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PREFACE

This thesis reports a study of some aspects of classical solutions of

non~abelian gauge theories with emphasis on magnetic monopole solutions.

This work has been carried out by the author in the Department of Physics,

Cochin University of Science and Technology, during 1981-86.

This thesis contains six chapters. The first chapter gives a brief account

of the gauge theory formalism, giving importance to the SU(2) gauge theory

which is used throughout in this work. The first chapter gives an introduction

to various classical solutions of the theory. Some topological aspects, which

are necessary for a better understanding of the subject, are also included.

In Chapter 2 we report a simple derivation of the relationship between the

topological index of the gauge fields of a dyon and its magnetic charge.

A systematic derivation of various monopole solutions from the field equations

is given in Chapter 3. A pair of new complex finite action solutions of

SU(2) gauge theory and its properties are discussed in Chapter 14. Euclidean

solutions related to monopoles and dyons and their properties are presented

in Chapter 5. In the final chapter we report our study of the bound states

of dyons with fermions and bosons.
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SYNOPSIS

In 1931 Dirac studied the motion of an electron in the field of a

magnetic monopole and found that the quantization of electric charge can

be explained by postulating the mere existence of a magnetic monopole.

Electric charge quantization is actually observed in nature, and no other

explanation for this deep phenomenon is known. Since 19741 there has been

a resurgence of interest in magnetic monopole due to the work of ‘t Hooft

and Polyakov who independently observed that monopoles can exist as finite

Venerzy topologically stable solutions to certain spontaneously broken gauge

etiheorles. In spite of a lack of supporting experimental evidence, there are

compelling reasons based on unified theories of fundamental interactions,

for believing that magnetic monopoles exist in nature. The thesis, "Studies on

Magnetic Monopole Solutions of Non-abelian Gauge Theories and Related

Problems", reports a systematic investigation of classical solutions of non­

abelian gauge theories with special emphasis on magnetic monopoles and

dyons which possess both electric and magnetic charges. The formation of

bound states of a dyon with fermions and bosons is also studied in detail.

The thesis opens with an account of a new derivation of a relation­

ship between the magnetic charge of a dyon and the topology of the gauge

fields associated with it. Although this formula has been reportedearlier

in the literature, the present method has two distinct advantages. In the

first place, it does not depend either on the mechanism of symmetry breaking

or on the nature of the residual symmetry group. Secondly, the results

can be generalised to finite temperature monopoles.

iii
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We have carried out a systematic search for solutions of the nonlinear

radial field equations of the ‘t Hooft-Polyakov monopole theory by using

the direct method of Hirota. In the literature this method has hitherto

been applied to various scalar theories in two space—time dimensions. We

have applied this method to the second order nonlinear differential equations

corresponding to a vanishing Higgs self-interaction and reproduced all the

previously known solutions which satisfy the first order Bogomolny equations.

A pair of exact, complex- conjugate solutions is constructed for SU(2)

gauge theory in the Prasad—Sommerfield limit. The Euclidean actions corres­

ponding to these solutions are found to be finite and complex. Such solutions

are important for the evaluation of the partition function in finite temperature

theories. These flat-space solutions are transformed to de Sitter space by

a standard procedure.

We have constructed new time-dependent solutions to pure SU(2) gauge

theory which are related to monopoles and dyons. A set of solutions, which

approaches the Wu-Yangmonopole as Euclidean time t —-9 1 oo, is derived.

These are non—self—dual real solutions in Euclidean space with zero topological

index and infinite action. The divergent action is due to the singular behaviour

of the solutions at the origin. Another set of solutions, which approaches

a singular dyon configurationifalso obtained. These are solutions to self—daulity

equations and possess severe singularities. The action is infinite. In both

cases, owing to the infiniteness of action, semiclassical approximation cannot

be directly applied to extract more physical content. However, their Euclidean

time development is interesting.



In the final section of the thesis we carry out a study of the bound

states of spin 1/2 and spin zero particles in the background field of a point

dyon for isospinor and isovector representations. Energy levels and eigen­

functions for all angular momenta are obtained for isospinor fermions, isospinor

bosons and isovector bosons. For isovector fermions bound state spectrum

for lowest angular momentum is determined. The method of separation

of angular and radial parts is achieved by using spherical harmonics. This

method is compared with an alternative method of separation using monopole

harmonics, and the two methods are shown to be equivalent. A relation

connecting mono pole harmonics and spherical harmonics is also derived.

The study of the bound states of monopoles and dyons is important for their

possible experimental detection.

The material reported in the thesis has been published in the form of

the following papers :

1. Relation between magnetic and charge and the topology of dyon fields,

3. Phys.G:NuCl.Phys. 8(l982) 887.

2. Systematic derivation of Prasad-Sommerfield solution. Presented

at the VI High Energy Physics Symposium, Mysore, December 6-11, 1982.

3. Complex SU(2) Yang-Mills—Higgs configurations with finite, complex

Euclidean actions, J.Phys.G:Nucl.Phys. 9(l983) 1469.

it. New Euclidean solutions of SU(2) gauge theory, Phys.Rev. D30(l98li) 2247.

5. Bound states of non-abelian dyons with fermions and bosons, Ann.Phys.

(In press).
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CHAPTER — 1

INTRODUCTION

1.1 Gauge theories

The well known gauge invariance property of electromagnetism may

be expressed in terms of gauge transformations that are elements of a U(l)

group. It is generally believed that the four fundamental interactions can

be described by gauge theories [I-5]. The unified theory of a weak and electro­

magnetic interaction proposed by Weinberg, Salam and Glashow [6] is a gauge

theory with the gauge group SU(2)xU(l). Grand unifying schemes, which incor­

porate strong, weak and electromagnetic interactions into a single theory,

are also based on gauge theories. It is believed that strong interaction can

be described by a gauge theory with SU(3)-colour as the gauge group.

Let us consider, for instance, the Lagrangian of a complex scalar field

at '4 4’ q:.=-. 3 3% — ’m 4 (1.1)at ,«i is
which is invariant under the transformation :

¢(x)—-—» ¢'(z.) : 84:9 (at) (1.2)
where 6 is an aribitrary real parameter. The transformation (1.2) is called

a global gauge transformation or a gauge transformation of the first kind.

The symmetry of £4 with respect to (1.2) leads to the conservation of electric

charge.

If 9 is made space-time dependent,

W1)-—+ <f>'(=t) -= e"£m giro , <1-3)
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the Lagrangian (1.1) is not invariant. This is because the derivative 3,..+

does not transform like the field 4:

’ - '96:) . -1.95‘)
arbgba) -——> (a,.4>c«.>) = e ‘ 9,. ¢c=o — z(9,.9<t>)e «foo. (1.4)

There is a standard way to restore the invariance. This is done by introducing

a vector field AILCIJ called the gauge field into the theory and replacing
all derivatives by covariant derivatives :

Dr ¢("") "‘ (Br " ‘:3 Ar-(1)) #6") ; (1.5)
where 6 is a real parameter which determines the coupling strength of

gauge—scalar field interaction. Its transformation is obtained by imposing the

condition that covariant derivative transforms like the fields, that is,

Dr*9S(°0 "“” (Dr¢€'0)' = 84961) D;~95(=c) ° “'9

From this we get

«--—>  -_-:  °-‘ "46  - (1.7)
The transformations (1.3) and (1.7) are called local gauge transformations

or gauge transformations of the second kind or simply, gauge transformations.

The Lagrangian in which all derivatives replaced by covariant derivatives,
-at

i C1>,.¢><o"¢> -— ~»‘<l>’<)

'3 +«'eA <i>" 2" '4")<i - *'"°"¢*¢=1   ( - ‘C D
is invariant under the local gauge transformations (1.3) and (1.7). The Lagran­

H

(1.8)

gian of the Dirac field,

.£ = 1'/3(.‘7’*2,... m)«}g (1.9)
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can be made gauge invariant by the above procedure. We get

I

:6 II \? (!.7F~Dr"' M)?

‘Cl: (t‘7H( 9,.—1°€ — WI) ‘F (L10)
: £ + C {P  .
H

Lagrangians (1.8) and (1.10) are nothing but Lagrangians of quantum

electrodynamics without Jtlhe;-kinetic energy term of the electromagnetic field.

We obtained this by imposing‘ local gauge symmetry on the theory. The gauge

field Ari!) is nothing bdt the electromagnetic field. Here the advantage is
that the interaction Lagrangian (for fermions the second term on the last

line of (1.10)) is uniquely obtained from the symmetry principle relating to

gauge invariance. To complete the Lagrangian one should a_dd the kinetic

energy term for the gauge field to (1.8) and (1.10). Since we have identified

the gauge field with the zeiectromagnetic field we can take

oikén = — -:—_F,,F’”’ (1.11)
where

F23rav r~AJI — 9)«A ' (1.12)
One readily verifies that Ff‘-1.11) and (1.12) are invariant under the local gauge

transformations (1.7).? However, a mass term for the gauge field, .. M°1Ar.AF}

is not invariant under t'he'."-local gauge transformation. Thus gauge invariance

implies masslessness of the‘pl!1oton.

The transformations (1.3) and (1.7) form an abelian group U(1). The

idea of local gauge transformations was extended to the non~abelian group

SU(2) by Yang and Millswin 1954 [7] and later generalised to arbitrary non­
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abelian groups by Utiyama [8]. In this case a set of gauge fields, whose number

is equal to that of the generators of the group, should be added into the

theory. In what follows we consider the example of the SU(2) group and

let the scalar fields belong to the 71. dimensional representation of SU(2),

namely,

(1.13)
II1 4”‘ «

<?..

The globally symmetric Lagrangian is

St = (9,.4>)-r(a"¢f;) — ma’ <f>T<f> - (1.14)

A global transformation is defined by

_'9“T“
cfacxy.-——; (#2:) -.= e L 429;) , (1.15)

where the Ta are the 3 generators of the SU(2) group in the ‘)1. dimensional

representation satisfying the Lie algebra,

[T°‘, Tb] = is T‘. (1.16)ab:

6°’ are three arbitrary real parameters. If we make 9‘ space-time dependent,

Wt) —» 9'>'(x) ll
-9.

'5?\.l
(1.17)

U(0ao) 959:) ,

we obtain a local gauge transformation belonging to the group SU(2). The

Lagrangian (1.14) is no longer invariant under the local gauge transfor­
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mations (1.17). As in the abelian case, (1.114) can be made gauge invariant

by replacing ordinary derivatives by covariant derivatives defined by

Df‘¢n, : (aftsvnm —    ¢m ’ “'18)
where the A: are 3 vector fields called SU(2) gauge fields and gr is the
coupling constant. As in the earlier case, the transformation of the gauge

fields can be obtained by requiring covariant derivatives to transform like

the fields. That is

D,.cl>(=o —-> (1),.95(x>)’ = Ucew) Dr¢>C=t) - <1-19)

Solving (1.19) we get

AP'Tq'-——> 4;: Ta’ =.- U(B(x)) AITT“ U.-1(9(z))1 (1.20)
-— .é(2 Um») U19 » .2 " °‘

The SU(2) gauge invariant Lagrangian is

i’ = (1)r:f)T(Dr4>) .. vn'°'dT¢. (1.21)
To complete the Lagrangian one should add the kinetic energy term for the

gauge fields. The simplest gauge invariant form of kinetic energy is

_ _ _1_ C” l‘”"" (1.22)im " 4 Frv F ’
where

(1.23)at. b CFf“, '5  "  ‘l’ Jeavbc A» '
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b.-l

As in the abelian case, a mass term of the form Mab AFJAP is not
gauge invariant. Hence non-abelian gauge fields are massless.

Gauge theories are very interesting because the interaction is uniquely

fixed by the symmetry of the theory. Further, they are believed to be the

only theories of vector mesons that are renormalisable.

1.2 Spontaneous symmetry breaking

If the states of a system do not respect the symmetry of the Lagrangian

or Hamiltonian, the symmetry is said to be spontaneously broken. Ferro­

magnetism is an example, from solid state physics, of this phenomenon.

The Hamiltonian of a ferromagnet is.rotationally symmetric. A ferromagnet

above its Curie temperature, possesses this symmetry because the individual

dipoles are randomly oriented. All directions are equally important in this

case. However, below the Curie temperature the dipoles are aligned in some

particular direction which violates the rotational invariance. So in this case

the ferromagnetic ground state violates the rotational symmetry of the Hamil­

tonian. The rotational symmetry in this case is said to be spontaneously

broken.

The idea of spontaneous symmetry breaking can be studied in field

theory. When degenerate vacuum states exist spontaneous symmetry breaking

occurs. We shall demonstrate this with a Lagrangian which is an extension

of (1.1):

at = a,.4>*a~.i — V(4>*4>), M»
where

\/<<l>*¢) = mwrci + ,xc¢»*¢)" . (1.25)
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The last term in (1.25) is added to to obtain degenerate minima. The free

field situation corresponds to X: 0 and 1nd>o. The case )i < 0 is unphysical

because the potential would not be bounded. For X )0 and m"‘>0 the minimum

of \/(<53) corresponds to

95 = 0 (1.26)
In this case the ground state is non-degenerate. For )\ >0 and 'rn°l< O , the

minimum of V(i>’<f:) is at

“/5 r (1.27)|<l>i = c—m'“/.u)1"”

which corresponds to the points on a circle in the complex 4 plane, having
*/

radius (—m‘/ax)‘ . All the points on the circle are equally good ground states.

Choosing any one of them breaks the global symmetry (1.2) of the Lagrangian

(l.2li) spontaneously. In quantum field theory (1.27) is replaced by the equation

5/|<o|¢>Io>I = (- tn‘/ax)“ = x9/,/:5: » <1-27>

which means that the vacuum expectation value 0f¢ is nonzero.

What is the consequence of spontaneous symmetry breaking? According

to a theorem due to Goldstone [9], spontaneous breaking of a continuous

global symmetry implies the existence of a_massless spin zero particle. The

massless particle is called a Goldstone boson. To demonstrate this, let us

choose the vacuum on the positive real axis of the'complex cfplane and redefine

fields with respect to the vacuum :

C;>('z,) : .3_— C1} + ‘F(z) + 4; X(!)) (1.28)-:2.

where ‘f’ and X are two real fields having zero vacuum expactation value.



Substituting (1.28) in (1.20) we get

xcm) = -~t~c2,~t>< 2% + -i‘.:<9mc9i»X> -~:i<-an-*>‘*“(. )
__ Av_Y,C,\P.L+.X.1,) _ _%.-(_q/-1+_X.1)a'L 129

There is no mass term for the X. field while the bare mass of the W field

is g/_.1m“ . The X field corresponds to the Goldstone boson.

In ferromagnets the Goldstone boson corresponds to spin waves. One

has to note that a spontaneously broken symmetry is still a symmetry of

the Lagrangian. However, it is not manifested by its ground state.

In general, when the number of group generators is more than one,

one can have a number of Goldstone bosons. In fact, the number of Goldstone

bosons is equal to the number of broken generators. Goldstone bosons exist

only when the broken symmetry is global. When a local gauge symmetry

is spontaneously broken two spectacular things happen: Some of the gauge

fields become massive and all Goldstone bosons disappear. This phenomenon

was studied by several authors [10] and is known as Higgs mechanism. The

scalar fields effecting the spontaneous symmetry breaking are called Higgs

‘fields.

To demonstrate the Higgs mechanism explicitly, we consider the locally

gauge invariant version of (1.214)-.’ at
L = (D,.¢)*(D"¢) -'m"<l>"'<i - M<l’*4’> ' '3; 5~F'”- <1-30>.2 .
For ‘M < 0 and ,\ ) 0 , the local gauge symmetry is spontaneously-broken. As

in the earlier case, we take the ground state on the positive real axis. Here

instead of the previous parametrisation it is advantages to use the following
ONE 2



mica)/V
‘ (19 + ’7 (xi) /5<l><«v

(.)
= f;—-(v+ne»o+u.Ecx;+ qiiawwt.-,. ma 'LC31»m),l3l

0h.0{.vL»tz):.'m,g).
Substituting this in (1.30) we get

=£'<A,.n1,2:i. = - -3- 5... F'”’+ %;(a,.n)(3"'n) + -3-(3,.£,)(3”g)

+ .3. «.a°~t»’~A,t/4*‘ .. ev Ar. 3'2 “'3”

__ _:1i(,.9,m'1)’f[°1' + culrcc and  oiwivz. towns.

From this we conclude that the mass of the *1 field is \/-élma . The coupling

of AP and E, in the quadratic term prevents us from directly predicting the

full particle spectrum. However, it is possible to eliminate the 2) field alto­

gether from the Lagrangian by the local gauge transformation

950'-9 --r ¢'(x> edge”/"ll ¢('J() = (V +"l(">)/J3:
(1.33)' 1

6c)———> (1) = A (at) — -— 3 00Ar Ar r w FE’
This gauge is called the unitary gauge. Substituting this reparametrisation

with gauge transformation, (1.33), in (1.30) we obtain

i'<"r~'»°I) = — 2% F'~F"”’+ %—<9r*i>0"~i> +%: ‘’'“‘’'”‘’’*}*’‘”I(1.34)

+ fl-e"q(av+~1)A;.'1— -3-(...2m‘) vq"'.. )wwf_ .$_.vl"’ )

where

Prev ""  ‘P av
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The Goldstone boson field E36915 not present in (1.34). The particle spectrum

can be read off from the quadratic terms. There is a scalar ‘ft meson with

mass and a massive vector meson with mass €19". The degree of freedom

corresponding to the Goldstone boson appears in the form of the longitudinal

degree of freedom of the massive gauge particle.

