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NOTATIONS, SYMBOLS AND ABBREVIATIONS

e - Column vector consisting of 1’s appropriate dimension

er - Column vector of dimension r consisting of 1’s

er(j) - Column vector of dimension r with 1 in the jth position

and zero elsewhere

I - Identity matrix of appropriate dimension

Ir - Identity matrix of dimension r

⊗ - Kronecker product

⊕ - Kronecker sum

LST - Laplace-Stieltjes Transform

CTMC - Continuous time Markov Chain

MAP - Markovian arrival process

MMAP - Marked Markovian arrival process

QBD - Quasi-Birth-and-Death

LIQBD - Level Independent QBD

PH - Phase Type



1. INTRODUCTION

1.1 Queueing theory and Matrix analytic methods

We encounter queues in almost all walks of our life. Some times the queues

that we are in are visible while at other times they are not. For instance,

when we make a request for some service to a telephone call centre we are not

aware of the queue which we may be in. Apparently no one really wants to

be in a queue especially when it is too long. However, given the fact that one

has to spend enormous amount of time in queues, it is of great significance

to analyze these congestion situations using appropriate queueing models.

Until early 1970’s queueing theorists all over the world relied heavily on

complex analytic tools to tackle problems in queueing theory. Due to this

research publications in this area became exceedingly long and had very little

impact on those who apply queueing models in engineering and technology.

This motivated M.F. Neuts to develop phase type distributions (abbreviated

as PH distributions) [46] and matrix analytic methods. Later Neuts devel-

oped versatile Markovian point process (VMPP ) [48] which is now known as

batch Markovian arrival process (BMAP ). These developments triggered a

revolution in the field of queueing theory as algorithmic probability emerged

to be a very effective tool in solving queueing theoretic problems.
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1.2 Phase Type Distributions

Here, we confine our discussion to continuous time phase type distributions.

Consider a finite state Markov chain with m transient states and one absorb-

ing state. The infinitesimal generator Q of this Markov chain be partitioned

as

Q =

 T T0

O 0

 ,

where T is a matrix of order m and T0 is a column vector such that

Te + T0 = 0, e being a column vector consisting of 1’s of appropriate di-

mension. For the eventual absorption into the absorbing state it is necessary

and sufficient that T be nonsingular. The initial state of the Markov chain

is chosen according to a probability vector (α, αm+1). Then the time until

absorption, X, is a continuous time random variable with probability distri-

bution function F (x) = 1 − α exp(Tx)e, for x ≥ 0. The density function

f(x) of F (x) is either identically zero or strictly positive for all x ≥ 0. In the

latter case f(x) is given by f(x) = α exp(Tx)T0, for x ≥ 0. The Laplace

Stieltjes transform f̃(s) of F (x) is given by f̃(s) = αm+1 + α(sI − T )−1T0,

for Re s ≥ 0. Hence the kth non central moments of F (x) is given by the

formula µk
′

= (−1)k k!(αT−ke) for k ≥ 1. The class of PH distributions

include the distributions such as exponential, hyperexponential, Erlang and

generalized Erlang as its special cases. Most importantly any continuous

time distribution on non negative real line can be approximated by phase

type distributions. Phase type distributions are well suited for applying ma-

trix analytic methods. For further details of PH distribution see [39], [9], [50]
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and [10].

1.3 Markovian Arrival Process

A Markovian arrival process (MAP ) is a Markov process{N(t), J(t)} with

state space {(i, j) : i ≥ 0, 1 ≤ j ≤ m} with infinitesimal generator Q∗ having

the structure

Q∗ =



D0 D1 0 0 . . .

0 D0 D1 0 . . .

0 0 D0 D1 . . .

...
...

...
...

. . .


,

Here D0 and D1 are square matrices of order m, D0 has negative diagonal

elements and nonnegative off-diagonal elements, D1 has nonnegative elements

and (D0 +D1)em = 0, em being a column vector of 1’s of dimension m.

We define an arrival process associated with this Markov process as follows.

An arrival occurs whenever a level state transition occurs into a state in

the D1 block, and there is no arrival otherwise. Here N(t) represents the

number of arrivals in (0,t], and J(t) the phase of the Markov process at

time t. Let δ be the stationary probability vector of the generator D =

D0 + D1. Then the constant λ = δD1em referred to as the fundamental

rate , gives the expected number of arrivals per unit time in the stationary

version of the MAP . It should be noted that in general MAP is a nonrenewal

process. However, by appropriately choosing the parameters of the MAP

the underlying arrival process can be made as a renewal process. It can

easily be verified that a renewal process with interarrival times phase type
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distributed with representation (α,T) and the exit rates vector T0 = −Te

can be obtained as a special case of the MAP . To see this it is enough to

replace D0 and D1 respectively by T and T0α in the above discussion of

MAP . To sum up, MAP is a rich class of point processes that includes

many well-known processes such as Poisson, PH-renewal processes, Markov-

modulated Poisson process and superpositions of these. One of the most

significant features of MAP is the underlying Markovian structure and fits

ideally in the context of matrix analytic solutions to stochastic models.

Often, in model comparisons, it is convenient to select the time scale of

the MAP so that the stationary arrival rate λ has a certain value. That

is accomplished, in the continuous MAP case, by multiplying the coeffi-

cient matrices D0 and D1, by the appropriate common constant. For further

details on MAP and their usefulness in stochastic modelling, we refer to

[43], [51], [52] and for a review and recent work on MAP we refer the reader

to [10]. Chakravarthy [11] and Krishnamoorthy et al. [37] provide an account

of more recent works in this area.

1.4 Quasi-Birth-and-Death Process

A level independent quasi-birth-and-death (QBD) process is a Markov pro-

cess on the state space E = {(i, j) : i ≥ 0, 1 ≤ j ≤ m} with infinitesimal
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generator Q̃, given by

Q̃ =



B0 A0

B1 A1 A0

A2 A1 A0

. . . . . . . . .


.

Note that the one step transitions are allowed only between the states be-

longing to the same level or adjacent levels. Hence the name quasi-birth-

and-death process. The number of boundary level states may vary and the

complexity increases with the number of boundary levels. However, with

suitable modifications we can handle more complicated boundary behavior.

The generator Q̃ is assumed to be irreducible. The matrix A = A0 +A1 +A2

is the generator matrix of a finite state Markov process. The process Q̃ is

positive recurrent if and only if the minimal nonnegative solution R of the

matrix quadratic equation R2A2+RA1+A0 = 0 has spectral radius less than

1. Although level dependent quasi-birth-and-death process is also there, it

is not used in this thesis.

1.5 Logarithmic Reduction Algorithm for computation of R

Step 0: H ← (−A1)
−1A0, L← (−A1)

−1A2, G = L, and T = H.
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Step 1:

U = HL+ LH

M = H2

H ← (I − U)−1M

M ← L2

L← (I − U)−1M

G← G+ TL

T ← TH

Continue Step 1 until ||e−Ge||∞ < ε.

Step 2: R = −A0(A1 + A0G)−1

1.6 Kronecker Product and Kronecker Sum

Let A be a matrix of order m×n and B one of order p×q, then the Kronecker

product of A and B, denoted by A⊗ B is a matrix of order mp× nq whose

(i, j)th block matrix is given by aijB. If A and B are square matrices of order

m and n respectively then the Kronecker sum of A and B, denoted by A⊕B

is defined as A ⊗In + Im⊗ B. For more details on Kronecker products and

sums, we refer the reader to [24] and [44].

1.7 Queues with Vacations and Working Vacations

In the modern world there is tough competition between service providers.

So in order to survive service systems have to be managed efficiently and

economically. Demand for service often fluctuates. There may be periods of
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low customer inflow. During such periods, it may not be economical from the

system point of view to retain idle servers in the system. At the same time

no system can afford to lose its customers and goodwill. So there is a need

to strike a balance between the two extreme situations. It is from this stand

point, we study queueing models with vacations and working vacations.

Queues with vacations have been extensively studied by several authors.

Doshi [19] provides an exhaustive survey of such work through 1985. Since

then the vacation models have been studied in different contexts. Among

these include stochastic decomposition of queue length and that of station-

ary waiting time and we refer the reader to the recent book by Tian and

Zhang [64] for details. Recently vacation models have gained significance in

telecommunication networks. However, compared to continuous time

models discrete time models are more appropriate for modelling computer

and telecommunication systems. Servi and Finn [55] introduced a working

vacation model with the idea of offering services but at a lower rate when-

ever the server is on vacation. Their model was generalized to the case of

M/G/1 in ([32], [68]), and to GI/M/1 model in [8]. A survey of working va-

cation models with emphasis on the use of matrix analytic methods is given

in Tian and Li [65]. Working vacation models have a number of applications

in practice. Two such examples are given in [65].

Recently, Li and Tian [42] studied an M/M/1 queue with working va-

cations in which vacationing server offers services at a lower rate for the

first customer arriving during a vacation. Upon completion of the service

at a lower rate the server will (a) continue the current vacation (if not al-

ready completed) or take another vacation (if the working vacation expired)
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if there are no customers waiting; or (b) resume at a normal rate (irrespec-

tive of whether the vacation expired or not) if there are customers waiting.

Resuming services at a normal rate while the vacation is still in progress

corresponds to the vacation being interrupted.

M/M/1 retrial queue with working vacations has been discussed by Van

Do [18]. In classical retrial queueing systems server idle time is very high. In

the modern scenario it is not desirable from the service system’s point of view

to have a long idle time. To this end Artalejo et al. [4] introduced a notion

called orbital search where the server looks out for potential customers from

the orbit immediately after a service completion with probability p (0 ≤ p ≤

1). Dudin et al. [20] and Krishnamoorthy et al. [34] also consider orbital

search with different arrival streams and different service time distributions.

Chakravarthy et al. [12] consider the multi server case.

But even with the search option, system may not be able to utilize the

entire server idle time. It is from this stand point one explores the possibility

of retrial queueing systems with vacations and working vacations. During

vacations the idle server may attend some less urgent secondary task. We

may also consider the notion of working vacation depending upon the nature

of the secondary job attended. In the latter case the server returns to attend

the primary job as and when a customer arrives in the system.

1.8 Summary of the thesis

The thesis entitled “Queueing Models with Vacations and Working Vaca-

tions” consists of seven chapters including the introductory chapter. In chap-
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ters 2 to 7 we analyze different queueing models highlighting the role played

by vacations and working vacations. The duration of vacation is exponen-

tially distributed in all these models and multiple vacation policy is followed.

In chapter 2 we discuss an M/M/2 queueing system with heterogeneous

servers, one of which is always available while the other goes on vacation in

the absence of customers waiting for service. Using matrix geometric meth-

ods the system is analyzed in the steady-state. Busy period structure is

analyzed and the mean waiting time is computed. Conditional stochastic

decomposition of queue length is derived. An illustrative example is pro-

vided to study the effect of the input parameters on the system performance

measures.

Chapter 3 considers a similar setup as chapter 2. However, in this model

the vacationing server returns to serve at a lower rate when an arrival finds

the other server busy. The model is analyzed in essentially the same way as

in chapter 2 and a numerical example is provided to bring out the qualitative

nature of the model.

In reality the assumptions like Poisson arrivals and the exponential ser-

vice times are very restrictive though they make the system analytically

more tractable. The traffic in modern communication network is highly ir-

regular. Of late to model systems with repeated calls and bursty arrivals

MAP (Markovian arrival process) is used. The MAP is a tractable class

of point process which is in general nonrenewal. In spite of its versatility

it is highly tractable as well. Phase type distributions are ideally suited for

applying matrix analytic methods. In all the remaining chapters we assume

the arrival process to be MAP and service process to be phase type.



10 1. Introduction

In chapter 4 we consider a MAP/PH/1 queue with working vacations.

At a departure epoch, the server finding the system empty, takes a vacation.

A customer arriving during a vacation will be served but at a lower rate.

Vacation mode service is also phase type distributed. The server continues

to serve at this rate until either the vacation clock expires or the queue length

hits the threshold value N , 1 ≤ N < ∞. When either of these two occurs

the server instantaneously switches over to the normal rate and continues

to serve at this rate until the system becomes empty. Conditional mean

waiting time of a customer who arrives when the service is in a) vacation

mode b)normal mode and then the unconditional mean waiting time of a

customer is computed. The slow service mode is analyzed in detail. The

mean duration of uninterrupted vacation and the mean number of times the

server goes to vacation during the slow service are computed. Numerical

illustration has been provided to get an insight into the model.

Chapter 5 discusses a MAP/PH/1 retrial queueing system with working

vacations. If an arrival finds the server busy he joins a group of retrial

customers called orbit. We consider the case of constant retrial rate which has

applications in the local area networks and communication protocols. The

server takes a vacation if there are no customers in the orbit at a departure

epoch. The service offered to a customer who arrives during vacation is slower

than the regular service. A number of performance measures are listed with

their formulae and illustrative numerical examples have been provided.

In chapter 6 the setup of the model is similar to that of chapter 5. The

significant difference in this model is that there is a finite buffer for arrivals.

If a departure leaves the buffer empty the server goes on a working vacation.



1.8. Summary of the thesis 11

Each customer in the orbit makes retrial for a place in the server or buffer and

the retrial rate is independent of the number of customers in the orbit. The

system characteristics are studied with the help of numerical illustrations.

Chapter 7 considers an MMAP (2)/PH/1 queueing model with a finite

retrial group. High priority customers enjoy infinite waiting space. In the

absence of high priority customers the server leaves the service area to pro-

ceed on a vacation. During vacation if a customer arrives the server returns

to serve. Service offered during vacation has the same distribution as the

regular one. If a low priority arrival encounters a busy server he tries to find

a place (if any) in the retrial group. If there is no vacancy in the orbit the

customer leaves the system forever. Once a low priority customer is taken

for service he is not dislodged before service completion.



2. AN M/M/2 QUEUEING SYSTEM WITH

HETEROGENEOUS SERVERS INCLUDING ONE

VACATIONING SERVER

It has been observed by Neuts and Takahashi [49] that queueing systems with

more than two heterogeneous servers are analytically intractable. So in order

to get some explicit results one has to restrict the domain to systems with two

heterogeneous servers. In this chapter we study an M/M/2 queueing system

with heterogeneous servers, with one server taking multiple vacations. The

other server remains in the system even when the system is empty. In this

aspect our model differs from that of Krishna Kumar and Pavai Madheswari

[33]. They consider a system of two heterogeneous servers, where both servers

go on vacation in the absence of customers waiting for service. Towards the

end of this chapter a numerical example is provided to illustrate how the

system characteristics behave as the input parameters change.

2.1 Mathematical Model

We consider an M/M/2 queueing model with heterogeneous servers, called

server 1 and server 2. Server 1 is always available whereas server 2 goes on

0 To appear in Calcutta Statistical Association Bulletin
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vacation whenever there is no customer waiting for service. Let the service

rates of servers 1 and 2 be µ1 and µ2, respectively, where µ1 6= µ2. Customers

arrive to the system according to a Poisson process of parameter λ. The

duration of vacation is exponentially distributed with parameter η. At the

end of a vacation, if there is no customer waiting for service the server goes

on another vacation. Otherwise it resumes service. For clarity we assume

that if an arriving customer finds a free server he enters service immediately.

Else he joins the queue.

2.1.1 The QBD process

The model discussed above can be studied as a level independent quasi-birth-

and-death (LIQBD) process. First, we set up the necessary notations.

At time t, let N(t) be the number of customers in the system and

J(t) =

 0, if the server 2 is on vacation ,

1, if it is busy,

Let X(t) = (N(t), J(t)); then (X(t) : t ≥ 0) is a continuous time Markov

Chain (CTMC) with state space

Ω = {(0, 0)}
⋃ ∞⋃

i=1

l(i)

where

l(i) = {(i, j) : i ≥ 1, j = 0 or 1}.

The infinitesimal generator matrix Q of this Markov chain is given by
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Q =



B00 B01

B10 B11 A0

A2 A1 A0

. . . . . . . . .


,

where the block matrices appearing in Q are as follows.

B00 = −λ, B01 =

[
λ 0

]
,

B10 =

 µ1

µ2

 , B11 =

 −λ− µ1 0

0 −λ− µ2

 , A0 =

 λ 0

0 λ

 ,

A1 =

 −λ− µ1 − η η

0 −λ− µ1 − µ2

 and A2 =

 µ1 0

0 µ1 + µ2

 .

2.2 Steady-state analysis

In this section we discuss the steady-state analysis of the model under study.

2.2.1 Stability Condition

Theorem 2.2.1. The queueing system described above is stable if and

only if ρ < 1 where ρ = λ/(µ1 + µ2).

Proof. To establish the stability condition we use Pakes’ lemma (see [58]).

Let Ni be the number of customers in the system immediately after the
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departure of the ith customer. Then {Ni : i ∈ N} satisfies the equation

Ni =

 Ni−1 − 1 + Vi if Ni−1 ≥ 1

Vi if Ni−1 = 0

where Vi is the number of arrivals during the service of ith customer. Clearly

{Ni : i ∈ N} is an irreducible aperiodic Markov chain. Pakes’ lemma asserts

that an aperiodic irreducible Markov chain is ergodic, if there exists an ε > 0

such that the mean drift

φj = E[(Ni+1 −Ni)/Ni = j]

is finite for all j ∈ N and φj ≤ −ε for all j ∈ N except perhaps for a finite

number. In the present model, value of the mean drift is

φj =

 −1 + ρ if j ≥ 1

ρ if j = 0

Thus if ρ < 1 the Markov chain {Ni : i ∈ N} is ergodic and hence the condi-

tion is sufficient.

To prove the necessity of the condition assume that ρ ≥ 1. We use

theorem 1 in Sennot et al. [56], which states that {Ni : i ∈ N} is nonergodic

if it satisfies Kaplan’s condition; φj <∞, for j ≥ 0 and there exists a j0 such

that φj ≥ 0, for j ≥ j0. When ρ ≥ 1 Kaplan’s condition is readily satisfied.

