\circ} 00^{\prime} \mathrm{N}, 72^{\circ} 30^{\prime} \mathrm{E}$	389	-	-	-	-	-	-
1766	$20^{\circ} 00^{\prime} \mathrm{N}, 72^{\circ} 15^{\prime} \mathrm{E}$	76	2	-	-	-	-	-
1768	$20^{\circ} 00^{\prime} \mathrm{N}, 71^{\circ} 45^{\circ} \mathrm{E}$	28	-	-	-	-	-	-
1769	$20^{\circ} 00^{\prime \prime} \mathrm{N}, 71^{\circ} 31^{\circ} \mathrm{E}$	23	-	-	-	-	-	-

TABLE - I a (Contd.)
Name of Ship,
Cruise No. \&
Station No.
TABLE - I a (Contd.)

TABLE - I a (Contd.)

Name of Ship, Cruise No. \& Station No.		1	2	3	4	5	6	7
Varuna								
Cr.31. 1813	$16^{\circ} 45^{\prime} \mathrm{N}, 73^{\circ} 00^{\prime} \mathrm{E}$	3604	-	-	-	-	-	-
1814	$16^{\circ} 40^{\prime} \mathrm{N}, 73^{\circ} 12^{\prime} \mathrm{E}$	59	-	-	-	-	-	-
1815	$15^{\circ} 50^{\prime} \mathrm{N}, 73^{\circ} 32^{\circ} \mathrm{E}$	738	-	-	-	-	-	-
1816	$15^{\circ} 46^{\prime} \mathrm{N}, 73^{\circ} 22^{\prime} \mathrm{E}$	1513	-	-	-	-	-	-
1817	$15^{\circ} 43^{\prime} \mathrm{N}, 73^{\circ} 13^{\prime} \mathrm{E}$	12270	-	-	-	-	-	-
Cr. 104.2003	09 ${ }^{\circ} 00^{\prime} \mathrm{N}, 76^{\circ} 28^{\prime} \mathrm{E}$	1	-	-	-	-	-	-
2004	09* $00^{\prime} \mathrm{N}, 76{ }^{\circ} 22^{\prime} \mathrm{E}$	2173	-	-	-	-	-	-
2005	$09^{\circ} 00^{\prime} \mathrm{N}, 76^{\circ} 16^{\prime} \mathrm{E}$	30	30	-	-	-	-	-
2006	09*00'N,75* $12^{\circ} \mathrm{E}$	5760	100	-	8	-	-	80
2007	09* $00^{\prime} \mathrm{N}, 75^{\circ} 20^{\circ} \mathrm{E}$	900	-	-	-	-	-	15
2008	09 $04^{\circ} \mathrm{N}, 74^{\circ} 40^{\prime} \mathrm{E}$	1950	-	-	-	-	-	--
2009	$09^{\circ} 04^{\circ} \mathrm{N}, 74^{\circ} 00^{\circ} \mathrm{E}$	3140	-	-	-	-	-	60
2010	09*03'N,73*20'E	2476	-	-	-	-	-	-
2011	$09^{\circ} 00^{\prime} \mathrm{N}, 72^{\circ} 40^{\prime} \mathrm{E}$	40	-	-	-	-	-	74
2012	$09^{\circ} 00^{\prime} \mathrm{N}, 72^{\circ} 00^{\circ} \mathrm{E}$	10	-	-	10	-	-	75
2013	$09^{\circ} 05^{\prime} \mathrm{N}, 71^{\circ} 20^{\prime} \mathrm{E}$	150	-	-	-	-	-	-
2014	09* $10^{\prime} \mathrm{N}, 70^{\circ} 40^{\prime} \mathrm{E}$	18	60	-	-	-	-	140
Cr. 106.2038	$14^{\circ} 58^{\prime} \mathrm{N}, 72^{\circ} 32^{\prime} \mathrm{E}$	2250	200	-	-	-	-	-
2039	$15^{\circ} 00^{\circ} \mathrm{N}, 73^{\circ} 05^{\circ} \mathrm{E}$	1100	30	-	-	-	-	-
2040	$15^{\circ} 00^{\prime} \mathrm{N}, 73^{\circ} 16^{\prime} \mathrm{E}$	668	133	-	-	-	-	133
2041	$15^{\circ} 00^{\prime} \mathrm{N}, 73^{\circ} 28^{\prime} \mathrm{E}$	783	-	-	-	-	-	260

TABLE - I a (Contd.)

TABIE - I a (Contd.)

TABLE - I b
Data concerming the stations and number of specimens obtained (Contd.)

Name of Ship, Cruise No. \& Station No.		Name of Species and No. of specimens						
		P. ${ }_{\text {dec }}-$	C.gies	M. cur-	M.ro	O.stir	Q .atla	$\underline{\text { S }}$ - por
		piens	brechti	ta	data	ola	tica	cta
		1	2	3	4	5	6	7
Anton Bruun								
Cr.A. 1	$12^{\circ} 00^{\prime} \mathrm{N}, 45^{\circ} 51{ }^{\prime} \mathrm{E}$	20	10	-	30	-	60	975
3	$13^{\circ} 03^{\prime} \mathrm{N}, 50^{\circ} 00^{\circ} \mathrm{E}$	-	-	-	-	-	240	270
	$13^{\circ} 34^{\prime} \mathrm{N}, 53^{\circ} 01^{\prime} \mathrm{E}$	10	25	-	70	-	-	215
	$14^{\circ} 03^{\prime} \mathrm{N}, 54^{\circ} 00^{\prime} \mathrm{E}$	8	-	36	32	-	132	56
	$14^{\circ} 35^{\prime} \mathrm{N}, 56^{\circ} 00^{\prime} \mathrm{E}$	5	65	5	10	-	15	315
	$15^{\circ} 05^{\prime} \mathrm{N}, 58^{\circ} 00^{\prime} \mathrm{E}$	10	30	-	-	-	-	130
	$15^{\circ} 35^{\prime} \mathrm{N}, 60^{\circ} 00^{\circ} \mathrm{E}$	-	4	-	-	7	-	285
	$15^{\circ} 05^{\prime} \mathrm{N}, 62^{\circ} 00^{\prime} \mathrm{E}$	40	100	-	30	10	5	250
10	$16^{\circ} 36^{\prime} \mathrm{N}, 64^{\circ} 00^{\prime} \mathrm{E}$	-	24	-	16	-	8	-
11	$17^{\circ} 08^{\prime} \mathrm{N}, 66^{\circ} 00^{\prime} \mathrm{E}$	-	-	-	10	-	-	-
12	$17^{\circ} 36^{\prime} \mathrm{N}, 68^{\circ} 00^{\prime} \mathrm{E}$	-	-	-	-	-	-	9
13	$18^{\circ} 09^{\prime} \mathrm{N}, 70^{\circ} 00^{\circ} \mathrm{E}$	-	15	-	10	-	-	17
Cr.1. 15	07* $27^{\prime} \mathrm{N}, 95^{\circ} 18^{\prime} \mathrm{E}$	-	-	-	25	-	10	32
14	07* $27^{\prime} \mathrm{N}, 94^{\circ} 21^{\prime} \mathrm{E}$	-	50	-	100	45	50	-
16	07*31'N,96*11'E	-	-	30	-	25	10	50
17	07* $40^{\prime} \mathrm{N}, 97^{\circ} 09^{\prime} \mathrm{E}$	12	43	-	76	28°	-	39
23	$10^{\circ} 39^{\prime} \mathrm{N}, 96^{\circ} 3^{\prime}{ }^{\text { }}$ E	-	26	-	28	-	-	-
24	$10^{\circ} 36^{\prime} \mathrm{N}, 95^{\circ} 39^{\circ} \mathrm{E}$	10	51	-	128	-	-	-

TABLE - I b (Contd.)

TABLE - I b (Contd.)

TABLE - I b (Contd.)
Name of Ship,
Cruise No. \&
Station No.
TABLE - I b (Contd.)