As a non—abelian example of spontaneous symmetry breaking and Higgs

mechanism we consider SU(2) gauge theory with a Higgs triplet defined by

the Lagrangian,

H 2- (¢a,¢a)°1 (1.35)4 )
.1.
4­

where

0.,

aw

o,¢“

ll
0- a. L C

3pA,, — 3,,/lp +igr€a1,cArA,,

3r.4’0' + aréabc  43¢

(a,: 1,.2,,3).

H

For ‘micfland }s>0the minimum of the potential corresponds to

4' "” -t -1 -7- 1-55 )££= fi+4L+£ =*“U~=* ‘
which represents a two dimensional surface of a sphere in the internal

space with a radius /_ 4vn""/A . Let us choose the vacuum on the third axis

( ch axis) so that the vacuum value of p is given by

0

(¢>o = <olcl>{o) .—. o . (1.37)
U’
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The Lagrangian (1.35) is '*-invariant under SU(2) gauge transformations. The

infinitesimal transformation‘ for the scalar field isI . .5 5'
¢‘,(;) ._..; din) = (ah-_ c 6 (ac) TU: ) ¢R(2) (1.33)

Hence

Sfifix) : e<.'J'k 956‘) ¢Iz(x) (1.39)

where we have substituted £6‘-J-k for Tidk because the scalar field is in
the adjoint representation.

One can readily see that the vacuum is no longer invariant under T1

and T1 , but T3 remains agood symmetry (  in this case is zero). As in

the abelian case we re-express the fields with respect to the vacuum :

0

+9) = exp{—:;(£,-1(«.)T" + E_,_z(=c)T'1'} 0
\$‘+"’[('0

(Lao)

tutu)

= <<1>>0 + giro + ham O)Ld.UL mm.
41(1)

In a global theory we expect Ltwo Goldstone bosons corresponding to the fields

EHGL) and £)‘_L(z) . Sinctélwe started with a local theory, (1.35), they do not
exist. They are eliminaterlzby the gauge transformation

0

~U(£,) {>00 = o
‘O’-r ‘Y]_(=t)

11.¢(7(.) —-5 $'Ca(.)

(1.41)

AFN“-——> A;‘;T“'£ U(a) A,“.“T‘*u‘c‘a,; - -=5-(a,.u(a))u”c‘r.>
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where

U(E:) ._._ _Q_,,Pl:..£1‘-’(£’£z)T1 + §_z(.t)T-1)} , (1.42)

when the Lagrangian (1.35) is rewritten using (1.41), it will be independent

of giand E32’. Further there will be a gauge field mass term,

3. .1. 4. psi .1. P‘...%‘-3v(Ar.A +A[.Pl ) (1.43)» 3
while A?‘ will remain massless. This is because T is still a good symmetry
of the vacuum. There will be one massive scalar particle, with mass J-arm‘

corresponding to the 1'1 field.

In general, for arbitrary gauge groups, the number of gauge fields

acquiring mass is equal to the number of ‘would be‘ Goldstone bosons. Further,

the number of the Goldstone bosons is equal to the number of broken generators.

1.3 Topological considerations

First we consider how maps can be classified into equivalence classes.

Two maps §(x) and 3(1) from a topological space X to Y,

-S-G01 X-——=> Y

8'0‘-)2 (1.uu)

are said to be equivalent or homotopic if there exists a continuous function

¥t(x,oc) : X ® [0, 1] _._, )/) (1.45)



with 0C E [(3. 1] , such that

‘AC7-:0) '-'-'- ff‘)
(1.146)

We can say that {(1) is continuously deformable into 30:) . The continuous

function, ‘{t(a(,,a<) , effecting this deformation is called homotopy. Eqn. (l.#6)

is an equivalence relation. Accordingly, maps can be classified into equivalence

classes called homotopic classes. In (1.46) ffix) and 30:) are said to be
homotopic to each other. Each homotopic class contains maps which are

homotopic (continuously deformable) to each other.

This concept is important in the study of classical solutions of field

theories. Classical solutions played an important role in understanding many

features, which were never unveiled in the usual perturbation scheme, of

the structure of non-abelian gauge theories. These theories also possess

solutions with energy density confined to a small region in space, which can

be interpreted as particles. These are coherent excitations of the basic fields

and a consistent quantum theory exists for them.

For obtaining physically relevent classical solutions, some condition

like the finiteness of energy or action is imposed. This condition often defines

a map between non-trivial topological spaces. Such maps fall into different

homotopic classes. Often, these classes are labelled by a number called the

winding number.

Let us elucidate the concept of winding number and homotopic classi­

fication by considering a simple map 51...; S1 f 5]

=  'f'Q.) (1.47)



-14­

where 9 corresponds to the points on a unit circle with 9 and 9 + o‘L1T

identified. 5’ (6)6 are unimodular complex numbers and the space formed

by them is equivalent to a unit circle. Hence (1.147) is a map from one. . . . 3­
dimensional sphere to one dimensional sphere, represented by 81-) S ­

For fixed ‘)1 , all maps for different cl. are homotopic because we

can construct a homotopy

{(719 + (1 —-o<)9,, + °¢ 9;)F (9’o() ,._ fl . (1.43)
We have then

F(9, 0) 8ll
L (719 + 99)

35(9) _ (1.49)
L (M6 -1- 9,)F(e, 1) e .I! ll

3(9)

f (9) and 3(9) are homotopic. However, maps with different M are not
homotopic and belongs to different topological classes. In (1.47) when the

domain of the map 51 is covered once, its image space S1 is covered “Y1

times. The number ‘n is Called the winding number or Pontryagin index.

The winding number of the map (1:47) can be written as

air

_. ate .._<_'.. if-£<9> .
M ' S ‘T.-E?r"[ »§(6) do ] (L50)0

The winding number of magnetic monopole solution originates from the finite

energy condition on the Higgs field cf: :a.

¢J..._..; ma’/Jjf as 51--> oo (1.51)
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where

11“ = 1.1. = <i;"+ i:+ ii:

.1 " '1 '2'and

We will explain how the boundary condition (1.51) is obtained in the next

section. The condition (1.51) defines a mapping from the two dimensional

surface of a three dimensional sphere having infinite radius, 5: , into the

surface of the sphere, having radius ‘tn/J3" , in the space spanned by (A ,

*2 and 493 , J. 3.
$5“ - S“ --——> S,"/H - (1.52)

To satisfy (1.51) $5“ should be of the form

#1 —--—‘r -31- ‘n (51) cu 9t——> oo (1.53)a J‘/\_ a
with 'YLa_'YL& = 1 . So one can alternatively define a map

“ - '1 '1 (15:11)W4”) ' 5.: ''''''—’ 6: °
where  is the unit sphere in the ¢ space. We know that the map (1.52)
( or (1.511) ) can be classified into homotopic classes. As in the example

considered earlier a winding number characterises each map. These homotopic

classes form a group called the second homotopy group denoted by TTJ'(5J')

(The M“ homotopy group 'ITn(X) is the set of equivalence classes of maps

from S“ into a topological space X . The homotopy group of the map (1.47)

is the first homotopy group TT1(S1)  From the theory of homotopy groups

we have

TT_L(S¢) =-" Z (1.55)
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where the elements of Z are integers. Thus the winding number ‘rt. is an

integer.

Since all finite energy solutions satisfy (1.51) we can classify them

with respect to their winding numbers. For a fixed winding number on ,

a solution having the lowest energy will be the stable one. Since the time

development of a system induces only continuous change, a solution cannot

decay into another one with a different winding number and having a lower

energy. For magnetic monopoles the magnetic charge is related to the winding

number [12]. Sometimes the winding number is referred to as the topological

charge Fhe conservation of magnetic charge follows from the conservation

of winding number. So the conservation of magnetic charge is of topological

origin. It does not follow from a symmetry via Noether's theorem [12].

In the case of instanton solutions [13] the winding number is related

to the number of instantons. In this case the finite action condition,

Arcz) ——r — §( 2,.Ucx>) U23; M x ——> oo , (1.56)

where

1 = Jag} + 13%;‘

in Euclidean space, defines a map

U(-ac) 3  -———> S3 (157)
for SUQZ) gauge potentials Ar((-x.) . We will discuss how the condition (1.56)
is arrived at in Section l.5. In (1.56) U0.) takes values in SU(2) and SU(2)

group space is topologically equivalent to S3 . This is because any matrix

of SUCZ) can be parametrised in the form

U = U~.+*”a°"" » (1.53)
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where the T‘. are Pauli matrices and the us are real. The condition

U1-U = Uuf = 1 implies u.:’+lT1|Q.~. I1 . Hence SU(2) group space is iso­

morphic to S3.

The homotopy group, the elements of which are equivalence classes,

corresponding to the map (1.57) is

Tl-U55) ‘ Z ' (1.59)
l.li Magnetic monopoles

Dirac in 1931 [Iii] proposed that the mere existence of a single magnetic

monopole could explain the quantisation of electric charge observed innature.

Further, the Maxwell equations will be symmetric under the exchange of

electric and magnetic fields. This symmetry, eventhough present in vacuum,

is broken by an electric current [15]. By considering the interaction of a

charged particle with a magnetic monopole, Dirac showed that the magnetic

chargenshould satisfy the condition

q/0.,“ = 33; (L60)
where '71 is an integer and ‘L is the electric charge of the particle. This

means that the electric charge carried by any particle is an integral multiple

of the basic unit [15].

Since this thesis is mainly concerned with monopoles [4, 5, 11, 15-21]

in non-abelian gauge theories we do not discuss Dirac monopoles in detail.

But we shall say something about the string singularity, which is absent in

non-abelian gauge theories, present in the vector potential of the Dirac
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monopole. The vector potential is related to the magnetic field B through

the relation

—)- ---)B = V x A (1.61)
and the magnetic charge is given by

Q“ =  3113’, (1.62)S

where S is a closer‘: surface enclosing themagnetic monopole. Now if (1.61)

is true everywhere Q," will be automatically zero. Since 8 is an arbitrary

surface we see that (1.61) should fail atleast at one point on every surface

enclosing the magnetic monopole. For this it is sufficient to assume that

X is singular on a line joining the origin to infinity. This singularity of

the vector potential is called the Dirac string. In polar coordinates the vector

potential of a magnetic monopole of charge Qhis

if 3 9;? _‘..;:_‘;1’—9——) $ (1.63)
with the Dirac string on the negative z—axis.

Ever since 19711, there has been a resurgence of interest in magnetic

monopoles due to the theoretical discovery of them as classical finite energy

solutions of non-abelian gauge theories, by ‘t Hooft [22] and Polyakov [23].

In their formulation the basic fields are regular everywhere in a suitable

gauge and the energy density of the solution is concentrated in a finite region

of space so that it has a particle interpretation. No Dirac string is present

eventhough it can be created by a singular gauge transformation [11]. ’t Hooft

and Polyakov obtained the monopole solution in the Georgi-Glashow model [24]

where the gauge group is SU(2). In this model the SU(2) symmetry is broken
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down to U(l) by a triplet of Higgs fields (see Section 1.2). Eventhough this

model is ruled out experimentally by the discovery of neutral current pheno­

mena, it is the simplest example of a non—abelian gauge theory having monopole

solutions. Further the SU(2) solution can be embedded in larger gauge groups.

The Lagrangian density of the model is

£ : _%_:  FfAv4.+ ‘E’  _  I  a)
where

=  -- 3.pA?. + géabc
pram = bra“ + gem” Ar‘: 95¢ (1.64 b)

: .1. (cpa'—- mi/A )3’ I
which is the same as that considered in Section 1.2 but for the difference

of an additional constant to make the minimum value of \/((1)) zero.

The equations of motion are

DvFMm " 3'€a.bc (Dficfib) 95¢II

(1.65)

G.D}~:DP‘f’ = ('''’‘i — /\ 43¢) ‘fin,

For Mi) 0 the minimum of VC¢) corresponds to the value of (p given by
the relation

«I .196 = -13- . (1.66)
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The total energy of any static solution is given by the integral

3

E 3 it GL1 — S of, algal.

K6151 [ gr. :3}  + .% D;‘l’&D-¢a 4- var)
‘i’ ii‘  "' 7:‘ Do¢&:Do¢a-] '

From (1.67) it is clear that all finite energy solutions assume the ground

II II

(1.67)

state configuration (1.66) as )1 =  4. xi‘ _, 33- ___..§ 0.9 J
that is ,

9» :2.4’“'—* ''‘’‘/A 0*‘ "*> °°' (1.68)
As explained in the previous section, this finite energy condition is a map-1 :1.
from 80° _% S

2.

Shop . 500 .__._s S , (1.69)
where

§‘7¢5:xg:x3 3 J73:L+'l_.f-fl; =. 00
(1.70)

5.0

5‘ {¢3,¢i,¢3 : ¢f..¢j+¢3j­
in Section 1.3 we have seen that such maps fall into homotopic classes labelled

by a winding number. Accordingly, finite energy solutions are classified on

the basis of the winding number. An ansatz with winding number 1 is [22, 23]

1 - K00
,L-LA3 = greai-.i ha <1-71>

_ 1. H0»)
4%, - jfhwjr J
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where h,,= 1., and 91. is the radial variable. This static spherically symmetric

ansatz converts the equations of motion (1.65) to two coupled nonlinear ordinary

differential equations :

2t"1<" K(K'1— 1 + H‘)
(1.72)

I!
H (J.Ka'_m3'h."' -1--g-,,_H%) ,

Il

where K denotes the second derivative with respect to the argument. The

25' H"

energy integral, when expressed in terms of the ansatz functions, becomes
00 , .a -2.

E ‘ 2% ie1o<'>“+ (-——~———“1.;;J” +0 (1.73)
—-11‘ + i;'3(%f ~ 31."-‘—“>" 1­5).

For finiteness of the above integral the ansatz functions should satisfy the

conditions

H___.;0 K...-—-)1 out 91,-->0 (l.7l+a)

H——9 93-’-‘I-"—); K-——->0 as 7L——->°°- (lflb)

The condition on H in (l.7£1 b) evidently results in (1.68) as expected. From

(1.74 1:), (1.71) and (1.53), one readily verifies the winding number to be 1 .

This can be seen as follows. Comparing these three equations we find.1. -2. -2.
’I'La_(9?.) : £,a_ . This is a one-to~one mapping S°°—--> S1 and when SM

«:1

is covered once, 51 is also covered once, and hence the result.

Now let us see why the solution (1.71), with the properties (1.711), is

called a magnetic monopole. There is spontaneous symmetry breaking in this
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theory because the minimum of \/(Cf) corresponds to values of qS& on Sci.

defined in (1.70). Choosing any one out of these degenerate minima breaks

the symmetry spontaneously. However, any arbitrarily chosen vacuum is

still invariant under 50(2) symmetry. This can be qualitatively deduced as

follows. In Section 1.2 we have chosen the vacuum value of Q‘ pointing

along the third direction ( 433 axis) in the internal (#7 space. This is invariant

with respect to rotation about the third axis, the relevant symmetry group

being 50(2). This argument directly generalises to an arbitrarily chosen vacuum.

