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1.1 History and Development

1.1.1 Fuzzy set theory

The German Mathematician George Cantor ( l 845-19 I 8) described a crisp set as

a well defined collection of objects. A crisp set is defined in such a way as to

dichotomize the individuals in some given universe of discourse (region of con

sideration) into two groups--members and nonmembers. A sharp, unambiguous

distinction exists between the members of the class or category represented by

the crisp set. However, many classification concepts we commonly employ and

express in natural language describe sets that do not exhibit this characteristic. In

stead their boundaries seen vague, and the transition from member to nonmember

appears gradual rather than abrupt. Real situations are very often not crisp and

deterministic and they cannot be described precisely. Such situations in our real

life which are characterized by vagueness or imprecision cannot be answered just

in ‘yes’ or ‘no’. Thus an answer to capture the concept of imprecision in a way

that would differentiate imprecision from uncertainty, the very simple idea put

forward by the American Cyberneticist C. A. Zadeh [68] in 1965 as the general

ization of the concept of the characteristic function of a set to allow for immediate

grades of membership was the genesis of the concept of a fuzzy set. This in fact

laid the foundation of fuzzy set theory. A fuzzy set can be defined mathematically

by assigning to each possible individual in the universe of discourse, a value rep

resenting its grade of membership in the fuzzy set. This grade corresponds the

degree to which that individual is similar or compatible with the concept repre

sented by the fuzzy set. The membership grades are very often represented by

real number values ranging in the closed interval between 0 and l. The nearer the

value of an element to unity, the higher the grade of its membership. The term

fuzzy in the sense used here seems to have been first introduced by Zadeh [67]
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in I962. This paper was followed in 1965 by the technical exposition [68] of just

such a mathematics now termed the ‘Theory of fuzzy sets’.

Although the range of values between 0 and l, both inclusive, is the most

commonly used. for representing membership grades, an arbitrary set with some

natural total or partial ordering can in fact be used. Elements of this set are not

required to be numbers as long as the ordering among them can be interpreted

as representing various strengths of membership degree. Thus the membership

set can be any set that is at least partially ordered and the most frequently used

membership set is a lattice. J. A. Goguen [18] in 1967 introduced the notion of

a fuzzy set with a lattice as the membership set. Fuzzy sets defined with a lattice

as the membership set are called L- Fuzzy sets or L- sets where L is intended as

an abbreviation for lattice. ln this thesis, we consider the fuzzy set as a function

from a nonempty set X to the interval [0, I].

Owing to the fact that set theory is the corner stone of modern mathemat

ics. a new and more general frame work of mathematics was established. Fuzzy

mathematics is just a kind of mathematics developed in this framework. Because

of this, a fuzzy set theory has a wide scope of applicability than classical set theory

in solving various problems.

Applications appear in computer science, artificial intelligence, decision

analysis, information science, system science, control engineering, expert sys~

tems. pattern recognition, management science, operations research, robotics etc.

Fuzzy set theory, a developing subject in mathematics is making in roads

into different disciplines of mathematics also. Among various branches of mathe

matics, convexity was one ofthe many subjects where the notion of fuzzy set was

applied.

Q
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1.1.2 Convexity theory

Convexity theory has been accepted to be of increasing importance in recent years

in the study of extremum problems in many areas of applied mathematics. The

concept of convexity which was mainly defined and studied in R” in the pioneer

ing works of Newton. Minkowski and others as described in [2], now finds a place

in several other mathematical structures such as vector spaces, posets. lattices,

metric spaces and graphs. This development is motivated by not only the need

for an abstract theory of convexity generalizing the classical theorems in R" due

to Helly, Caratheodory etc; but also by the necessity to unify geometric aspects

of all these mathematical structures. Though convex sets are defined in various

settings, the most useful definition is based on the notion of betweenness. When

X is a space in which such a notion is defined, a subset C of X is called convex

provided that for any two points, ;'r and y of C’, C includes all the points between

It? and 1;.

The theory of convexity can be sorted into two kinds. One deals with

concrete convexity and the other that deals with abstract convexity. In concrete

situations it was considered by R. T. Rockafellar [48], Kelly and Weiss [25], S. R.

Lay [29] and many others. In this thesis, we are mainly concentrating on abstract

convexny.

A set X together with a collection C of distinguished subsets of X called

convex sets form a convexity space or aligned space if the following axioms are

sadsfied.

C1I(5€C,X€C

C2: C is closed under arbitrary intersections

C-3: C is closed for the union of totally ordered sub collections.

C is called an alignment or convexity on X. The convex hull of a set S’ is de

fined as Co (S) 1- fi{/cl E C|S Q xi}. Those families of sets which satisfy C’,
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and (7-2 are known as Moore Families or closure systems. Axioms C1 and C-2

were first used by F. W. Levi [30] in 1951 and later on by Eckhoff [I2]. Jami

son [2l], Kay and Womble [24] and Sierksma [54]. The term “alignment” is due

to Jamison [21]. Hammer [19] has shown that for Moore families the axiom C-‘_-3 is

equivalent to the “domain finiteness” condition which states that for each S Q X,

Co (S) = U{Co(T)|T Q S. T| < soc-} (ITI denotes the cardinality of T). Al

ternative terminologies for convexity space are “algebraic closure systems” [8],

the closed sets associated with finitary hull operators and domain finite convexity

spaces ([12, 19,24, 54, 53, 55]).

The study of abstract hull operators has several valid ways of approach,

convexity being only one. Convex hull operator plays a fundamental role in the

convexity theory. It can be easily shown [21] that any hull operator and the align

ment it generates agree on all finite sets. Thus in combinatorial studies (as those

around the three classical convex invariants) which involve only hulls of finite

sets, one can assume with out loss of generality that one has an alignment.

Topologies and alignments usually represent two different aspects of ge

ometry. If topology is the rubber sheet geometry, in which structures can be

stretched and deformed because only limiting behavior is important. then align

ments are rigid sheet geometries basically combinatorial in nature. There is of

course an important overlap of these two types of geometry.

In this discussion, an effort is made to stress the importance of the finitary

property (that the hull operator is determined in general by its action on finite sets)

and avoid forcing alignment into the mould of topology.

Since 1950's the theory of convexity spaces has branched and grown into

several related theories. An elegant survey has been done by Van de Vel [60]

whose work has been acclaimed as remarkable.

Regarding the application part of convexity theory, interesting problems
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attempted to include the detemiination of computational complexity of convex

hulls and computational complexity of the evaluation of convex invariants, prob

lems of pattern recognition, optimization etc. A bibliography on digital and com

putational convexity has been prepared by Ronse [49].

The traditional definition of convexity (in terms of line segments) in Eu

clidean space are not applicable to discrete spaces, so it is necessary to investigate

a more abstract axiomatic formulation in terms of alignment axioms. This re

sults in discrete models of aligned spaces that hold the exchange axiom. These

correspond to affine geometries which give rise to matroids.

1.1.3 Matroid theory

Matroids are an abstraction of several combinatorial objects-among them graphs

and matrices. The word ‘matroid’ was coined by Whitney in 1935 in his land

mark paper “on the abstract properties of linear dependence” [65]. In defining a

matroid. Whitney tried to capture fundamental properties of dependence that are

common to graphs and matrices. Almost simultaneously, Birkhoff showed that a

matroid can be interpreted as a geometric lattice, Maclane showed that matroids

have a geometric representation in terms of points, planes, dimension 3 spaces etc.

Since then, it has been recognized that matroids arise naturally in combinatorial

optimization and can be used as a framework for approaching a diverse variety of

combinatorial problems. Often the term combinatorial geometry is used instead

of simple matroids.

A matroid can be defined in several equivalent ways. Each of them is

based on an axiom system. The primitive object of each axiom system can be

identified with either the primitive or some derived objects of every other axiom

system. The existence of various equivalent approaches giving rise to equivalent

axiomatizations is one of the main features of the theory of matroids. There is

\
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no one preferred or customary definition; in that respect, matroids differ from

many other mathematical structures such as groups and topologies. Significant

definitions of a matroid include those in terms of independent sets, bases, circuits,

flats, closure operators and rank functions.

In combinatorics, a branch of mathematics, a matroid or independence

structure is a structure that captures the essence of a notion of “independence”

that generalises linear independence in vector spaces. One of the most valuable

definitions is that in terms of independence. In this definition, a finite matroid M

is a pair (E. I) where E is a finite set and I is a collection of subset of E (called

the independent sets) with the following properties.

l. The empty set is independent (altematively at least one subset of E is indepen

dent)

2. Every subset of an independent set is independent.

3. If A and B are two independent sets and A has more elements than in B,

then El an element in  which is not in B and when added to B still gives an

independentset

A subset of E that is not independent is called dependent. A maximum inde

pendent set - i.e., an independent set which becomes dependent on adding any

element of E is called a basis for the matroid. It is a basic result of a matroid

theory, directly analogous to similar theorem of linear algebra that any two bases

of a matroid .-l-I have the same number of elements. This number is called the rank

offll.

Matroids are important combinatorial structures both from the point or

view of theory and applications. Matroid theory is one of the areas that straddles

across several branches of discrete mathematics such as combinatiorics, graph
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theory, finite fields. algebra and coding theory. Matroids are a unifying concept in

which some problems in graph theory. design theory, coding theory and combina

torial optimization becomes simpler to understand. One of the subjects to which

applications appear is the electrical network theory.

1.2 Summary of the thesis

The thesis contains 5 chapters.

The first chapter briefly describes the history and development of the sub

ject, the summary of the thesis and the pre-requisites including some basic defini

tions and results which are required in the subsequent chapters.

Motivated by the theories for convex structures and fuzzy sets, we try to

develop fuzzy convexity theory parallel to that of a convexity theory in an abstract

setting. In [60], matroid has been defined as a convexity space satisfying the

exchange law or equivalently flats of the independent structure form matroid. The

definition of matroid given in [58] is not equivalent to the definition given in [60]

as it does not satisfy the non-degeneracy law of the collection of independent sets.

In the 2nd chapter, we introduce the notion of a fuzzy matroid analogous to that in

[60]. ln section l, we define fuzzy matroid. Section 2 deals with some elementary

properties like preservation of a fuzzy matroid under fuzzy convexity preserving

(FCP) and fuzzy convex to convex (FCC) functions in the sense of [5 l ].

In chapter 3, as a continuation of the study done in chapter 2, we de

fine the notion of fuzzy independent structures analogues to that in [60]. In

section 2, we study some properties of fuzzy independent structures which in

cludes the fuzzy transitive law of dependence and the properties of a hull operator

which helps to establish the relation between fuzzy matroids and fuzzy indepen

dent structures. Also it is proved that for a fuzzy convexity space (X.C), Co
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(A) : \/{Co (F)lF Q  F is finite} whose importance according to us is in

lifting results from finite to the general case. At the end of the section, it is shown

that fuzzy matroids form fuzzy independent structures as in the crisp case. But the

converse need not be true and it is illustrated by a counter example.

In the 4"‘ chapter, section I describes various types of fuzzy matroids de

rived from vector space and section 2 discusses some of their properties.

The classical numbers of Helly, Caratheodory and Radon play a central

role in abstract convexity. Each of them is defined as a degree of independence

tolerated by a convex structure. Various notions of dependence of a non empty

finite set in a crisp convexity space and based on this, some characterization of the

classical convex invariants namely Helly number, Caratheodory number, Radon

number and Exchange number are available in literature (_c._/I [60]).

In the 5"‘ chapter, we try to extend different types ofdependence defined in

[60] to the fuzzy context and reveal some interesting inter-relations among them.

In the first section we introduce the fuzzy analogues of the properties of the crisp

convex structure likejoin hull commutativity and cone union property as given in

[60]. After that in section 2, different types of dependence in a fuzzy convexity

space are defined and explored. Finally in the 3"“ section, we get certain inter

relationship among different types of dependence in the fuzzy context.

The thesis ends with a conclusion of the work done and further scope of

study. Some of the results contained in this thesis have been presented in seminars

or published/accepted for publication in journals as below.

l. Shiny Philip, A Note on Fuzzy Matroid (to appear in The Journal of Fuzzy

Mathematics).

2. Shiny Philip, A Note on Fuzzy lndependent Structures (Proceedings of the

National Seminar on “Fuzzy Mathematics and Graph Theory”, St. Teresa’s

College. Ernakulam, July 23-25, 2009).
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3. Shiny Philip, A Study on Various Fuzzy Matroids from Vector Spaces (Com

municated).

4. Shiny Philip, On Various Notions of Dependence in a Fuzzy Convexity Space.

(to appear in the Oriental Journal ofApplied Mathematics).

5. Shiny Philip, Relation between Fuzzy Matroids and Fuzzy Independent Struc

tures, Bulletin of Kerala Mathematics Association, Vol.5, No.1 (2008, Decem

ber) 63-80.

6. Shiny Philip, Some Results on Fuzzy Matroid (Proceedings of The Interna

tional Seminar on Recent Trends in Topology and its Applications, St. Joseph’s

College, lrinjalakuda, March 2009).

1.3 Basic definitions and properties

We give below the essential preliminaries needed.

1.3.1 Fuzzy subset and its properties

A fuzzy subset A on a nonempty set  is a function from X to I : [0, 1].

The set of all fuzzy subsets of X is denoted by I-‘i.

A fuzzy point (ta, o. > 0 is a fuzzy subset defined as

g (t. 1i 1; Ir: (‘E'
rmu) I

0. otherwise.

Support of a fuzzy subset A is

supp .4 I {I G .\’I,4(;I';) > U}.
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A fuzzy subset is said to be finite if its support is finite.

The set of all finite fuzzy subsets of X is denoted by I51

If A C 1"‘. we define VA a fuzzy subset with (W\/A)(:t¢) : sup A(B:t") for all :1: G

as the union and AA a fuzzy subset with (W/\A)(1f) : inf A(;t') for all at G  as

the intersection.

Also for a fuzzy subset A, its complement A’ is defined as A’(;t') : (Ala?) )’

for all ;r: G X.