Hence the Markov chain is not ergodic.
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2.2.2 Steady-state probability vector

Let x , partitioned as x = (x0,x1,x2, . . .), be the steady-state probability

vector of Q. Note that x0 is a scalar and xi = (xi0, xi1), for i ≥ 1. The vector

x satisfies the condition xQ = 0 and xe = 1, where e is a column vector of

1’s with appropriate dimension. Apparently when the stability condition is

satisfied the sub vectors of x , corresponding to the different levels are given

by the equation xj = x1R
j−1, j ≥ 2, where R is the minimal nonnegative

solution of the matrix quadratic equation (see [50])

R2A2 +RA1 + A0 = 0. (2.1)

Knowing the matrix R, x0 and x1 are obtained by solving the equations

x0B00 + x1B10 = 0 (2.2)

and

x0B01 + x1(B11 +RA2) = 0 (2.3)

subject to the normalizing condition

x0 + x1(I −R)−1e = 1. (2.4)

Theorem 2.2.2. The matrix R of equation (2.1) is given by

R =

 R11 R12

0 R22

 , where R11 =
λ+µ1+η−

√
(λ+µ1+η)2−4λµ1
2µ1

, R22 = ρ and

R12 = ρ− µ1R11/(µ1 + µ2).
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Proof. Since A0, A1 and A2 are upper triangular, R is essentially an

upper triangular matrix. The value of R11 follows from the assertion that R

is the minimal non negative solution of (2.1). The rest of the proof is an easy

consequence of the condition RA2e = A0e.

Remark: Though R has a nice structure which enables us to make use

of the properties like Rk =

 Rk
11 R12

∑ k−1
j=0 Rj

11R
k−j−1
22

0 Rk
22

 , for k ≥ 1, due

to the form of the expression for R11 it may not be easy to carry out the

computations required in the forthcoming discussions. Hence we explore the

possibility of algorithmic computation of R. The computation of R matrix

can be carried out using logarithmic reduction algorithm.

2.2.3 Busy period analysis

For the system under study, busy period is the interval between arrival of a

customer to the empty system and the first epoch thereafter when the system

becomes empty again. Thus it is precisely the first passage time from the

state (1,0) to the state (0,0). For the vacation model, busy cycle for the

system is the time interval between two successive departures, which leave

the system empty. Thus the busy cycle is the first return time to state (0, 0)

with at least one visit to any other state. Before analyzing the busy period

structure, we need to introduce the notion of fundamental period. For the

QBD process under consideration, it is the first passage time from level i,

where i ≥ 2, to the level i − 1. The cases i = 1 and i = 0 corresponding to

the boundary states need to be discussed separately. It should be noted that

due to the structure of the QBD process the distribution of the first passage
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time is invariant in i away from the boudary states.

Let Gjj′(k, x) denote the conditional probability that a QBD process,

starting in the state (i, j) at time t = 0 reaches the level (i− 1) for the first

time no later than time x, after exactly k transitions to the left, and does

so by entering the state (i − 1, j′). For convenience, we introduce the joint

transform

G̃jj′(z, s) =
∞∑
k=1

zk
∫ ∞
0

e−sxdGjj′(k, x) ; |z| ≤ 1, Re(s) ≥ 0

and the matrix

G̃(z, s) = (G̃jj′(z, s)).

The matrix G̃(z, s) is the unique solution to the equation (see [50])

G̃(z, s) = z(sI − A1)
−1A2 + (sI − A1)

−1A0G̃
2(z, s). (2.5)

The matrix G = G̃(1, 0) takes care of the first passage times except for the

boundary states. If we know the R matrix then G matrix can be computed

using the result (see [39])

G = −(A1 +RA2)
−1A2.

Otherwise we may use logarithmic reduction method to compute G. For the

boundary level states 1 and 0 let G
(1,0)
jj′ (k, x) and G

(0,0)
jj′ (k, x) be the condi-

tional probability discussed above for the first passage time from level 1 to

level 0 and the first return time to the level 0 respectively. Then as in (2.5)
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we get

G̃(1,0)(z, s) = z(sI −B11)
−1B10 + (sI −B11)

−1A0G̃(z, s)G̃(1,0)(z, s) (2.6)

and

G̃(0,0)(z, s) = [λ/(s+ λ), 0]G̃(1,0)(z, s). (2.7)

Note that G̃(1,0)(z, s) is a 2× 1 matrix. Thus the Laplace Stieltjes transform

(LST) of the busy period is the first element of G̃(1,0)(1, s). For convenience

use the notations

G10 = G̃(1,0)(1, 0) and G00 = G̃(0,0)(1, 0).

Due to the positive recurrence of the QBD process, matrices G, G10 and G00

are all stochastic. If we let

C0 = (−A1)
−1A2 and C2 = (−A1)

−1A0,

then G is the minimal nonnegative solution (see [50]) to the matrix equation

G = C0 + C2G
2.

From equations (2.6) and (2.7) we get

G10 = −(B11 + A0G)−1B10 (2.8)
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and

G00 = [1, 0]G10. (2.9)

Equation (2.5) is equivalent to

zA2 − (sI − A1)G̃(z, s) + A0G̃
2(z, s) = 0. (2.10)

Let

M = − ∂G̃(z, s)

∂s

∣∣∣∣∣
z=1,s=0

and

M̃ =
∂G̃(z, s)

∂z

∣∣∣∣∣
z=1,s=0

.

Differentiation of (2.10) with respect to s and z followed by setting z = 1

and s = 0 leads to (see [50])

M = −A−11 G+ C2(GM +MG)

and

M̃ = C0 + C2(GM̃ + M̃G).

With 0 as starting value for M and M̃ , successive substitutions in the above

equations yield the values ofM and M̃ . Applying an exactly similar reasoning

to (2.6) and (2.7), we get

M10 = −(B11 + A0G)−1(I + A0M)G10 (2.11)



22
2. An M/M/2 Queueing system with Heterogeneous Servers including one

Vacationing Server

and

M00 = [1/λ, 0]G10 + [1, 0]M10, (2.12)

where

M10 = − ∂G̃(1,0)(z, s)

∂s

∣∣∣∣∣
z=1,s=0

and

M00 = − ∂G̃(0,0)(z, s)

∂s

∣∣∣∣∣
z=1,s=0

.

Note that M10 is a 2 × 1 matrix and M00 is a scalar. The first element of

the vector M10 and M00 are mean lengths of a busy period and a busy cycle

respectively. The second element of M10 gives the first passage time from the

state (1,1) to the state (0,0). With the notation

M̃10 =
∂G̃(1,0)(z, s)

∂z

∣∣∣∣∣
z=1,s=0

.

It follows from equation (2.6) that

M̃10 = −(B11 + A0G)−1(B10 + A0MG10). (2.13)

The first component of the vector M̃10 is the mean number of service com-

pletions in a busy period.

2.2.4 Stationary waiting time in the queue

Let W (t) be the distribution function of the waiting time in the queue of an

arriving (tagged) customer. Note that if there is no customer in the system,

the arrival receives service immediately. This happens with probability x0.
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Also when the only customer in the system is receiving service from server

2, the tagged customer receives service from the server 1 without any delay.

This event occurs with probability x11. Thus with probability 1 − x0 − x11

the customer has to wait before getting the service. The waiting time may

be viewed as the time until absorption in a Markov chain with state space

Ω1 = {*}
⋃
{1,2,3, .....}

Here * is the absorbing state which corresponds to taking the tagged cus-

tomer into service and is obtained by lumping together the states (0, 0) and

(1, 1). Further 1 = {(1, 0)} and i = {(i, j), i ≥ 2, j = 0 or 1}. The states

other than the absorbing state correspond to the number of customers present

in the system as the tagged customer arrives. Once the tagged customer

joins the queue, the subsequent arrivals will not affect his waiting time in the

queue. Hence the parameter λ does not show up in the generator matrix Q̃

of this Markov process, given by

Q̃ =



∗ 1 2 3 . . .

∗

1 C10 C11

2 C20 C21 B1

3 B2 B1

...
. . . . . .


, where
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C10 = µ1, C11 = −µ1, and C20 =

 0

µ1 + µ2

 ,

C21 =

 µ1

0

 , B1 =

 −µ1 − η η

0 −µ1 − µ2

 , and B2 =

 µ1 0

0 µ1 + µ2

 .
Define

y(t) = (y∗(t), y1(t),y2(t),y3(t), . . .),

where

yi(t) = (yi0(t), yi1(t)), for i ≥ 2.

The components of yi(t) are the probabilities that at time t the CTMC with

generator Q̃, is in the respective states of level i. Note that y1(t) and y∗(t)

respectively, determine the probability that the process is in state (1,0) and

absorbing state at time t. By the PASTA property we may write

y(0) = (x0 + x11, x10,x2,x3, . . .).

Clearly

W (t) = y∗(t), for t ≥ 0. (2.14)

The Markov process for finding the waiting time distribution has the initial

probability vector y(0). Then the matrix differential equation y′(t) = y(t)Q̃

for t ≥ 0 reduces to

y′∗(t) = y1(t)C10 + y2(t)C20,
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y′1(t) = y1(t)C11 + y2(t)C21

and for i ≥ 2,

y′i(t) = yi(t)B1 + yi+1(t)B2.

For i ≥ 2 and j = 0 or 1, the LST of first passage time to a state (2, j) in

the level 2 is the (j + 1)th element of the vector ψ(s) (see [50]) given by

ψ(s) =
∞∑
i=2

yi(0)[(sI −B1)
−1B2]

i−2. (2.15)

Now starting from the state (i, j), i = 1, 2 the LST of the time until absorp-

tion, φj(i, s), is the (j + 1)th component of the column vector φ(i, s). From

Q̃, we get

φ(1, s) = (sI − C11)
−1C10 (2.16)

and

φ(2, s) = (sI −B1)
−1C21φ(1, s) + (sI −B1)

−1C20. (2.17)

Therefore, the LST of the waiting time distribution is given by

W̃ (s) = ψ(s)φ(2, s) + y1(0)φ(1, s) (2.18)

The mean waiting time can be obtained from W̃ (s) as

E(W ) = −W̃ ′(0) =
x10
µ1

− ψ′(0)e− ψ(0)φ′(2, 0). (2.19)

The only term in the expression for E(W ) given by equation (2.19), which

needs serious computation is the second one. For this we make use of the
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ideas in [47], [49] and [33]. It can be verified that

ψ′(0) = −
∞∑
i=1

y2+i(0)
i−1∑
j=0

U j(−B1)
−1U i−j (2.20)

where U = (−B1)
−1B2 is a stochastic matrix. Hence U i−je = e. Thus we

get

−ψ′(0)e =
∞∑
i=1

y2+i(0)
i−1∑
j=0

U j(−B1)
−1e. (2.21)

Now consider the matrix U2 =

 0 1

0 1

which has the property that

UU2 = U2U = U2.

Then we get

i−1∑
j=0

U j(I − U + U2) = I − U i + iU2 for i ≥ 1.

By the classical theorem on finite Markov chains the matrix (I − U + U2) is

nonsingular (see [31]). In view of the last equation, equation (2.21) becomes

−ψ′(0)e = [
∞∑
i=1

y2+i(0)(I − U i + iU2)](I − U + U2)
−1(−B1)

−1e. (2.22)

With this simplification for −ψ′(0)e, we get

−ψ′(0)e = [x2R(I−R)−1−ψ(0)+I+x2R(I−R)−2U2](I−U+U2)
−1(−B1)

−1e.

(2.23)
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The fact that

ψ(0)e = 1− x0 − x10 − x11

enables us to compute the value of ψ(0) to any desired degree of accuracy.

This completes computation of E(W ).

2.2.5 Conditional stochastic decomposition of queue length

In this section we provide a stochastic decomposition of queue length in the

stationary regime, subject to the condition that both servers are busy. Note

that from equations (2.2) and (2.3) we get

x10 =
λx0

(λ+ µ1 − µ1R11)
(2.24)

and

x11 =
(λ− µ1R11)λx0

(λ+ µ1 − µ1R11)µ2

(2.25)

The last two equations, along with the equation (2.4) determine x0, x10 and

x11. Let Qv be the queue length of the vacation model under study, subject

to the condition that both servers are busy. Then we have

Theorem 2.2.3. If ρ < 1, then Qv = Q0 + Qd, where Q0 and Qd are

two independent random variables. Q0 is the queue length of the M/M/2

queueing model with heterogeneous servers without vacation and Qd can be

interpreted as the additional queue length due to vacation, subject to the

condition that both servers are busy.
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Proof. Let Pb denote the Probability that both servers are are busy. Then

Pb =
∞∑
n=2

xn1 =
∞∑
n=2

(x10R12

n−2∑
j=0

Rj
11ρ

n−j−2 + x11ρ
n−1)

.

= x10R12

∞∑
k=0

Rk
11

∞∑
k=0

ρk + x11ρ
∞∑
k=0

ρk ; k = n− 2

= (1− ρ)−1(x10R12(1−R11)
−1 + x11ρ),

so that

1

Pb
= (1− ρ)(x10R12(1−R11)

−1 + x11ρ)−1 = (1− ρ)δ,

where

δ = (x10R12(1−R11)
−1 + x11ρ)−1.

Qv(z), the generating function of the queue length subject to the condition

that both servers are busy, is given by

Qv(z) =
1

Pb

∞∑
n=2

xn1z
n−2 =

1

Pb

∞∑
n=2

(x10R12

∞∑
n=2

Rj
11ρ

n−j−2 + x11ρ
n−1)zn−2.

By following a computational procedure similar to that of Pb, we arrive at

Qv(z) =
1− ρ
1− ρz

{
δ

(
x10R12

1−R11z
+ x11ρ

)}

= Q0(z)Qd(z),
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where

Q0(z) =
1− ρ
1− ρz

(2.26)

and

Qd(z) = δ

(
x10R12

1−R11z
+ x11ρ

)
. (2.27)

From (2.26) it follows that Q0(z) is the generating function of an M/M/2

heterogeneous queueing model without vacations, which is precisely the case

β = 1 in [57]. Equation (2.27) suggests that Qd has a geometric distribution

with parameter 1−R11.

Remark: Due to the algorithmic approach used in the derivation of

stationary waiting time distribution, a similar decomposition result for the

waiting time is far from reality.

2.2.6 Key system performance measures

In this section we list a number of key system performance measures along

with their formulae in addition to the busy period structure and the mean

waiting time discussed above.

1. Probability that the system is empty: PEMP = x0.

2. Probability that the server 1 is idle: PIDL = x0 + x11.

3. Probability that the server 2 is on vacation:

PV AC = x0 +
∑∞

i=1 xi0 = x0 + x10
(1−R11)

.

4. Mean number of customers in the system: µNS = x1(I −R)−2e.
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5. Mean number of customers in the system when server 2 is on vacation:

µNSV = x10
(1−R11)2

.

2.3 Numerical Results

ILLUSTRATIVE EXAMPLE 2.1: We analyze the effect of the para-

meters λ and η on the key performance measures. To this end we use the

following abbreviations in addition to the notations used in section 2.2.6.

µWTQ: Mean waiting time in the queue.

µLBP : Mean length of a busy period.

µLBC : Mean length of a busy cycle.

µNSBP : Mean number of service completions in a busy period.

Table 2.1

case A : µ1 = 10, µ2 = 5, and η = 1.

case B : µ1 = 5, µ2 = 10, and η = 1.

λ A/B PEMP PV AC PIDL µNS µNSV µWTQ µLBP µLBC µNSBP

A 0.799 0.989 0.806 0.248 0.232 0.027 0.126 0.626 1.252

2 B 0.637 0.976 0.648 0.536 0.432 0.096 0.285 0.785 1.569

A 0.601 0.950 0.625 0.629 0.535 0.064 0.166 0.416 1.665

4 B 0.370 0.900 0.399 1.455 1.186 0.194 0.426 0.676 2.704

A 0.418 0.873 0.463 1.224 0.911 0.107 0.232 0.399 2.394

6 B 0.206 0.777 0.246 2.879 1.971 0.268 0.644 0.811 4.863

A 0.264 0.750 0.325 2.170 1.315 0.156 0.349 0.474 3.795

8 B 0.114 0.623 0.155 4.802 2.541 0.326 0.968 1.093 8.746

A 0.148 0.579 0.211 3.720 1.595 0.222 0.577 0.677 6.765

10 B 0.062 0.452 0.095 7.294 2.630 0.393 1.509 1.608 16.087

A 0.069 0.366 0.117 6.634 1.485 0.355 1.119 1.202 14.429

12 B 0.030 0.274 0.052 11.028 2.098 0.529 2.707 2.791 33.489

A 0.018 0.127 0.037 17.717 0.707 1.016 3.815 3.886 54.408

14 B 0.008 0.092 0.016 22.818 0.878 1.193 8.564 8.636 120.901
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Table 2.2

Case A : λ = 12, µ1 = 10 and µ2 = 5.

Case B : λ = 12, µ1 = 5 and µ2 = 10.

η A/B PEMP PV AC PIDL µNS µNSV µWTQ µLBP µLBC µNSBP

A 0.021 0.538 0.031 25.540 12.904 1.380 3.823 3.906 46.871

0.1 B 0.004 0.297 0.007 73.887 20.965 1.674 20.232 20.315 243.782

A 0.034 0.498 0.051 15.232 6.704 0.787 2.373 2.457 29.481

0.2 B 0.008 0.293 0.013 38.908 10.470 1.052 10.506 10.590 127.075

A 0.043 0.468 0.066 11.716 4.583 0.597 1.872 1.955 23.463

0.3 B 0.011 0.290 0.019 27.261 6.974 0.842 7.262 7.346 88.148

A 0.049 0.446 0.077 9.928 3.501 0.506 1.613 1.696 20.537

0.4 B 0.015 0.288 0.025 21.445 5.228 0.735 5.639 5.722 68.667

A 0.054 0.427 0.087 8.842 2.841 0.453 1.454 1.537 18.444

0.5 B 0.018 0.285 0.030 17.961 4.182 0.669 4.664 4.747 56.967

A 0.058 0.411 0.094 8.112 2.395 0.419 1.345 1.428 17.139

0.6 B 0.020 0.283 0.035 15.643 3.486 0.624 4.013 4.096 49.157

A 0.062 0.398 0.101 7.586 2.073 0.396 1.266 1.349 16.189

0.7 B 0.023 0.280 0.039 13.991 2.989 0.591 3.548 3.631 43.571

A 0.065 0.386 0.107 7.191 1.830 0.379 1.205 1.289 15.464

0.8 B 0.025 0.278 0.044 12.754 2.617 0.566 3.198 3.281 39.376

• Referring to table 2.1, an increase in λ naturally leads to a decrease

in PEMP , PV AC and PIDL. As λ increases traffic intensity ρ increases.

Consequently µNS, µWTQ, µLBP and µNSBP also increase with λ. But

due to the decrease in PV AC , µLBC initially shows a downward trend

and reaches a minimum. However, as the increase in µLBP becomes

more dominant, the value of µLBC starts to increase. Both λ and PV AC

affect µNSV . As λ Increases the number of customers accumulated in

the system rises. But the increase in λ lowers PV AC , which in turn

lowers µNSV . So the dominant of these two decides the direction of

the change of µNSV . This is the reason for the pattern of behavior of

µNSV . It is worth comparing the results of the tables corresponding to

the sets A and B of the input parameters. Even though the net service

rate µ1 + µ2 = 15 in both cases the effect of the vacation parameter
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η becomes more predominant when µ1 < µ2. Due to this the mea-

sures PEMP , PV AC and PIDL take smaller values and the measures µNS,

µWTQ, µLBP , µLBC and µNSBP take larger values in case B, compared

to their values in case A.