Name of Ship, Cruise No . \& Station No.		1	2	3	4	5	6	7
Anton Braun								
		-	11	2	40	-	-	10
	08.09'N, $70^{\circ} 02^{\prime \prime} \mathrm{E}$	-	70	-	-	3	4	-
	$05^{\circ} 48^{\prime} \mathrm{N}, 70^{\circ} 03^{\prime \prime} \mathrm{E}$	-	-	-	2	5	6	-
	$03^{\circ} 33^{\prime} \mathrm{N}, 69^{\circ} 54$ ' E	-	27	-	32	-	10	-
	$00^{\circ} 30^{\prime} \mathrm{N}, 70^{\circ} 01 \cdot \mathrm{~s}$	-	20	16	40	-	-	45
	01.54'N,79.52'E	30	35	32	40	-	35	44
	$04^{\circ} 18^{\prime} \mathrm{N}, 80^{\circ} 08 \cdot \mathrm{E}$	14	12	15	16	-	-	23
	11.56'N,60.53'E	-	-	-	2	-	-	50
	07*13'N,59'57'E	4	6	-	-	5	4	46
	$01^{1} 16^{\prime N}, 60^{\circ} 08 \cdot \mathrm{E}$	2	20	2	15	-	-	18
	05'04's,60 $03^{\prime \prime}$ E	2	-	-	-	2	-	-
Cr.4A. 168		4	-	-	4	-	-	28
170	${ }^{12}{ }^{\circ} \mathrm{O}{ }^{\prime} \mathrm{N}, 51 \cdot 311^{\text {' }}$	30	50	-	-	20	10	70
171	$13^{\circ} 11^{1} \mathrm{~N}, 51 \cdot 289{ }^{\text {E }}$	-	-	-	-	-	72	105
172	$14^{\circ} 44^{\prime} \mathrm{N}, 51 \cdot \mathrm{O2} \cdot \mathrm{E}$	4	-	16	25	8	-	36
173	15.27 N, $52 \cdot 50 \cdot \mathrm{E}$	160	980	-	80	-	60	380
174	$16^{\circ} 27^{\prime} \mathrm{N}, 54 \cdot 39 \cdot \mathrm{E}$	20	46	-	73	-	86	60
175		27	73	-	100	-	66	113
176	$16^{\circ} 29^{\circ} \mathrm{N}, 57^{\circ} 09^{\text {e }}$ E	30	20	-	-	-	120	160

TABIE - I b (Contd.)
Name of Ship,
Cruise No. \&
Station No.
TABLE - I b (Contd.)
Name of Ship,
Cruise No. \&
Station No.
TABIE - I b (Contd.)

Name of Sh Cruise No. Station No			1	2	3	4	5	6	7
Argo									
Cr. Dodo	51	$11^{\circ} 08^{\prime} \mathrm{N}, 53^{\circ} 02^{\prime} \mathrm{E}$	60	-	280	25	40	60	200
	58	08* $27^{\prime \prime} \mathrm{N}, 53^{\circ} 23^{\prime} \mathrm{E}$	60	-	140	7	33	15	-
	67	05* $02^{\prime} \mathrm{H}, 55^{\circ} 06^{\prime} \mathrm{E}$	30	-	130	-	--	50	65
Cr.Iusiad.	1	00*07'S, $96^{\circ} 31^{\circ} \mathrm{E}$	-	-	-	-	-	2	-
	7	00* $02{ }^{\prime} \mathrm{S}, 84^{\circ} 56^{\prime} \mathrm{E}$	10	-	-	-	12	-	-
	8	$00^{\circ} 01^{\prime} \mathrm{N}, 82^{\circ} 52^{\prime} \mathrm{E}$	5	-	-	-	-	5	-
	9	00*00', $80^{\circ} 56^{\circ} \mathrm{E}$	5	-	-	-	1	-	-
	10	00* $01^{\prime} \mathrm{N}, 78^{\circ} 59^{\prime} \mathrm{E}$	-	-	-	-	25	-	-
	11	00*03'S,76*56'E	-	-	-	-	4	-	-
	12	00*01'S,74*59'E	3	-	-	-	-	-	-
	15	00* $09^{\circ} \mathrm{N}, 68^{\circ} 59^{\circ} \mathrm{E}$	-	25	-	-	25	-	-
	16		-	35	-	-	-	-	-
	17	00*01'S,65*04'E	-	-	-	-	70	-	-
	18	00*03'N,62*41'E	-	15	-	-	-	-	-
	19	$00^{\circ} 03^{\prime} \mathrm{S}, 61^{\circ} 00^{\prime} \mathrm{E}$	-	10	-	-	9	-	-
	20	00*00', 59*01'E	-	-	-	-	-	-	15
	21	$00^{\circ} 01^{\prime} \mathrm{S}, 57^{\circ} 05^{\prime} \mathrm{E}$	-	100	-	-	8	120	150
	22	00* $03^{\prime} \mathrm{N}, 55^{\circ} 03^{\prime} \mathrm{E}$	-	-	-	-	45	50	-
	26	00* $08^{\prime} \mathrm{S}, 46^{\circ} 52^{\prime} \mathrm{E}$	62	-	-	-	-	-	-
	27	$00^{\circ} 01^{\prime} \mathrm{N}, 45^{\circ} \mathrm{O} 2^{\prime} \mathrm{E}$	-	20	-	-	-	-	-
	29	05* $02 . \mathrm{N}, 51^{\circ} 01^{\prime} \mathrm{E}$	-	-	-	8	-	-	-
	32	02.30'N,53 ${ }^{\circ} 00^{\prime} \mathrm{E}$	-	-	-	-	11	-	-

TABLE - I b (Contd.)

Name of Ship, Cruise No. \& Station No.		1	2	3	4	5	6	7
Argo								
Cr.Lusiad. 35	$01^{\circ} 00^{\prime N}, 53^{\circ} 00^{\prime} \mathrm{E}$	-	-	-	-	70	-	-
36	00* $29^{\prime} \mathrm{N}, 52^{\circ} 58^{\circ} \mathrm{E}$	-	-	-	-	30	-	30
37	00* $00^{\prime} 53^{\circ} 00^{\prime} \mathrm{E}$	-	-	-	10	-	-	-
41	00* $02^{\prime} \mathrm{S}, 53^{\circ} 03^{\prime} \mathrm{E}$	-	-	-	-	-	-	10
42	02*30'S,53*00'E	-	-	-	-	-	30	-
43	03* $00^{\prime} \mathrm{S}, 53^{\circ} 00^{\prime} \mathrm{E}$	-	-	-	-	300	-	--
44	03*56'S,52.59'E	50	30	-	-	-	-	-
45	$05^{\circ} 00^{\prime} \mathrm{S}, 62^{\circ} 00^{\prime} \mathrm{E}$	-	-	-	-	-	-	20
46	04* $07{ }^{\prime} \mathrm{S}, 62^{\circ} 10^{\prime} \mathrm{E}$	40	50	-	-	-	-	-
47	$03^{\circ} 00^{\prime} \mathrm{S}, 62^{\circ} 20^{\prime} \mathrm{E}$	40	12	-	12	-	-	-
48	02* $29^{\prime} \mathrm{S}, 62^{\circ} 20^{\circ} \mathrm{E}$	-	4	-	-	6	-	4
49	$02^{\circ} 00^{\prime} \mathrm{S}, 62^{\circ} 20^{\prime} \mathrm{E}$	48	-	-	-	40	-	-
50	01*28'S,62*20'E	-	25	-	-	30	-	-
51	00* $57^{\prime} \mathrm{S}, 62^{\circ} 19^{\prime} \mathrm{E}$	-	-	-	20	-	-	-
52	00* $28^{\prime} \mathrm{S}, 62^{\circ} 19^{\prime} \mathrm{E}$	42	-	-	-	50	-	-
53	00.05'S,62* $20^{\prime} \mathrm{E}$	10	-	-	-	-	-	-
54	00* $29^{\prime} \mathrm{N}, 62^{\circ} 19^{\prime} \mathrm{E}$	25	-	-	-	-	-	-
55	01* $02 \cdot \mathrm{~N}, 62^{\circ} 20^{\prime} \mathrm{E}$	-	10	-	-	-	-	-
56	$01^{\circ} 32^{\prime} \mathrm{N}, 62^{\circ} 20^{\prime} \mathrm{E}$	-	-	-	4	-	-	-
57	02* $05^{\prime} \mathrm{N}, 61^{\circ} 15^{\prime} \mathrm{E}$	-	-	-	-	-	-	24
58	$02^{\circ} 31^{\prime} \mathrm{N}, 62^{\circ} 20^{\prime} \mathrm{E}$	-	28	-	7	-	-	30

TABLE - I b (Contd.)
Name of Shi p,
Cruise No. \&
Station No.
TABLE - I b (Contd.)
Name of Ship,
Cruise No. \&
Station No,
TABLE - I b (Contd.)