In particular, the complement (ti, of a fuzzy point no is defined as

W 1 — (1. if y = <1
(111 (1/l =

1. otherwise

Given two fuzzy sets  B G IX, we say that A is a subset of B and write A Q B

(or A § B) if A(;rf) 5 B(;t') V1 G  In particular, an Q B (or aa 3 B) it

aQ(;z*) § B(;z5) V1‘ G

0,, Q B (or on § B) if B(a) Z (.1-.

When an Q B (or an 5 B), we say that the fuzzy point no belongs to B and is

denoted also by no G B.

Also .»‘l\B = .4 /\ B’.

For details regarding fuzzy subset and its properties, see [27].

Definition 1.3.]. [27] Let f : X —> Y be an ordiriary map. then we have the

maps f : [X —> [Y and : f_1 : IY -—> IX where \‘/A G IX,

f(A)(y) = \/{.»l(;t#) |;t* G X, f(;z') =11}, Vy G Y

\
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[This means that _f(A)(;_q} : 0 lfll1€I'€l.S'!1()II.‘ with f (1') : g ] and forall B € P ,

_rwm@=Bqmn wex.

Note 1.3.2. [27] f and f‘1 preserves arbitrary joins.

We recall the following definition, available in literature (cf. [5l])

Definition 1.3.3. A_farnil_v C ofs'ub.s'ets of is called a eonvext't_v if

(i)  X G C

(ii) lf(f-‘ C C is nonern/213', then QC 6 C.

(iii) lf C7 C C is non_empl}' and totally ordered by z'ncln.s'ion, then UC7 E C

The pair (X. C) is a convex structure or a convexity space. Members of C

are called convex sets.

Analogously, we have the definition in the fuzzy context.

Definition 1.3.4. Afamily C 0f_fu:,:__v sul2.s"ets of X is called a fuzz)-‘ c."rn1ve.>tz't_v if

MQAEC

(ii) lfF Q C is nonempty, then /\F 6 C.

(iii) 1_fF Q C is nonempty and totally ordered by inclusion, then \/F G C

The pair (X.C) is a fuzzy convex stmcture or a fuzzy convexity space

Members of C are called fuzzy convex sets.

Note 1.3.5. <_t denotes a constantjunction whose value at LI.‘ is ‘a’ V1‘ G

lfF is any_fnz:)-* subset. then convex hnl I ofF,

enm=An@ewgey
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Definition 1.3.6. [51] Let X1 : X. C1) and X11 = (X.C2) be tn-=o_)‘itzZ}' c'0nvexit_v

spaces. Let f : X1 —> X2 be a fitnction. T/ten f is .said to be

(i) a jitz;-_v convexir)-' preserving fitnction ( F C P ), if for each fttzzy com--‘ex set C in

X2, f‘1(_C’) is a f'ttz:-1}-' convex set in X1

(ii) a jazz)’ convex to convexfimction ( F C C ). ifjor each _fttz:_v convex? 5531 (7 1'11 X1,

the _fu;;'._v subset f(C-’) is convex in X-2.

Proposition 1.3.7. [51] Let X1 and X-2 be two _fitz:_\‘ c0nve.xit)* spaces. Let f :

X1 —> X2 be afitnction. Then

(i) f is an F CP jtmction i}fj"_f(Co(F)) Q Co(_f(F))f0r ever)-'_fittitefitz:_v sttbset F

in X1,

(ii) f i.s an FCCfuncti0n i[j‘f(C0(F)) Q Co(f(F)) for every finite fuzz)’ subset

F in X1.

Proposition 1.3.8. [60] Let X be a join-hull comntutative (JHC} space and F Q

X be a finite set. lfX has decomposable segments and F has at least two points.

thenjor all .1‘ G Co(F),

C'0(F) : U(,_€p(..7()({;I.'} \/ (F\tt)).

Definition 1.3.9. [27] A binary relation R on a set X is defined as any subset of

X >< X. If]? C X >< X and (zzf. g) € R. we say ‘;zr is related to y’ or ‘.1?’ is related

to 1:; under R and often write ;t'Ry.

A binary relation R on a set X is said to be

(1') reflexive iffor every 1' G  ;1:'R;z.?

(ii) sytntnetric t_'/for even’ 1;. 3; € R.

IR}; I> 1!} RIF
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(iii) tran..s'iti1*e if for every :13, y E X, ;'zrR;_q and yRz :> :1.'R.:

A l)llI(Il'__\-’ relation which is reflexive, sytntnetric and transitive is called an eqm'va

lence relation and is denoted 12y 5.

For each .1‘ G X, the R-equivalence class‘ in defined as the set [.11] = {ll €

X|y Rzr}.



Chapter 2

Fuzzy Matroid

CONTENTS

2. I Fuzzy matroid

2.2 Some properties of a fuzzy convexity space under a FCP and FCC map

ping

Some of the results of this chapter will appear in the Jomvml Qf Fu::_\-' Math('rrrarz'c.s" (2()1())

I5
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In [60], matroids have been defined as a convexity space satisfying the

exchange laws or equivalently flats of the independent structure form matroids.

The definition of matroids given in [58] is not equivalent to the definition given

in [60] as the former does not satisfy the non-degeneracy laws of the collection of

independent sets. In this chapter. we introduce the notion of a fuzzy matroid anal

ogous to that in [60] and study some elementary properties like preservation under

fuzzy convexity preserving (PCP) and fuzzy convex to Convex (_ FCC) functions in

the sense of [51].

2.1 Fuzzy matroid

Analogous to the notion of matroid [60], we introduce the concept of fuzzy ma

troid.

Definition 2.1.1. A family C Qfjiizz)‘ subsets of X is called afu:_zy e0nve.riI)' on

X if

(I) Q-. l € C

(ll) 1fF Q C is nonempty. rlien /\F € C

(iii) lfF Q C is nonempty and rorally ordered b)-'fu::_v in(.'lu.s'i0n. then \/F G C.

The pair (X, C) is a fuzzy convexity space. The members of C are called

fuzzy convex sets.

Note 2.1.2. Q denotes a c0nstam‘fzmerlon whose value at :1? is ‘a’ \7’;t' G

lf is an_v_)‘iz::_t= .s'ubser of X, then convex hull of

(*a(.4) : /\{(.‘ e c|.4 g (‘}.
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Fuzzy exchange law 2.1.3

If Q IX and ifpu, (13 Q C0(/4), then

p,_. E CO(_(]._3 \/  :> (1;-3 E C0(p(. \/

Definition 2.1.4. A _)‘i1:2:_\’ convexity space which sarisfie.s' rl1efuzz)' exchange law

is called a _)‘i:z:t_v marroid.

Example 2.1.5. Let X : N U {U} where N is rhe set of natural numbers.

Consider tl1e_fuz.-fly <i'onve.x'iI_w> C on X as C = {Q>l_. A} where A : 1% \/ 2%.

Lerg gé B G IX. Let u...._ b.-3 6? Co(B) and an G Co(b_~; \/ B).

If Co(B) gé A (:'.e.. Co(B) : 1). there is nothing to prove.

Le! Co(B) : A. i.e., B § A. Then we proceed a.s'_fo1low.s‘.

(1.0. bi; Q C o(B) : A eorre.s'pond.s‘ to thefollcm-‘Eng cases.'  -' l
(1) (1.... = 1... 0- > 5. 1.1;, : 1.4. .13 > §

(£0, I 10, (Ii > 5, bl; I 23,  >

om@.=zh@>§m,=Lea>§

(iv) on : 2..., 0- > 3, b3 : 23, £3 > 54 4
(v) (I... = cm. be = ye. 1:. y aé 1. 2

Consider the ease ( 1'). Here

Co(b_~, \/ B) --1 L 1 C0((z_,_. \/ B).

Let £3 5 0- and oa E C0(h,~, V B)

1'-<1, £5 S fir S (C<>(l1.-.¢ V B))(<1) = (COM. \/ 5’))(b)
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i.e., by; G Co(a(, \/ B)

i.e., on E C0(b;_; \/ Bi) => b,-3 € C0(prt,, \/ BL).

Let U > 0- and nu E Co(b,s; \/ B)

To show 11;, G Co(n,_, \/ B), assume the contrary

i.e.. assume if possible, Z),-3 51 Co(aL, \/ B)

i'.e., J3 > C0(n.(, \/ B)(b) -1 l = Co(b,-3 V B)(o) Z rt.

i.e., (b3 \/ B)(o) é C0(b_'; \/ B)(ug) < ii.

i.e., (big; \/ B)(o) < £3.

When no = b, 13 \/ B(ri) < ii.

Here B (ti) : B (b) § .»‘l('b) <. 13 as by §Z

Le. 13 < ti which is not true.

That is, we have when 0- < L13, an E Co(b,¢ \/ B) => by G Co(a,_, \/ B)

i.e., fuzzy exchange law is satisfied.

ln the remaining cases also, we have Co(b,; \/ B) = 1 = Co(u,_t \/ B).

Following same lines, we can show that the fuzzy exchange law is satisfied.

r'.e., (X. C ) is a fuzzy matroid.

2.2 Some properties of a fuzzy convexity space

under a FCP and FCC mapping

In this section, we study some elementary properties like preservation of a fuzzy

matroid under fuzzy convexity preserving (FCP) and fuzzy convex to convex

(FCC) functions. Also it is proved that a FCP and FCC image of fuzzy join hull

commutative (JHC) space is JHC.

Definition 2.2.1. A fuzzy (r0nve.1't'r_v .s'pa(fe is join hull commutative (JHC) if the
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following holds: if.4 € IX is an}-' ii()!IZ,(’i’0fIlZZ.)~’ convex set and ifo... € IX, than

C()((£(-,; V F) = \/,;'_3€;rCO((i-(, \/1:5)

Proposition 2.2.2. A FCP and FCC image of a_fiiz:__v JHC space is JHC.

Proof Let X and Y be fuzzy convexity spaces and let f : X Q Y be a FCP and

FCC surjection where X is assumed to be a fuzzy JHC space. Let p,_, E Y and

C Q Y be a fuzzy convex set. Fix a fuzzy point pf, € f""(p.,). Then f maps the

fuzzy subset Co (pf, \/ f '1(C)) onto Co (1)., \/

11¢» J"(C0(1-)3 \/.f'1((~‘))) = <I<>o.. \/ C)

For,

_f(Co(p_f3 \/ f‘"1(C))) = Co(_f(pf, \/ _f‘l(C))) by Proposition 1.3.7

: Co(p,_,_ \/ C) (2.2.l)

Since .f(P$) = 1%.. f (f "1(C)) = (1.f(»4 \/ B) = .f(r1) v .f (B )

Since  is JHC,

Co(pf, \/ f_'((-‘_)) : \/C-'0(pf_, \/ (3,). (5,. G _f"](C') (22.2)

where f"1(C) is convex in X corresponding to a fuzzy convex set C in Y. That
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IS

f(C0(1)f,Vj‘_‘(C))) = _f(\/(_.rEf-1{(__~)C()(p:3 V c,)). taking fof(2.2.2) (22.3)

= V0,.-€f_1{(f7).f(C0(p?3 \/ M) Since f(.4 \/ B) = ft-4) \/ .f(B)

I V@,.C0(f(p_f, V cr,.)) since f is FCC and FCP

I ‘\/cpl:f'{(f’_)€(fCO(I)(}- V C,-I)

From (2.2.l) and (2.2.4),

_f(Co(1f3 V _f”1(C))) = Co(p., V C7) = V(_;-,1 C0(p,,, V C',.l J.

That is Y is JHC. D
Proposition 2.2.3. A F C P and FCC image ofa fuzzy marroid is a_fi¢z:_v matroid.

Proojl Let X and Y be two fuzzy convexity space and suppose that X is a fuzzy

matroid. Let f : X —> Y be an FCP. FCC surjection. Suppose A Q Y and let

pu. (1.1; E Y be such that pa. q,-3 $5 Co(A) and pa. G Co( (1.-, V A). We have to show

(13 G C0(pa V A). For this, we fix a fuzzy point if, E _f_1(q_;;).

(1.3 € f” ((1,. C) = 0.30.1"

¢> qf,(.‘zr) § (q,-3 0 f)(.1.‘) VJ,‘ G X

<=> if § (<1.»¢<> f)(q’) =(1.;(f'(<1'))

41> .f(q’) = Q

Claim 1. f(qf,) = (1,; if f( (1') = q.
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By definition.

f t<1f;J(qJ = 511I>{<1Q(il"')ifiifii —

= if since f("q') = q

For 11 # at

f'(q.3)(u) = 0 since q:i(.':r)  I1

Le"  I q:3*

21

<1}

V1‘ # (I1,

Hence there is a fuzzy point pg E f"l(pC,.) such that pf) G C0(qf, \/ f“(A)).

Claim 2. 1J§}_.q=f_, 6 C0(f"1(A)).

On the contrary, assume (K, 6 C0(f""(A))

11¢, <12 v 1f‘i.|.(“’.-.1) g c(-)(If‘i1(‘;-1).)Vlfb.-‘I-(4,4): CO(f"(-4))

Le, C0(qf, \/ f"1(A)) § Co(f"(.~'i)).Then,

._f(cO((1_:1 V f.“_1(A:)')[)

i'e'*l)('1':.f(]):1) G f(Cv(q§i \/ .f"(-1))) S COM)

which is a contradiction to p,-, 52 Co(_A).

Therefore, our assumption is wrong

i.e.. qf, (Z Co(_f 1(A))

Similarly, we can show that pi} Q Co(f“l(A)).

< .r"<ct»t.r'*"t~1>>i>

§ Co(f(f"1(A)')) since f is FCP.