• Next let us analyze the results of table 2.2. When η is small, the

mean duration of vacation 1/η is large. Hence it is natural to ex-

pect PEMP and PIDL to be small and PV AC to be large. The effect

of vacation parameter yields large values for µNS, µNSV , µWTQ, µLBP ,

µLBC and µNSBP . But as η increases the mean duration of vacation

decreases. Consequently PEMP and PIDL increase and PV AC decreases.

µNS, µNSV , µWTQ, µLBP , µLBC and µNSBP decrease as η increases.

The argument given in the previous paragraph holds here also for the

difference in magnitude of the measures for the cases A and B.



3. AN M/M/2 QUEUEING SYSTEM WITH

HETEROGENEOUS SERVERS INCLUDING ONE WITH

WORKING VACATION

In this chapter we modify the model discussed in chapter 2 by replacing

pure vacation of server 2 by a working vacation. This will ensure a better

utilization of the servers by the system, there by reducing the waiting time

of the customers in the system. A comparison of the two models (chapter 2

and chapter 3) is provided towards the end of this chapter.

Model discussed here also have two heterogeneous servers but the vaca-

tioning server returns to serve at a lower rate when an arrival finds the other

server busy. To be precise, we consider an M/M/2 queueing model with het-

erogeneous servers, server 1 and server 2. Server 1 is always available whereas

server 2 goes on vacation whenever there is no customer waiting for service.

Let the service rates of servers 1 and 2 be µ1 and µ2 respectively, where

µ1 6= µ2. Customers arrive to the system according to a Poisson process of

parameter λ. The duration of vacation is exponentially distributed with pa-

rameter η. At the end of a vacation, service commences if there is a customer

waiting for service. Otherwise the server goes on another vacation. During

vacation if an arrival finds server 1 busy, server 2 returns to serve the

0 To appear in International Journal of Stochastic Analysis
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customer but at a lower rate. To be precise, the server 2 serves this customer

at the rate θµ2, 0 < θ < 1. As this vacation gets over, server 2 instanta-

neously switches over to the normal service rate µ2 if there is at least one

customer waiting for service. Upon completion of a service at lower rate,

the server will (a) continue the current vacation if it is not finished and no

customer is waiting for service; (b) continue the slow service if the vacation

has not expired and if there is at least one customer waiting for service. For

clarity we assume that if an arriving customer finds a free server he enters

service immediately. Else he joins the queue.

3.1 The QBD process

The model discussed above can be studied as a level independent quasi-birth-

and-death (LIQBD) process. First, we set up the necessary notations.

At time t, let N(t) be the number of customers in the system and

J(t) =


0, if the server 2 is on vacation ,

1, if the server 2 is working in vacation mode,

2, if the server 2 is working in normal mode,

Let X(t) = (N(t), J(t)). Then (X(t) : t ≥ 0) is a continuous time Markov

Chain (CTMC) with states space

Ω = {(0, 0), (1, 0), (1, 1), (1, 2)}
⋃ ∞⋃

i=2

l(i)
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where

l(i) = {(i, j) : i ≥ 2, j = 1 or 2}.

The infinitesimal generator matrix Q of this Markov chain is given by

Q =



B00 B01

B10 B11 B12

B21 A1 A0

A2 A1 A0

. . . . . . . . .


,

where the block matrices appearing in Q are as follows.

B00 = −λ, B01 =

[
λ 0 0

]
,

B10 =


µ1

θµ2

µ2

 , B11 =


−λ− µ1 0 0

0 −λ− θµ2 − η η

0 0 −λ− µ2

 ,

B12 =


λ 0

λ 0

0 λ

 , B21 =

 θµ2 µ1 0

µ2 0 µ1

 , A0 =

 λ 0

0 λ

 ,

A1 =

 −λ− µ1 − θµ2 − η η

0 −λ− µ1 − µ2

 andA2 =

 µ1 + θµ2 0

0 µ1 + µ2

 .
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3.2 Steady-state analysis

In this section we discuss the steady-state analysis of the model under study.

3.2.1 Stability Condition

Theorem 3.2.1. The queueing system described above is stable if and

only if ρ < 1 where ρ = λ/(µ1 + µ2).

Proof. To establish the stability condition we use Pakes’ lemma (see [58]).

Let Ni be the number of customers in the system immediately after the

departure of the ith customer. Then {Ni : i ∈ N} satisfies the equation

Ni =

 Ni−1 − 1 + Vi if Ni−1 ≥ 1

Vi if Ni−1 = 0

where Vi is the number of arrivals during the service of ith customer. Clearly

{Ni : i ∈ N} is an irreducible aperiodic Markov chain. Pakes’ lemma asserts

that an aperiodic irreducible Markov chain is ergodic, if there exists an ε > 0

such that the mean drift

φj = E[(Ni+1 −Ni)/Ni = j]

is finite for all j ∈ N and φj ≤ −ε for all j ∈ N except perhaps for a finite

number. In the present model, value of the mean drift is

φj =

 −1 + ρ if j ≥ 1

ρ if j = 0



3.2. Steady-state analysis 37

Thus if ρ < 1 the Markov chain {Ni : i ∈ N} is ergodic and hence the condi-

tion is sufficient.

To prove the necessity of the condition assume that ρ ≥ 1. We use

theorem 1 in Sennot et al. [56], which states that {Ni : i ∈ N} is nonergodic

if it satisfies Kaplan’s condition, φj < ∞, for j ≥ 0 and there is a j0 such

that φj ≥ 0, for j ≥ j0. When ρ ≥ 1 Kaplan’s condition is readily satisfied.

Hence the Markov chain is not ergodic.

3.2.2 Steady-state probability vector

Let x , partitioned as x = (x0,x1,x2, . . .), be the steady-state probability

vector of Q. Note that x0 is a scalar, x1 = (x10, x11, x12) and xi = (xi1, xi2) for

i ≥ 2. The vector x satisfies the condition xQ = 0 and xe = 1. Apparently

when the stability condition is satisfied the sub vectors of x , corresponding

to the different levels are given by the equation xj = x2R
j−2, j ≥ 3, where R

is the minimal non negative solution of the matrix quadratic equation (see

[50])

R2A2 +RA1 + A0 = 0. (3.1)

Knowing the matrix R, x0 , x1 and x2 are obtained by solving the equations

x0B00 + x1B10 = 0, (3.2)

x0B01 + x1B11 + x2B21 = 0 (3.3)
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and

x1B12 + x2(A1 +RA2) = 0 (3.4)

subject to the normalizing condition

x0 + x1e + x2(I −R)−1e = 1. (3.5)

Theorem 3.2.2. The matrix R of eqution (3.1) is given by

R =

 R11 R12

0 R22

 , where R11 =
(λ+µ1+θµ2+η−

√
(λ+µ1+θµ2+η)2−4λ(µ1+θµ2))
2(µ1+θµ2)

,

R12 = ρ− (µ1+θµ2)R11

(µ1+µ2)
and R22 = ρ.

Proof. Since A0, A1 and A2 are upper triangular, R is essentially an

upper triangular matrix. The value of R11 follows from the assertion that R

is the minimal non negative solution of (3.1). The rest of the proof is an easy

consequence of the condition RA2e = A0e.

Though the matrix R has a nice structure it may not be easy to carry

out the computations required in the forthcoming discussions. Hence we

explore the possibility of algorithmic computation of R. The computation of

R matrix can be carried out using a number of well known methods such as

logarithmic reduction algorithm.

3.2.3 Busy period analysis

For the system under study, busy period is the interval between arrival of a

customer to the empty system and the first epoch thereafter when the system
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becomes empty again. Thus it is precisely the first passage time from the

state (1, 0) to the state (0, 0). For the working vacation model, busy cycle

for the system is the time interval between two successive departures, which

leave the system empty. Thus the busy cycle is the first return time to state

(0, 0) with at least one visit to any other state. Before analyzing the busy

period structure, we need to introduce the notion of fundamental period. For

the QBD process under consideration, it is the first passage time from level i,

where i ≥ 3, to the level i−1. The cases i = 2, i = 1 and i = 0 corresponding

to the boundary states need to be discussed separately. It should be noted

that due to the structure of the QBD process the distribution of the first

passage time is invariant in i away from the boundary states.

Let Gjj′(k, x) denote the conditional probability that a QBD process,

starting in the state (i, j) at time t = 0 reaches the level i − 1 for the first

time no later than time x, after exactly k transitions to the left, and does

so by entering the state (i − 1, j′). For convenience we introduce the joint

transform

G̃jj′(z, s) =
∞∑
k=1

zk
∫ ∞
0

e−sxdGjj′(k, x) ; |z| ≤ 1, Re(s) ≥ 0

and the matrix

G̃(z, s) = (G̃jj′(z, s)).

The matrix G̃(z, s) is the unique solution to the equation (see [50])
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G̃(z, s) = z(sI − A1)
−1A2 + (sI − A1)

−1A0G̃
2(z, s). (3.6)

The matrix G = G̃(1, 0) takes care of the first passage times, except for the

boundary states. If we know the R matrix then G matrix can be computed

using the result (see [39])

G = −(A1 +RA2)
−1A2.

Otherwise we may use logarithmic reduction method to comput G. For the

boundary level states 2, 1 and 0 let G
(2,1)
jj′ (k, x), G

(1,0)
jj′ (k, x) and G

(0,0)
jj′ (k, x) be

the conditional probability discussed above for the first passage times from

level 2 to level 1, level 1 to level 0 and the first return time to the level 0

respectively. Then as in (3.6) we get

G̃(2,1)(z, s) = z(sI − A1)
−1B21 + (sI − A1)

−1A0G̃(z, s)G̃(2,1)(z, s), (3.7)

G̃(1,0)(z, s) = z(sI−B11)
−1B10 +(sI−B11)

−1B12G̃
(2,1)(z, s)G̃(1,0)(z, s) (3.8)

and

G̃(0,0)(z, s) = [λ/(s+ λ), 0, 0]G̃(1,0)(z, s). (3.9)

Note that G̃(1,0)(z, s) is a 3× 1 matrix. Thus the Laplace Stieltjes transform

(LST) of the busy period is the first element of G̃(1,0)(1, s). For convenience,

we use the notations

G21 = G̃(2,1)(1, 0), G10 = G̃(1,0)(1, 0) and G00 = G̃(0,0)(1, 0).
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Due to the positive recurrence of the QBD process, matrices G, G21, G10 and

G00 are all stochastic. If we let

C0 = (−A1)
−1A2 and C2 = (−A1)

−1A0,

then G is the minimal non negative solution (see [50]) to the matrix equation

G = C0 + C2G
2.

From equations (3.7), (3.8) and (3.9), we get

G21 = −(A1 + A0G)−1B21, (3.10)

G10 = −(B11 +B12G21)
−1B10 (3.11)

and

G00 = [1, 0, 0]G10 (3.12)

respectively. Equation(3.6) is equivalent to

zA2 − (sI − A1)G̃(z, s) + A0G̃
2(z, s) = 0. (3.13)

Let

M = − ∂G̃(z, s)

∂s

∣∣∣∣∣
z=1,s=0

and

M̃ =
∂G̃(z, s)

∂z

∣∣∣∣∣
z=1,s=0
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Differentiation of (3.13) with respect to s and z followed by setting z = 1

and s = 0 leads to (see [50])

M = −A−11 G+ C2(GM +MG)

and

M̃ = C0 + C2(GM̃ + M̃G)

With 0 as starting value for M and M̃ ,successive substitutions in the above

equations yields the values of M and M̃ . Applying an exactly similar rea-

soning to (3.7), (3.8) and (3.9), we get

M21 = −(A1 + A0G)−1(I + A0M)G21, (3.14)

M10 = −(B11 +B12G21)
−1(I +B12M21)G10 (3.15)

and

M00 = [1/λ, 0, 0]G10 + [1, 0]M10 (3.16)

where

M21 = − ∂G̃(2,1)(z, s)

∂s

∣∣∣∣∣
z=1,s=0

,

M10 = − ∂G̃(1,0)(z, s)

∂s

∣∣∣∣∣
z=1,s=0

and

M00 = − ∂G̃(0,0)(z, s)

∂s

∣∣∣∣∣
z=1,s=0

.
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Note that M10 is a 3 × 1 matrix and M00 is a scalar. The first element of

the matrix M10 and M00 are mean lengths of a busy period and a busy cycle

respectively. The second and third elements of the matrix M10 are the first

passage times to the state (0,0) from (1,1) and (1,2) respectively. With the

notations

M̃21 =
∂G̃(2,1)(z, s)

∂z

∣∣∣∣∣
z=1,s=0

and

M̃10 =
∂G̃(1,0)(z, s)

∂z

∣∣∣∣∣
z=1,s=0

It follows from equations (3.7) and (3.8) that

M̃21 = −(A1 + A0G)−1(B21 + A0MG21) (3.17)

and

M̃10 = −(B11 +B12G21)
−1(B10 +B12M21G10). (3.18)

The first component of the vector M̃10 is the mean number of service com-

pletions in a busy period.

3.2.4 Stationary waiting time in the queue

Let W (t) be the distribution function of the waiting time in the queue of an

arriving (tagged) customer. Note that if there is no customer in the system,

the arrival receives service immediately. If either of the two servers is not busy

then also there would be no delay in getting service. Thus the probability

that the customer gets service without waiting is x0 +x10 +x11 +x12. Hence,
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with probability 1 − x0 − x10 − x11 − x12, the customer has to wait before

getting service. The waiting time may be viewed as the time until absorption

in a Markov chain with state space

Ω1 = {*}
⋃
{2,3, .....}

Here * is the absorbing state, which corresponds to taking the tagged cus-

tomer into service and is obtained by lumping together the level states

0 = {(0, 0)} and 1 = {(1, 0), (1, 1), (1, 2)}. For i ≥ 2, the level i is given

by i = {(i, j), j = 1 or 2}. The states other than the absorbing state cor-

respond to the number of customers present in the system as the tagged

customer arrives. Once the tagged customer joins the queue, the subsequent

arrivals will not affect his waiting time in the queue. Hence the parameter

λ does not show up in the generator matrix Q̃ of this Markov process, given by

Q̃ =



∗ 2 3 . . .

∗

2 A2e D

3 A2 D

...
. . . . . .


, where D =

 −µ1 − θµ2 − η η

0 −µ1 − µ2

 .

Define

y(t) = (y∗(t),y2(t),y3(t), . . .),

where

yi(t) = (yi1(t), yi2(t)), for i ≥ 2.
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The components of yi(t) are the probabilities that at time t, the CTMC

with generator Q̃ is in the respective states of level i. Note that y∗(t) is

the probability that the process is in the absorbing state at time t. By the

PASTA property we may write

y(0) = (x0 + x11 + x10 + x12,x2,x3, . . .).

Clearly

W (t) = y∗(t), for t ≥ 0. (3.19)

The LST of y∗(t) is given by (see [50])

W̃ (s) =
∞∑
i=2

yi(0)[(sI −D)−1A2]
i−2(sI −D)−1A2e. (3.20)

The mean waiting time can be obtained from W(s) as

E(W ) = −W̃ ′(0) =
∞∑
i=1

x2+i

i−1∑
j=0

U j(−D)−1U i−jUe +
∞∑
i=0

x2+iU
i(−D)−2A2e.

(3.21)

where U = (−D)−1A2 is a stochastic matrix. Hence the expression for E(W )

given by (3.21) can be simplified as

E(W ) = −W̃ ′(0) =
∞∑
i=1

x2+i

i−1∑
j=0

U j(−D)−1e +
∞∑
i=0

x2+iU
i(−D)−1e (3.22)

Let

H =
∞∑
i=0

x2+iU
i
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Since U is stochastic, we get

He = x2(I −R)−1e = 1− x0 − x10 − x11 − x12.

This result can be used to find an approximate value of H and hence that

of the second term in the expression for E(W ), given by equation (3.22) to

any desired degree of accuracy. Thus only the first term in equation (3.22)

demands serious computation. For this we make use of the ideas in [47], [49]

and [33]. Now consider the matrix

U2 =

 0 1

0 1


which has the property that

UU2 = U2U = U2.

Then we get

i−1∑
j=0

U j(I − U + U2) = I − U i + iU2, for i ≥ 1.

By the classical theorem on finite Markov chains, the matrix (I −U +U2) is

nonsingular (see [31]). In view of the last equation, the first term in equation

(3.22) becomes [
∑∞

i=1 x2+i(I − U i + iU2)](I − U + U2)
−1(−D)−1e.



3.2. Steady-state analysis 47

With this simplification, we get

E(W ) = [x2(R(I −R)−1 + I +R(I −R)−2U2)−H](I −U +U2)
−1(−D)−1e+

H(−D)−1e

3.2.5 Conditional stochastic decomposition of queue length

In this section we provide a stochastic decomposition of queue length in the

stationary regime, subject to the condition that both servers are busy. Note

that from equations (3.2)-(3.5) we get x0, x10, x11, x12, x21 and x22. Let

Qv be the queue length of the vacation model under study, subject to the

condition that both servers are busy. Then we have

Theorem 3.2.3. If ρ < 1, then Qv = Q0 + Qd, where Q0 and Qd are

two independent random variables. Q0 is the queue length of the M/M/2

queueing model with heterogeneous servers without vacation and Qd can be

interpreted as the additional queue length due to vacation and consequent

slow service, subject to the condition that both servers are busy.

Proof. Let Pb denote the Probability that both servers are are busy. Then

Pb =
∞∑
n=2

xn2 =
∞∑
n=2

x22ρ
n−2 +

∞∑
n=3

x21R12

n−3∑
j=0

Rj
11ρ

n−j−3

.

= x22ρ

∞∑
k=0

ρk + x21R12

∞∑
k=0

Rk
11

∞∑
k=0

ρk ; k = n− 3

= (1− ρ)−1(x22ρ+ x21R12(1−R11)
−1)
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so that

1

Pb
= (1− ρ)(x22ρ+ x21R12(1−R11)

−1)−1 = (1− ρ)δ,

where

δ = (x22ρ+ x21R12(1−R11)
−1)−1.

Qv(z), the generating function of the queue length subject to the condition

that both servers are busy, is given by

Qv(z) =
1

Pb

∞∑
n=2

xn1z
n−2 =

1

Pb

∞∑
n=2

x22ρ
n−2zn−2+

1

Pb

∞∑
n=3

(x21R12

n−3∑
j=0

Rj
11ρ

n−j−3)zn−3.