Name of Ship, Cruise No. \& Station No.			1	2	3	4	5	6	7
Discovery									
Cr. 1.	5048	$19^{\circ} 03^{\prime} \mathrm{N}, 58^{\circ} 04^{\circ} \mathrm{E}$	20	140	10	40	-	70	120
	5050	$18^{\circ} 51^{\prime} \mathrm{N}, 58^{\circ} 19^{\prime} \mathrm{E}$	-	120	26	80	15	-	133
	5051	$18^{\circ} 46^{\prime} \mathrm{N}, 58^{\circ} 23^{\prime} \mathrm{E}$	26	146	40	132	-	26	266
	5052	$18^{\circ} 39^{\circ} \mathrm{N}, 58^{\circ} 31^{\prime} \mathrm{E}$	-	100	80	90	-	50	220
	5053	$18^{\circ} 20^{\circ} \mathrm{N}, 58^{\circ} 59^{\circ} \mathrm{E}$	30	140	-	60	10	130	320
	5054	$17^{\circ} 51^{\prime} \mathrm{N}, 59^{\circ} 20^{\circ} \mathrm{E}$	3	25	2	40	-	--	55
	5055	$17^{\circ} 33^{\prime} \mathrm{N}, 59^{\circ} 45^{\circ} \mathrm{E}$	-	346	-	10	-	-	20
	5056	$17^{\circ} 12^{\prime} \mathrm{N}, 60^{\circ} 05^{\prime} \mathrm{E}$	-	20	-	70	--	20	-
	5057	$16^{\circ} 45^{\circ} \mathrm{N}, 60^{\circ} 31^{\prime} \mathrm{E}$	-	40	-	23	-	-	-
	5062	$20^{\circ} 52^{\prime} \mathrm{N}, 59^{\circ} 25^{\prime} \mathrm{E}$	20	260	-	140	-	60	520
	5063	$20^{\circ} 43^{\prime} \mathrm{N}, 59^{\circ} 36^{\prime} \mathrm{B}$	120	14	13	66	-	13	693
	5064	$20^{\circ} 38^{\prime} \mathrm{N}, 59^{\circ} 45^{\prime} \mathrm{E}$	20	330	10	60	10	10	540
	5065	$20^{\circ} 32^{\prime} \mathrm{N}, 59^{\circ} 55^{\circ} \mathrm{E}$	27	533	14	200	-	66	226
	5066	$20^{\circ} 26^{\prime} \mathrm{N}, 60^{\circ} 03^{\prime} \mathrm{E}$	30	1080	-	140	-	30	450
	5067	$20^{\circ} 13^{\prime} \mathrm{N}, 60^{\circ} 20^{\prime} \mathrm{E}$	-	260	-	130	10	40	170
	5068	$19^{\circ} 58^{\prime} \mathrm{N}, 60^{\circ} 48^{\prime} \mathrm{E}$	50	10	-	50	-	-	150
	5069	$19^{\circ} 34^{\prime} \mathrm{N}, 61^{\circ} 14^{\prime} \mathrm{E}$	-	70	-	80	-	10	450
	5089	$13^{\circ} 14^{\prime} \mathrm{N}, 50^{\circ} 14^{\circ} \mathrm{E}$	80	-	60	40	-	68	68
	5094	$15^{\circ} 45^{\circ} \mathrm{N}, 53^{\circ} 11^{\prime} \mathrm{E}$	50	-	260	60	50	330	310

TABLE - I b (Contd.)

TABLE - I b (Contd.)
Name of Ship,
Cruise No. \&
Station No.
TABLE - I b (Contd.)

TABLE - I b (Contd.)
Name of Ship,
Cruise No. \&
Station No.
TABIE - I b (Contd.)

Name of Sh Cruise No Station N		1	2	3	4	5	6	7
Kistna								
Cr. 20.528	$05^{\circ} 00^{\prime} \mathrm{N}, 98^{\circ} 00^{\prime} \mathrm{E}$	-	-	-	-	-	1	-
530	05*57'N, $96^{\circ} 56^{\prime} \mathrm{E}$	-	-	-	20	5	-	60
531	$06^{\circ} 00^{\prime} \mathrm{N}, 96^{\circ} 00^{\prime} \mathrm{E}$	-	-	60	-	-	80	58
532	$06^{\circ} 00^{\prime} \mathrm{N}, 95^{\circ} 00^{\circ} \mathrm{E}$	-	40	30	66	-	-	-
533	$06^{\circ} 00^{\prime} \mathrm{N}, 94^{\circ} 00^{\circ} \mathrm{E}$	-	-	60	80	-	-	78
536	07**0'N,92*00'E	-	52	-	225	-	-	25
538	08* $47^{\prime} \mathrm{N}, 92^{\circ} 56^{\prime} \mathrm{E}$	-	-	-	-	-	4	87
539	$10^{\circ} 00^{\prime} \mathrm{N}, 92^{\circ} 00^{\prime} \mathrm{E}$	-	22	-	-	-	-	20
Cr. 21.541	$17^{\circ} 00^{\prime} \mathrm{N}, 84^{\circ} 55^{\prime} \mathrm{E}$	-	40	-	-	-	-	-
542	$16^{\circ} 42^{\prime} \mathrm{N}, 86^{\circ} 09^{\prime} \mathrm{E}$	-	80	-	20	-	-	-
543	$16^{\circ} 00^{\prime}$ \$, $87^{\circ} 00^{\prime} \mathrm{E}$	-	35	-	150	-	31	60
546	$16^{\circ} 53^{\prime} \mathrm{N}, 88^{\circ} 23^{\prime} \mathrm{E}$	-	8	-	36	-	6	37
549	$18^{\circ} 00^{\prime} \mathrm{N}, 90^{\circ} 00^{\circ} \mathrm{E}$	-	2	-	3	-	-	-
550	$18^{\circ} 17^{\prime} \mathrm{N}, 89^{\circ} 30^{\prime} \mathrm{E}$	-	20	-	17	-	5	16
551	$18^{\circ} 54^{\prime} \mathrm{N}, 88^{\circ} 37^{\prime} \mathrm{E}$	-	6	-	49	-	5	24
552	$19^{\circ} 18^{\prime} \mathrm{N}, 88^{\circ} 03^{\prime} \mathrm{E}$	-	20	-	18	-	--	23
553	$19^{\circ} 37^{\prime} \mathrm{N}, 87^{\circ} 19^{\prime} \mathrm{E}$	-	35	-	15	-	-	15
558	$18^{\circ} 59^{\prime} \mathrm{N}, 85^{\circ} 15^{\circ} \mathrm{E}$	18	60	-	-	-	-	-
559	$18^{\circ} 52^{\prime} \mathrm{N}, 85^{\circ} 30^{\prime} \mathrm{E}$	10	81	-	50	-	4	51
560	$18^{\circ} 36^{\prime} \mathrm{N}, 86^{\circ} 00^{\circ} \mathrm{E}$	-	146	-	150	-	-	-

Name of Ship,
Cruise No. \&
Station No.
TABLE - I b (Contd.)
Name of Ship,
Cruise No. \&
Station No.
TABLE - I b (Contd.)
Name of Ship,
Cruise No. \&
Station No.
TABLE - I b (Contd.)

TABLE - I b (Contd.)
Name of Ship,
Cruise No. \&
Station No.
TABLE - I b (Contd.)

Name of Ship Cruise No. \& Station No.		1	2	3	4	5	6	7
Meteor								
Cr.1. 205	$16^{\circ} 19^{\prime} \mathrm{N}, 68^{\circ} 52^{\prime} \mathrm{E}$	-	6	-	2	-	-	-
206	$16^{\circ} 35^{\prime} \mathrm{N}, 69^{\circ} 15^{\prime} \mathrm{E}$	-	-	-	4	-	--	-
208	$17^{\circ} 11^{\prime} \mathrm{N}, 70^{\circ} 10^{\prime} \mathrm{E}$	-	-	-	4	-	-	-
209	$17^{\circ} 23^{\circ} \mathrm{N}, 70^{\circ} 34^{\prime} \mathrm{E}$	-	-	-	8	-	-	-
217	$18^{\circ} 45^{\prime} \mathrm{N}, 70^{\circ} 18^{\prime} \mathrm{E}$	2	-	-	-	-	-	-
218	$18^{\circ} 37^{\prime} \mathrm{N}, 70^{\circ} 08^{\prime} \mathrm{E}$	-	4	-	20	-	-	-
220	$18^{\circ} 29^{\prime} \mathrm{N}, 69940^{\prime} \mathrm{E}$	12	-	-	44	-	-	-
222	$19^{\circ} 35^{\prime} \mathrm{N}, 68^{\circ} 35^{\prime} \mathrm{E}$	-	4	-	53	-	-	-
223	$19^{\circ} 58^{\prime} \mathrm{N}, 66^{\circ} 51^{\prime} \mathrm{E}$	-	-	-	85	-	-	-
224		5	-	-	40	-	-	-
225	$20^{\circ} 44^{\prime} \mathrm{N}, 67^{\circ} 32^{\circ} \mathrm{E}$	-	-	-	16	-	-	-
226	$21^{\circ} 41^{\circ} \mathrm{N}, 67^{\circ} 47^{\circ} \mathrm{E}$	-	-	-	20	-	-	-
Umitaka Maru								
Cr. 23 (1-1)	$07^{\circ} 39^{\prime} \mathrm{N}, 78^{\circ} 09^{\prime} \mathrm{E}$	5	-	150	30	40	148	65
(1-2)	$06^{\circ} 04^{\prime} \mathrm{N}, 77^{\circ} 46^{\prime} \mathrm{E}$	54	32	64	40	20	108	54
Varuna								
Cr.30. 1779	20.56 ${ }^{\prime} \mathrm{N}, 68^{\circ} 53^{\prime} \mathrm{E}$	-	-	-	23	-	-	-
Cr.31. 1806	$18^{\circ} 30^{\prime} \mathrm{N}, 70^{\circ} 00^{\circ} \mathrm{E}$	-	-	-	15	-	-	-
1807	$17^{\circ} 00^{\prime} \mathrm{N}, 71^{\circ} 30^{\prime} \mathrm{E}$	-	-	-	10	-	-	20
Cr. 104.2006	09*00'サ,75*58'E	-	80	-	75	-	30	-