: Co(A)
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Since pi, qf, §Z’ C0(f‘"1(A)), by the property of the fuzzy matroid X, we have

Pi, 6 CO(<13v.f'1(14)) => <1;-'3 6 C0011. \/ f"(-4))

i-6-= (1.1 = ffil.-'3) € f(C0(P§. V .)"1(»4)))

§ CO(p(,. \/

i.e.._ q__;; € C0(pQ \/ A?)

i.e., Y is a fuzzy matroid. U



Chapter 3

Relation between fuzzy matroids

and fuzzy independent structures

CONTENTS

3.1 Fuzzy independent structures

3.2 Some properties of fuzzy independent structures

Almost all the results ofthis chapter appeared as a research paper in Buflemz 0fKem!a Mmhemm

ics Associcmon (2008) [45]
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In [60], (crisp convexity theory), matroid has been defined as a convexity

space satisfying the exchange law and it is shown that an independent structure (a

collection of independent sets satisfying finitary. non degenaracy and replacement

laws on a non-empty set) can be constructed from a matroid and conversely. ln

chapter 2, the above concept of a matroid was extended by us to the fuzzy context.

Here we continue the study and try to define fuzzy independent structures. In this

chapter, we show that fuzzy matroids form fuzzy independent structures, but the

converse need not be true.

3.1 Fuzzy independent structures

Analogous to the notion ot independent structures [60], we introduce the concept

of fuzzy independent structures.

Definition 3.1.1. Let (X. C) be an arbitar_v _fu:,z)" convent)‘ space. A non zero

fuzz)-* subset F is called eonvexl)-' independent (or independent ) provided In §Z

Co( F \.'l.‘(,) for all ;z:,_, Q F, o >  we say F is convexly *-independent if .111, Q

C0(F\;ir(,)_f0r all :r., E F, <1 > 0.

Definition 3.1.2. The collection e of independent sets ofafuzzy matroid is said to

s'ati.sfv the non-degeneracy law ijfallfuzzy singletons are in e.

Definition 3.1.3. The collection. E of independent sets of a fitzzy matroid is said to

s'ati'.sfi' fl16_fll1lf(Il'}’ law if the following holds: Af£tZZf}’ subset F G e tjf all non-zero

filIll€fiiZZ)' subsets of F are in e.

Definition 3.1.4. The collection 6 of independent sets ofa fl-iI';Z_\’ matroid is said

to satisfy the replacement law provided for every finite fuzzy subsets  B G 6

with card (supp B) > card (supp A), there is a_fit::'.}' point ll; € B\A such that

fl \/ ll; G F.
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Definition 3.1.5. A pair (X. e) consisting of X and afamily F of nonzero fitzzy

independent sets 0fX .sati.s_fitittg laws given in the definitions 3.1.2, 3.1.3 and 3.1.4

is called a _fitZ.Z_)-’ independence structure and the members of e are independent

sets.

Definition 3.1.6. A _fuzz__\‘ point p,-, depends on a jitz.z_v subset A, if pa 6 A or if

there is afinite fuzz)-’ independent subset B Q A such that B \/ pm is dependent

(i. e._. it does not belong to e).

Definition 3.1.7. A fiat is a fttZZ}-’ subset containing eaeltfitzzy point which de

pends on it.

Example 3.1.8. Let X = {1. 2,3}, I : [0,1].

Consider the fl-tZ',Z',}’ convexity C on  as C = {Q.1_.G € IXIG _§ F} where

F = 10.0 V 20.7

0.49 {fa : 1
L6’? F1 I 10.52.» 10.51 5 F1» 1i;;,.¢,1(~'l‘) —

1 otherwise.
Th€l’l l()__r'_,1 Q C()(F1\1O_51) H-'l’l(’.l"€ F1\1[]_51 I F1 /\ 1651.

Similarly, we can see that .'t.',_, §Z C0(F-1'\;'I7(,.)_f())' all .1?“ € F1. (1 >

That is Fl --* l@___~,2 is convexly independent. In a similar way, we can see

that the fuzzy points rt, G F, a >  are convexly independent.

Also the fuzzy points 1... (1 § 0.6, 25, if § 0.7 depend on F as they belong

to F‘.

Consider the fuzzy point 20,. 5! F. Then

10.51 € C0((_1o.52 V 20.s)\10.51) = l

where 1052 is a convexly independent set Q F and 1@_,_-,1 G 10,»,-_; \/ 2%.

i.e. the fuzzy subset 1i_,_,i__-,2 \/ 2% is dependent.
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i.e. the fuzzy point ‘Z08 depends on F.

Similarly, we can see that the fuzzy points lm, (I1 > 0.6, ‘2;;,1_ _:3¢, > 0.7 and 31

depend on F.

i.e., 11 \/ 21 \/ 3, (i.e., 1) is a fuzzy subset containing all the fuzzy points depending

on it. i.e., 1 is a flat.

Here F is not a flat as it does not contain all fuzzy points depending on that.

Example 3.1.9. Let X : {l._ 2. 3}.

Consider thefuzzy c.*0nvexit_\-' C on X as C : IX.

Lem = {F Q 1XlF(:1r) >

By non-degeneracy law , 1'1 G e where gr G X.

By finitary law , all :zr(,’s, ct >  G 6.

Clearly 1 G e as zra $2 Co(l\;‘1?<.t), 1*“ G 1, n >

CU

Let  B G e and #supp (A) > #supp( ).

Let 0,, e A\B = A /\ B’.

Then B \/ by; G 6 since 2., 65’ C0((B \/ b_-;;)\:~__)

where 2:-A, G B \/ b_.;, 7 >

Then the collection of independent sets is 6 = {F G I "’|F (at) > é} and (Xe)

from an independence structure.

3.2 Some properties of fuzzy independent structures

Here we discuss some relations between fuzzy matroids and fuzzy independent

structures. lt is proved that fuzzy matroids form fuzzy independent structures as

in the crisp case. But the converse need not be true and it is illustrated by a counter

example.
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Proposition 3.2.1 (Fuzzy transitive law of dependence). Let A be afinite fllZ-Z)-'

subset ofa fuzzy independence structure. If .'l..'(-,. depends on A and ya depends on

A \/ 17¢, then ya depends on A.

Proof. We consider the non-trivial case for establishing this result. Let 1:0. G’

and 31.; G’ 1;, v A. As ;g._; depends on A \/ .1‘... there is an independent fuzzy subset

F Q A V .1".-, such that F V y_; is dependent. We fix one with card (supp F)

maximal. As ;r., depends on A, there is an independent set G Q A with G \/ 1%.,

dependent set. If card (supp G) < card (supp F) by the replacement law, there

exists some fuzzy point 1).’. G F /\ G’ such that G \/ b.’ G t. Also we can sec

that b._, gz A. Since if b._ G  3 an independent set G Q A such that G \/A 1).’. is

dependent which is a contradiction.

card (supp G) Z card (supp F).

If _i;,_; does not depend on A. G \/ gm is independent.

As card (supp (G \/ y,;)) > card (supp F) by replacement law, 3 a fuzzy point say

2.5 G (G \/ _g_..;) /\ F’ such that F \/ :5 G 6. But 20- 74 1/__.;;, since F \/ y_.; is dependent

and :6 G’ A.

i.e., yd depends on A. CI
Definition 3.2.2. The collection e of independent sets of a_fit:,z_v matroid is said

to satisj[\* the strong replacement law provided for any two_fitzz_v subsets A, B G

6 with card (supp B) > card (supp  there is a fiiz,:,_v point 1),; G B\A with

A \/ Z),-3 € 6'.

Proposition 3.2.3. For a fltzzy eortvexity space (X. C

Go(A) =-- \/{Co(F)|F Q  F isfinite}
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Proof. Case l. Let A be a finite fuzzy subset. We have F Q A.

Le. C'0(F) Q (70(A) VF

i.e. V C0(F) § C0(A) (3.2.l)

Let :13, E C-‘0(A).

i.e. C0(A)(;1?) Z 0:.

Le. (Co(\/F))(;z.') Z <1

Le. C0(P)(:r) Z o; for some F Q \/F = A

rue. <vc*~<F>>e>> 2 (C<>(F))(lr) 2 a.

Le. (\/C-‘0(F))(;z?) 3 rt.

Le. ;r,_,. G \/Co(F).

rle. C0(A) § \/C0(F) (32.2)

From (32.1) & (32.2), we have C-‘0(A) : {\/C-‘o(F))P Q  F is finite}.

A Let A be an infinite fuzzy subset. z'.e., card (supp A) is infinite. Here we

apply transfinite induction on card (supp A). We assume that the result is true for

all fuzzy subsets which has smaller cardinality of its support than the cardinality

of the supp (A). For each (1. G X, let P(a) be a fuzzy subset whose support is the

set of all points in X less than ‘a’ where

P(a)(l?) I A(.'1;), Va? E Supp P(a)
U, otheiwise

Well-order supp (A) such that card (supp P(ri.)) < card (supp A). The fuzzy sub

sets C0(P(a')), n. 6  form a chain in C. Let C -1 \/Co(P(o,)) € C, since C being
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a fuzzy convexity, nested union of filzzy convex sets is convex.

A = \/P(a) § \/Co(P(a)) = C

z'.e., A § C

i.e., Co(.~’i) 5 C'o(C-7) : C

r'.e..C’o(A) f C (32.3)
Also P(a) Q A.

i.(3.,C(J(P(f1)) Q C-‘o(A) Va e X

z'.e., C = \/Co(P(a)) § (Q.-‘o(.»1_). :'.e.. C § C.-‘o(/1) (33.2.4)

From (3.2.3) & (3.2.4), C = Co(A).

By induction, Co(P(a)) = \/{Co(F)|F‘ g P(a). F finite}. since

card (supp P(a)) < card (supp A).

i.e., C‘o(.»1) = C‘ : \/Co(P(a.)) : \/{\/(v‘o(F)\F § P(a). F finite}

\/{C-‘o(F)|F g  F finite}. since F 3 P(a) 5 A.

= \/{(__."o(P_i)|F g  F finite} 1:1
Proposition 3.2.4. Let X be a set. Let h :  —> IX be an operator sarisfving rhe

fol1(m':'ng conditions.

(5) h.(Q) I Q5

(ii) F § h.(F) for each.fim'tefuzzy subset F;

(iii) For F. G G  F 3 G :> h.-(F) § h(G),'
(iv) h.(h.(F)') : h.(F);

(v) h.(\/F,¢) : \/,-h.(F,¢) for an_vfamz'!_v 0j'fu:,:)* subsets {F,-, -2' G I } which is {orally

ordered by inc-1u.s'z'on. Then there is precisely one convexiry on 1" with the hull

operator equal ro h on 113;,

116.. c = {Fih.(F) = P}.
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C 0nver.s'e1)'. the hull operator ofany convexity on IX sarisfi'es rhe c0ndirz'0n.s (z'—v).

Proof (i) Necessity pan

By (i), /1(9) = 0 i.e.. Q e C.

By (ii).

but

12(1) § 1 always (3.2.6)
From (3.25) & (32.6),

h.(_1_) = 1 i.e.._ 1 G C.

To show /\F,- G C whenever F. G C, we have to show h(/\F,-) = AF,-.

P, G C => h(F,7) = F, (32.7)

By (ii),

/\F,~ 5 h(/\F,-) (32.8)
W6 kl10W  S
By (iii),

h.(/\F,1)§/z(F,§): F, Vi by (32.7)i.€., h.(/\F\;‘) §
From (32.8) & (32.9), h_(/\F,-) : /\F,- :'.e., /\F,- G C.

To show VF, G C for any nested union of F, G C, we have to show

h(\/F,-E) : \/F,;.

By (v), h(VF,») = \/h(F,7) : \/F, by (32.7).

Le. C is a fuzzy convexity and (X. C) is a fuzzy convexity space.
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Uniqueness follows from proposition 3.2.3.

(ii) Sufficiency part

Since Q G C, h(Q) = Q

:T.e. condition (i).

If F G C, h-(F) = F, Le. F 3 h.(F) VF E C.

Le. Condition (ii).

If P, G 6 C, then h(P) =  h.(G) --= G.

F § G :> it-(P) § h(G).

i.e. condition (iii).

lfF € C, h..(F) : F, then h(h(F)) -= /z(F).

If F,-_’s are totally ordered and € C, h(F,-) = F,<.

Since C is a convexity, F, E C => \/P,-_ E C.

h.(\/F,-A) 1 \/F, = \/h(F,-).

i.e., the hull operator associated with the convexity satisfies conditions (i-v). Cl

Lemma 3.2.5. For afiizzy marroid, the collection r Qft'ndepen.den.r sets sans/_'wfi the

non-degeneae_v law.

Proof Here we show that <t1’s are convexly independent.

Case l. When (lt <  1 — tr >

o1_., > 0% > on

t'.e., on < 0.-1_(,. § Co(o1_.,) = C-‘r.)(r.t.1\o..-.)

i.e.. 0.1 is convexly dependent.

' ‘ When 0- = - a_ E C‘0(u.i_) : C-‘0(o1\o..)Case 2. ._  1‘Z 2
r'.e., 0.1 is Convexly dependent.

Case 3. When 0; >  1 — (Jr <n'- 0
o1_._. < (1%. C0(a.1 ,_,) < C‘c>(a.%:) (32.10)
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Also (ti) < 0-0.,

i.e.. C-‘r)(a.(_1)) < C-‘r)((i....,) (3.2.I I)

From (3.210) and (3.2.l l),

C'o(tt1..-a) < C0(u.%) < C7o(a-.,) (32.12)

We show C-‘o(a1 ._ 0,) < rt... For this, suppose the contrary

i.e. C70(a-1_..,) Z rt...

ile. C70(u..-,) 3 C0(a.1_.,) which is a contradiction to (3.212).

i.e., (70(a.1_.,) < 0....

i.e., 0..., > Co(a1_..) = C0(0.1\a,..).

i.e., 0.1 is convexly independent. [1
Lemma 3.2.6. The collection 6 of independent sets of afuzzy marroid .s‘ati.s_'fie.s' the

firzirary law.

Proof Let a fuzzy subset A be convexly independent.

