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Computational Biology is the research area that contributes to the 

analysis of biological data through the development of algorithms which 

will address significant research problems. The data from molecular 

biology includes DNA, RNA, Protein and Gene expression data. Gene 

Expression Data provides the expression level of genes under different 

conditions. Gene expression is the process of transcribing the DNA 

sequences of a gene into mRNA sequences which in turn are later 

translated into proteins. The number of copies of mRNA produced is 

called the expression level of a gene. Gene expression data is organized in 

the form of a matrix.  Rows in the matrix represent genes and columns in 

the matrix represent experimental conditions. Experimental conditions 

can be different tissue types or time points. Entries in the gene expression 

matrix are real values. Through the analysis of gene expression data it is 

possible to determine the behavioral patterns of genes such as similarity 

of their behavior, nature  of their interaction, their respective contribution 

to the same pathways and so on. Similar expression patterns are exhibited 

by the genes participating in the same biological process. These patterns 

have immense relevance and application in bioinformatics and clinical 

research. These patterns are used in the medical domain for aid in more 

accurate diagnosis, prognosis, treatment planning, drug discovery and 

protein network analysis. 

To identify various patterns from gene expression data, data 

mining techniques are essential. Clustering is an important data mining 
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technique for the analysis of gene expression data. To overcome the 

problems associated with clustering, biclustering is introduced. 

Biclustering refers to simultaneous clustering of both rows and columns 

of a data matrix. Clustering is a global model whereas biclustering is a 

local model. Discovering local expression patterns is essential for 

identifying many genetic pathways that are not apparent otherwise. It is 

therefore necessary to move beyond the clustering paradigm towards 

developing approaches which are capable of discovering local patterns in 

gene expression data.  

A bicluster is a submatrix of the gene expression data matrix. The 

rows and columns in the submatrix need not be contiguous as in the gene 

expression data matrix. Biclusters are not disjoint. Computation of 

biclusters is costly because one will have to consider all the combinations 

of columns and rows in order to find out all the biclusters. The search 

space for the biclustering problem is 2m+n where m and n are the number 

of genes and conditions respectively. Usually m+n is more than 3000. The 

biclustering problem is NP-hard. Biclustering is a powerful analytical tool 

for the biologist. 

The research reported in this thesis addresses the problem of 

biclustering. Ten algorithms are developed for the identification of 

coherent biclusters from gene expression data. All these algorithms are 

making use of a measure called mean squared residue to search for 

biclusters.  The objective here is to identify the biclusters of maximum 

size with the mean squared residue lower than a given threshold. All these 
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algorithms begin the search from tightly coregulated submatrices called 

the seeds. These seeds are generated by K-Means clustering algorithm.  

The algorithms developed can be classified as constraint based, 

greedy and metaheuristic. Constraint based algorithms uses one or more 

of the various constraints namely the MSR threshold and the MSR 

difference threshold.The greedy approach makes a locally optimal choice 

at each stage with the objective of finding the global optimum. In 

metaheuristic approaches Particle Swarm Optimization (PSO) and 

variants of Greedy Randomized Adaptive Search Procedure (GRASP) are 

used for the identification of biclusters.  

These algorithms are implemented on the Yeast and Lymphoma 

datasets.  Biologically relevant and statistically significant biclusters are 

identified by all these algorithms which are validated by Gene Ontology 

database. All these algorithms are compared with some other biclustering 

algorithms. Algorithms developed in this work overcome some of the 

problems associated with the already existing algorithms. With the help of 

some of the algorithms which are developed in this work biclusters with 

very high row variance, which is higher than the row variance of any 

other algorithm using mean squared residue, are identified from both 

Yeast and Lymphoma data sets. Such biclusters which make significant 

change in the expression level are highly relevant biologically.   

 

….. ….. 
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Computational molecular biology deals with different kinds of biological 

data. Gene expression data is one among them. Hence some basics of 

molecular biology are given in this chapter. Gene expression data is the 

basic data used in this thesis. This chapter gives a brief description of 

microarray technology by which the gene expression data is measured. 

The chapter also describes the motivation for selecting the research 

problem, along with the goal, objectives, scope and contribution of the 

research work.  The chapter also gives an overview of the research work 

detailed in this thesis. 
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1.1  Computational Molecular Biology 

 Molecular Biology is the most active field in biology today. An 

important part of molecular biology concerns the study of genetic material 

such as DNA, RNA, proteins, chromosomes and genes.  In this chapter 

some basics of molecular biology are introduced for facilitating the 

understanding of the gene expression data, the data which underlies this 

thesis. Computational molecular biology [84] is an interdisciplinary 

subject involving fields as diverse as biology, computer science, 

information technology, mathematics, physics, statistics and chemistry. 

1.2  Preliminaries from Molecular Biology 

Cells are the basic building blocks of every organism. There is a 

central core in the cell called nucleus. Inside the nucleus there is an 

important molecule known as deoxyribonucleic acid (DNA). All living 

organisms contain DNA. All the information required for the 

development and functioning of an organism is encoded in the DNA 

molecule [3]. DNA molecules store the genetic information of an 

organism. These molecules are made of two polynucleotide chains (or 

strands) forming the double helix structure (Figure 1.1). The four 

nucleotides adenine (A), Cytosine (C), Guanine (G) and Thymine (T) are 

the building blocks of a DNA molecule. In the double stranded DNA one 

particularity is the complementary base pairing, i.e., a particular base on 

one strand binds only to a complementary base on the opposite strand. In 

other words, “A” binds only to “T”, and “C” to “G” (Figure 1.1). Inside 

the nucleus DNA is packaged in the form of chromosomes [57] or several 
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linear DNA molecules called chromosomes, are present in the cell 

nucleus. There are 24 distinct chromosomes for human beings [95]. They 

are together known as genome. RNA is molecule which is informationally 

similar to DNA. RNA is also made up of four nucleotides like DNA. But   

in RNA the Thymine (T) is replaced by another molecule called Uracil 

(U). Moreover RNA is single stranded where as DNA is double stranded. 

The major function of RNA is to selectively copy information from DNA 

and also to bring this information out of the nucleus for using it where it 

is intended to be [1]. A gene is a segment of DNA, which contains the 

formula for the chemical composition of one particular protein [4]. 

Proteins are the most important working molecules of life. Most of the 

biological processes which take place in a cell are carried out by proteins 

[40]. Proteins which are the final products of genes are vital to the 

functioning of cells. The structural components of the cells are constituted 

of proteins and they catalyze biochemical reactions. 

 
Figure 1.1 Example of a double stranded DNA molecule. 
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1.2.1 From DNA to Proteins 

The process of producing a protein from the information in its 

corresponding gene in DNA in two phases such as transcription and 

translation is called protein synthesis. Gene expression is the process of 

transcribing a gene’s DNA sequence into mRNA sequences, which in turn 

are later translated into proteins [105]. Messenger RNA (mRNA) is 

generated in a process called transcription. In short gene expression is the 

process by which the genetic information contained in the genes is 

translated into mRNA molecules and later into proteins. The number of 

copies of mRNA produced in the process of translation is called the 

expression level of the gene. The regulation of gene expression level is 

important for proper functioning of a cell. If the amount of protein 

required by the cell is more, then more copies of the corresponding 

mRNA molecule is produced. In short, the amount of specific mRNA 

copies produced by a gene refers to the activity of the gene. The more 

copies of mRNA produced, the higher the gene is expressed, and the more 

proteins will be generated. Genes with high abundance of mRNA copies 

are called up-regulated genes. On the other hand, if there are no or only a 

few specific mRNA copies are present, then the associated genes are 

called down-regulated genes. All the cells in a given multi-cellular 

organism carry the same genetic code. But the higher order species 

consist of highly specialized cell types, appearing in different locations of 

the body with different tasks. But the question arises as to why do the skin 

cells, nerve cells and blood cells, which all have the same genetic code, 

behave so differently? The answer is that different genes are active, or 
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expressed in the different cell types, making them produce their own 

specific set of proteins. The expression profile of a cell is the collected 

expression levels of all genes in the cell [58]. 

 
 

 Figure 1.2  The main stages of gene expression. Step 1 corresponds to the transcription 
of DNA to RNA molecules. Step 2 corresponds to the translation of 
messenger RNA (mRNA) to protein molecules.  

 
 

1.2.2 Measuring Gene Expression with Microarrays 

Several microarray technologies have been developed to study gene 

expression regulation. A very popular microarray technology based on 

oligonucleotide chips is produced by the company Affymetrix. The other 

widely used microarray technology is cDNA-arrays. In both these 
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techniques the quantity of mRNA is measured based on hybridization 

[105]. DNA microarray is constituted of thin glass or nylon substrates. 

They contain specific DNA gene samples spotted in an array by a robotic 

printing device. Fluorescently labelled m-RNA from an experimental 

condition is spread onto the DNA gene samples in the array. This m-RNA 

hybridizes with some DNA gene samples depending on the double helical 

characteristics. Later a laser scans the array and the sensors for detecting 

the fluorescence levels using red and green dyes. The red and green dyes 

indicate the strength with which the sample expresses each gene. The 

logarithmic ratio between the two intensities of each dye is calculated and 

used as the gene expression data. The relative abundance of the spotted 

DNA sequences in a pair of DNA or RNA samples is measured by 

evaluating the differential hybridization of the two samples to the 

sequences in the array [21, 44, 95].  

1.3  Motivation 

Through the analysis of gene expression data it is possible to 

determine the behavioural patterns of genes such as similarity of their 

behaviour, nature of their interaction, their respective contribution to the 

same pathways and so on. Similar expression patterns are exhibited by the 

genes participating in the same biological process. These patterns have 

immense relevance and application in bioinformatics and clinical 

research. These patterns are used in the medical domain for aid in more 

accurate diagnosis, prognosis, treatment planning, drug discovery and 

protein network analysis. In this context some research questions arise. 
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How to identify the co-expressed genes? What are the computational 

methods that can be used to identify the co-expressed genes? What are the 

constraints to be considered while selecting the computational methods? 

How can we validate the results obtained from the computational methods 

in association with the biological annotations already available?  

In order to identify various patterns from gene expression data, data 

mining techniques are essential. Major data mining techniques which can 

be applied for the analysis of gene expression data include, clustering, 

classification, association rule mining etc. Clustering is an important data 

mining technique for the analysis of gene expression data. However 

clustering has some disadvantages. To overcome the problems associated 

with clustering, biclustering is introduced. Clustering is a global model 

where as biclustering is a local model. Discovering such local expression 

patterns is essential for identifying many genetic pathways that are not 

apparent otherwise. It is therefore necessary to move beyond the 

clustering paradigm towards developing approaches which are capable of 

discovering local patterns in gene expression data. 

1.4  Scope 

The vast amount of data emerging from molecular biology, 

especially in the form of DNA, RNA, protein sequences and gene 

expression data demands the development of algorithms by computational 

scientists. In the context of gene expression data, design and 

development of algorithms can contribute towards the identification of 

biclusters with coherent values. Hence this study deals with the 



Chapter 1 

 - 8 -

development of algorithms for the identification of coherent 

biclusters from gene expression data. The degree of coherence is 

measured by mean squared residue. There are many algorithms for the 

identification of coherent biclusters from gene expression data. The 

algorithms developed in this thesis overcome some of the disadvantages 

associated with the existing algorithms.  

1.5  Research Goal and Objectives 

The research goal is to design and develop algorithms for finding 

coherent biclusters from gene expression data using different algorithm 

design techniques such as constraint based algorithms, greedy algorithm 

and metaheuristic algorithms. Hence the study is aimed at designing and 

developing biclustering algorithms. The objectives are: 

 Compare the performance of these algorithms with the existing 

biclustering algorithms 

 Validate the results with the biological annotations already 

available 

1.6  Contribution 

In this thesis ten algorithms are developed for the identification of 

coherent biclusters from gene expression data. In all the algorithms, 

biclusters are identified in two phases. They are seed finding phase and 

seed growing phase. In the seed finding phase seeds are generated.  Seed 

is a tightly coregulated submatrix of the gene expression data matrix 

generated by K-Means clustering algorithm. All the algorithms mentioned 
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in the seed growing phase begin their search from these high quality 

seeds.  More genes and conditions are added to these seeds in the seed 

growing phase. Each seed is grown separately by adding more genes and 

conditions. The next element to be selected and added depends on the 

algorithm used. The following algorithms were developed as part of the 

research work and they were used in the seed growing phase.  

1. Mean Squared Residue Threshold (MSRT) algorithm 

2. Mean Squared Residue Difference Threshold (MSRDT) 

algorithm 

3. Iterative Search with incremental MSR Difference Threshold 

(ISIMSRDT) algorithm 

4. Seed Growing using separate constraints (SGSC) algorithm 

5. Algorithm based on greedy approach  

6. Algorithm based on Greedy Randomized Adaptive Search 

Procedure (GRASP) 

7. Algorithm  based on Cardinality based Greedy Randomized 

Adaptive Search Procedure (CGRASP) 

8. Algorithm based on Reactive Greedy Randomized Adaptive 

Search Procedure (RGRASP) 

9. Algorithm based on Binary Particle Swarm Optimization 

(PSO) 

10. Algorithm based on greedy - Binary Particle Swarm 

Optimization hybrid 
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These algorithms can be classified into three groups: 

 Constraint based 

 Greedy  

 Metaheuristic algorithms 

These algorithms are applied on both Yeast and Human Lymphoma 

datasets. The results obtained by all these algorithms are represented 

graphically by using the bicluster plots. The biologically significant 

biclusters are identified by all these algorithms.  The results are compared 

with some of the already developed biclustering algorithms on the basis 

of bicluster size and mean squared residue and also the statistical 

significance. The statistical significance and biological relevance of the 

biclusters are also validated using gene ontology database.  In these 

methods it is possible to obtain all kinds of biclusters. Some biclusters 

were obtained, whose row variance is greater than that of any algorithm 

using MSR, from both Yeast and Lymphoma datasets with the help of 

algorithms like MSRT and SGSC.   

1.7  Layout of the Thesis 

The layout of the thesis is as follows:  

Chapter 1 is the introduction of the thesis. 

Chapter 2 provides a literature review of the various data mining 

techniques available for the analysis of gene expression data. A general 

description of the algorithms developed for the identification of coherent 
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biclusters, validation of the biclustering results using the biological 

annotations already available etc are also given in this chapter.  

Chapter 3, 4 and 5 explain the algorithms developed as part of the 

research work. Chapter 3 describes all the constraint based algorithms 

namely MSRT, MSRDT, ISIMSRDT and SGSC. Chapter 4 describes the 

Greedy algorithm. Chapter 5 describes the metaheuristic algorithms 

namely GRASP, CGRASP, RGRASP, Binary PSO and also the Greedy-

PSO hybrid. The description of algorithms, time complexity, different 

biclusters obtained from the datasets, significant biclusters obtained 

(biological validation), comparison of the algorithms with other 

biclustering algorithms are also given in the respective chapters.  

Chapter 6 gives a performance evaluation of the MSR based 

algorithms and a consolidation of the research findings.  

Chapter 7 contains conclusions and future work.  

 

….. ….. 
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This chapter provides a literature review of the existing data mining 

techniques for the analysis of gene expression data such as classification, 

dimensionality reduction, gene regulatory network analysis, association 

rule mining, clustering and biclustering. This chapter also gives a general 

description of the algorithms developed for the identification of coherent 

biclusters, and describes how their results can be validated using the 

already available biological annotations. 
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2.1  Gene Expression Data Analysis  

Data mining is defined as the nontrivial process of identifying valid, 

novel, potentially useful, and ultimately understandable patterns in data 

[30, 41, 95]. Data mining techniques can be used for the analysis of Gene 

Expression data. Gene expression data has been analyzed in gene 

dimension as well as the condition dimension. There are a number of 

high-level analysis methods which have the common aim of extracting the 

biologically relevant patterns and information from the data. Clustering, 

classification, dimensionality reduction and other types of methods are all 

frequently applied in gene expression data analysis [3, 40, 46, 58, 89, 

105]. This chapter reviews different types of data mining methods that are 

adopted to extract different types of information from gene expression 

data including biclustering which is the data mining technique used in this 

thesis. Moreover, the extracted structure needs validation, for example, 

while associating the results to prior knowledge which is often stored in 

large databases.  

2.2  Classification 

Classification is an important supervised data mining method for the 

analysis of gene expression data. The application of classification for 

microarray data include diagnosing cancer type from the expression 

pattern of a tumor sample, or predicting the biological function of genes 

based on their expression patterns. The samples are classified based on 

gene expression patterns into known categories based on morphology, 

known biological features, clinical outcomes, and so on. For 
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classification, the classifier is first trained on training samples, and then 

tested on test samples. Classification algorithms, explicitly or implicitly, 

identify variables, or functions of variables, that are good predictors of a 

class. After having been confirmed to have enough correctness, the 

classifier can classify samples of unknown class label. Classification 

approaches applied on gene expression data include decision tree [80], 

KNN [77], SVM [13], and artificial neural network [17]. Artificial neural 

networks are used for classification problems with more than two classes 

[68], while support vector machines are binary classifiers. For example 

they can classify healthy and cancerous tissue [43] or classify genes as 

belonging to a known functional group [23] or not.  Binary classifiers can 

be extended to handle K classes.  ANNs and SVMs are capable of 

learning non-linear decision functions. In SVMs this is made possible by 

a kernel transformation of the data. Classification methods like SVM and 

Neural network are effective in classifying test samples. For gene list 

based classifiers, the decision function is fixed and predefined. The set of 

variables on which it operates is learned from the data.  For gene list 

based classifiers, since the genes by far outnumber the samples, 

introduces some difficulties. For example, the gene list based classifiers 

[49] classify genes based on the top discriminatory genes. All these 

approaches have some limitations when applied to gene expression data. 

A better alternative for gene expression data is the associative 

classification [18, 103] which makes the decision based on the most 

significant class association rules. Class association rules, are both 

informative and easy to understand.  
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2.3  Dimensionality Reduction 

Dimensionality reduction methods select a subset of objects in such 

a way that important properties of the data are optimally conserved and 

thus provide a means of representing data in low dimensions. 

Dimensionality reduction methods are suitable for explorative data 

analysis. One of the main application of dimensionality reduction is for 

visualization of patterns in data. In gene expression data analysis, two 

dimensional or three-dimensional visualizations may be inspected for 

discovering outliers. Dimensionality reduction can also be used as a 

means of data quality control. Dimensionality reduction is used as a 

compressive preprocessing step prior to clustering or classification. This 

helps to filter out the noise and reduce the computational burden of 

subsequent methods. Some of the standard methods of dimensionality 

reduction used for gene expression data are principal component analysis 

and multidimensional scaling [6, 8, 54]. These methods are suitable for 

data patterns which are linear, and are not designed for data when the 

dependencies between variables are non-linear.  

2.3.1 Principal Component Analysis (PCA) 

PCA is a mathematical technique to pick out relevant patterns in the 

data, while reducing the effective dimensionality of gene-expression 

space without considerable loss of information. PCA is one of the 

techniques that include factor analysis, which provides a "projection" of 

complex datasets onto a reduced, easily visualized space. PCA finds those 

views which separate the data into groups. PCA creates a small number of 
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summary variables called principal components from a much larger set. 

These summary variables are used for visualization or for more complex 

statistical modelling. Creation of components and selection of the most 

representative (or principal) components are the two aspects of PCA. 

Components in the PCA are weighted averages of the original variables, 

which are uncorrelated with each other. Components are created by 

rotation of the original coordinates. The selection of the most 

representative (principal) components is based on the fraction of 

variability. An advantage of PCA is that redundant information (e.g., 

genes showing similar expression patterns across samples) can be 

represented by a single variable. A disadvantage is that sometimes the 

summary variables do not necessarily have a clear biological 

interpretation. This technique can be applied for both genes and 

conditions as a means of classification. PCAs are sometimes used to 

visually identify clusters. This may be successful, but there is, in general 

no guarantee that the data will cluster along the dimensions identified by 

the principal component. PCA is a powerful technique for the analysis of 

gene expression data when combined with other classification technique, 

such as k-means clustering [79] or self-organizing maps (SOM), which 

require the user to specify the number of clusters. PCA is widely used for 

the analysis of gene expression data [7, 50, 82, 108]. 

2.3.2 Multi-Dimensional Scaling (MDS) 

Another technique for dimensionality reduction is Multidimensional 

scaling [71]. Multidimensional scaling identifies variables that are as 

consistent as possible with the observed distance matrix. This results in a 
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graphical representation of the objects as a 2D or 3D figure. User-

specified options have an effect on the resulting representation generated 

by MDS. One of the most common methods for MDS is metric MDS or 

principal coordinates analysis. MDS finds application in cancer 

classification using microarrays [19, 69]. 

2.4  Gene Regulatory Network Analysis 

All cells in an organism have the same genomic data. But the 

proteins synthesized in each cell vary according to cell type, time, and 

environmental factors. The activity of a cell depends on which genes are 

expressed, i.e., which genes are turned on, resulting in the active 

production of their respective proteins. By monitoring the expression 

levels of all genes within a cell simultaneously, it is possible to find out 

which genes are up-regulated, down-regulated, or not expressed under a 

specific condition and can also detect any correlations between the levels 

of expression of different genes. Using this information, it is possible to 

interpret the logic of gene regulation in a cell [33]. Genes interact with 

each other in regulatory networks. Therefore the most biologically 

authentic representation of the genes is, as a network which describes the 

functional relations between genes rather than as a number of clusters, or 

as a cloud of points in Euclidean space. The interactions between genes in 

the regulatory networks can be modeled in many ways [De Jong, 2002] 

[32]. They include simple Boolean Networks [63, 64, 65] to more 

complex regulatory networks such as random directed graphs and to 

detailed models such as Stochastic Master Equation models [11].  
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The study of gene networks is one of the subjects attracting more 

attention. The simplest approach for the identification of network is 

clustering the data and searching for regulatory control elements in all co-

expressing genes [22, 99]. But the information provided by these approaches 

is limited to genes that are co-regulated. This will not identify a gene which 

is regulating another gene. In network inference, a model of the interactions 

between the genes, is constructed. Different models of gene regulation have 

been proposed. The simplest genetic regulatory network is the Boolean 

network. Boolean network was introduced by Kauffman in the late 1960s 

(Kauffman, 1969) [63]. The network is represented as a directed graph. If 

G = (V, F) is the graph then V represents elements of the network, and F 

defines a topology of edges between the nodes and a set of Boolean 

functions. In the Boolean network each gene is modeled as either ON or 

OFF.  The state of each gene at the next time step is determined by 

Boolean function of its input at the current time step. Even though the 

Boolean networks are simple, they are able to provide valuable insights in 

the behavior of gene interactions [64, 104]. They are used in the analysis 

of real gene expression data for the identification of drug targets for 

cancer therapy [55, 96]. 

Boolean network is useful in gene regulation studies. But the 

disadvantage is that the gene expression data is not binary but continuous. 

Moreover, the gene expression data is generally noisy and contain a high 

level of uncertainty.  All these facts led to the proposal of various 

modifications on the basic Boolean network, such as the Noisy Boolean 

network [2], the Probabilistic Boolean network [87, 88], and the Hybrid 
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Boolean network. In the Hybrid Boolean network each gene has a 

continuously valued internal state, a Boolean external state [47, 48] or 

asynchronously updated logic with intermediate threshold values [101, 102] 

2.5  Time Series Analysis 

The goal of time series analysis is to find out genes that show similar 

trends over time within the same organism or sample type and to discover 

samples that are differentiated by such patterns. Time series analyses are 

often performed using regression. In this case time is the primary predictor 

variable and gene expression is the outcome [35, 92, 110].  

2.6  Association Rule Mining 

Association rule mining has attracted great interest since a rule 

provides a concise and insightful description of knowledge. It has already 

been applied for the analysis of biological data [26, 38, 61]. Powerful 

computational analysis tools are required to extract the most significant 

and reliable correlation between genes from high-dimensional gene 

expression data. Class association rule which is one of the most famous 

traditional data mining methods is the solution for the above 

requirements. Each row in the expression data matrix for finding class 

association rule mining corresponds to a sample or a condition, and each 

column corresponds to a gene. Conventional association mining methods 

[59, 81] use the item-wise searching strategy.  Some of the current class 

association rule mining methods also use the same strategy [83]. A 

substantial amount of research in the field of association rule mining has 

demonstrated that accurate and inexpensive diagnosis is possible with 
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class association rules because of their informative nature. A class 

association rule can be defined as a set of items, or specifically a set of 

conjunctive gene expression level intervals (antecedent) with a single 

class label(consequent). The general form of a class association rule is: 

gene1[a1; b1], ...,genen[an; bn] → class, where genei is the name of the 

gene and [ai; bi] is its expression interval. For example, X95735 at[-α, 

994] →ALL is one rule discovered from the gene expression profiles of 

ALL/AML tissues [105]. 

The unlabelled association rules can help discover the relationship 

between different genes and build the gene network [26]. Class 

association rules can relate gene expressions to their cellular 

environments or categories indicated by the class. Thus they can build 

accurate classifiers on gene expression datasets. Some of  the association 

rule mining algorithms find the complete set of association rules 

satisfying user-specified constraints by discovering frequent (closed) 

patterns [59, 81].  

2.7  Clustering 

Clustering is an unsupervised learning technique. Cluster analysis is 

a fundamental technique in exploratory data analysis and pattern 

discovery. Cluster analysis is an important technique to partition objects 

that have many attributes (multi-dimensional data) into meaningful 

disjoint sub-groups. Clustering process groups together similar objects 

into clusters. The objects in each cluster are more similar to each other in 

the values of their attributes, than they are to objects in other groups. 
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Unlike classification, in cluster analysis the number of clusters is 

unknown. Clustering needs a similarity function to measure how similar 

two data points are. Mainly there are two types of clustering, partitional 

and hierarchical. Hierarchical techniques provide a series of successively 

nested clusters. Non-hierarchical techniques generally find a single 

partition, with no nesting. Both are used extensively in microarray 

analysis. In gene expression data analysis, clustering discovers groups of 

co-regulated genes or groups of samples.  
 