Since 50(2) = U(l) we can say that the U(l) symmetry survives and the gauge

field corresponding to this symmetry is long ranged. One can identify this

U(l) gauge field with electromagnetic field. There is however no unique

way to identify this U(1) gauge iield throughout the space [11, 15]. ‘t Hooft

proposed the gauge invariant definition [22]

Ft‘, = 1% Fr“; 41>, -3—:_,,Eat,C <{>a_(Dr.CF5)( DJ.) (1.75)

for electromagnetic field tensor. This can be rewritten as [12]

Fri: 7'  F apply’ —:§—,Ea,bc.  ’ “'76)A a.
where Q’:  and Ar:  $,_ . From (1.71) we find for fl. >0 , Ar.‘ 0
and $0” = ‘£6, . Substituting this in (1.76) and separating the electric

and magnetic fields, we find,

E.=F.=01. 04.
(1.77)I

t:.1r>

_ .2.
5.; ’ %‘+;1°’€ 5* ' 2

This is the static electromagnetic field of a magnetic monopole with magnetic
‘I’?

chargeflsituated at the origin.
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According to the ‘t Hooft definition (1.75), F”
origin [11, 15] eventhough all fields of a non—abelian monopole are regular

is singular at the

everywhere. Another equivalent definition is [25]

Q’ A

FEW .. Fr, clam (1.78)
This is nonsingular everywhere. Both the definitions coincide in the ’L-—-3-oo

limit and the magnetic field becomes indistinguishable from that of a Dirac

monopole.

The relation between the magnetic charge and the winding number

of the map (1.69) has been established by Arafune, Freund and Goebel [12].

They have shown that the magnetic charge QM is given by

QM = “/3 (1.79)
where ‘n is the winding number. They also observed that the conservation

of magnetic charge is of topological origin and it does not follow from a

symmetry‘ of the theory.

Let us come to the solution part of the subject. In order to find the

detailed structure and the classical mass, which is equal to the energy E ,

the static field equations (1.72) should be solved. Due to the complexity of

the coupled nonlinear differential equations, an exact analytic solution has

not been obtained so far. A unique [27] solution satisfying the boundary condi­

tions (l.74) has been shown to exist for the system (1.72), and it should be

expressible in terms of real analytic functions of 71. [28]. Only its numerical

form is known so far. The value of the integral can be written as

E = 531:; MW jCCr\/3") (1.80)
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where MW is the vector boson mass gm/J’; . The value of g obtained

by various workers is given below [15].

gm -.-. 1 ( Pruuad. mi Smmniieabt mi)

jam) =-. 1-1 ( ’t Haafit [at-U)

_}(0'.J.) .,. 1-H ( J'u.L;a. amd 266 L301)

{(10) ::  ( )1’  [a'a']) '
Further it has been shown [31, 32, 33] that f is a slowly varying function of

A/3;‘ . For /\/31-) co the value of -5 is 1.737 [31, 32].

Eventhough an exact solution has not been obtained for general W1

and X , a solution has been obtained [29] in the limit of vanishing Higgs

potential. In this limit, called Prasad - Sommerfield (PS) limit [29], 'm—> 0

and X--)0 with ‘mi/A finite.

The spontaneous symmetry breaking survives because a classical solution

can have its Higgs field assuming non—zero value ‘M/f',’\ as }1,—--) oo . So ac c a o . . o a .
nontrivial map SJ’-—-v S is possible which gives a topologically stable solution.

The solution to (1.72) in the PS limit is [29]

KW ‘” I3"/4-'*"‘»i61 J H00 "'- 13*’ “u‘i3”"' 1» (1.81)

where fl —.- MW -_- 3301 /J] , and this was originally obtained by trial

and error. In Chapter 3 we give a systematic derivation of the PS solution

(1.81).

It has been shown that the PS solution satisfied the lower bound of

energy in its homotopic class [.26] . Solutions, in any topological sector
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satisfying the lower bound of energy (see page 16) obey a first order equation

Called the Bogomolny equation [26],

: Qgjh .Dk¢a_ ’ (1.82)
All solutions of Bogomolny equation are solutions of the second order field

equations (1.65) with ‘m and A zero. But the converse is not true.

It can be shown that K and H approach the boudnary condition (l.7l+ b)

in the following way [15] :

A4 ’L-->00 _Mw,LK0‘) '"_> 00)’ D (1.83)
_}~}L

Hot) ———=» 9&7; + 00- )’fi
where fit is the mass of the massive Higgs particle Iii m . This means that

the ‘t Hooft—Polyakov monopole has a definite size determined by the Compton

wavelength of massive fields. The massive fields exist inside this core and

outside they vanish exponentially leaving a field configuration exactly similar

to that of the Dirac monopole.

In the PS limit there exist several solutions, albeit of infinite energy

such as the following [34, 35]:

K ,_..._ 0 I H :: 1 (1.843)
W‘ _ 1K _ HM , H —- _«_+/an (i.8z+b)

K .,._ ,_,__"_"f_(E;:“) I H ___ gm wU«.(p2t+oO —- 1 (1-3%)
fin 01 ‘(FAK ‘Me H=§n°‘e +~1— -1- (Land):aCQph— 4 J .:"e°2’M" 1
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All these solutions obey the first order Bogomolny equations and can be

obtained by integrating them [34, 35]. In general these solutions are singular

at 91: O and the energy is infinite. They are called point monopoles and their

significance is not clear at present. The finite energy PS solution is a special

case of (l.84c) and (l.84d).

Another point solution is given by

K = 0 H = 0 (1.35)I

In this case the Higgs field is zero everywhere and the theory consists only

of SU(2) gauge fields. All the three gauge fields are long ranged. in this
:5,

case it has been shown [‘36] that no classical finite energy solution exists.

The gauge fields corresponding to (1.85) are

’l.

A;} = o , A‘? = -1-ea... 7'} ~ (1.86)* 2
This field configuration was obtained by Wu and Yang [37] five years before

the work of ‘t Hooft and Polyakov. This is singular _at the origin and the

energy is infinite. One may think that the singularity of Wu-Yang monopole

is smoothed by the scalar field to yield the regular ‘t Hooft-Polyakov monopole.

The possibility of non-self-dual solutions* (solutions which do not satisfy

the Bogomolny lower bound (1.82) ), having energy greater than the PS solution,

in the PS limit was investigated by Frampton [38]. He found that the PS

solution is unique and there are no other finite energy solutions. However,

according to Kerner [39] a family of finite energy solutions exists for (1.72)

in the PS limit and only one out of it (which is nothing but the PS solution),

having the lowest energy, satisfies the Bogomolny equation. Recently we

*

Bogomolny equation (1.82) is equivalent to static self-duality equations C 44¢, pa9¢ 31) [11] ­
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came to know that this result is wrong and Frampton's result is correct [(+0].

The ‘t Hooft-Polyakov monopole possesses only magnetic charge and

does not carry electric charge. Julia and Zee [30] showed that this is because

A2’ is put equal to zero. If A? is non-zero, the electric field does not vanish.

They showed that a finite energy solution is still possible with non-zero

Ar’ . Particles carrying both electric and magnetic charges are called dyons

[41]. Julia and Zee proposed the ansatz

7:.

O ‘:7. -%§ ad -- I  :    ‘((33),.2i '3 (1.87)
_ _1_ Hon

95* " 9/"* '3:-1

The equations motion now become

ii‘ I" = I (all?)
I

1;‘? H’ = H C-1K" — Mu)” 4‘ '31:.”-1) (1.88)-2' H 4 .1 4&K:K(K—1+H--J-)­

The energy integral will have contributions from Ag”

60

MT ' "1 4 :LH'— H)‘ C’L7’- 3')‘E : —-1 61.1. (K) + -3 a’ + 33-’ -'--——.{""'3 , " "L (1.39)
,2’ 4- .1 4” -I ,2 H-Z 93-M4‘:

“ ('*"‘K 1) '* L” J) *"3fé’~1(:«“ 7”’an‘ iv‘ 3
A finite energy solution is shown to exist with the ansatz functions having

the following boundary behaviour : A5 )2. ._.; oo

Km -—-> OC¢><pl'_- J":-M‘ £3)
(1.90)

T/'(a.) ——9 M)., + b + 0{I/)1.)

Hi §.’:‘_x 0e""" ,I»)-—-> W +( )
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where M and b are two parameters [ll]. From the boundary behaviour of

Kat) we conclude that the values of M are restricted,

I M I < Mw- (1.91)
for finite energy. However there is no resgtriction on the continuous para­

meter 13 . It is related to the electric charge of the dyon [ll]

MrL’ “" b (1.92)Q a
and this is not quantised at the classical level. In the quantum theory Q, is

quantised [#2, 1+3].

Exact dyon solutions were obtained in the PS limit [29] :

9):.

KUL) 7-  ) LTQL) -:   ~(-1913))
H()L) = co.yl«tw1(pJu.o~U.p,n. -1)

where  is an arbitrary parameter. The electric charge of the PS dyon is

%

Magnetic monopoles are present in almost all grand unified theories

and together with standard hot big bang cosmology, they predict an unacce­

ptably large density of monopoles in the universe [44]. Eventhough the exi­

stence of monopoles has not been confirmed by experiment [45], it is possible

to predict an upper limit on their abundance. This imposes severe constraints

on cosmological models [46]. Monopoles and dyons in non—abelian gauge theories

lead to several other interesting physical phenomena. These include solitons

with fractional fermion number [#7], spin isospin mjixing [#8], fermion number

breaking in the presence of monopoles [149] etc.
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1.5 Euclidean solutions

Classical solutions of gauge theories in Euclidean space-time have played

an important role in unravelling their structure. Three types of Euclidean

solution have been discovered. They are the instanton, meron and elliptic

solutions. In this section we shall give a brief account of instanton and meron

solutions. (The Euclidean solutions are reviewed in Ref. 11).

lnstantons are finite action solutions in Euclidean space having zero

energy. In gauge theory it was first obtained by Belavin et. al. [ l 3 ] . A s

in the case of monopoles, they can be classified by a winding number that

arises from the condition of finiteness of the Euclidean action,

5 ll
J If oL#x -.: S Fl:f’:+.__F'W¢r1.q9L

(1.95)4' J
where we have used the matrix notation :

F-pi: " '5 Fri» T
(1.96)

G. a.A : .4. A '6l‘ 4 I‘
For finite action we requirepv /
where

'26: x/1.5+ I273}:
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This does not necessarily mean Ara) -——-> O as x —a co . We can have

a non trivial Ar 1

(at) ————> -  (3;~UC"3) U?” (1.93)
where U6!) is an arbitrary gauge transformation function of SU(2).

Ar

. . . 3 3 . . .
The condition (1.98) defines a map 5 --->> S as explained in Section 1.3.

The winding number of this map can be expressed as [13]

41 —- -33 Sdfac EEC? E )- (199)' Ievr‘ r” N °
There is a lower bound for the action (1.95) in each homotopic class

as in the case of monopoles. To obtain this we start with the inequality

S=taCF.,i' fiyli > 01-3

Using the relation

~ cl.

(FL, 1*: Fry) = .'g,(}.’rm Fry
this can be rewritten as

H‘
-,7"!

e
'17’ Z

2 ~./

Jtn.(l';_,,F,.,,) aflkx =-. ‘  Fvfvj dfx‘
Hence we have the action

_.'.-'£5 Z % ml. (1.100)
The equality (lower bound) is achieved if

f\I

FF” = _-t ll”) 2 i .13   (1.101)‘Tl
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For positive (negative) sign, (1.101) is called self-daulity (anti—self—duality)

equation. Gauge fields satisfying the lower bound are called self-dual fields.

The instanton solution discovered by Belavin et.al. [13] is self-dual and

has a winding number 1. Its explicit form is
7.

-:5 ————l: xl (Sr U (1)) U71) (1.102)/irbt)
where

U00 (*0 + "‘ 38"?)/1

Here ‘I’ are Pauli matrices and X is some scale parameter which determines

the size of the instanton (The action density % f,,_ p,” fin’ is concentrated
in a finite volume in Euclidean space). For X. >7 A we have

Ara) = - f§(9,.Ua>)u"ix> - (1.103)
Instantons cannot be interpreted as particles because they are imaginary

time solutions. It has been shown [50, 51] that they correspond to tunneling

between vacuum states having different topological numbers. There exist

inequivalent vacua in a gauge theory labelled by a winding number. Ar -_- 0
corresponds to only one of them having zero winding number. Let us see

how different vacua arise in a gauge theory. Choosing the gauge3': . 4A0 0 (1 10 )
we see that the vacuum solution ( Fry: 0) is given by

Arm -.- -  (DFUCZD) tfiai) , . “"0”
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where UCE?) is a time-independent gauge transformation of SU(2). Further,

assume the condition [50, 52]

U0?) ——-> I 0.; «‘'1.--—-> oo (1.106)

on the function U ('5?) . Then it can be seen that U67) can be classified

into equivalence classes. U5’) defines a map from 3-dimensional space with

all points at infinity identified into SU(2) group space. 3-space with all points

at infinity identified is equivalent to  So U6?) defines the map

3UL?) : S3-——> S , (1.107)
which, we know, can be classified into homotopic classes labelled by an integer

winding number. Vacuum with winding number zero is given by

U07?) -= U0 (:7) = I (1.108)
which ives A = 0 . A au e function UH?) which is not continuously de­8 ran 8 8
formable to U06?) and having winding number 1 is [50]

a"..)1" - 9'5’-E’
U1(f) = Fr; .. -?.¢r\———-———-J1 . (1.109)

A guage function belonging to the ‘V1.8; homotopic class (winding number vi.)

U%(’_°93 = (U,[?))% (1.110)

Now consider the instanton solution. In the A0 .-: 0 gauge it has the
following behaviour ‘ - -1

/J'r(,L) ___. —-§ (Br U155?) Ulc?) aus vc.o~—> -oo (Mm

Argo -—-—> 0 out 31,-—> +oo
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So-the ’PL=1 and ‘*1: 0 vacua are connected via an imaginary time solution,

the instanton. instantons with different winding numbers and arbitrary location

have been obtained [53] and any two vacua are connected by the appropriate

instanton solutions. Imaginary time solutions interpolating between distinct

vacua corresponds to tunneling between the vacua.

Due to this tunneling the inequivalent vacua of a gauge theory are

non-degenerate. It has been shown that the states, which are superpositions

of the different vacua, can be parameterised by an angle 9 and the energy

depends on 9 C 0 < 6 ( -211). There exists an energy band E(6) in the theory

[50, 51]. The study of instantons and vacuum tunneling lead to the solution

of the U(l) problem [54].

There are also certain other types of interesting Euclidean solutions

of SU(2) gauge theory. These are called meron solutions. Since they are

imaginary time solutions they also correspond to some kind of tunneling.

But this tunneling process is not well understood. The main reason for this

is that a multimeron configuration representing an arbitrary number of merons

located at arbitrary points in Euclidean space-time is not obtained so far [11].

Unlike in the case of instantons, meron solutions are singular and the Euclidean

action is infinite. Further, they are non-self-dual and have a half integral

topological charge.

The following are some meron configurations in the AE',() gauge [ll]:

1) One—meron solution

1 ’l.. atA“.-.0 9': —-E - -— 1-— :9-_. . (1.112),, ,A,~ 3_ 1...... ,L.,c W)
The solution is singular at 7;:-. O and the topological charge is concentrated

at the origin.
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2) Two—meron solution

_7:_+£Ko—a.)C'1o—_£) , (1.113)A“=o ,A9= _
~/Ct-m)“C=t —b)"

0 1. €a"‘~,L   +
‘N-‘rli-s

where o\_ and b are two constant four-vectors. The topological charges

are concentrated at the two singular points 1.32% and ace 5 .

3) Meron-antimeron solution

(1.114)‘ 1-€'£§(1_ _‘_x_:L_0L.z.’ 1 3’ Cum’ ha’ \/(1+4.)(.7C"a')

This describes an antimeron at a, and a meron at -a. .

An interesting property of the meron is its Euclidean time development.

For the one-meron solution (l.ll2)

Aga ---"P 0 CU Z3, -—-9 +00
(1.115)I _fi I

A:«-»  = ~ac2..w1w a. ..—.—m,
1

where ‘U = C5 =  [ll]. So a meron solution starts from the trivial vacuum

configuration and ends in a configuration which is not trivially zero. However,

both vacua are in the same homotopic class and both have zero winding number.

When 10 = 0 the field configuration becomes that of the Wu-Yang mono­

pole (1.86).

The significance of meron solutions is not clear at present. It has

been argued that they may lead to colour confinement [55].



CHAPTER - 2

RELATION BETWEEN MAGNETIC CHARGE AND TOPOLOGY OF DYON FIELDS

2.1 Introduction

It is a well known fact that the conservation of magnetic charge in

Yang—Mills—Higgs' system is of topological character and that the magnetic

charge is related to the topology of Higgs fields [12]. However in the case

of dyons, which possess electric as well as magnetic charge, the gauge fields

themselves may belong to non~trivial topological classes [56, 57]. In this case,

the magnetic charge is related to the topological charge of the gauge field

configuration. This situation is very desirable because it gives a description

of monopoles even in the absence of Higgs scalars, that is, in theories where

‘the symmetry breaking is achieved dynamically.