TABIE - I b (Contd.)

Name of Ship, Cruise No. \& Station No.		1	2	3	4	5	6	7
Varuna								
Cr. 104.2007	09 ${ }^{\circ} 00^{\circ} \mathrm{N}, 75^{\circ} 20^{\circ} \mathrm{E}$	-	10	-	12	-	8	-
2008	09*04'N,74*40'E	-	10	-	-	-	-	-
2009	$09^{\circ} 04^{\prime} \mathrm{N}, 74^{\circ} 00^{\prime} \mathrm{E}$	-	68	-	62	-	-	-
2010	$09^{\circ} 03^{\prime} \mathrm{N}, 73^{\circ} 20^{\prime} \mathrm{E}$	-	50	-	48	-	-	-
2011	$09^{\circ} 00^{\prime} \mathrm{N}, 74^{\circ} 20^{\circ} \mathrm{E}$	-	75	=	-	-	38	-
2012	$09^{\circ} 00^{\prime} \mathrm{N}, 72^{\circ} 00^{\prime} \mathrm{E}$	-	30	16	30	-	-	-
2013	$09^{\circ} 05^{\circ} \mathrm{N}, 71^{\circ} 20^{\prime} \mathrm{E}$	-	80	-	69	-	-	-
2014	09* $0^{\circ} \mathrm{N}, 70^{\circ} 40^{\prime} \mathrm{E}$	-	52	-	50	-	-	-
Cr. 106.2038	$14^{\circ} 58^{\prime} \mathrm{N}, 72^{\circ} 32^{\prime} \mathrm{E}$	-	12	-	-	-	-	-
2039	$15^{\circ} 00^{\prime} \mathrm{N}, 73^{\circ} 05^{\prime} \mathrm{E}$	-	25	-	30	-	-	-
2040	$15^{\circ} 00^{\prime} \mathrm{N}, 73^{\circ} 16^{\prime} \mathrm{E}$	-	120	-	100	-	60	-
2041		-	15	-	-	-	14	-
Vitiaz								
Cr. 355247	05*35'N,79*56 ${ }^{\circ} \mathrm{E}$	26	20	240	7	14	75	40
5248	05* $28^{\prime} \mathrm{N}, 78^{\circ} 33^{\prime} \mathrm{E}$	60	-	30	10	-	-	-
5249	05*05'N.77** ${ }^{\circ} \mathrm{E}$	-	50	75	40	5	85	35

TABLE - I b (Contd.)

Data concerning the stations and number of specimens obtained (Contd.)

TABLE - I e (Contd.)

Name Stati	of Ship \& N No.	1	2	3	4	5	6	7
Anton Bruun								
26	$10^{\circ} 39^{\prime} \mathrm{N}, 93^{\circ} 49^{\prime} \mathrm{E}$	-	-	30	-	-	20	-
27	$10^{\circ} 37^{\prime} \mathrm{N}, 92^{\circ} 59^{\prime} \mathrm{E}$	30	-	-	-	-	8	-
30	$12^{*} 17^{\prime} \mathrm{N}, 93^{\circ} 21^{\prime} \mathrm{E}$	-	-	10	-	-	-	-
31	$12^{\circ} 53^{\prime} \mathrm{N}, 93^{\circ} 23^{\prime} \mathrm{E}$	-	-	-	-	-	4	-
32	$12^{\circ} 52^{\prime} \mathrm{N}, 94^{\circ} 13^{\prime} \mathrm{E}$	34	-	-	-	-	26	-
33	$12^{\circ} 57^{\prime} \mathrm{N}, 95^{\circ} 01^{\prime} \mathrm{E}$	-	-	25	-	-	10	-
34	$12^{*} 50^{\prime} \mathrm{N}, 95^{\circ} 56^{\prime} \mathrm{E}$	15	-	50	-	-	50	-
53	$18^{\circ} 33^{\prime} \mathrm{N}, 91^{\circ} 16^{\prime} \mathrm{E}$	-	1	-	-	-	-	-
64	$17^{\circ} 48^{\prime} \mathrm{N}, 84^{\circ} 02^{\prime} \mathrm{E}$	-	2	-	-	-	-	-
71	$14^{\circ} 53^{\prime} \mathrm{N}, 88^{\circ} 40^{\prime} \mathrm{E}$	-	1	-	-	-	-	-
74	$13^{\circ} 36^{\prime} \mathrm{N}, 90^{\circ} 48^{\prime} \mathrm{E}$	-	4	-	-	-	-	-
106	$17^{\circ} 27^{\prime} \mathrm{N}, 70^{\circ} 27^{\prime} \mathrm{E}$	-	-	-	4	-	-	-
107	$15^{\circ} 40^{\prime} \mathrm{N}, 70^{\circ} 07^{\prime} \mathrm{E}$	-	-	-	12	-	-	-
112	$05^{\circ} 48^{\prime} \mathrm{N}, 70^{\circ} 03^{\prime} \mathrm{E}$	1	-	10	-	-	-	-
113	03*33'N,69*54 ${ }^{\circ} \mathrm{E}$	-	-	-	4	-	-	-
114	01*30'N,70*01'E	16	-	-	-	-	-	-
143	01*54'N,79*52'E	25	1	-	-	-	-	-
144	04* $18^{\prime} \mathrm{N}, 80^{\circ} 08^{\prime} \mathrm{E}$	-	-	-	-	-	15	-
151	05 $04^{\circ} \mathrm{N}, 60^{\circ} 03^{\prime} \mathrm{E}$	10	-	-	-	-	-	-
168	05* $52^{\prime} \mathrm{N}, 52^{\circ} 56^{\prime} \mathrm{E}$	16	-	-	8	-	-	-
170	$12^{\circ} 04^{\prime} \mathrm{N}, 51^{\circ} 31^{\prime} \mathrm{E}$	10	-	40	-	-	-	-

TABLE - I 0 (Contd.)