2.7.1 Hierarchical Clustering 

Hierarchical clustering is one among the most widely used 

technique in the analysis of gene expression data because of its simplicity 

and ease of visualization [39]. Hierarchical clustering can be classified as 

agglomerative or divisive. In the agglomerative approach initially all 

genes are considered as clusters. Then the distance matrix is calculated for 

all of the genes to be clustered. Two genes with the lowest distance from 

the distance matrix is selected and combined to form a single cluster. This 

process in which two selected clusters are merged to produce new clusters 

is continued until a single hierarchical tree is formed. There are several 

variations on hierarchical clustering which differ in the rules governing 

how distances or similarity is measured between clusters as they are 

constructed. Similarities between two clusters can be defined in a number 

of ways, such as single linkage, complete linkage and average linkage. In 

single linkage the largest similarity between any pair of objects in 

separate clusters is calculated. In complete linkage the smallest similarity 



Analysis of Gene Expression Data 

 - 23 -

between any pair of objects in separate clusters is calculated. In average 

linkage, the average similarity between all pairs of objects in separate 

clusters is calculated. In hierarchical clustering the clustering is visualized 

as a cluster tree called a dendrogram. One problem with hierarchical 

clustering is that it is difficult to decide which clustering level in the 

dendrogram to choose.  Another disadvantage is that different similarity 

measures yield very different cluster trees. 

2.7.2 K-Means Clustering 

K-means clustering [53] is a standard single level clustering algorithm. 

In K-means clustering, the goal is to break objects into groups that have low 

variance within clusters and large variance across clusters [46]. K-means 

clustering is a good alternative to hierarchical methods if there is advanced 

knowledge about the number of clusters. The K-means method does not have 

many parameters to assign. Tavazoie et al. uses K-means clustering in gene 

expression data analysis [99]. K-Means is the simplest clustering algorithm. 

It is the best known partitional clustering algorithm. The method is called K-

means since each of the K clusters is represented by the mean of the objects. 

It is also called centroid method. Different distance measures like Euclidean, 

cosine angle distance etc. can be used in K-Means clustering. The K-Means 

method [51] may be described as follows: 

1) Select the number of clusters. Let this number be K. 

2) Pick K seeds as centroids of the Kclusters. The seeds may be 

picked randomly unless the user has some insight into the 

data. 
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3) Compute the distance of each object from each of the 

centroids. 

4) Allocate each object to the cluster which is nearest to it based 

on the distance computed in the previous step. 

5) Compute the centroids of the clusters by computing the means 

of the attribute values of the objects in each cluster. 

6) Check if the stopping criterion has been met (e.g. the cluster 

membership is unchanged). If yes go to step 7. If not, go to 

step3. 

7) [optional] One may decide to stop at this stage or to split a 

cluster or combine two clusters heuristically until a stopping 

criterion is met.  

2.8  Biclustering 

Biclustering is the data mining technique used in this thesis for the 

analysis of gene expression data. Biclustering is simultaneous clustering 

of both the rows and columns of a data matrix. Biclustering consists in 

simultaneous partitioning of the set of samples and the set of their 

attributes (features) into subsets (classes) [93].   A bicluster of a dataset D 

is a collection of pairs of gene and condition subsets B = ((G1,C1), 

(G2,C2), . . . , (Gr ,Cr)) such that the collection (G1,G2, . . . ,Gr ) forms a 

partition of the set of genes, and the collection (C1,C2, . . . ,Cr ) forms a 

partition of the set of conditions [93]. In short a bicluster is a submatrix B 

of the gene expression data matrix D and if the size of B is IxJ, then I is a 
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subset of rows X of D, and J is a subset of the columns Y of D. The rows 

and columns of the bicluster B need not be contiguous as in the 

expression matrix D. It is not necessary that the identified submatrices to 

be disjoint or to cover the entire matrix. Biclustering is also known as co-

clustering, bi-dimensional clustering and subspace clustering. Biclustering 

is a relatively young area, in contrast to its parent discipline, clustering, 

that has a very long history [98]. 

2.8.1 The Advantages of Biclustering over Clustering 

Clustering is one of the important data mining techniques. However, 

applying clustering to gene expression data has some disadvantages. 

Many activation patterns are common to a group of genes only under 

specific experimental conditions. As per the general understanding of 

cellular process subsets of genes are co-regulated and co-expressed only 

under certain experimental conditions, but behave almost independently 

under other conditions. Discovering such local expression patterns may 

help to uncover many genetic pathways that are not apparent otherwise. It 

is therefore highly desirable to develop algorithmic approaches capable of 

discovering local patterns in gene expression data. Clustering is applied to 

either the rows or the columns of the data matrix, separately. Biclustering 

methods, on the other hand, perform clustering in two dimensions 

simultaneously. That means clustering methods derive a global model 

while biclustering algorithms produce a local model. When clustering is 

applied to gene expression data genes as well as conditions can be 

clustered. However, each gene in a bicluster is selected using only a 

subset of the conditions and each condition in a bicluster is selected using 
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only a subset of the genes. Biclustering thus performs simultaneous 

clustering of both rows and columns of the gene expression matrix, 

instead of clustering these two dimensions separately.  In short unlike 

clustering algorithms, biclustering algorithms can identify groups of 

genes that show similar activity patterns under a specific subset of the 

experimental conditions. Biclustering is used when one or more of the 

following situations apply [74]: 

1. A single gene may participate in multiple pathways that may 

or not be co-active under all conditions 

2. Only a small set of the genes participates in a cellular process 

of interest. 

3. An interesting cellular process is active only in a subset of the 

conditions. 

2.8.2 Bicluster Types 

An interesting criterion for evaluating a biclustering algorithm is the 

identification of the type of biclusters the algorithm is able to find. There 

are four major classes of biclusters: 

1)   Biclusters with constant values. 

2)   Biclusters with constant values on rows or columns. 

3)   Biclusters with coherent values. 

4)   Biclusters with coherent evolutions. 

The simplest biclustering algorithms can identify biclusters with 

constant values. Figure 2.1 (a) gives an example of a constant bicluster. 
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Figure 2.1(b) is an example of a bicluster with constant rows. The 

bicluster in Figure 2.1(c) is an example of a bicluster with constant columns. 

More sophisticated biclustering approaches look for biclusters with coherent 

values on both rows and columns. Figure 2.1 (d) and (e) are examples of this 

type of bicluster. The last type of biclustering addresses the problem of 

finding biclusters with coherent evolutions. In coherent evolutions the 

elements of the matrix are considered as symbolic values and try to discover 

subsets of rows and subsets of columns with coherent behaviors without 

regarding the exact numeric values in the data matrix.  Examples of these 

types of biclusters are given in Figures 2.1 (f) to (i) [74].  

1.0 1.0 1.0 1.0 

1.0 1.0 1.0 1.0 

1.0 1.0 1.0 1.0 

 1.0 1.0 1.0 1.0 
a) Constant Bicluster 

 

1.0 1.0 1.0 1.0 

2.0 2.0 2.0 2.0 

3.0 3.0 3.0 3.0 

4.0 4.0 4.0 4.0 
b) Constant rows 

 

1.0 2.0 3.0 4.0 

1.0 2.0 3.0 4.0 

1.0 2.0 3.0 4.0 

1.0 2.0 3.0 4.0 
c) Constant Columns 
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1.0 2.0 5.0 1.0 

2.0 3.0 6.0 1.0 

4.0 5.0 8.0 3.0 

5.0 6.0 9.0 4.0 
d) Coherent values – additive model 

 

1.0 2.0 0.5 1.5 

2.0 4.0 1.0 3.0 

4.0 8.0 2.0 6.0 

 3.0 6.0 1.5 4.5 
e) Coherent values – multiplicative model 

 

S1 S1 S1 S1 

S1 S1 S1 S1 

S1 S1 S1 S1 

 S1 S1 S1 S1 
f)Overall coherent Evolution 

 

S1 S1 S1 S1 

S1 S1 S1 S1 

S1 S1 S1 S1 

 S1 S1 S1 S1 
g) coherent Evolutions  on rows 

 
S1 S2 S3 S4 

S1 S2 S3 S4 

S1 S2 S3 S4 

 S1 S2 S3 S4 
h) coherent Evolutions  on columns 
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70 13 19 10 

29 40 49 35 

40 20 27 15 

 90 15 20 12 
i)  Coherent Evolutions  on columns 

 

Figure 2.1 Different types of biclusters 

2.8.3 Biclusters with Coherent Values 

Biclusters with coherent values are biologically more relevant than 

biclusters with constant values. Hence in this work biclusters with 

coherent values are identified. In this case the problem of biclustering can 

be formulated as follows: given a data matrix D, find a set of submatrices 

B1, B2,... Bn which satisfy some homogeneous characteristics or 

coherence. In order to identify the degree of coherence a measure called 

mean squared residue score or Hscore was introduced by Cheng and 

Church [29]. It is the sum of the squared residue score. The residue score 

of an element bij in a submatrix B is defined as  

RS(bij)=bij-bIj-biJ+bIJ   

Here I denotes the row set, J denotes the column set, bij denotes the 

element in a submatrix, biJ denotes the ith row mean, bIj denotes the jth 

column mean, and bIJ denotes the mean of the whole bicluster. The 

residue score of an element bij provides the difference between the actual 

value and its expected value predicted from its row mean, column mean 

and bicluster mean. The residue of an element reveals its degree of 

coherence with the other elements of the bicluster it belongs to. Hence 
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from the value of residue score, the quality of the bicluster can be 

evaluated by computing the mean squared residue. That is Hscore or 

mean squared residue score of bicluster B is 

MSR(B)  =   ( ) /(|I|*|J|)                        

A submatrix B is called a δ bicluster if MSR(B)< δ  for some δ >0. δ 

is the MSR threshold. The value of δ depends on the dataset.  For Yeast 

dataset the value of δ is 300 and for Lymphoma dataset the value of δ is 

1200 .The value of δ is taken from Cheng and Church [29] and is 

calculated from the clustering experiments done by Tavazoie et al. [99]. 

Low MSR value denotes strong coherence in the bicluster. The volume of 

a bicluster or bicluster size is the product of the number of rows and the 

number of columns in the bicluster. The biclusters characterized by high 

values of row variance contains genes that display significant changes   in 

their expression values under different conditions. Cheng and Church 

used row variance as an accompanying score to find out trivial biclusters. 

There is no threshold value for row variance in order to consider a 

bicluster as trivial. Row Variance of the bicluster B can be calculated 

using the formula  

RowVar(B) =  ( )/(|I|*|J|) 

The quality of the bicluster is always superior when the volume and 

row variance of the bicluster are larger, and when its mean squared 

residue is smaller.    
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2.8.3.1 Different Types of Biclusters Depending on Coherence and 
Row Variance 

 
Figure 2.2  Characterization of biclusters based on coherence and row variance 

 
Consider three biclusters A, B and C shown in Figure 2.2.  The 

coherence of biclusters A and C are very high. But the coherence of 

bicluster C is low. The row variance of bicluster A is high since there is 

variation in the expression level of the genes. But in C there is no 

variation in the expression level. In applications like gene coregulation 

analysis, the biclusters in area A is the most interesting because similar 

behavior between highly expressed genes is much more important than 

that between two poorly expressed genes [45].  On the other hand, the flat 

biclusters in are C are important for applications such as the identification 

of marker genes. The biclusters in area B are less interesting because they 

have a lower level of coherence than those in area A or C [94]. Figure 2.2 

is reproduced from [94]. 
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2.8.4 Related Work 

Various algorithm design techniques are used to address the 

biclustering problem including Iterative row and column clustering 

combination, Divide and Conquer, Greedy iterative search, Evolutionary 

or Metaheuristic algorithms. Iterative row and column clustering is a 

simpler way to perform biclustering. Here standard clustering methods are 

applied on the row and column dimensions separately and the result is 

combined to obtain biclusters. In divide and conquer strategy the problem 

is divided into small sub-problems, solve the sub-problems separately and 

then combine the solutions to get the final result. Divide and conquer 

algorithms are very fast. But the drawback of this approach when solving 

the biclustering problem is that in divide and conquer strategy as the data 

is divided, there is a possibility of splitting good biclusters before they 

can be identified. Greedy iterative search methods are based on the idea 

of creating biclusters by adding or removing rows or columns from them, 

using a criterion that maximizes a local gain [74]. They have the potential 

of being very fast. Metaheuristic algorithms are able to find global 

optimal solutions.  

Computation of biclusters is costly because one will have to 

consider all the combinations of columns and rows in order to find out all 

the biclusters. The search space for the biclustering problem is 2m+n where 

m and n are the number of genes and conditions respectively. Usually 

m+n is more than 3000. The biclustering problem is NP-hard. In a gene 

expression data matrix there are a number of biclusters with different 
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shapes. The biclustering algorithm should be capable of identifying   these 

biclusters.  Biclustering was first introduced by Hartigan who called it 

direct clustering [52]. Hartigan identifies two biclusters at a time. Cheng 

and Church were the first to apply biclustering to gene expression data 

[29].  In the approach taken by Cheng and Church, the rows or columns 

were deleted from the gene expression data matrix in order to find a 

bicluster. Their algorithm is based on the greedy strategy. Their 

algorithms are deterministic in the sense that repeated runs of them will 

not discover different biclusters, unless the discovered ones are masked. 

So the discovered bicluster is replaced by random values. These random 

values will interfere with the future discovery of biclusters, especially 

those that have overlap with the discovered ones. This problem is known 

as random interference.  Yang et al. [106] generalized the model of 

bicluster proposed by Cheng and Church for incorporating null values and 

for removing random interference. They developed a probabilistic 

algorithm FLOC that can discover a set of possibly overlapping biclusters 

simultaneously.  Zhang et al. presented Deterministic Biclustering with 

Frequent pattern mining (DBF) [109]. In DBF a set of good quality 

bicluster seeds are generated in the first phase based on frequent pattern 

mining. Then these biclusters are enlarged by adding more genes or 

conditions. Sequential Evolutionary Biclustering (SEBI) [36] is based on 

evolutionary algorithms. The objective of SEBI is to identify biclusters of 

maximum size, with MSR lower than a given   δ, with relatively high row 

variance and with a low level of overlapping among the biclusters. 

Biclustering problem is also solved using global optimization techniques 
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like simulated annealing [25] in which the objective is to identify the 

bicluster with the maximum volume and low MSR. Tanay et al. [97] 

developed Statistical-Algorithmic Method for Bicluster analysis 

(SAMBA), in which statistically significant biclusters were identified 

using graph theoretic and statistical considerations. They defined a 

bicluster as a subset of genes that jointly respond across a subset of 

conditions, where a gene is termed as responding in some condition if its 

expression level changes significantly at that condition with respect to the 

normal level.  Spectral biclustering approaches use techniques from linear 

algebra to identify bicluster structures in the gene expression data [70]. 

Recently biclustering problems are solved using multi-objective 

optimization methods. When searching for biclusters in microarray data, 

several objectives like the volume, mean squared residue and row 

variance are to be optimized simultaneously. Often these objectives are in 

conflict with each other. In multi-objective optimization problem there are 

a number of feasible solutions. In the work of Banka and Mitra the Multi 

Objective Evolutionary Algorithm (MOEA) is used for solving 

biclustering problem [15]. Here only the bicluster volume and MSR are 

optimized. Sequential Multi-objective Biclustering (SMOB) [37] also 

uses Multi-Objective EA for finding biclusters in gene expression data. In 

the work of Junwan Liu, Zhoujun Lia and Feifei Liu [62] multi-objective 

PSO is used for the identification of biclusters. Some more well known 

biclustering techniques are Random-Walk-based Biclustering (RWB) [9], 

SGAB [20], Order Preserving Submatrix algorithm OPSM) [16], iterative 

signature algorithm (ISA) [56], BiVisu [100] and Bimax [78]. MOGAB 
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was developed by malik et.al. Maulik et.al [75] solved biclustering 

problem using Multi-objective Genetic algorithm.  Their objective was to 

identify coherent and nontrivial biclusters which should have low mean 

squared residue and high row variance. The Plaid model developed by 

Lazzeroni and Owen for the analysis of gene expression data uses a 

statistically inspired modelling approach [72]. Biclustering problem is 

also solved using GRASP variants [34, 90, 91] to identify biclusters from 

Yeast dataset. The RGRASP [91] uses this technique for the identification 

of significant biclusters.  

2.8.5 Datasets Used  

The algorithms are implemented in Matlab and the datasets used are 

Yeast and Lymphoma. The pre-processed datasets are downloaded from 

[107]. Experiments are also conducted on datasets by filtering out genes 

with small variance across conditions using ‘genevarfilter’ in Matlab. 

2.8.5.1 Yeast Dataset 

The Yeast dataset is based on Tavazoie et al. [99]. Yeast dataset 

consists of 2884 genes and 17 conditions. The values in the expression 

dataset are integers in the range 0 to 600. Missing values are represented 

by -1. A sample Yeast dataset is given in Appendix 7.  

2.8.5.2 Lymphoma Dataset 

Human B-cell Lymphoma expression dataset contains 4026 genes 

and 96 conditions. The dataset was downloaded from the website for 

supplementary information for the article by Alizadeh et al. [5]. The 
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values in the dataset are integers in the range -750 to 650. There are 

47,639 (12.3%) missing values in the Lymphoma dataset. Missing values 

were represented by 999. The datasets are obtained from [107]. In the 

Lymphoma dataset missing values are replaced by random numbers 

between -800 and 800 as in [29].  

2.8.6 Biological Validation of Biclusters 

Once high-level analysis methods have suggested some underlying 

structure in the data, these results need to be interpreted and validated in 

terms of biological significance. Prior biological knowledge can be used 

to evaluate the biological significance of biclusters obtained [97]. If the 

identified biclusters contain significant proportion of biologically similar 

genes, then it proves that the biclustering technique produces biologically 

relevant results. The biological significance can be verified using gene 

ontology database. In this database gene products are described in terms 

of associated biological process, components and molecular functions in a 

species-independent manner. To evaluate the statistical significance for 

the genes in each bicluster p-values are used. P-values indicate the extent 

to which the genes in the bicluster match with the different GO 

categories. If the p-value is smaller, then the match will be better.    Yeast 

genome gene ontology term finder [85] is a database available in the 

Internet which can be used to evaluate the biological significance of 

biclusters. P-values can be calculated using a cumulative hypergeometric 

distribution. The probability p for finding at least k genes, from a 

particular GO category (function, process or component) within a cluster 

of size n, is calculated as          
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where f is the total number of genes within a category and g is the total 

number of genes within the genome.  

2.8.7 Biological Applications of Biclustering  

Biclustering is applied when the data to be analyzed is a real valued 

matrix. The analysis of gene expression data plays a major role in our 

understanding of biological processes and systems including gene 

regulation, development, evolution and disease mechanisms [14]. 

Biclusters can be used to associate genes with specific clinical classes or 

for the classification of genes and samples, among other potentially 

interesting applications.  The three main applications of biclustering 

approaches are identification of coregulated genes, gene functional 

annotation and sample classification [74]. Biclustering is also used in a 

number of other biomedical applications. In [73] biclustering was applied 

to drug activity data to associate common properties of chemical 

compounds with common groups of their descriptors. Moreover [72] 

presents the application of biclustering to the nutritional data. In this case 

each sample is associated with a certain food, while each feature is an 

attribute of the food. The goal was to form clusters of foods similar with 

respect to a subset of attributes. 

 
 



Chapter 2 

 - 38 -

2.9 General Description of all Algorithms Developed in this 
Thesis 

2.9.1 Encoding of Bicluster 

Each bicluster is encoded as a binary string of fixed length [28]. The 

length of the string is the sum of the number of rows and the number of 

columns of the gene expression data matrix. The first N bits represent 

genes and the next M bits represent conditions. A bit is set to one when 

the corresponding gene or condition is included in the bicluster. 

Otherwise the bit is set to zero. This representation is advantageous for 

node addition and node deletion. 

2.9.2 Seed Generation Using K-Means Clustering Algorithm 

A small tightly co-regulated submatrix of the gene expression data 

matrix with a low mean squared residue score is called the seed of the 

bicluster. Since the MSR value of the seed is lower than the threshold, 

there is a possibility of accommodating more genes and conditions within 

the given MSR threshold. The K-Means clustering algorithm is used for 

seed finding. The gene expression dataset is partitioned into n gene 

clusters and m sample clusters. Gene clusters having more than 10 genes 

are further divided according to the cosine angle distance from the cluster 

centre. Similarly each sample cluster having more than 5 samples is 

further divided into sets of 5 samples according to cosine angle distance 

from the cluster centre. The number of gene clusters having maximum 10 

close genes is p and the number of sample clusters having maximum 5 

conditions is q. The p gene clusters and q sample clusters are combined to 
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form p*q submatrices. The MSR value of these submatrices is calculated 

and those with MSR value below a certain limit are selected as seeds [27].  

2.9.2.1 The Advantages of Using Seeds from K-Means 

Using seeds from K-Means has some specific advantages. 

1) Since the biclustering is a combinatorial optimization problem 

seed gives a good start and reduces the number of 

combinations. 

2) There are different types of biclusters in a gene expression 

data. Some of them will be biclusters with very low variance 

and large volume. Genes with low variation in expression 

level are useful for marker gene identification. Some 

biclusters are with small volume and large row variance.  In 

short there are different types of biclusters based on MSR, 

row variance and volume. When seeds from K-Means are 

used it is possible to get all types of biclusters.  

3) MSR is biased towards biclusters with low row variance. But 

when seeds from K-Means are used, biclusters of large row 

variance can be obtained. 

4) The problem of random interference can be avoided.  

5) Some of the seeds will help the identification of the biclusters 

which cannot be identified by any other algorithm using MSR. 

After doing experiments with all these algorithms especially 

the MSRT and SGSC it is found that some conditions are 
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getting eliminated not because of the lack of coherence in the 

expression level but because of the significant increase in the 

expression level.  Such conditions will increase the MSR 

above the threshold. Hence such conditions will get 

eliminated in all MSR based algorithms.  With the seeds from 

K-Means algorithms such as SGSC or MSRT can identify 

such biclusters. 

6) Seeds from K-Means help the identification of large number 

of biclusters. This eliminates the limitation of number of 

biclusters that can be identified by some of the algorithms. 

2.9.3 Different Algorithms used in the Seed Growing Phase 

More genes and conditions are added to the seed using different      

seed growing algorithms which are developed as part of this thesis work. 

Ten different algorithms are used for seed growing. Out of this 4 

algorithms use different constraints. One uses the greedy approach. Other 

methods use metahueristic approaches GRASP and Particle Swarm 

Optimization (PSO).  The Mean Squared Residue Threshold (MSRT) 

algorithm uses the only constraint mean squared residue threshold. Since 

biclustering is an optimization problem which is trying to optimize the 

MSR, Mean Squared Residue Difference Threshold (MSRDT) algorithm 

uses one more constraint namely the MSR difference threshold. In 

Iterative Search with Incremental MSR difference threshold (ISIMSRDT) 

algorithm, the MSR difference threshold value is incremented iteratively. 

While conducting these experiments it is found that the incremental 
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increase in genes is low, whereas the incremental increase in conditions 

are high. Hence an algorithm called SGSC which uses Separate 

Constraints for Genes and Conditions for finding biclusters from gene 

expression data is developed. In greedy approach the node with minimum 

incremental increase in MSR is selected for enlarging the seeds. Since 

greedy approaches have local minima problem metaheuristic methods like 

Greedy Randomized Adaptive Search Procedure (GRASP) is also used in 

the seed growing phase. The different variants of GRASP like basic 

GRASP, cardinality based GRASP and Reactive GRASP are used for 

finding biclusters. These three methods differ in the way the restricted 

candidate list is implemented. Particle swarm Optimization (PSO) which 

is an evolutionary computation based technique is also used for enlarging 

the seeds. One more approach which is a hybrid of greedy and PSO is 

also used for the identification of biclusters. 

2.10 Summary 

This chapter provides a literature survey of the various existing data 

mining techniques used for the analysis of gene expression data which 

includes classification, dimensionality reduction, clustering and 

biclustering etc. This thesis is concerned with the development of 

algorithms for the identification of coherent biclusters from gene 

expression data. A general description of the biclustering algorithms 

developed in this thesis is also given in this chapter. 
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This chapter describes all the constraint based algorithms 

developed in this work for finding biclusters from gene expression data.  

A constraint is a condition which must be satisfied by the solution to an 

optimization problem. The constraint based algorithms are MSRT, 

MSRDT, ISIMSRDT and SGSC. These algorithms are used for enlarging 

the seeds obtained by K-Means clustering algorithm.  In all these 

algorithms node addition follows node deletion if necessary. The 

condition in which the added node is deleted depends on the constraints 

used by the algorithm. The nodes are added sequentially. The description of 

the algorithms, Time complexity, different biclusters obtained from Yeast and 

Lymphoma datasets, significant biclusters obtained (biological validation), 

and the comparison of the algorithms with other biclustering algorithms 

are also given in this chapter. A comparison of all the constraint based 

algorithms is also given.   
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3.1 MSRT Algorithm 

Mean Squared Residue (MSR) is used as the similarity measure to 

evaluate the coherence of the biclusters. There is a threshold value for the 

mean squared residue denoted by δ. This value depends on the dataset. 

The value of δ for the Yeast dataset is 300 and for the Lymphoma dataset, 

it is 1200. This algorithm is making use of MSR threshold value as the 

sole constraint for the identification of biclusters. Hence this algorithm is 

named MSRT algorithm.  

In the MSRT algorithm genes or conditions can be added to the 

given seed one at a time. In this algorithm in order to enlarge the seeds, 

the conditions are searched first followed by the genes. Many factors are 

observed when a gene or condition is added to a seed for generating the 

final bicluster.  After adding a gene or condition, the MSR value of the 

resulting bicluster reduces or increases. The variation in MSR caused by 

some of the genes or conditions will be very high. This algorithm is 

developed with the assumption that those genes or conditions having no 

coherence with the elements of the bicluster will create a large variation 

in MSR value when added to the bicluster which will be greater than the 

MSR threshold. Thus after adding one gene or condition the MSR value 

of the resulting submatrix is calculated in order to verify whether it 

exceeds the given MSR threshold. If it exceeds the given MSR threshold, 

it is removed from the bicluster. This process is continued till the last 

gene or condition is verified for the inclusion in the bicluster.  This 

algorithm is deterministic in the sense that for a given threshold value of 
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MSR and for a given seed the execution of the algorithm will produce the 

same result. A pseudo code description of the algorithm is given below. 
 