Christ and Jackiw [56] showed, without mentioning Higgs scalars, that

the magnetic pole strength is related to a topological index. Pak and Percacci

rederived their result using topological methods [57]. They proved the topo­

logical equivalence of gauge and Higgs fields in the dyon sector for any simply

connected group broken down to an abelian subgroup.

In this chapter we present our investigation on this subject. We use

an altogether different and simpler approach to establish the connection between

the magnetic charge and the topological index. For this we use an alternative

definition of electromagnetic field in the spontaneously broken theory Ill].

The result is demonstrated when the residual symmetry is U0) and then

generalised to the case where the residual symmetry group is arbitrary.

-35­
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2.2 Relation between magnetic charge and topological charge

In a Yang-Mills theory based on an arbitrary Lie group spontaneously

broken down to a U(l) subgroup or any one parameter subgroup, it is possible

toidefine an electromagnetic field tensor using a unit vector 91.4’ is the group

space [11]. This unit vector is obtained from the boundary behaviour of the

time component of the gauge field :

Ar’ ___, M %m(e,¢) M 1t——a» co. (2.1)

with nah“ = 1 and M is a parameter determined by the asymptotic form

of the solution (see Section 1.4). The electromagnetic field tensor is defined

to be

0.

Frw = F,» ’*latC9,4>) (2.2)
Na.

From the antisymmetry of the dual tensor F-rim we get the current conser­
vation

9 Ii‘ ._. o ) (2.3)
f‘

where

r __ "’ van3- — 3,,( F“ via) . (2.4)
(2.3) implies the conserved magnetic charge

_ 1 ” ozla. 3
QM '* "mi N" %)°‘*—

(2.5)

{ti 't’~ce’wJ «fix,
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where we have used the notation ‘

°° _ .2. zfko. "av8‘ _ '9' EU" F ' F04 (2.6)Q. 0»
Eé -.- PM

Using Gauss's theorem we have

,_ }_ ’‘'o.ia. .am "4118 (F °”°°) d5‘ (2.7)
S

where S is the surface at spatial infinity.

Since Ag" must be nonvanishing, if the above definition of magnetic

charge is to be useful, then it should be applicable only to dyons. We know

that dyons are static finite energy solutions. However, unlike pure monopoles,

dyons are not strictly static in that if we go to a gauge where fir’: 0 by
means of a time—dependent gauge transformation, the spatial components

become time-dependent. Further, they will be periodic upto a gauge trans­

formation [57]: -4 ‘ -A
A’; (21) it + T) -.-. G 02.) A4._Qz,t) Got) + 3- G gm) 3,; CH0-3 (2.8)

where ‘/33 -.—..  Ta’ and the Ta’ We gauge group generators in the adjoint

representation. The period T is given by* [57]_ $1 (2.9)
M 3

For finite energy we must have the condition

F ,, “-9 O M 92. ——-—> oo . (2.10)

The factor g is absent in Ref.57. This is an error which we have corrected in this work .
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This gives ' -:1a -———§ '-* 5- 3 U U (2.4 11. —-> co _

where U takes values in the gauge group. Now U defines the map

U : S46)  —-9 G1 (2.12)
where G; is the group space. The winding number of the map being given by [57]

v .. S 2'91: e'”"’* t;..[u"‘(a,u).u"(a.u).u“‘aAu]
054024“;.2, N
hr 0

_ 3'; T 3 pa‘ "twat- 33?; out doc. W F . (2.13)
0

To establish the connection between magnetic charge defined in (2.7)

and winding number we note that since the surface integral there is to be

evaluated on a surface at infinity, ‘nab can be replaced by /—\:'/M using (2.1).
Hence

3 1 "Uta. av _am Mg.  .0 i.
:1 "’ ' G. 3. 3-(F°"°"A )dx ~ <2-1”’4TrM S ‘ °

This can be rewritten as (See Appendix 2.A).N - b
Gt... ‘ 1%? 8 F0“ C-%v°....A.~.A3' +9.;A7») . (2.15)

where fab‘; are the structure constants of the gauge group.
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From the definition of the field strength it is obvious that QM can be ex­

pressed as

_ ....}.._. ~°‘£°"  3 ._ 1 N ' :1 3
QM " Ii1=rMS(F F°~)""‘* ml(F°‘“9oAi)4%

1 "' va. a. 3_. ._ FM 0Lterm S( F V 3 7°
1 “"7; 35)“ A3,; (216)"' firm (5 ' '5'; ) °

Since QM is a conserved quantity, integration of (2.16) with respect to 13

yields
T

' 1 at d3 "“ *”’‘’*
TQ~m""" i(.1rM so S1(F”F )

1 3 Hana _3__¢ . ). RTM  B - at ) (2.17
O

&

Multiplying throughout by 55'?“ we get
7'2 no9% 3 3 “' l“""

TQM aw :. — S:"_;T"‘L  F )
T —-9 ‘L (2.18)

.. E SdtjaL39L[L°>°‘. ?_/38-"-1.. O
For static fields the second term on the right hand side of (2.18) vanishes.

The remaining integral is nothing but the topological index (winding number)

(2.13). Substituting for T from (2.9) we find, for static fields,

'1’am = " "i ' (2.19)
In the general case where the gauge potential have a periodic time
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dependence, it will be convenient to work in the gauge A: = 0 . Using
the relation [56]T T-3 *9 -—>

— 5%; S aLtSot’x( 8“. .34) —- §=‘-11-T-_,,SDo(.tJoL%:t(8a_'.f)9A:')0 -r (2.20)1 N
‘*' "5.-1‘-.?a l.°”l°‘3*(F»°L Fm) »

where now T is the period of the gauge potentials, (2.18) can be rewritten as

T M 9”“

where 1) is the topological index (2.13).

2.3 Generalisation

The procedure described above in Section 2.2 can be generalised to

the case where the unbroken symmetry group is non—abelian. If p generators

remain unbroken we will have P independent vectors in the internal space

corresponding to each of which we can have a conserved magnetic charge,

.. 1 " 0410. 3
°( :11.z;"°“P I

where ’VLaL(,,) is defined through the boundary condition
P4» (2.23)_.._.——> M 'YL ­

AD ,L_> 00 g_ (at) 0.0-!)

Multiplying (2.22) by M 6,0 and summing over o( yields

2 Qmm Mm =-.  34: (§o».otA:.) (13% 1 (2.24)o(



-4]­

where we have replaced 2 Mg‘) ‘ma, (,0 by A3‘ in the integral, by
the argument given previously (following Eq. 2.13). The right hand side of

(2.24) contains the same" integral as in (2.11%) and following the same line of

reasoning as developed earlier, we can identify it as the topological index

of the dyon configuration.

Finally we observe that the above established connection between mag­

netic charge and topological index can readily be applied to finite temperature

monopoles also since these are just the periodic solutions in Euclidean space [58].

2.A Appendix

in this section we shall prove

9b.(’Fv°”“A:') .—. If-\"°*“ [_ 3 {MC A3’ A5” + QALAE) . (2.25)

We have the Bianchi identity

D, F'‘”“ -_. 0 . (2.26)
For [4 -= 0 this equation becomes

31; fioiat + gjcmbc A?’ E055 0 (2.27)‘\.

Now

9i;(E°m A?) = (acfiom) All + %’°£a(3cA%)

= " Webs Aib '?°"° A3” + 7"°“:“‘ 9.~A°.‘:av . b
_..: F0-LC (__%jCa/be   +  AC0) ’ (2.28)

which is the required result.
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SYSTEMATIC DERIVATION OF MONOPOLE SOLUTIONS

3.1 Introduction

In this chapter we report a systematic study on the second order non­

linear differential equations of the ‘t Hooft-Polyakov theory. We have analysed

these equations in the PS limit. The method we haveiused is the direct method

of Hirota [59]. This method has been very useful in constructing solutions

to (l+l) dimensional scalar field theories: A first application of the method

to a coupled system of nonlinear differential equations was recently made

by Hirota and Satsuma [60]. Here we apply this method to find solutions

of the effectively one dimensional coupled field equations of the monopole

theory.

All the exact monopole solutions, regular or point singular, reported

in the literature were either obtained by guess work [29] or by integrating

the first order Bogmolny equation L16, 3#, 35]. However, all solutions of the

second order field equations may not satisfy the Bogomolny equation*. All

the solutions we have obtained using the Hirota method satisfied the Bogomolny

equation and were reported earlier in the literature. Eventhough there are

no new solutions, ours is a systematic method to generate all the monopole

solutions from the second order field equations in the PS limit.
in

In Section 3.2 we introduce the Hirota method andASection 3.3 this method
is applied to the 't Hooft-Polyakov equations in the PS limit and the solutions

*­

After the completion of this work we learned [40] that there are no such regular solutions
for the case of the spherically symmetric ansatz (1.71) which is used in our work. In this
connection see also papers by Frampton [38] and Kéme: [39].
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are obtained as a ratio of infinite series which depend upon a number of para­

meters. By adjusting the parameters the series and the solution are expressed

in terms of elementary functions. This is discussed in Section 3.4.

3.2 Direct method of Hirota

Hirota developed a direct method [59] of finding exact solutions of

a number of nonlinear differential equations. In this method the dependent

variable is expressed as the ratio of two dependent variables  and _-f . When

this ratio is substituted in the original differential equation we get an equation

with two dependent variables. The derivatives of functions can always be

combined and expressed in terms of bilinear derivatives, the ‘rum’ order bilinear

derivative being defined as

— -53;-.)'n A(1.t) 5(%'»t) , ' (3.1)1:1D:-A(x,-t) - BCIJ3) = ( Q)z-3°’

The nonlinear equation which contains bilinear derivatives of 3 and f is split

into two coupled nonlinear equations. The functions 3. and f are then expanded
as power series in a parameter 5 , as in perturbation theory. The individual

functions in the power series are evaluated by successively integrating the

differential equations that follow from equating the same powers of e on

both sides of the split nonlinear equations. Solutions can be obtained either

by terminating the series by some technique or by summing the infinite power

series.

3.3 Hirota's method for ‘t Hooft—Polyakov equations

In the PS limit the equations of motion of the SU(2) gauge theory (1.72)

become

h-tK" _ K ( K“... 1 4- Ha) (3.2a)
hf!’ H” 4' H ‘('1' - (3.2b)
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We make a dependent variable transformation,

A0») (3 (IL)
K (h) -- -:5-5) , H0») = 51;) , (3.3)

which modifies (3.2) into

2;‘(5D"A.e. - A198-.6) = A (A"‘—— 85+ C‘) ma)
hf?’ ( 5 1>*c.8 - c 1>“.5 -8) = =26 A‘ (3.413)

where DaA~5 and D188 are second order biiinear operators :-t , at _ at 4 .
D A 3  IA.) A("v)3C’5v)lA_____l'

Aug __ °_LA(8/ + ABM . (3.5)
We split (3.41)) using an arbitrary function 'Vl(A.) to get

- «:1 A2’ (3.63)2z.""D"z3-B + n 5°“

nfiD"c-8 -rqca o (3.6b)

One readily verifies that solutions to (3.6) are solutions of (3-lib). One may

consider alternative splitting patterns as well. However the;ypresent splitting

procedure is advantageous because it reduces the degree of nonlinearity from

three to two. (3.4a) now becomes a. 3. .1,
>.°‘51)"‘A-B = ACC -r(‘1+1)B -A J - (3.sc)

In Hirota's method the functions A,B and C are expanded as perturbation

series. A consistent expansion of this kind is

AOL) = 6 A10») 4' €iA_,_(’L) +

80‘) _._ 1 + 5 Big.) 4. 5"’ Big) 4.  (3.7)
C 00 =3 1 +- _e C19‘) ‘V 5.2 C.-,_(5-) "' ‘  ' .1
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where Q is a parameter. Substituting (3.7) in (3.6) and comparing the zeroth

power of Q on both sides we see that 710:.) should be zero for consistency.
Hence (3.6) can be rewritten as

133*‘ 3 .8 3 _ _-LA‘ (3.8a)
D-1 C .8 ._. 0 (3.312)

,,_"‘B.D"-'A_5 ,_. A ( Ca'_5'z'._ A4) . (3.8c)

The functions A1 . I51 , C, 5 A,_. B; , Ci; -.  are obtained by
integrating successively the linear equations which follow by substituting (3.7)

in (3.8) and comparing coefficients of e I e ‘1, - .- - ~- - respectively. For

example, the first two sets of equations are

6 => -1 aL"‘c oL"‘Ad_'._§1 - O -—--1 = O 1 z-.-. 0 (3 9a)oUl:‘- " ’ aw I am '
€'1=> a, 9.  -2. .2k [JD  +D 61'8d) c. —Q.A1

J) 64.1 + D C,- 4 + 4 - (3.9b)
x“(D"z4_l.1 + D"A1.51+ 341)"*A1.1) = Z.2A1(c1...3fi) .

We have choosen _

1: bh_+d_ (3.10)
C1 = ch,-4-ai.)
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as solutions of (3.93) to insure the simplicity of the successive integrations.

General solutions to (3.9a) lead to logarithmic functions in the second order,

and hence the successive calculations become formidable.

With an initial set of solutions in the form (3.10) we obtain the following:

A1 = 0.1.

A1: a.cJL"'

A3 = — d.a.c ha’ -1- a,c3')i,3/,1!

A4 = d.‘a.c 16'' -- ital a,c"fi.3/.;g + a.c3 1.4‘/3;

A5 = — 0134.6 11.4’ + 3d.'1a,c"-_:.,3/_;.. "P" 3d.Q,C3.1,”%3, + q'c+ 4'5/5.;

(3.lla)

B1 = bh -rd.
5a_= Elk;/4!

B3 = — ti. E"'h.'7'/.;,!_+ (E'tb - ul.a."'c)1.,3/3!, -1,
B» " ‘L:E;‘3'/-2.! --tal.(E“b — .2a,‘c)IJ:’/5} + (£"... i,,q,"'c") ,L#/4!
55' "‘ "4 E 3/49 *'3°LJ'(E‘5 --m"c)J'L“/3| -.3aLCEl'—- #4}c")2L’y4:

+(bE."+ IpcL"c( b—E"° - “- 3 ),_5 1C ) 8a.c ) /5_ (lllb)

C1 = ca. 4- d.

C.» (9-5'3 *E'L)’*°'/-2.!ll

C3 -.;—a((-Lbc -E")1L"'/4,! ‘l’ ([C" '9-5] E¢.+ etc [b"'+ 115]) 7&3/3'!

C+ .-: d,°'(.z.bc -E1’) 1:/-2,] ‘“ '7vd~[[""1b] E4-iv o‘LC [:b'z+  3.3/3}

- + Qi¢’~c" + 1,; be E"-is E‘) A4‘/+3
(3.1lc)
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where E = J5‘-_ a}

3.‘: Solutions

Equation (3.11) together with (3.7) and (3.3) yield a solution to (3.2)

labelled by five parameters a,’ [9 I c, , aL , and 5. But the series corres­
ponding to (3.11) are too complicated to permit summation for arbitrary

values of the parameters. However, by adjusting the parameters, one can

make summable series out of (3.11) which can be expressed in terms of ele­

mentary functions. Before discussing this aspect, let us consider some simple

cases of (3.1!)

Setting a,.-.b = c = at = 0 in (3.11), we find

K :0 H=1 - (3.12))

Likewise, the choice CL '-"- b I c ; 0 yields

K g..- ---‘la-—'-' , --= """"1""""""' (3.13)1+'r[h. 1+~1h.
where ‘Vt = Q6/(1-ed) is an arbitrary constant. Solutions (3.12) and (3.13)

are precisely the point monopole solutions (l.8l+a) and (1.814b) discussed in

Section 1.1+.