$\begin{aligned} & \text { Name of } \\ & \text { Statio } \end{aligned}$	$f \text { Ship \& }$ n No.	1	2	3	4	5	6	7
Anton Bruun								
172	$14^{\circ} 44^{\circ} \mathrm{N}, 51^{\circ} 02 \cdot \mathrm{E}$	24	-	-	-	-	-	-
173	$15^{\circ} 27^{\prime \prime} \mathrm{N}, 52^{\circ} 50^{\prime} \mathrm{E}$	40	-	340	-	250	-	-
174	16.27'N,54*39'E	-	-	65	-	-	-	-
175	$17^{\circ} 26^{\circ} \mathrm{N}, 56^{\circ} 29^{\prime} \mathrm{E}$	-	-	178	-	45	-	-
176	$16^{\circ} 29^{\prime} \mathrm{N}, 57^{\circ} 09^{\prime \prime} \mathrm{E}$	-	-	40	-	-	-	-
177	$15^{\circ} 18^{\prime} \mathrm{N}, 57^{\circ} 43^{\prime} \mathrm{E}$	8	-	12	-	30	-	-
178	$14^{\circ} 21^{\prime} \mathrm{N}, 58^{\circ} 18^{\prime} \mathrm{E}$	4	-	16	-	-	-	-
179	$13^{\circ} 12^{\prime} \mathrm{N}, 58^{\circ} 58^{\prime} \mathrm{E}$	-	-	72	-	116	-	-
180	$12^{\circ} 15^{\prime} \mathrm{N}, 59^{\circ} 42^{\prime} \mathrm{E}$	4	-	16	6	-	-	-
182	$15^{\circ} 58^{\prime} \mathrm{N}, 62^{\circ} 33^{\prime} \mathrm{E}$	-	-	-	5	-	-	-
183	$23^{\circ} 43^{\prime} \mathrm{N}, 66^{\circ} 21^{\prime} \mathrm{E}$	-	-	-	14	-	-	-
185	$20^{\circ} 39^{\prime} \mathrm{N}, 64^{\circ} 41^{\prime} \mathrm{E}$	-	-	-	26	-	-	-
186	$21^{\circ} 31^{\prime} \mathrm{N}, 64^{\circ} 06^{\prime} \mathrm{E}$	-	-	-	55	-	-	-
187	$22^{\circ} 23^{\prime} \mathrm{N}, 63^{\circ} 32^{\prime} \mathrm{E}$	-	-	-	10	-	-	-
188	$23^{\circ} 19^{\prime} \mathrm{N}, 62^{\circ} 50^{\prime} \mathrm{E}$	-	-	-	7	-	-	-
190	$24^{\circ} 48^{\prime} \mathrm{N}, 61^{\circ} 37^{\prime} \mathrm{E}$	-	-	-	24	-	-	-
191	$23^{\circ} 57^{\prime} \mathrm{N}, 60^{\circ} 58^{\prime} \mathrm{E}$	-	-	40	-	45	-	-
192	$23^{\circ} 08^{\prime} \mathrm{N}, 60^{\circ} 32^{\prime} \mathrm{E}$	-	-	-	10	-	-	-
193	$22^{\circ} 48^{\prime} \mathrm{N}, 59^{\circ} 34^{\prime} \mathrm{E}$	-	-	-	20	-	-	-
196	$22^{\circ} 44^{\prime} \mathrm{N}, 61^{\circ} 15^{\circ} \mathrm{E}$	-	-	-	20	35	-	-
197	$20^{\circ} 02{ }^{\prime} \mathrm{N}, 62^{\circ} 00 \cdot \mathrm{E}$	-	-	15	12	13	-	-

TABLE - I c (Contd.)

TABLE - I c (Contd.)

Name of Station	$\begin{aligned} & \text { P Ship \& } \\ & \text { N No. } \end{aligned}$	1	2	3	4	5	6	7
Conah								
45	$09^{\circ} 52^{\prime} \mathrm{N}, 75^{\circ} 39^{\prime} \mathrm{E}$	15	-	30	-	-	-	-
49	$10^{\circ} 00^{\prime} \mathrm{N}, 75^{\circ} 39^{\prime} \mathrm{E}$	-	-	27	-	-	-	-
52	$10^{\circ} 19^{\prime} \mathrm{N}, 75^{\circ} 46^{\prime} \mathrm{E}$	-	-	20	-	-	-	-
55	10*19'N,75*37 ${ }^{\circ} \mathrm{E}$	12	-	-	-	4	-	-
58	$10^{\circ} 29^{\prime} \mathrm{N}, 75^{\circ} 31^{\circ} \mathrm{E}$	4	-	28	-	-	-	-
62	$10^{\circ} 39^{\circ} \mathrm{N}, 75^{\circ} 22^{\prime} \mathrm{E}$	100	-	20	-	4	-	-
Discovery								
5002	$20^{\circ} 19^{\prime} \mathrm{N}, 38^{\circ} 21^{\prime} \mathrm{E}$	-	-	-	10	-	-	-
5009	$15^{\circ} 10^{\prime} \mathrm{N}, 52^{*} 32^{\prime} \mathrm{E}$	-	-	-	4	-	-	-
5017	$12^{\circ} 56^{\prime} \mathrm{E}, 53^{\circ} 44^{\prime} \mathrm{E}$	-	-	-	-	7	-	\cdots
5018	$12^{\circ} 50^{\circ} \mathrm{N}, 53^{\circ} 52^{\prime} \mathrm{E}$	4	-	-	4	24	-	-
5019'	$12^{\circ} 43^{\prime} \mathrm{N}, 53^{\circ} 54^{\prime} \mathrm{E}$	-	-	-	-	-	-	-
5026	$16^{\circ} 31^{\prime} \mathrm{N}, 54^{\circ} 08^{\prime} \mathrm{E}$	-	-	20	-	-	\cdots	-
5030	$15^{\circ} 54^{\prime} \mathrm{N}, 54^{\circ} 31^{\prime} \mathrm{E}$	-	-	-	24	44	-	-
5031	$15^{\circ} 26^{\prime} \mathrm{N}, 54^{\circ} 46^{\prime} \mathrm{E}$	3	-	25	5	21	-	-
5037	$17^{\circ} 28^{\prime} \mathrm{N}, 57^{\circ} 03^{\prime} \mathrm{E}$	-	-	-	35	33	-	-
5038	$17^{\circ} 18^{\prime} \mathrm{N}, 57^{\circ} 09^{\prime} \mathrm{E}$	5	-	-	10	120	-	-
5039	$17^{\circ} 09^{\prime} \mathrm{N}, 57^{\circ} 15^{\prime} \mathrm{E}$	5	-	150	15	100	-	-
5041	$16^{\circ} 45^{\prime} \mathrm{N}, 57^{\circ} 30^{\prime} \mathrm{E}$	-	-	-	40	-	-	-
5048	$19^{\circ} 03^{\prime} \mathrm{N}, 58^{\circ} \mathrm{O4}$ ' E	-	-	-	20	60	-	-
5050	$18^{\circ} 51^{\prime} \mathrm{N}, 58^{\circ} 19^{\prime} \mathrm{E}^{\prime}$	-	-	170	40	80	-	-
5051	$18^{\circ} 46^{\prime} \mathrm{N}, 58^{\circ} 23^{\prime} \mathrm{E}$	26	-	-	25	93	-	-
5052	$18^{\circ} 39^{\prime} \mathrm{N}, 58^{\circ} 31^{\prime} \mathrm{E}$	-	-	-	60	130	-	-

TABLE - I c (Contd.)

ame of tation	Ship \& No.	1	2	3	4	5	6	7
Discovery								
5053	$18^{\circ} 20^{\prime} \mathrm{N}, 58^{\circ} 59^{\circ} \mathrm{E}$	-	--	\cdots	70	-	-	-
5054	$17^{\circ} 51^{\circ} \mathrm{N}, 59^{\circ} 20^{\prime} \mathrm{E}$	-	-	-	23	-	-	-
5055	$17^{\circ} 33^{\prime} \mathrm{N}, 59^{\circ} 45^{\prime} \mathrm{E}$	-	-	-	22	-	-	-
5056	$17^{\circ} 12^{\prime} \mathrm{N}, 60^{\circ} 15^{\circ} \mathrm{E}$	-	-	-	75	-	-	-
5057	$16^{\circ} 45^{\circ} \mathrm{E}, 60^{\circ} 31^{\prime} \mathrm{E}$	-	-	-	20	-	-	-
5062	$20^{\circ} 52^{\prime} \mathrm{N}, 59^{\circ} 25^{\prime} \mathrm{E}$	-	-	-	20	40	-	-
5063	$20^{\circ} 43^{\circ} \mathrm{N}, 59^{\circ} 36^{\prime} \mathrm{E}$	-	-	-	15	240	-	-
5064	$20^{\circ} 38^{\prime} \mathrm{N}, 59^{\circ} 45^{\prime} \mathrm{E}$	-	-	320	50	-	-	-
5065	$20^{\circ} 32^{\prime} \mathrm{N}, 59^{\circ} 55^{\prime} \mathrm{E}$	-	-	-	40	40	-	-
5066	$20^{\circ} 26^{\prime} \mathrm{N}, 60^{\circ} 03^{\prime} \mathrm{E}$	-	-	-	45	20	-	-
5067	$20^{\circ} 13^{\prime} \mathrm{N}, 60^{\circ} 20^{\prime} \mathrm{E}$	-	-	-	40	20	-	-
5068	$19^{\circ} 58^{\prime} \mathrm{N}, 60^{\circ} 48^{\prime} \mathrm{E}$	-	-	-	70	-	-	-
5069	$19^{\circ} 34^{\circ} \mathrm{N}, 61^{\circ} 14^{\prime} \mathrm{E}$	-	-	-	160	-	-	-
5089	$13^{\circ} 14^{\prime} \mathrm{N}, 50^{\circ} 14^{\prime} \mathrm{E}$	44	-	-	-	-	-	30
5094	$15^{\circ} 45^{\prime} \mathrm{N}, 53^{\circ} 11^{\prime} \mathrm{E}$	20	-	140	-	-	-	-
5251	$13^{*} 12^{\prime} \mathrm{N}, 50^{\circ} 19^{\prime} \mathrm{E}$	10	-	80	-	35	-	-
5265	$09^{\circ} 39^{\prime} \mathrm{N}, 57^{\circ} 57^{\prime} \mathrm{E}$	4	-	-	-	-	-	-
5267	$06^{\circ} 44^{\prime} \mathrm{N}, 57^{\circ} 59^{\prime} \mathrm{E}$	4	-	20	-	3	-	4
5269	03* $59^{\prime} \mathrm{N}, 57^{\circ} 59^{\prime} \mathrm{E}$	17	-	-	-	-	2	56
5369	$05^{\circ} 43^{\prime} \mathrm{N}, 67^{\circ} 32^{\prime} \mathrm{E}$	6	-	-	-	38	-	-
5389	$14^{\bullet} 13^{\prime} \mathrm{N}, 59^{\circ} 27^{\prime} \mathrm{E}$	-	-	-	-	40	-	-
5386	$12^{\circ} 02^{\prime} \mathrm{N}, 62^{\circ} 59^{\prime} \mathrm{E}$	-	-	-	5	-	-	-