 

Algorithm MSRthreshold(seed, δ) 
// δ denotes the MSR threshold 
bicluster := seed;    j := 1; 
While (j <= total _no_conditions) 
if condition[ j] is not included in the bicluster 
Add all elements of condition[j] corresponding to genes already included to 
the bicluster 
calculate MSR 
if (MSR> δ) remove elements of condition[ j] from the bicluster  and  
restore previous MSR value 
endif 
endif 
j:= j+1 end(while) 
i=1;  
While (i <= total _no_ genes) 
If gene[i] is not included in the bicluster 
Add all elements of gene[i] corresponding to conditions already included to 
the bicluster;     calculate MSR 
if MSR> δ 
remove elements of  gene[i] from the bicluster restore the previous MSR 
value 
endif 
endif 
i:= i+1 
end(while) 
return bicluster 
end(MSRthreshold) 
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3.1.1 Time Complexity of the MSRT Algorithm 

The basic operation for the identification of biclusters is the 

calculation of mean squared residue of a submatrix. Time complexity for 

calculating MSR is O(mn) where m and n are the number of genes and 

conditions respectively. In order to include a single gene or condition, 

MSR value is calculated once. There are m+n genes and conditions. 

Hence this calculation is performed at most m+n times. That means the 

worst case time complexity of the algorithm is O((m+n)mn).  

MSRT algorithm is very fast compared to evolutionary or 

metahueristic algorithms. The main operation for finding bicluster is the 

calculation of the MSR value of a submatrix. In this algorithm the number 

of submatrices whose MSR is to be calculated is at most m+n where m 

and n are the number of genes and conditions respectively. Usually m+n 

will be less than 4200 (total number of genes and conditions for the 

Lymphoma dataset which is the largest in this case). In the case of 

evolutionary algorithms the number of submatrices whose MSR is to be 

calculated   is p*i where p is the number of populations and i is the 

number of iterations. For SEBI [36] and SMOB [37] the value of p*i is 

20000. 

3.1.2 Experimental Results 

3.1.2.1 Bicluster Plots for Yeast Dataset 

In Figure 3.1 only twenty seven biclusters with different shapes   

found by the algorithm are shown. From the bicluster plots it is clear that 
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highly coherent biclusters are obtained using this method. When this 

algorithm is used, some of the seeds produce biclusters with row variance 

above 2000. In SEBI the attempt was to identify biclusters with high row 

variance by adjusting the fitness function. The minimum value of row 

variance they obtained for the biclusters in Yeast dataset was 317.23. In 

this study, all biclusters obtained are with row variance above 300.   

Biclusters with all 17 conditions are obtained using this method even 

though only seven such biclusters are given in the Figure 3.1. 

Experiments are conducted by setting the value of MSR threshold as 100, 

200, and 300. Even though the MSR threshold value for Yeast dataset is 

300, biclusters with low value of MSR are assumed to be more coherent. 

Hence lower values like 100 and 200 are also used.   
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  Figure 3.1  Twenty seven biclusters found for the Yeast dataset. Bicluster labels are 

(ya2), (yb2), (yc2), (yd2), (ye2), (yf2), (yg2), (yh2), (yi2), (yj2), (yk2), 
(yl2), (ym2), (yn2), (yo2), (yp2), (yq2), (yr2), (ys2), (yt2), (yu2), (yv2), 
(yw2), (yx2), (yy2), (yz2) and  (ya12) respectively. In the bicluster plots X 
axis contains conditions and Y axis contains expression values. The details 
about the biclusters can be obtained from Table 3.1 using the bicluster label.  
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Table 3.1 

Information about Biclusters of Figure 3.1 

Bicluster 
Label 

Number of 
Genes 

Number of 
Conditions 

Bicluster 
Volume MSR Row 

Variance 
Ya2          13 17  221  99.41      505.91 

Yb2 29 17  493  99.89 625.51 

Yc2        114 14      1596 199.52 508.76 

Yd2        124 13      1612 198.94 601.00 

Ye2  49 16 784 199.46 513.27 

Yf2 67 13 871 199.05      490.14 

Yg2          20 14 280    198.00 1174.10 

Yh2          69 15      1035    199.35       578.91 

Yi2          67 17      1139    199.95         98.42 

Yj2         16 17 272    197.21       115.10 

Yk2         20 17 340    199.51       691.37 

Yl2         31 10 310    292.16     2052.10 

Ym2         33 15 495    299.26     2134.30 

Yn2         22 11 242    297.63     1816.20 

Yo2        137 15      2055    299.89       529.95 

Yp2 26 14 364 199.03   611.65 

Yq2 18 16 288 197.98   740.61 

Yr2 26 13 338 199.13  378.97 

Ys2 16 14 224 196.98  958.01 

Yt2 11 16 176 194.38 501.86 

Yu2 19 16 304 198.24 430.72 

Yv2      1615 05 8075 299.71 308.95 

Yw2 96 10 960 198.85  367.38 

Yx2 20 16 320 197.57    1058.30 

Yy2 11 15 165 273.63 958.06 

Yz2 75 17 1275 199.95 459.01 

ya12 57 17 969 199.09 618.64 
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In the above table the first column contains the label of each 

bicluster. The second and third columns report the number of rows 

(genes) and the number of columns (conditions) of the bicluster 

respectively. The fourth column reports the volume of the bicluster and 

the fifth column contains the mean squared residue of the bicluster.  The 

last column contains the row variance of the bicluster. 

Biclusters (ya2) and (yb2) are having very low value for MSR.  

Biclusters (yl2) and (ym2) are with row variance above 2000. In bicluster 

(yb2) the expression value of all the genes increases in unison under the 

tenth condition.  A bicluster similar to (yb2) is obtained in SMOB but the 

number of genes and MSR value is 19 and 202.18 respectively. But for 

bicluster (yb2) the number of genes and MSR value is 29 and 99.8897 

respectively. That means in bicluster (yb2) there are more number of 

genes and it is more tightly coregulated compared to the similar bicluster 

of SMOB. Shifting and scaling patterns [10] are clearly visible in 

biclusters (yd2), (yg2), and (yn2). In bicluster (yh2) the up-regulation and 

down- regulation in the genes are very small but frequent. In the 

biclusters (yd2) and (ym2) there are 3 and 2 sets of genes respectively. 

Biclusters with large number of genes having very few conditions (Yv2) 

are also obtained using this method. 

3.1.2.2 Bicluster Plots for Human Lymphoma Dataset 
 

In Figure 3.2 twenty eight biclusters found by the algorithm for 

the Lymphoma dataset are shown. The genes in the bicluster present a 

similar behaviour under a set of conditions. Biclusters like (la2), (lb2), 
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and (lb12) are having very large volume. Bicluster (id2) contains the 

maximum number of conditions obtained in this method i.e. 91.  Bicluster 

(ly2) is having row variance above 9000. As Federico Divina and Jesus S. 

Aguilar-Ruize have observed [37] there is no shifting and scaling patterns 

in the biclusters of Lymphoma dataset. But local shifting patterns are 

observed in some biclusters. 
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Figure 3.2  Twenty eight  biclusters found for the Lymphoma dataset. Bicluster labels 

are (la2), (lb2), (lc2), (ld2), (le2), (lf2), (lg2), (lh2), (li2), (lj2), (lk2), (ll2), 
(lm2), (ln2) ,(lo2), (lp2), (lq2), (lr2), (ls2), (lt2), (lu2), (lv2), (lw2), (lx2), 
(ly2), (lz2), (la12) and (lb12) respectively. In the bicluster plots X axis 
contains conditions and Y axis contains expression values. The details about 
biclusters can be obtained from Table 3.2 using bicluster label.  

 

In the Table 3.2 given below, the first column contains the label of 

each bicluster. The second and third columns report the number of rows 

(genes) and the number of columns (conditions) of the bicluster 

respectively. The fourth column reports the volume of the bicluster and 

the fifth column contains the mean squared residues of the bicluster. The 

last column contains the row variance of the bicluster. Biclusters lp2, lu2, 

lz2 and lb12 are having very high volume. But the row variance is not 
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very high. More biclusters similar to lp2, lu2, lz2 and lb12 are also 

obtained from this dataset.  

Table 3.2 

Information about Biclusters of Figure 3. 2 
 

Bicluster 
Label 

Number of 
Genes 

Number of 
Conditions 

Bicluster 
Volume 

MSR Row 
Variance 

la2      117 47 5499 1194.2 2173.2 
lb2      164 49 8036 1188.7 1691.3 
lc2 11 67  737 1186.7 6222.4 
ld2 10 91  910 1190.5 5308.5 
le2       890 21  18690 1198.6 1229.6 
lf2 29 78 2262 1185.5 1557.3 
lg2 10 79  790 1158.2 6100.0 
lh2 18 64 1152 1191.0 2657.3 
li2 677 22 14894 1199.2 1230.4 
lj2 11 77  847 1189.5 4431.0 
lk2 29 75 2175 1189.1 4043.5 
ll2      120 15 1800 1196.5 2697.5 

lm2 50 43 2150 1196.0 3180.3 
ln2 52 44 2288 1199.5 3179.7 
lo2      147 46 6762 1195.8 2097.6 
lp2      702 10 7020 1199.8 1249.8 
lq2 18 73 1314 1197.4 3907.1 
lr2 10 70  700 1191.6 5122.2 
ls2 33 30  990 1200.0 2258.1 
lt2 20 9  180 1194.0 4786.2 
lu2      614 24    14736 1197.7 1284.3 
lv2 97 30 2910 1196.7 3077.4 
lw2 338 25 8450 1198.6     1318.6 
lx2 18 47   846 1197.2 7061.6 
ly2 11 39  429 1199.2 9009.0 
lz2     1311 12    15732 1199.0 1244.7 

la12 779 19    14801 1197.7 1214.3 
lb12     1136 20     22720 1194.0 1225.3 
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3.1.3 Advantages of MSRT Algorithm 

As no other constraint is used for the identification of biclusters 

except MSR threshold, different seeds will result in different biclusters 

with a few exceptions. It is an advantage that the only one parameter 

required by the algorithm is the MSR threshold. It is noticed that some 

conditions which make significant change in the expression level is added 

to the bicluster, the MSR value will increase. Biclustering algorithms 

trying to minimize MSR will not identify such conditions which are 

relevant biologically. In this algorithm maximum possible variation is 

allowed for MSR. Hence it is possible to identify conditions with 

significant change as well as some of the shifting and scaling patterns [10] 

which make significant change in MSR. With the help of this algorithm 

some biclusters with very high row variance are identified from both 

Yeast and Lymphoma datasets (which are given in chapter 6). 

3.1.4. Details of Significant Biclusters obtained by MSRT Algorithm 
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Figure 3.3  Four significant biclusters obtained by the MSRT algorithm on Yeast 
dataset. The bicluster labels are s21, s22, s23 and s24. The details about 
biclusters can be obtained from Table 3.3 using the bicluster label. 
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Table 3.3 

Information about Biclusters of Figure 3.3 

Bicluster 
Label 

Number of 
Genes 

Number of 
Conditions MSR Row 

Variance 
S21         6 1 17 198.9467     469.4058 
S22 28 17 299.8488 1937.5000 
S23         56 17 199.7856   587.8461 
S24         34 10 277.0816  991.0000 

Biological relevance of biclusters obtained using MSRT algorithm 

is verified using the four biclusters shown in Figure 3.3. GO annotation 

database [36] is used to verify the biological significance of biclusters.  In 

the first bicluster s21 selected for testing the biological significance there 

are 61 genes. They are YAL007C, YAL011W, YAL035W, YBL024W, YBL083C, 

YCL031C, YCR059C, YCR087W, YDL008W, YDL150W, YDL153C, YDL166C, 

YDL167C, YDL231C, YDR017C, YDR057W, YDR060W, YDR083W, YDR120C, 

YDR121W,YDR170CYDR172W, YDR211W, YDR234W, YDR235W, YDR262W, 

YDR289C, YDR299WYDR312W, YDR324C, YDR339C, YDR352W, YDR361C, 

YDR365C, YDR392W, YDR444W, YDR478W, YDR518W, YGL214W, YGR042W, 

YGR200C, YGR216CYKR060W, YLL008W, YLR146C, YLR222C, YML066C, 

YNL132W, YNL199C, YNR003C,  YOL080C, YOL124C, YOL140W, YOR061W, 

YOR098C, YOR145C, YOR252W, YOR272W, YPL126W, YPR053C, YPR112C.  

In the second bicluster s22 there are 28 genes. They are YAL023C, 

YAR007C, YAR008W, YBL035C, YBR088C, YBR089W, YCR065W, YDL003W, 

YDL018C, YDL164C, YDR097C, YFL008W, YGR152C, YHR154W, YJL181W, 

YKL042W, YKL113C, YLL022C, YLR103C, YML021C, YML102W, YMR076C, 

YMR078C, YNL273W, YNL312W, YOL090W, YOR074C, YPL208W.  

In the third bicluster s23 there are 56 genes. They are YAL003W, 

YAL007C, YAL030W, YAL038W, YAR009C, YBL030C, YBL072C, YBL077W, 
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YBL092W, YBR009C, YBR031W, YBR035C, YBR048W, YBR084C-A, YBR106W, 

YBR111C, YBR118W, YCR013C, YCR031C, YDL061C, YDL075W, YDL081C, 

YDL083C, YDL130W, YDL136W, YDL191W, YDL192W, YDL208W, YDL219W, 

YDL228C, YDL229W, YDR012W, YDR025W, YDR035W, YDR050C,YDR064W, 

YDR133C, YDR134C, YDR382W, YDR385W, YDR433W, YDR447C, YDR450W, 

YDR471W, YDR500C, YEL034W, YER074W, YER117W, YGL102C, YMR048W, 

YNL067W, YOL127W, YOR234C,YOR312C, YPL037C, YPR102C.  

In the fourth bicluster s24 there are 34 genes namely YBR038W, 

YBR138C, YCL012W, YGR108W, YHR151C, YIL106W, YJR092W, YKL129C, 

YKR021W, YKR056W, YLR190W, YLR353W, YLR453C, YML033W, YML034W, 

YML119W, YMR001C, YMR032W, YMR291W, YNL171C, YNL172W, YOL130W, 

YOR152C, YOR160W, YOR206W, YOR365C, YPL148C, YPL150W, YPL183C, 

YPL242C, YPL248C, YPR003C, YPR007C, YPR119W. 

The Table 3.4 given below shows the significant GO terms used to 

describe genes of the biclusters of Figure 3.3 for the process, function and 

component ontologies. The common terms are described with increasing 

order of p-values or decreasing order of significance.  In Table 3.4 the first 

entry of the second column with the title process contains the term ribosome 

biogenesis (22, 8.41e-11) which means that 22out of the 61 genes of the 

bicluster are involved in the process of ribosome biogenesis and their p-value 

is 8.41e -11. Second entry indicates that 22 out of 61 genes are involved in 

ribonucleoprotein complex biogenesis. Also from the table it is clear that the 

biclusters are distinct along each category. This proves that the bicluster 

contains biologically similar genes and the MSRT algorithm used here is 

capable of identifying biologically significant biclusters from different GO 

categories.  
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Table 3.4 

Significant Shared GO Terms (Process, Function,                                
Component) of Biclusters Shown in Figure 3.3 

 
Bicluster Process Function Component 

S21 Ribosome biogenesis 
 (22, 8.41e-11) Ribonucleo-
protein complex biogenesis 
(22,1.47e-09)cellular 
component biogenesis at 
cellular level (23, 1.01e-08) 
Gene expression (30, 
0.00053) 

27 out of 61 input genes 
are directly annotated to 
root term 'molecular 
function unknown':  

 

Nucleolus (19, 2.91e-
11) Preribosome (15, 
8.40e-10) 
90spreribosome (12, 
7.50e-09) 
Nucleus (36, 0.00020) 

S22 DNA repair (16, 4.82e-13) 
response to DNA damage 
stimulus (16, 5.57e-12) DNA 
metabolic process (17, 
4.37e-11) nucleobase, 
nucleoside, nucleotide and 
nucleic acid metabolic 
process (21, 4.30e-06) 

Double-stranded DNA 
binding (5,4. 13e-05) 
structure-specific DNA 
binding (5, 0.00103) 
DNA secondary 
structure binding (3, 
0.00104) 
guanine/thymine 
mispair (2, 0.00335) 

Chromosome (14, 
2.01e-08)  
replication fork (8, 
1.38e-07) 
chromosomal part (12, 
1.53e-06) 
nucleus(22, 9.64e-06) 

S23 Translation (34, 7.82e-25) 
cellular protein metabolic 
process (36, 3.25e-12) 
protein metabolic process 
(36, 8.24e-12) cellular 
macromolecule biosynthetic 
process (35, 5.82e-10) 
metabolic process (45, 
0.00045) 

Structural constituent of 
ribosome (28, 9.79e-24) 
structural molecule 
activity (28, 2.73e-18) 
translation elongation 
factor activity (4, 
0.00015) 
 

Cytosolic ribosome 
(29, 1.55e-26) 
cytosolic part (29, 
2.95e-24) 
Ribosome (32, 8.24e-
24) cytosolic large 
ribosomal subunit (18, 
2.09e-17) cytoplasmic 
part (42, 2.50e-06) 

S24 Cytokinesis (7, 0.00130) 
positive regulation of spindle 
pole body separation (3, 
0.00195) 
 cell cycle process (12, 
0.00252) cell cycle (12, 
0.00383) regulation of 
spindle pole body separation 
(3, 0.00387) 

13 out of 34 input genes 
are directly annotated to 
root term 'molecular 
function unknown': 
 

 

cellular bud ( 10, 
3.48e-06) cellular bud 
neck(9, 3.81e-06) site 
of polarized 
growth(10, 1.63e-05) 
cellular bud neck 
contractile ring (4, 
5.04e-05) 
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Figure 3.4 Sample of genes for the bicluster s23, with corresponding GO terms                  
and their parents for   function ontology 

Figure 3.4 shows the significant GO terms for the set of genes in 

bicluster s23 along with their p values. It shows the branching of a 

generalized molecular function into sub-functions like structural molecule 

activity, binding and enzyme regular activity. These activities are 



Chapter 3 

 - 60 -

clustered using genes to produce the final result. Figure 3.4 is obtained 

when gene ontology database is searched by entering the names of genes 

and by selecting function ontology. 

3.1.5 Comparison with other Biclustering Algorithms 

3.1.5.1 Comparison based on Statistical and Biological Significance. 

To evaluate the statistical significance for the genes in each bicluster p-

values are used. P-values indicate the extent to which the genes in the 

bicluster match with the different GO categories. If the p-value is smaller, 

then the match will be better. In Table 3.5 the GO terms along with their p-

values and percentage of genes associated with the GO terms in the bicluster 

for the MSRT algorithm is compared with that of MOGAB [75], SGAB [20], 

CC [29], RWB [9], Bimax [78], OPSM [16], ISA [56] and BiVisu [100]. 

This table is taken from [75]. From the Table 3.5 it is clear that in terms of 

the best p-value obtained by a bicluster which is used to denote statistical 

significance, MSRT algorithm is better than RWB, Bimax, OPSM and 

Bivisu. The percentage of genes involved in the first GO term is greater than 

that of RWB, OPSM and Bivisu. For the second GO term the p-value of 

MSRT algorithm is better than that of all the other algorithms except 

MOGAB and SGAB. The percentage of genes involved is greater than that 

of all the other algorithms. For the third GO term the p-value and the 

percentage of genes is greater than that of all the other algorithms except 

MOGAB. For the fourth GO term the p-value is better than that of all the 

other algorithms except MOGAB. But the percentage of genes involved is 

better than all the other methods. For the fifth GO term the p-value and the 

percentage of genes involved is better than all the other methods. 
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3.1.5.2 Comparison based on Bicluster Size and MSR 

The Table 3.6 given below provides a comparative summarization 

of the results of Yeast dataset involving the performance of related 

algorithms in terms of the average number of genes, conditions and the 

MSR value of the bicluster.  The performance of MSRT algorithm in 

comparison with that of Cheng and Church’s (CC) [29], FLOC by Yang 

et al. [106], DBF [109], SEBI [36] and SMOB [37] for the Yeast dataset 

are given.  In the MSRT algorithm presented here the average mean 

squared residue is lower than that of CC, SEBI and SMOB. The average 

number of genes is greater than that of all other algorithms except CC, 

FLOC and DBF and average number of conditions is better than that of 

all other algorithms except SEBI and SMOB. The MSRT algorithm has 

highest value in the case of largest bicluster size compared to all other 

methods.  

Table 3.6  

Performance Comparison between MSRT and other Algorithms                
for the Yeast Dataset 

 
Algorithm AMR ANG ANC AV LB 

MSRT 199.78  94.75 14.75 1422.87 8075 

SEBI 205.18  13.61 15.25   209.92 1394 

SMOB 206.17  27.28 15.46   453.48   697 

CC 204.29 166.71 12.09 1576.98 4485 

FLOC 187.54 195.00 12.80 1825.78 2000 

DBF 114.70 188.00 11.00 1627.20 4000 
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AMR is Average mean squared Residue. ANG is Average Number 

of Genes. ANC is Average Number of Conditions. AV is Average 

Volume. LB is Largest Bicluster size. As clear from the above table the 

average mean squared residue, the average number of genes and 

conditions, average volume and largest bicluster size are compared for 

various algorithms.  For the average mean squared residue field lower 

values are better where as higher values are better for all other fields. 

Table 3.7 gives performance comparison for Human B-cell 

Lymphoma dataset. Value of δ is set to 1200 for Lymphoma dataset. In 

this dataset the average number of genes and average volume of the 

biclusters obtained are far better than that of SEBI and SMOB. Average 

number of conditions is greater than CC and SEBI. 

Table 3.7 

 Performance Comparison between MSRT and other Algorithms                
for Human Lymphoma Dataset 

 
Algorithm AMR ANG ANC AV 

MSRT 1192.43 741.10 38.50 14455.30 
CC   850.04 269.22 24.50   4595.98 

SEBI 1028.84   14.07 43.57     615.84 
SMOB 1019.16   11.60 78.47     709.13 

AMR is the Average mean squared Residue. ANG is Average 

Number of Genes. ANC is the Average Number of Conditions. AV is 

Average Volume. As clear from the above table the average mean squared 

residue, the average number of genes and conditions and average volume 
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and are compared for various algorithms. For Lymphoma dataset AGN 

and AV are better than that of all other algorithms. 

In multi-objective evolutionary computation [15] the maximum 

number of conditions obtained is only 11 in Yeast dataset and 40 in 

Human B-cell Lymphoma dataset. But in MSRT algorithm there are 

biclusters with all 17 conditions for the Yeast dataset and 91 conditions 

for the Lymphoma datasets respectively. For the Yeast dataset the 

maximum number of genes obtained for this algorithm in all the 17 

conditions is 117 with MSR value 199.9365. The maximum available in 

all the literature published so far is in multi-objective PSO [62]. They 

obtained 141 genes for 17 conditions with MSR value 203.25. Moreover 

as the MSRT algorithm uses simple sequential search rather than 

stochastic search the computation time required is very less compared to 

all the metahueristic and evolutionary algorithms. 

Some of the biclusters are with high row variance (more than 2000 

for the Yeast dataset and more than 9000 for Lymphoma dataset) even 

though no specific measures are taken to get biclusters of high row 

variance. A bicluster with 91 conditions is obtained for Lymphoma 

dataset. The row variance of the bicluster is 5308.5. This bicluster is 

shown in Figure 3.2 with label (ld2). This method is especially suitable 

for Lymphoma dataset for obtaining biclusters with large size. Even 

though the method used here is not multiobjective, the results obtained are 

better than such algorithms. This is faster than metaheuristic algorithms. 
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As no other method is used for reducing the MSR except MSR threshold, 

different seeds will result in different biclusters with a few exceptions.  

3.2  MSRDT Algorithm 

In this section, a novel algorithm for finding biclusters from gene 

expression data is described. This algorithm is developed using the newly 

introduced concept of MSR difference threshold. MSR difference 

threshold denotes the maximum variation that can be allowed for the 

MSR value when a gene or condition is added and still the added 

condition or gene remains coherent. In this algorithm node addition 

follows node deletion if necessary. In MSRT algorithm mentioned in the 

previous section the added node (gene or condition) is removed if the 

MSR value of the resulting bicluster exceeds the MSR threshold. The 

node thus added may not be optimal in terms of MSR value.   In the case 

of biclustering problem the main objective is to reduce the MSR value of 

the bicluster. So the previous algorithm is modified by incorporating one 

more constraint i.e. the MSR difference threshold. Moreover when MSR 

threshold is used as the only constraint, the variation allowed for the MSR 

value goes on changing. But when the MSR difference threshold is 

applied as additional constraint, the variation allowed remains fixed. So in 

this algorithm before adding a node, the MSR X of the bicluster is 

calculated. After adding the node, again the MSR Y is calculated. The 

added node is deleted if Y minus X is greater than MSR difference 

threshold or if Y is greater than MSR threshold which depends on the 

dataset. MSR difference of a gene or condition is the incremental increase 
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in MSR after adding the same to the bicluster.  It is found that the MSR 

difference threshold is different for gene list and condition list and it 

depends on the dataset also. Proper values should be identified through 

experimentation in order to obtain biclusters of high quality.  The results 

obtained on Yeast and Lymphoma datasets clearly indicate that this 

algorithm is better than many of the existing biclustering algorithms. 