For a..;£ b , c = o and [ate] 4 1 , (3.llb) and (3.1lc) lead
to series for 60.) and C@,) which possess a representative term while

the series (3.lla) te:r'ninates. Using binominal theorem, the series for 8(1)
I

becomes

ll 1 + ale + b(e7.,) 4- EJ'_ (€1Q.L+ 534 (sags
1-l-d.€  (1_+d€-)4

"' --E-I-}-' (Ema + bE# (€"’)§+T
(¢+d.e)“ +1 a+aL€)¢ 5-;

Bo)

(3.14)
ll

-%(b44'mh12)L+ E'ca41o..*v))a_) ,
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where

av] E5 _ _Jb"—a.‘ E-. 1+4-5 - 1+4: - (3.15)
Due to the large arbitrariness* of d and 6 we can take ‘Yl as an arbitrary
constant independent of 0. and b . After a straightforward calculation, the

series for CO.) becomes

C0») = -6,,-I-[(l-Z - bvpe.)cnm1:i + (b - Eo1IL)u:nkvpt] . (3.16)
Oiulgi-na.L

Transforming back to the "A dependent variables we find
OUL

((0,) = P”: 9 (3.17.-3)IL

p‘'’c " — 1

.1. ‘"1"­

HQ;,) = .. '71); P e + 1 + 1 (3.l7b)
Pee-lv'7]Il._ 1

where P = a./Cb .. b-t,q})is an arbitrary constant. This coincides**with

the general point monopole solution (l.8l+d) obtained by Ju [35]. The Proto­

genov solution (l.84c) is a special case of (3.17) (with P : cf‘ ). By setting

in =-. 1 one obtains the regular PS solution (1.81). We were not able to

sum 6%,) and COL) series (3.llb) and (3.llc) for nonzero C . However the

A Ca.) series (3.l1a) can be summed in this case because it possesses a

representative term. The function A (It) obtained after summation can be

substituted in (3.8a) to obtain an uncoupled nonlinear equation in ‘B . This

can further be reduced to the one dimensional Liouville equation. From

the known solutions of this equation 5(1) can be obtained. From a knowledge

of A('a,) and B0.) , I-(Qt) can be evaluated. Then HQ.) can be constructed

by direct substitution of I((;.,) in (3.2a). However, this procedure does not

give any new result. This we prove in Appendix 3.A.

The only condition on d and eat is |c(£l( 1 .

Comparing (3.17) with (1.8lid) one notices a sign change. This does not matter because (3.2)
is symmetric under the operations K .4 .. K and H ._) .— H (either together or separately).
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3.A Appendix

From (3.113) the ('11 + 1)“ term of A91.) series is given by
K4»!1!-1 k

A”, .-= an G-1)”'d,'"' Z (.4) *1 _C_°"_/_"_‘-)_ ("""‘) . (3.18)5” (h + :1) ! "~
From this

II ‘N «n+1 m k_CU-/d)':4 * ‘W.’ _
Adm--‘L axe-1) d E061) O!-#1).‘ iR.'Cn-R)!

ah. (-1)“ 01"” ch. in 51).! S5."/_°Q_" '"*’«+1 (‘it’) no kg n+1

-- am. so“ °°” (%£~“> 2 ex)" 9‘i‘,f+‘1h C”)‘H-+1 rn,—k
‘n+4.

= a.a,(-1)” ti” (git) Lip-.a./at) , (3.19)
1

where L,“_(K) is the associated Laguerre Polynomial [61]. AQ9 now becomes

A  = EGJL [ 1. +  ) Z (T. 1)“  L:(ch/d)].(3.2O)
Using the relation [62]

°‘’ -2: °'’ .,, t at
Z and” = K e 2 .9; 01! o(.‘£' , (3.21)0?\:O

A (1.) can be rewritten as co co .,, 1
Ag) -.= ea_1¢,[;1_ + ECJLS d1’ e-fit Z5-1) Ct‘::t)+E;‘(?/fD].(3.22)0 91:9 '

After performing the summation [61] we get

1 °° -v .. J. .__..­
AC») -= €a.n[1 4-ecnj alt(- mate) in (H at ~T1C°W"'**€ 534123)0
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which upon integration [61] yields , .6431; c (. o ,

GU‘/(1+d6)A01).-.-. €0JL€ (3.24)
Substituting this in (3.8a), an uncoupled nonlinear equation for 5 is obtained :

'8 : -   ‘t-XPCJCCI‘./('1 +d€)] ' (125)
By putting

1300 = 90- “P ‘ff'3'¢. ' £00] (3.26)

we get the one dimensional Liouville equation,

in = e&f_ (3.27)
Three distinct solutions of this equation are [35]

5'. -_—. .. Ln (;._+P) (3.28a)

3‘ = — !m( “‘.""‘:("-‘*5))) (3.28b)

5’ 3 ‘M’ + 1"" l°7‘'‘|‘'[1I’'''| -— £11. (1 -— vr[e'uM') . (3.28c)

Using (3.26), (3.214) and (3.3), K(a.) can be calculated for each solution (3.28).

In each case H01) can be constructed by direct substitution of Kai) in (3.2a).

The solutions which follow from (3.28a), (3.28b) and (3.28c) can be reduced

to the form (l.8llb), (l.84c) and (l.84d) respectively.



CHAPTER - 1+

COMPLEX SU(2) YANG-MILLS—HIGGS CONFIGUARATIONS

WITH FINITE COMPLEX EUCLIDEAN ACTION

14.1 Introduction

Finite action solutions in Euclidean space have played an important

role in understanding the structure of gauge theories (See Section 1.5).

One usually considers real guage potentials. The importance of complex

Euclidean solutions in functinal integral calculations has been pointed out

recently by several authors [63-65]. Richard and Rouet [63] observed that,

within the complex saddle point method, a complex solution can represent

a superposition of instantons and anti-instantons. Moreover, as shown by

Lapedes and Mottola [6l:], .the inclusion of complex classical paths in the

evaluation of the partition function would yield a better semiclassical approxi­

mation compared with the dilute gas approximation [51] which is not generally

valid at finite temperatures.

Boutaleb—Joutei et.al. [66] obtained a pair of complex conjugate solutions

of SU(2) gauge theory with finite, complex Euclidean action. In this chapter

we present a similar pair of complex conjugate solutions to the time de­

pendent field equations of the ‘t Hooft-Polyakov monopole theory in the

PS limit. The time—dependent ansatz for the gauge and Higgs fields has

already been constructed by Mecklenburg and O'Brein [67]. But the solution

constructed by them has infinite energy in Minkowski space or when continued

to Euclidean space, has infinite action. To our knowledge, no finite action

solution (real or complex) has been reported so far for the SU(2) gauge theory

(l.6#). Such a solution was obtained earlier [68] in the de Sitter space without

the ¢+ term in the Lagrangian. This we discuss in Section 4.3.
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4.2 The pair of solutions and their actions

We have used the time-dependent extension of the ‘t Hooft-Polyakov

ansatz [67] :

A4’ .7. 0 ,  '5 -4'“ Gain kfl "— .2’° 1 3' " (4.1)
__ 4 HQ»)

¢a.. " -3: ha’ 3;?­

This reduces the Euclidean space field equations of the SU(2) gauge theory to

I'1 a"I<
7L.z( ?3T’S1 + at-1 - K(Kd"1+H¢) (4.23)

ha; fl "l'@.E_."_').-__-_ QIHK-1.3 7:} 3 t" (a.2b)
in the PS limit. For fields corresponding to K and H to be regular at

the origin (IL: 0) , one should insist

K-—-91’H.....—>0 a.a,}L—->0- (4.3)
The classical action in terms of the ansatz functions is

5 = Sid’:no °’

K °‘* is { <%%.>‘+t%§>‘+ %.[<°-;s*-f..)"'+<'-%”J]._oo 0 .2, -1 J.
,_ K H _ LL Q11 _H__ } (4.4)'5-Ls,(K "'1) + x2 7|. 3 + up

We observe that the substitution,

K = 1"” (4.5)
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is not only consistent with (#.3), but turns (l+.2a) and (l+.2b) into a single

nonlinear equation :

a"( ?;:L< ..  ..- a.K“(i<-~.k)- (me)92¢‘ av
Inspired by the work of Boutaleb-Joutei et.al. [66], we try a solution of the

form

3:

Koht) = II-dJL'2+ (1+1L'1'+t'1') (4.7)
ltbhf‘ + (1 + .1,"v+t-1)“­

which is found to solve (#.6) for the choice :

G. = -* —g- (1 2': 4:\I3 )_ (4.8)
; .._ ..$— (7 .1: QLJE) .

The solution evidently satisfies (#.3) and results in a field configuration

which is regular everywhere. We now show that the resulting action is finite

(and complex). First we note that the contributions to the action from the

last two terms of (14.1%) cancel each other for our solution. This can easily

be seen by a partial integration. Consider the radial integral of the last
but one terman ac_H 3 _ '3 4'

S‘’‘’‘'( ‘E  " 8°” ("57. ’a72i(" 3)° 0 .1” '0 HJL= '''-g'-'%'‘ 0 ­
:: '*§°t’°(H4/'7-’l-¢) 1a

which cancels with the last term of (4.14). The remaining action integral,

using (4.5), becomes co

5 =  g it §.:»v{~S‘..~[c2,,l<.y..c%,.-<9“) +—3,;(<‘-1)"'/at-00 o (4-9)



..jl;..

The integrations can be made simpler by a co-ordinate transformation

Q,”-¢) ..__s (egc) defined through the relations [66],

lltam.'r Q: ‘L (0 5 I 5 cur)1-—h -t (4.10)
_ JUL

1 + n,"'+ 1;" (05 F31)­
The action integral, when expressed in terms of the (E, 'C) co—ordinate system,

becomes (see appendix 4./U JV 1.. 1+ _ 4' ea’ 4- C 5- )9;
5 ._ §'.:(a, 1:) Seal? Sool_e(b€1+i)+ [10 .1 .m+ 3

+ -3’-A©d.a'+ b'1'+ aab) 9+] 9
(4.11)

where we have substituted for K from (4.7). The '1' integration is trivial.

After performing the 9 integration using standard formulae [61], and substi­

tuting the value of a, and b from (4.8), we find

1

S as — 13% (6645 :t ‘I-8%.) , (14.12)
for the corresponding signs in (4.8).

The topology of the gauge field configuration is trivial and is essentially
“,6!

a property of the ansatz (4.1) and regularity of K _ Fr, F?” is zero
for this ansatz for non-singular K .

4.3 A solution in the de Sitter space

A similar solution can be constructed for an SU(2) gauge theory in

the de Sitter space. Consider the Lagrangian density [68].

i =. tar,‘ (H3  Fl“’“'_. :12—Dr<,5‘'U‘¢“'--- 3% da‘) . (4.13)
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The de Sitter line element is given by

-1 -2.
aL.sa'= -(1-3.1.‘) a£t“+ (1-3%“) abc.“’+ ft 457-, (4.14)

with O S ’L .4.  and -- oo < ‘t < oo . In Ref.68 equations of
motion similar to (4.2) are obtained by a‘ co~ordinate transformation

(710-t) ._...9  ,a) given in two steps :

(._/‘__;_fl)h;._ = tamke (os €<oo)
1 #4’ 1;(3')t "‘ (...o<'C<oo)

and

Z’: 7-  I: J
where

z,t=£.:n «mt  H9
with 0 é ‘Q Q 1 and -1 g E’ g 1 . The real time equations of
motion now reduce to

2.

.f« 3“ ?——-’‘- ) = :<(K*.1+H*)3?“ F 353 (4.15)
4» afiti _ 3”!-I _ 4 ,

vl ( 3%‘ -3-? ) .. a.HK

A pair of complex solutions is evidently

1_H _ 1+a.*l"+C1+'1‘-E.°')J'K : F .1, .1, -‘L 1 (4.16)
‘W1 +C1+*1-4;‘)
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with the same constants a, and b being given by (£58). To get the solution
-1.

corresponding to the Euclidean signature one merely changes g'1 -—> - (5
in (4.16).

‘M: Discussion

The Euclidean flat space solutions herein obtained have properties

similar to those of the 'bounce' solutions which have been used to calculate

the false vacuum decay rate [69]. Like the bounce solutions, they assume

the vacuum configuration,

Ara,’ '5 O ; +5» = 0 ') (4.17)
as it -—-9 :l‘. 00 and 9!. —-9 00 . Detailed implications of our solution

in the quantum theory and finite-temperature calculations will be clear only

if this path is included in the complex saddle-point method.

ILA Appendix

To write the action integral in terms of the co-ordinates (Q ,1’) defined

in (4.11) we note that

our aLe = REE d.1«.d.t =—. _ 4 -3 OULOU. , (4.18)3QL,t.) 1+)La'+t
where a(e"‘c) = 4' is the Jacobian of the (jgut) to (Q ,1’) trans­3 (lat) 1 4' ,Lz“|' t‘
formation. Since K(:;)t) is a function of 9 only,

3.

be + 1
we can write

Q) X
(%%)'‘+(

.1 a.
A) -=  [(%—E)&+(%£)'z] . (4.20)G)
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Wehave

J.

(%§)a.+(%:) = 1/-£"&+t¢(1-ea) 0 (4.21)

Using (l+.l8), (14.20) and (4.21), the action integral (4.10) can be written as
«TIT 1

-‘L

5 = 19": J°"‘5°L€ { =2o—e‘><?.%%"+ -:1-é«°“">o O
., .25.‘. K"‘(K -1) } _ (14.22)

Substituting for K from (4.1?) we get (full).



CHAPTER - 5

NEW EUCLIDEAN SOLUTIONS OF SU(2) GAUGE THEORY

5.1 Introduction

In the last chapter we have described a complex finite action solution

of the SU(2) Yang-Mills—Higgs theory and herein we shall discuss the constru­

ction of a Euclidean solution of pure SU(2) gauge theory (without Higgs fields).

In a pure SU(2) gauge theory the instanton and meron configurations represent

finite and infinite action solutions, respectively. lnstantons are self—dual

solutions but merons are not.

We have constructed a Euclidean non—self-dual solution by making

use of a solution recently discovered by. Arodz [70] in Minkowski space. its

action is infinite but its Euclidean time evolution is very much different

from that of a meron; the solution becomes a Wu-Yang monopole asympto­

tically. Similar self-dual solutions are also constructed which, in the asymp­

totic limit, become point dyons.

5.2 Solution of Arodz

Arodz [70] used the ansatz ,

:'..o
(5.1)

A3’ = -;-5...... -’;;;‘C1 - Kano)
to find the time dependent solutions of pure SU(2) gauge theory (1.95).

This ansatz reduces the equations of motion,

Dr’;-rva. = 0 ’ (5.2)
-58­
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I0 % a“i< 3
In Ref. 70 this is further reduced by an independent variable transformation,

t—t. 1T 1:: a. — . , (5.‘i)
to an ordinary differential equation :-'v a

(9.+‘t)'C“fi—‘t6 +.'z(1+1:)%-',5r+K---l< :0 - (5.5)

The fields were considered as evolving from an initial time t ., £0 to t —-9 on.

The domain of ‘E variable was thus fixed as

- 1 g T ( oo . (5.6)
A family of regular solution in this domain was obtained with the following

properties :

K-—-90 at 1'.’-one
(5.7)

o<h<|(1 M 11--9-*1 °

5.3 A new solution in Euclidean space

We observe that (5.5) can be obtained from (5.3) by a more general
«I­

transformation :

‘C = (A + at + Cot"- 1;"-))/9: . (5.83)
-I

The derivation of the Euclidean version of this transformation was given by Ray [71]. it we
put 2;: 1+1 (5.5) becomes

(u‘-:)‘-E? +-‘lt%§_+K-K5=0­4

Comparing this with the corresponding equation in Ray's paper we get the condition, (S.8b),
on the constants.
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The constants A, B and C are such that

"* 1B + 4~AC 1' - (S.8b)
Transformation (5.8), however, sets the domain of the variable ‘C to be

This change is not in anyway advantageous because no regular solution exists

for ‘C < 1[‘l0].However, the situation is different if we consider the Euclidean

version of (5.3) obtained by the substitution 1; —) -51 ;

.1 33K 3'1 ) _ 3 : . (5.10)9; ( ...-9’ + -5-5‘ + K K 0

In this case the transformation

"c 3:. Q“ 51; +(_(;,’~.,;")) /,|_ . (5.11a)J

5;” 4‘AC ‘ " 1 (5.lIb)J

reduces (5.10) to

(.;2,-wt)‘: ff‘ +01.(1-I-"C)t_'.‘7<t + I<—K3—.- o

This is nothing but (5.5) obtained earlier. The linear dependence of t in

(5.113) can be removed since (5.10) is invariant under time translations,

-t___,t.,.p . lfwetake P: -5/,;C,then

1- 3 1+’!-C‘(7l.'1+fi_)_ _ 1
4C7L
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Further (5.10) is invariant under scale transformations 9; ——9 Xx ’ 1 _..a, At ,

Choosing A c 1/.},(: we find )

I = 1+h.'7'+t" ’ 1 . (5.12)
4:29;.

O_(,h(oo)isThe domain of the ‘C variable (for —oO < t ( oo 1

og'c<°o- (5.13)
The only difference compared with (5.5) is the change in the domain of 'C

from (5.6) to (5.13). Hence to construct a solution in Euclidean space, we

need take only a section (by excluding the domain - 1 S 1; ( 0 ) of the
solution of Arodz.

5.1: Properties of the solution

The solution discussed in the previous section is not self-dual. One

readily verifies that self-dual solutions within the ansatz (5.1) are trivial

solutions 1 1 of (5.3) and all other solutions, including K 3 o , are non­

self-dual*. The K = 0 solution is nothing but the Wu-Yang [37] monopole

solution.