£.e., .11. G C'o(A\;2?.,) ‘v’;z:,. G A. Cl >

i.e., .11, Q Co(F\.1t,,) V F §  and :1?“ G F. 0 >

i.e., F is convexly independent.

i'.e., A is convexly independent :> a subset F of A is convexiy independent.

To show A is convexly independent whenever F is convexly independent,

on the contrary we assume that A is convexly dependent.

t'.e., .110, G C(')(/i\.’I.‘,,.) for some ;t.',_, G  tr >

i.e., .1"... G C0( F \;i:O) for some F Q A and .1?“ G F, <1 >

since C(_)(_~'-'i\;'I.‘,-,.) : \/{C0(F\;t.r,_,)|F\:r.-, 5 A\1r,_,.. F\;z.r., finite} by proposition

3.2.3.

i.e.. F is convexly dependent.

Le... a fuzzy subset F of A is convexly independent ¢ A is convexly independent.
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Hence the finitaty law. U
Lemma 3.2.7. The collection of com-’exl_v * tndependem‘_)‘itz:_\* sub.s"er.s" ofa fitzz}-'

marroid sarz'.sfie.s' the strong replacement Ia w.

Proof. Let  B be two fuzzy independentsubsets with card (supp B) > card (supp A)

To prove the strong replacement law, on the contraty we assume that

1:0 V A is dependent V .11“ E B. (3.213)

Let ha 6 B be fixed. Then either bi; E C0(A) or b_,; Q C0(A).

Step 1 We show B Q C.-‘0(.»-1).

Let bi; Q C0(A). Then 1),; Q C'0( A\t1.._,.) where as, G A. We know

(1),. v .»i)\@,, =_~ ((1; V .4) /\ (tiI
I.

= (be /\ air) \/ (A /\ a.i_,)

I  \/  /\ (Iii)

By (3.213), b; V A is dependent. z'.e., for some a.._,. 6 11,, V

at E C-’0((b,; V A)\a..,.') 1 C'0(b,_, V (A /\ 02)).

Hence a.._, Q C0(A\a.,_.), since A is independent.

i.e., if 11,; Q C"0(A), we have an 0.1, € A, so that 0,, G C0(b_,; V (A /\ (1.-2.)).

Since bk-1 Q C-‘0(A\u.;) and (ta, Q Cr_>(A\n..f), by the exchange law

bf-3 6 C‘.-’0((t.__ V (A /\ n1_,)) Q C0(A).

Le. in all cases we have b,-3 E C.-‘0(A). i.e. B Q C0(A).

If A is an infinite fuzzy subset i.e. if card (supp A) is infinite, then A and

B can be rearranged such that it is finite (preserving (32.13)).

We know B Q (§'o(A) : V{C'<)(F’(b,--,))|F(b_-,) Q A, F(b:,) is finite}, by proposi
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tion 3.2.3

Le. V b,-3 G B, there is a finite set F(b;,-) Q A with b,_i G C0(F(b__-;)_).

If card (supp A) is infinite, the set of all finite subsets of supp (A) is infi

nite.

Le. card (2;f1p“ W) : card (supp A). Then we can see that

card (supp B) > card (2;‘;pp(‘i1)). Hence some finite set F Q A occurs as F(l»,-5)

for infinitely many 1),; G B. Take this F instead of A and the corresponding infi

nite subset of B instead of B. Then reduce B further to a finite size larger than

card (supp F).

Again assume from now on that card (supp A) < card (supp B) < oc.

Among all possible pairs A, B of this kind satisfying (32.13), consider one for

which the number -n = card (supp B) — card (supp (B /\ A)) is smallest. Here

rt > 0.

Fix bi; G B\A. Let F Q A be minimal with respect to the property that

bfi G Co(F).

E We show that F Q B.
On the contrary we assume that F Q B. Then F \/ b3 Q B \/ b.-3 : B for

all bi; G B.

Le. F \/ b,-3 § B.

Le. Since B is independent, F \/ b_-3 is independent by finitary law which is a

contradiction to (32.13).

F Z B.

Hence there is a point an, G F\B where F((i.) §_ 1 —

Now b_-3 G’ Co(F\a.._,) by the minimality of F and as’, G C0(F\a..) by the inde

pendence of A since F 3 A and A is independent.

§:_[_)__3 We show that Co(o,, V iF\{1|/\}-J) : C-‘0(Fi).
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We know

(1., \/ (F /\ j) = (0.1, V F /\ (0.. \/ 0.1:)

: F /\ ((1., \/<11?)

§ F.

Le., C’0(a..._. \/ (F /\ a1,)) S C0(F) (32.14)

Next we show F § 0.»), \/ (F /\  iff F(a) § 1 —

Let F § 11.’. \/ (F /\ (11)

Le. when .1: _~ a, F( )§ 7 V (F'(a.) /\ (1 — 1-))

Le. F'( )§ '1» 0rF( _) 5 F'(u.) /\ (1 -1»)

Q

/\
'11

>
2:

Le. F( )_ ( ) (1 —1.=)as F(u.) 5 1. is not true.

Le. F(a) 3 F ) (1 — 1.7) § F(0.).

Le. F(a) =- F( .) (1 — 7).

Le. Fm) § 1 — '7.

6‘
>

D

>

Le. F § (I»_.- \/ (F /\ 0;) :> F(n.) § 1 — 3 (32.15)

Conversely, let F(0) -5 1 — 1-.

Le.. (0., \/ (F /\ (1l_,_))(r_1.) : 1. \/ (F(a) /\ (1 — /7)) = -7 \/ F(n.) : F(a)

Also (0.; \/ F /\ a1__)(;1:) F (;zf) V .11: qé 0.

Le. when F(u) § 1-  F = aw’. \/ (F /\ 0'.) (32.16)
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From (3.2.15) & (3.2.16) we have

F § u..___ \/ (F /\ 01!.) where F((z-) 3 1 — 1.

zle. C.-‘0(F) § C-‘0((i..__. \/ (F /\ (1.-Q_)) (3.2.l7)

From (32.14) & (32.17), we have the equality

Le. (J3 E C'0(F) : C0(r.t.__ \/ (F /\ 0.1__))

Then by the fuzzy exchange property of the matroid

0., G C'0(b;, \/ (F\a._,)) 5 C-‘0(b_-I; \/ (.»i\<2..,_;)).

Step 4 We show 0,3 62 C0(A\a.7).

On the contrary, we assume

We know, A\0.,__ § (*0( A\a»,)

12,3 G C'0(.-4\n.., i) (32.18)

1)., \/ (K-1\(£-~.) 5 03 v C-‘()(A\('I-~_-) = (..7()(A\(1..,.) by (3.218)

i.e. as E (7o(b_,, \/ (A\a@_)) '5 C’o(A\a.,)

Le. as G (.1-‘0(A\n..,) which is a contradiction to the independence of A.

Our assumption is wrong.

i.e., b.=_; Q’ (?0(A\a.~, ).

Step 5 We show A’ : (1,) \/ (4/i\\(l"~!J is independent.

Le. we have to show that

1),; 9! C0(_A’\b_;) (32.19)
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and

01!. Q C0(A'\a1_) (32.20)
where 9% b_-3.

For proving (3.2. I 9), on the contrary we assume that 1,1,; E C0(A’\b_.,).

03 6 (*r>(.»'-1’\bp,»,) : C0((b__._; \/ (;—'1\(?...'))\{J,-3)

— Cv( (ha \/ (/1\<1a~..)) /\ bis)

Also b!'_; Q ;Ll\(-I-»-} as bi, Q 21.

Hence b_-3 \/ (A\a..) g B.

r'.e., C(.J((b,¢; \/ (.4\r.t..,.)) /\ bfa) ~§ C0(:B /\

i.e., (1,; G C0((b,;» \/ (A\a@_)) /\ b_',) § C70(B /\ (11,).

i.e., by 6 C70( B /\ bf,) which is not true since B is independent.

Our assumption is wrong.

z'.e., 1),, Q C7<J(.4’\l2_{). t'.e., (32.19?)

For proving (32.20), on the contrary, we assume that for some oi: G /1’

different from 1);, it is true that

(1.2 G (70( /1'  )

= c*<><<t>., \/ <A\@~,>>\~i.>

= C7()(b;; \/ ((A\(t._,)\(t1:.)f)

By the fuzzy exchange law,

11,3 G C"0((r1;_ V ((A\(r.»_,)\(ti__  § C0(.+'l\(1.._,.)

i.e.. by 6 (.»‘<>(.~'1\a¢,) which is a contradiction to fl; Q Co(A\a.,).
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our assumption is wrong.

Le. a1__ 53’ C-’0(A'\a1,.)

Le. .4’ is independent.

Step 6 We show 0(.»-1’) : (.I‘0(A \/ ()3) = C0(A).

We know b_,-5 6 C-‘0(A).

Le. 1),; \/ A § A \/ C-‘0(A) --= C0(.~*-:1).

s.@. cm, v .4) 5 C0(A)

A150 A §  \/ ()3.

C0(A) § C0(b,; \/

From (32.21) & (32.22),

C-‘0(.-4) 2 C(J(./'1 V bf-,3)

We know  E C-‘0(A’) or A § C.‘0(.~1’).

C0(A) § C0(A')

Also .4\a.j g  A’ : b,--, \/ (.4\rz..|.) § b__-, \/ A.

i.e.C.1'0(A") § C70(b,J \/ A)

From (3223), (3.2.24) & (3225)

C0(A \/ b,,) : C‘0(A) g C0(_A') § C-‘0(b_,_; \/ A)

Le. C7'0(.4') : C'0(A V b,;;) = C0(A)

38

(3.2.2l)

(3222)

(3223)

(3224)

(3225)
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i.e. each point of B is dependent on A’ as well. This establishes (3.2.i3) for A’.

B whereas the independent set A’ has one more point in common with support of

B in its support.

Then card (supp B) — card (supp (B\A)) < n which is a contradiction

with the definition of n.

our first assumption (3.2. I 3) is wrong.

i.e., we have the strong replacement law. D
Remark 3.2.8. The collection e of independent _fitz:_v subsets ofa fuzzy ntatroid

.s'ati.s_'fies the replacement law.

From the Lemmas 3.2.5. 3.2.6 and remark 3.2.8 we have the following

result.

Theorem 3.2.9. Let (X. C) he a jitzz)’ ntatroid. Then the eolletrtion 6 of all inde

petzdettt_)‘i.t::__\’ sub.s‘et.s' of X .s'atisfie.s‘ the non-degeneacy. finitary and replacement

laws and hence it is a_fit:;__v independence structure.

Proposition 3.2.10. Let ( t) be 0 fltzzy independence structure. Then the flats

of (X. t) form a fitzz)-' convex structure such that the convex hull ofa fuzzy .s'ubset

is the eoilection of all fl-:11)’ points depending on it.

Proof We define an operator h : I —> IX as follows:

h_(Q) = Q and for a non zero fuzzy subset F G I5: , let h.(F) be the set of all fuzzy

points depending on P.

Let pa 6 h(pm \/ p,,..2 \/ - - - \/pun) and 1).“, -i = 1.2. . . . .21 depends on the

finite fuzzy subset F.

Let (JO : F, G1 = F \/ ;t)Q.l, G-2 = F \/ (pm \/ I)(12)\ . . .,

G” : F \/ (pm \/ p.-,2 \/ - - - \/ 1),,“ ).
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pm depends on F = G0.

pm depends on F : G0 :> pm depends on F \/ pm -= G I by finitary law.

Similarly pa.’ depends on G2 - - -, pun depends on G,,_,.

Also pa G h.(pm \/ - - ~ \/ pa”) 2- pa. depends on pm \/ 110.2 \/ - - - \/ ';)(,.”.

pa. depends on F \/ (pm \/ - - - \/ p,__,.,,_) = G,, by finitary law.

Le. pa depends on (1,, : G,-,_1 \/ pa.“ where as 110" depends on G,,_1.

Then by proposition 3.2.1, pa depends on G,,,.-1 : G,._-2 \/1_>(,,_,_,.

Similarly we can see that 1),, depends on G,,__2, . . . . , pa depends on G1 : Fvpm.

Again since pm depends on F and pa depends on

G1 = F \/pm. pa depends on F (32.26)

Hence p,,, G F.

Also pa G F :> p,_, depends on F. Le. p,,. G h.(F').

Le. F 5 h.(F).

Let F 5 C

Le. pa G F => pa G G

Le. pa G h.(F) => pa G h.(G) Le. h(F) g h.(G')

Le. h.(F) 5 h.(G) whenever F 3 G.

Next we show I2-(li.(F_)) = h(F).

Clearly h(F) § h(h.(F)) (_3.2.27')

Let pa G h(h(F)) Le. pm depends on the set of all points depending on F. Then

we have proved that p,,, depends on F.
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tle. pa E h-(F).

Le. h.(Wh(F)) 3 h-(F) (3.228)

From (3.227) & (32.28), we have h(h(F)) = h(F).

Now we prove h.(\/.,-F,-) : \/_,-h.(F,-).

Lelpc, € /‘t(\/F,-r)

Le. 1),, depends on \/F,-.

Le. pm. depends on F1 \/ F2 \/ . . . .

Since F, depends on F,» and pa depends on \/F,-, by proposition 3.2.1, pa. depends

on F,-.

£.e., pa G h(F,a)

i.e.. pa. G \/l2(F,-)

i.e.,

h.(\/F,») 5 \/h(F,-). (32.29)
Clearly

\/h(F,-) g h.(\/F,-I (3.230)
From (32.29) and (32.30), h.(\/F,;) I \/h.(F,;)

:'.e., the operator satisfies all the conditions of Prop. 3.2.4.  there is a well

defined convex structure with h as a restricted hull operator. :'.e., for a non-zero

fuzzy subset A € I X.