It is observed that if MSR difference threshold for condition list is 

set to 30 it is possible to get biclusters with all 17 conditions for the Yeast 

dataset. For gene list the MSR difference threshold is set to 10. By 

properly adjusting the MSR difference threshold biclusters of high quality 

can be obtained. While experimenting it is found that reducing the MSR 

difference threshold for condition list eliminates the conditions which 

make significant change in the expression level from the bicluster, where 

as reducing the MSR difference threshold for gene list increases 

coherence. Hence difference threshold for conditions should be large and 

difference threshold for genes should be small (except for scaling 

patterns). In the case of MSRT algorithm, the added node is removed only 

when the MSR of the bicluster exceeds δ. But in the case of MSRDT 

algorithm an element which causes an incremental increase in MSR above 

MSR difference threshold is also removed from the bicluster. Hence this 

method can produce better biclusters compared with MSRT in terms of 

MSR value. A pseudo code description of the algorithm is given below. 
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Algorithm MSRdifferncethreshold(seed, δ, msrdiffgenethresh, 
msrdiffcondthresh ) 
bicluster := seed 
previous=MSR(seed) 
j:= 1; 
While (j <= total _no_conditions) 
If   condition[ j]  is not included in bicluster 
Changed=1; 
Add all elements of condition[ j]  corresponding to genes  already 
included to bicluster 
present= MSR(bicluster) 
if (present> δ) or (present-previous)>msrdiffcondthresh 
remove elements of  condition[ j]  from bicluster 
changed=0; 
endif 
if changed==1 
previous=present 
endif 
endif 
j:= j+1 
end(while)  
i := 1; 
prev=MSR(bicluster) 
While (i <= total _no_ genes) 
If  gene[i]  is not included in bicluster 
Changed=1; 
Add all elements of gene[i] corresponding to conditions already 
included to bicluster 
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  present= MSR(bicluster) 
           if (present> δ) or (present-previous)>msrdiffgenethresh 
                remove elements of  gene[i] from bicluster 
               changed=0 
          endif 
   if changed==1 
       previous=present 
 endif 
endif 
i:= i+1 
end(while) 
return bicluster 
end(MSRdifferencethreshold) 

3.2.1 Time Complexity of the MSRDT Algorithm 

The basic operation for the identification of biclusters is the 

calculation of mean squared residue of a submatrix. Time complexity for 

calculating MSR is O(mn). In order to include a gene or condition MSR 

value is calculated once. There are m+n genes and conditions. Hence this 

calculation is performed atmost m+n times. That means the worst case 

time complexity of the algorithm is O((m+n)mn) where m and n are the 

number of genes and conditions respectively. 

3.2.2 Experimental Results 

3.2.2.1 Bicluster Plots for Yeast Dataset 

Twenty one biclusters obtained by the algorithm on Yeast dataset 

are given below. Eight out of the twenty one biclusters contain all 17 
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conditions. All biclusters are with MSR less than 300 and row variance 

above 300. For Yeast dataset all conditions are obtained when the MSR 

difference threshold for condition lists is set to 30.  For gene list MSR 

difference threshold is set to 10. All the means squared residues are lower 

than 300. Only biclusters with different shapes are selected. Biclusters 

containing more genes having similar shape as that of biclusters ys3 are 

obtained in this method. 
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Figure 3.5  Twenty one biclusters found for the Yeast Dataset. Bicluster labels are (ya3), 
(yb3), (yc3), (yd3), (ye3), (yf3), (yg3), (yh3),(yi3), (yj3), (yk3), (yl3), (ym3), 
(yn3), (yo3), (yp3), (yq3), (yr3), (ys3) and (yt3), respectively. In the bicluster 
plots X axis contains conditions and Y axis contains expression values. The 
details about biclusters can be obtained from Table 3.8 using bicluster label.  
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Table 3.8 

  Information about Biclusters of Figure 3.5 
 

Bicluster 
Label 

Number 
of Genes 

Number of 
Conditions 

Bicluster
Volume MSR Row 

Variance 
(ya3) 65 17 1105 198.8756 619.3479 
(yb3) 86 17 1462 198.3953 526.8160 
(yc3) 74 17 1258 199.6859 508.7565 
(yd3)    1843 05 9215 299.8140 320.4440 
(ye3) 81 17 1377 199.9548 551.3923 
(yf3) 140 16 2240 199.6735 458.1247 
(yg3) 55 17 935 199.4912 534.4627 
(yh3) 17 16 272 199.3700 619.2619 
(yi3) 119 17 2023 199.5356 518.8431 
(yj3) 11 17 187 113.5428 501.8930 
(yk3) 22 17 374   77.6240 641.7874 
(yl3) 44 13 572 199.5335 695.5067 
(ym3) 62 13 806 199.2022 531.5530 
(yn3) 26 16 416 199.3954 455.0572 
(yo3) 31 16 496 199.7230 625.6157 
(yp3) 51 16 816 199.3443 385.4192 
(yq3) 13 15 195 198.1322 959.9774 
(yr3) 34 15 510 198.6582 489.9255 
(ys3) 578 8 4624 198.5395 255.1215 
(yt3) 444 7 3108 199.9317 514.9015 
(yt4) 172 15 2580 199.8100 422.5933 

 

In the Table 3.8 the first column contains the label of each bicluster. 

The second and third columns report the number of rows (genes) and 

number of columns (conditions) of the bicluster respectively. The fourth 

column reports the volume of the bicluster and the fifth column contains 

the mean squared residue or hscore of the bicluster. The last column 

contains the row variance. 
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3.2.2.2 Bicluster Plots for Human Lymphoma Dataset 

In Figure 3.6 only nine biclusters obtained by the MSRDT 

algorithm are shown. The biclusters show similar up-regulation and 

down regulation. One bicluster (label lf3) is obtained with 91 

conditions and row variance above 5700.  
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Figure 3.6  Nine biclusters found for the Lymphoma Dataset.Bicluster labels are 

(la3), (lb3), (lc3), (ld3), (le3), (lf3), (lg3) and (lh3) respectively. In 
the bicluster plots X axis contains conditions and Y axis contains 
expression values. The details about biclusters can be obtained from 
Table 3.9 using bicluster label.  
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But for SEBI the maximum value of row variance for Lymphoma 

dataset is only 5691.07 and the maximum number of conditions obtained 

is only 72. All the means squared residues are lower than 1200. 

Experiments are conducted by setting the difference threshold for the 

condition list as 50, 60 etc and for gene list the values are 10, 20 etc.  

Table 3.9 

 Information about Biclusters of Figure 3.6 

Bicluster
Label 

Number 
of Genes 

Number of 
Conditions 

Bicluster 
Volume 

MSR Row 
Variance 

(la3) 10 77    770 1188.2 5439.2 

(lb3)     910 12 10920 1199.0 1419.3 

(lc3) 18 67 1206 1189.2 3430.8 

(ld3) 30 73 2190 1197.4 3902.0 

(le3) 64 73 4672 1199.6 1325.5 

(lf3) 10 91   910 1183.1 5702.0 

(lg3)     135 47 6345 1199.3 1321.1 

(lh3)     690 28 19320 1199.7 1232.3 

(li3) 72 35  2520 1183.1 3959.0 
 

In the Table 3.9 the first column contains the label of each bicluster. 

The second column reports the number of rows (genes) of the bicluster. 

The third column reports the number of columns (conditions) of the 

bicluster. The fourth column reports the volume of the bicluster and the 

fifth column contains the mean squared residue or hscore of the bicluster. 

The last column contains the row variance of the bicluster.  
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3.2.3 Advantages of MSRDT Algorithm 

This is the first algorithm to treat genes and conditions differently. 

This algorithm leads to the following research findings. The difference 

threshold created by genes is very small compared to that of conditions 

except for scaling patterns. This is one of the reasons by which 

metahueristic algorithms trying to minimize MSR will get biclusters with 

more genes. SEBI [36] is an exception to this problem because they are 

adjusting the fitness function to get more conditions.  In this algorithm a 

bicluster (label lf3) with 91conditions is obtained for Lymphoma dataset 

and the MSR is less than that of the bicluster obtained by MSRT 

algorithm with 91 conditions. In MSRDT algorithm more genes and 

conditions can be accommodated compared to MSRT.  

In MSRDT algorithm reducing the difference threshold for genes 

eliminates the possibility of adding inverted rows or mirror images [29] 

into the bicluster. This due to the fact that the genes which form mirror 

images will have high values for incremental increase in MSR. In Figure 

3.7, two biclusters with inverted images are shown.  
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(m1)                                              (m2) 

Figure  3.7  Inverted images formed when MSR threshold alone is applied. 
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In the bicluster labelled (m1) there are 105 genes and 13 conditions 

with MSR value 215.2878. The gene which forms the mirror image is 

gene number 2581 and the incremental increase in MSR value when this 

gene is added is 16.8646. All other genes result in incremental increase in 

MSR less than 2. Similarly in the case of bicluster (m2) there are 73 genes 

and 17 conditions and MSR value is 182.74. The 520th gene which causes 

the inverted image when added to the bicluster results in an incremental 

increase in MSR of 25.8368. But no other no other gene when added to 

the bicluster results in an incremental increase in MSR greater than 2.5. 

These biclusters can be obtained by any algorithm which makes use of 

MSR threshold alone. Even metaheuristic optimization algorithms with 

fitness function for minimizing MSR value will result in such biclusters. 
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Figure 3.8 Another example of mirror image 

If MSR difference threshold is applied with a difference threshold 

of value 10 for the gene list these genes will have to be removed. This 

proves that the newly introduced concept of MSR difference threshold 
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can eliminate the formation of mirror images in biclusters of gene 

expression data. The following figure shows the biclusters with the 

inverted images removed. 
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Figure  3.9  Inverted images removed when MSR difference threshold is applied. 
 

It is found that decreasing the MSR difference threshold for 

condition list   eliminates conditions which make significant change in the 

expression level from the bicluster whereas decreasing MSR difference 

threshold for gene list increases coherence. 

3.2.4 Details of Significant Biclusters obtained by the MSRDT 
Algorithm 
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Figure 3.10 Four significant biclusters obtained by the algorithm on Yeast dataset. The 

bicluster labels are s31, s32, s33, s34. The details about biclusters can be 
obtained from Table 3.10 using bicluster label. 
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Table 3.10  

Information about Biclusters of Figure 3.10 

Bicluster 
label 

Number of 
genes 

Number of 
conditions MSR Row 

Variance 
S31         77 16  199.5544     533.1660 
S32         64 17 199.3198    654.5732 
S33         28 17 286.3438 2034.1000 
S34         28 10 235.4595 1186.3000 

Biological relevance of biclusters obtained using MSRDT algorithm 

is verified using the four biclusters shown in Figure 3.10. GO annotation 

database is used to verify the biological significance of biclusters.  In the 

first bicluster S31 selected for testing the biological significance there are 

77 genes. They are YCL031C, YCR060W, YCR087W, YDL008W, YDL153C, 

YDL166C, YDL167C, YDL231C, YDL243C, YDR017C, YDR057W, YDR058C, 

YDR080W, YDR083W, YDR094W, YDR108W, YDR109C, YDR120C, YDR121W, 

YDR132C, YDR160W, YDR170C, YDR171W, YDR172W, YDR173C, YDR183W, 

YDR185C, YDR198C, YDR206W, YDR211W, YDR214W, YDR234W, YDR235W, 

YDR236C, YDR262W, YDR286C, YDR288W, YDR289C,YDR299W, YDR302W, 

YDR339C, YDR352W, YDR361C, YDR364C, YDR365C, YDR392W, YDR413C, 

YDR419W, YDR457W, YDR469W, YDR478W, YDR518W, YDR541C, YGL085W, 

YGL214W, YGR042W, YGR090W, YGR200C, YGR216C, YHR192W, YKR060W, 

YLR107W, YLR146CYML066C, YML096W, YNL132W, YNL199C, YOL031C, 

YOL080C, YOL124C, YOL140W, YOR061W, YOR091W, YOR098C, YOR145C, 

YOR272W, YPR053C. 

In the second bicluster S32 there are 64 genes. They are YAL003W, 

YAL038W, YAR009C, YBL030C, YBL072C, YBL077W, YBL092W, YBR009C, 

YBR031W, YBR048W, YBR084C-A, YBR106W, YBR118W, YBR181C, YBR189W, 

YBR191W, YCR012W, YCR013C, YCR031C, YDL061C, YDL075W, YDL081C, 
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YDL083C, YDL130W, YDL136W, YDL191W, YDL192W, YDL208W, YDL228C, 

YDL229W, YDR012W, YDR025W, YDR035W, YDR050C, YDR064W, YDR133C, 

YDR154C,YDR155C, YDR225W, YDR276C, YDR327W, YDR353W,YDR381W, 

YDR382W, YDR385W, YDR417C, YDR418W, YDR433W, YDR447C, YDR450W, 

YDR471W, YDR500C, YDR529C, YDR545W, YEL034W, YER074W, YER117W, 

YGL102C, YKL152C, YMR202W, YOL127W, YOR234C, YPL037C, YPR102C.  

In the third bicluster S33 there are 28 genes. They are YAR007C, 

YAR008W, YBL035C, YBR088C, YBR089W, YDL003W, YDL018C, YDL164C, 

YDR097C, YFL008W, YGR152C, YHR154W, YJL181W, YKL042W, YKL113C, 

YLR103C, YML021C, YML102W, YMR076C, YMR078C, YNL102W, YNL273W, 

YNL303W, YNL312W, YOL090W, YOR074C, YPL208W, YPR120C. In the 

fourth bicluster there are 28 genes. They are YBR038W, YBR138C, 

YCL012W, YDL039C, YGL021W, YGR035C, YGR092W, YGR108W, YHR023W, 

YHR151C, YIL106W, YIL162W, YJR092W, YKL129C, YKR021W, YLR190W, 

YLR353W, YML034W, YML119W, YMR001C, YMR032W, YNL053W, 

YNL171C, YOR152C, YPL148C, YPL242C, YPR007C, YPR119W. 

The Table 3.11 given below shows the significant GO terms used to 

describe the set of genes of the biclusters of Figure 3.10 for the process, 

function and component ontologies. The common terms are described 

with increasing order of p-values or decreasing order of significance.  In 

Table 3.11 the first entry of the second column with the title ‘Process’ 

contains the term ribosome biogenesis (18, 4.78e-05) which means that 18 

out of the 77 genes of the bicluster are involved in the process of 

ribosome biogenesis and their p-value is 4.78e-05.  This proves that the 

bicluster contains biologically similar genes and the MSRDT algorithm 

used here is capable of identifying biologically significant biclusters.  
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Table 3.11 

 Significant Shared GO Terms (Process, Function, Component)                   
of Biclusters shown in Figure 3.10. 

 

Bicluster Process Function Component 

S31 Ribosome biogenesis (18, 
4.78e-05) ribonucleoprotein 
complex biogenesis 19, 
7.68e-05), cellular component 
biogenesis at cellular 
level (20, 0.00039) RNA 
metabolic process (28, 
0.00832) 

32 out of 77 input genes 
are directly annotated to 
root term 'molecular 
function unknown':  

Nucleolus (14, 8.24e-05) 
UTP-C complex (3, 
0.00129) Preribosome (10, 
0.00156) 90S preribosome 
(8, 0.00210) 
 

S32 Translation (35, 2.26e-23) 
cellular protein metabolic 
process (38, 2.88e-11) 
protein metabolic process 
(38,7.49e-11) 
cellular metabolic process 
(51, 0.00015) 

Structural constituent of 
ribosome (30, 2.58e-24) 
structural molecule 
activity (30, 1.79e-18) 
translation elongation 
factor activity (4, 
0.00035) 
 

Cytosolic ribosome (31, 
2.71e-27) cytosolic part 
(31, 7.66e‐25) 
ribosome (34, 6.60e-24) 
cytoplasmic part (47, 
1.33e-06) 

S33 DNA repair (17, 1.43e-14) 
DNA metabolic process (19, 
7.23e-14) 
Response to DNA damage 
stimulus (17, 1.97e-13) 
Nucleobase, nucleoside, 
Nucleotide and nucleic acid 
metabolic process 
 (21, 4.32e-06) 

Double-stranded DNA 
binding       (5, 4.58e-05) 
structure-specific DNA 
binding  (5, 0.00115) 
DNA secondary 
structure binding 
 (3, 0.00116) 

Replication fork (9, 
3.42e-09) chromosome 
 (14, 1.85e-08) Nuclear 
replication fork 
 (7, 1.01e-06) nucleus 
 (22, 8.87e-06) 

S34 Cytokinesis  (8, 2.32e-05) 
Cell cycle process  (13, 
3.91e-05) Cell cycle (13, 
6.36e-05) Cell division (8, 
0.00014) 

11 out of 28 input genes 
are directly annotated to 
root term 'molecular 
function unknown' 

Cellular bud neck 
 (11, 1.06e-09)  Cellular 
bud (12, 1.12e-09) Site of 
polarized growth 
 (12, 7.76e-09) 
Cytoskeletal part (10, 
1.63e-06) 
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Figure 3.11   Sample of 98 genes for the bicluster s32 with corresponding GO terms and 
their parents for function ontology 
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Figure 3.11 shows the significant GO terms for the set of 98 genes 

in bicluster s32 along with their p values. It shows the branching of 

generalized molecular function into sub-functions like catalytic activity, 

and binding. These activities are clustered using genes to produce the 

final result. Figure 3.11 is obtained when gene ontology database is 

searched by entering the names of genes of S32 and by selecting function 

ontology. 

3.2.5 Comparison with other Biclustering Algorithms  

3.2.5.1 Comparison based on Statistical and Biological Significance 

In Table 3.12 the GO terms along with their p-values and 

percentage of genes associated with the GO term in the biclusters for the 

MSRDT algorithm is compared with that of MOGAB, SGAB, CC, RWB, 

Bimax, OPSM, ISA and BiVisu. From the Table it is clear that in terms of 

p.value obtained by a bicluster which is used to denote statistical 

significance MSRDT is better than RWB, Bimax, OPSM and Bivisu. The 

percentage of genes involved in the first GO term is better than that of 

RWB, OPSM and Bivisu. For the second and third GO terms the p-value 

and the percentage of genes are better than that of all the other algorithms 

except MOGAB. For the fourth GO term the p-value is better than all the 

other algorithms except MOGAB. Percentage of genes involved is better 

than all the other algorithms. For the fifth GO term p-value and 

percentage of genes involved is better than all the other algorithms. 
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3.2.5.2 Comparison on the basis of Bicluster Size and MSR 

The Table 3.13 given below provides a comparative summarization 

of results of Yeast data involving the performance of related algorithms. 

The performance of MSRDT algorithm in comparison with that of Cheng 

and Church’s (CC) [29], FLOC by Yang et al. [106], DBF [109], SEBI 

[36] and SMOB [37] for the Yeast dataset are given.  In the MSRDT 

algorithm presented here the average mean squared residue is lower than 

that of CC, SEBI and SMOB. The average number of genes is greater 

than that of all other algorithms and the average number of conditions is 

better than that of all other algorithms except SEBI and SMOB. The 

MSRDT algorithm has highest value in the case of largest bicluster size 

compared to all other methods except CC.  

In the case of MSRDT algorithm, MSR value is better than that of 

SEBI and CC. Largest bicluster size is better than that of all other 

algorithms. Average volume is better than that of all other algorithms. In 

multi-objective evolutionary biclustering [15] the maximum number of 

conditions obtained is only 11. In this method almost all biclusters are 

with 17 conditions. Moreover this algorithm provides better performance 

in terms of speed compared to all the metahueristic and evolutionary 

algorithms. 
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Table 3.13 

Comparison between MSRDT and 
Other Algorithms for Yeast Dataset 

 

Algorithm AMR ANG ANC AV LB 

MSRDT 199.63 170.16 14.83 2264.80 9215 
SEBI 205.18 13.61 15.25 209.92 1394 

SMOB 206.17  27.28 15.46   453.48   697 
CC 204.29 166.71 12.09 1576.98 4485 

FLOC 187.54 195.00 12.80 1825.78 2000 
DBF 114.70 188.00 11.00 1627.00 4000 

 

AMR is Average mean squared Residue. ANG is Average Gene 

Number of genes. ANC is Average Number of Conditions. AV is 

Average Volume. LB is Largest Bicluster. As clear from the above table 

the average mean squared residue, the average number of genes and 

conditions, average volume and largest bicluster size are compared for 

various algorithms.  For the average mean squared residue field lower 

values are better where as higher values are better for all other fields. 

Table 3.14 gives performance comparison for Human B-cell 

Lymphoma dataset. Value of δ is set to 1200 for Lymphoma dataset. In 

this dataset the average number of genes and average volume of the 

biclusters obtained are far better than that of SEBI and SMOB. Average 

number of conditions is greater than CC and SEBI. 

In the above table the average mean squared residue, the average 

number of genes and conditions, average volume and largest bicluster size 

are compared for various algorithms. For the average mean squared 
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residue field lower values are better where as higher values are better for 

all other fields. 

Table 3.14 

 Comparison between MSRDT and other                                                  
Algorithms for Human Lymphoma Dataset 

 
Algorithm       AMR        ANG ANC AV 

MSRDT    1194.44 233.37    58.50           5791.63 

CC     850.04        269.22   24.50           4595.98 

SEBI 1028.84 14.07           43.57           615.84 

SMOB  1019.16   11.60           78.47   709.13 
 

AMR is Average mean squared Residue. ANG is Average Number 

Gene. ACN is Average Number of Conditions. AV is Average Volume.. 

As is clear from the above table the average mean squared residue, the 

average number of genes and conditions and average volume and are 

compared for various algorithms. 

In multi-objective evolutionary computation [15] the maximum 

number of conditions obtained is only 40 in Human B-cell Lymphoma 

dataset. But in this method there are biclusters with 91 conditions for 

Lymphoma dataset. Since the MSRDT algorithm uses simple sequential 

search rather than stochastic search the computation time required is very 

less compared to all the metahueristic and evolutionary algorithms. Some 

of the biclusters obtained are with high row variance (more than 2000 for 

the Yeast dataset and more than 7000 for Lymphoma dataset).   
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3.3 ISIMSRDT Algorithm 

In this section a new algorithm developed using the concept of MSR 

difference threshold for finding biclusters from gene expression data is 

described. In MSRDT algorithm mentioned in the previous section it is 

difficult to find a suitable value for the MSR difference threshold. In the 

case of biclustering problem the main objective is to reduce the MSR 

value of the bicluster. Keeping this objective in mind the MSR difference 

threshold is initialised with a small value and it is incremented in each 

iteration until it reaches a final value. The results obtained on Yeast and 

Lymphoma datasets clearly indicate that this algorithm is better than 

many of the existing biclustering algorithms and also MSRDT, in terms of 

both bicluster size and MSR value. In this algorithm more genes and 

conditions are added to the seeds obtained from K-Means algorithm. 

After adding a gene or a condition if the incremental value of MSR is 

greater than MSR difference threshold, or if the MSR of the resulting 

bicluster is greater than δ, the added node is removed from the bicluster. 

In ISIMSRDT algorithm, MSR difference threshold is initialized with a 

small value and incremented after each iteration in fixed steps until it 

reaches a final value. So in ISIMSRDT algorithm there are three different 

parameters such as the initial value of MSR difference threshold, the 

amount by which it is incremented after each iteration and the final value 

of MSR difference threshold. These three parameters apply for both the 

gene list and condition list. By properly adjusting the MSR difference 

threshold parameters, biclusters of high quality can be obtained. A pseudo 

code description of the algorithm is given below. 
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Algorithm Iterative_MSRdifference (seed, δ, condthreshinitial, 
condthreshincrement, condthreshfinal, genethreshinitial, 
genethreshincrement, genethreshfinal) 
bicluster := seed 
previous=MSR(seed) 
j:= 1; 
msrdiffcondthresh=condthreshinitial; 
while  (msrdiffcondthresh<condthreshfinal) 
           While (j <= total _no_conditions) 
      If   condition[ j]  is not included in bicluster 
           Changed=1; 
            Add all elements of condition[ j]  corresponding to genes                  
            already included to bicluster 
            present= MSR(bicluster) 
           if (present> δ) or (present-previous)>msrdiffcondthresh 
                remove elements of  condition[ j]  from bicluster 
                changed=0; 
             endif 
            if changed==1 
                   previous=present 
           endif 
   endif 
  j:= j+1 
  end(while)  
  msrdiffcondthresh=msrdiffcondthresh+condthreshincrement 
end(while) 
 i := 1; 
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prev=MSR(bicluster) 
msrdiffgenethresh=genethreshinitial 
While(msrdiffgenethresh<=genethreshfinal) 
    While (i <= total _no_ genes) 
        If  gene[i]  is not included in bicluster 
            Changed=1; 
            Add all elements of gene[i] corresponding to conditions              
            already included to bicluster 
             present= MSR(bicluster) 
            if (present> δ) or (present-previous)>msrdiffgenethresh 
                      remove elements of  gene[i] from bicluster 
                     changed=0 
            endif 
           if changed==1 
               previous=present 
          endif 
     endif 
  i:= i+1 
 end(while) 
  msrdiffgenethresh=msrdiffgenethresh+genethreshincrement 
end(while) 
return bicluster 
end(Iterative_MSRdifference) 
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3.3.1 Time Complexity of the Algorithm 

The basic operation for the identification of biclusters is the 

calculation of MSR of a submatrix. Time complexity for calculating MSR 

is O(mn). This calculation is performed atmost m+n times for a single 

iteration. Hence the worst case time complexity is O(t((m+n)mn)) where 

m and n are the number of genes and conditions respectively and t is the 

total number of iterations. 

3.3.2 Experimental Results 

3.3.2.1 Bicluster Plots for Yeast Dataset 

In Figure 3.12 nine biclusters obtained using ISIMSRDT algorithm 

are shown. Out of the nine biclusters, seven contain all 17 conditions and 

they differ in appearance. In short, the algorithm is ideal for identifying 

various biclusters with coherent values. All the biclusters are having mean 

squared residue less than 300. From the bicluster plots which show 

strikingly similar up-regulation and down-regulation it is concluded that 

this is an ideal method for identifying biclusters from gene expression 

data. For Yeast dataset biclusters are found by setting the initial value of 

MSR difference threshold for condition list as 5. It is incremented by 5 

after each iteration and the final value of MSR difference threshold is set 

to 30. Initial value of MSR difference threshold for gene list is set to 1, 

and it is incremented by 1 and the final value is set to 10. All the means 

squared residues are lower than 300. Only biclusters with different shapes 

are selected. 
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 Figure 3.12  Nine biclusters found for the Yeast dataset. Bicluster labels are (ya4), (yb4), 

(yc4), (yd4), (ye4), (yf4), (yg4), (yh4) and (yi4) respectively. In the bicluster 
plots X axis contains conditions and Y axis contains expression values. The 
details about biclusters can be obtained from Table 3.13 using bicluster label. 