As this is a Euclidean solution, the important thing to consider would

be the evaluation of the action. The action of the solution is infinite. This

can be concluded from the nature of the solution in the following way.

We have the action

5 _§_ W gnu.4"-"F

, 51' Sd.t5oln{(?fL)i+(%L:)&+CK‘-1?zn‘‘} - (5.14)-00 0
II

!'

§
In this case the self-duality equation becomes3". ". ‘..— ..57‘ %E O wn.J.l( 1.0
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This can be rewritten as

if 1
5 = ‘E3-I §d.'r'X¢Lf {(1 _e*)(‘£L:)'z+ .&2l_e.‘(i<"‘— 1);} , (5.15)0 0

where (see Appendix ILA)

e = 1 .,._. _,_‘’:1‘'_._..-­1+7 .1.+)l."'+£'z’
(5.16)I "1 it

in obtaining (5.15) we have used the fact that K(n,t) depends on ‘C , and

hence on 8 only. After the ‘C’ integration, which is trivial became the

integrand is independent of '13.) we get

1.1 .1 2.
S g _a_3_1;i Si‘, {(1_€a.)(a3L:|é + _fé_‘(K — 1)} . (5.17)

o

The integral of the first term is evidently convergent. However, the second

term is singular at Q g 0 and the integral is finite only if K --9 1 as

9-» O . The limit 8 -A.» 0 corresponds to the limit ‘C ---)oo , and

in Ref. 70 it was shown that the limiting value of regular solutions is zero

as "I: —-> oo . Hence the Euclidean counterpart of the Arodz solution given

through (5.12), is an infinite action solution. This is, however, not an un­

expected result; all the known non-self-dual solutions are of infinite action.

However, as has been shown by Boutaleb-Joutei, Chakrabarti, and Comtet [66],

complex solutions can be found for (5.10) with finite complex action.
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Comparing the above obtained solution with other known solutions

in the existing literature [11], we find’ that it is neither an instanton nor

a meron. Eventhough merons are infinite action non-self-dual Euclidean

solutions, they carry half unit of topological charge. In the present case,

since K(a.,t) is regular, the topological charge density is zero everywhere

and the topological charge of the solution is zero. Furthermore, the Euclidean

time evolution of this solution is quite different from that of the meron.

A meron solution starts from a vacuum configuration ( cu‘: t a -00) and

evolves through a Wu—Yang monopole configuration (at t -=- O ), and finally

ends up in a vacuum configuration (_ a1: -3 . ... go) . In contrast, the
present solution assumes the form of a Wu-Yang monopole configuration

as 1 ———> i oo ( "c—->ao )because |.((t)_.a,o at these limits. in this

regard the present solution looks similar to the bounce solutions [69] of scalar

field theories which start from a vacuum at at = -— co and return to the

same vacuum at 1;. ., co . However, because of infiniteness of action,

the implications of the newly obtained solution in the quantised theory can

be understood only by going beyond semiclassical approximations.

5.5 A solution related to dyons

Finally we note that it is possible to obtain self-dual solutions possessing

properties analogous to those of the solution presented above. Gonsidering

a special case of Witten's ansatz [72],

G. '_ ‘I. &4 ' — K3A’ * *~‘ (1 0'0) (5.13)
K (mt)A 3243' ‘cm. -2,-‘;‘ (1 — K(n,t)) =9 6}.
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it may be verified that the self-duality equation in Euclidean space (1.101)

can be satisfied if

,1. 1: l<(1--K) (5.19)

-11., -1K.
V‘ 7? P’ X

I1

The solution to (5.19) is given by

K (avt) = L ’
h:t+fi

where fl is an arbitrary constant. It may be noted that the solution corres­

ponding to (5.20) may also be obtained within the ¢+ ansatz [11]. The

solutions have singularities at hr 0 as well as on a hypersurface, 5,1 t .;.p =1

As Euclidean time t ——) :L co , the gauge potentials become that of

a point dyon configuration [73].

(5.21)



CHAPTER -— 6

BOUND STATES OF NON—ABELIAN DYONS WITH FERMIONS AND BOSONS

6.1 Introduction

The study of bound states of magnetic monopoles with fermions and

bosons has a long history. Dirac, in his seminal paper on monopoles [I14],

showed that with the usual boundary condition of quantum mechanics, there

exist no bound states of monopoles with electrons. The conclusion of Dirac,

reinforced by other workers [7l4],had to be abandoned in the seventies follow­

ing the theoretical observation of several unusual properties of the charge­

pole system. It was shown thast if the boundary conditions are chosen to

ensure the self-adjointness of the Hamiltonian operator [75, 76], there can

exist a spectrum of bound states with‘ the lowest angular momentum value.

There are several subtle problems in the charge-pole system which call for

careful treatment and the question of the bound state formation between

Dirac monopoles and charged particles is far from closed. It may be men­

tioned that the study of such bound states is also important in the context

of experimental searches for monopoles [77].

The quantum mechanics of fermions and bosons in the background

of non-abelian monopoles and dyons has been investigated by several workers.

The bound state spectrum of a fermion in the background of a Wu-Yang

monopole [37] and a dyon [73] of pure gauge theory was determined by Dereli,

Swank and Swank [78]. They showed that while Wu—Yang monopoles have

no bound states with fermions, dyons can have such bound states. For a

't Hooft—Polyakov monopole, Jackiw and Rebbi [47] demonstrated the existence

-65..
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of non-degenerate zero energy bound states of monopoles with isospinor

or isovector fermions. These solutions, incidentally, imply a doublet of soli­

tions with fractional fermion number. A general analysis of the Dirac equation

or Klein-Gordon equation in the background of the 't Hooft-Polyakov monopole

is not possible at the moment because the regular monopole solution has

not been cast in a closed form. In the PS limit where closed expression

is available for the monopole solution, scattering solutions for the lowest

partial wave were recently constructed by Marciano and Muzinich [79].

Bound states have not been obtained in Ref.79, probably because the Higgs­

Fermi coupling is neglected in this work. Most of the studies have been

done in the point limit of a ‘t Hooft-Polyakov monopole by allowing the

size of the monopole core to tend to zero. In this limit the system is

essentially abelian, and with special boundary conditions, there exist bound

states in the lowest angular momentum channel [76]. Callias [76] has argued

that for a regular monopole a finite number of bound states will exist.

in the asymptotic (point) limit of the PS monopole it has been shown by

Cox and Yildiz [80] that the bound states can occur for all values of 3' . It

is the additional -— 1/:1, term present in the asymptotic Higgs field which

is responsible for the bound states. Cox and Yildiz [80], however, have deter­

mined only the energy eigenvalues and did not construct the eigenfunctions.

For PS dyon solutions in the point limit also, there exist an infinite number of

bound states with all 3' values [81].

In addition to the regular monopole solution, there exist point singular

monopoles and dyons [35] in the PS limit. In a recent work, Din and Roy [82]

showed that an isospinor fermion in the background of a singular non-abelian
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monopole has a well defined Hamiltonian with ordinary boundary conditions

imposed on the wavefunctions at the origin. Monopole-fermion bound states

were shown to occur for all T values.

In this chapter we study the quantum mechanics of spin 1/2 and spinless

particles in the background of a point dyon potential. The form of the back­

ground dyon potential chosen is such that the asymptotic PS dyon solution

arises as a special case. The background may be interpreted as due either

to a point singular dyon or to a regular dyon solution with the size of the

core neglected. In addition to the isospinor fermions and bosons which have

already been discussed in the literature [81, 83] we have also studied isovector

fermions and bosons. Exact bound state solutions to the Jackiw—Rebbi equa­

tions for all T, are obtained for isovector bosons and isospinor bosons and

fermions. For isovector fermions a bound state has been obtained for the

lowest angular momentum. Furthermore, we have shown that no bound state

having I5 = 0 exists for this system.

As mentioned above, part of our work concerning isospinor fermions

and bosons overlaps that of Tang [81, 83] who considered the same problem

with the asymptotic PS dyon as background. However, our method of solution

is different. Tang introduced a singular string in the gauge potential by

using a singular gauge transformation. The resulting abelianised equations

are separated into radial and angular parts with the help of monopole har­

monics [84]. We on the other hand, follow the method of Jackiw and Rebbi [47]

who used spherical harmonics ‘to separate radial and angular parts. The

equivalence of the two procedures is demonstrated by utilizing a relationship

between monopole harmonics and spherical harmonics which we have deduced.
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In Section 6.2 we review briefly the classical SU(2) gauge theory and

obtain the point singular background dyon potential. In Section 6.3 we obtain

bound state solutions to the relevant Dirac and Klein-Gordon equations.

We discuss various results in Section 6.4. The method of solving the radial

equations of Section 6.3 is given in the Appendix 6.A. The proof of a relation­

ship between spherical harmonics and monopole harmonics that we have

deduced is given in the Appendix 6.B.

6.2 The bad<ground dyon potential

In Section 1.4 we have seen that the equations of motion following

from the Lagrangian density,

at = — ..g.i_ Frfi F""“ + % :i>,.1>“’1>"¢°“ - VC<i> » (5.1)

can be reduced to

“ = aIK‘
"’ " .—_ H(a.K -m”n.“ + gala") (6,2)

kg’ "= KCI<°'-1+H"'-3‘),

using the spherically symmetric ‘t Hooft-Polyakov—Julia-Zee ansatz [22, 23, 30]

a. 4. ""
AD '-“- 5 ha,
A?

93% .15. ha’ Hth)/ha,
where K(:.,)._. 1 _ y,_A@_) ,

(6.3)

-43' €¢1L'm. hn Ag‘)
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We consider a particular solution of (6.2)

K(1L) °:. 0 (  =:
(6.4)

H Ch") = QJL + b

:l'(L) -_—. an + ol. ,

where 0,, b , C. , and aL are arbitrary constants, as the background

potential. Unlike the PS solution (1.81), this solution is singular at 31.: 0

and the classical energy is infinite. But at large distances this solution

mimics the behaviour of a regular solution. In fact at large distances

,1’ » .1./QM/5) , this solution coincides with the PS dyon solution (1.93)
with the identification

a. yscosknq b=—°"‘~"’l
(6.5)

c = F,  oL = - ’~"’“J""l '
So if the particles do not penetrate the dyon core, then (6.4) with (6.5) will

be a good approximation to the regular solution. We can also consider (6.4)

as a point dyon [35] solution. The relevance of such a solution is unclear

at present, mainly because their classical energy is infinite. To our knowledge

the quantum field theory of such objects has not been worked out so far.

The fact that the singularity is at the origin seems to be a favourable point

since one encounters a similar situation in the case of electron. The electric

charge of this field configuration is given by

=_;t:r_4Q 3 (6.6)
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To include fermions we add to (6.1) the fermionic Lagrangian

iv =  "'74)?-n "" (6.7)

where

and the T‘ are SU(2) generators satisfying

[Tub Tb] = ‘: €an.bcTc '- . (6.8)
TQM: Tfm 134?» I-=-3-_ Mpnumihiwn

-; Jéflmm fun I= 1 hnfznwmiht-cm

We will consider fermions in the above two representations moving in the

background potential (6.l+).

For bosons instead of (6.7), we consider* $­
at“ ._— 1>,.U¢,J>*‘u..‘ .. mu!‘ - 367 um T:M¢“u“-_g:"¢‘;up‘,(6,9,

6.3 Solutions

1') Isospinor fermions

In this case the Dirac equation is given by

+>7"v,-~z»..-.%.w.;':..,«i°'~r... -.~ ~»+... . we»
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Putting ‘kn C1.) --= C W“ (at. ) and substituting the gauge and Higgs

field ansatz, we obtain the equation for ‘I’QL) M

{ ;:'.[7,~_. %'_(.5)(i‘_x?)] + .§!;L.:>(?.£) - §':%'.(1“’p(7c'-i‘.):}'\lI(,2‘)

~ = (E‘pM)\Pt?) , (6.11)
where <':?and P are the Dirac matrices

o—)87:7-‘r );5=..'y°

We now proceed exactly as in Ref.#7 to separate the radial and angular

parts. But we use a different representation of Dirac matrices,

--1:5" 0 P - 1 0
It will be seen later that this choice is advantageous when we come to the

solution of the radial equations.

_ Splitting the wavefunction into upper and lower components,

X9‘:: __a) , (6.13)
X G?)

we find that the Dirac equation becomes

8.91.

_.4 gm] } X; =.;{ :;_;o_,~;>(?m.x) _ 5 gm} Xi“, (em
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1:.

Here the first index on X refers to the spin part and the second one
1

to the isospin part. Ken is then expressed in terms of two scalar and
vector functions,

1‘ 1 -vi. -5 -1.
X‘-MG’) " ( SC?) 86m + 3('3-‘)°°-Cm) TM“ ' “'15)

The scalar and vector functions are now expressible in terms of ordinary

and vector spherical harmonics respectively,

3%?) 61200 mm
II

3:63) P:(:1) 73¢ V3152) + 3:0.)  2:. 3,,\/JMCQ) (6.16)

+ C:("-)  Eabc ,"b ac  '
Here  -.-. ‘II C J’ + 1) and I is the total angular momentum. Total
angular momentum is obtained by combining orbital and spin angular momenta

and isospin. In this case it takes values 0 , 1., :1,  - - 8°: C.=o by definition.

Substituting (6.15) and (6.16) in (6.14) we get eight radial equations:

1'

(:%t+'71't-'; G'JEH2'E‘0)P:ri“£B:‘ "15: "'*'(‘35:'o2T? P:r;"'EG':) (“'17)

H I4­- z ' ‘F
(%~.+"1E+G'LH—@)G"'}![CJ*MP:r="('%G‘J"'EP:) (way)

(6.17)

.14, 0.!-leo 1: 1 =2 2l'(A =r 2
(B .33. at 3J-_~1iF;:MC,=:(3-3—_’B,+ECJ) (;r>o)

(i£:L+.§.L:95‘.iQ~J c:_=‘g,;G:1;-45:: t(%%_3C::+EB:) (:r>o).
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where we have substituted A (71,) from (6.4). These equations, unlike the

corresponding equations in Ref. #7 have, a I sign before E and ‘T0-).

This is because of our choice of the representation for Dirac matrices.

The advantage of this choice is that the equations can now be transformed

into a set of four independent coupled pairs of first order differential equations.

Each of them can be decoupled and the resulting second order differential

equations can be solved exactly. In contrast, the decoupling of equations

in Ref. 47 gives a fourth order differential equation [82]. We now discuss

I = O and I > 0 solutions separately.

3'= 0 solutions

Setting

P: + G‘: = R1 (5.12)
Pf —- eff = S‘

the T: O radial equations become

it-.+-i-.$C¥?.—  -.>1P~* = -»:<-?-. + W" W

[‘;a.+i=;c%+-~->16‘ = xc-'5.”-=-)s‘. M’
where we have substituted T09) and H Qt.) from (6.#). Also 6 = 515/8. ,

I)=d./.1, ’W|__,_ -_—, (Q6,/_-L) _-L V] and etc.-:&.'.|:E . Herewe
need solve only for the first set. The solution of the second set can be

obtained by suitable replacements.
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For solving (6.l9a), consider one more dependent variable transformation ,

xi = R''' I R“ _ (6.20)
(6.l9a) now becomes

(5. +.:1-_))(i-_-(..§...‘_t.;D_ +-:11;-L€))(:F, (6.21)d_),__- it. 71.
where we have suppressed the symbol over ‘m and E . This equation is

exactly the same as that of the hydrogen atom problem in Dirac theory [85]

if the 5/JL term is absent, and it can be solved by a similar technique
(see Appendix 6.A). For 6 < ‘m we get discrete bound states and for

G > wt we get continuum states. Here we give only the bound state

solutions. The continuous spectrum can be obtained by suitable replacements

[85].