(.-‘o(A) : \/{h('F)lF Q A, F is finite}

= {;zfn|.r(, depends on F}

= {;1.*O.|:z.:,_.. depends on A}, since F Q .4.

i.e., corresponding fuzzy subsets which are convex are exactly flats. U

Proposition 3.2.11. Thefiizz)’ <.‘0ni-'e._t' strucrureformed by theflars" of (X. 6) .s'an's
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fies the firzzy exchange law for two _fuZ.Z_\»' points pa, (1./3 with p I q and 13 < <1.

Proof Let pa, (.1,-_, Q Co(.»l) and let pa G C0(q,-3 \/ A) where A G I X.

1).-, Q C0(A) $1),-,. Q A :'.e., A(p) < 0. (3.231)

Similarly

(15; Q C0(.»'l) => A(q) < ti. (32.32)

Step l We claim pa Q (1.; V A.

For proving this, assume the contraiy that pa G q,-3 V A.

f

3 ct 3 I3 \/ A(p). if .2” =1) = q

Pa € (1.-a V -41>  an § A(p), ifzr = p 94 ql .
0 § A(;1?). if :1: 74 p 75 q.

\

i.e., when .1". : p 74 q, we have 14(1)) Z ryt which is a contradiction to (32.3 I ).

Our assumption is wrong.

i.e., pa Q (1,; \/ A.

§tl2 We claim C‘0(q_-A; \/ .»'l)(p) > J3.

By step l,we have pa. Q q__»_; \/

p.,(;z?_) > ((13 \/ .+l)(;t‘) for some ;r. (:1: can be only p)

i.e., 0. > q.;,(p) \/ .4(p) .

z'.e., (1: > £3 when q : p and (ii > A(p) always.

z'.e., when :1? : p = q. 13 < (ii-. (3.233)

13 < ct and Pa. E Co (q_-_; \/ /l) :> I3 < <1 ii (‘0(q,;, \/ .+1)(_ p)

:'.e., C0(<1.-.1 \/ A)(p) > 13.
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We claim (q-3 V A)(p) § (p. V ~1)(q') when p : 1Step 3 . -.. .- . _ ( .
We assume the contrary that (q_-3 V A)(p) > (pa V A)(q) when p .-.-_- q

t'.e., I13 V A(p) > ct V A(q) : ct when p : q

tT.e., ti V A(p) > 0- which is not true.

t‘.e.,

We have (q_,;; V A)(p) 3 (1),, V A)(q) when p = q

tie». (t1.a\/ A)(1)) 5 (pa \/ -1)(P)~

Also when p : (1 95 11?, we have (Ge V A)(.2?) 5 (pa \/ .4)(.t').

t'.e.. (qr; V A)(.'z:) 5 (pa V A)(.r) V ;t'

i.e.. qfi V A § pt, V A.

t'.e., C-‘0(q,_-3 V A) § C~‘0(p(, V A)

t'.e.. £3 < C'0(q,--3 V A)(p) § (.'0(p,_, V .-4)(p)

i.e.. C0(pO V A)(p) > J3.

Sfi We claim r.;__-, G C0(p,_, V A) when p : q.

Suppose the contrary. i.e., C-'0(p,., V A)(q) < tit when p = (1.

t'.e., (pa V  < 13 when p : (1.

t'.e.. (.1: V A(q) < £3

t'.e.. or < __t_3 which is a contradiction to (32.33).

Our assumption is wrong.

t'.e.. when p : (1, we have (1,; G C0(p., V A)

t'.e., pt. G C-‘0(q,-3 V A) :\ (1.; G C-0(p,_, V A) when p = q.

t‘.e., the exchange law is satisfied when the support of the fuzzy points p.-,, q_., aresame. E]
Remark 3.2.12. In the crisp case. _flat.s' of ( X. 6) fitrm afitzzy matroid. In the fitzzy

ease, this need not be true. In the above pr0p0.s'm'0n, when ti’ '> ct, flats of (X . 6)

do not ne.ees.s'art'I_v form afuzz_v matroid as they do not .s'ati.sf}' the fllZZ';}-‘ exchange

law. For t'lltt.s"tratt'ng this. c.-onsider thefollowing counter e.>cample.



CHAPTER 3. RELATION BETWEEN FUZZY MATROIDS - - - 44

Counter example 3.2.13. Let X = { 1. 2. 3}. (.1-,_t3 6 (0, 1].

Then 6 --= {F Q 1X|F'(.1:) >  6 X}, (X.e)f0rm a jitzf}-‘ independence
structure.

Flats oft? = {G G E|G 3 F 6  which form a fuzzy convex structure.

Consider the fuzzy subset A : 1; \/ 2:.

Let p,_, — 3%, q__._; = 3%. Here pm Q; Q C0(A). Also p = q where ti :  >  = rt.

3% = PO G C0(q_-, \/ .4) I  \/ 1% \/
: { all fuzzy subsets § 3; \/11 \/ 2;}-1 2 -"1

But 3% = 11;, 5;’ C-‘0(p(,_ \/ A) : C-*o(3; \/11 \/ 2%),1 3 .
= {all fuzzy pts depending on 31' \/ 1% \/ 2%}

:'.e., pm G C0(q__-3 \/ A) d0esn’t imply q,»_; G C'0(])(_, \/ A)

t'.e.. exchange law is not satisfied

t'.e.. flats of the fuzzy independence structure do not form a matroid.
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Convex structures are unambiguously determined by their hull operator

and it is possible to classify convex structure by the properties of the hull opera

tor . As a result, matroid is defined as a convexity space satisfying the exchange

law or equivalently, flats of the independent structure form matroids. In [60], ma

troids from vector spaces are discussed and based on this, some characterizations

are obtained. In this chapter, the notions of fuzzy linear, fuzzy affine and fuzzy

projective matroids are introduced and we present some of their properties.

4.1 Fuzzy matroids from vector spaces

Analogous to different types of matroids derived from vector spaces as given in

[60], we introduce certain fuzzy matroids and discuss some of their properties.

Definition 4.1.1. Let V be a vector space over a field F. A non-zero jazzy subset

A of V is called a fuzzy linear set provided for each pair of points at. y G V and

for each Q. ii G F,

.-4(o;11' + _l_J’y) Z A(;if) /\ Alp).

Proposition 4.1.2. Let V be a vector space over afield F and L}, = l-"\{0}. The

collection of all traces on V}; o_fallfu:z}' linear subsets of V [ i. e. the collection of

all fuzzy linear subsets of V obtained by deleting ‘0’ from their support] is a fuzz)’

linear convexity C of VI].

Proof. Let 21,- 6 C for all i. We show that /\.#l,- is a fuzzy linear set. Since A,1’s are
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fuzzy linear sets,

./l,-(o-;rr + Hy) Z A,-(zrr) /\ A,-(lg) Vi G I

then (/\,¢i»-’l,-)(o-;'r: + .13y) : /\,-(A,;(o-tr‘ + i'_3y))

Z /\[A,-_(;I.') /\ A,-('_tj)]

= (/\rf1r(~Y-')) A l/\rAr(;U))

i.e., /\,¢A,- is a fuzzy linear set 6 C.

Next, we show that nested union of fuzzy linear sets is a fuzzy linear set. i.e., we

show \/,-A,-y is a fuzzy linear set whenever {./1, I-2T 6 I} is a family of totally ordered

fuzzy linear sets € C. We know

(\/.4,-)(cr:zr + _r3;g) = \/,¢.~'l,;(a=:r + 133;)

2 V"z'((-"L1-2'-(if) /\ -Mull)

Next we show that

\/,;(.+'l,-(:1?) /\ A,@(-51)) Z (VA,-)(;tr) /\ (\/A.,—)(y)

Let

z = (\/A,;)(:z:) /\ (\/Ai)(y)

i.e., 2 § (\/A,-)(:zr#) and .2 § (\/A,-)(y)

Let e > U be any +ve number.

Then there exists j, Ir such that 2 — <= < A,-(zr), .2 - E < Ai.(;_q).

Being totally ordered, either .»-=11 3 AA. or AL. g A).

47

(4.l.l)
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Assume w.l.o.g, A, 5 .4‘,

' :: — e < Ak(;r) and .2 — € < Ak(y)

.. : - t < at-(tr) A .~1».(;;»/l 5 vtA.(-T) A .4.(y>>

This is tme for all e > U

'. 2 é \/i(~*1t(:1*l/\A1-(.1/ll

i-@-- \'/"i'(":'l-z'(1E) /\ A.~(.u)) 2 (\/A1Y)(5E)/\ (\/A.il(;u)

i.e., By (4.1.l).(\/A,-)(c1et:z' + Hy‘) 3 \/,-_(A.,-(;zr) /\ A,;(;i;])

2 (VAi)(I)/\(\/A11)(!/)

Consider a fuzzy linear set F on V defined as

_ 1 if 1' _ O.
F(;F) I

0 otherwise

Then suppF = {O}.

If we remove ‘0’ from supp F, we obtain zero function Q which clearly 6 C.

Also we know every fuzzy linear set F Q 1 and since nested union of

fuzzy linear sets is a fuzzy linear set, 1 G C.

Therefore C is a fuzzy linear convexity on l/I-,. III

Note 4.1.3. We use ‘lin’ instead of ‘C0’ to describe the corresponding hull oper

ator. Let pa. (1.-1 Q lin(_.+'l). Here rhefu::_,\' exchange law means

(lin(q,; \/ A))((1p + 13(1) Z (1 /\ iii 2 (li'n(p(, \/ .+‘1))(0<-p + Uq) Z Q1 /\ ii.

\



CHAPTER 4. FUZZY MATROIDS FROM VECTOR SPACES  /if--' 49' '4?/X, \\ I I- I. \_ |- -'\
Definition 4.1.4. Fuzz)-' linear matroid i.s a fllI’,Z)' linear conve.tit_\-' nit“-@'. v'vltfclt/

satisfies t/te_fuzz)t' exchange law.

Definition 4.1.5. Let V be a vector space over a field F. A non-zero fitzii}-' subset

A of V is called a fuz,z__v afline set provided for each pair of points :1?-_ 1/ E V and

for each o. in’ E F. A(o.;"t.? + ii-y) 2 .4(;i.§) /\ jg) where 0- + it : 1.

Proposition 4.1.6. Let V he a vector space over a field F. Let H, =  The

collection ofall traces on V0 of all fii:::_v afline sets of V [ i. e. the collection ofall

fuzzy afline sets of V obtained by deleting ‘O ’fr0in their support ] is a fu:,:_v afline

c0nve.rit_v C of I/E1.

Proof Proof is similar to that of Proposition 4.1.2. [I1

Remark 4.1.7. C learly fltzzy afline sets arefuzzy linear sets. Let the afline hull of

afuzzy subset A be denoted by afl‘A. ;
—~

Let 120.. q_-3 52 aff('A). Hence the fuzzy exchange law means

(ai‘t‘(t'_;_,; \/ .¢l))(c1-p + __i3r_j) Z (1 /\ .53 2 lafflpa \/ A))(t1-p + _.-jiq) 2 (ii: /\ ti

where ct + ti : 1.

Definition 4.1.8. F t-tzz}-' afline matroid is a_fii:z)* afline conve.rit_v space which sat

is/ies the fuzz)’ exchange law.

Definition 4.1.9. Let (X ._ C) be afuzzy conve.tit_\-* space and let R be a equivalence

relation on  Consider the quotient set X/ R which consists of all R -equi valence

classes and the quotient function (1 : X —> X / R which assigns to a point of X. its

R-equivalence class.

Define C / R : {F 6 l‘\'/"R/q'1(F) is a_fit:z_\' convex set on

We can show that C / R is (l c0nve.rit_1* on X/ R.
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For.

clearly, Q1 6 C / R.

Ler {Eli E I} Q C/R

Then /\,;F ,1 and nested union of F, are in CR whenever F, € C / R since by defini

tion 1.3.1

<f1(/\F.~)(4I*) — (/\F.;)((1(w))

= (/\Fi)i-Pi

and (f1_1(\/F.-))(1') — (\/E)(q(IIP)) = (\/F1')i-"1‘l

That is fuzzy convex sets of X/R are the images of R-saturated fuzzy

convex sets of X. The resulting fuzzy convex structure (X/R, C /R) is called a

fuzzy quotient space of X where C / R is called a fuzzy quotient convexity.

Definition 4.1.10. Consider a _fir:.:_\* linear marroid in a vector space  over a

field K. Let V}, _ V\{0}. Define a equivalence relation on V0 as follows. For any

qr. y G l-"I,,

I E y ¢-';> Eh‘. E 1{.'\{O}. y I 3.7;

and ;i.(t.-21) Z ,u.(;1f) where [1-11$‘ a firzzy .s'ub.s‘er on Vi).

Let P denote the fuzzy quotient space. Here the quotient function q :

lei, —> P is PCB by the definition of the quotient function. It is also FCC since the

image of a fuzzy linear set is fuzzy linear under a fuzzy quotient map.

For. here we show that q(,u) is a fuzzy linear set. i.e.. we show that

(q(11))[<*+*' + -"ii/l 2 (q(u))[:1*l /\ (q(_/i1,l)[t.11l»
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By definition 1.3.1,

(q(u))l<11P + til/l = \/Q-=~+.#.=/{N-((1-11?+5?/)/G(f1‘-1? + 13.11) = lo-11* + W/ll

Z \/(;_:.(.1:) /\ /_.1(y)') Since it is a fuzzy linear set (4.l.2)

Next we show that

v(u(1>) /\ Mull 2 (\/u(¢I‘)) A (\/u(.u)) (4.13)

Let Z = (\/11(1)) /\(\/u-(11))

i.e., 2: § \/;_t(;z:) and .2 § \/,u.(;_t;)

1.e-., 2 § p.(;l?1) for some ,u(;r1) and

£ uh/1) for S0m@u(§/1)

i-6-, 3 §l1(1*1')/\I1('!1i)

i.e., .2 § \/(;_rl(."t*) /\ ;i(g))

Hence the inequality (4.l.3).