 

Table 3.15 
 Information about Biclusters of Figure 3.12 

 

Bicluster 
Label 

Number 
of Genes 

Number of 
Conditions 

Bicluster 
Volume 

MSR 
Row 

Variance 
(ya5) 98 17 1666 199.9381 591.9217 
(yb5) 107 17 1819 199.9826 486.3663 
(yc5) 43 17  731 199.8613 550.3640 
(yd5) 50 17  850 199.5999 511.3709 
(ye5) 127 17      2159 199.9656 471.1995 
(yf5) 19 16 304 199.9141 564.4940 
(yg5) 99 17 1683 199.9524 419.2172 
(yh5) 188 13 2444 199.9713 353.8271 
(yi5) 110 17 1870 199.9499 515.1427 
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In the above Table the first column contains the label of each 

bicluster. The second and third columns report the number of rows 

(genes) and number of columns (conditions) of the bicluster respectively. 

The fourth column reports the volume of the bicluster and the fifth 

column contains the mean squared residue or Hscore of the bicluster and 

the last column contains the row variance.  

3.3.3.2 Bicluster plots for Human Lymphoma Dataset 
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Figure 3.13 Nine biclusters found for the Lymphoma Dataset. The labels of biclusters 

are (la4), (lb4), (lc4), (ld4), (le4), (lf4), (lg4), (lh4) and (li4) respectively. In 
the bicluster plots X axis contains conditions and Y axis contains 
expression values. The details about biclusters can be obtained from Table 
3.16 using bicluster label.  
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Figure 3.13 shows nine biclusters obtained by ISIMSRDT algorithm 

on Human Lymphoma dataset. Here for condition list the initial value of 

MSR difference threshold is set to 30 and it is incremented by 30 after each 

iteration and the final value is set to 90. For the gene list the initial value of 

MSR difference threshold is set to 50 and it is incremented by 50 after each 

iteration and final value is set to 150.  Experiments are conducted using 

other values also.  All the bicluster plots show strikingly similar up-

regulation and down-regulation. All the MSR are lower than 1200. 

Table 3.16 
 Information about biclusters of Figure 3.13 

 

Bicluster 
Label 

Number 
of Genes 

Number of 
Conditions 

Bicluster  
Volume 

MSR 
Row 

Variance 

(la4) 280 10 2810 1001.40 2200.1 

(lb4) 10 74  740 1199.00 4208.8 

(lc4) 86 40 3440   999.88 2021.6 

(ld4)    155 39 6045   999.92 1102.4 

(le4) 51 51 2550   999.93 3139.5 

(lf4)    172 62     10664 1199.80 1342.3 

(lg4) 10 83 840 1194.90 5082.6 

(lh4) 10 92 920 1197.40 5760.1 

(li4) 20 29 580   987.80 4318.2 
 

In the above Table the first column contains the label of each 

bicluster. The second and third columns report the number of rows 

(genes) and number of columns (conditions) of the bicluster respectively. 

The fourth column reports the volume of the bicluster and the fifth 

column contains the mean squared residue or hscore of the bicluster. The 

last column contains the row variance.  
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3.3.3 Advantages of ISIMSRDT Algorithm 

This algorithm has various advantages over the MSRT and MSRDT 

algorithms. In the case of MSRT algorithm the added node is removed 

only when the MSR of the bicluster exceeds δ (MSR threshold). But when 

MSR difference threshold is applied in ISIMSRDT algorithm there is 

more restriction on the incremental value of MSR. This means that the 

elements in the biclusters are more tightly packed. This will result in 

biclusters of larger size and low MSR score. Hence ISIMSRDT method 

can produce better biclusters compared with other algorithms like MSRT. 

The ISIMSRDT algorithm gives the possibility of getting more genes and 

conditions compared to MSRDT algorithm. In MSRDT there is the 

disadvantage of finding a suitable value for MSR difference threshold. If 

a small value is assigned bicluster will be of small size. On the other hand 

if a big value is assigned the elements of the resulting bicluster will not be 

tightly co-regulated. This disadvantage of MSRDT can be overcome by 

using ISIMSRDT where MSR difference threshold is initialized with a 

small value and incrementing it after each iteration. There is another 

advantage of using iterative search in ISIMSRDT algorithm. The 

incremental increase in MSR of a gene or condition not included in a 

bicluster will vary as the size of the bicluster changes. For example in the 

case of bicluster labeled (lh4) in Figure 3.13 the MSR value of the 

bicluster when condition 95 is added is 1200.6. Since this is greater than 

MSR threshold for Lymphoma dataset (1200) condition 95 is removed 

from the bicluster. After adding condition 96, if condition 95 is added the 

MSR of the resulting bicluster is only 1191.9. This is less than 2000 and 
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hence after adding 96 if 95 is added it is not removed. Since conditions 

and genes are searched sequentially in all these algorithms, this is possible 

only if there is an iterative search. This is another option in iterative 

search for accommodating more genes and conditions. That means apart 

from finding a suitable value for MSR difference threshold iterative 

search has got another advantage of selecting the (n-k)th gene or condition 

whose incremental increase in  MSR value  reduces after adding the nth 

gene or condition. Moreover in the case of ISIMSRDT algorithm also 

inverted rows are eliminated. In Lymphoma dataset a bicluster (label lh4) 

with 92 conditions is obtained.  

3.3.4  Details of Significant Biclusters obtained by ISIMSRDT Algorithm 
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Figure 3.14 Four significant biclusters obtained by the ISIMSRDT algorithm on Yeast 

dataset. The bicluster labels are s41, s42, s43, s44. The details about 
biclusters can be obtained from Table 3.17 using bicluster label.  
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Table 3.17 

Information about Biclusters of Figure 3.14 

Bicluster 
Label 

Number of 
Genes 

Number of 
Conditions MSR Row 

Variance 
S41         98 17 199.9677     482.7704 

S42 98 17 199.9924   600.9078 

S43         33 17  299.2235 1970.1000 

S44         33 10 242.2713   1125.8000 

In the first  bicluster S41 selected for testing the biological 

significance there are 98 genes namely YBL083C, YBR293W, YCL016C, 

YCL031C, YCL054W, YCR072C,YCR087W, YDL008W, YDL076C, YDL150W, 

YDL153C, YDL166C,YDL167C, YDL231C, YDL243C, YDR017C, YDR060W, 

YDR083W, YDR120C, YDR121W, YDR170C, YDR172W, YDR211W, YDR234W, 

YDR235W, YDR262W,YDR289C, YDR299W, YDR311W, YDR312W, YDR339C, 

YDR352W, YDR361C, YDR365C, YDR392W, YDR449C, YDR469W, YDR478W, 

YDR518W, YDR542W, YEL015W, YEL055C, YER005W, YER099C, YER107C, 

YER171W, YGL085W, YGL099W, YGL214W, YGR042W, YGR090W, YGR187C, 

YGR200C, YGR216C, YHR062C, YJL011C, YJL069C, YKR060W, YLL008W, 

YLL034C, YLR088W, YLR146C, YLR222C, YLR401C, YML066C, YML093W, 

YMR093W, YMR295C, YNL132W, YNL163C, YNL164C, YNL186W, YNL199C, 

YNR003C, YNR038W, YOL021C, YOL022C, YOL080C, YOL124C, YOL140W, 

YOL144W, YOR006C, YOR056C, YOR061W, YOR098C, YOR123C, YOR145C, 

YOR160W, YOR252W, YOR272W, YOR279C, YPL047W, YPL101W, YPL126W, 

YPL140C, YPL183C, YPR053C, YPR112C.  

In the second bicluster S42 there are 98 genes. They are YAL003W, 

YAL038W, YAR009C, YAR020C, YBL027W, YBL030C, YBL072C, YBL077W, 

YBL092W, YBL113C, YBR009C, YBR031W, YBR048W, YBR084C-A, YBR106W, 

YBR118W, YBR181C, YBR189W, YCR013C, YCR031C, YDL061C, YDL075W, 

YDL081C, YDL083C, YDL130W, YDL136W, YDL191W, YDL192W, YDL208W, 
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YDL228C, YDL229W, YDR012W, YDR025W, YDR050C, YDR064W, YDR382W, 

YDR385W, YDR433W, YDR447C, YDR450W, YDR471W, YEL034W, YER074W, 

YER117W, YGL102C, YGR118W, YJL188C, YJL190C, YJR009C, YJR123W, 

YKL056C,YKL060C,YKL096W-A, YKL152C, YKL153W, YKR057W, YKR094C, 

YLR029C, YLR075W, YLR076C, YLR110C, YLR167W, YLR185W, YLR249W, 

YLR325C, YLR340W, YLR406C, YLR441C, YLR467W, YML026C, YML039W, 

YML045W, YML063W, YML133C, YMR045C, YMR202W, YNL030W, YNL067W, 

YNL162W, YNL302C, YNL339C, YOL039W, YOL040C, YOL083W, YOR167C, 

YOR234C, YOR293W, YOR312C, YOR369C, YPL037C, YPL081W, YPL090C, 

YPL142C, YPL143W, YPL283C, YPR043W, YPR102C, YPR204W.  

In the third bicluster S43 there are 33 genes. They are YAR007C, 

YAR008W, YBL035C, YBR088C, YBR089W, YCR065W, YDL003W, YDL010W, 

YDL018C, YDL164C, YDR097C, YDR507C, YER095W, YFL008W, YGR151C, 

YGR152C, YHR154W, YIL026C, YJL074C, YJL181W, YJL187C, YKL042W, 

YKL113C, YLL022C, YLR103C, YLR236C, YML021C, YML102W, YMR076C, 

YMR078C, YNL273W, YNL312W, YOR074C.   

In the fourth bicluster S44 there are 33 genes namely YBR038W, 

YBR138C, YCL012W, YDL039C, YGL021W, YGR023W, YGR035C, YGR092W, 

YGR108W, YHR023W, YHR151C, YIL106W, YIL162W, YJL051W, YJR092W, 

YKL129C, YKR021W, YLR190W, YLR353W, YML033W, YML034W, YML119W, 

YMR001C, YMR032W, YMR213W, YMR291W, YNL053W, YNL171C, YOL130W, 

YOR152C, YPL148C, YPL242C, YPR119W 

The Table 3.18 given below shows the significant GO terms used to 

describe the set of genes of the biclusters of Figure 3.14 for the process, 

function and component ontologies. The common terms are described 

with increasing order of p-values or decreasing order of significance.  In 

Table 3.18 the  entry of the second column with the title process for the 
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bicluster S42 contains the term Translation(62, 2.03e-49) which means that 

62 out of the 98 genes of the bicluster are involved in the process of 

translation and their p-value is 2.03e-49. Second and third entries indicate 

that 65 out of 98 genes are involved in cellular protein metabolic process 

and protein metabolic process. This proves that the bicluster contains 

biologically similar genes and ISIMSRDT algorithm used here is capable 

of identifying biologically significant biclusters.  

Table 3.18 
 Significant Shared GO Terms (Process, Function and Component)              

of the Biclusters shown in Figure 3.14 
 

Bicluster Process Function Component 
S41 Ribosome biogenesis 

(39, 3.08e-22) 
ribonucleoprotien 
complex biogenesis 
 (40, 6.25e-21) cellular 
component 
biogenesis at cellular 
level((41, 1.68e-18) 
cellular nitrogen 
compound metabolic 
process(55, 1.86e-06) 

snoRNA binding (4, 
0.00480) 

Nucleolus(31, 2.56e-19) 
Preribosome  (23, 4.26e-
15) nuclear lumen(43, 
1.59e-13) Intracellular 
(90, 0.00018) 
 

S42 Translation (62, 2.03e-
49) cellular protein 
metabolic process 
 (65, 3.08e-24) Protein 
metabolic process 
 (65, 1.77e-23) Cellular 
metabolic process 
 (77, 9.97e-07) 

Structural constituent 
of ribosome 
 (55, 6.05e-53) 
Structural molecule 
activity 
 (56, 3.97e-42) 
translation 
elongation factor 
activity(5, 7.16e-05) 
RNA binding(15, 
0.00208) 

Cytosolic ribosome 
 (57, 1.51e-60) Cytosolic 
part  (57, 3.92e-55)  
Ribosome (61, 3.60e-51)  
Cytoplasmic part ( 74, 
7.23e-12) 
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S43 DNA metabolic 
process(18, 1.11e-10) 
DNA repair(15, 3.25e-
10) cell cycle(19, 
1.13e-09) nucleobase, 
nucleoside, nucleotide 
and nucleic acid 
metabolic process (22, 
6.05e-05) 

structure-specific 
DNA binding (5, 
0.00172) double-
stranded DNA 
binding (4, 
0.00202) 

Chromosome (16, 2.01e-
09) chromosomal 
part(14, 1.03e-07) 
Nuclear chromosome  
(13, 4.50e-07)  
replication fork (8, 6.19e-
07)  nucleus (24, 3.39e-
05 ) 

S44 Cytokinesis (8, 7.07e-
05) cell division (8, 
0.00043) cell cycle 
cytokinesis  (6, 
0.00130) 

cell cycle process (12, 
0.00171)  

12 out of 33 input 
genes are directly 
annotated to root 
term 'molecular 
function unknown 

Cellular bud(13, 3.90e-
10) 

cellular bud neck 

 (11, 6.47e-09) 

Site of polarized 
growth(12, 5.50e-08) 

cellular bud neck 

contractile ring 

 (5, 3.23e-07) 

 

Figure 3.15 shows the significant GO terms for the set of 98 genes 

in bicluster S42 along with their p values. It shows the branching of a 

generalized molecular function into sub-functions like structural molecule 

activity, binding, protein tag, enzyme regulator activity and catalytic 

activity. These activities are clustered using genes to produce the final 

result. Figure 3.15 is obtained when gene ontology database is searched 

by entering the names of genes in bicluster S42 and by selecting function 

ontology. 
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Figure 3.15 Sample of 98 genes for the bicluster S42, with corresponding GO terms 
and their parents for Function Ontology 
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3.3.5 Comparison with other Algorithms 

3.3.5.1  Comparison of based on Statistical and Biological Significance 

In Table 3.19 the GO terms along with their p-values and 

percentage of genes associated with the GO term  in the bicluster  for the 

ISIMSRDT is compared with  MOGAB, SGAB, CC, RWB, Bimax, 

OPSM, ISA  and BiVisu.  From the Table it is clear that in terms of p-

value obtained by a bicluster which is used to denote statistical 

significance ISIMSRDT is better than all the other algorithms namely 

MOGAB, SGAB, CC, RWB, Bimax, OPSM, ISA and BiVisu for all the 

five GO terms. For the first GO term the percentage of genes involved is 

better than that of CC, RWB, OPSM, ISA and BiVisu. For the second, 

fourth and fifth GO terms the percentage of genes involved is better than 

that of all the other algorithms. For the third GO term the percentage of 

genes involved is better than that of all the other algorithms except 

MOGAB.  
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3.3.5.2 Comparison of Biclusters Produced by MSRT, MSRDT and 
ISIMSRDT Algorithms using the Same Seed 

 

A comparison of these three algorithms is given on the basis of 

size of biclusters obtained and their MSR value starting with the same 

seed and the result is given in Table 3.20. In terms of bicluster size 

ISIMSRDT is always better than the other two algorithms. MSRDT is 

better than MSRT for all seeds except for seed 3. In the case of 

biclustering using MSRDT algorithm there is a single but different MSR 

difference threshold value for the gene list and condition list. In this case 

the parameters for the MSRDT algorithm for Yeast dataset are condition 

difference threshold=30 and gene difference threshold=10. The 

parameters for ISIMSRDT are initial value of condition difference 

threshold=5, increment=5 and the final value of condition difference 

threshold=30. Similarly the parameters for gene list are initial value of 

gene difference threshold=1, increment=1 and the final value of gene 

difference threshold=10. From Table 3.17 it is clear that ISIMSRDT 

produces large size biclusters compared to MSRDT. Hence iterative 

search with incremental MSR difference threshold is always better than 

assigning a single value for MSR difference threshold.  

In the above Table the first column reports the seed number. The 

second column reports the size and MSR score of the bicluster generated 

by the ISIMSRDT algorithm. The third column reports the size and MSR 

score of the bicluster generated by the MSRDT algorithm.  The fourth 

column reports the size and MSR score of the bicluster generated by the 
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MSRT algorithm.  Figure 3.16 displays three biclusters obtained by the 

three algorithms from the same seed.  

Table 3.20 

 Difference between Biclusters obtained by the Three Algorithms        
Starting from the Same Seed 

 

S. 
No 

ISIMSRDT MSRDT MSRT 
Bicluster 

Size MSR Bicluster 
Size MSR Bicluster 

Size MSR 

1 110*17 199.95 78*16 199.96 75*17 199.95 

2 93*17 199.79 65*17 198.88 57*17 199.09 

3 99*17 199.95 74*17 199.69 92*17 199.71 

4 96*17 199.69 86*17 198.39     79*17 198.96 

5 125*17 199.91 119*17 199.54   117*17 199.94 
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Figure 3.16: Biclusters from same seed for the three algorithms. 

 

The details about the biclusters shown in Figure 3.16  are given in 

Table 3.21. From the bicluster plots it is clear that in this case MSRDT 

algorithm gives the best bicluster in terms of row variance in this case.  
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Table 3.21 
 Information about Biclusters given in Figure 3.16. 

 
Bicluster 

Label 
Algorithm Size MSR 

Row 
Variance 

(m) MSRT 15*15 198.58 610.64 

(n) MSRDT 17*16 199.37 619.26 

(o) ISIMSRDT 19*16 199.91 564.49 

 

In the above table the first column reports the label of the bicluster. 

The second column reports the algorithm from which the bicluster is 

generated. The third column reports the size of the bicluster. The fourth 

column reports the MSR and the last column reports the row variance of 

the biclusters. 

In the case of Lymphoma dataset starting from the same seed 

MSRT and MSRDT algorithms produced biclusters with 91 conditions. 

Even though both are of size 10*91 the bicluster produced by MSRDT is 

better in terms of MSR value (low) and row variance (high). But in the 

case of ISIMSRDT it should be noticed that this algorithm produced 

bicluster with 92 conditions and higher row variance from the same seed 

(Bicluster with label lh4 of Table 3.16).  

3.3.5.3 Comparison based on Bicluster Size and MSR 

The Table 3.22 given below provides a comparative summarization 

of the results of the performance of related algorithms in Yeast dataset.  

All the algorithms listed in Table 3.22 are having MSR value more or less 

equal to 200, even though the maximum limit of δ is 300. The 
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performance of ISIMSRDT algorithms in comparison with that of SEBI 

[36], Cheng and Church’s algorithm (CC) [29], and the algorithm FLOC 

by Yang et al. [106] and DBF [109] for the Yeast dataset are given. For 

ISIMSRDT average number of conditions is better than that of all the 

other algorithms. In the case of ISIMSRDT algorithm presented here 

average number of genes is greater than that of SEBI whereas the average 

number of conditions is better than that of all other algorithms. Average 

volume is greater than that of SEBI and CC.  Average residue is lower 

than that of CC and SEBI. The ISIMSRDT algorithm has high value for 

the largest bicluster size compared to SEBI and FLOC.  

Table 3.22 

 Performance Comparison between ISIMSRDT and  
Other Algorithms for Yeast Dataset 

 

Algorithm AMR 
 

ANG 
 

ANC AV LB 

ISIMSRDT 199.96 123.80 16.20 1954.20 2444 
SEBI 205.18   13.61 15.25   209.92 1394 
CC 204.29 166.71 12.09 1576.98 4485 

FLOC 187.54 195.00 12.80 1825.78 2000 
DBF 114.70 188.00 11.00 1627.00 4000 

 

AMR is Average mean squared Residue. ANG is Average Gene 

Number of genes. ANC is Average Number of Conditions. AV is 

Average Volume. LB is Largest Bicluster. As clear from the above table 

the average mean squared residue, the average number of genes and 

conditions, average volume and largest bicluster size are compared for 



Chapter 3 

 - 106 -

various algorithms.  For the average mean squared residue field lower 

values are better where as higher values are better for all other fields.  

Table 3.23 given below provides a performance comparison for 

Human B-cell Lymphoma dataset. Value of δ is set to 1200 for 

Lymphoma dataset. For ISIMSRDT average MSR is better than that of all 

the other algorithms except CC. Here the average gene number is greater 

than SEBI. Average value of condition is better than all other algorithms. 

Average volume is better than that of SEBI.  

Table 3.23 

 Comparison between ISIMSRDT and other  
Algorithms for Human Lymphoma Dataset 

 
Algorithm ANG ANC AV AMR 

ISIMSRDT 98.00 48.63 3458.62   923.47 

SEBI 14.07 43.57 615.84 1028.84 

CC 269.22 24.50 4595.98   850.04 
 

AMR is Average mean squared Residue. ANG is Average Gene 

Number of genes. ANC is Average Number of Conditions. AV is 

Average Volume. As clear from the above table the average mean squared 

residue, the average number of genes and conditions and average volume 

are compared for various algorithms.  For the average mean squared 

residue field lower values are better where as higher values are better for 

all other fields.  
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Usually multi-objective algorithms will produce biclusters of larger 

size. But in the case of multi-objective evolutionary computation [15] the 

maximum number of conditions obtained is only 11 in the case of Yeast 

dataset and 40 in the case of Human B-cell Lymphoma dataset. But in this 

method there are biclusters with all 17 and 92 conditions for Yeast and 

Lymphoma datasets respectively. For the Yeast dataset the maximum 

number of genes obtained for this algorithm in all the 17 conditions is 127 

with MSR value 199.9656. The maximum available in all the literature 

published so far is in multi-objective PSO [62]. They obtained 141 genes 

for 17 conditions with MSR value 203.25. Moreover the ISIMSRDT 

algorithm provides better performance in terms of speed compared to all 

the metaheuristic and evolutionary algorithms. Hence ISIMSRDT 

algorithm has a definite comparative differential advantage over the 

previous algorithms. In the multi-objective PSO, the maximum number of 

conditions obtained for Lymphoma dataset is 84. But for ISIMSRDT 

algorithm a bicluster with 92 conditions is obtained. 

3.4 SGSC Algorithm 

In this section a new algorithm is developed for biclustering gene 

expression data. Seeds obtained from K-Means are enlarged using a 

method in which the constraints used for genes and conditions are set 

separately to identify biclusters. Results obtained here are better than 

some of the metaheuristic and multi-objective evolutionary methods. The 

expansion for SGSC is Seed Growing using Separate Constraints for 

genes and conditions. In the seed growing phase after adding a gene or 
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condition the MSR value reduces or increases. Experiments are conducted 

by calculating MSR difference threshold. While experiments are done it is 

found that, reducing the difference threshold for conditions removes the 

conditions which make significant change in the expression level, 

whereas reducing the difference threshold for the genes increases 

coherence. A highly coherent gene which shows similar fluctuation will 

produce very small change in MSR value when added to the bicluster 

except in the case of scaling patterns. A negatively correlated gene will 

make a large variation in the MSR value. Moreover, the incremental 

increases in MSR caused by adding genes are small compared to that of 

conditions. But when a gene is added to the bicluster the pattern will not 

change. When a condition is added to the bicluster, the pattern of the 

bicluster will change. Conditions which cause a large variation in the 

expression level of genes will make a large incremental increase in MSR 

value also. The mean squared residue is a popular measure used to 

evaluate the quality of a bicluster. One drawback however is that it is 

biased towards flat biclusters with low row variance [24]. The row 

variance in a bicluster is increased by adding certain conditions in which 

the expression level of the gene is very high. Such conditions when added 

will increase the mean squared residue also. So optimization problems 

which try to add conditions by reducing MSR will rarely find biclusters 

with high row variance.    

All these observations lead to the conclusion that to include those 

conditions which cause a large variation which in turn helps to get 

biclusters with high row variance the MSR difference threshold for the 
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condition should be large and to increase coherence the MSR difference 

threshold for the gene should be small. So the constraint for conditions is 

set to the maximum allowable limit that is the MSR threshold and the 

allowable incremental increase in genes is set to a very small value. 

Hence after adding a condition the MSR value of the resulting submatrix 

is calculated in order to verifying whether it exceeds the given MSR 

threshold. If it exceeds the given MSR threshold it is removed from the 

submatrix.  After adding the gene MSR value of the resulting submatrix is 

calculated in order to verifying whether it exceeds the MSR difference 

threshold or the MSR threshold. If so the gene is removed from the 

bicluster. This process is continued till the last gene or condition is 

verified for inclusion in the bicluster. MSR difference threshold is set to 

very small value. In this study the MSR difference threshold is relevant 

for genes only and it is in the range of 0.1 to 10.  Usually increasing this 

value increases the number of genes and reduces row variance. In this 

method some of the seeds will result in biclusters with large row variance. 

The results obtained here are superior compared to that of other 

algorithms which use multi-objective optimization methods. It is easy to 

get biclusters of different shapes since different seeds will result in 

different biclusters almost all the time with a few exceptions. This 

algorithm is deterministic in the sense that for a given threshold value of 

MSR, the MSR difference threshold and for a given seed, the repeated 

executions, will produce the same result. A pseudo code description of the 

algorithm is given below. 
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Algorithm Separateconstraintsgenecond(seed, δ,x) 
// δ denotes the MSR threshold 
//x denotes the MSR difference threshold for genes //which is set to a small 
value  
bicluster := seed;    j := 1; 
While (j <= total _no_conditions) 
if condition[ j] is not included in the bicluster 
Add all elements of condition[j] corresponding to genes already included to 
the bicluster 
Msrbicluster=MSR(bicluster) 
  if (Msrbicluster> δ) remove elements of condition[ j]  
from the bicluster  and  restore previous MSR value 
endif 
endif 
j:= j+1 
end(while) 
i=1; 
While (i <= total _no_ genes) 
If gene[i] is not included in the bicluster 
Add all elements of gene[i] corresponding to conditions already included to 
the bicluster 
Msrbicluster=MSR(bicluster) 
MSRDifference=Incremental_Increasein_MSR(bicluster) 
   if (Msrbicluster > δ or MSRDifference>x) 
         remove elements of  gene[i] from the bicluster 
         restore the previous MSR value  
endif  
endif 
i=i+1; end(while)  
 return bicluster 
end(Separateconstraintsgenecond) 
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3.4.1 Time Complexity of the Algorithm 

The basic operation for the identification of biclusters is the 

calculation of mean squared residue of a submatrix. Time complexity for 

calculating MSR is O(mn). In order to include a gene or a condition, the 

MSR value is calculated once. There are m+n genes and conditions. 