TABLE - I c (Contd.)
Name of Ship F
Station No.
TABLE - I c (Contd.)

Name of Station	Ship \& No.	1	2	3	4	5	6	7
Kistna								
512	$11^{\circ} 00^{\prime} \mathrm{N}, 95^{\circ} 00^{\prime} \mathrm{E}$	-	-	-	-	-	4	-
513	09*57'N,95*03'E	-	-	60	-	-	2	-
514	09 ${ }^{\circ} 00^{\prime} \mathrm{N}, 95^{\circ} 00^{\prime} \mathrm{E}$	-	-	34	-	-	30	-
530	05*57'N, $96^{\circ} 56^{\prime} \mathrm{E}$	-	-	-	-	-	5	-
531	$06^{\circ} 00^{\prime} \mathrm{N}, 96^{\circ} 00^{\prime} \mathrm{E}$	-	-	66	-	-	70	-
532	$06^{\circ} 00^{\prime} \mathrm{N}, 95^{\circ} 00^{\prime} \mathrm{E}$	-	-	30	-	-	30	-
533	$06^{\circ} 00^{\prime} \mathrm{N}, 94^{\circ} 00^{\prime} \mathrm{E}$	-	-	60	-	-	-	-
538	08* $47^{\prime} \mathrm{N}, 92^{\circ} 56^{\circ} \mathrm{E}$	-	-	50	-	-	-	-
562	$17^{\circ} 28^{\prime} \mathrm{N}, 86^{\circ} 00^{\prime} \mathrm{E}$	-	3	-	-	-	-	-
570	$16^{\circ} 00^{\prime} \mathrm{N}, 84^{\circ} 02^{\circ} \mathrm{E}$	-	-	10	-	-	-	-
586	$12^{\circ} 39^{\prime} \mathrm{N}, 81^{\circ} 54^{\prime} \mathrm{E}$	-	2	-	-	-	-	-
595	$11^{\circ} 02^{\prime} \mathrm{N}, 81^{\circ} 01^{\prime} \mathrm{E}$	-	1	-	-	-	-	-
596	$11^{\circ} 02^{\prime} \mathrm{N}, 82^{\circ} 01^{\prime} \mathrm{E}$	-	1	-	-	-	-	-
597	$11^{\circ} 02^{\prime} \mathrm{N}, 82^{\circ} 59^{\prime} \mathrm{E}$	-	-	4	-	-	-	-
600	$09^{\circ} 34^{\prime} \mathrm{N}, 82^{\circ} 58^{\prime} \mathrm{E}$	-	-	60	-	-	-	-
605	$07^{\circ} 00^{\prime} \mathrm{N}, 82^{\circ} 12^{\prime} \mathrm{E}$	-	4	-	-	-	-	-
611	06* 59^{\prime} W,78* $40^{\prime} \mathrm{E}$	-	-	-	-	12	-	-
664	$10^{\circ} 00^{\prime} \mathrm{N}, 74^{\circ} 30^{\prime} \mathrm{E}$	-	1	-	--	-	-	-
680	$07^{\circ} 12^{\prime} \mathrm{N}, 78^{\circ} 34^{\prime} \mathrm{E}$	-	-	-	-	52	-	-
717	$15^{\circ} 00^{\prime} \mathrm{N}, 83^{\circ} 00^{\prime} \mathrm{E}$	-	-	-	-	120	-	-
Meteor								
53	$12^{\circ} 22^{\prime} \mathrm{N}, 43^{\circ} 57^{\prime} \mathrm{E}$	-	-	-	-	4	-	-
91	$13^{\circ} 28^{\prime} \mathrm{N}, 48^{\circ} 18^{\circ} \mathrm{E}$	-	-	-	-	10	-	-

Name of Ship \&
Station No.

Name of Station	Ship \& No.	1	2	3	4	5	6	7
Meteor								
92	$13^{\circ} 09^{\prime} N, 48^{\circ} 24^{\circ} \mathrm{E}$	-	-	-	-	25	-	-
93	$12^{*} 43^{\prime} N, 48^{\circ} 31 / \mathrm{E}$	-	-	140	-	80	-	-
94	$12^{\circ} 14^{\prime} \mathrm{N}, 48^{\circ} 42^{\prime} \mathrm{E}$	-	-	40	-	112	-	\cdots
95	$11^{\circ} 42^{\prime} \mathrm{N}, 48^{\circ} 49^{\prime} \mathrm{E}$	\cdots	\cdots	-	-	10	-	∞
96	$11^{\circ} 19^{\prime N} \mathrm{~N}, 49^{\circ} 00^{\circ} \mathrm{E}$	-	-	190	-	16	-	-
100	$12^{*} 13^{*} \mathrm{~N}, 51^{\cdot 3} 5^{\prime} \mathrm{E}$	\cdots	\cdots	5	-	-	-	-
102	$11^{* 3}$ N, 52*54*E	13	-	\cdots	\cdots	7	-	-
104	$11^{* 21} \mathrm{~N}, 53^{* 11} \mathrm{E}$	-	-	33	-	-	\cdots	\cdots
105	$11^{\circ} 06^{\prime N}, 53^{\circ} 28^{\prime \prime}$	-	-	\cdots	-	25	-	-
106	$10^{\circ} 50^{\prime N} \cdot 53^{*} 46^{\prime \prime} \mathrm{E}$	-	\cdots	-	-	4	-	-
108	$10^{\circ} 17^{\prime N}, 54^{*} 25^{*} \mathrm{E}$	-	\rightarrow	37	-	-	-	-
114	$08^{\circ} 00^{\circ} \mathrm{N}, 51^{\circ} 12^{\prime 2} \mathrm{E}$	-	-	6	-	-	-	\cdots
115	$08^{\circ} 11^{\prime N}, 50^{\circ} 57^{\prime \prime} \mathrm{E}$	-	-	35	-	-	-	-
116	08*26:N,50*32•E	\cdots	-	65	-	-	-	4
126	$05^{*} 44^{\prime} \mathrm{N}, 49^{*} 30^{\prime} \mathrm{E}$	-	-	8	-	-	\cdots	\cdots
127	$05^{\circ} 29^{\circ} \mathrm{N}, 50^{\circ} 02 \cdot \mathrm{~F}$	3	-	20	-	82	-	\cdots
180	$05^{\circ} 12^{\prime} \mathrm{N}, 66^{\circ} 03^{\prime} \mathrm{E}$	-	-	-	\cdots	-	-	5
182	$08^{\circ} 45^{\prime} \mathrm{N}, 73^{\circ} 37^{\prime} \mathrm{E}$	-	-	-	\cdots	8	-	-
184	$09^{\circ} 01^{\prime N} \cdot 74^{\circ} 17^{\prime \prime} \mathrm{E}$	-	2	-	-	\cdots	\cdots	-
Unitalsa Maru								
$(1-1)$	$07^{\circ} 39^{\prime} \mathrm{N}, 78^{\circ} 09^{\circ} \mathrm{E}$	25	-	\cdots	-	-	\cdots	-
(1-2)	$06^{*} 04^{\prime} \cdot N, 77^{*} 46^{*} \mathrm{E}$	12	-	-	-	-	-	4

Name of Ship \&
Station No.