By (4.l.2) and (4.l.3),

(<1(rt)L)l<>1*+I31/l 2 (W»(1*)) A twrtyll

That is

(Ii./-I-i)i<1'1' + dyl 2 trltulllwl /\ (<1(u))l;¢/l

P is a fuzzy matroid by Proposition 2.2.3, called the fuzzy projective matroid over

If and its fuzzy convex sets are called fuzzy projective sets.

Let the hull of a fuzzy subset A be denoted by Pr (A).
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4.2 Properties of Fuzzy Matroids

Proposition 4.2.1. A fuzzy (,'()m*e.rz‘t}' space (_X_ C’ ) is JHC <=> for each non-gem

finire_fuzz_v subset F andfor C’-(I(.'/1-(1.-Q $2 C0(F),

C0((1,, V F) § V_,-_,{C0((t(, V.'z;;));1“,.;; G C0

Proof Assume that the fuzzy convexity space (X, C) is JHC and F is a non-zero

finite fuzzy subset F. then

Co(a,. V F) § Co(a._(,. V Co(F)) : \/_,._,{Co(ri.. V ;2.*_,~;)|.~r.f)_.); € Co(F)}. by.]HC'.

i.e.._ Co((z,_,_ V F) § VJ"-i{C()((I() V ;"1.r;._.,)|.z17_., € Co(_F)}. (42.1)

Conversely, assume that (4.2. I) is tme for a non-zero finite fuzzy subset F. If F

is not 21 finite fuzzy subset, then by Proposition 3.2.3

C0(_n,_-, V F) = V{Co(C‘))C § an. V F. C finite}

§ V_,_,,{Co(ri., V .2?__;));2.{_._; 6 F G Co (F)}

i.e., if F is any non-zero fuzzy subset. particularly, if F is any non-zero fuzzy

convex set (42.1) is true.
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To show the reverse inequality corresponding to (4.2. I ), assume

31.; G \/_-,d€pC0((t., V

i.e., y._, G some Co(rt.(,.\/.13). ."r._ G F

i.e., 1111,. G Co(a.,, V F)

\/I__ie;;t~ Co(o., \/ ;t",'\-_,‘) 3 Co(a(, \/ F) (42.2)

From (4.2.l) and (4.22), we have Co(a..-, \/ F) : \/ Co(a._, \/ ;t:_._,).i.e., (X13) is JHC. D
Proposition 4.2.2. A fuzz)‘ linear marroid is join-hull commmmive.

Proof. Let A be a fuzzy linear set and ."r__,; G A. Let an G IX.

Then on \/ ;ti;; G on \/ A for every .11; G A.

r'.e., lin ((2-Q \/ ;r,.-3) G lin(aO \/ A).

r'.e., \/,,_._,lin(<'1., \/ .151) G lin(a., \/ A) for every :1;-3 G A

i.e._. lin ((1., \/ .4) 3 v_,_,|m ((1-(‘X v .1;-.W,)_ (42.3)

To show the reverse inequality. assume that :6 G lin (nu \/ A) where .2 is a linear

combination of the members in support in lin(a(, v A).

z'.e., 1: is a linear combination of the members in support of (an \/ A).

i.e., : is a linear combination of the members in support of (00 \/ .'t1,-3) for some

;r:,_, G A where .r is a linear combination of the members in support of A since A

is a fuzzy linear set.

:'.e., 2.; G lin (0,, \/ .-2;-3) for some .22; G A.

110., 2,; G '\/lin (0., \/ .'tj-3:) where .2;-3 G .4.

l.6.. llll (Ct.-, \/ .-*1) § \/;,_.__fllll ((1,-, V ;'I.l‘_--3). (42.4)
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From (42.3) and (4.24), we have the equality.

i.e., fuzzy linear matroid isjoin-hull commutative. D

Proposition 4.2.3. Afu:z_v afline matroid is join-hull coznmurarive.

Proof Proof is similar to that of Proposition 4.2.2. U

Proposition 4.2.4. A fitzizy afline projective matroid isj0in~huIl commutative.

Proojl A fuzzy projective matroid is JHC by Propositions 2.2.3 and 4.2.2. El

Definition 4.2.5. A fltzzy subset of the type Co (F), where F is a_fim'tefuz,:_v subset

is called a flrzz)-‘ polyrope.

Proposition 4.2.6. If A1. .42 . . . .V4,. are non-zero _fu:.T_v comm‘ sets in a JHC

c0nve.x'ir_v space. then.

Cr2(\/§L_1.+'l,-) : \/{C0(o,,1 \/ (102 \/ - - - nun) Vi ==: 1. . . . .12. o,,,., G A,-}

Proof It is enough to prove the result for two non-zero fuzzy polytopes F :

Co(F) and G : Co(G) with # supp P : n, # supp G : m, finite. We prove the

result by induction on 12+ m. The result is true if 1: + -m. : 2 (i.e.. if n : 1 =: mi).

Assume 21+ m > 2 and the result is true for values < n + m. For -n = 1. the result

is true by the definition ofJHC..

Let N. > 1 and let

.113 € Co(P \/ G) : Co(Co(_F) \/ Co(G')).
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Let (15, E P : C0(F) be a fixed fuzzy point, then

."tr__-1 6 C0(F \/ G)

I COW-1%, V (G V (F\<11)))

€ Co[q.-3. \/ C0(G \/ (F\q1))]

E Co[r;.;;l \/ (1., V b5]

where a_._, € Co(F\q1), 11.; € Co(G) by induction hypothesis.

Here as \/ q__._;. E Co(a.__ V q;-,,) € Co(F).

1.6.,

17;; G CO(((]_.-1] V (I-»__.) \/ ['15)

E Co(Co(F))\/12.5)

G Co(a.-,. \/ b5) where an 6 Co(F)

Q \/CO((l.Q \/ ()5).

t.e.,

Co(F \/ G) Q \/{Co(_a., \/ b.;)|a..-. E F125 E G}.

The reverse inequality is obvious.Hence the result. El
As a result of the above proposition we have the following definition.

Definition 4.2.7. A fitzzy convexity space is weakly JHC zffbr each pair 0ffu:,:_v

convex sets A, B G IX where A /\ B # Q,

C0(.-4 V B) : \/{C0(a.,. \/ b..)|a., E  by 6 B}
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Remark 4.2.8. By Pr0p0.s'itt0n 4.2.6, we can see that a JHCfitz,zy c0nve.\'t't)‘ space

is a weakly JHC space.

By the finitary law, the union of independent sets totally ordered by fuzzy

inclusion is independent. By Zorn’s lemma, three exists a maximal element. This

motivates to intriduce the following definition in the fuzzy context.

Definition 4.2.9. Basis ofaflat A in a fitzz}-’ c0nve.rt't_v space is any nta.rt'malfuzz_Y

canvexly indepettdent set B in the support of A.

Number of elements in B is called the rank of  and is denoted by d(A).

t'.e., d(A) : #8.

Proposition 4.2.10. Let (X.C) be a weakly JHC matroid. Let A. B E [X he

two non-disjoint flats. If d(C) denotes the rank of a flat  then the eqtttaltty

d(_.+l \/ B) + d(A /\ B) : (HA) + d(B) need not he true.

Counter example 4.2.11. Let X : {1.‘2.3}, I = [U.1].

C onsider the (..'0nvexit‘y C on X as C = 73(X).

C onstder a_fu::_\-' convex structure on X as

C.  {Q1-1tJ.2-13:10.2 v 20...}

which can he shown to he a fuzz)-' matrotd.

For, first we show that the fuzzy exchange law is satisfied.

Let pa. qt, Q‘ Co(_A_) and pa G Co(q\, \/ A).

Case 1. Let Co(A) : 102.

(i) Let CO((]_=; \/ A) : 1:_.l_i.

then A has to be 1., for some a g 0.2 and (1,. has to be 1,, for some ti such

that (0.2 < it 3 §).

i.€., pt, E CO(('],3 \/ xii) I  I>  E CO(_])(1. \/
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LCI CO ((15 \/ A) = 1(]_2 \/ 2()_(5 then

pa G C0(q,.-; \/' A) = 102 \/ 206

:> qt; § 23. 1-35 (1.6

i.e., (1); G C0(p(, \/ A).

(iii) Let C0 (qt--, \/ A) = l then

pa € C0((1i3 V  :  :> qii € CO(ip¢'\ V

Case 2. Let C0 (A) -= 1.3.

IL» (13 Q CO(-'4) => Pm (1.-2 Q A

Here A has to be 1,, for some (.1 such that 0.2 < rt g

then

p,_, G C0(q; \/ A) : 1 => q__-1 G C0(p(,, \/ A) = 1.

Case 3. Let Co (A) : 10,2 \/ 2%,

then A has to be 10 \/ 2;-3 for some (1-43 such that <1 g 0.2, _:.3 5 0.6

i.e., pm G C0(q,3 \/ A) = 1 => Q; G C0(p(, V A) = 1_.

Also C1 is a weakly JHC matroid.

For.

consider the fuzzy convex sets A : 10;, B : 1%.

then C0(A \/ B) : C0[_B) : B.

i.e.. \/{C0(:(1,_,\/I2,-_;))r:.0 G  I1,-3 G B}  B : C0(A\/ B) where A/\B qé Q

Next consider the fuzzy convex sets B and C : l0_2\/20_(_; where B/\C — 10;; 75 Q

then C0 (B \/ C) I C0(_1-it \/ ‘20_(,) : 1.
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\/{C0(b_», \/ (?._,_)|l).-3 € B, C», € C} = 1 = Co(B \/ C)

Similarly we get the same equality if we consider the other pairs of fuzzy convex

sets in C1.

i.e..(X. C1) is a weakly JHC fuzzy matroid.

Now consider two non-disjoint flats .4 == 1% and C = lt~,_-2 \/ 2%

then  \/ (ff = 1% \/ 206. C0(A \/ C) = 1,

tl(Co(A \/ C)) = rl(l) : 3, since # (maximal independent set in supp l (i.e. X))

is 3.

Similarly, d(.-4 /\ C) : 1, d(_.+l) : 1, tl(C-’) = ‘2.

i.e., t.l(Co(A v C)) + d(/1/\ (1') =3+1= 4 7A 3 = 1+ 2 = d(.-It) + d((*)

i.e., there is no equality.

Remark 4.2.12. (1) In Proposiflotz 4.2.10, if  C) ts a jitzzy JHC space. then

the equality need not be true.

This follows from the remark 4.2.8 and the Counter eg 4. 2.1 1.

(2) Evenfor dt'sjot'nt_flat.s', the equaluw‘ in Proposition 4.2.10 need not be true as

shown by tlrefollowing Counter eg. 4.2.13.

Counter example 4.2.13. Const'der C and C1 as in Counter eg. 4.2.11.

Let A _ 1; and B 1 206 be two dt.sjointflat.s'.
4

A \/ B =1._;v 2.1.,-. Co(.»>1\/ B) = t.

d(Co(A \/ B)) : 3, d(A) :1 : d(B).

i.e.,d(C0(A \/ 8)) + d(_A /\ B) > rl(A) + tl(B).

That is no eqttality.

Note 4.2.14. In Propost'tt'0n 4.2. 10 the equality holds only when A Q B or B Q A.
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Various notions of dependence of a non-empty finite set in a crisp convex

ity space and based on this, some characterization of the classical convex invari

ants namely Helly number, Caratheodary number, Radon number and exchange

number are available in literature (c.f. [60]). In this chapter, we try to extend

different types of dependence defined in [60] to the fuzzy context and study their

interrelations.

5.1 Certain properties of a fuzzy convex structure

and related definitions

Here we introduce the fuzzy analogues of the properties of the crisp convex struc

ture like cone-union property given in [60].

Definition 5.1.1. A_fit:z)-' convex srrttcrure .s'ari.s"]‘ie.s' the cone-union pr0pert)' (CUP)

{fthe following holds.‘ If F. F1. F2. . . . . F” G IX are fir:-3,)‘ convex sets wt'rl"z F 3

\/§‘;_,_F,- and {foo E I X, then

C0(u,_. \/ F) § \/i,’@'=1C0(u., \/ P,{)

Definition 5.1.2. Let X be a set and let 1 : X >< X -—> IX be afunction with the

following properties".

.1. firzzy extensive law: rt. b G l(o-._ (J)

[t'.e. l(a,l'1)((t) > O, l(n_.h)(b) > 0].

2. _fitz:}‘.s‘_vrnrner1fvlaw: I (rt. b) I I (ll. ti).

Then I is called a fuzzy interval operator on X. The resulting pair (X. If)

is called a fuzzy interval space and Itn. Ii) is called the fuzzy interval between <1.

and b for each rt. b E X.
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Definition 5.1.3. Let (X. C) be afuzzy convex structure and let I be G_fltZZ_\’ inter

val on X. Then C i.s said to be generated by l if I (a. b) G C for all a. b G

The pair (X. C) is a fuzzy convex structure generated by I .

Definition 5.1.4. A fitzf.)-' convex structure generated by the jitzzy interval operator

is said to .sati.s_fi-' the Rat-nification property if for all b. tr. tl G X.  Q l(b. <1) and

d Q I(b. e) :> l(b. (1) /\ I(b_ (l) == b,_,for some 0- > 0.

[Here cr Q ](b, (Z) means I(b. rl)(t_:) : U]

Definition 5.1.5. A _fnz,z,_v interval I(a.-. b) on a fi:2.z_v convex structure is decom

posable providedfor each .1." G I(a. b), I(a. .1") \/ l(:r?. b) = 1(a._ b) and I(a.-. .1‘) /\

I (:r:, b) ll?“ for some (1 > 0.

Example 5.1.6. Let X : {3. 5}.

Consider the_fuZZ}’ interval operator defined on  asfollows:

3) == 3“, I(5.-5) = -3.-3. I(3.5) =1 I(-5.; — 3., \/ 5,. where 0.0’ are chosen

elements in (0, 1].