Hence this calculation is performed atmost m+n times. That means the 

worst case time complexity of the algorithm is O((m+n)mn) where m and 

n are the number of genes and conditions respectively. This algorithm is 

very fast compared to evolutionary or metahueristic algorithms. The main 

operation for finding bicluster is the calculation of the MSR value of a 

submatrix. In this algorithm, the number of submatrices whose MSR is to 

be calculated is at most m+n, where m and n are the number of genes and 

conditions respectively. Usually m+n will be less than 4200. In the case 

of evolutionary algorithms the number of submatrices whose MSR is to 

be calculated is P*I where P is the number of populations and I is the 

number of iterations. For SEBI and SMOB the value of P*I is 20000. 

3.4.2 Experimental Results 

Experiments are conducted on the Yeast Saccharomyces cerevisiae 

cell cycle expression dataset and Human Lymphoma dataset in order to 

evaluate the quality of the proposed algorithm.  

3.4.2.1 Bicluster Plots for Yeast Dataset 

In Figure 3.17, out of the many biclusters found by the algorithm only 

12 biclusters with different shapes are shown. From the bicluster plots it is 

clear that highly coherent biclusters are obtained using this method. When 
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this algorithm is used some of the seeds produce biclusters with row variance 

above 2000. In SEBI the attempt was to identify biclusters with high row 

variance by adjusting the fitness function. The minimum value of row 

variance they obtained for the biclusters in Yeast dataset was 317.23. In this 

study, all biclusters obtained are with row variance above 317.23.   Biclusters 

with all 17 conditions are obtained using this method.  
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Figure  3.17  Sixteen biclusters obtained using SGSC algorithm on Yeast dataset. From 
left to right and from top to bottom the bicluster labels are (ya5), (yb5), 
(yc5), (yd5), (ye5), (yf5), (yg5), (yh5), (yi5), (yj5), (yk5), (yl5) ym5), 
(yn5), (yo5) and (yp5) respectively. The details of the biclusters can be 
obtined from Table 3.24 using bicluster label. 

 



Constraint Based Algorithms  

 - 113 -

 

Table 3.24 

Information about Biclusters of Figure 3.17 

Bicluster 
Label 

Number of 
Genes 

Number of 
Conditions 

Bicluster 
Volume 

MSR Row 
Variance 

Ya5 12 17 204 197.66 2211.80 
Yb5 29 17 493 95.45   643.59 
Yc5 29 11 319 226.03 1301.50 
Yd5 37 11 407 259.14 1454.90 
Ye5 12 17 204 182.31 1092.30 
Yf5 25 17 425 266.87 1079.50 
Yg5 22 17 374 183.04   545.83 
Yh5 24 12 288 244.92   917.74 
Yi5 36 17 612 229.25   643.17 
Yj5 32 17 544 298.21 1444.70 
Yk5 17 17 289 294.08 1253.90 
Yl5 36 17 612 194.12  592.80 

Ym5       125 9    1125 163.35  720.08 
Yn5       107 13    1391 166.99  405.97 
Yo5 32 13 416 225.69  743.69 
Yp5 87 9 783 189.52 447.71 

 

In the above Table the first column contains the label of each 

bicluster. The second and third columns report the number of rows 

(genes) and of columns (conditions) of the bicluster respectively. The 

fourth column reports the volume of the bicluster and the fifth column 

contains the mean squared residue of the bicluster and the last column 

contains the row variance of the bicluster. 
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3.4.2.2 Bicluster Plots for Lymphoma Dataset 

In Figure 3.18, out of the many biclusters found by the algorithm, 

only 12 biclusters are shown. The genes in the bicluster present a similar 

behavior under a set of conditions. Bicluster (la5) contains the maximum 

number of conditions obtained in this method i.e. 91.  Bicluster (le5) is 

having row variance above 7000. The MSR value of the bicluster (ll5) is 

only 797.3 but the row variance is above 5000. As Federico Divina and 

Jesus S. Aguilar-Ruize has observed [37], even though there are no 

shifting and scaling patterns [10] in the biclusters of Lymphoma dataset, 

local shifting patterns are obtained in some biclusters. 
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 Figure 3.18  Twelve biclusters obtained using SGSC algorithm on Lymphoma dataset. 
From left to right and from top to bottom the bicluster labels are (la5), 
(lb5), (lc5), (ld5), (le5), (lf5), (lg5), (lh5), (li5), (lj5), (lk5) and (ll5) 
respectively. The details of the biclusters can be obtained from Table 3. 25 
using bicluster label 
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Table 3.25 

Information about Biclusters of Figure 3. 18 

Bicluster 
Label 

Number 
of Genes 

Number of 
Conditions 

Bicluster 
Volume MSR Row 

Variance 
la5 10 91 910 1190.5 5308.5 
lb5 68 15    1020 1085.0 3350.6 
lc5 6 62 372 1048.8 2886.7 
ld5 11 73 803 1150.9 4234.6 
le5 11 34 374 1142.0 7936.9 
lf5 26 44    1144 1032.7 3195.6 
lg5 54 25    1350   894.3 1621.5 
lh5 61 10 610   604.1 1307.9 
li5 10 77 770 1140.5 4630.4 
lj5 12 30 360 1118.6 3572.9 
lk5 48 48    2304  946.8 2168.7 
ll5 11 30 330  797.3 5314.8 

3.4.3. Advantages of SGSC Algorithm 

This algorithm identifies biclusters with very high coherence. With 

the help of bicluster plot it can identify biclusters with very high row 

variance and MSR above the threshold. Some of the shifting and scaling 

patterns can be identified by this algorithm. 

3.4.4 Details of Significant Biclusters obtained by SGSC Algorithm 
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Figure 3.19  Four significant biclusters obtained by the SGSC algorithm on Yeast 

dataset. The bicluster labels are s51, s52, s53, s54. The details about 
biclusters can be obtained from Table 3.26 using bicluster label.  
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Table 3.26  

Information about Biclusters of Figure 3.19 

Bicluster 
Label 

Number of 
Genes 

Number of 
Conditions MSR Row 

Variance 
S51          23 17  131.3915      506.7582 

S52 63 17  167.4308    615.9798 

S53          31 17 297.1918   2036.0000 

S54          33 10 243.6711   1135.7000 
 

The biological relevance of biclusters obtained using SGSC 

algorithm is verified using the four biclusters shown in Figure 3.19. GO 

annotation database is used to verify the biological significance of 

biclusters.   

In the first bicluster S51 selected for testing the biological 

significance there are 23 genes. They are  YCL031C, YCR087W, YDL008W, 

YDL153C, YDL166C, YDL167C, YDR083W, YDR121W, YDR172W, YDR211W, 

YDR289C, YDR339C, YDR352W, YDR365C, YDR392W, YDR469W, YDR478W, 

YDR518W, YDR542W, YGR200C, YOL140W, YOR272W, YPR053C. 

In the second bicluster S52 there are 63 genes. They are YAL003W, 

YBL072C, YBL092W, YBR009C, YBR031W, YBR048W, YBR084C-A, YBR106W, 

YBR118W, YCR013C, YCR031C, YDL061C, YDL075W, YDL081C, YDL083C, 

YDL130W,YDL136W, YDL191W, YDL192W, YDL208W, YDL228C, YDL229W, 

YDR012W, YDR025W, YDR050C, YDR064W, YDR382W, YDR385W, YDR433W, 

YDR447C, YDR450W, YDR471W, YGL102C, YKL152C, YKL153W, YLR029C, 

YLR167W, YLR325C, YLR406C, YLR441C, YML026C, YMR202W, YNL030W, 

YNL067W, YNL162W, YNL302C, YOL039W, YOL040C, YOL127W, YOR167C, 

YOR234C, YOR293W, YOR312C, YOR369C, YPL037C, YPL081W, YPL090C, 

YPL142C, YPL143W,  YPL283C, YPR043W,YPR102C, YPR204W.  
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In the third bicluster S53 there are 31 genes. They are YAR007C, 

YAR008W, YBL035C, YBR088C, YBR089W, YDL003W, YDL018C, YDL164C 

YDR097C, YDR507C, YFL008W, YGR152C, YHR154W, YIL026C, YJL074C, 

YJL181W, YJL187C, YKL042W, YKL113C, YLL022C, YLR103C, YLR383W, 

YLR386W, YML021C, YML102W, YMR076C, YMR078C, YMR305C, YNL312W, 

YOL090W, YOR074C.  

In the fourth bicluster S54 there are 33 genes. They are YBR038W, 

YBR138C, YCL012W, YDL039C, YGL021W, YGR023W, YGR035C, YGR092W, 

YGR108W, YHR023W, YHR151C, YIL106W, YIL162W, YJL051W, YJR092W, 

YKL129C, YKR021W, YLR190W, YLR353W, YML033W, YML034W, YML119W, 

YMR001C, YMR032W, YMR291W, YNL053W, YNL171C, YOL130W, YOR152C, 

YPL148C, YPL242C, YPR007C, YPR119W. 

The Table 3.27 given below shows the significant GO terms used to 

describe genes of the biclusters of Figure 3.19 for the process, function 

and component ontologies. The common terms are described with 

increasing order of p-values or decreasing order of significance.  In Table 

3.27 the first entry of the second column with the title process contains 

the term rRNA processing (7, 0.00144) which means that 7 out of the 23 

genes of the bicluster are involved in the process of rRNA processing   

and their p-value is 0.00144. Second entry indicates that 8 out of the 23 

genes are involved in ncRNA processing. Also from the table it is clear 

that the biclusters are distinct along each category. This proves that the 

bicluster contains biologically similar genes and the SGSC algorithm used 

here is capable of identifying biologically significant biclusters from 

different GO categories.  
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Table 3.27  

Significant Shared GO Terms (Process, Function, Component)                     
of Biclusters shown in Figure 3.19 

 

Bicluster Process Function Component 
S51 rRNA processing 

(7, 0.00144) ncRNA 
processing (8, 0.00171) 
RNA metabolic 
process(13, 0.00184) 
gene expression ( 14, 
0.00678) 

10 out of 23 input 
genes are directly 
annotated to root 
term 'molecular 
function 
unknown': 

Nucleolus (6, 0.00622) 
 

S52 Translation (46,3.12e-
40) cellular  protein 
metabolic process (49, 
9.61e-24) protein 
metabolic process(49, 
3.96e-23) cellular 
metabolic process (55, 
5.85e-08) 

Structural 
constituent of 
ribosome (42, 
4.42e-44) 
structural molecule 
activity (42,  
3.48e-35)  

Cytosolic ribosome   
(42, 1.30e-46) cytosolic 
part (42, 5.45e-43) 
ribosome(45, 6.05e-41) 
organelle (54, 0.00081) 

S53 DNA repair (16,4.68e-
12) DNA metabolic 
process (18, 2.50e-11) 
response to DNA 
damage stimulus (16, 
5.29e-11) nucleobase, 
nucleoside, nucleotide 
and nucleic acid 
metabolic process (21, 
7.56e-05) 

Double-stranded 
DNA binding(5, 
8.01e-05) 
DNA secondary 
structure binding 
(3, 0.00162) 
structure-specific 
DNA binding (5, 
.00198) 
guanine/thymine 
mispair binding  
(2, 0.00469) 

Chromosome (15, 
8.04e-09) chromosomal 
part(13, 5.29e-07) 
 mitotic cohesin 
complex (4, 5.95e-07) 
nucleus (23, 3.19e-05) 

S54 Cytokinesis (8, 6.87e-
05) cell cycle process 
(13, 0.00024) cell cycle 
(13, 0.00039) cell 
division (8, 0.00042) 

13 out of 33 input 
genes are directly 
annotated to root 
term 'molecular 
function 
unknown':  

Cellular bud ( 13, 3.41e-
10) cellular bud 
neck(11, 6.47e-09) site 
of polarized growth  
(12, 4.96e-08) cellular 
bud neck contractile 
ring (5, 3.23e-07) 
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Figure 3.20 Sample of genes for the bicluster S51, with corresponding GO terms and 
their parents for Component Ontology 
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Figure 3.20 shows the significant GO terms for the set of genes in 

bicluster S51 along with their p values. It shows the branching of cellular 

component into sub-components like cell, cell part, membrane-enclosed 

lumen etc. These components are clustered using genes to produce the 

final result. Figure 3.20 is obtained when gene ontology database is 

searched by entering the names of genes of bicluster S51 and by selecting 

component ontology. 

3.4.5 Comparison with other Algorithms 

3.4.5.1 Comparison on the basis of Statistical and Biological Significance 

In Table 3.28, the GO terms along with their p-values and 

percentage of genes associated with the GO term in the bicluster for the 

SGSC algorithm is compared with that of MOGAB, SGAB, CC, RWB, 

Bimax, OPSM, ISA and BiVisu.  From the table it is clear that in terms of 

the best  p-value obtained by a bicluster  which is used to denote 

statistical significance, SGSC algorithm is better than MOGAB, SGAB, 

CC, RWB, Bimax, OPSM, ISA and BiVisu for all the first, third, fourth 

and fifth GO terms. For the second GO term the p-value obtained is better 

than that of all the other algorithms except MOGAB. The percentage of 

genes involved is better than that of all the other algorithms for all the five 

GO terms. 
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3.4.5.2 Comparison based on Bicluster Size and MSR 

The Table 3.29 given below provides comparative summarization of 

the results of Yeast data involving the performance of related algorithms. 

The performance of the SGSC algorithm, in comparison with the 

performance of SEBI [36], SMOB [37], CC [29] and FLOC [106] are 

given for the Yeast dataset.  In the SGSC algorithm presented here, only 

biclusters with row variance above 400 are taken into account, while 

calculating the average of mean squared residue, number of genes and 

conditions. For SGSC algorithm, the average MSR, average number of 

genes and conditions and the average volume, are better than that of SEBI 

an SMOB. 

Table 3.29 

 Comparison between SGSC Algorithm and other                                       
Algorithms for Yeast Dataset 

 
Algorithm AMR ANG     ANC   AV 

SGSC 200.77 37.35          15.55   537.75   

SEBI  205.18 13.61 15.25       209.92  

SMOB    206.17     27.28          15.46           453.48   

CC          204.29                166.71          12.09              1576.98 

FLOC    187.54                195.00           12.80              1825.78 

 
AMR is Average mean squared Residue. ANG is Average Gene 

Number of Genes. ANC is Average Number of Conditions. AV is 

Average Volume. As clear from the above Table the average MSR, the 

average number of genes and conditions, average volume are compared 



Constraint Based Algorithms  

 - 123 -

for various algorithms.  For the average MSR field lower values are better 

where as higher values are better for all other fields. 
 

Table 3.30 

 Performance Comparison between SGSC and other  
Algorithms for the Human Lymphoma Dataset 

 
  Algorithm AMR ANG ANC AV 

SGSC 1053.98 27.89 52.26 1169.63 

SEBI 1028.84 14.07 43.57 615.84 

SMOB 1019.60 11.60 78.47 709.13 

CC   850.04       269.22 24.50    4595.98 

   
AMR is Average mean squared Residue. ANG is Average Gene 

Number of Genes. ANC is Average Number of Conditions. AV is 

Average Volume. As is clear from the above Table the average mean 

squared residue, the average number of genes and conditions, average 

volume are compared for various algorithms.  For the average mean 

squared residue field lower values are better where as higher values are 

better for all other fields. 

Table 3.30 gives performance comparison for Human B-cell 

Lymphoma dataset. Value of δ is set to 1200 for Lymphoma dataset. In 

this dataset the average number of genes and average volume of the 

biclusters obtained are better than that of SEBI and SMOB. Average 

number of conditions is greater than CC and SEBI. 

In multi-objective evolutionary computation [4] the maximum 

number of conditions obtained is only 11 in Yeast dataset and 40 in 
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Human B-cell Lymphoma dataset. But in this method there are biclusters 

with all 17 and 91 conditions for Yeast and Lymphoma datasets 

respectively. Moreover as the SGSC algorithm uses simple sequential 

search rather than stochastic search the computation time required is very 

less compared to all the metahueristic and evolutionary algorithms. 

This algorithm is capable of detecting some of the shifting and 

scaling patterns present in Yeast dataset.  Some of the biclusters are with 

high row variance (more than 2000 for the Yeast dataset and more than 

7000 for Lymphoma dataset.  

3.5  Comparison of Constraint based Algorithms 

3.5.1 Comparison based on p-value of GO terms for Biclusters 
Generated from Same Seeds   

To evaluate the statistical significance for the genes in each 

bicluster p-values are used. P-values indicate the extent to which the 

genes in the bicluster match with the different GO categories. P-value 

indicates statistical significance of a bicluster. Four different seeds which 

on enlargement result in biologically significant biclusters were selected.  

These seeds are enlarged by all the constraint based algorithms and the p-

values of the GO terms of these biclusters are compared for all these 

algorithms.  
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Table 3.31 

 Comparison of Constraint based Algorithms based on GO Terms for 
Biclusters Generated from First Seed and the Corresponding P-value  

Obtained for each Algorithm for Process Ontology 
 
 

Go Terms 
p-value and Percentage of Genes 

MSRT MSRDT ISIMSRDT SGSC 

Ribosome biogenesis 
8.41e-11 
36.1% 

4.78e-05 
23.4% 

3.08e-22 
39.8% 

0.00248 
34.8% 

Ribonucleoprotein 
complex biogenesis 

1.47e-09 
36.1% 

7.68e-05 
24.7% 

6.25e-21 
40.8% 

0.00622 
34.8% 

Cellular component 
biogenesis at cellular 
level 

1.08e-08 
37.7% 

0.00039 
26.0% 

1.68e-18 
41.8% 

--- 

ncRNA processing 
2.95e-08 
31.1% 

0.00067 
20.8% 

1.86e-15 
32.7% 

0.00171 
34.8% 

ncRNA metabolic 
process 

1.66e-07 
31.1% 

0.00247 
16.9% 

4.05e-14 
32.7% 

0.00352 
34.8% 

rRNA processing 
5.98e-07 
24.6% 

0.00116 
16.9% 

5.80e-15 
27.6% 

0.00144(
highest) 
30.4% 

RNA processing 
8.40e-07 
32.8% 

0.00209 
23.4% 

2.74e-12 
33.7% 

------- 

rRNA metabolic process 
1.14e-06 
24.6% 

0.00194 
16.9% 

2.06e-14 
27.6% 

0.00194 
30.4% 

RNA metabolic 
process 

2.09e-05 
45.9% 

0.00832 
36.4% 

3.08e-14 
53.1% 

0.00184 
56.5% 

 

In this case the order of algorithm based on p-value is ISIMSRDT, 

MSRT, MSRDT and SGSC for all GO terms. The percentage of genes 
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involved is the highest for the ISIMSRDT algorithm for the first three GO 

terms. But the percentage of genes involved for SGSC is better for GO 

terms starting from the fourth entry of the Table 3.31, that is, from 

ncRNA processing to RNA metabolic process. The p-values obtained for 

SGSC is very low. Because the difference threshold value assigned for the 

genes is very low, there are only 23 genes in the bicluster. By increasing 

this value more genes will be included and this will increase the p-value 

of GO terms for SGSC algorithm.  

 
Table 3.32 

  Comparison of Constraint based Algorithms based on GO Terms for 
Biclusters Generated from the First Seed and the Corresponding p-value  

Obtained for each Algorithm for the Function Ontology 
 
 

GO Terms MSRT MSRDT ISIMSRDT SGSC 

Number of genes 

annotated to the 

term molecular 

function 

unknown 

27 genes 32 genes 0.00480 (p-

value) snoRNA 

binding 

10 out of  

23genes 

 

From the table it is clear that, for function ontology a fixed number 

of genes are annotated to the term molecular function unknown for all 

algorithms except ISIMSRDT. For ISIMSRDT algorithm 4 genes from 

the bicluster are annotated to the term snoRNA binding and the p-value is 

0.0048. 
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Table 3.33 
 Comparison of Constraint based Algorithms based on GO Terms for 

Biclusters Generated from the First Seed and the Corresponding p-value  
Obtained for each Algorithm for the Component Ontology 

 

GO terms 
p-value and Percentage of Genes 

MSRT MSRDT ISIMSRDT SGSC 

Nucleolus 2.91e-11 
31.1% 

8.24e-05 
18.2% 

2.56e-19 
31.6% 

0.00622 
26.1% 

Preribosome 8.40e-10 
24.6% 

0.00156 
13% 

4.26e-15 
23.5% -- 

90S 
Preribosome 

7.50e-09 
19.7% 

0.00210 
10.4% 

1.56e-09 
15.3% -- 

Nuclear part 1.79e-06 
47.5% -- 2.46e-12 

50.0% -- 

Nuclear lumen 3.56e-06 
39.3% -- 1.59e-13 

43.9% -- 

Organelle lumen 1.04e-05 
42.6% -- 6.41e-11 

44.9% -- 

Intracellular organelle 
lumen 

1.04e-05 
42.6% -- 6.41e-11 

44.9% -- 

Ribonucleoprotein 
complex 

9.71e-05 
32.8% -- 4.24e-07 

31.6% -- 

Nucleus 0.00020 
59.0% -- 1.62e-08 

61.2% -- 

Nucleolar part 0.00071 
11.5% -- 2.43e-06 

11.2% -- 

Macromoleular complex 0.00179 
54.1% -- 9.23e-07 

56.1% -- 

Smallsubunit processome -- -- 1.80e-05 
9.2% -- 

Organelle part -- -- 0.00081 
58.2% -- 

Intracellular organelle part -- -- 0.00081 
58.2% -- 

 

 

      In this case the order of algorithms based on best p-value is 

ISIMSRDT, MSRT, MSRDT, and SGSC. Since there are only 23 genes 

in the SGSC algorithm there is only one GO term associated with it for 

the component ontology. Even though the p-value is less for SGSC, the 
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percentage of genes involved is greater than MSRDT for the first GO 

term. The percentage of genes involved for the MSRT algorithm is greater 

than that of ISIMSRDT for GO the terms preribosome, 90S preribosome, 

ribonucleoprotein complex and nucleolar part.  
 

Table 3.34 

   Comparison of Constraint based algorithms based on GO terms for 
biclusters generated from second seed and the corresponding p-value 

obtained for each algorithm for the Process Ontology 
 

 

GO terms 
p-value and the Percentage of Genes 

MSRT MSRDT ISIMSRDT SGSC 

Translation 7.82e-25 
60.7% 

2.26e-23 
54.7% 

2.03e-49 
63.3% 

3.12e-40 
73% 

Cellularprotein metabolic 
process 

3.25e-12 
64.3% 

2.88e-11 
59.4% 

3.08e-24 
66.3% 

9.61e-24 
17.7% 

Protein metabolic process 8.24e-12 
64.3% 

7.49e-11 
59.4% 

1.77e-23 
66.3% 

3.96e-23 
77.8% 

Cellular macromolecule 
biosynthetic process 

5.82e-10 
62.5% 

1.42e-08 
56.2% 

6.74e-19 
63.3% 

8.59e-18 
73.0% 

Macromolecule biosynthetic 
process 

6.47e-10 
62.5% 

1.58e-08 
56.2 

8.19e-19 
63.3 

1.00e-17 
73% 

Gene expression 1.09e-08 
62.5% 

5.29e-08 
57.8% 

2.12e-17 
64.3% 

5.78e-17 
74.6% 

Translational elongation 2.35e-08 
16.1% 

2.66e-09 
15.6% 

4.60e-17 
16.3% 

1.78e-09 
15.9% 

Cellular biosynthetic process 3.41e-07 
64.3% 

1.15e-07 
62.5% 

1.39e-15 
67.3% -- 

Biosynthetic process 6.64e-07 
64.3% 

2.42e-07 
62.5% 

5.05e-15 
67.3% 

3.10e-14 
76.2% 

Ribosome biogenesis 4.34e-05 
26.8% 

1.26e-06 
28.1 

6.01e-15 
32.7% 

1.25e-11 
36.5% 

rRNA processing 0.00010 
21.4% 

9.86e-06 
21.9% 

5.61e-10 
22.4% 

7.25e-08 
25.4% 

rRNA metabolic process 0.00017 
21.4% 

1.77e-05 
21.9% 

1.48e-09 
22.4% 

1.45e-07 
25.4 

Cellular macromolecule 
metabolic process 

0.00025 
67.9% 

0.00024 
65.6% 

9.83e-10 
70.4% 

2.90e-11 
81.0% 
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In this case the best p-values are obtained in the order ISIMSRDT, 

SGSC, MSRT and MSRDT respectively. But the order of algorithms based 

on the percentage of genes for the first GO terms is SGSC, ISIMSRDT, 

MSRT and MSRDT. For all GO terms, except cellular protein metabolic 

process and translational elongation, the percentage of genes involved in 

SGSC algorithm is better than that of all the other algorithms.  

 

Table 3.35 

Comparison of Constraint based Algorithms based on GO Terms for 
Biclusters Generated from the Second Seed and the Corresponding p-value 

Obtained for each Algorithm for the Function Ontology 
 

GO Terms 
p-value and Percentage of Genes 

MSRT MSRDT ISIMSRDT SGSC 

Structural constituent of ribosome 
9.79e-24 

50% 
2.58e-24 
46.9% 

6.05e-53 
56.1% 

4.42e-44 
66.7% 

Structural molecule activity 
2.73e-18 

50% 
1.79e-18 
46.9% 

3.97e-42 
57.1% 

3.48e-35 
66.7% 

Translation elongation factor 
activity 

0.00015 
7.1% 

0.00035 
6.2% 

7.16e-05 
5.1% 

-- 

RNA-directed DNA polymerase 
activity -- -- -- 

 
-- 

RNA binding - - 0.00208 -- 

Translation elongation factor 
activity - - - - 

DNA-directed DNA polymerase 
activity - - - - 

DNA polymerase activity - - - - 

In this case the best p-values are obtained in the order ISIMSRDT, 

SGSC, MSRDT and MSRT respectively. But the order of algorithms 
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based on percentage of genes is SGSC, ISIMSRDT, MSRT, and MSRDT 

for the first two GO terms. For the third GO term the order of algorithms 

based on the percentage of genes is MSRT, MSRDT and ISIMSRDT.  