By following a computational procedure similar to that of Pb, we arrive at

Qv(z) =
1− ρ
1− ρz

{
δ

(
x22ρz +

x21R12

1−R11z

)}

= Q0(z)Qd(z)

where

Q0(z) =
1− ρ
1− ρz

(3.23)

and

Qd(z) = δ

(
x22ρz +

x21R12

1−R11z

)
. (3.24)

From (3.23) it follows that Q0(z) is the generating function of an M/M/2

heterogeneous queuing model without vacations, which is precisely the case

β = 1 in [57]. Relation (3.24) suggests that Qd has a geometric distribution

with parameter 1−R11.
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Remark: Due to the algorithmic approach used in the derivation of

stationary waiting time distribution, a similar decomposition result for the

waiting time is far from reality.

3.2.6 Key system performance measures

In this section we list a number of key system performance measures along

with their formulae in addition to the busy period structure and the mean

waiting time discussed above.

1. Probability that the system is empty: PEMP = x0.

2. Probability that the server 1 is idle: PIDL = x0 + x11 + x12.

3. Probability that the server 2 is on vacation: PV AC = x0 + x10.

4. Probability that the server 2 is working in vacation mode:

PSLOW =
∑∞

j=1 xj1 = x11 + x21
(1−R11)

.

5. Probability that the server 2 is working in normal mode:

PNORM = 1− x0 − PSLOW

6. Mean number of customers in the system:

µNS =
∑∞

j=1 jxje = x10 + x11 + x12 + x2(I −R)−2R−1e− x2R
−1e

3.3 Numerical Results

ILLUSTRATIVE EXAMPLE 3.1: We analyze the effect of the paramet-

ers λ, η and θ on the key performance measures in tables 3.1, 3.2 and 3.3

respectively. To this end we use the following abbreviations.
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µWTQ : Mean waiting time in the queue.

µLBP : Mean length of a busy period.

µLBC : Mean length of a busy cycle.

µNSBP : Mean number of service completions in a busy period.

Table 3.1

case A : µ1 = 10, µ2 = 5, η = 1 and θ = 0.6.

case B : µ1 = 5, µ2 = 10, η = 1 and θ = 0.6.

λ A/B PV AC PIDL PSLOW PNORM µNS µWTQ µLBP µLBC µNSBP

A 0.913 0.829 0.065 0.022 1.676 0.002 0.080 0.496 1.167

2 B 0.916 0.707 0.070 0.014 2.176 0.005 0.125 0.482 1.17

A 0.745 0.687 0.168 0.087 1.934 0.009 0.067 0.246 1.128

4 B 0.755 0.520 0.188 0.057 2.301 0.016 0.097 0.236 1.156

A 0.568 0.550 0.246 0.186 2.189 0.017 0.062 0.166 1.121

6 B 0.574 0.374 0.296 0.130 2.60 0.031 0.088 0.164 1.203

A 0.405 0.414 0.285 0.311 2.547 0.027 0.062 0.132 1.172

8 B 0.399 0.251 0.363 0.238 3.178 0.047 0.094 0.143 1.362

A 0.262 0.282 0.278 0.460 3.193 0.036 0.072 0.122 1.340

10 B 0.245 0.150 0.365 0.390 4.282 0.062 0.120 0.153 1.755

A 0.141 0.158 0.218 0.641 4.702 0.043 0.106 0.144 1.849

12 B 0.123 0.074 0.282 0.595 6.626 0.069 0.191 0.216 2.818

A 0.042 0.049 0.092 0.866 11.885 0.047 0.294 0.324 4.659

14 B 0.034 0.020 0.113 0.853 16.043 0.064 0.566 0.585 8.418

Table 3.2

Case A : λ = 12, µ1 = 10 , µ2 = 5 and θ = 0.6.

Case B : λ = 12, µ1 = 5 , µ2 = 10 and θ = 0.6.

η A/B PV AC PIDL PSLOW PNORM µNS µWTQ µLBP µLBC µNSBP

A 0.092 0.112 0.333 0.575 5.575 0.059 0.137 0.174 2.20

0.1 B 0.044 0.028 0.451 0.506 14.857 0.209 0.536 0.56 6.952

A 0.104 0.125 0.306 0.589 5.314 0.054 0127 0.165 2.086

0.2 B 0.064 0.04 0.408 0.528 10.582 0.137 0.365 0.39 4.907

A 0.113 0.133 0.287 0.600 5.169 0.051 0.121 0.159 2.019

0.3 B 0.078 0.048 0.379 0.543 9.044 0.111 0.301 0.326 4.137

A 0.119 0.140 0.272 0.608 5.066 0.049 0.117 0.155 1.974

0.4 B 0.088 0.054 0.357 0.555 8.232 0.097 0.266 0.290 3.714

A 0.125 0.144 0.26 0.615 4.983 0.047 0.114 0.152 1.941

0.5 B 0.097 0.059 0.340 0.564 7.724 0.088 0.243 0.268 3.442

A 0.129 0.148 0.250 0.622 4.914 0.046 0.112 0.150 1.915

0.6 B 0.103 0.063 0.325 0.572 7.374 0.082 0.227 0.252 3.248
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Table 3.3

Case A : λ = 12, µ1 = 10 , µ2 = 5 and η = 1.

Case B : λ = 12, µ1 = 5 , µ2 = 10 and η = 1.

θ A/B PV AC PIDL PSLOW PNORM µNS µWTQ µLBP µLBC µNSBP

A 0.073 0.112 0.167 0.761 4.402 0.044 0.158 0.195 2.439

0.1 B 0.042 0.034 0.188 0.770 8.45 0.105 0.507 0.531 6.601

A 0.085 0.121 0.178 0.737 4.504 0.044 0.144 0.182 2.286

0.2 B 0.053 0.039 0.207 0.740 8.126 0.098 0.420 0.444 5.556

A 0.098 0.13 0.190 0.713 4.581 0.044 0.133 0.171 2.152

0.3 B 0.066 0.046 0.226 0.708 7.762 0.091 0.345 0.370 4.664

A 0.112 0.139 0.200 0.689 4.638 0.044 0.123 0.161 2.036

0.4 B 0.082 0.054 0.246 0.673 7.379 0.084 0.283 0.308 3.918

A 0.126 0.149 0.209 0.664 4.678 0.044 0.114 0.152 1.936

0.5 B 0.101 0.063 0.265 0.635 6.995 0.076 0.232 0.257 3.307

A 0.141 0.158 0.218 0.641 4.702 0.043 0.106 0.144 1.849

0.6 B 0.123 0.074 0.282 0.595 6.626 0.069 0.191 0.216 2.818

• Let us first examine table 1. Since µ1 and µ2 are fixed, the traffic in-

tensity ρ increases with λ. Due to this PNORM , µNS and µWTQ increase

and PV AC and PIDL decrease as λ increases. Note that the busy pe-

riod starts with the Markov chain in the state (1, 0); i.e. with server

2 on vacation. Hence initially PSLOW increases with λ. For this rea-

son µLBP , µLBC and µNSBP show an early downward trend. But as

λ further increases PSLOW declines as expected due to the high traffic

intensity. Hence µLBP and µNSBP reverse the direction of change. Due

to the effect of PV AC and PIDL this reversal occurs only at a later stage

for µLBC . It is worth comparing the values of the measures in cases A

and B. Even though the net service rate µ1 +µ2 = 15 in both cases, the

effect of the vacation parameter η becomes more predominant when

µ1 < µ2. Due to this the measures PV AC and PIDL take smaller values

and the measures µNS, µWTQ, µLBP and µNSBP take larger values in

case B, compared to their values in case A.
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• Next let us analyze the results shown in table 2. As η increases, the

mean duration of vacation decreases. This reduces the probability

PSLOW of service in vacation mode. Thus chance of an early expiry of

vacation always results in an increase in PNORM and PV AC . Note that

PV AC + PSLOW decreases as η increases and PV AC + PSLOW < PNORM

for any value of η in the given range. So PIDL increases with η. Thus

the proportion of time in which both servers work at the normal rate

increases as η increases. Hence the measures µNS, µWTQ, µLBP , µLBC

and µNSBP decrease as η increases. The argument given in the pre-

vious paragraph holds here also for the difference in magnitude of the

measures in cases A and B.

• Finally we consider table 3 to study the effect of the parameter θ. As

θ increases, the service rate θµ2 of the second server in vacation mode

of service, increases. As a result server 2 clears out customers at an

increased rate in slow service mode. This produces an increase in PV AC ,

PSLOW and PIDL and a decrease in PNORM as expected. Consequently

µLBP , and µLBC and µNSBP decrease as θ increases. The huge difference

in the value of net service rate µ1 + θµ2 between cases A and B in

vacation mode of service, is the reason for the pattern of behavior of

µNS in these two cases. Increase in θ does not affect µWTQ significantly

in case A, but it affects the measure in case B. This is because the

effect of θ becomes significant only when µ2 is large compared to µ1.
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3.4 Comparison of models discussed in chapters 2 and 3

In chapter 2 we discussed an M/M/2 queueing system with heterogeneous

servers, where one server takes multiple vacations in the absence of customers

waiting for service. This server would be available in the system only if there

is a customer waiting for service on expiry of a vacation. But in the model

discussed in chapter 3 the vacation of the server is interrupted the moment an

arrival finds the other server busy. Thus under the working vacation policy,

the vacationing server is made available in the system as and when there is

a demand for service. As a result the waiting time of a customer is very

less in the model discussed in chapter 3 compared to that in chapter 2. The

numerical illustrations provided in these two chapters justify our arguments.

Further it distributes the customers more evenly among the two servers and

hence manages the system more efficiently.



4. MAP/PH/1 QUEUE WITH WORKING VACATIONS,

VACATION INTERRUPTIONS AND N POLICY

In chapters 2 and 3, we considered the case of a two server system where

the second server goes on a vacation, whenever no customer is found waiting

at the end of a service. This server followed a simple vacation policy in the

model discussed in chapter 2 and a working vacation policy in the model

of chapter 3. These two queueing models were with Poisson arrivals and

exponential service times. In reality these assumptions are very restrictive

though they make the system analytically more tractable. The traffic in

modern communication network is highly irregular. Of late to model systems

with repeated calls and bursty arrivals MAP (Markovian arrival process)

is used. The MAP is a tractable class of point process which is in general

nonrenewal. However by choosing the parameters of the MAP appropriately

the underlying arrival process can be made a renewal process. The MAP can

represent a variety of processes which includes, as special cases, the Poisson

process, the phase-type renewal processes, the Markov modulated Poisson

process and superpositions of these.

Here we consider a single server queueing model in which customers ar-

rive according to a Markovian arrival process with representation (D0, D1) of

0 To appear in Applied Mathematical Modelling
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order m. The service times are assumed to be of phase type with represen-

tation (α, T ) of order n. At a service completion epoch the server, finding

the system empty, takes a vacation. The duration of vacation is assumed to

be exponentially distributed with parameter η. A customer arriving during

a vacation will be served at a lower rate. To be precise, the service time

during vacation follows phase type distribution with representation (α, θT ),

0 < θ < 1. Thus µ = [α(−T )−1e]−1 is the normal service rate and θµ is

the rate of the vacation mode of service. The server continues to serve at

this rate until either the vacation clock expires or the queue length hits the

threshold value N , 1 ≤ N <∞. When either of these two occurs the server

instantaneously switches over to the normal rate and continues to serve at

this rate until the system becomes empty.

Let Q∗ = D0 + D1 be the generator matrix of the arrival process and π

be the stationary probability vector of the Markov process with generator

Q∗. That is, π is the unique (positive) probability vector satisfying

πQ∗ = 0, πe = 1. (4.1)

The constant λ = πD1e, referred to as the fundamental rate , gives the

expected number of arrivals per unit of time in the stationary version of the

MAP . Often, in model comparisons, it is convenient to select the time scale

of the MAP so that λ has a certain value. That is accomplished, in the

continuous MAP case, by multiplying the coefficient matrices D0 and D1,

by the appropriate common constant.
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4.1 The QBD process

The model described in Section 1 can be studied as a quasi-birth-and-death

(QBD) process. First, we set up necessary notations.

Define N(t) to be the number of customers in the system at time t,

S1(t) =

 0, if the service is in vacation mode,

1, if the service is normal,

S2(t) is the phase of the service process when the server is busy and M(t)

to be the phase of the arrival process at time t. It is easy to verify that

{(N(t), S1(t), S2(t),M(t)) : t ≥ 0} is a level independent quasi-birth-and-

death process (LIQBD) with state space

Ω =
∞⋃
i=0

l(i)

where

l(0) = {(0, 1), (0, 2), . . . (0,m)}

and for i ≥ 1,

l(i) = {(i, j1, j2, k) : j1 = 0 or 1; 1 ≤ j2 ≤ n; 1 ≤ k ≤ m}.

Note that when N(t) = 0, server will be on vacation and so S1(t) and S2(t)

do not play any role and will not be tracked. The only other component in

the state vector would be M(t).
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The generator, Q, of the QBD process under consideration is of the form

Q =



D0 C0

C2 B1 I ⊗D1

. . . . . . . . .

B2 B1 I ⊗D1

B2 B1 e⊗ I ⊗D1

e′2(2)⊗T0α⊗ I A1 A0

A2 A1 A0

. . . . . . . . .



,

where the (block) matrices appearing in Q are as follows.

C0 = [α⊗D1 O], C2 =

 θT0 ⊗ I

T0 ⊗ I

 ,

B1 =

 θT ⊕D0 − ηI ηI

O T ⊕D0

 , B2 =

 θT0α⊗ I O

O T0α⊗ I



A0 = I ⊗D1, A1 = T ⊕D0, A2 = T0α⊗ I.

The boundary blocks B1 and B2 are of order 2mn × 2mn, C0 and C2 are

of orders m × 2mn and 2mn × m respectively. A0, A1 and A2 are square

matrices of order mn.
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4.1.1 The steady-state probability vector

Defining A = A0 + A1 + A2 and δ to be the steady-state probability vector

of the irreducible matrix A, it is easy to verify that the vector δ satisfying

δA = 0, δe = 1,

is given by

δ = (µα(−T )−1 ⊗ π), (4.2)

where π as given in (4.1).

The condition δA0e < δA2e, required for the stability of the queueing

model under study (see [50]) reduces to λ < µ.

Let x be the steady-state probability vector of Q. Partitioning this vector

as

x = (x0,x1,x2 . . . , . . . ,xN ,xN+1, . . .),

where x0 is of dimension m; x1,x2, . . .xN are of dimension 2mn; and xN+1,

xN+2, . . . are of dimension mn. Under the condition that λ < µ, the steady-

state probability vector x is obtained as follows.

xN+i = xN+1R
i−1, i ≥ 1, (4.3)

where the matrixR is the minimal nonnegative solution to the matrix quadratic

equation

R2A2 +RA1 + A0 = 0. (4.4)
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and the vectors x0, · · · , xN+1 are obtained by solving

x0D0 + x1C2 = 0,

x0C0 + x1B1 + x2B2 = 0,

xi−1(I ⊗D1) + xiB1 + xi+1B2 = 0, 2 ≤ i ≤ N − 1,

xN−1(I ⊗D1) + xNB1 + xN+1(e
′
2(2)⊗T0α⊗ I) = 0,

xN(e⊗ I ⊗D1) + xN+1(A1 +RA2) = 0,

subject to the normalizing condition

N∑
i=0

xie + xN+1(I −R)−1e = 1.

The computation of the vectors x0, · · · ,xN+1 can be carried out by exploiting

the special structure of the coefficient matrices and the details are omitted.

For use in the sequel, we partition xi = (ui, vi), 1 ≤ i ≤ N, where ui and vi

are of dimension mn.

4.1.2 The stationary waiting time distribution in the Queue

The stationary waiting time distribution in the queue of a customer is derived

here. We obtain this by conditioning on the fact that at an arrival epoch

the server is serving in normal mode or in vacation mode. First note that

an arriving customer will enter into service immediately (at a lower service
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rate) when the server is on vacation. Otherwise, the customer has to wait

before getting into service (either at a lower rate or normal rate).

4.1.3 Conditional waiting time in the queue (Normal mode)

Here we condition that an arriving customer finds the server busy serving

in normal mode. First note that in this case, the waiting time is always

positive. We now define zi,j to be the steady-state probability that an arrival

finds the server busy in normal mode with the current service in phase j,

and the number of customers in the system including the current arrival to

be i, for 1 ≤ j ≤ n, i ≥ 2. Let zi = (zi,1, zi,2, . . . , zi,n) and z = (0, z2, z3, . . .).

Then it is easy to verify that

zi =



vi−1(I ⊗ D1

λ
e), 2 ≤ i ≤ N,

(uN + vN)(I ⊗ D1

λ
e), i = N + 1,

xi−1(I ⊗ D1

λ
e), i ≥ N + 2.

The waiting time may be viewed as the time until absorption in a Markov

chain with a highly sparse structure. The state space (that includes the

arriving customer in its count) of this Markov chain is given by Ω1 = {∗} ∪

{(i, j) : i ≥ 2, 1 ≤ j ≤ n}. The state ∗ corresponds to the absorbing state

indicating the completion of waiting for the service. It is easy to verify that
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the generator, Q̃1, of this Markov process is of the form

Q̃1 =



0 O

T0 T

T0α T

T0α T

. . . . . .


Define W (t), t > 0 to be the probability that an arriving customer will enter

into service no later than time t conditioned on the fact that the service is

in normal mode. Let W̃normal(s) denote the Laplace-Stieltjes transform of

the conditional stationary waiting time in the queue of an arriving customer

during the normal service mode. Using the structure of Q̃1 it can readily be

verified that the following result holds good.

Theorem 4.1.1. The LST of the conditional waiting time distribution

of an arriving customer, finding the server busy in normal mode, is given by

W̃normal(s) = c

∞∑
i=2

zi(sI − T )−1T0[α(sI − T )−1T0]i−2, Re(s) ≥ 0, (4.5)

where the normalizing constant c is given by

c =

[
∞∑
i=2

zie

]−1
. (4.6)

Note: The conditional mean waiting time, µ′normal in the queue of an

arrival finding the server to be busy in normal mode soon after the arrival is
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calculated as

µ′normal = −W̃ ′
normal(0) = c

∞∑
i=2

zi(−T )−1e+
c

µ

∞∑
i=2

(i− 2)zie.