Here_/'or3 e 1(3. 5), 1(;3, :3) v 1(3, 5) : 3., \/ (3., v :1.) = 3,, v 5,. = 1(;1-a. 5) and

[(3.13) /\ [(3, 5) = 3., /\ (3.. \/ .5...) =

Alsofor5 G I( _ ), I(3, 5) \/ 1( , ): [(3,5) and I(3.-'3') /\ I(. .. ) = -5,,

Sitnilarl)-' I(. _ )\/ I(_5. 3) = I(5, 3) and I(5, 5) /\ [(5, 3) =

Q3
I

(‘,5-1

Cr!

Q“!

\-)1

Q1

\_."!

QT!

ufliere 5 G I(-3, 3).

I(-5. 3) \/ I(3. 3) : l(-5. 3) and [(5, 3) /\ I(I3. Z3) — 3.,

where 3 G I(5. I3).

i. e., the fUZ.Z__\-’ interval I(a. b) is decomposable.

Example 5.1.7. Let X : R.

Consider a_fn:,zy interval operative I : R >< R —> IR defined as I(a., b) = [a.. b]

Let b. r-. (I G R.

~
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Let r? Q 1(1). (1) and (1 Q 1(1). (7).

Le. 1(1). d)(c) : U and 1(1), rj:)(i(1) = 0.

We Show that 1(1), (1) /\ 1(1), (3) _ 11%.

[1(1), 0.1) /\ 1(1).  - 1(1). d)((..') /\ 1(1). (:)((jt) = (1

[1(1>. (1) /\ 1(1), (.*)]((1) = 1(1), d)((1) /\ 1(b._1")((1) -=1).

Let .1‘? 74 11. (2. (1.

[1(1>, d) /\ 1(1). ri')](;zf) - [1(1)._a'-)](,r) /\ [1(12.c)](;r). (5.1.l)

Ifqr G 1(1). C), then .1‘ Q 1(1). (1).

For proving this, suppose on the contrary that :1? G 1(1). (1). Le. J7 G [1i.11].

Le. :1: G [b. 0] as Jr G 1(1). <1) and ;r G [11,11] which means that either!) § tr 3 <1 or

1) § (1 *5 cf.

Also 1) 5 0 § (I means 1% G [11,11].

Le. cf G 1(1). 1:1) which is not possible by our assumption that 0 Q 1(1). 11).

Similarly, 1) 5 d 3 cf : (1 G 1(1). 11-) which is not true.

1.6. 1' Q 1(_1).1'1).

Le. if ;zr G 1(1), K‘), then gzr Q 1(1), (1).

In a similar way we can see that, if :1: G 1(1), 11). then 1? Q 1(1), 1*).

So, by (5.l.l), [1(b, 1.1) /\ 1(1), (:)](.-'2") : U.

When ;r :- 1), [1(1:,11) /\ 1(1). (r)](:1?) - bl;->

i.e., when ry: Q 1(1), 11) and d Q 1(1>.r_1*).

/\  C) I 1)1'__/2

Hence the ramification property.
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5.2 Types of dependence

ln this section. we introduce the fuzzy analogues of different types of dependence

introduced in [60] and study their interrelations.

Definition 5.2.1. Let (X.C) be a fitzzy convex structure. A nonzero finite _/it;'.Z}-‘

sttbset F ofX is Hell)‘ dependent (or H -dependent ) provided A(,(_‘€FCO(F\(I-Q) 74

Q where F \au = F /\ ttfl, a-'0 = it — an and otherwise it is Hellv independent.

The Helly number of X is the smallest ‘n’ such that for each non zero

finite fuzzy subset F of X with cardinality in its support at least it + 1 is Helly

dependent

Definition 5.2.2. Let (X, C) be a fuzzy convex structure. A I10I'I~ZC’I‘0 finite fttzzy

subset F of X is Radon dependent (or R~dependent) if there entists a Radon parti

tion {P1, F2} 0fF (i.e. F1/\F; : Q, F1\/F2 : F) such that Co(Fl)/\Co (F-_>_) 75 Q

and ifjor every partition {F}. F2} of F, Co(_F1) /\ C0(F-3) : Q, F is called R

independent.

The Radon number of X is the smallest ‘it’ such that for each non zero

finite fuzzy subset F of X with cardinality in its support at least it + 1 is Radon

dependent

Definition 5.2.3. For afuzzy convex structure (X. C). a nonzero finite fllfil}-’ sub

set F of X is Carathe0doi3* dependent (or C-dependent) provided Co( F ) Q

\/(,_(_,t;;.~C0(F\tt.,-,) and otherwise it is C-independent.

The Caratheodory number of X is the smallest ‘n’ such that for each non

zero finite fuzzy subset F of X with cardinality in its support at least -rt + 1 is

Caratheodory dependent.
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Definition 5.2.4. For afuzzy convex structure (X, C a nonzero finite flzzzy subset

F 0_fX is Exchange dependent (or E-dependent) provldedfor eaclt pa G F,

C0(F\lJa-) 5 V"._+GF{C0(F\(3"-'3.)‘(U € F\l'>a~ (1 $5 P}

orhenvise it is E-independent.

The Exchange number of X is the smallest ‘rt’ such that for each non zero

finite fuzzy subset F of X with cardinality in its support at least n +1 is Exchange

dependent

The fuzzy analogues of the classical convex invariants like Helly number,

Caratheodoiy number, Radon number and Exchange number form an important

area of study in fuzzy convexity theory. As a background of future research in this

area, we have defined the above concepts in the fuzzy context. In this thesis, we

are not doing further work in this area.

Example 5.2.5. Let  : {L 3. 5}.

Consider rliejitzz)-‘ c0nve.rlr_\' C on X as C  {Q l. C} where G § F 1-: .506 V 30 1

(I) Let no G F

then. F\n.Q ;£ Q feral! no G F.

z'.e.. C0(F\u,.) 94 Q for all an G F

t'.e., A(;,‘__\€FC()(F\(1.(1) ;£ Q

l.e.. F ls H -dependent.

(ii) Let (1,, I 50,1 G F.

Then F\a,_,. : F\5@,4 : F.

i.e., C0 (F\(z,_,f) = C0 (F).

Fororher (1,. G F, C0 (F\<1(,) § C0 (F).

i.e., \/(MEFC0 (F\n,,,) = C0 (F).
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i.e., Co (F ) g V.,n._¢_;.~Co (F\n,_,) is truefor the finitefuzzy .s'ub.s'et F.

i.e., F is (.7-dependent.

(iii) Consider the Radon portion {P1, F2} ofF = .501-5 \/ 3O__.,_ where F1 : 501,-.

F; ==- 30,, (Here this is the only one partition of F.) then

C0(F1 /\ C0(F3) I »5(1.t5 /\ 30,1 I

i.e. F is R-independent.

But if we consider the flizzy com-'exity C as C =1 {Q 1. F} , then F is R

dependent, since Co (F1) : F : Co(P"-2) and C0 (F1) /\ Co (F-2') 1- F 74 0.

(iv) Let pf, G F.

Then F \p,-_, § F so that

Co(F\p(-,) § C0(F) V1)‘, G F (52.1)

1),, E F ineans pa — :1.-,1 01 § 0.6 or 1». = 2.30,, (12 § U-4.

Case I: Let pa = Sm. (11 § 0.6.

(ii G F\pO. (I. yé p Q (1.; = I3__.-3,, 131 § 0.4.

When 131 = U.-1, 1 - _t.>’1 : 0.6.

i.e. 1~'"\3,;] = F.

i.e. Co (F\3.;1) = C0 (F).

Also Co (F\(i.;;) § C0 (F) for the remaining (1.; ’s except 0,3 : I35, = I304.

i.e. \/,,__._.C0 (F\(t.;q) =-- Co (F)
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t'.e. when pa — 5,11, 0| § 0.6.

C0 (_F\p.., ) 5 v...,{c0 (F\n.._.-,:)|tt.,; e F\p(,.. tt 75 p}

Case 2: Let 12., --= 302, 0;-2 5 0.4.

an E F\pQ. 0 76 p :> (:13 I 5__;,_2, 132 3 0.6.

When 13-; : 0.4, '1 — £3-2 r: 0.6. then F\.5;,.2 I: F.

i.e.. C0 (F\5_.-3.2) = C0 (F).

Also C0 (F \(z-.3) § C0 (F )_f0r the rentat'nz'ng <1,-3 is except (1,; = 532 = -304.

:'.e.. \/(,;.,C0 (F\a;;) = C0 (F).

t'.e., when pa : 30.2, Q-2 5 0.-1, C0 (F\p(,.) gm, {C0 (F((t,,)|(:.-,-3 E F\pQ., a 74 p}.

t'.e.. Vpn € F,

C0 (F\pQ) § \/(,_,{C0 (F\ct,.3_)|(t,-E-1 G F\p,., a. ¢ p}

That is F is E -dependent.

Remark 5.2.6. In the crisp ease. if (X. C ) ts a JH C space havmg the Ramt'fieatt'0n

property and if F Q X is a finite R-independent set. then each pair 0f.s'nb._s‘et.s'

Fl. F; Q F, we have the eqztality C0(F1) Q C0(F»;) = C0(F1 Q F2). But in the

fuzz)’ case, the above equality need not be true. As an ilhtstration of this fact.

c0n.s'z'der the fitllowtng counter example.

Counter example 5.2.7. Let X : { 1.  3}.

Define the fuzzy interval opeatorl as I(1.1) = 1%, I('2. 2) : 2%. I(3. 3) =~

3%,I[1.2)=]('2.1)1=1%\/2%,I(1.3) I 18.1): 1§\/3§,[(2.3_)=[(3.2)=
2; \/31.5 ='>
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Fuzzy convexity generated by I is

C: {Q.l._1%.21l_,3%.1%\/2%,1%\/3%.2%\/3;,1%,1%.2%,3%}

Let F : 1;‘ \/ 23 \/31 which is finite.

Consider F1,F2 Q F where F1 = 1T_t\/ 2% \/ 3%, P-_> :1__1$
Then

C0 (F, /\ F2) = 1% (52.2)
Co (F1) /\ Co (F2) = 1; (5.23)

From (5.22) and (52.3),

Co(F1/\ F2) 5 Co (F1) /\ Co (F2)

i.e., no equality as in the crisp case.

Here F is R-independent since C0(F1) /\ Co( F2) : (_) for the possible partitions.

1. {F1=1_;.F;= 2; \/3%}

2. {F1= 2%. F2 =15\/3;}

3. {F1:I3_;~P3 I  \/

Also I(1.‘.2) /\ I(1.3)=1iwhere3 Q [(1,2) ‘2 Q [('l,3).

[(2. 3) /\ I(1._3_) : 3; where1Q I(2.3') and 2 Q [(1.3) and:3 '
I(2.3) /\ I(1.:2) : 2% where 1 Q I(2._3) and 3 Q [(1,2)

i.e., (X. C) has the Ramification propeity.

Now we show that (X, C) is JHC.
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i.e., we have to show that for a fuzzy convex set F,

Co(_uu. \/ F) = \/;;~!.,§FCO((.I_,_, \/ ;z.l',;) (5.24)

Let r(t.,,, E IX. then an 1- la, 2),; or 3,.

Consider F : l__r E C.

Let an I 10.

When <1 §

C0((tL, \/  = C0(F) = F : \/(,>_;Ep CO((l(, V ;17_;))

When o >
Co(_a.<, \/ F) : 1 : \/_r'_,Co('ri.(, \/ 1.1;)

i.e., when an ---1 1,_¢.. (5.2.4) is tme for the fuzzy convex set 1;) corresponding to

the cases (1)0 3  (2) rt >
Also (5.2.4) is true when no : 23 or 34,, Since

Ct)(0,O \/ F) : l : VI..3CO((lQ \/ 11,)

The same argument follows for the fuzzy subsets 2%, 53(1) 6 C.

Consider F =1_§\/ 231* E C.

Let an I 10.

When 0- ~§ l, Co(a,, \/ F) : F : \/,_,Co(aQ \/ ;1.'_-3)Tl

When <1- >  Co(o,, \/ F) : 1 : \/r_.,Co(a,, \/ ;:r_;,»).

i.e. when 0,, = 10» (5.24) is true for the fuzzy convex set 1% \/ 2; corresponding

to the cases (1) o 5  (2) rt >
A similar proof follows when an : 23 or 3,.

Also (5.24) is true for 11 \/ 3i, ‘Z; \/ 31 G C.4 4 5 '>
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i.e., we have to show that for a fuzzy convex set F,

CO((ft-Q \/  I \/;,-___,,5pCO((1-,_, \/ ;I'_.3)

Let (:.,_~. € IX, then on I 10., 2,-3 or 3,.

Consider F : 1; € C.

Let an == lo.

When 0 §

Co(aO \/ F) = Co(F) = F : \/W51: C0(tta \/ .'z:_,;)

When 0 >
C0(aQ \/ F) : 1 : \/_r_,,C0(a,\ \/ ."1:_,-3)

i.e., when an == 10, (52.4) is tme for the fuzzy convex set 1% corresponding to

the cases (l)r1- 5  (2)0 >
Also (52.4) is true when an = 2; or 31,, Since

Co(i0.,, \/ F) : '_l_ : \/_,_,C0(r.rQ \/ .t.'_.,)

The same argument follows for the fuzzy subsets 2%, 3‘; € C.- a
Consider F =1%\/ 2:1; E C.

Let (1,, = 10.

When (1 §  Co(0.(¢, \/ F) : F : \/_,_.1C0(_nQ \/ .1",-1)

When (1 >  C0(r_2.,, \/ F) I l = \/I'_.#C0([1O \/ ;zr,-1).

i.e. when on : 10, (52.4) is true for the fuzzy convex set 1% \/ 2% corresponding

to the cases (l)o- g  (2) 0- >
A similar proof follows when (1.0 : 2;; or 3,,.

Also (52.4) is true for 1% \/ 3%, 2; \/ 3; G C.
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Next consider F = 1; E C.
Let (1., = 10.