The solution for 6 < in is given by

1: —— —P/ _X = J-mte e ‘If? 1(9,_,':9.1) . (6.22)

where

9 =  , A :' J€'l-M'l ’ f = J5"'_D"' ’

E’ II 1F,'L(T+B_?_~1__-J;_1'3_€,.11+1,e) , (6.23)
3m—'D£‘F;(1+'Y+ A ,ar+:i,e) .Q 3 r + (em -D5)/A'1 (Dm - 86)/A

and 1F1 Ca, , b , 9) are Kummer functions. For (6.22) to vanish at the origin,
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J, -I.
we should set 3) } D . The corresponding solutions to (6.19) are

Rt = or e'P*""a<M{J«:.+e. C9-I+ 9:)

: J,.,L_ 5+ ( Q: -  (6.2l+a)
_ p_ __ ________ __ _

St: fl e /-1.?‘-r 1{/,,.__+e_(9...,. + 0,1)

2 ‘/‘M’ n E. C  _  } ’
where

9: '=  3 A: 3  , T = J8J'...Da'
i Sm;-—D£,

Q1 3' 1E.( 7* """'”“"‘::‘h-’ ) aY+ 1 2 G1) (6.25)
-136 Gm;-be

Ga: 1-+@m¢  1E(1+1+ _._i._” ,.1‘r+1 J91)3'  W31-_ '-" Bet)/A3: t
and a( and P are arbitrary constants (fixed by normalisation). The normali­

sation condition after the angular integration becomes
so .1, :1; 1‘-1'

.z;lnaLn(P,,p,, +c.,c.,)‘’ (6.26)
E Sa,"'a(_x. (Riki + 5:5‘) ­3 O

1

ii

For the convergence of this integral the Kummer functions should reduce

to polynomials. From this requirement we obtain the eigenvalue spectrum.

The conditions are

‘I’ + Bm+"'D£*
A

u I 31 (6.27a)
+­

7 + _BLM_ “ D5­ -- *— '" 6.27b)A J. 3 (
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where '11.: and '71‘ are positive integers. Zero is not possible because in this

case ‘Y 4- (B7?! - D5)/3 -.-. (D’V!- 36)/,\ and Quremains divergent*. Solving

for E4, and G_ we get

_g_. _ so/(~.,+v)" : f1- (B*—D“)/cum)‘
-nn_, 1 + D4/@‘+T)a' (6.283)
e_ BD/6a.+T)"' 3: f1- LB‘-D‘)/en.+r)"".7. = (6.28b)" 1 + D‘/(n,,+ T)‘

Inspection of Eq. (6.28a,b) shows that it is not possible to satisfy these two

equations simultaneously for the same value of energy. So we can take

either (6.283) and set p ._~. 0 ( Poi -.-. G: ) or we take (6.28b) and
set at = 0 ( Pox: - Cut). The corresponding energy values in terms of the

original parameters are

T
__£_y M+¢GI/.3, ____bqGuI—d.'1']Em " * "1   +emu* ‘* ./1 +c~.'+~o*  “-293’

M" 0'6’/'3’ [ bcm + :- —___baG'*"°fi ).(6.29b)E” = 4'C'".1* 04 - 4-@|_1+ 1')“.. ‘a: ” 1 .. 4*/4¢.&.,;*

We get different solutions for each sign in (6.29) because C1 depends on

energy.

* 6 ::
If ‘H1 and ‘Fla’ are zero we get Q,‘ .-_- p ‘_F1(1_’QT+1) Qt) ,

which does not reduce to a polynomial.
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T > 0 Solutions

As remarked earlier, in this case the eight coupled differential equations

can be transformed to a system of four independent coupled pairs of first

order differential equations. This is achieved by defining eight new functions

in the following way :

H

)(J.-.-. P;t+Ga:.+B:+C:
Y1 = P31 + Gt ‘  - C;3+ ‘T: i ’ 7 (6.30)
7.3: PJ—G.;+B:—c;1 :
w¢= P_.,-G:-3:__C:

The radial equations take the form

it 1 5 __ D ‘F
$1~t+X ""' [-31- *('§.'+€")]X:r

.9: Y: at 3° 5 “*" T ‘ ["’c :‘("r'E+ Q] 7: (6.31):1: + ­- _ ID =5
°DM_ 2:: [_4!T+(T+€')]Z3'1: 3; ~
D...,w. = [-4. =(l3-,+e-)] w:,

-0­

where  =-. %-n + -3,; 3F  4- WI) and £1 and 'rr1_!_ are the same
as before.

These equations can be solved as in the previous case. (See also Appendix

6.A). We need solve only the first equation. Solutions to the remaining
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three can be obtained by suitable replacements. We give only the final

results (for 6 < 771) :

x: - « e’ °*"‘ e:’"‘ [W ex a..’;<.+> + an = fr-e,(a:<a*> - an]

7’: = 9 e‘ 5/" 2;“ [Jm+€+(°Q95>* 6131 ~J"‘r"‘+(‘*"‘-‘z""°"' '51]

zj——= 4 e‘ 9""'e.""‘ [J~>.+e.(&Z<n'J+ 9;) 1 J?~T?€-(6LIca‘>—6t1)l

1

M = 8 e" 9‘/°'e__""‘ [J‘.:;:1:~,(o.;e-33+ a;) -_r_,1.':.;".'.‘.E-(o;e3>— Q3]

(63.2)
where

7 = s/E:"'+.1"‘-D‘

B -DE
.a:‘1F1:(Y+ "Z'&""j;""'? : QY""1 a 9:)

(6.33)

1. — De­
Q,a(3)= Y‘+(6‘W3;  1F;(1-+.Y+ t ) Q-Y+1’€t)“J + CD ‘"2 " 551)/A: ‘f

i ' .
and 91 and X, are given by the same expressions as before. Q, ‘(-3) 15

obtained by changing the sign of  in G..:(5') . As in the earlier case
the requirement of normalisability of wave functions leads to the conditions

Y + 6m*"D4—e" _ -n1 (6.343)
1+

1 + .§J_'_"—;1>5— = " ""4 ‘ (6.3ub)
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Here 711 and 'Yt_L can be zero contrary to the previous case. Depending

on the sign of Dm — Be; one normalisable solution exists. Suppose (Pm-59> 0.

In this case Q....L(j):0and Q.4(-J) is nonzero and divergent. If (pm -85) < 0 ,

G,a(-j) = 0 and Qua) is nonzero and divergent. Since 6 is given by a

quadratic equation it can have two roots. For mi: 0 and ‘Via: 0 , 6: is

given by

BD/3'-Iv ;+_ J‘:-r (BK D‘)/3%.+ * 1 +
e_ = m_ ——§D/jg’ 1 J 1 + (Bub-1)/"Ll (6.35b)

1 + B"/J--7.

Hence for both ('m., , 6,.) and (m_ , E_) we obtain

Dm _ Be = M 1) ; J1+(g4,Da)/J: (6.36)
1 ‘*' B‘/‘ii. ii

Consider the case 1) > O . Then if |1)| 2 (1 + (5't-- D‘)/3 fl‘ we

find (.'D'on - Be) always positive*. So solutions containing Q,&(-— 3') should

be discarded (by setting fl = 8 :-. O ). Similarly for {D < 0 we should discard

solutions containing 9..&(j) (4 ;  Ii ‘DI < (1 + (3-1, D""')/d:,)‘/.1. ’

where  = J;_M( I_u‘+ 1) is the highest value satisfying this condition
(all lower angular momenta will evidently satisfy this), we should again con­

sider two cases. For energy obtained by taking the upper sign in (6.35)

we discard solutions containing Q,a'( ) . For the lower sign the solution

containing Q._l(-1') should be discarded. This is the same for both positive

and negative values of 3 and for all angular momentum J" 5 J" ­

above condition all higher angular momenta will automatically satisfy the same.

Lowest nonzero value of 5"’ 3 .T(' T +3) g .2 . If this value satisfies the
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For- integers 911 fin; 5 O the energy levels arekthe same as given
in (6.29a) and (6.2%) except for the expression for T andwjfg we get exactly

(6.29). Here again we should consider two separate cases since (6.29a) and

(6.29b) cannot both be satisfied simultaneously for the same value of energy.

Corresponding to each sign in (6.29a), we get two levels: at +0 ,} sq. 3: O

and a( =-. 0, para, ‘D1.-.820 . Ineithercaseweget F3: = G: and
C:I _-_ B: . Similarly for each sign in (6.29b) we get two solutions.1

otgpgo’-r(¢o’S:o and or-.: p, -_- 0) ryt-=0) 54:0 . Inthis
case we get solutions satisfying Pf: .. G: and CE: -51. Further discussion3’

of these results will be given in Section 6.4.

ii) Isovector fermions

In order to facilitate solution we use a difierent set of Dirac matrices:

1; ° ‘'3’ 1 0 (6.37)._. F = °-40’ O 0 "1
With this representation the Dirac equation can be reduced to the form

[  3 gown _  6-M " an

= - [ 9'fl£e’)"€'na,-n1£'q_ + M 8”,“ '3'-( 3"’-‘y%')‘£e'namn‘A. (6.33)

+ 128,...) X1,­
Separation of radial and angular parts is achieved by the use of vector spinor

harmonics :

:9’. it A
X,“ = F19) M3-ygfl) + F:(x) 9L3,“ '3a_CE‘1) + F':(,;) LM'3;(i1)3 " ' 1‘. ’ I

+ 13-0") km 339-) -l- E1_(3l.) 3!. 3,,“ (y»3_"+ 5+0‘-) L,n.8'Jg1) 3 “'39)
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I

where 63 and 63 are spinor harmonics:.TM 374
-V

Jigs” v;f,,;5331) =
/-:r_-.2 y”*"“3 ::..ya_

‘ J3’-M4-1 y""-"/D.
‘3 (S1) = (am) %‘(so ..—. ‘M ‘WeTM 3-"

_Ja_;‘-:1 Ynoaa (6.140)a.:r+.t, 7+1/4

and L,“ = -'5 54.153‘ 3‘-4;  is the angular momentum operator.
F‘: = 11;: s 0 for J’ :1/.3, by definition. The radial equations are

(i *  ) F? = '-("1 * E) F: (all :1") (e.a1a)at - ‘- 1 ... " r
(h 471) F” " " (M " E) F1‘ (all. :r) (6.£4lb)

<"*>(i‘ ‘-'5-2-“)‘i-’ +(%~*‘k)Iif= i(°‘”*‘3.”°’ F:

_ (,4¢g)}.;f) (cw, 3-) (6.l+2a)

<4--:>(~.;-a.-— 4:-2):: «mg «um: = J(   F;’L cl-r

— (M i E) Fifi‘, )  J) (6.¢+2b)

(‘,‘..4)(.a-fi+1'+:1)y:a‘_’-($p... %)F3f = J‘( encagit Jo») F-3::

1 E) F‘: 3  > 1/4’) (6.433)

<s‘+«>(°‘ + *°:—‘)FJ -(an a at = :*(“'“"~:.* "6’ F:

-(M =€)F£ (:r>*/-1)»- :1‘ 1:
where J = I-+  Here Est) and F1_(-R) do not depend on either the Higgs
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field or the time component of gauge field. We will later see that F13.) and1*t
l'-Le.) correspond to solutions having the third component of isospin I5 = 0 ­

J‘ . -ffisolutions

Solutions to (6.41) are readily obtained by directly decoupling them.

There are no normalisable solutions corresponding to bound states (E < M);
only'a continuous spectrum exists.

Equations (6.42), _-however, possess bound state solutions. Energy levels

are similar to those of zero angular momentum isospinor fermions. To see

this, define
-:9: :1;

X3; ____ Far + F5*.3 + 1 (6.44)
The four mutually coupled equations now change to two independent coupled

equations * 8 1:13 *
(in "  X = ( 3. + m’ 1 6') X (6.u5a)d 1 ‘+"
(H1 "  Y 5 (8 ib '* mt 1 9) Y (e.a5b)

where we have substituted for H01) and J’(_Iz.) and B : Gab , D In d. ,

-mt = Ga, ;|;_ M and E: a ca-.E . These equations are similar
to (6.21) studied earlier. The solutions to (6.ti5a) and (6.45b) are not norma­

lisable simultaneously. So the two solutions are x*¢o, Y*. O and Xi: O ,

Y1 4: 0 . The corresponding energy levels are given by

Em: C :|:-{4:;"G}énl*ff  35 1 —. 1 J ((8.463)
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(6.l46b)
= _ _!_t1 g__G. _ bd,G-i nu -'L__"—"-L

E“ C +i+1‘/c-.+r>*~ [C*w)°' 3‘ /1'
respectively.

J’) i,{;_ solutions

As in the 3: 1/,2, case there are no normalisable state solutions for

equations (6.41); only continuum solutions exist. We have not been able

to solve the remaining equations for I > ‘/.2, since decoupling them leads

to atleast fourth order differential equations.

iii) Isospinor bosons

In this case the Klein-Gordon equation

D,.D" U (1) = - ("’l"'+ “*3 ¢'l+ 3°» '15-: 95°’) U6-L) (s.a7)

can be simplified to _, -1.
[V'‘'_ _4a_'(.4)(f,’.':) _, (G_i.1_’t_,_ig»)_ £irgo)(?¢".3_) .. _if._iL__(;t)

cl

J4) .. LHO "' -‘~ "] (ans)+.‘;)£5  +5 -14 U66): 0,
where UCY) = 64.61 U (2) . The angular part can be separated
using spinor harmonics :

U52) = go.) grab) ., r;(,.)Gg:'(§2). (6.49)
F. (1,) and  obey the radial equations,dc? 3'-_ Q. ‘I F4
['¢T._{°-+%".%h.+'£—£;I "' ‘E,’ +€-ma] R)

(6.50)

- [Ev  +eL",.‘**’/“iii:
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where

7‘: ICJ-+1) + 5'53. 2}‘

(3 -—— .25’-é. .. ambL"'

a._ £2. _'_ ca/4

mi _ M$+ ‘via’-‘L.

(6.51)
('5 I

Here we need not consider lowest angular momentum (I c 1/4,) and higher

angular momenta (T > -1/4) separately, since both equations are valid for
all T.

To solve (6.50) we define two new functions

X1 F + F (6.52)::_.'L....._:...
30.

The radial equations become

ii," ‘t — Y‘ -2, :t
-J-‘§+[t14 +_% +€_.,_-‘)'n__:2'X :0 (653)

where

E: =.  ‘-7 5/4)‘

‘'71: :1 Mai GIG./Q
(6.54).. Gal:

9., 3 2 (-1.. - Ed)
The solution is given by

1 -1’:/9. 1+1/,1,
X 8 e F3; ’_F1 0+1/Q’ pi/i)\i , Q7-+1 ’  3 (655)
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where

Q = akin.

A (.m:_ G1. )1/.:, . (6.56)
at

For (6.55) to vanish at the origin we require bald’ > d-/+ . Also for

normalisability, the Kummer functions should reduce to polynornials. From

this we arrive at the condition

1 = ..1+ -5 —- 5,;/.zA¢ '" (6.57)
where ‘n -.= 0, 1,-I-.. . The energy levels are explicitly given by

E = .9. + {-§aL(o.b-+4»"‘al.) 1 [C-G-‘V’-1ca.’~b"4.4' + eI.:"Gza.b")~x a.

" (4"';1)~1 + (Ma-r 43¢‘ + G.3)C1 + d-a/m‘)-i‘}@+9é)1(6'58a)

tor the upper sign in (6.57) and

E; = - $1 { -3--ta-b + +k"a.b) 1 [C-C-("F5 M"b"‘4~" - s4.‘asa.b")_ 5/ ..
" (4'*¢)1+(M&+ Rana” Cg‘) (1 +  4 ) (U 2&3‘)! (6.58b)

for the lower sign in (6.57) and 11., :.-.- 4C'n+ 7+ 1/3,) . As in the previous
cases (6.58a) and (6.58b) cannot be satisfied simultaneously. So we take

one solution as X2; 0 , X": 0 , the corresponding energy levels are given

by (6.58a). Similarly eigenfunctions with X)’: 0 and )(-+ 0 will have energy

values (6.58b). Since (6.57) can be satisfied only with a positive fit the
‘.1: sign appearing before the square root in (6.58) should be chosen to satisfy

this.
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iv) Isove ctor bosons

The static l(lein~Gordon equation in this case can be written in the

form

V¢1.U“ + Eavum 4-   -' €h_ 3..‘Uk] + Efibcib EEJUC

- A31; [ U.» wiut] +(2,;.<~>)“ [ u...— s..a.,u..]