Name of Station	Ship \& No.	1	2	3	4	5	6	7
Vamuna								
2007	09*00'N,72*20,	-	-	-	-	2	-	-
2008	09*04'N,74*40'E	-	-	-	-	3	-	-
2014	$09^{\circ} 10^{\prime} \mathrm{N}, 70^{\circ} 40^{\prime} \mathrm{E}$	-	-	-	-	5	-	-
Vitiaz								
5247	05*35'N,79*56'E	-	-	12	-	-	-	-
5248	05*28 ${ }^{\circ} \mathrm{N}, 78^{\circ} 33^{\prime} \mathrm{E}$	20	-	-	-	-	10	10
5249	05*05'N,77* $07^{\circ} \mathrm{E}$	10	-	-	-	-	-	30
zulun								
2	$24^{\circ} 45^{\prime} \mathrm{N}, 66^{\circ} 20^{\prime} \mathrm{E}$	-	-	-	7	-	-	-
3	$24^{\circ} 42^{\prime} \mathrm{N}, 66^{\circ} 04^{\prime} \mathrm{E}$	-	-	-	220	-	-	-
4	24*38'N, $65^{\circ} 49^{\prime} \mathrm{E}$	-	-	-	385	-	-	-
5	$23^{\circ} 58^{\prime} \mathrm{N}, 66^{\circ} 09^{\prime} \mathrm{E}$	-	--	-	92	-	-	-
6	$24^{\circ} 05^{\prime} \mathrm{N}, 66^{\circ} 27^{\prime} \mathrm{E}$	-	-	-	4	-	-	-
7	$24^{\circ} 13^{\prime} \mathrm{N}, 66^{\circ} 47^{\prime} \mathrm{E}$	-	-	-	3	-	-	-
10	$23^{\circ} 44^{\prime} \mathrm{N}, 67^{\circ} 24^{\circ} \mathrm{E}$	-	--	-	4	-	-	-
12.	$23^{\circ} 26^{\prime} \mathrm{N}, 67^{\circ} 28^{\prime} \mathrm{E}$	-	-	-	2	-	-	-
13	$23^{\circ} 27^{\prime} \mathrm{N}, 67^{\circ} 19^{\prime} \mathrm{E}$	-	-	-	15	-	-	-
14	$23^{\circ} 28^{\prime} \mathrm{N}, 67^{\circ} 09^{\prime} \mathrm{E}$	-	-	-	70	-	-	-
15	$23^{\circ} 12^{\prime} \mathrm{N}, 67^{\circ} \mathrm{O} 2^{\prime} \mathrm{E}$	-	-	-	56	-	-	-
16	$23^{\circ} 10^{\prime N} \mathrm{~N}, 67^{\circ} 10^{\prime} \mathrm{E}$	-	-	-	60	-	-	-
18	$22^{\circ} 53^{\prime} \mathrm{N}, 66^{\circ} 49^{\prime} \mathrm{E}$	-	-	-	12	-	-	-
19	$22^{\circ} 41^{\prime} \mathrm{N}, 67^{\circ} 03^{\prime} \mathrm{E}$	-	-	-	8	-	-	-
20		-	-	-	2	-	-	-
21	$22^{\circ} 28^{\prime} \mathrm{N}, 67^{\circ} 59^{\prime} \mathrm{E}$	-	-	-	8	-	-	-
22	$23^{\circ} 29^{\prime} \mathrm{N}, 67^{\circ} 25^{\prime} \mathrm{E}$	-	-	-	2	-	-	-

TABLE - II

Comparison of 10 common species during SW and NE Monsoon periods in the Arabian Sea.					
Species	SW monsoon average	NE monsoon average	$\begin{gathered} \text { Combined } \\ \text { S.D. } \end{gathered}$	t	d.f.
S. porrecta	1.7445	1.5914	0.6037	1.5948	157
O. atlantioa	1.4416	1.2704	0.5039	1.8896	122
M. rotundata	1.4390	1.2458	0.5644	0.4332	185
M. curta	1.4356	1.3539	0.5340	0.6626	78
C. giesbrechti	1.5107	1.3448	0.5570	1.9025	163
P. decipens	1.2987	1.0625	0.4825	$2.7986^{\text {b }}$	129
P. procera	1.8733	1.5851	0.5229	$3.9221^{\text {c }}$	199
H. brevirostris	1.2159	0.9643	0.4781	1.8776	98
E. aculeata	1.9985	2.0163	0.7346	0.1594	181
C. dentata	2.3391	2.8805	1.0004	$3.8261^{\text {c }}$	200

$\begin{array}{ccc}a- & \text { segrificant at } 5 \% \text { leval } \\ 6- & " & 1 \% \\ c- & 0.1\end{array}$
TABLE - III

Species	SW monso on average	NE monsoon average	$\begin{gathered} \text { Combined } \\ \text { S.D. } \end{gathered}$	t	d.f.
S. porrecta	1.6025	1.4842	0.4595	1.4533	132
O. atlantica	1.2199	1.1177	0.5468	1.1419	87
M. rotundata	1.7376	1.5927	0.4354	1.9581	139
M. curta	1.6464	1.5037	0.4707	0.7798	32
C. giesbrechti	1.7328	1.4843	0.5095	3.0268	154
睘. decipens	1.1630	1.1640	0.4423	0.0065	32
P. procera	1.6446	1.6807	0.4549	0.4313	116
H. brevirostris	1.1654	0.9335	0.5244	1.8522	78
E. aculeata	2.1160	2.3563	0.6551	$2.3722^{\text {a }}$	173
C. dentata	-	-	-	-	-

TABLE - IV

Species	Day average	Night average	$\begin{aligned} & \text { Combined } \\ & \text { SD SP } \end{aligned}$	t	d.f.
S. porrecta	1.5321	1.7255	0.5395	$3.0505^{\text {b }}$	291
Q. atlantica	1.2630	1.2830	0.5332	0.2736	211
M. rotundata	1.4867	1.5647	0.4861	1.0584	315
M. curta	1.3878	1.5243	0.4332	1.6646	112
C. giesbrechti	0.5141	1.2880	0.5881	$9.7591^{\text {c }}$	258
P. decipiens	1.0821	1.2880	0.4724	$2.7976{ }^{\text {b }}$	163
P. procera	1.5725	1.7242	0.5767	$2.3815^{\text {a }}$	327
E. aculeata	2.0922	2.1297	0.7089	0.4954	353
C. dentata	2.7055	2.5430	1.0393	1.0972	197
H. brevirostris	1.1339	1.1448	0.4915	0.1485	178

MAP - I. Distribution of Paraconchoecia echinata, P. oblonga and P. discophora.

MAP - II. Distribution of Paraconchoecia elegens.

MAP - III. Distribution of Paraconchoecia procera.

MAP - IV. Distribution of Paraconchoecia decipiens.

MAP - V. Distribution of Conchoecetta giesbrechti.

MAP - VI. Distribution of Microconchoecia curta.

MAP - VII. Distribution of Metaconchoecia rotundata.

MAP - VIII. Distribution of Orthoconchoecia striola.

MAP - IX. Distribution of Orthoconchoecia atlantica.

MAP - X. Distribution of Spinoecia porrecta.

MAP - XI. Distribution of Spinoecia parthenoda.

MAP - XII. Distribution of Conchoecia magna.

MAP - XIII. Distribution of Pseudoconchoecia concentrica.

MAP - XIV. Distribution of Alacia alata.

MAP - XV. Distribution of Conchoecilla daphnoides.

MAP - XVI. Distribution of Platyconohoecia prosadena, Metaconchoecia kyrlophora,
 Orthoconchoecia bispinosa and
 Conchoecissa imbricata.

MAP - XVII. Distribution of Cypridina acuminata, Archiconchoecia ventricosa,
Bathyconchoecia angeli, B. deeveyae, Euconchoecia chierchiae and Halocypria globosa.

MaP - XVIII. Distribution of Euconchoecia aculeata.

MAP - XIX. Distribution of Halocypris brevirostris.

MAP - XX. Distribution of Cypridina dentata.