When (:1: 3

Co((i., \/ F) : F : \/_-,.__,Co(n..., \/ .13).

when  < <1 §

C0(t1.._, \/ F) : C0(_1%_) -1:: \/_.~_,Ct)(r'z._. V :1.f.-3).

When 0- >
Co(a., \/ F) : 1 I \/_.___.,C0(a... \/13;)

i.e. (55.2.4) is true for the fuzzy subset F 2 1;‘ 6 C.

The same equality follows when an : 2;; or 3,.

For the remaining fuzzy convex sets also, (5.2.4) can be shown to be true following

similar arguments.

Proposition 5.2.8. Let (X. C) be (I_f£lZZ}‘ convex .s‘rrucrm'e and let F’ be a non zero

fillly sulzset of X. Then for every :13, 6 C0(_F).

C0(_F) = \/(ml EpC0(:r.'.. \/(F\(z(,1)) where 0:1 # 1.

Proof. Let <2-.1, G F.

Then we have F\(I.(_-M g F g Co(F),

i.e., .15 \/ (F\r.'z-(,1) § C0(F)

i.e., Co(.1?., \/(.F\(1"r.11_)) S C0(F) for each am G F

\/,_,n1€,.=Ct1(.':.*.. \/ (F\u-01)) § Co(F) (5.25)

Case 1. Let Fm) =t1§ 5
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Then am E F’ where (1-1 § 0- §

i.e. 0:1 §
(i) Let .11., 6 F E C0 (F)

When F(a.) == rt § é,

F\a,,, -I F since

(F\(1.m E)(a.) = F((1.) /\ (1 — Q1) 1 F(0_)

(F\0-,,, )(1.*) = F(;tf). .17 76 a.

A150 .‘I,f._, \/ (F\(1'(1‘) ="-= F.

i.e., Ct>(.-"'t.;_, \/ (F\a.Q,) =-E C0(F) for all (rm 6 F

i.e., \/,,(H€1:C0(;'t.‘.'_ \/ (F\(.1,,1)) = CO(F)

(ii) Let ;1:._, Q F, but ;zr._, G C0(F),

i.e. ;r?._,(.r) :1. > F(;tr).

Here also F\r1.(-‘.1 : F, since F(u) : 0- §

i.e., :2; \/ (F\t1.(_H) Z F

i.e., C0(:'1.n_,. \/ (F\aQ.,_)) Z C0(F) V(:.(.,1 € F

_ i.e. \/{,0} C0(;zr@_ \/ (F\a,,,  Z C0(F’) (52.6)

From (52.5) & (52.6), we have the equality.

Case 2. Let Fla) : 0; >  ((1 74 1).

Then El at least one (rm G F, (1-1 5 1 — 0-, such that F\a,_,, : F.

(i) Let 1.3 € F E C0(F_)

\/ME;-C()(.1*._ \/ (F\u(,l )) = C0(F)
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(ii) Let qt‘. Q F, but .11., E Co(F) then ;r;r., \/ (F\(£.(\_| )) Z F

Le. Co (.i.'._, \/ (F\_n.., )) Z Co(_F)

v,.,,Uc0(.¢:. \/ (F\<1,., )) >3 Co(F) (5.21)

From (52.5) and (52.7). we have the equality. E]

Proposition 5.2.9. If 0. fu.-'::_v convex .s'truc.'nu'e (X. C) has decomposable segments

and F is a finitefitzly .s'ul>ser having at least two points in its support. then for all

.'zf._, E Co(F),

Co(F_) : V(,_H€pC()(;t'.|. \/ (F\(z.,,]

Proof The result follows from the Proposition 1.3.8 which corresponds to the

crisp case (:'.e. when oi = 1) and the Proposition 5.2.8. D

5.3 Inter-relations between different types of depen

denee

Proposition 5.3.1. For a non.-gero finite fllZIZ_\’ subset of a fuzzy convex .s'rrueture.

R dependence implies H -dependence.

Proofi Let  C) be a fuzzy convex structure.

Let F G 1"" be a non zero finite fuzzy subset.

Assume that F is R-dependent. Le. 3 a radon partition {F 1, F2} of F such

that Co(F_l) /\ Co(F2) 75 Q.

Let (1., G F.

(1 ———> l — 0

Then F\a,. : F /\ (HQ where (ti) : , .1? 74 (1.
;Z' —> 1
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We have F1 3 F /\ afl or F-2 5 F /\ (1.1, for each (1,, G F.

For.

(P /\ a:,)(;z?) I F(;1:-_) /\ u.ZI(:zF). gr €

: Fm /\ (1 - @E<,)(;-1?)

Case 1: Let .2: 7% a,

(F /\ <1.;t)(;zf) - F(;z') /\ 1

: (F1 \/ F2)(;r) /\ 1 Z F1(:1') and2
Case 2: Let :1? I a,

(F /\ <1L)(<1-) = FW)/\(1*-<1)

=(F1\/ F2)(") /\ (1 — Q)

ZQAU-H)

Z F-;(a,) if F1(u.) > 0 or

2 F1(a._') if F-_,(_(,j) > (J.

110., F1 5 F /\ aj, or P2 3 F /\ (Q for each an 6 F.

i.e.. C0(F-1) 3 /\(,_”€pC0(P /\ aft) or

C0(F3) 5' /\(.,”;pC0(F” /\ cz-:1)

i.e., C0(P;_‘) A C0(F-2) 3 /\,,_,€,.-C0(F /\ 0.11)

i.e.. /\(,n&-_pC0(F /\(2E:1) Z C0(F1) /\ C0(F2) ;é(
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by R-independence of F.

i.e.. /\(,(_€pC0(F /\ 0;) 75 Q.

i.e. F‘ is H-dependent.

U

Remark 5.3.2. For a n0nZ,er0fim're fu:,:_v subset of a fltzzy com-*e,r .s'trueture, H 

dependence need not iinply R-dependence by rhe_f0ll(m=r'ng exampie.

Consider Counter example 5.2.7, where F -= 1; \/ 2; \/ 3;.

Let (1,. G F, then

1

an I lo. (1 f  01', 1
: 2,1,. .13 § — or

5
1

i :37? if g :'' I
Here F\u., = 1% \/  \/ 33%.

C0(F\u..) : 1 for all (1.. E F.

i.e., /\,_,‘_\€;C-'0(F\a-(,) : 1 75 0.

tie. F is H »dependent.

In the Counter example 5.2.7, it is verified that F is R-independent and

(X. C) is JHC. i'.e.. H dependence need not imply R-dependence.

Remark 5.3.3. In the crisp case. if (X. C) is JHC and has the rami_'fiean'0n prop

erty, then H-dependence <=> H dependence.

But in the fuzzy case, there is no such equivalence.

Lemma 5.3.4. Let (X. C) be a_fi.zzz_v com-'e.r .s"rru("rure. Then a nonzero_finire_fir::_\

.s'ul).S'et F ofX with F (1)) = rjt, ct G  1] is C‘-dependent.
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Proof Let F(p) == at >

Thenpm G F.

i.e.,(t~1 § 0.

When (11 : (1 >  1 -— rt <

Le, p1_(t,. 6 pa 6 F.

Then F\p1_(, : F. since when .1? _ p.

(F\\p1—<r)(p) :  A (1

= ct /\ ct

= <1 = F(p)

When qt? 79 p

(F\111_t;)(:1*) 1* Ft-1%‘) /\ 1

= F(;1f).

t'.e., C0(F\p1_,_,) = C0(F).

t'.e., \/_-I-J51?‘ C0(F\;t;_;) = C0(F).t'.e., F is C-dependent. III
Proposition 5.3.5. lfafuzzy convex structure ( X. C ) has a CUP, rltentjbr every

nonzero _finite_fuzzy subset. E-dependence 2» C-dependence.

Pr0Q)‘I We assume that (X, C) has a CUP and P is a non zero finite fuzzy subset

which is E-dependent.

L61 pa E F.

Case l. Let as 5
We show that F 51),, \/ (F A1111) iff F(p) § 1 — (gt.

For, let F 5 pm \/ (F /\ 1);‘).
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When :1; p, F(p) 3 0- \/ [F(p') /\ (1 ~— 0-)]

)§ 0- OI‘ F(p) § F(p) /\ (1 — 0;)

“-f1“‘1'1’"f1§€’~€€'~€/\ /\/\H WW
“*3‘">>>

‘U

_ () (1 -0-)asF(_) gmisnottme.
_ (P) (1 — (1) § FY11)

z'.e., F : F(p) (1 — 0:)
i.(3., F -— .i.

Conversely, let F(p) g 1 — n".

i.e., (pt, \/ (F /\pi}))(-p) = <1~\/ [F(p) /\ (1 —- 0.)]

= (1. \/ F(p) = F(p).

Also, (pa \/ (F /\ p;\))(:1?‘) = F(;1:) for all :1: 94 p.

i.e., pa \/ (F /\ pf‘) = F.

Le... F § pl, V (F /\  where F(p) § 1 — 0:.

i.c., C0 (F) g C0(p,, v (F /\ pL)) 5 C0(p<-, \/ c@(1+" /\ pg)

Also p,-, \/ C0(F /\ pi‘) § C0(F).

C0(p(, \/ C0(F /\p:})) 3 C0(F).

From (53.1) & (5.3.2),

C0(F) = C0(p(-, \/ C0(F /\ 122))

By E-dependence 0fP. for each 1),, E F,

pC0(F /\p:.i) 5 V(,'3€F{CO(F /\ afi,)lu_,-3 G F Apg. (1. 74"

75

(5.3.l)

(5.3.2_)

(5.33)
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ByCUR

C0(_p(, \/ C0(F /\ p1,)_] 5 \/a_'.,{_Co(_p._, \/ C0(F /\ nf,))|u__.; G F /\ pi‘. 0 yé p}

By (5.33).

C.-*0(F) § \/a__.,[Co(p., \/ C0(F /\ ('l'f_3)),(I. gé 1)] (53.4)

We know pa 6 F\n_.-3 rs F /\ (2.1, G C0(F /\ a.f_,).

i.e., pa \/ CO(F /\ 01,) -"-==" C0(F /\ (11,).

:'.e., C0 (‘pa \/ C0(F /\ afal) = Co(F /\ ((3).

By (5.3.4),

Co(F) § \/(,;.,€;-{Co(F /\ u.f,)|a ¢ p}

§ V(,:.,€pCO(F /\(1.f,).

z'.e., F is C -dependent.

In particular when F(p) = 0- and F(p) 3 1 — (li. ('l'.(?. when (gt §

E -dependence :> C‘-dependence.

Case 2. Let F(p) : <1 >

By lemma 5.3.4, F is C-dependent when Hp) =--- (ii >

In particular when F is E dependent, F is  dependent.Hence the result. CI
Proposition 5.3.6. Le! (X. C’) be a_fir:z_\' convex structure which is JHC and has

dec'0mp0.s'ahle .s'egmenr.s'. Then for a nonzero finite fuzz)‘ subset of (X. C H

dependence implies E-dependence.

Proof Assume that P is H -dependent, ile, AM:-t-C0(P‘\ri_,) 76 Q

then [I/\(1;_5€FCO(F\(.'I-_i)](L'F) : 5, # 0 for some 6,
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Le, ;::_, G /\(,__,C0(F\a;,)

1.6. .17., E C0(F\a,,) for each (1.3 € F. (5.3.5)

Also F\pQ\a._, § F \a,-3 where (1.5 G F\pfl, 0. ;£ p.

zle. :r._: \/ (F\pQ\a,.-3) '5 ;z.'._:, \/ (F\u-_-3)

§ C0 (F\u-3)

since :1.',, \/ (F\a;_;) *3 2.3 \/ C0(F\a,-3)

zle,

= C0(F\a,;) by (53.5)

C0(.r.u, \/ (F\p(,\a_,;) 5 C0(F’\r1;;;)

for all .15, E C0(F\(:-,-3) E C0(F‘).

i.e. \/(,JC0(.1u_, V (F\pQ\a,;;) § \/a_,C0(F\a;_;)

zle, for each pa G F, by prop. 5.2.9

C0(F\pfl) § \/,,__.i{C0(_F\a;;)|r1;; G F\p<,. a #1)}.

:'.e., F is E-dependent III



Conclusion

Since the publication of the classical paper on fuzzy sets by L. A. Zadeh in 1965.

the theory of fuzzy mathematics has gained more and more recognition from many

researchers in a wide range of scientific fields. Among various branches of pure

and applied mathematics, convexity was one ofthe areas where the notion of fuzzy

set was applied. Many researchers have been involved in extending the notion

of abstract convexity to the broader framework of fuzzy setting. As a result, a

number of concepts have been formulated and explored. However. many concepts

are yet to be fuzzified. The main objective of this thesis was to extend some basic

concepts and results in convexity theory to the fuzzy setting.

The concept like matroids, independent structures. classical convex in

variants like Helly number, Caratheodoty number, Radon number and Exchange

number form an important area of study in crisp convexity theory. In this thesis,

we try to generalize some of these concepts to the fuzzy setting.

Further extending the concepts in crisp convexity theory, we have intro

duced fuzzy JHC space. CUP etc as the properties of a fuzzy convexity space.

We have proved many results in this direction. Further, we have extended and

explored the notion of various types of dependence as a background for doing fur

ther work in the theory of classical convex invariants to the fuzzy context. Also

we have obtained one result. (Prop 3.2.3) whose importance according to us is in

lifting results from the finite to the general case. Another important result that

78
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we have proved is that fuzzy matroids form fuzzy independent structures as in the

crisp case but the converse need not be true. Finally, we have defined different

types of fuzzy matroids derived from vector spaces and discussed some of their

properties.

Still there are results in crisp theory related to the topics covered in this

thesis which are to he investigated in the fuzzy setting. There are lots of ideas still

left in convexity, for which fuzzy analogues are not defined and explored.
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List of Symbols

Set of all fuzzy subsets of X

Supp A Support of fuzzy subset A
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(X. C) convexity space
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Q constant function whose value is ‘av’, anywhere

I5’; Set of all finite fuzzy subsets of X
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