-.= [M + (*_~.,_I{.c~v)“]u.. + 9l*,§2> .~e,,‘,,_,_ at. u,,,. (6.59)

The angular part can be separated using vector spherical harmonics ,­

un.-. X39») £.,, fist; + y3(n).§.>.a,,y;2n) + %J;.eM,,n,,3cY:ez),

where Y;bt)are ordinary spherical harmonics and 5' = y/~T(3'+-1) - 3 is the

total angular momentum and it takes values 0,1 ,o1  - Y0 and Z,
are zero by definition. The radial equations are

X; -i- 3i X; -  X: 4 [E"'- M‘-(kH(n)/,,, 31'] X3: 0 (a.l1.J)(6.60a)

V1114’  + 113-2 V1 +[E'1+ (_~:’;T(»¢)-1/ M‘1__ C-LHQ.)/,‘j’] Y3

= [JLE 31,»); GHQU] Z: (I > O) (6.60b)

Z; 4- .'3’:Z;. + -1-—;—3-13'Z,J_+ [E"'+(-J.’-_‘('f’)a'-— M‘... G\J'kh)/ADJ] Z3.EJ .. GiH(  , .,, [1 you 3] V: (J >0) (6 60c)
where we have substituted for A09 .
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We note that (6.603) is independent of the electric degree of freedom

of the monopole. We will later prove that XJQ.) corresponds to theuthird
component of isospin zero. Contrary to the case of isospinor fermions there

is an interaction with the Higgs field. This is due to the addition of a fourth

power boson term (last term in (6.9)) in the Lagrangian. Note that X3, does

not couple to the linear term in the Higgs field. Since (6.60a) is the only

equation for the lowest partial wave (I = O) we conclude that the electric

charge of the dyon has no effect on the lowest angular momentum boson.

The lowest angular momentum bound state corresponds to a singlet with

13:0.

Solutions to (6.60a) are easily obtained in terms of Kummer functions.

Substituting for HQL) we get-P/ 5/ J.
XI '3 °( C &P7+ '1 1F‘_( Y4’-E 4’ abgk 9 ‘R1"’1 )  ’ (6.61)

where

aka

A ': (M¢+ £3’ a- Ea):/'1

(-2 + *~“b"“+i*)"*

‘D II

(6.62)

‘< If

and at is an arbitrary constant. The Kummer function should reduce to

polynomials for normalisability. From this we get the condition

.17+-j_-+%£~ = -«n, (6.63)
where ‘n. .-. O, 1,.‘l.,  . To satisfy this condition, either Q. or b should
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be negative. In such a case only we get bound states. The- expression for

the bound stateenergy is

-‘L

E“ = : [r*1'‘'.g.-L‘'’a,&-- (O..b‘L./(mo-i+"r))‘] , (6.6f4)

There are other types of higher angular momentum states obtainable from

(6.60b) and (6.60c). To deduce this we set

wtYr: 1: - 3. . (6.65)
(6.60c) and (6.60b) now become1­

‘*"”? + %, 441:3 + *‘‘‘w‘: + [E‘ + <°-,%*’>‘— M"‘— <-*--AW] N:‘E13 in
: I  3'00) "  Ni . (6_66)7; 3’

Substituting for 3.0:.) and H(It.) ,

dz 1 __  ? *_' J ] i = O ._&_tL+_1a_'£_.,_’{_.e,_ mt  , (667)

where

7‘: ja'+ L'?’b&'.. cf’- 1%

Q: dcd.-e'l«L"&bq:a,EaLt 6,};E: I: E 3: C
Mt: ""1+-!»"‘o."' -.t 514. ­

The solutions are given by

wli : die-3/:1. Pt7+-3/.1,(<r + 3. - £5 2 IT-#1 ,  ° (6.69)
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For normalisability

Y+  = -71 ,
For a bound state fit should be positive. This fact will be used to

calculate the energy levels which follow from (6.70). The energy corresponding

to the upper sign solution in (6.70) is

E; = c +  " "‘&“") '-'-’.[ (" 9:4"? " ‘U0-"5a'-+ G‘\.'lal7'L)"(4*"":j‘

aa. .10. 4§,'_‘%"[1.,.d-ad+;_(M+l»a.+G0v)(7I-"+-n¢)] }'¥  (6.713)

and that corresponding to the lower sign solution is

E; _._ ..¢ ..  +-lxmb) 1 [(_ ¢_,L"’%b*-J4\*¢v1h*1_, Gi£;'-¢l,w.).(4-'n§)~a

-1. -7. -1. 1 g: ‘h d‘ -11 ..+%(H   1‘?-J)
(6.7lb)

where '11., :46’! + -‘*1 -+ Y ) . The sign before the square root is chosen

in such a way that fit given in (6.68) is positive. As in the isospinor case,
it is not possible to satisfy the two conditions (6.70) simultaneously. So

we should set «+4: 0 , at".-. O for solutions having energy given in (6.7la)

and the solutions corresponding to the energy level (6.7lb) have of’: 0 ’ (4: O.
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6.0 Results and discussion

In order to obtain more information about the solutions we gauge­

transform them to the string gauge. For the isospinor fermions the trans­

formation is given by [79]

11' .. 1;» J (6.72)
where

6o5(9/.1) um.(e/.;) e" 5*‘

u - 4«5~(9/.z) 42“ cute/.0 .
(6.73)

Substituting for ‘P and 'uTwe find, explicitly,

1 -x
[—  + G: ) €w..u:»n.(9/.7.) [(P:’ 6:) “L8/'1') +
+ £3?»  C‘) E eé (a3(9/4_).g.a It (ARCS/4) -3-6 H

K: = i - fiuuc (9/0 '3}  --  Acc(9/,1)  ] y_.,.(U;¢).

[(1): + G,:) CaaL9/J + §,*-Jr C11) [(P:— G3) ewdna. (8/.1.). _ 3*..c*) 43¢ 9 _a_
..(—um@/o%9'§*'-cl‘/.2)%;,)] ‘-‘-r-’- ° <“”""’ae

+%co1£c. (9/4,)  (6-'74)
As already remarked the wave functions corresponding to the energy

1
levels given by (6.343) satisfy PI: =.—. G: and  -= C: . Hence
from the explicit form of the wavefunction given above, it is clear that

it describes an isospin-up bound state. Similarly, the energy levels given

by (6.3lib) are I3:-1/.1, levels. If we consider the scattering behaviour of
the solutions the above property will lead to charge-conserved scattering.

This is the same as in the case of fermions in the point monopole background
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having lowest angular momentum [82]. ‘But in a regular dyon field the situation

is different. Charge exchange scattering occurs in this case [79].

In the isovector case, the gauge transformation is given by

my‘ ,, «y if, (5.75)
where

cow cea"4 +.u‘m."¢ mow-:.c;S (me-1) ..a~;,e and

'u -..-. C004 Wat} (WG-1) cones»;-"<f>+coa‘¢} -4-M9 83¢» (6.76)

We Co=4> M9 av-.¢ case
where the isospin components in "F are written as a 1x3 row matrix:

X1 "' (F1f£1'*E}.-T"); ' (F;1_f5\'-.1 '*F.1,.f-13.;  F.:+"‘33
1

+ 5-  #15! *'  La) 33.” + F‘: L3) .3“,

+  Mtafiulx Wm F;-*.é--§  (6.77)
aux. “#1” —-> am

After the transformation we get

X‘-.= [(F;fw¢ - iE,fa..¢) .33 [(63~’»¢+iE3«=¢)%5 Fay“"’ . . . . 1*
-0:1: ~»»4>+ ‘~§faod)-5,-i=-9—§3]‘H,,, +(F.:~»¢ -«Ei«-+),—_:t-5 £43,

.,_  maltr.-‘ac wit: fife»  . (6.78)
an“ 3791-’ 43.1’?!

From this it is obvious that  and E1 correspond to solutiont

3 0 0
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in the isovector boson case we have the row matrix

-3‘-[(vc«a+—+'z»»:-¢»)%.-9 -}[(y.~...¢H-zasiag-9. . . . xv”
- 1“-*%a%‘a'1*%.]v;' - W.;;§“*“l":" ’

(6.79)
3‘?

Here also the solution with X 4: 0 , Y-.-_ Z -.—. 0 corresponds to a state

with 13 = 0

We shall now compare our solutions with those given by Tang [81,83]

and prove the equivalence of the two methods used to achieve the angular

separation. For this it is enough to consider the isospinor bosons. Tang [83]

studied this problem by applying a singular gauge transformation which creates

a singular string in the gauge potential. Then using monopole harmonics

ti.-.t separation of radial angular parts was achieved. Our model reduces

to that considered in Ref.83 if we set -kg 0 and take the parameters a.,b.c,

and d as in (6.5). So we can compare the eigenvalues and eigenfunctions

in these cases. Since the eingenfunctions are gauge-dependent this com­

parison must be made in the same gauge. For this we gauge-transform our

solutions to the gauge used in Ref. 83.

IU = u U , (6.80)
where ‘u is the unitary matrix given in (6.73). This transformation yields,

(F F 3'-H"1 W   3*” "£ 9 yn*v‘}*+ ’) 4.3‘ C '0 :r-9.; "‘ azr 9 4*"‘-@’-2) 341.;, - _ M+£/
(r.~F.)U-3%’-e‘£4;LW¢)7,:,:‘ + -1§'—,"-’- ¢°°@’/.0 Y,_%‘ }

(6-81)

where use has been made of the recurrence relations of associated Legendre

U:
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polynomials [86]. This can be further shown to be equal to (see Appendix 6.B)

Fl -1-E; -J: y"‘/Qlyahq
(6.82)

F.-F. y”E ..,_,3‘,I‘1

where )/q”3')r«-1 are monopole harmonics [8t4]. From the study of radial

equations in Section 6.3 we have seen that either CF,,+ F_ ) or (E, -— F.) is

nonzero, but not both. The radial equations obeyed by (F, + E) and (F, + F.)

are the same as studied in Ref. 83. The angular parts are also the same.

So we conclude that both the methods are equivalent. From (6.82) we also

see that the states having energy values (6.58a) are isospin-up states and

those having energy values (6.58b) are isospin-down states.

Finally we comment: on the degeneracy of the system. For massless

particles in a pure monopole (M = c = 0) field that the pair of quantisation

conditions for both fermions and bosons, (6.27a, b),‘(6.3#a, b), (6.57) and (6.70),

can be satisfied simultaneously. The degeneracy of the energy levels in

this case for fixed 11 and J’ is as given in the following table.

T A B L E - 1

Description Lowest total Degeneracy of bond states for
of particles angular fixed 1». and J’ C '21. 4: 0)­

momentum Lowest angular All higher angularmomentum momenta

lsospinorfermions 0 (‘ I) 1(‘z'7 T 1) 4’ ("3-* 1)
lsospinor __bosons ‘£32 (' I) a’ (a’T+ 1) 3 (‘LI * ’)lsovector 3- 1fermions 3'; C‘ I) 3- ('7-5* 1) 2 4'01’ + )
lsovector . Too ‘Q;--L cf (rt-uni flatsbosons 0 (( I) ('13. "' 1) 1) @.T4- 1) (I3: 0)
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The inclusion of either a nonzero mu: (M4o)or dyon degree freedom (c #0) or

both, changes the degeneracy of the spectrum. The pair of the above­

mentioned conditions are not satisfied simultaneously. The degeneracy is

half of that given in the above table except for the Ian 0 state of the
isovector fermions. Unlike the C = O , M t.-. 0 case the energy levels

are not symmetrically distributed on both sides of zero. We also note that

the total number of states for the case of monopoles with M at O , agree

with the counting as given in Ref. 80. For isovector fermions there are

no bound states with I O and agreement with Ref. 80 is obtained only3:
if we count the unbound solutions along with the bound states.

6.A Appendix

In this section we solve the first order coupled equations' 1 (6:13) at-3-,L+%)X -'=( ,., “mi£)X: (6.83)
which is exactly similar to that of the hydrogen atom problem in Dirac

theory [85] if the 3]’; term is absent. This can be solved by a similar pro­

cedure. Dividing (6.83) throughout by 4). -..—. QJ-m-1. gt we get

<t%+ —*-—a)><* (-B-22 -- -3-.—~J""+‘ >><‘‘'P‘n--£

(% +  =  + -3: iii )x-l- (6.34)
where P .. a.)ut . Using the substitution

..P ..
X-.t ,_ Jmfl 8 At P1 Lcadiga) . (6.85)

with

Y -- J6‘-1'-'--35*,
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(6.84) can be reduced to

(P 5, + v . 3 )(a,+ e,_,) - pa... -- (e+D)l%:-§- CQ~r'9'a)
(6.36)

(eat. «- v-J ><o..-ca.) + Pa. = -cs-v>F,:: cane.)­
The sum and difference of these gives(e-6   cs

(6.87)

G’ £7,-+ 7- £’>_r;%2§. ..f’)QQ _., (-55- )Q1.

Now elimination of either Q; or Q,‘ gives4' —-ID
9 17% +(.2r+1— e) 0.5%: -6. ..8_’."...1..._—("-)Q,1 = o (6.88n)

and

p 4- (c?.T+1*' P) %'*- (Y-i-1+ 3"";D5)gd. 0 (Hub)

respectively. In deriving this we have used the relation
-1.-2. - Be “ _ "~ - DeJ ..  - ‘r  - (6.89)

The solutions of (6.88) are

9,: . .. ‘I; Q. 5*"-*9‘ ,.1v+1,P)8 ,D (6.90)- 6
‘M = Fifi 0*” *'‘"''3''* *"”""")’

where the constants o( and P are related :

. Y + BMJDE)/)«5 ‘ ‘ C "‘ . (6.9l)
-J° -0- (Dvn -B6)/)‘
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which is obtained by substituting (6.90) in either of the equations in (6.87)

and putting P g 0 .

6.B. Appendix

In this section we will prove the following results :

-F-7. ""/ """' -° o
J:  C45(9/.1) y?‘y“ (J-31$ e  = YE’:-In (6.928)

,3 M ‘M’ - “HI F rm; - (6.92b)
fiE- -5?" 9. AVVL(3/.1) »§—~d"' + $5.?  ya”:/‘"1 -..-. >3’;-J4

1 = case ’  -_-_ 11".. gr; ’ an -.: H-3/,; the left hand side of (6.923)Putting

can be written as

,.s'+-run M r‘''_‘'.__ _- +41''.‘ J1-0-‘K  +  J1"‘K C t’
_ _ m (°__ . * inf
- (1) JR: 89/, {(3-om-+ 1),/1+1. 13.1,, __J-ti EN EU} 8lflT(J'+-wool)!

= .. "‘ (5+~*I+1)! Q-x‘)W‘J1+x _
(OJ {dist (M-J ,'rn-0-3-+1 ,-‘lm-9-13WWO.-M)! QM

1-x '30- . ‘ 0 _
* ""5." ";,;;{' 45 ("""J+i,'rn+J+-1.; ‘I-n+2.-, ‘----—..i’‘)} can‘

- _ ~« c-°+--92 ca--*>"”~ 1 .. . . ~...
" C‘) 4r(,°..~.;i ‘loam! + ;F;G"-J,773+J+-2;m4-15-15:1-1)g( ¢

.. q" Q;“““1)!(4""”3'- Q~1‘)”/"J1+ ""‘»°"+1” (0 urj! ,1‘! "' QM ‘L E-.. C“)1/.1, .
g _ “-‘v’-L (-z:r-+1) (J-r4)!(3'+M)g 91- 1/..,)/ 04”, y

‘ ‘D ur@'*£)!(7'-:-)! ] 6"‘; '1‘‘’'" 4 4
H-5/‘,M£-C/._

CX P (at)3-H
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‘-/.1.

am [@'T+1)[$_  ‘X C1_1_3-(M’u‘)/‘t 0+1)-(“+1/‘)/‘tl+Tf(T+a‘5.)!(3'-E)!

.-(M~iQ), —(Vl-9-1/.1) £(H__1/.2)¢
8‘ a'+n (1)

= Y_%’3_’M(9,¢>) , (5.93)
-M3

where ‘F; (at, P ; Y 5 I.) are hypergeometric functions and P“ (ac) are
Jacobi polynomials [61, 87]. For deriving (6.93) we have used the relations

[61, 87]

‘VI (I'L+'a-n)‘ C1-X)"/a
P%‘(-[,) 2-.   ‘F16-o-m,m+m44;m+1;£Z3 (6.910

Pvlgl.) = -—r‘(,'+“+—!-)— F ("'1'\,'7'|-fQ+P'+fl~ 'r+fl- 9.'..:_x_'* n! [''@+;) '1 ‘ ’ ’ ‘ (6.95)

3F,(vl,p;Y,-7) + 3% aF1(a(+1,fl-ta; 7+1  = &F1@’P.+g)75  (6.96)

and [8#]

P,;:;£(x) = .7,""’5 C1-1)-‘C1+ 4)” P:’fi@) (5.97)
1/‘

Y (m) = .7.” lC-t=’+0<°'*'**'>!(3+'4>_'-_] _ -(«M “W (%-WeC.J)M L #11.   (1 1) (1-6 1)
’($"'”)a(q:"”):l’+M 6‘) e ' (6.98)

(6.92b) can be proved similarly. In this case instead of (6.96) we should

use the relation

a[:1(.(,fi,3y.,3,) .. $.(1-},)dF’1(.:.4,p+4,7+:.;g) -.- '.'1;_S.‘.2F‘£z,p+;;m;§(6.99)
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