Table 3.36 

Comparison of Constraint based Algorithms based on GO Terms for 
Biclusters Generated from the Second Seed and the Corresponding p-value 

Obtained for each Algorithm for the Component Ontology 
 

GO Terms 
p-value and the Percentage of Genes 

MSRT MSRDT ISIMSRDT SGSC 

Cytosolic ribosome 1.55e-26 
51.8% 

2.71e-27 
48.4% 

1.51e-60 
58.2% 

1.30e-46 
66.7% 

Cytosolic part 2.95e-24 
51.8% 

7.66e-25 
48.4% 

3.92e-55 
58.2% 

5.45e-43 
66.7% 

Ribosome 8.24e-24 
57.1% 

6.60e-24 
53.1% 

3.60e-51 
62.2% 

6.05e-41 
71.4% 

Cytosol 1.36e-20 
55.4% 

3.91e-23 
54.7% 

1.42e-48 
63.3% 

1.45e-36 
69.8% 

Ribonucleoprotein complex 1.11e-18 
60.7% 

3.21e-18 
56.2% 

3.31e-38 
64.3% 

1.04e-32 
74.6% 

Cytosolic small ribosomal 
subunit - - 9.31e-28 

27.6% 
2.44e-19 
30.2% 

Cytosolic large ribosomal 
subunit 

2.09e-17 
32.1 

3.59e-16 
28.1% 

4.42e-27 
28.6% 

1.84e-24 
36.5% 

Large ribosomal subunit 7.99e-15 
32.1 

1.30e-13 
28.1% 

1.45e-22 
28.6% 

6.11e-21 
36.5% 

Non-membrane-bounded 
organelle 

1.23e-10 
62.5% 

1.50e-10 
59.4% 

1.12e-21 
65.3% 

1.12e-20 
76.2% 

Intracellular non-
membrane-bounded 
organelle 

1.23e-10 
62.5% 

1.50e-10 
59.4% 

1.12e-21 
65.3% 

1.12e-20 
76.2% 

In this case the best p-values are obtained in the order ISIMSRDT, 

SGSC, MSRDT and MSRT respectively, for the first five GO terms. But 

based on the percentage of genes involved, the order of algorithms are 

SGSC, ISIMSRDT, MSRT and MSRDT for the first five GO terms. 
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Percentage of genes involved is highest for SGSC for all GO terms. P-

value obtained is the best for ISIMSRDT for all GO terms.  

Table 3.37 

Comparison of Constraint based Algorithms based on GO Terms for 
Biclusters Generated from the Third Seed and the Corresponding p-value 

Obtained for each Algorithm for the Process Ontology 
 

GO Terms 
p-value and the Percentage of Genes 

MSRT MSRDT ISIMSRDT SGSC 
 
DNA repair 
 

4.82e-13 
57.1% 

1.43e-14 
60.7% 

3.25e-10 
45.5% 

4.68e-12 
51.6% 

Response to DNA 
damage stimulus 

5.57e-12 
57.1% 

1.97e-13 
60.7% 

3.04e-09 
45.5% 

5.29e-11 
51.6% 

DNA metabolic process 4.37e-11 
60.7% 

7.23e-14 
67.9% 

1.11e-10 
(highest) 
54.5% 

2.50e-11 
58.1% 

Cell cycle 8.19e-07 
53.6% - 1.13e-09 

57.6% 
4.87e-08 
54.8% 

Cell cycle process 5.15e-06 
50% - 7.20e-09 

54.5% 
2.99e-07 
51.6% 

Double-strand break 
repair 

2.91e-07 
32.1% - 1.53e-06 

27.3% 
8.98e-07 

29% 
Cellular response to stress 
 

5.99e-10 
60.7% 

6.03e-10 
60.7% 

2.60e-07 
48.5% 

8.51e-08 
51.6% 

Response to stress 
 

2.28e-08 
60.7 

2.30e-08 
60.7% 

6.89e-06 
48.5% 

2.35e-06 
51.6% 

Mitotic sister chromatid 
cohesion - 3.76e-05 

21.4% 
8.67e-08 
24.2% 

2.31e-06 
22.6% 

Cellular response to 
stimulus 

2.29e-08 
64.3% 

2.31e-08 
64.3% 

8.61e-06 
51.5% 

2.58e-06 
54.8% 

Cell cycle phase 1.66e-05 
42.9% 

1.67e-05 
42.9% 

1.36e-07 
45.5% 

7.11e-06 
41.9% 

M phase 0.00021 
35.7% 

1.85e-05 
39.3% 

1.14e-06 
39.4% 

6.26e-06 
38.7% 

Chromosome 
organization 

0.00018 
39.3% 

0.00158 
35.7% 

1.68e-06 
42.4% 

7.07e-05 
38.7% 
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In this case, the order of algorithms based on p-value is MSRDT, 

MSRT, SGSC, and ISIMSRDT for most of the GO terms. The order of 

algorithms based on percentage of genes involved is MSRDT, MSRT, 

SGSC and ISIMSRDT for most of the GO terms. 

Table 3.38 

 Comparison of Constraint based Algorithms based on GO Terms for 
Biclusters Generated from the Third Seed and the Corresponding p-value 

Obtained for each Algorithm for the Function Ontology 
 

 

GO Terms 
p-values and the Percentage of Genes 

MSRT MSRDT ISIMSRDT SGSC 

Double-stranded DNA 
binding 

4.13e-05 
17.9% 

4.58e-05 
17.9% 

0.00202 
12.1% 

8.01e-05 
16.1% 

 
Structure-specific DNA 
binding 

0.00103 
17.9% 

0.00115 
17.9% 

0.00172 
15.2% 

0.00198 
16.1% 

DNA secondary structure 
binding 

0.00104 
10.7% 

0.00116 
10.7% - 0.00162 

9.7% 

Guanine/thymine mispair 
binding 

0.00335 
7.1% 

0.00372 
7.1% - 0.00469 

6.5% 

Single base insertion or 
deletion binding 

0.00335 
7.1% 

0.00372 
7.1% - 0.00469 

6.5% 

Four-way junction DNA 
binding 

0.00999 
7.1% - - - 

 

In this case also the order of algorithms based on p-value is MSRT, 

MSRDT, SGSC, and ISIMSRDT for the first GO term. For the second Go 

term, the order of algorithms based on p-value is MSRT, MSRDT, 

ISIMSRDT and SGSC. The order of algorithms based on the percentage 

of genes involved is MSRT, MSRDT, SGSC and ISIMSRDT for the first 

two GO terms.  
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Table 3.39 

 Comparison of Constraint based Algorithms based on GO Terms for 
Biclusters Generated from the Third Seed and the Corresponding p-value 

Obtained for each Algorithm for the Component Ontology 
 

GO Terms 
p-value and the Percentage of Genes 

MSRT MSRDT ISIMSRDT SGSC 

Replication fork 1.38e-07 
28.6% 

3.42e-09 
32.1% 

6.19e-07 
24.2% 

9.43e-06 
22.6% 

Chromosome 
2.01e-08 
(highest) 
50.0% 

1.85e-08 
50% 

2.01e-09 
(highest) 
48.5% 

8.04e-09 
(highest) 
48.4% 

Chromosomal part 1.53e-06 
42.9% 

1.41e-06 
42.9% 

4.2e-07 
42.4% 

5.29e-07 
41.9% 

Nuclear chromosome 6.59e-06 
39.3% 

6.07e-06 
39.3% 

4.50e-07 
39.4% 

2.18e-05 
35.5% 

 

Nuclear replication fork 3.39e-05 
21% 

1.10e-06 
25% 

0.00010 
18.2% 

0.00146 
16.1% 

Nuclear chromosome part | 0.00036 
32.1% 

0.00033 
32.1 

2.23e-05 
33.3% 

0.00089 
29% 

Condensed nuclear 
chromosome 

0.00594 
17.9% 

0.00546 
17.9% 

3.65e-06 
24.2% 

4.34e-05 
22.6% 

Mitotic cohesin complex - - 7.89e-07 
12.1% 

5.95e-07 
12.9% 

Nuclear mitotic cohesin 
complex - - 

7.89e-07 
12.1% 

 

5.95e-07 
12.9% 

Nucleus - 8.87e-06 
78.6% 

3.39e-05 
72.2% 

3.19e-05 
74.2% 

Condensed chromosome - .00925 
17.9% 

8.86e-06 
24.2% 

5.10e-06 
25.8% 

Nuclear cohesin complex - - 3.91e-06 
12.1% 

2.95e-06 
12.9% 

Cohesin complex - - 3.91e-06 
12.1% 

2.95e-06 
12.9% 

In this case the order of algorithms based on best p-value is 

ISIMSRDT, MSRDT, SGSC and MSRT. 
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Table 3.40 

 Comparison of Constraint based Algorithms based on GO Terms for  
Biclusters Generated from the Fourth Seed and the Corresponding p-value  

Obtained for each Algorithm for Process Ontology 
 
 

GO Terms, p-value and Percentage of Genes of GO Terms for each Algorithm 
MSRT MSRDT ISIMSRDT SGSC 

Cytokinesis 
0.00130 
20.6% 

Cytokinesis 
2.32e-05 
28.6% 

Cytokinesis 
7.07e-05 
24.2% 

Cytokinesis 
6.87e-05 
24.2% 

Positive regulation 
of spindle pole body 
separation 
0.00195 
8.8% 

Cell cycle 
process 
3.91e-05 
46.4% 

Cell division 
0.00043 
24.2 

Cell cycle process 
0.00024 
39.4% 

Cell cycle process 
0.00252 
35.3% 

Cell cycle 
6.36e-05 
46.4% 

Cell cycle 
cytokinesis 0.00130 
18.2% 

Cell cycle 
0.00039 
39.4% 

Cell cycle 
0.00383 
35.3% 

Cell division 
0.00014 
28.6% 

Cell cycle process 
0.00171 
36.4% 

Cell division 
0.00042 
24.2% 

Regulation of 
spindle pole body 
separation 
0.00387 
8.8% 

Cell cycle 
cytokinesis 
0.00058 
21.8% 

Positive regulation 
of spindle pole body 
separation 
0.00173 
9.1% 

Cell cycle 
cytokinesis 
0.00126 
18.2% 

Cell division 
0.00607 
20.6% 

Protein 
phosphorylation 
0.00077 
25.0% 

Protein 
phosphorylation 
0.00196 
21.2% 

Positive regulation 
of spindle pole body 
separation 0.00168 
9.1% 

-- 

Positive 
regulation of 
spindle pole 
body separation 
0.00118 
10.7% 

Cell cycle 
0.00261 
36.4% 

Cytokinetc process | 
0.0025718.2% 

 
-- 

Cytokinetic 
process 
0.00120 
21.4% 

Cytokinetic process 
0.00265 
18.2% 

Regulation of 
spindle pole body 
separation 
0.00334 
9.1% 
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-- 

Regulation of 
spindle pole 
body separation 
0.00235 
10.7% 

Regulation of 
spindle pole body 
separation 
0.00344 
9.1% 

Phosphorylation 
0.00946 
21.2% 

-- 
Phosphorylatio
n 0.00422  
25% 

- - 

-- 

Spindle pole 
body 
separation 0.00
967 
10.7% 

- - 

 

In the biclusters obtained by the fourth seed, since the conditions 

selected are different for each algorithm, the genes selected are also 

different. The GO terms are different for biclusters obtained by each 

algorithm. Hence GO terms along with the p-values are given in the order 

of p-values. Here the order of algorithms in terms of best p-value and 

percentage of genes is MSRDT, SGSC, ISIMSRDT and MSRT for the 

first GO term cytokinesis.  

Table 3.41  
 

Comparison of Constraint based Algorithms based on GO Terms for  
Biclusters Generated from the Fourth Seed and the Corresponding p-value  

Obtained for each Algorithm for Function Ontology 
 

GO Terms MSRT MSRDT ISIMSRDT SGSC 
'molecular 
function 

unknown' 

13 out of 34 
input genes 

11 out of 28 
genes 

12 out of  33 
genes 

13 out of 33 
genes 

From the table it is clear that for function ontology a fixed number 

of genes are annotated to the term molecular function unknown for all 

algorithms. 
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Table 3.42 

  Comparison of Constraint based Algorithms based on GO Terms for 
Biclusters Generated from the Fourth Seed and the Corresponding p-value  

Obtained for each Algorithm for Component Ontology 
 
 

GO Terms, p-value and Percentage of Genes of GO Terms for each Algorithm 

MSRT MSRDT ISIMSRDT SGSC 
Cellular bud 

3.48e-06 

29.4% 

Cellular bud neck 

1.06e-09 

39.3% 

Cellular bud 

3.90e-10 

39.4% 

Cellular bud 

3.41e-10 

39.4% 

Cellular bud neck 

3.81e-06 

26.5% 

Cellular bud  

1.12e-09 

42.9% 

Cellular bud neck 

6.47e-09 

33.3% 

Cellular bud neck 

6.47e-09 

33.3% 

Site of polarized 
growth 

1.63e-05 

29.4% 

Site of polarized 
growth 

7.76e-09 

42.9% 

Site of polarized 
growth 

5.50e-08 

36.4% 

Site of polarized 
growth 

4.96e-08 

36.4% 

Cellular bud neck   

contractile ring 

5.04e-05 

11.8% 

Cellular bud neck   

contractile ring 

1.44e-07 

17.9% 

Cellular bud neck 
 contractile ring 

3.23e-07 

15.2% 

Cellular bud neck  

contractile ring 

3.23e-07 

15.2% 

Actomyosin 
contractile ring 

 5.04e-05 

11.8% 

Actomyosin 
contractile ring 

1.44e-07 

17.9% 

Actomyosin 
contractile ring 

3.23e-07 

15.2% 

Actomyosin 
contractile ring 

 3.23e-07 

15.2% 

Contractile ring 

 5.04e-05 

11.8% 

Contractile ring 

1.44e-07 

17.9% 

Contractile ring 

3.23e-07 

15.2% 

Contractile ring 

3.23e-07 

15.2% 

Cell division site 

0.00069 

11.8% 

Cytoskeletal part 

1.63e-06 

35.7% 

Cytoskeleton part 

7.71e-06 

30.3% 

Cytoskeleton part 

7.71e-06 

30.3% 
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Cell division site 
part 

0.00069 11.8% 

Cytoskeleton 

1.78e-06 

35.7% 

Cytoskeleton 

8.40e-06 

30.3% 

Cytoskeleton 

8.40e-06 

30.3% 

Cytoskeleton part 
0.00126 
23.5% 

Cell division site 
4.97e-06 
17.9% 
 

Cell division site 
1.10e-05 
15.2% 

Cell division site 
1.10e-05 
15.2% 

Cytoskeleton  
0.00135 
23.5% 

Cell division site 
part 
4.97e-06 
17.9% 

Cell division site 
part 
1.10e-05 
15.2% 

Cell division site 
part 
1.10e-05 
15.2% 

Actin cytoskeleton 
0.00222 
14.7% 

Actin cytoskeleton 
3.40e-05 
21.4% 
 

Actin 
cytoskeleton 
8.63e-05 
18.2% 

Actin 
cytoskeleton 
8.63e-05 
18.2% 

- Cell cortex part 
.00050 
21.4% 

Cell 
Cortex part 
.00123 
18.2% 

Cell 
Cortex part 
.00099 
18.2% 

- Cell cortex 
0.00182 
21.4% 

Cell cortex 
.00444 
18.2% 

Cell cortex 
.00099 
18.2% 

 

In this case the order of algorithms based on best p-value is SGSC, 

ISIMSRDT, MSRDT and MSRT.  

In short, from these results it is not possible to conclude that a single 

algorithm is best in terms of p-value. The order is changing for each bicluster 

and in some situation for a particular ontology. But in most cases ISIMSRDT 

algorithm is best among the four constraint based algorithms in terms of p-
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value. And in most cases SGSC algorithm is the best among the four 

constraint based algorithms in terms of the percentage of the genes involved. 

3.5.2 Comparison based on the best five GO terms 

Table 3.43 

Result of Biological Significance Test: The Top Five Functionally 
Enriched Significant GO Terms Produced by Constraint Based 

Algorithms for the Yeast Dataset 
 

Terms MSRT MSRDT ISIMSRDT SGSC 

1 

Cytosolic 
ribosome 
51.8% 
1.55e-26 

Cytosolic 
ribosome 
48.4% 
2.71e-27 

Cytosolic 
ribosome 
58.2% 
1.51e-60 

Cytosolic 
ribosome 
66.7% 
1.30e-46 

2 
Translation 
60.7% 
7.82e-25 

Cytosolic Part 
48.4% 
7.66e-25) 

Cytosolic Part 
58.2% 
3.92e-55 

Structural 
constituent of 
ribosome 
66.7% 
4.42e-44 

3 

Cytosolic 
Part 
51.8% 
2.95e-24 

Structural 
constituent of 
ribosome 
46.9% 
2.58e-24) 

Structural 
constituent of 
ribosome 
56.1% 
6.05e-53 

Cytosolic Part 
66.7% 
5.45e-43 

4 
Ribosome 
57.1% 
8.24e -24 

Ribosome 
53.1% 
6.60e-24 

Ribosome 
62.2% 
3.60e-51 

Ribosome 
71.4% 
6.05e-41 

5 

Structural 
constituent 
of ribosome 
50% 
9.79e -24 

Structural 
Molecule 
Activity 
46.9% 
2.58e-24 

Translation 
62% 
2.03e-49 

Translation 
73% 
3.12e-40 

 

Here all the algorithms are compared on the basis of the best 5 p-

values obtained from all four biclusters. In this case the order of 
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algorithms based on p-value is ISIMSRDT, SGSC, MSRDT and MSRT 

for all GO terms. But the order of algorithms based on the percentage of 

genes for the first GO term is SGSC, ISIMSRDT, MSRT and MSRDT.  

3.5.3 Comparison based on Size and MSR for Biclusters Generated 
from the Same Seed 

For this comparison three different seeds are selected. These seeds 

are enlarged by all the constraint based algorithms. The size and MSR are 

compared for biclusters obtained from all these algorithms. 

Analysing the algorithms based on the biclusters obtained from the 

same seed it should be noted that among the algorithms SGSC produces 

biclusters of low size but coherence is high since MSR value is very low. 

ISIMSRDT is the best among the four constraint based algorithms in 

terms of bicluster size. Reducing the incrementing factor in ISIMSRDT 

can improve the bicluster size further.  

For the first seed, the order of algorithms in terms of bicluster size 

is ISIMSRDT, MSRDT, MSRT and SGSC. For the second seed the order 

of algorithms in terms of bicluster size is ISIMSRDT, MSRDT, SGSC, 

MSRT. For the third seed the order is, ISIMSRDT, MSRDT, SGSC, 

MSRT. In short ISIMSRDT, MSRDT, MSRT, SGSC are the order of 

algorithms in terms of bicluster size. The order of MSRT and SGSC 

changes for different biclusters depending on the value selected for the 

difference threshold. The row variance of biclusters obtained by MSRDT 

is greater than that of MSRT and ISIMSRDT in all the three cases. 
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3.6 Summary 

In this chapter, four constraint based algorithms developed for 

finding the biclusters from gene expression data for enlarging the seeds, 

are described. More genes and conditions are added to the seeds in which 

node addition follows node deletion, if necessary. Nodes are searched 

sequentially. The algorithms are implemented on both the Yeast 

Sacharomyces cerevisiae cell cycle expression dataset and Human 

Lymphoma dataset. A comparative assessment of the results is provided 

on both the above mentioned benchmark gene expression datasets in order 

to demonstrate the effectiveness of the proposed methods. The quality of 

biclusters obtained can be inspected visually by using bicluster plots. The 

expression values of genes in the bicluster show strikingly similar up-

regulation and down-regulation under a set of experimental conditions.  

These algorithms are able to identify interesting biclusters from gene 

expression data. In the Yeast dataset MSRT and SGSC algorithms can 

identify some biclusters with shifting and scaling patterns; and some of 

the biclusters are with high very high row variance. Statistical 

significance and biological relevance of the biclusters obtained by each 

algorithm are also verified using gene ontology database. In terms of the 

best p-value obtained by biclusters, these algorithms are better than 

algorithms like SGAB, CC, RWB, Bimax, OPSM, ISA and Bivisu. A 

bicluster with the highest number of conditions (92) is obtained for 

Lymphoma dataset for ISIMSRDT algorithm. The row variance of this 

bicluster is also very high (above 5000). Another major research finding 

is in the case of iterative search. Iterative search has got the advantage of 
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selecting the (n-k)th gene or condition whose incremental increase in 

MSR value got reduced after adding the nth gene or condition. 

Comparisons of all the constrained based algorithms with other 

algorithms on the basis of statistical significance, size and MSR value of 

the biclusters are given in this chapter. Constrained based algorithms are 

also compared among themselves based on the quality of the biclusters 

obtained from the same seed. 

 

….. ….. 

 



 

 

Chapter 4 

 

 

 

 

 

 

Chapter 4 describes the Greedy algorithm. The description of 

algorithm, its complexity, different biclusters obtained from Yeast and 

Lymphoma datasets, significant biclusters obtained (biological 

validation), and the comparison of the algorithm with other algorithms 

are given in this chapter.  
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4.1  Description of the Algorithm 

A greedy algorithm is any algorithm that follows the problem 

solving strategy of making the locally optimal choice at each stage [31] 

with the hope of finding the global optimum. In general greedy 

algorithms are used for optimization problems. Biclustering is an 

optimization problem in which the objective is to maximize the volume 

and minimize the MSR. The seeds obtained from K-Means clustering 

algorithm are thus enlarged using greedy approach. In the seed 

growing phase a separate list is maintained for conditions and genes 

not included in the bicluster. Each seed is enlarged separately by 

adding more genes and conditions. Initially conditions are added 

followed by genes. In greedy search algorithm, the best element is 

selected from the gene list or condition list and added to the bicluster. 

The quality of the element is determined by the Hscore or MSR value 

of the bicluster after including the element in the bicluster. The 

element which results in minimum MSR value when added to the 

bicluster is considered as the best element. It cannot be specified as an 

element with smallest incremental cost of Hscore because adding some 

elements reduces the Hscore value. Seed growing starts from condition 

list followed by gene list until the MSR value reaches the given 

threshold. This is a greedy method since our aim is to select the next 

element which produces bicluster with minimum Hscore value. A 

pseudo-code description of the greedy search algorithm is given below. 
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Algorithm  greedysearch(seed, δ) 
bicluster := seed 
Calculate Column_List the list of conditions not included in the bicluster 
While (MSR(bicluster) <= δ) 
  No_elem_Col=size(Column_List) 
            for  i:=1: No_elem_Col   
                    bicluster=bicluster+ Column_List [i] 
                    Column_List_msr[i]= MSR(bicluster) 
                    Remove Column_List[i] from bicluster 
           end(for) 
find minimum value in Column_List_msr  and corresponding index K 
bicluster=bicluster+ Column_List [K] 
delete Column_List [K] from Column_List 
end(while)  
 
Calculate Row_List the list of genes not included in the bicluster 
While (MSR(bicluster) <= δ) 
  No_elem_Row=size(Row_List) 
                
               for  i:=1: No_elem_Row   
                        bicluster=bicluster+ Row_List [i] 
                        Row_List_msr[i]= MSR(bicluster) 
                        Remove Row_List[i] from bicluster 
                end(for) 
find minimum value in Row_List_msr  and corresponding index J 
bicluster=bicluster+ Row_List [J] 
delete Row_List [J] from Row_List 
end(while) 
end(greedysearch) 
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4.2 Time Complexity  

The basic operation for the identification of biclusters is the 

calculation of mean squared residue of a submatrix. Time complexity for 

calculating MSR is O(mn). In this algorithm conditions are added first 

followed by genes. In order to include a condition MSR value of all 

submatrices that result from adding a single condition is to be calculated 

for all conditions. This number decreases by one, after each iteration. That 

means the complexity can be calculated by the formula (n+(n-1)+(n-2)+ 

...1). This is equal to n(n+1)/2 which is equivalent to O(n2). Hence for 

adding conditions the worst case complexity is O(mn)(n2). Similarly for 

adding genes the worst case complexity is O(mn)(m2). Hence the worst 

case complexity for adding genes and conditions is O(mn)(m2+n2) where 

m and n are the number of genes and conditions respectively.  

4.3  Experimental Results  
4.3.1 Bicluster Plots for Yeast Dataset 

In Figure 4.1, nine biclusters identified by the greedy algorithm on 

the Yeast dataset are shown. From the bicluster plots it can be noticed that 

genes present a similar behaviour under a set of conditions. Many of the 

biclusters found on the Yeast dataset contain all 17 conditions. Out of the 

nine biclusters shown in Figure 4.1, seven contain all 17 conditions and 

they differ in appearance. In short, greedy algorithm is ideal for 

identifying various biclusters with coherent values. Information about 

these biclusters is given in Table 4.1. All the biclusters are having mean 

squared residue less than 300.  
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Figure 4.1 Nine biclusters obtained from the Yeast dataset using greedy algorithm. 
Bicluster labels are (ya6), (yb6), (yc6), (yd6), (ye6), (yf6), (yg6), (yh6) and 
(yi6) respectively. In the bicluster plots X axis contains conditions and Y 
axis contains expression values. The details about the biclusters can be 
obtained from Table 4.1 using bicluster label. Here only biclusters with 
different shapes are selected.  
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Table 4.1 

 Information about Biclusters of Figure 4.1 
 

Bicluster 
Label 

Number 
of Genes 

Number of 
Conditions 

Bicluster 
Volume MSR 

Row  
Variance 

(ya6) 10 17 170 66.4403 522.23 
(yb6) 17 17 289 99.3497 407.47 
(yc6) 108 17 1836 194.5204 472.34 
(yd6) 14 17 238 97.8389 507.63 
(ye6) 147 17 2499 200.2474 396.04 
(yf6) 33 17 561 99.9639 506.14 
(yg6) 31 17 527 97.9121 613.89 
(yh6) 1405 9 12645 299.8968 348.07 
(yi6) 79 11 869 241.3371    760.91 

 

In the above table the first column contains the label of each 

bicluster. The second and third columns report the number of rows 

(genes) and number of columns (conditions) of the bicluster respectively. 

The fourth column reports the volume of the bicluster and the fifth 

column contains the mean squared residues of the biclusters. The last 

column contains the row variance of the biclusters. 

4.3.2 Bicluster Plots for Lymphoma Dataset 

Eight biclusters obtained from Human Lymphoma dataset are 

shown in Figure 4.2. All the biclusters show strikingly similar up- 

regulation and down-regulation. All the means squared residues are lower 

than 1200. The first bicluster in Figure 4.2 contains 94 conditions. 