Substituting for zi in the last equation, we get µ′normal in the simplified form

as

µ′normal = c
λ
[
∑N

i=1 vi + uN + xN+1(I −R)−1][(−T )−1e⊗D1e]

+ c
λµ

[
∑∞

i=1 vi + (N − 1)uN +NxN+1(I −R)−1 + xN+1R(I −R)−2][e⊗D1e].

4.1.4 Conditional waiting time in the queue (vacation mode)

The conditional stationary waiting time in the queue of an arriving customer

given that the server is busy in vacation mode at that instant is derived

here. Let wi,j2,k; 1 ≤ i ≤ N ; 1 ≤ j2 ≤ n; 1 ≤ k ≤ m denote the steady-state

probability that a customer immediately after arrival, finds the server busy

in vacation mode with the service in phase j2 and the number of customers

in the system (including the current arrival) to be i and the arrival process

is in phase k. Let wi = (wi,1,1, · · · , wi,n,m). It is easy to verify that

wi =


x0(α⊗ D1

λ
), i = 1,

ui−1(I ⊗ D1

λ
), 2 ≤ i ≤ N.

Observe that the conditional waiting time in the queue of an arriving cus-

tomer, finding the server busy in vacation mode, depends on the future
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arrivals due to threshold N placed on the system for bringing the service rate

to normal. Also note that with probability dw1e (the normalizing constant

d is given below) an arriving customer will enter into service immediately

with service in vacation mode. Thus, for the case of positive waiting time

in the queue for an arriving customer, we need to keep track of the phase of

the arrival process until the service rate comes to normal mode either due to

meeting the threshold N or due to the vacation getting completed. Towards

this end, we define the following set of states.

Let (i, j, j2, k) : 1 ≤ i ≤ N − 1; 1 ≤ j ≤ i; 1 ≤ j2 ≤ n; 1 ≤ k ≤ m,

denote the state that corresponds to the server being in vacation mode with

i customers in the queue; the arriving customer’s position in the queue is j;

the current service is in phase j2 and the arrival process is in phase k. Define

(i∗, j2) : 1 ≤ i∗ ≤ N − 1; 1 ≤ j2 ≤ n, to be the state that corresponds to the

server serving in normal mode with the position of the tagged customer in

the queue being i∗ and the current service in phase j2.

Let i = {(i, j, j2, k) : 1 ≤ j ≤ i; 1 ≤ j2 ≤ n; 1 ≤ k ≤ m}, 1 ≤ i ≤ N − 1, and

i∗ = {(i∗, j2), 1 ≤ j2 ≤ n}, 1 ≤ i∗ ≤ N − 1.

Before we formally state the result we need the following notations.

• Ĩr is a matrix of dimension r × r + 1 of the form

Ĩr =

(
Ir O

)
, 1 ≤ r ≤ N − 2.

• Îr is a matrix of dimension r ×N − 1 of the form

Îr =

(
Ir O

)
, 1 ≤ r ≤ N − 1.
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• Īr is a matrix of dimension r × r − 1 of the form

Īr =

 O

Ir−1

 , 2 ≤ r ≤ N − 1.

• Ir is the identity matrix of dimension r

• d is the normalizing constant given by d =
[∑N

i=1 wie
]−1

.

Let

L1,1 =



T

T0α T

T0α T

. . . . . .

T0α T


, L2,1 =



ηÎ1 ⊗ I ⊗ e

ηÎ2 ⊗ I ⊗ e

...

ηÎN−2 ⊗ I ⊗ e

IN−1 ⊗ (ηI ⊗ e + I ⊗D1e)


,

L2,2 =



B̃1 Ĩ1 ⊗ I ⊗D1

F2 I2 ⊗ B̃1 Ĩ2 ⊗ I ⊗D1

F3 I3 ⊗ B̃1 Ĩ3 ⊗ I ⊗D1

. . . . . .

FN−1 IN−1 ⊗ B̃1


,

and

B̃1 = (θT ⊕D0)− ηI;FK = θĪK ⊗T0α⊗ I, 2 ≤ K ≤ N − 1. (4.7)

Under this setup, it can readily be verified that
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Theorem 4.1.2. The conditional waiting time distribution in the queue

of a customer, finding the server in vacation mode on arrival, is of phase type

with representation (γ, L) of order [(N − 1)n+ 1
2
N(N − 1)mn] where

γ = d(0,w2, e
′
2(2)⊗w3, e

′
3(3)⊗w4, · · · , e′N−1(N − 1)⊗wN),

and

L =

 L1,1 0

L2,1 L2,2

 .

Note: The conditional mean waiting time, µ′vacation, in the queue of an

arrival finding the server busy in vacation mode on arrival is calculated as

µ′vacation = γ(−L)−1e. The computation of this mean is achieved by exploiting

the special structure of γ and L. We will briefly present the steps involved

in this.

Define

γ(−L)−1 = (a, b),

and partition the vectors a and b as

a = (a1, · · · ,aN−1),

b = (b1,1, b2,1, b2,2, · · · , bN−1,1, · · · , bN−1,N−1),

where ai, 1 ≤ i ≤ N − 1, is of dimension n and bi,j, 1 ≤ j ≤ i, 1 ≤ i ≤ N − 1,

is of dimension of mn. The vectors ai and bi,j are ideally suited for solving

using any of the well-known methods such as (block) Gauss-Seidel. The



4.1. The QBD process 67

necessary equations are as follows.

a1 = a2T
0α(−T )−1 + η

∑N−1
r=1 br,1(−T−1 ⊗ e) + bN−1,1(−T−1 ⊗D1e),

ai = ai+1T
0α(−T )−1 + η

∑N−1
r=i br,i(−T−1 ⊗ e) + bN−1,i(−T−1 ⊗D1e),

2 ≤ i ≤ N − 2,

aN−1 = ηbN−1,N−1(−T−1 ⊗ e) + bN−1,N−1(−T−1 ⊗D1e),

b1,1 = [w2 + θb2,2(T
0α⊗ I)](−B̃1)

−1,

bi,1 = [bi−1,1(I ⊗D1) + θbi+1,2(T
0α⊗ I)](−B̃1)

−1, 2 ≤ i ≤ N − 2,

bi,j = [bi−1,j(I ⊗D1) + θbi+1,j+1(T
0α⊗ I)](−B̃1)

−1,

2 ≤ j ≤ i− 1; 2 < i ≤ N − 2,

bi,i = [wi+1 + θbi+1,i+1(T
0α⊗ I)](−B̃1)

−1, 2 ≤ i ≤ N − 2,

bN−1,j = bN−2,j(I ⊗D1)(−B̃1)
−1, 1 ≤ j ≤ N − 2,

bN−1,N−1 = wN(−B̃1)
−1,

subject to the condition

a1T
0 + θ

N−1∑
i=1

bi,1(T
0 ⊗ e) = 1− dw1e.
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Once ai, 1 ≤ i ≤ N − 1, and bi,j, 1 ≤ j ≤ i; 1 ≤ i ≤ N − 1, are extracted

from the above equations, the mean µ′vacation is given by

µ′vacation =
N−1∑
i=1

[
aie +

i∑
j=1

bi,je

]
.

The stationary waiting time in the queue

From the knowledge of conditional stationary waiting time in the queue, one

can get the (unconditional) stationary waiting time in the queue; the details

are omitted.

Note: The (unconditional) mean, µ′WTQ, waiting time of a customer in the

queue is obtained as

µ′WTQ = 1
λ

[∑N
i=1 vi + uN + xN+1(I −R)−1

]
[(−T )−1e⊗D1e]

+ 1
λµ

[
∑∞

i=1 vi + (N − 1)uN +NxN+1(I −R)−1 + xN+1R(I −R)−2] [e⊗D1e]

+1
d

∑N−1
i=1

[
aie +

∑i
j=1 bi,je

]
.

4.2 Analysis of slow service mode

In this section we will discuss the duration of the server spending in slow

service mode as well as the number of visits to level 0 before hitting normal

service mode.
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4.2.1 Distribution of a slow service mode

The duration, Tslow, in slow service mode is defined as the time the server

starts in slow service mode (through initiating a working vacation) until ei-

ther the server takes another vacation or the server gets back to normal mode

through the working vacation expiring or the working vacation is interrupted

as the queue length hits the threshold value N . In this section we will show

that the random variable Tslow can be studied as the time until absorption in

a finite state continuous time Markov chain with two absorbing states. We

first define

γM = c1(α⊗ x0D1,0),

M =



B̃1 I ⊗D1

θ(T0α⊗ I) B̃1 I ⊗D1

θ(T0α⊗ I) B̃1 I ⊗D1

. . . . . .

θ(T0α⊗ I) B̃1


,

M0
1 =



θ(T0 ⊗ e)

0

...

0


, M0

2 =



ηe

ηe

...

ηe

ηe + (e⊗D1e)


,

where c1 = [x0D1e]−1 is the normalizing constant and B̃1 is as given in (4.7).

The matrix M is of dimension Nmn. First note that the probability, pslow,

that the server will serve only in slow mode before taking another vacation
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is given by pslow = γM(−M)−1M0
1. We now have the following result.

Theorem 4.2.1. The (conditional) probability density function of Tslow,

conditioned on the fact that the slow service mode ends through the server

taking another vacation, is given by

fTslow(y) =
1

pslow
γMe

MyM0
1, y ≥ 0. (4.8)

Given that the slow service mode ends through the server taking another

vacation the (conditional) mean time spent in slow mode can be calculated

as

µ′SM =
1

pslow
γM(−M)−2M0

1. (4.9)

Note: 1. The special structure of γM ,M, and M0
1 is to be exploited when

computing this mean. The details are similar to the computation of µ′vacation

and hence omitted.

2. By a similar argument we can get the (conditional) probability

density function of Tslow and the mean, conditioned on the fact that the

server ends the slow service mode by entering into the normal rate. The

details are omitted.

4.2.2 Distribution of the number of visits to level 0 before hitting normal

service mode

We consider the queueing system at an arrival epoch that finds the server in

vacation. At this instant the service will start in slow mode. The quantity

that is of interest here is the probability mass function {pk, k ≥ 0}, of the
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number of visits to level 0 before hitting normal service mode. This mass

function and its associated measures such as mean and standard deviation,

play an important role in the qualitative study of the model under consider-

ation. Using the set up in 4.2.1 it can easily be verified that

pk = γM(−M)−1BkM0
2, k ≥ 0, (4.10)

where

B = θ
[
(eN(1)e′N(1)⊗T0α⊗ (−D0)

−1D1)
]

(−M)−1. (4.11)

Note: It is easy to see that the mean number of visits to level 0 before

hitting level N + 1, µNV Z , is obtained as

µNV Z = γM(−M)−1B(I −B)−2M0
2. (4.12)

The computation of µNV Z can be carried out by exploiting the special struc-

ture of γM ,M, and B. Below, we will outline the main steps. Towards this

end, we first define

γM(−M)−1 = (d1, · · · ,dN), (4.13)

where the vectors di, 1 ≤ i ≤ N , are of dimension nm, and their computation

is very similar to the one discussed in finding µ′vacation. From (4.11) it is clear
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that B is of the form

B =



B1 B2 BN

0 0 0

...
...

...

0 0 0


,

where the matrices Bi, 1 ≤ i ≤ N, of order nm are obtained by solving the

following equations that are ideally suited for any of the well-known methods

such as (block) Gauss-Seidel.

B1 = θ[B2(T
0α⊗ I) + (T0α⊗ (−D0)

−1D1)](−B̃1)
−1,

Bi = [Bi−1(I ⊗D1) + θBi+1(T
0α⊗ I)](−B̃1)

−1, 2 ≤ i ≤ N − 1,

BN = BN−1(I ⊗D1)(−B̃1)
−1,

subject to the condition

θB1(T
0 ⊗ e) +BN(e⊗D1e) + η

N∑
i=1

Bie = θ(T0 ⊗ e),

and B̃1 is as given in (4.7). Using the facts that

pslow = θd1(T
0 ⊗ e) and µNV Z = γM(−M)−1(I −B)−2M0

2 − 1,
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and the special form of B, it can easily be verified that

µNV Z = θd1(I −B1)
−1(T0 ⊗ e).

4.2.3 The uninterrupted duration of a vacation

The duration of the time the server is in uninterrupted vacation(s) is the

interval between the epoch at which the server goes on vacation and the next

arrival epoch. It is easy to verify that this duration is of phase type with

representation (ξ, D0) of dimension m, where ξ = c2(θu1 + v1)(T
0 ⊗ I) and

c2 is the normalizing constant given by c2 = [(θu1 + v1)(T
0 ⊗ e)]−1. The

mean, µUIV , is calculated as µUIV = ξ(−D0)
−1e.

4.2.4 Key system performance measures

In this section we list a number of key system performance measures to bring

out the qualitative aspects of the model under study. The measures are listed

below along with their formulae for computation.

1. Probability that the server is on vacation: PV AC = x0e.

2. Probability that the server is serving at a lower rate: PLR =
∑N

i=1 uie.

3. Probability that the server is serving at a normal rate rate:

PNR =
∑N

i=1 vie + xN+1(I −R)−1e.

4. Mean number of customers in the system:

µNS =
∑N

i=1 i(ui + vi)e +NxN+1(I −R)−1e + xN+1(I −R)−2e.
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4.3 Numerical Results

For the arrival process we consider the following five sets of matrices for D0

and D1.

1. Erlang (ERA)

D0 =



−5 5

−5 5

−5 5

−5 5

−5


D1 =


5


2. Exponential (EXA)

D0 = (−1), D1 = (1)

3. Hyperexponential (HEA)

D0 =

 −10 0

0 −1

 D1 =

 9 1

0.9 0.1


4. MAP with negative correlation (MNA)

D0 =


−2 2 0

0 −2 0

0 0 −450.5

 D1 =


0 0 0

0.02 0 1.98

445.995 0 4.505


5. MAP with positive correlation (MPA)

D0 =


−2 −2 0

0 −2 0

0 0 −450.5

 D1 =


0 0 0

1.98 0 0.02

4.505 0 445.995


All these five MAP processes are normalized so as to have an arrival rate of 1.

However, these are qualitatively different in that they have different variance
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and correlation structure. The first three arrival processes, namely ERA,

EXA, and HEA, correspond to renewal processes and so the correlation is

0. The arrival process labelled MNA has correlated arrivals with correlation

between two successive inter-arrival times given by -0.4889 and the arrival

process corresponding to the one labelled MPA has a positive correlation

with value 0.4889. The ratio of the standard deviations of the inter-arrival

times of these five arrival processes with respect to ERA are, respectively, 1,

2.2361, 5.0194, 3.1518, and 3.1518.

For the service time distribution we consider the following two phase type

distributions.

1. Erlang (ERS)

α = (1, 0) T =

 −2 2

0 −2


2. Hyperexponential (HES)

α = (0.9, 0.1) T =

 −1.90 0

0 −0.19


The above two distributions will be normalized to have a specific mean in

our illustrative example. Note that these are qualitatively different in that

they have different variances. The ratio of the standard deviation of HES

to that of ERS is 3.1745.

ILLUSTRATIVE EXAMPLE 4.1: The purpose of this example is to

see how various system performance measures behave under different scenar-

ios. We fix λ = 1, µ = 1.1, and θ = 0.6. First we look at the effect of varying
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N and η on the performance measures: (conditional) mean duration of ser-

vice in slow mode which ends in the server taking another vacation and the

mean number of visits to level zero before hitting the normal service mode.

In the following we summarize the observations based on the graphs of these

performance measures.

• Consider figures 4.1 and 4.2. An increase in η leads to a decrease in the

mean duration of vacation. Hence a switching from the lower service

rate to the normal one occurs more frequently. Once the service rate

is brought back to normal, the server clears out the customers at a

faster rate. So the measure PV AC appears to increase as η increases.

This is true for all values of N and for all combinations of arrival and

service processes under study. As N increases the duration of vacation

mode of service gets extended, as is expected. Due to the slow service

rate the customers get accumulated faster. So PV AC decreases until

the service rate gets to normal. Also note that the probability, PLR,

that the server is serving at a low rate increases as N is increased (for

fixed η) for all combinations of arrival and service distributions. This

in turn will cause the probability, PNR, of the server serving under

normal mode to decrease as N increases. As expected, the measure

PNR appears to increase with increasing η. When comparing the mean

duration of service in slow mode, we notice(for fixed N and η) that

HES yield a lower value as opposed to ERS. This is the case for all five

arrival processes considered.
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(d) MAP with negative correlation arrivals

λ = 1, µ = 1.1, θ= 0.6

Fig. 4.1: Mean duration in slow mode - Erlang services
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(d) MAP with negative correlation arrivals

λ = 1, µ = 1.1, θ= 0.6

Fig. 4.2: Mean duration in slow mode - hyperexponential services
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(c) Hyperexponential arrivals
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(d) MAP with negative correlation arrivals

λ = 1, µ = 1.1, θ= 0.6

Fig. 4.3: Mean number of visits to level zero - Erlang services
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(e) MAP with positive correlation arrivals
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(b) Exponential arrivals
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(c) Hyperexponential arrivals
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(d) MAP with negative correlation arrivals

λ = 1, µ = 1.1, θ= 0.6

Fig. 4.4: Mean number of visits to level zero - hyperexponential services
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• Referring to Figures 4.3 and 4.4, we note that as η increases, the mea-

sure µNV Z appears to decrease in all cases, as expected, for any fixed

N . Among renewal arrivals, those with larger variation yields a smaller

value for this measure. That is, HEA has a smaller value compared

to EXA and EXA has a smaller value compared to ERA. Among

correlated arrivals, MPA has a higher value than MNA. It is worth

pointing out that both MNA and MPA processes have the same mean

and variance, but MPA has a positive correlation while MNA has a

negative correlation. This indicates the significant role played by corre-

lation. As N increases, this measure appears to increase monotonically

to a limiting value (which depends on η as well as on the arrival and

service time distributions). It should be noted that the rate of approach

is higher for larger values of η. That is, the impact of N on this mea-

sure decreases as η increases. We notice that this measure appears to

have a larger value when services are changed from Erlang to hyperex-

ponential. When comparing this measure for various distributions (for

fixed N and η), we notice that HES yield a higher value as opposed to

ERS. This is the case for all five arrival processes considered.

Now we look at the unconditional mean waiting time, µ′WTQ, in the queue

of a customer. The values of this measure as functions of N and η under

different scenarios are displayed in Table 4.1. Some key observations are as

follows.

• As is to be expected, the mean is a non-increasing function of η (for

fixed N) and is a non-decreasing function of N (for fixed η). This is
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the case for all combinations of arrival and service processes. However,

the rate of change is much smaller in the case of MPA as compared to

the other arrivals.