EXPLANATION TO PLATE

PIATEI
Paraconchoecia oblonga (Figs. 1 - 9)

1. Male - carapace, lateral view
2. Female - carapace, lateral view
3. Male - frontal organ
4. Female - frontal organ
5. Male - armature of 'e' bristle of first antenna
6. " right clasping organ
7. " left clasping organ
8. " copulatory limb
9. " furca

Paraconchoecia echinata (Figs. 10-17)
10. Male - carapace, lateral view
11. Female - carapace, lateral view
12. Male-frontal organ
13. Female - frontal organ
14. ifale - armature of 'b' bristle of first antenna
15. " tooth-lists of mandible
16. " copulatory limb
17. " right clasping organ

PLATE I (Contd.)

Paraconchoecia elegens (Figs. 18-23)
18. Male - carapace, lateral view
19. Female - carapace, lateral view
20. Male - frontal organ
21. Female - frontal organ
22. Male - right clasping organ
23. " copulatory limb

Paraconchoecia discophora (Figs. 24 - 29)
24. Male - carapace, lateral view
25. Female - carapace, lateral view
26. Male - copulatory limb
27. Male - frontal organ
28. Female - frontal organ
29. Male - right clasping organ.

Paraconchoecia procera (Figs. 1-7)

1. Male - carapace, lateral view
2. Female - carapace, lateral view
3. Male - frontal organ
4. Female - frontal organ
5. Male - armature of 'e' bristle of first antenna
6. " copulatory limb
7. " left and right clasping organs

Paraconchoecia decipiens (Figs. 8-14)
8. Male - carapace, lateral view
9. Female - carapace, lateral view
10. Male - frontal organ
11. " armature of 'e' bristle of first antenna
12. Female - frontal ortan
13. Male - copulatory limb
14. " left and right clasping organs

PLATE II (Contd.)

Conchoecetta giesbrechti (Figs. 15 - 20)
15. Male - carapace, lateral view
16. Female - carapace, lateral view
17. Male - frontal organ
18. " copulatory limb
19. " right clasping organ
20. " 'h', 'i' and 'j' bristles of second antenna

Conchoecetta acuminata (Figs. $21-26$)
21. Male - carapace, lateral view
22. Female - carapace, lateral view
23. Male - frontal organ
24. Female ,-frontal organ
25. Male - armature of 'e' bristle of first antenna
26. " copulatory limb.

EXPLANATION TO PLATE

PIATE III

Microconchoecia curta (Figs. 1 - 9)

1. Male - carapace, lateral view
2. Female - carapace, lateral vtew
3. Male - 'a' bristle of first antenna
4. " armature of 'e' bristle of first antenna
5. " frontal organ
6. Female - frontal organ
7. Male - endopod of right second antenna
8. " tooth-lists of mandible
9. n copulatory limb

Metaconchoecia rotundata (Figs. 10 - 17)
10. Male - carapace, lateral view
11. Female - carapace, lateral view
12. Male - frontal organ
13. Female - Irontal organ
14. Male - armature of 'e' bristle of first antenna
15. " copulatory limb
16. " tooth-lists of mandible
17. " right and left clasping organs

PLAATE III (Contd.)

Metaconchoecia kyrtophora (Figs. 18 - 26)
18. Male - carapace, lateral view
19. Female - carapace, lateral view
20. Male - frontal organ
21. Female - irontal organ
22. Male - armature of ' e ' bristle of first antenna
23. " right clasping organ
24. " endopod of left second antenna
25. " tooth-lists of mandible
26. " copulatory limb.

EXPLAANATION TO PLATE

PIATE IV
Orthoconchoecia bispinosa (Figs. 1-6)

1. Male - carapace, lateral view
2. Female - carapace, lateral view
3. Male - armature of 'e' bristle of first antenna
4. " frontal organ
5. Female - frontal organ
6. Male - endopod of left second antenna

Orthoconchoecia striola (Figs. 7 - 15)
7. Male - carapace, lateral view
8. Female - carapace, lateral view
9. Male - armature of 'e' bristle of first antenna
10. " frontal organ
11. Female - frontal organ
12. Male - endopod of left second antenna
13. " right clasping organ
14. " copulatory limb
15. " tooth-lists of mandible.

Orthoconchoecia atlantica (Figs. 16 - 19)
16. Male - carapace, lateral view
17. Female - carapace, lateral view
18. Male - frontal organ
19. Female - frontal organ.

EXPLANATION TO PLATE

PLATEV

Platyconchoecia prosadena (Figs. 1-9)

1. Male - carapace, lateral view
2. Female - carapace, lateral view
3. Male - frontal organ
4. Female - frontal organ
5. Male - armature of 'e' bristle of first antenna
6. " right clasping organ
7. " mandible
8. " tooth-lists of mandible
9. " copulatory limb.

Spinoecia porrecta (Figs. 10-16)
10. Male - carapace, lateral view
11. Female - carapace, lateral view
12. " frontal organ
13. Male - frontal organ
14. " armature of 'e' bristle of first antenna
15. " copulatory limb
16. " endopod of right second antenna

Spinoecia parthenoda (Figs. 17 - 23)
17. Male - carapace, lateral view
18. Female - carapace, lateral view
19. Male - frontal organ
20. Female - frontal organ
21. Male - armature of ' e ' bristle of first antenna
22. " copulatory limb
23. " endopod of right second antenna

EXPLANATION TO PLATE

PIATE VI
Conchoecia magna (Figs. 1 - 8)

1. Male - carapace, lateral Vier
2. Female - carapace, lateral view
3. Female - frontal organ
4. Male - frontal organ
5. " armature of 'e' bristle of first antenna
6. " copulatory limb
7. " endopod of right second antenna
8. " tooth-lists of mandible

Pseudoconchoecia concentrica (Figs. 9-17)
9. Male - carapace, lateral view
10. Female - carapace, lateral view
11. Male - frontal organ
12. Female - frontal organ
13. Male - copulatory limb
14. " endopod of right second antenna
15. " tooth-lists of mandible
16. " armature of 'e' bristle of first antenna
17. Ventral view of carapace of juvenile.

Conchoecissa conbricata (Figs. 18-24)
18. Male - carapace, lateral view
19. Female - carapace, lateral view
20. ..: - frontal organ
21. Male - frontal organ
22. " armature of 'e' bristle of first antenna
23. " copulatory limb
24. " endopod of right second antenna.

- -2

EXPLANATION TO PLATE

P L ATEVII

Alacia alata (Figs. 1-9)

1. Male - carapace, lateral view
2. Female - carapace, lateral view
3. Male - frontal organ
4. Female - frontal organ
5. Male - armature of 'e' bristle of first antenna
6. " endopod of left second antenna
7. " right clasping organ
8. " copulatory limb
9. " tooth-lists of mandible.

Conchoecilla daphnoides (Figs. 10-18)
10. Male - carapace, lateral view
11. Female - carapace, lateral vi*w
12. Male - frontal organ
13. Female - frontal organ
14. Male - endopod of right second antenna
15. " left clasping organ
16. " armature of 'e' bristle of first antenna
17. " copulatory limb
18. " tooth-lists of mandible.

Euconchoecia aculeata (Figs. 19-23)
19. Male - carapace, lateral view
20. Female - carapace, lateral view
21. Male - copulatory limb
22. " frontal organ
23. " endopod of right second anterna.

Euconchoecia chierchiae (Figs. 24 \& 25)
24. Male - carapace, lateral view
25. Female - carapace, lateral view.

9 marriminn

18 /formormany

19

APPENDIX - I.	A preliminary report on the distribution and abundance of planktonic ostracods in the Indian Ocean. Bull. Nat. Sci. India, 38: 641-648.
APPENDIX - II.	- On the occurrence of Bathyconchoecia deeveyae Kormicker (Ostracoda, Halocyprididae) in the Indian Ocean. Crustaceana, 21: 141-144.
APPENDIX - III.	Zooplankton abundance at Kavaratti and Kalpeni atolls in the Laccadives. Mar. biol. Ass. India, Proc. Symp. Corals and Coral Reefs, 239-256.
APPENDIX - IV.	Distribution of certain planktonic crustaceans and Insect Halobates in the Indian Ocean. Ind. J. max. Sci ., 2: 116-121.
APPENDIX - V.	Distribution of Ostracoda in the Indian Ocean. IIOE Plankton Atlas, 3 -
APPENDIX - VI.	Bathyconchoecia angeli sp. nov. a new halocy prid ostracod from the Malacca Strait, Indian Ocean. Crustaceana. (Accepted for publication on 18-11-1974).
APPENDIX - VII.	- Redescription of Archiconchoecia striata Muller (Halocyprididae, Ostracoda) and its distribution in the Northern Indian Ocean. Crustaceana. (Accepted for publication on 8-8-1975).
APPENDIX - VIII.	Distribution of planktonic ostracods along the south west coast of India. Ind. J. mar. Sci., 4: 201-202.