• The mean is significantly larger forMPA case indicating the role played

by the (positively) correlated arrivals.

• For all arrivals except MPA arrivals, we notice the mean changes sig-

nificantly as a function of η when N becomes large. This is due to

the fact that for large N the mean waiting time can only be reduced

through an increase in η (which will decrease the duration of the slow

service period).
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The unconditional mean waiting time in the queue (µ′WTQ)

Table 4.1

Erlang services Hyperexponential services

N η ERA EXA HEA MNA MPA ERA EXA HEA MNA MPA

0.1 3.21 6.97 25.21 7.07 497.45 23.82 27.64 46.32 27.63 518.10

0.2 3.20 6.96 25.21 7.07 497.44 23.81 27.63 46.31 27.63 518.08

1 0.3 3.19 6.96 25.21 7.07 497.44 23.80 27.62 46.31 27.63 518.07

0.4 3.18 6.95 25.20 7.07 497.43 23.79 27.61 46.30 27.63 518.06

0.5 3.18 6.95 25.20 7.07 497.43 23.78 27.61 46.30 27.63 518.05

0.1 3.50 7.19 25.39 7.42 497.57 24.13 27.90 46.51 28.05 518.27

0.2 3.46 7.16 25.37 7.40 497.55 24.08 27.86 46.48 28.02 518.22

2 0.3 3.42 7.14 25.36 7.38 497.52 24.03 27.82 46.46 27.99 518.18

0.4 3.39 7.12 25.34 7.36 497.50 23.99 27.79 46.44 27.96 518.15

0.5 3.36 7.10 25.33 7.35 497.49 23.96 27.77 46.43 27.94 518.12

0.1 3.83 7.45 25.59 7.57 497.68 24.43 28.17 46.72 28.24 518.40

0.2 3.73 7.38 25.55 7.52 497.61 24.31 28.08 46.66 28.17 518.31

3 0.3 3.64 7.32 25.51 7.48 497.57 24.22 28.00 46.62 28.11 518.24

0.4 3.56 7.27 25.48 7.44 497.54 24.14 27.94 46.58 28.06 518.19

0.5 3.50 7.23 25.45 7.41 497.52 24.08 27.90 46.55 28.02 518.15

0.1 4.16 7.73 25.81 7.90 497.74 24.70 28.43 46.93 28.57 518.50

0.2 3.96 7.59 25.72 7.79 497.65 24.50 28.27 46.83 28.42 518.36

4 0.3 3.80 7.49 25.65 7.70 497.59 24.36 28.15 46.76 28.31 518.27

0.4 3.68 7.40 25.60 7.63 497.55 24.24 28.06 46.70 28.23 518.21

0.5 3.58 7.34 25.55 7.57 497.53 24.15 27.99 46.65 28.16 518.16

0.1 4.46 8.00 26.03 8.14 497.79 24.94 28.68 47.15 28.79 518.58

0.2 4.14 7.78 25.89 7.96 497.67 24.66 28.44 46.99 28.57 518.40

5 0.3 3.92 7.62 25.78 7.82 497.60 24.46 28.27 46.88 28.42 518.29

0.4 3.75 7.50 25.70 7.71 497.56 24.31 28.15 46.79 28.30 518.22

0.5 3.63 7.41 25.63 7.63 497.53 24.19 28.05 46.72 28.21 518.17

0.1 5.54 9.10 26.99 9.29 497.84 25.82 29.61 48.06 29.76 518.77

0.2 4.61 8.36 26.48 8.59 497.69 25.08 28.94 47.55 29.11 518.46

10 0.3 4.12 7.95 26.17 8.19 497.62 24.67 28.56 47.24 28.73 518.32

0.4 3.85 7.70 25.96 7.95 497.57 24.42 28.32 47.04 28.50 518.23

0.5 3.68 7.54 25.81 7.79 497.54 24.25 28.16 46.90 28.34 518.18





5. MAP/PH/1 RETRIAL QUEUE WITH CONSTANT

RETRIAL RATE AND WORKING VACATIONS

In this chapter we study a MAP/PH/1 retrial queueing model in which

the server is subject to taking vacations and serving at a lower rate during

those times. The service returns to normal rate whenever the vacation gets

completed. If an arriving customer finds the server busy it joins a pool

of unsatisfied customers called orbit. Inter retrial times are exponentially

distributed with intensity independent of the number of customers in the

orbit.

5.1 A brief review of research on retrial queues

In the retrial queuing system customers arriving to a busy service system,

join a group of blocked customers called orbit. From the orbit each unit tries

to access a free server, after a random amount of time. Such situations occur

in communication and computer networks. For a nearly exhaustive account

of developments in this area up to 2000, we refer to Yang and Templeton [69],

Falin [21], Artalejo ( [2], [3]) and Falin and Templeton [22]. For recent de-

velopments in this area we refer the reader to Artalejo and Gomez-Corral [6].
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In classical retrial queueing systems server idle time is very high. This

is because every service is preceded and followed by an idle period in the

absence of a buffer for the customers to wait. In the modern scenario, it is

not desirable from the service system’s point of view, to have a long idle time.

To this end Artalejo et al. [4] introduced a concept called orbital search, where

the server looks out for potential customers from the orbit immediately after

every service completion with a positive probability. Dudin et al. [20] and

Krishnamoorthy et al. [34] also consider orbital search with different arrival

streams and different service time distributions. Chakravarthy et al. [12]

consider orbital search in the multi server case. But even with the search

option, system may not be able to utilize the entire server idle time. It is

from this stand point, one explores the possibility of retrial queueing systems

with vacations and working vacations. During vacations the idle server may

attend some less urgent secondary task. We may also consider the notion of

working vacation depending upon the nature of the secondary job attended.

In the latter case the server returns to attend the primary job as and when

a customer arrives to the system.

However, to the best of our knowledge, there has been no attempt so

far to analyze a MAP/PH/1 retrial queuing model with working vacations.

Further in most of the works on retrial queues the retrial rate depends on

the number of customers in the orbit. However, recent applications to com-

munication protocols and local area networks show that there are queueing

situations in which the retrial rate is independent of the number of customers

in the orbit. Hence, in this model we prefer the constant retrial policy.
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5.2 Mathematical Model

We consider a single server retrial queueing system in which customers arrive

according to a Markovian arrival process (MAP ) with parameter matrices D0

and D1 of dimension m. An arriving primary customer who finds the server

free, immediately occupies the server and obtains service. On the other hand

if the arriving unit finds the server busy, it joins an orbit of infinite size. From

the orbit the unit makes retrial at the rate β, which is independent of the

number of customers in the orbit. The service times follow phase type distri-

bution with representation (α, T ) of order n. The server takes vacation when

the customer being served depart from the system and no customer is left

in the orbit. Duration of vacation is exponentially distributed with parame-

ter η. During a vacation if a customer arrives, the server returns to attend

that customer. However, the customers are served during vacation only at a

lower rate compared to the regular service. Precisely the vacation mode ser-

vice times are also phase type distributed with representation (α, θT ), with

0 < θ < 1. Even when the vacation is interrupted by a customer arrival and

consequent service commencement, vacation clock continues to tick so that

on completion of this service if the vacation clock has not expired, the server

continues to be on vacation irrespective of whether there are customers in

the orbit. At the end of each vacation, the server takes another vacation if

the orbit is empty and remains idle otherwise.
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5.2.1 The QBD process

The model discussed in Section 5.2 can be studied as a level independent

QBD process. First, we set up necessary notations. Let µ denote the regular

service rate; then it is easy to verify that µ = [α(−T )−1e]−1. Let θ, 0 < θ < 1,

denote the factor by which the normal service rate will be reduced, when the

server is serving in the vacation mode. That is, when the server is serving in

the vacation mode, the rate of service is given by θµ.

Defining N(t) to be the number of customers in the orbit at time t,

S1(t) =

 0, if the server is not working,

j, if the server is busy in phase j, 1 ≤ j ≤ n,

S2(t) =

 0, if the server is on (working) vacation,

1, otherwise,

and M(t), the phase of the arrival process at time t. Note that the case

S1(t) = 0 , S2(t) = 0 corresponds to server on vacation and the case S1(t) =

0 , S2(t) = 1 indicates that the server is idle. It is easy to verify that

{(N(t), S1(t), S2(t),M(t)) : t ≥ 0} is a level independent QBD process with

state space

Ω =
∞⋃
i=0

l(i)

where

l(i) = {(i, j1, j2, k) : i ≥ 0; 0 ≤ j1 ≤ n; j2 = 0 or 1; 1 ≤ k ≤ m}.
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The generator matrix Q of the QBD process under consideration is of the

form

Q =



B1 B0

B2 A1 A0

A2 A1 A0

. . . . . . . . .


,

where the (block) matrices appearing in Q are as follows:

B0 =


O O O O

O O I ⊗D1 O

O O O I ⊗D1

 , B1 =


D0 α⊗D1 O

θT0 ⊗ I θT ⊕D0 − ηI ηI

T0 ⊗ I O T ⊕D0

 ,

B2 =



O β(α⊗ I) O

O O β(α⊗ I)

O O O

O O O


, A0 =



O O O O

O O O O

O O I ⊗D1 O

O O O I ⊗D1



A1 =



D0 − ηI − βI ηI α⊗D1 O

O D0 − βI O α⊗D1

θT0 ⊗ I O θT ⊕D0 − ηI ηI

O T0 ⊗ I O T ⊕D0


and
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A2 =



O O β(α⊗ I) O

O O O β(α⊗ I)

O O O O

O O O O


.

5.3 Steady-state analysis

In this section we analyze the the model under the condition that the system

is stable.

5.3.1 Stability condition

Define A = A0 + A1 + A2. Let π = (π1,π2,π3,π4) be the steady-state

probability vector of A, where π1, π2 are of dimension m and π3, π4 are

of dimension mn. For the stability of the queueing model we must have

πA0e < πA2e, (see [50]) which simplifies to (π3 +π4)(en⊗D1em) < β(π1 +

π2)em. The last inequality suggests that for stability of the queueing system

discussed here, it is required that the rate of inflow in to the orbit is less than

the effective retrial rate.

5.3.2 Steady-state probability vector

Let x , partitioned as x = (x0,x1,x2, . . .), be the steady-state probability

vector of Q. Note that x0 is of dimension m + 2mn and x1,x2, . . . are of

dimension 2m+ 2mn. x satisfies the condition xQ = 0 and xe = 1. Appar-

ently when the stability condition is satisfied the sub vectors of x except x0

and x1, corresponding to the different level sates are given by the equation
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xj = x1R
j−1, j ≥ 2, where R is the minimal non negative solution of the

matrix quadratic equation (see [50])

R2A2 +RA1 + A0 = 0. (5.1)

The sub vectors x0 and x1 are obtained by solving the equations

x0B0 + x1B1 = 0 (5.2)

x0B0 + x1(A1 +RA2) = 0 (5.3)

subject to the normalizing condition

x0e(m+2mn) + x1(I −R)−1e2(m+n) = 1. (5.4)

The computation of R matrix can be carried out using a number of well

known methods such as logarithmic reduction algorithm.

5.3.3 Key system performance measures

In this section we list a number of key system performance measures to bring

out the qualitative aspects of the model under study. The measures are listed

below along with their formulae for computation.

1. Probability that the orbit is empty: PEMPTY = x0e.

2. Probability that the server is on vacation: PV ACN =
∑∞

i=0

∑m
k=1 xi00k.

3. Probability that the server is idle: PIDLE =
∑∞

i=1

∑m
k=1 xi01k.
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4. Probability that the server is busy in vacation mode:

PBVM =
∑∞

i=0

∑n
j1=1

∑m
k=1 xij10k.

5. Probability that the server completes a service in vacation mode :

PSCSLO = P (service time in slow mode < an exponentially distributed

random variable with parameter η) = α(ηI − θT )−1θT0

6. Probability that the server is busy in normal mode:

PBNM =
∑∞

i=0

∑n
j1=1

∑m
k=1 xij11k.

7. Probability that the server is busy: PB = PBVM + PBVM .

8. Mean number of customers in the orbit:

µOBT =
∑∞

i=1 ixie = x1(I −R)−2e

9. Mean number of customers in the system: µNS = µOBT + PB

10. Probability of a successful retrial :

PSRT = β/(β + λ)
∑∞

i=1

∑1
j2=0

∑m
k=1 xi0j2k.

11. Mean number of successful retrials :

µSRT = β/(β + λ)
∑∞

i=1

∑1
j2=0

∑m
k=1 ixi0j2k.

5.4 Numerical Results

In order to bring out the qualitative nature of the model under study, we

present a few representative examples in this section. For the arrival process

we consider the following five sets of matrices for D0 and D1.
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1. Erlang (ERA)

D0 =



−5 5

−5 5

−5 5

−5 5

−5


D1 =


5


2. Exponential (EXA)

D0 = (−1), D1 = (1)

3. Hyperexponential (HEA)

D0 =

 −10 0

0 −1

 D1 =

 9 1

0.9 0.1


4. MAP with negative correlation (MNA)

D0 =


−2 2 0

0 −2 0

0 0 −450.5

 D1 =


0 0 0

0.02 0 1.98

445.995 0 4.505


5. MAP with positive correlation (MPA)

D0 =


−2 −2 0

0 −2 0

0 0 −450.5

 D1 =


0 0 0

1.98 0 0.02

4.505 0 445.995


All these five MAP processes are normalized so as to have an arrival rate of 1.

However, these are qualitatively different in that they have different variance

and correlation structure. The first three arrival processes, namely ERA,

EXA, and HEA correspond to renewal processes and so the correlation is

0. The arrival process labeled MNA has correlated arrivals with correlation

between two successive inter-arrival times given by -0.4889 and the arrival
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process corresponding to the one labelled MPA has a positive correlation

with value 0.4889. The ratio of the standard deviations of the inter-arrival

times of these five arrival processes with respect to ERA are, respectively, 1,

2.2361, 5.0194, 3.1518, and 3.1518.

For the service time distribution we consider the following three phase

type distributions.

1. Erlang (ERS)

α = (1, 0) T =

 −2 2

0 −2


2. Exponential (EXS)

α = 1.0, T = −1.0

3. Hyperexponential (HES)

α = (0.9, 0.1) T =

 −1.90 0

0 −0.19


The above three distributions will be normalized to have a specific mean in

our illustrative examples. Note that these are qualitatively different in that

they have different variances. The ratio of the standard deviations of these

two service distributions with respect to ERS are, respectively, 1, 1.4142,

and 3.1745.

ILLUSTRATIVE EXAMPLE 5.1: We analyze the effect of the param-

eter β on the measure mean number of customers, µNS, in the system for

different arrival and service processes. Table 5.1 analyzes the effect of β with

Erlang service, table 5.2 explains the effect of β with exponential service and

table 5.3 examines the effect of β with hyperexponential service process. We
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fix λ = 1, µ = 1.4, η = 0.5, θ = 0.6 and get the following results.

Table 5.1: With Erlang Service Process

β ERA EXA HEA MNA MPA

3 5.7545 17.2162 84.0281 144.2722 2503.3365

4 3.5757 7.6028 26.9322 10.2311 702.2934

5 2.9482 5.6673 18.2386 6.684 421.82

10 2.2154 3.7114 10.0957 4.0226 211.4321

20 1.9829 3.1431 7.819 3.3778 160.8913

30 1.9178 2.9868 7.1963 3.2093 147.7319

40 1.8872 2.9135 6.905 3.1317 141.6795

50 1.8695 2.871 6.7361 3.087 138.201

Table 5.2: With Exponential Service Process

β ERA EXA HEA MNA MPA

3 8.4593 20.7893 88.4049 172.1747 2525.252

4 4.9365 9.0907 28.5759 12.1387 704.7186

5 3.9594 6.7375 19.4243 7.8697 422.713

10 2.8415 4.3627 10.857 4.6653 212.0658

20 2.4924 3.6744 8.4683 3.8884 161.4055

30 2.3951 3.4852 7.8163 3.6852 148.215

40 2.3495 3.3960 7.5115 3.5917 142.1482

50 2.323 3.3452 7.3349 3.5379 138.3973
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Table 5.3: With Hyperexponential Service Process

β ERA EXA HEA MNA MPA

3 30.5737 49.6303 123.8119 430.8089 2607.088

4 16.1295 21.0991 41.387 27.7478 721.168

5 12.3164 15.3777 28.5051 17.5934 432.4837

10 8.0737 9.6319 16.4436 9.2434 217.3843

20 6.778 7.9792 13.1039 7.4015 165.7004

30 6.4193 7.5269 12.1966 6.9201 152.2438

40 6.2513 7.3155 11.7733 6.6984 146.0543

50 6.1539 7.193 11.5282 6.5708 142.497

• For fixed values of other parameters, as β increases µNS decreases as

expected. This is because as β increases PB increases. Thus the server

is fed with customers more frequently and hence more and more cus-

tomers leave the system after completing the service. But the above

tables suggest that the magnitude of µNS not only depends on β but

also the characteristics of the inter arrival and service time distribu-

tions. For a given value of β and for a given service process, among the

renewal arrivals those with larger variance yield larger values for µNS.

That is HEA has highest value for µNS, EXA has the next highest

value and ERA has the smallest value . Among the correlated arrivals

MPA has larger value for this measure compared to MNA. Note that

both MNA and MPA have the same mean and variance but MPA

has a positive correlation and MNA has a negative correlation. This

explains the effect of correlation. Again for a fixed value of β and for



5.4. Numerical Results 97

a given arrival process, µNS increases as the variance of the service

time distribution increases. It is least for ERS and greatest for HES.

However, as β increases beyond a limit PEMPTY and PV ACN approach

their maximum values. As a result PSRT becomes negligible. Hence no

significant change is observed in the value of µNS in any case.

ILLUSTRATIVE EXAMPLE 5.2: We examine the effect of the pa-

rameter β on probability of successful retrials (PSRT ) for different arrival and

service processes. Again we fix λ = 1, µ = 1.4, η = 0.5, θ = 0.6 and get the

following graphs;

• Examine figures 5.1, 5.2, 5.3. As β increases PB increases and hence

PSRT decreases. From the figures it is clear that PSRT increases with

variance of the inter arrival time distributions. Note that the graphs

of MNA and MPA almost coincide for all service time distributions

discussed here. This establishes the fact that PSRT does not depend on

the correlation of the inter arrival time distributions. MNA and MPA

have the greatest variance and they have the greatest value for PSRT .
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Fig. 5.1: Probability of successful retrials - Erlang services
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Fig. 5.2: Probability of successful retrials - Exponential services
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Fig. 5.3: Probability of successful retrials - Hyperexponential services

ILLUSTRATIVE EXAMPLE 5.3: In this example we study the ef-

fect of the parameter η on the measure probability of a service completion

in slow mode (PSCSLO). Fix λ = 1, µ = 1.4, β = 3 and θ = 0.6.

• From the expression for PSCSLO, it is clear that this measure is inde-

pendent of the inter arrival time distributions and that it decreases as

η increases. So we compare the values for PSCSLO for the three service

time distributions. Figure 5.4 suggests that PSCSLO increases with the

variance of the service time distributions.
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Fig. 5.4: Probability of a service completion in slow mode



6. MAP/PH/1 RETRIAL QUEUE WITH CONSTANT

RETRIAL RATE, WORKING VACATIONS AND A FINITE

BUFFER FOR ARRIVALS

In the last chapter we analyzed a MAP/PH/1 retrial queueing model with

constant retrial rate and working vacations to the server. In such a model,

whenever the server is busy retrial does not make any difference in the state

of the system and any primary arrival will be redirected to the orbit. Hence,

the objective of minimising the server idle time cannot be achieved beyond

a certain extent. Keeping this in mind, we make some changes in the setup

of the model discussed in chapter 5. Here we introduce a finite buffer for the

customers (primary and orbital), which improves the chance of a customer

getting service with reduced waiting time. This also enhances the server

utilization to the extent that server in this retrial model has no idle time at

all. In practice, we can see many situations which can be modelled like this.

Detailed description of the present model is as given below.

Here we consider a single server retrial queueing system in which cus-

tomers arrive according to a Markovian arrival process (MAP ) with param-

eter matrices D0 and D1 of dimension m. An arriving primary customer

who finds the server free, immediately occupies the server and starts getting

service. On the other hand if the arriving unit finds the server busy it joins
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a finite buffer of capacity L. If an arrival finds the buffer also full, it moves

to an orbit of infinite size. From the orbit the unit makes retrial at the rate

β, which is independent of the number of customers in the orbit, for a place

in the server or buffer. The service times follow phase type distribution with

representation (α, T ) of order n. The server takes vacation when the cus-

tomer being served depart from the system and no customers are left in the

buffer. Duration of vacation is exponentially distributed with parameter η.

During a vacation if a customer (primary or orbital) arrives, the server re-

turns from vacation. However customers are served during vacation only at a

lower rate compared to the regular service. Precisely the vacation mode ser-

vice times are also phase type distributed with representation (α, θT ), with

0 < θ < 1. Even when the vacation is interrupted by a customer, vacation

clock continues to tick so that on completion of this service if the vacation

clock has not expired, the server continues on vacation in the absence of a

customer in the buffer. At the end of each vacation the server takes another

vacation if the buffer is empty.

6.1 The QBD process

The model discussed above can be studied as a QBD process. First, we set

up necessary notations. Let µ denote the regular service rate. Then it is

easy to verify that µ = [α(−T )−1e]−1. Let θ, 0 < θ < 1, denote the factor

by which the normal service rate is reduced when the server is serving in

vacation mode. That is, when the server is serving in vacation mode, the

rate of service is given by θµ.
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At time t, let

N1(t) = The number of customers in the orbit,

N2(t) = The number of customers in the buffer,

S1(t) =

 0, if the server is not working,

j, if the server is busy in phase j, 1 ≤ j ≤ n,

If S1(t) 6= 0, then

S2(t) =

 0, if the service is in vacation mode,

1, if the service is in normal mode,

and M(t) to be the phase of the arrival process at time t. It is easy to verify

that {(N1(t), N2(t), S1(t), S2(t),M(t)) : t ≥ 0} is a level independent QBD

process with state space

Ω =
∞⋃
i1=0

l(i1)

where

l(i1) = {(i1, i2, j1, j2, k) : i1 ≥ 0; 0 ≤ i2 ≤ L; 0 ≤ j1 ≤ n; j2 = 0 or 1; 1 ≤ k ≤ m}.

Note that when S1(t) = 0, S2(t) does not play any role and will not be

tracked. In this case we need to track only the component M(t).
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The generator Q of the QBD process under consideration is of the form

Q =



B0 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .


,

where the (block) matrices appearing in Q are as follows.

B0 =



D0 α⊗D1 O O O

θT0 ⊗ I θT ⊕D0 − ηI ηI C1 O

T0 ⊗ I O T ⊕D0 O C1

O eL ⊗ θT0α⊗ I O C2 O

O O eL ⊗T0α⊗ I O C3


with

C1 =

[
I ⊗D1 O

]
; C2 has the block matrix θT ⊕ D0 along the diag-

onal, I ⊗ D1 along the superdiagonal and O matrices elsewhere; and the

matrix C3 has the block matrix T ⊕D0 along the diagonal, I ⊗D1 along the

superdiagonal and O matrices elsewhere.

A0 =



O O O O O

O O O O O

O O O O O

O O O eL(L)e′L(L)⊗ I ⊗D1 O

O O O O eL(L)e′L(L)⊗ I ⊗D1


;
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A1 =



D0 − βI α⊗D1 O O O

θT0 ⊗ I F1 ηI F4 O

T0 ⊗ I O F2 O F4

O F3 O E1 O

O O F5 O E2


; where

F1 = θT ⊕D0 − ηI − βI, F2 = T ⊕D0 − βI, F3 = eL ⊗ θT0α⊗ I,

F4 = e′L(1)⊗ I ⊗D1, F5 = eL ⊗T0α⊗ I.

The matrix E1 has the block θT ⊕ D0 − βI along the diagonal, I ⊗ D1

along the superdiagonal and O matrices elsewhere. E2 has T ⊕ D0 − βI

along the diagonal, I ⊗D1 along the superdiagonal and O blocks elsewhere.

A2 =



O β(α⊗ I) O O O

O O O H1 O

O O O O H1

O O O H2 O

O O O O H2


with

H1 =

[
βI O

]
; H2 has the block matrix βI along the superdiagonal and

O blocks elsewhere.

6.2 Steady-state analysis

In this section we will discuss the steady-state analysis of the model under

study.
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6.2.1 Stability condition

Define A = A0 + A1 + A2. Let π = (π0,π1,π2,π3,π4) be the steady-

state probability vector of A, where π0 is of dimension m, π1, π2 are of

dimension mn and π3 and π4 are of dimension Lmn. Also let πij denote

the components of the vector πi, 0 ≤ i ≤ 4. Note that π is the unique

vector satisfying the condition πA = 0 and πe = 1. For stability of the

queueing model we must have πA0e < πA2e, (see [50]) which simplifies to

(π3 + π4)eL(L)⊗ (en⊗D1em) < β(π0em + (π1 + π2)emn +
∑(L−1)mn

j=1 (π3j +

π4j)). The last inequality suggests that for stability of the queueing system

discussed here it is required that the rate of inflow in to the orbit is less than

the effective retrial rate.

6.2.2 Steady-state probability vector

Let x , partitioned as x = (x0,x1,x2, . . .), be the steady-state probability

vector of Q. Note that xj is of dimension m + 2mn + 2Lmn for j ≥ 0.

The vector x satisfies the condition xQ = 0 and xe = 1. When the stability

condition is satisfied the sub vectors of x , corresponding to the different level

sates are given by the equation xj = x0R
j, j ≥ 1,where R is the minimal non

negative solution of the matrix quadratic equation

R2A2 +RA1 + A0 = 0. (6.1)

The sub vector x0 is obtained by solving the equations

x0(B1 +RA2) = 0 (6.2)
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subject to the normalizing condition

x0(I −R)−1e = 1. (6.3)

The computation of R matrix can be carried out using methods such as

logarithmic reduction algorithm.

6.2.3 Key system performance measures

In this section we list a number of key system performance measures to bring

out the qualitative aspects of the model under study. The measures are listed

below along with their formulae for computation.

1. Probability that the orbit is empty:POTY = x0e.

2. Probability that the buffer is empty:PBUFTY =
∑∞

i1=0 xi10em+2mn.

3. The probability that the server is on vacation:

PV ACN =
∑∞

i1=0

∑m
k=1 xi100.k.

4. The probability that the server is busy in vacation mode:

PBVM =
∑∞

i1=0

∑L
i2=0

∑n
j1=1

∑m
k=1 xi1i2j10k.

5. Probability that the server completes a service in vacation mode :

PSCSLO = P (service time in slow mode < an exponentially distributed

random variable with parameter η) = α(ηI − θT )−1θT0

6. The probability that the server is busy in normal mode:

PBNM =
∑∞

i1=0

∑L
i2=0

∑n
j1=1

∑m
k=1 xi1i2j11k.
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7. The mean number of customers in the orbit:

µMNOBT =
∑∞

i1=1 i1xi1e = x0R(I −R)−2e

8. The mean number of customers in the buffer:

µBUF =
∑∞

i1=1

∑L
i2=1 i2xi1i2e2mn

9. Probability of a successful retrial:

PSRT = β/(β + λ)
∑∞

i1=1

∑m
k=1(

∑L−1
i2=1

∑n
j1=1

∑1
j2=0 xi1i2j1j2k + xi100.k).

10. Mean number of successful retrials:

µSRT = β/(β + λ)
∑∞

i1=1 i1
∑m

k=1(
∑L−1

i2=1

∑n
j1=1

∑1
j2=0 xi1i2j1j2k+xi100.k).

6.3 Numerical Results

In order to bring out the qualitative nature of the model under study, we

present a few representative examples in this section. For the arrival process

we consider the following five sets of matrices for D0 and D1.

1. Erlang (ERA)

D0 =



−5 5

−5 5

−5 5

−5 5

−5


D1 =


5


2. Exponential (EXA)

D0 = (−1), D1 = (1)
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3. Hyperexponential (HEA)

D0 =

 −10 0

0 −1

 D1 =

 9 1

0.9 0.1


4. MAP with negative correlation (MNA)

D0 =


−2 2 0

0 −2 0

0 0 −450.5

 D1 =


0 0 0

0.02 0 1.98

445.995 0 4.505


5. MAP with positive correlation (MPA)

D0 =


−2 −2 0

0 −2 0

0 0 −450.5

 D1 =


0 0 0

1.98 0 0.02

4.505 0 445.995


These five MAP processes are qualitatively different in that they have dif-

ferent variance and correlation structure. The first three arrival processes,

namely ERA, EXA, and HEA, correspond to renewal processes and so the

correlation is 0. The arrival process labelled MNA has correlated arrivals

with correlation between two successive inter-arrival times given by -0.4889

and the arrival process corresponding to the one labelled MPA has a positive

correlation with value 0.4889. The ratio of the standard deviations of the

inter-arrival times of these five arrival processes with respect to ERLA are,

respectively, 1, 2.2361, 5.0194, 3.1518, and 3.1518.

For the service time distribution we consider the following three phase type

distributions.
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1. Erlang (ERS)

α = (1, 0) T =

 −2 2

0 −2


2. Exponential (EXS)

α = 1.0, T = −1.0

These two phase type distributions have a service rate of 1. Note that these

are qualitatively different in that they have different variances. The ratio of

the standard deviation of EXS to that of ERS is 1.4142.

ILLUSTRATIVE EXAMPLE 6.1: We analyze the effect of change in

the buffer size on the measure ‘probability of successful retrials PSRT ’, for

different arrival and service processes. Figure 6.1 analyzes the effect of the

buffer size with Erlang service and figure 6.2 explains its effect with expo-

nential service. We fix λ = 0.9, µ = 1, η = 0.5, θ = 0.6 and β = 1.

• As the buffer size increases more primary arrivals occupy the buffer.

This reduces the flow of customers to the orbit and the chance of suc-

cessful retrial. From the figures it is clear that PSRT increases with

variance of the inter arrival time distributions. Note that both MNA

and MPA have the same variance but this measure is higher for MPA

compared to MNA. Observe that MPA has a positive correlation and

MNA has a negative correlation. This shows the effect of correlation

on this measure.



6.3. Numerical Results 111

2 3 4 5 6 7
- 0 . 0 2
0 . 0 0
0 . 0 2
0 . 0 4
0 . 0 6
0 . 0 8
0 . 1 0
0 . 1 2
0 . 1 4
0 . 1 6
0 . 1 8
0 . 2 0

P SR
T

B u f f e r  S i z e

 E R A
 E X A
 H E A
 M N A
 M P A

Fig. 6.1: Probability of successful retrials - Erlang services
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Fig. 6.2: Probability of successful retrials - Exponential services
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Fig. 6.3: Probability of a service completion in slow mode

ILLUSTRATIVE EXAMPLE 6.2: In this example we study the ef-

fect of the parameter η on the measure probability of a service completion

in slow mode (PSCSLO). Fix λ = 0.9, µ = 1, β = 1 and θ = 0.6 and L = 3.

• From the expression for PSCSLO, it is clear that this measure is inde-

pendent of the inter arrival time distributions and that it decreases as

η increases. So we compare the values for PSCSLO for the two service

time distributions. From figure 6.3, it is clear that PSCSLO increases

with the variance of the service time distributions.



7. MMAP (2)/PH/1 RETRIAL QUEUE WITH A FINITE

RETRIAL GROUP AND WORKING VACATIONS

In the last two chapters we considered retrial queueing models with work-

ing vacations. In these models, only one type of arrivals figured. however,

congestions in modern communication and other service systems are very

complex and have to be modelled taking all possible aspects into consider-

ation to manage the systems efficiently and economically. Very often, the

system will have to deal with different types of arrivals. Some of them re-

quire immediate attention (priority) while others could wait till all the more

urgent calls are attended. In this chapter we study an MMAP (2)/PH/1

retrial queueing model in which the server takes working vacations. There

are two types of arrivals, type 1 and type 2. While type 1 customers enjoy

infinite waiting space, type 2 have to move to find a place (if any) in an

orbit of size L when the server is busy. But once taken for service, a type 2

customer completes his service and leaves the system. In the absence of type

1 customers, sever goes on vacation but returns, when a customer arrives for

service.
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7.1 Model description

We consider a single server retrial queueing system in which customers arrive

according to a marked Markovian arrival process (MMAP ) with parameter

matrices D0, D1 and D2. The matrix D0 governs transitions without an ar-

rival. D1 and D2 respectively contain transition rates with an arrival of class

1 (high priority) and that of class 2 (low priority). D = D0 + D1 + D2 is

the infinitesimal generator matrix of the arrival process. The matrices Dk,

(k=0, 1, 2) are square matrices of order m. Let δ(1) denote the stationary

probability vector of D. The stationary arrival rate of class k (k=1, 2), is

given by λk = δ(1)Dke. Upon arrival if a customer finds the server free, im-

mediately he occupies the server and obtains service. Type 1 customers have

a waiting space of infinite capacity. If a type 2 customer encounters a busy

server he proceeds to a group of retrial customers, called orbit. This orbit

has only a finite capacity L. When the orbit is full a type 2 arrival proceed-

ing to the orbit is forced to leave the system forever. Inter retrial times are

exponentially distributed with parameter γ. The service time for both cate-

gory of customers follows phase type distribution with representation (α, T )

of order n. The server goes on vacation when no priority customer is wait-

ing for service at a departure epoch. Duration of vacation is exponentially

distributed with parameter η. During vacation if a customer (primary or

orbital) arrives, he interrupts the vacation of the server. The vacation mode

service has the same distribution as the regular service time. Even when

the vacation is interrupted by a customer vacation clock continues to tick so

that on completion of this service if the vacation clock has not expired, the
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server continues on vacation if there are no priority customers in the system.

While in service we do not distinguish the type of customer. From the above

description it is clear that, a type 2 customer gets a chance for being served

only during vacations.

7.1.1 The QBD process

The model discussed in Section 2 can be studied as a level independent

QBD process. It is easy to verify that the service rate µ is given by µ =

[α(−T )−1e]−1 and the invariant probability vector of the finite Markov pro-

cess with generator T+T 0α by δ(2) = µα(−T )−1. First, we set up necessary

notations.

At time t, let

N(t)= The number of priority customers in the queue and with

the server

I(t) =


0, if the server is on vacation ,

1, if service is provided during vacation,

2, if the service is regular,

M(t)= The number of customers in the orbit,

S(t)= Phase of the service process,

and

A(t)= Phase of the arrival process
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It is easy to verify that {(N(t), I(t),M(t), S(t), A(t)) : t ≥ 0} is a quasi-

birth-and-death process (QBD) with state space

Ω =
∞⋃
i=0

l(i1)

where

l(i1) = {(i1, i2, j1, j2, k) : i1 ≥ 0; i2 = 0, 1 or 2; 0 ≤ j1 ≤ L; 1 ≤ j2 ≤ n; 1 ≤ k ≤ m}.

The generator matrix Q of the QBD process under consideration is of the

form

Q =



B1 B0

B2 A1 A0

A2 A1 A0

. . . . . . . . .


,

where the (block) matrices appearing in Q are as follows.

The boundary block B0 is of order (L+ 1)mn× 2(L+ 1)mn given by

B0 =



B01

γI B01

2γI B01

. . . . . .

LγI B01


,
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where B01 = α⊗ (D1 +D2);

B1 is a square matrix of order (L+ 1)mn and is given by

B1 = diag(D0, D0 − γI,D0 − 2γI, . . . , D0 − LγI);

B2 = e2 ⊗ IL+1 ⊗T0 ⊗ Im, A0 = I2(L+1) ⊗ In ⊗D1

and A2 = I2(L+1) ⊗T0α⊗ Im;

A1 =



A10 A11 ηI

A10 A11 ηI

. . . . . . . . .

A10 A11

A111 ηI

A12 A11

A12 A11

. . . . . .

A12 A11

A121



,

where,

A10 = T ⊕D0 − ηI, A11 = I ⊗D2 , A111 = A10 + A11, A12 = T ⊕D0

and A121 = A12 + A11.

7.2 Steady-state analysis

In this section we will discuss the steady-state analysis of the model under

study.
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7.2.1 Stability condition

Define A = A0+A1+A2. Let π = (π1,π2, ........,π2(L+1)) be the steady-state

probability vector of A, where each πj is of dimension mn. π is the unique

probability vector which satisfies the conditions πA = 0 and πe = 1. These

equations are equivalent to

π1F = 0 (7.1)

πiK+πi+1F = 0 1 ≤ i ≤ L−1 (7.2)

πLK + πL+1(F +K) = 0 (7.3)

π1K + πL+2(F + E) = 0 (7.4)

πjE+πj+LK+πj+L+1(F +E) = 0 2 ≤ j ≤ L (7.5)

πL+1E + π2L+1K + π2(L+1)(F + E +K) = 0 (7.6)

2(L+1)∑
i=1

πiemn = 1 (7.7)

where F = T ⊕D0− ηI + I ⊗D1 + T0α⊗ I, E = ηI and K = I ⊗D2

Adding equations from (7.1) to (7.6) we get,

2(L+1)∑
i=1

πi(F + E +K) = 0 (7.8)

That is
2(L+1)∑
i=1

πi[(T + T0α)⊕ (D0 +D1 +D2)] = 0 (7.9)

Obviously the steady-state probability vector of (T +T0α)⊕ (D0 +D1 +D2)
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is δ(2)⊗ δ(1). In view of equations (7.7) and (7.9) and by the uniqueness of

the steady-state probability vector we get,

2(L+1)∑
i=1

πi = δ(2)⊗ δ(1) (7.10)

π1,π2, ........,π2(L+1) can be obtained recursively from equations (7.1) to

(7.7). Note that

πA0e =

2(L+1)∑
i=1

πi(I ⊗D1)emn = (δ(2)⊗ δ(1))(en ⊗D1em) = δ(1)D1em = λ1

πA2e =

2(L+1)∑
i=1

πi(T
0α⊗ I)emn = (δ(2)⊗ δ(1))(T0 ⊗ em) = δ(2)T0 = µ

Thus for the stability of the queueing model it is necessary and

sufficient that λ1 < µ.

7.2.2 Steady-state probability vector

Let x , partitioned as x = (x0,x1,x2, . . .), be the steady-state probability

vector of Q. Note that x0 is of dimension (L + 1)m and x1,x2, . . . are of

dimension 2(L + 1)mn. x satisfies the conditions xQ = 0 and xe = 1.

Apparently when the stability condition is satisfied the sub vectors of x ,

except x0 and x1, corresponding to the different level states are given by the

equation xj = x1R
j−1, j ≥ 2, where R is the minimal non negative solution

of the matrix quadratic equation

R2A2 +RA1 + A0 = 0. (7.11)
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The sub vectors x0 and x1 are obtained by solving the equations

x0B1 + x1B2 = 0 (7.12)

x0B0 + x1(A1 +RA2) = 0 (7.13)

subject to the normalizing condition

x0e(L+1)m + x1(I −R)−1e2(L+1)mn = 1. (7.14)

The computation of R matrix can be carried out using a number of well

known methods such as logarithmic reduction algorithm.

7.2.3 Stationary waiting time of a priority customer in the queue

First note that an arriving type 1 customer enters service immediately with

probability z0 = x0e. Thus with probability 1 − z0 he has to wait before

getting into service. Let zi,j denote the steady-state probability that an

arrival will find the server busy with the service in phase j and the number of

customers in the system including the current arrival is i, for 1 ≤ j ≤ n; i ≥ 2.

Define zi = (zi,1, zi,2, . . . , zi,n) and z = (z0, z2, z3 . . .). It is easy to verify that

zi = xi−1(e2(L+1) ⊗ I ⊗
D1

λ1
em), i ≥ 2. (7.15)

The waiting time may be viewed as the time until absorption in a Markov

chain with a highly sparse structure. The state space (that includes the

arriving customer in its count) of this Markov chain is given by Ω1 = {∗} ∪
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{(i, j) : i ≥ 2; 1 ≤ j ≤ n}. The state ∗ corresponds to the server being on

vacation when the customer arrives. Note that once a customer joins the

queue, the subsequent arrivals do not contribute to his waiting time. Hence

we do not consider the arrival process while computing the waiting time. The

generator matrix of this Markov chain is

Q̃ =



0 O

T0 T

T0α T

T0α T

. . . . . .


Define W (t) for t > 0 as the probability that an arriving customer enters into

service no later than time t. Let W̃ (s) denote the Laplace Stieltjes transform

of the stationary waiting time in the queue of an arriving customer. Using

the structure of Q̃ it can readily be verified that

W̃ (s) = c
∞∑
i=2

zi(sI − T )−1T0[α(sI − T )−1T0]i−2, Re(s) ≥ 0,

where the normalizing constant c is given by

c =

[
∞∑
i=2

zie

]−1
. (7.16)

The mean waiting time, µ′W in the queue of an arrival, finding the server
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busy, is calculated as

µ′W = −W̃ ′(0) = c
∞∑
i=2

zi(−T )−1e+
c

µ

∞∑
i=2

(i− 2)zie. (7.17)

The equations (7.15) and (7.17) lead us to

µ′W =
c

λ
[x1(I−R)−1(e2(L+1)⊗(−T )−1en⊗D1em)+

1

µ
x1R(I−R)−2(e⊗D1em)],

(7.18)

where e in equation 7.18 is of dimension 2(L+ 1)n.

7.2.4 The uninterrupted duration of a vacation

The duration of the time the server is in uninterrupted vacation(s) is the

interval between the epoch at which the server goes on vacation and the next

arrival epoch. Clearly this duration is of phase type with representation

(β, B1) of dimension (L + 1)m, where β = dx1B2 and the normalizing con-

stant d is given by d = [x1B2e]−1. Hence the mean duration of uninterrupted

vacation, µUIV = β(−B1)
−1e. But β = (β0,β1,β2, .....,βL), each βi being

of dimension m. Exploiting the structre of the matrix B1 we can simplify

the expression for µUIV as µUIV =
L∑
i=0

βi[−(D0 − iγ)]−1em.

7.2.5 Busy period analysis

In this section we analyze the structure of a busy period of the model dis-

cussed in section 7.1. A busy period is the interval between the arrival of

a customer to the empty system and the first epoch thereafter the system

becomes empty again. Thus it is the first passage time from level 1 to level
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0. A busy cycle is defined as the first return time to level 0 with at least

one visit to a state in any other level. Before analyzing busy period we need

to introduce the notion of fundamental period. For the QBD process under

consideration it is the first passage time from level i to level i − 1, i ≥ 2.

The cases i = 1, 0 corresponding to the boundary states need to be discussed

separately. Note that for each level i, i ≥ 1, there corresponds 2(L + 1)mn

states. Thus by the state (i, j) of level i we mean the jth state of level i when

the states are arranged in the lexicographic order. Let Gjj′(h, x) denote the

conditional probability that starting in the state (i, j) at time t = 0, the QBD

process visits the level i − 1, for the first time no later than time x, after

exactly h transitions to the left and does so by entering the state (i− 1, j′).

For convenience we introduce the joint transform

G̃jj′(z, s) =
∞∑
h=1

zh
∫ ∞
0

e−sxdGjj′(h, x) ; |z| ≤ 1, Re(s) ≥ 0

and the matrix

G̃(z, s) = (G̃jj′(z, s)).

The matrix G̃(z, s) satisfies the equation (see [50])

G̃(z, s) = z(sI − A1)
−1A2 + (sI − A1)

−1A0G̃
2(z, s). (7.19)

The matrix G = (Gjj′) = G̃(1, 0) takes care of the first passage times, except

for the boundary states. If we know the R matrix then G matrix can be
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computed using the result (see [39])

G = −(A1 +RA2)
−1A2.

Otherwise we may use logarithmic reduction method to compute G. For the

boundary level states 1 and 0 let G
(1,0)
jj′ (h, x) and G

(0,0)
jj′ (h, x) be the condi-

tional probability discussed above for the first passage times from level 1 to

level 0 and the first return time to the level 0 respectively. For the boundary

levels 1 and 0 we get

G̃(1,0)(z, s) = z(sI − A1)
−1B2 + (sI − A1)

−1A0G̃(z, s)G̃(1,0)(z, s) (7.20)

and

G̃(0,0)(z, s) = (sI −B1)
−1B0G̃

(1,0)(z, s) (7.21)

Since the first passage time from level i to level i− 1 is independent of i, we

may conveniently use the following notations.

Let m1j be the mean first passage time from the level i to level i− 1, given

that the process is in the state (i, j) at time t = 0. Also let m̃1 be the column

vector with entries m1j. Let m2j be the mean number of customers served

during the first passage time from level i to level i − 1, given that the first

passage time started in the state (i, j) and m̃2 be the column vector with

elements m2j. Then

m̃1 = − ∂G̃(z, s)

∂s

∣∣∣∣∣
z=1,s=0

e = −(A1 + A0(I +G))−1e
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and

m̃2 =
∂G̃(z, s)

∂z

∣∣∣∣∣
z=1,s=0

e = −(A1 + A0(I +G))−1A2e

Similar to m̃1 and m̃2 we define m̃1
(1,0) and m̃2

(1,0) respectively, to be the

vectors giving the mean first passage times from level 1 to level 0 and mean

number of service completions during this first passage times. Vectors m̃1
(0,0)

and m̃2
(0,0) respectively give the first return times to level 0 and the mean

umber of service completions during these return times. Stochastic nature

of the matrices G, G̃(1,0)(1, 0) and G̃(0,0)(1, 0) enables us to compute

m̃1
(1,0) = − ∂G̃(1,0)(z, s)

∂s

∣∣∣∣∣
z=1,s=0

e = −(A1 + A0G)−1(A0m̃1 + e)

m̃1
(0,0) = − ∂G̃(0,0)(z, s)

∂s

∣∣∣∣∣
z=1,s=0

e = −B−11 (B0m̃1
(1,0) + e)

m̃2
(1,0) =

∂G̃(1,0)(z, s)

∂z

∣∣∣∣∣
z=1,s=0

e = −(A1 + A0G)−1(A0m̃2 +B2e)

m̃2
(0,0) =

∂G̃(0,0)(z, s)

∂z

∣∣∣∣∣
z=1,s=0

e = −B−11 B0m̃2
(1,0)

7.2.6 Key system performance measures

In this section we list a number of key system performance measures to bring

out the qualitative aspects of the model under study. The measures are listed

below along with their formulas for computation.

1. Probability that the server is on vacation: PV ACN = x0e.
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2. Probability that the server is working in vacation :

PBV =
∞∑
i1=1

L∑
j1=0

n∑
j2=1

m∑
k=1

xi11j1j2k.

3. Probability that the server is busy: PB =
∞∑
i1=1

xi1e2(L+1)mn.

4. Mean number of type 1 customers in the system:

µNS =
∞∑
i1=1

i1xi1e2(L+1)mn = x1(I −R)−2e.

5. Mean number of customers in the orbit:

µOBT =
L∑

j1=1

j1x00j1.em +
∞∑
i1=1

2∑
i2=1

L∑
j1=1

j1xi1i2j1j2ke2mn

6. Probability that the orbit is full :PF = PFV + PFB, where

PFV =
m∑
k=1

x00L.k and PFB =
∞∑
i1=1

2∑
i2=1

n∑
j2=1

m∑
k=1

xi1i2Lj2k.

7. Probability that a type 2 customer is lost :PLOST = PFB
λ2

(λ1+λ2)

8. Probability of a successful retrial : PSRT =
L∑
i=1

m∑
k=1

x00i.k
iγ

( iγ+λ1+λ2)
.

9. Mean number of successful retrials : µSRT =
L∑
i=1

m∑
k=1

ix00i.k
iγ

( iγ+λ1+λ2)
.

7.3 Numerical Results

For the arrival process we consider the following five sets of matrices for D0,

D1 and D2.

1. Erlang (ERA)

D0 =



−5 5

−5 5

−5 5

−5 5

−5


D1 =


3


D2 =


2


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2. Exponential (EXA)

D0 = (−1), D1 = (0.6), D2 = (0.4)

3. Hyperexponential (HEA)

D0 =

 −10 0

0 −1

 D1 =

 5.4 0.6

0.54 0.06

 D2 =

 3.6 0.4

0.36 0.04


4. MAP with negative correlation (MNA)

D0 =


−2 2 0

0 −2 0

0 0 −450.5

 D1 =


0 0 0

0.012 0 1.188

267.597 0 2.703



D2 =


0 0 0

0.008 0 0.792

178.398 0 1.802


5. MAP with positive correlation (MPA)

D0 =


−2 −2 0

0 −2 0

0 0 −450.5

 D1 =


0 0 0

1.188 0 0.012

2.703 0 267.597



D2 =


0 0 0

0.792 0 0.008

1.802 0 178.398


These five MAP processes are qualitatively different in that they have dif-

ferent variance and correlation structure. The first three arrival processes,

namely ERA, EXA, and HEA, correspond to renewal processes and so the

correlation is 0. The arrival process labelled MNA has correlated arrivals
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with correlation between two successive inter-arrival times given by -0.4889

and the arrival process corresponding to the one labelled MPA has a positive

correlation with value 0.4889. The ratio of the standard deviations of the

inter-arrival times of these five arrival processes with respect to ERA are,

respectively, 1, 2.2361, 5.0194, 3.1518, and 3.1518.

For the service time distribution we consider the following two phase type

distributions.

1. Erlang (ERS)

α = (1, 0) T =

 −2 2

0 −2



2. Hyperexponential (HES)

α = (0.9, 0.1) T =

 −1.90 0

0 −0.19


The above two distributions will be normalized to have a specific mean

in our illustrative example. Note that that these are qualitatively different

in that they have different variances. The ratio of the standard deviation of

HES to that of ERS is 3.1745.

ILLUSTRATIVE EXAMPLE: 7.1 We fix λ1 = 9, λ2 = 6, µ = 10,

L = 6 , γ = 2 and let η vary. We analyze how the change in η affects some

system performances. First let us examine its effect on the measure PLOST .

We make the following observations from the figures 7.1 and 7.2.
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• As the value of η increases the mean duration of vacation decreases

and hence the server clears out more customers. Hence the measure

PLOST tends to decrease as expected. Among the renewal arrival pro-

cesses the value of PLOST is maximum for HEA and minimum for

ERA. Note that HEA has the greatest variance and ERA has the

least variance among these arrival processes. Among the correlated ar-

rival processes the value of this measure is greater for MPA compared

to that of MNA. This shows the effect of standard deviation among

the renewal processes and the effect of correlation among the correlated

arrival processes. These arguments applicable to Erlang and hyperex-

ponential services though the measure has a slightly higher values for

hyperexponential services.

• Next let us discuss how long vacation remains uninterrupted on the

average. We let η vary keeping other parameters fixed, exactly as

before. Figures 7.3 and 7.4 suggests that larger the value of η smaller

the probability of a vacation being interrupted. Hence the value of

the measure µUIV increases as η increases. This is the case with both

Erlang and hyperexponential services. The role played by the standard

deviation and correlation of the arrival processes is obvious here as well.
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Fig. 7.1: PLOST when the service is Erlang
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Fig. 7.2: PLOST when the service is hyperexponential
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Fig. 7.3: µUIV when the service is Erlang
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0 . 0 0 . 2 0 . 4 0 . 6 0 . 8 1 . 0
0 . 0 3 5
0 . 0 4 0
0 . 0 4 5
0 . 0 5 0
0 . 0 5 5
0 . 0 6 0
0 . 0 6 5
0 . 0 7 0
0 . 0 7 5
0 . 0 8 0
0 . 0 8 5
0 . 0 9 0
0 . 0 9 5
0 . 1 0 0
0 . 1 0 5

µ UIV

η

 E R A
 E X A
 H E A
 M N A
 M P A

Fig. 7.4: µUIV when the service is hyperexponential

• We now examine how the waiting time is affected by η, the values of

other parameters being fixed as we did earlier (see tables 7.1 and 7.2).

As η increases the probability of a vacation being interrupted by an

arrival (primary or orbital) decreases. This results in a decrease in

mean waiting time in the queue though by a small quantity. It can

be seen from the tables that among renewal arrivals the mean waiting

time increases as we move from Erlang to hyperexponential through

exponential arrival process. This shows the effect of standard devia-

tion of the renewal arrivals in the mean waiting time. Though MNA

and MPA have the same standard deviation MNA has a negative cor-

relation and MPA has a positive correlation. Mean waiting time has a

very high value for MPA compared to that of MNA. This shows the

effect of correlation on the mean waiting time. Note that the entries

in the second table are higher than the corresponding entries in the

first table. This shows the effect of the standard deviation of service

processes on the mean waiting time.
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Mean waiting time in the queue

Table 7.1: With Erlang Service :

η ERA EXA HEA MNA MPA

0.2 0.889 1.2888 1.6018 1.1803 27.7819

0.4 0.8309 1.2275 1.5991 1.1611 27.6995

0.6 0.7936 1.1882 1.5976 1.1436 27.6311

0.8 0.767 1.1605 1.5964 1.1303 27.5717

1 0.7471 1.1399 1.5954 1.1203 27.519

Table 7.2: With hyperexponential Service:

η ERA EXA HEA MNA MPA

0.2 3.8917 4.1159 5.2179 4.117 31.5975

0.4 3.8217 4.0495 5.1888 4.0429 31.3926

0.6 3.7763 4.007 5.173 3.9945 31.2629

0.8 3.7427 3.976 5.1633 3.9584 31.1698

1 3.7164 3.952 5.157 3.9298 31.0981



CONCLUSION AND FUTURE WORK

The objective of the study of “Queueing models with vacations and working

vacations” was two fold; to minimize the server idle time and improve the

efficiency of the service system. Keeping this in mind we considered queueing

models in different set up in this thesis.

Chapter 1 introduced the concepts and techniques used in the thesis and

also provided a summary of the work done. In chapter 2 we considered an

M/M/2 queueing model, where one of the two heterogeneous servers takes

multiple vacations. We studied the performance of the system with the help

of busy period analysis and computation of mean waiting time of a customer

in the stationary regime. Conditional stochastic decomposition of queue

length was derived. To improve the efficiency of this system we came up

with a modified model in chapter 3. In this model the vacationing server

attends the customers, during vacation at a slower service rate. Chapter

4 analyzed a working vacation queueing model in a more general set up.

The introduction of N policy makes this MAP/PH/1 model different from

all working vacation models available in the literature. A detailed analysis

of performance of the model was provided with the help of computation of

measures such as mean waiting time of a customer who gets service in normal

mode and vacation mode.



Recognizing the importance of systems with repeated attempts, a retrial

queueing system with working vacation was introduced in chapter 5, again

with MAP arrivals and PH service. A minor draw back of this model was

that the server had to remain idle (when not on vacation) in the system,

when there was no demand for service. In chapter 6 we overcame this hand-

icap by introducing a finite buffer for arrivals (primary as well as orbital).

This brought down the server idle time to zero. In chapter 7 we consid-

ered a more versatile retrial model, with two different types of arrivals. This

MMAP (2)/PH/1 model offered an infinite buffer for high priority customers

and forced a low priority arrival to join a finite retrial group, when met with

a busy server. The performance of the model was analyzed computing mea-

sures such as mean waiting time of a high priority customer.

It should be remarked that over the years single server working vacation

models have been studied extensively. Though we considered a two server

working vacation model in chapter 3, only one server takes working vacations

in that model. It would indeed be challenging task to analyze the multiserver

working vacation models.
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