Number of genes in this bicluster is 11. The row variance of the bicluster 

is also very high (5317.5). 
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 Figure 4.2  Eight biclusters found for the Lymphoma Dataset using greedy algorithm. 
Bicluster labels are (la6), (lb6), (lc6), (ld6), (le6), (lf6), (lg6) and (lh6) 
respectively. In the bicluster plots X axis contains conditions and Y axis 
contains expression values. The details about biclusters can be obtained 
from Table 4.2 using bicluster label.  

Table 4.2 

Information about Biclusters of Figure 4.2 

Bicluster 
Label 

Number 
of Genes 

Number of 
Conditions 

Bicluster 
Volume MSR 

Row 
Variance 

(la6) 11 94 1034 1194.40 5317.5 
(lb6) 40 66 2640   918.25 1156.4 
(lc6) 30 80 2400 1175.90 3466.3 
(ld6) 21   9   189   476.12 6183.5 
(le6) 26 81 2106 1196.80 3906.0 
(lf6) 10 83   830 1182.10 5070.1 
(lg6) 53 35 1855   723.41  788.7 
(lh6)      292  9 2628 1196.90 3359.1 
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4.4 Advantages of Greedy Algorithm  

The advantage of this Greedy approach over the previous greedy 

approach of Cheng and Church [29] is that it avoids random interference. 

In the greedy method of Cheng and Church the program starts with the 

entire gene expression data matrix and deletes those rows or columns 

whose removal creates the greatest variation in MSR. This method is 

deterministic. So in order to identify different biclusters, the identified 

ones are replaced by random values. These random values will interfere 

with the discovery of future biclusters. This problem is known as random 

interference. This has the obvious effect of precluding the identification 

of biclusters with significant overlaps. Moreover mean squared residue is 

biased towards biclusters of low row variance [24]. Since seeds from K-

Means are used, it can identify biclusters with high row variance without 

using row variance as a measure for optimization. Biclustering is a 

combinatorial optimization problem. Seeds from K-Means reduce the 

number of combinations. 

4.5 Details of Significant Biclusters obtained by Greedy 
Algorithm 
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 Figure 4.3  Four significant biclusters obtained by the greedy algorithm on Yeast 

dataset. The bicluster labels are s61, s62, s63, and s64. The details about 
biclusters can be obtained from Table 4.3 using bicluster label.  
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Table 4.3  

Information about Biclusters of Figure 4.3 
 

Bicluster 
Label 

Number of 
Genes 

Number of 
Conditions MSR Row 

Variance 
S61         121 17 199.9395     483.2784 

S62 107 17 199.4776   568.0833 

S63          36 17 297.6071 1806.9000 

S64        224 11 209. 6618   455.5141 
 
 

In the first bicluster s61 there are 121 genes. They are YBL014C, 

YBL083C, YBL084C, YBR293W, YCL016C, YCL031C, YCL053C, YCL054W, 

YCR072C, YCR087W, YDL008W, YDL030W, YDL076C, YDL150W, YDL153C, 

YDL166C, YDL167C, YDL189W, YDL215C, YDL231C, YDR017C, YDR020C, 

YDR038C, YDR057W, YDR060W, YDR080W, YDR083W, YDR108W, YDR120C, 

YDR121W, YDR170C, YDR172W, YDR211W, YDR234W, YDR262W, YDR289C, 

YDR299W, YDR312W, YDR321W, YDR339C, YDR352W, YDR361C, YDR365C, 

YDR392W, YDR416W, YDR449C, YDR469W, YDR477W, YDR478W, YDR518W, 

YDR524C, YDR542W, YEL015W, YEL055C, YER005W, YER075C, YER099C, 

YER107C, YER166W, YER168C, YER171W, YFL001W, YGL085W, YGL099W, 

YGL214W, YGR042W, YGR090W, YGR187C, YGR200C, YGR216C, YHR062C, 

YJL011C, YJL069C, YJR017C, YJR066W, YKR056W, YKR060W, YLL008W, 

YLL034C, YLR051C, YLR088W, YLR107W, YLR146C, YLR215C, YLR222C, 

YLR227C, YLR401C, YML066C, YML080W, YML093W, YMR093W, YMR211W, 

YMR235C, YNL041C, YNL132W, YNL163C, YNL164C, YNL199C, YNL227C, 

YNL299W, YNR003C, YNR038W, YOL021C, YOL022C, YOL036W, YOL080C, 

YOL124C, YOL140W, YOL144W, YOR006C, YOR056C, YOR061W, YOR098C, 

YOR145C, YOR160W, YOR252W, YOR272W, YPL126W, YPL268W, YPR053C, 

YPR112C.  
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In bicluster s62 there are 107 genes namely YAL003W, YAL038W, 

YAR020C, YBL030C, YBL072C, YBL092W, YBR009C, YBR031W, YBR048W, 

YBR084C-A,YBR106W, YBR118W, YCR013C, YCR031C, YDL061C, YDL075W, 

YDL081C, YDL083C, YDL130W, YDL136W, YDL191W, YDL192W, YDL208W, 

YDL221W, YDL228C, YDL229W, YDR012W, YDR025W, YDR050C, YDR064W, 

YDR154C, YDR353W, YDR382W, YDR385W, YDR417C, YDR433W, YDR447C, 

YDR450W, YDR471W, YDR500C, YEL034W, YER074W, YER117W, YGL102C, 

YGR118W, YHR141C, YJL136C, YJL188C, YJL189W, YJL190C, YJR009C, 

YJR094W-A, YJR123W, YKL056C, YKL060C, YKL096W-A, YKL152C, YKL153W, 

YKL180W, YKR057W, YKR094C, YLL066C, YLL067C, YLR029C, YLR048W, 

YLR062C, YLR075W, YLR076C, YLR110C, YLR167W, YLR185W, YLR249W, 

YLR325C, YLR333C, YLR340W, YLR388W, YLR406C, YLR441C, YLR467W, 

YML024W, YML026C, YML039W, YML045W, YML063W, YML133C, YMR045C, 

YMR202W, YNL030W, YNL067W, YNL162W, YNL302C, YNL339C, YOL039W, 

YOL040C, YOL127W, YOR167C, YOR234C, YOR293W, YOR312C, YOR369C, 

YPL037C, YPL081W,YPL090C,YPL143W, YPL283C, YPR102C,YPR204W.   

In the third bicluster s63 there are 36 genes. They are YAR007C, 

YAR008W, YBL035C, YBR073W, YBR088C, YBR089W, YCR065W, YDL003W, 

YDL010W, YDL018C, YDL164C, YDR097C, YDR507C, YER095W, YFL008W, 

YGR151C, YGR152C, YHR154W, YIL026C, YJL181W, YJL187C, YKL042W, 

YKL113C, YLL022C, YLR103C, YLR386W, YML021C, YML102W, YMR076C, 

YMR078C, YNL273W, YNL303W, YNL312W, YOR074C, YPL208W, YPR120C 

In the fourth bicluster s64 only 224 genes are selected.  They are 

YAL041W, YAL059W, YAR015W, YAR061W, YBL004W, YBL005W, YBL014C, 

YBL018C, YBL024W, YBL026W, YBL042C, YBL049W, YBL083C, YBL084C, 

YBR021W, YBR032W, YBR038W, YBR050C,YBR076W,YBR084W, YBR123C, 
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YBR133C, YBR138C, YBR155W, YBR228W, YBR257W, YBR267W, YBR293W, 

YCL012W, YCL016C, YCL031C, YCL054W, YCR036W, YCR043C, YCR051W, 

YCR062W, YCR063W, YCR072C,YCR081W, YCRX16C, YDL030W, YDL043C, 

YDL076C, YDL113C, YDL150W, YDL160C, YDL167C, YDL215C,YDL247W, 

YDR011W, YDR017C, YDR038C, YDR060W, YDR080W, YDR091C, YDR108W, 

YDR120C, YDR150W, YDR151C, YDR170C, YDR184C, YDR198C, YDR207C, 

YDR214W, YDR234W, YDR272W, YDR275W, YDR282C, YDR299W, YDR311W, 

YDR324C, YDR361C, YDR363W, YDR364C, YDR449C, YEL015W, YEL043W, 

YEL053C, YEL055C, YEL057C, YER005W, YER034W, YER064C, YER099C, 

YER107C,YER128W, YER137C, YER171W, YFL036W, YFL058W, YGL021W, 

YGL085W, YGL099W, YGL128C, YGL155W, YGL166W, YGL214W, YGL234W, 

YGL248W, YGR023W, YGR108W, YGR129W, YGR187C, YGR216C, YHR023W, 

YHR062C, YHR151C, YIL007C, YIL011W, YIL097W, YIL106W, 

YIL117C,YIL158W, YIL171W, YJL011C, YJL051W, YJL053W, YJR002W, 

YJR092W, YJR127C, YKL057C, YKL129C, YKL143W,YKL173W, YKL205W, 

YKL222C, YKR031C, YKR056W, YKR060W, YKR097W, YLL008W, YLL018C, 

YLL043W, YLR014C, YLR023C, YLR051C, YLR068W, YLR086W, YLR088W, 

YLR107W, YLR131C, YLR146C, YLR190W, YLR215C, YLR222C, YLR227C, 

YLR277C, YLR353W, YLR420W, YLR430W, YLR434C, YLR438W, YLR453C, 

YML033W, YML034W, YML080W, YML082W, YML093W, YML094W, 

YML096W, YML103C, YML104C, YML130C, YMR001C, YMR021C, YMR032W, 

YMR033W, YMR034C, YMR059W, YMR093W, YMR112C, YMR131C, YMR132C, 

YMR185W, YMR211W, YMR212C, YMR265C, YMR281W, YMR291W, YNL053W, 

YNL124W, YNL132W, YNL163C, YNL171C, YNL193W, YNL199C, YNL227C, 

YNL299W, YNR002C, YNR003C, YNR038W, YNR039C, YOL021C, YOL022C, 

YOL031C, YOL060C, YOL080C, YOL113W, YOL124C, YOL130W,YOL144W, 

YOR006C, YOR056C, YOR058C, YOR061W, YOR098C, YOR145C, YOR160W, 

YOR272W, YOR364W, YPL126W, YPL148C, YPL150W, YPL183C, YPL192C, 

YPL231W, YPL242C, YPL248C,YPR026W,YPR046W, YPR079W, YPR084W, 

YPR112C, YPR119W. 
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The Table 4.4 given below shows the significant GO terms used to 

describe genes of the biclusters for the process, function and component 

ontologies. The common terms are described with increasing order of p-

values or decreasing order of significance.  In Table 4.4 the first entry of 

the second column with the title process contains the term ribosome 

biogenesis (44, 3.45e-22) which means that 44 out of the 121 genes of the 

bicluster are involved in the process of ribosome biogenesis and their p-

value is 3.45e-22. Second entry indicates that 46 out of 121 genes are 

involved in ribonucleoprotein complex biogenesis. Also from the table it 

is clear that the biclusters are distinct along each category. This proves 

that the bicluster contains biologically similar genes and the method used 

here is capable of identifying biologically significant biclusters from 

different GO categories.  
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Table 4.4 

 Significant Shared GO Terms (Process, Function, Component)                        
of Biclusters shown in Figure 4.3 

 

Bicluster Process Function Component 

S61 Ribosome Biogenesis         
(44, 1.45e-23) 
ribonucleoprotein complex 
biogenesis(46, 6.13e-23) 
cellular component 
biogenesis at cellular level 
(47,6.18e-20) ncRNA  
processing (39, 3.68e-19) 
nitrogen compound metabolic 
process    (64, 4.38e-06) 

44 genes annotated to 
the term molecular 
function unknown.  

Nucleolus (35, 8.74e-
21) preribosome (23, 
5.33e-13) nuclear 
part (53, 1.28e-10) 
cell part (112, 0.00189) 

S62 Translation (69, 1.52e-56) 
cellular protein metabolic 
process (72, 1.13e-27) 
protein metabolic process (72, 
8.11e-27)  metabolic process 
(84, 9.28e-07) 

Structural constituent 
of ribosome(62, 
5.81e-62) structural 
molecule activity 
(63, 4.33e-49) 
translation  elongation 
factor activity (5, 
0.00011) RNA 
binding (15, 0.00603 

cytosolic ribosome 
(64, 1.42e-70) 
cytosolic part 
(64, 3.93e-64) 
ribosome (68, 1.10e-58) 
intracellular organelle 
(86, 0.00076 ) 

S63 DNA metabolic process         
( 19, 5.44e-11) DNA repair 
(16, 9.53e-11) cell cycle (20, 
8.42e-10) nucleobase, 
nucleoside, nucleotide and 
nucleic acid (23, 0.00011) 

Structure-specific 
DNA binding 
(5,0.00315) 
double-stranded DNA 
binding(4,0.00134) 
 

Chromosome (15,1.21e-
07) replication fork (8, 
1.40e-06) Chromosomal 
part(13,4.93e-06 ) 
Nucleus (26, 1.52e-05) 

S64 Ribonucleoprotein complex 
biogenesis (51, 1.55e-14) 
ribosome biogenesis (45,  
9.55e-13) cellular component 
biogenesis at cellular 
level(52, 3.72e-11) 
 nucleobase, nucleoside, 
nucleotide and nucleic acid 
metabolic process (86, 
0.00060) 

Endonuclease 
activity(9, 0.00591) 

Nucleolus (36, 3.68e-
12) nucleus(110, 8.02e-
08)  preribosome (24, 
8.27e-08) nuclear part 
(72,7.92e-07)  90s 
preribosome (16, 3.88 e-
05) 
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Figure 4.4:  Sample of genes for bicluster s61, with corresponding GO terms and their 
parents for Component Ontology 
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Figure 4.4 shows the significant GO terms for the set of 121 genes in 

bicluster s61 along with their p-values. It shows the branching of cellular 

component into sub-components. These subcomponents are clustered 

using genes to produce the final result. Figure 4.4 is obtained when gene 

ontology database is searched by entering the names of genes and by 

selecting component ontology. Only four genes namely YDL153C, 

YDR339C, YDR449C, YGR090W are searched to reduce the size of the Figure. 

 

4.6 Comparison with Other Algorithms 
4.6.1  Comparison based on Statistical and Biological Significance 

In Table 4.5 the GO terms along with their p-values and percentage 

of genes associated with the GO term in the bicluster for the greedy is 

compared with MOGAB, SGAB, CC, RWB, Bimax, OPSM, ISA and 

BiVisu.  From the table it is clear that in terms of p-value obtained by a 

bicluster which is used to denote statistical significance greedy is better 

than all the other algorithms namely MOGAB, SGAB, CC, RWB, Bimax, 

OPSM, ISA and BiVisu for all the five GO terms. The percentage of 

genes involved in the first GO term is better than that of all the other 

algorithms except MOGAB, SGAB, CC and Bimax. The percentage of 

genes involved in the second, third, fourth and fifth GO terms are better 

than that of all the other algorithms. 
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4.6.2 Comparison with other Algorithms based on Bicluster Size and MSR 

A comparative summarization of results of Yeast data involving the 

performance of related algorithms are given in Table 4.6. The 

performance of greedy algorithm in comparison with that of SEBI [36], 

Cheng and Church’s algorithm (CC) [29], and the algorithm FLOC by 

Yang et al. [106] and DBF [109] for the Yeast dataset are given.  For the 

greedy algorithm presented here the average number of conditions is 

better than that of CC, FLOC and DBF. Average number of genes, 

average volume and the largest bicluster size is greater than that of all 

other algorithms. Average mean squared residue score is better than that 

of all other algorithms listed in the Table 4.6, except DBF.  

In multi-objective evolutionary computation [15] the maximum 

number of conditions obtained is only 11 for the Yeast dataset. But, in this 

method there are biclusters with all 17 conditions. For the Yeast dataset the 

maximum number of genes obtained for this algorithm in all the 17 

conditions is 147 with MSR value 200.2474. The maximum available in all 

the literature published so far is in the case of multi-objective PSO [62]. They 

obtained 141 genes for 17 conditions with MSR value 203.25.  
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Table 4.6 

Performance Comparison between Greedy and other                                
Algorithms for Yeast Dataset 

 
 

Algorithm AMR  ANG ANC AV LB 
Greedy 185.88 515.21 13.36 4684.29    12645 

CC 204.29 166.71 12.09 1576.98 4485 
SEBI 205.18   13.61 15.25   209.92 1394 
FLOC 187.54 195.00 12.80 1825.78 2000 
DBF 114.70 188.00 11.00 1627.20 4000 

 

AMR is average mean squared residue. ANG is average number of 

genes. ANC is the average number of conditions. AV is average volume. 

LB is largest bicluster. As clear from the above table the average mean 

squared residue, the average number of genes and conditions, average 

volume and largest bicluster size are compared for various algorithms.  

For the average mean squared residue field lower values are better where 

as higher values are better for all other fields. 

Table 4.7 gives a performance comparison for Human B-cell 

Lymphoma dataset. Value of δ is set to 1200 for Lymphoma dataset. Here 

the average number of genes is greater than SEBI. Average number of 

conditions is better than all other algorithms. Average volume is better 

than SEBI. Average MSR is lower than SEBI. Usually multi-objective 

algorithms will produce biclusters of larger size compared to greedy 

algorithms. But in the case of multi-objective evolutionary computation 

[15] the maximum number of conditions obtained is only 40 in the case of 

Human B-cell Lymphoma dataset. Here biclusters with 94 conditions is 

obtained where as maximum obtained in the case of multi-objective PSO 
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is 84 [62]. In the case of SEBI the maximum number of conditions 

obtained is 72 and the number of genes for this bicluster is only 3. But for 

greedy algorithm the bicluster with 94 conditions contains 11 genes. The 

row variance of this bicluster is also above 5000. 

Table 4.7 

 Performance Comparison between Greedy Algorithm and                      
other Algorithms for Human Lymphoma Dataset 

 
Algorithm AMR ANG ANC AV 

Greedy 1007.99 60.38 57.13 1710.25 

SEBI 1028.84 14.07 43.57   615.84 

CC   850.04     269.22 24.50 4595.98 
           
 

AMR is average mean squared residue. ANG is average number of 

genes. ANC is the average number of conditions. AV is average volume. 

LB is largest bicluster. In the above table the average mean squared 

residue, the average number of genes and conditions and average volume 

and are compared for various algorithms. For the average mean squared 

residue field lower values are better where as higher values are better for 

all other fields. 

4.7 Summary 

In this chapter a new algorithm is developed for identifying 

biclusters from the gene expression data. This greedy algorithm is 

implemented on both benchmark datasets. In the first step K-Means 

clustering algorithm is used to produce bicluster seeds. Then these seeds 
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are enlarged by greedy method in which the node with minimum 

incremental increase in MSR score is selected and added to the bicluster 

in each iteration. Hence it is possible to get bicluster having more genes 

and conditions with high coherence. Some of the biclusters have very 

high row variance also.  The statistical significance and biological 

relevance of biclusters obtained in this method are verified using gene 

ontology database. In this study the maximum number of genes (147) is 

obtained in all the 17 conditions with the minimum MSR value 

(200.2474) for the Yeast dataset. A bicluster with the maximum number 

of conditions (94) is obtained for the Lymphoma dataset. The biclusters 

obtained here show similar up-regulation and down-regulation under a set 

of conditions. In terms of size and MSR value the biclusters obtained in 

this method are far better than the biclusters obtained in many of the 

metaheuristic algorithms. This algorithm has the best p-value compared to 

that of MOGAB, SGAB, CC, RWB, Bimax, OPSM, ISA and BiVisu.  

 
….. ….. 



 
 

Chapter 5 

 

 

 

 

 

Chapter 5 describes the metaheuristic algorithms namely basic 

GRASP, CGRASP, RGRASP, PSO and Greedy-PSO hybrid. For finding 

biclusters from gene expression data, the seeds obtained from K-Means 

clustering are enlarged using these algorithms. The description of the 

algorithms, their time complexity, different biclusters obtained from Yeast 

and Lymphoma datasets, significant biclusters obtained (biological 

validation), comparison of the algorithms with other algorithms are also 

given in this chapter. The greedy and metaheuristic algorithms are 

compared based on the quality of bicluster. 
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5. 1 Greedy Randomized Adaptive Search Procedure 

GRASP was developed by Feo and Resende in 1995 [42]. GRASP 

incorporates randomization in order to eliminate local minima problem 

existing in greedy approaches. GRASP is an iterative randomized 

sampling method in which each iteration consists of two phases: 

construction and local search. The construction phase generates a 

feasible solution, whose neighbourhood is investigated until a local 

minimum is identified during the process of local search phase. The 

best overall solution is reserved as the result. In this work biclusters 

were identified using three variants of Greedy Randomized Adaptive 

Search Procedure (GRASP) namely basic GRASP, Cardinality based 

GRASP and Reactive GRASP.  In this work the objective is to identify 

biclusters with maximum size and low MSR. Biclusters with more 

genes and conditions and low MSR are obtained in this work.  

Moreover in this study GRASP variants are applied for the first time to 

Lymphoma dataset.  

5.1.1 Review of Grasp Metaheuristics 
5.1.1.1 Construction Phase 

GRASP is a multi-start metaheuristics for solving combinatorial 

optimization problems. Metaheuristics is a computational method which 

optimizes a problem iteratively by improving a solution with regard to a 

particular measure of quality. In the construction phase a feasible solution 

is generated by adding one element at a time. In the local search phase the 

neighborhood of the feasible solution is investigated until a local 
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minimum is found. The best overall solution is retained as the result. 

During each iteration of the construction phase a set of candidate 

elements are formed by all the elements that can be incorporated to the 

partial solution under construction without eliminating feasibility. The 

selection of the next element for incorporation is resolved by the 

evaluation of all candidate elements in accordance with a greedy 

evaluation function [42].  

This greedy function stands for the incremental increase in the cost 

function because of the incorporation of this element into the solution 

under construction. The evaluation of the elements by this function 

results in the creation of a restricted candidate list (RCL) produced by 

the best elements. That is, those elements whose incorporation to the 

current partial solution results in the smallest incremental costs. This is 

the greedy aspect of the algorithm.  The element which is to be 

incorporated into the partial solution is randomly chosen from those in 

the RCL.  This is the probabilistic aspect of the heuristic algorithm. 

Once the chosen element is included in the partial solution, the 

candidate list is restructured and the incremental costs are recalculated.  

This is the adaptive aspect of the heuristic algorithm. The restricted 

candidate list RCL is constituted of elements with the best (i.e., the 

smallest) incremental costs. This list can be limited by different factors. 

That is, either by the number of elements (cardinality-based) or by their 

quality (value-based) [42].  
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5.1.1.2 Local Search Phase 

The solutions produced by the greedy randomized construction are 

not always optimal even with respect to simple neighbourhoods. The local 

search phase makes the constructed solution better. A local search 

algorithm functions in an iterative manner by consecutively replacing the 

current solution by an enhanced solution in the neighbourhood of the 

existing solution.  It finishes when no better solution is identified in the 

neighbourhood. Local search can be implemented by using the first 

improving or best improving strategy. In the case of best improving 

strategy all neighbours are investigated and the current solution is 

replaced by the best neighbour. In the case of a first improving strategy 

the current solution moves to the first neighbour whose cost function 

value is smaller than that of the current solution. In the first improving 

strategy the search stops as soon as a better solution is found [76].  

5.1.2  Three variants of GRASP – Basic GRASP, Cardinality based 
GRASP (CGRASP) and Reactive GRASP (RGRASP) 

The restricted candidate list RCL is made up of elements with the 

best incremental costs. This list can be limited by the number of elements 

(cardinality) or by their quality (value based or Basic GRASP). In the first 

case it is made up of the P elements with the best incremental cost where 

P is a parameter. In the second case all the elements less than RCL 

threshold will form the RCL. Hence this list will be variable in each 

iteration. 
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In the calculation of RCL threshold a parameter α is used. In basic 

GRASP α is assigned a single value for all iterations. The value of α can 

range from 0 to 1. The amount of greediness and randomness are 

controlled by the parameter α. The algorithm is purely greedy when α=0. 

But when α=1 it is equivalent to random construction.  But in reactive 

GRASP at each iteration the value of α is chosen from a discrete set of 

values {α1, α2, α3, … αn} depending on the  probability Pi associated 

with each αi. Initially all αi will have the same probability and each one 

is selected once.  Depending on the quality of solution the probability is 

updated. Then after each iteration the αi with highest probability is 

selected. The probability is updated depending on the quality of solution 

obtained when αi is used so as to favour values that produce good 

solution. In this algorithm the quality of solution obtained is evaluated 

based on the size of the bicluster as well as the MSR value. If αi is the 

value of α selected in a particular iteration then after obtaining the result 

the difference between the solutions obtained in the previous iteration 

and present iteration Di is calculated. Assume Avi as the average 

obtained for all Dis with αi as the probability. Then for updating the 

probability Pi after an iteration with αi the following formula can be 

used.  

  Pi=  where mi= Avi for i=1…n.  

Larger values for probability is obtained for αi with better solutions when 

this formula is used. 
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5.1.3 Grasp Algorithms for Seed Growing Phase 

5.1.3.1 Algorithm for the Construction Phase  
 

Algorithm Greedy_Randomized_Construct (Seed) 
 

bicluster←seed; 
While solution construction  not done 
     cand←construct _candidatelist (bicluster, δ) 
      RCL←BuildRCL(bicluster,cand) 
      Select an element S from RCL at random 
      bicluster=bicluster U{S} 
      Update Genelist or Conditionlist  
End(while) 
End(Greedy_Randomized_Construct) 

 
 
5.1.3.2 Algorithm for Constructing Candidate list  
 

Algorithm  construct_candidatelist  (bicluster, δ) 
 

Bicluster1←bicluster; 
notinlist← the list of Genes or Conditions not included in the bicluster 
notinlistcount← noofelements(notinlist) 
For  i=1:notinlistcount 

msrlist[i]=MSR(Bicluster1 U notinlist[i]) 
End(for) 
  Candidatelist={} 
For  i=1:notinlistcount 
    If  msrlist[i]< δ 
    Candidatelist=candidatelist U Notinlist[i] 
End(for) 
end(construct_candidatelist) 
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5.1.3.3 Algorithm for Building RCL from Candidate list 
 

Algorithm BuildRCL(bicluster,CAND) 

  // CAND  is the candidate list  
    SminMSR = inf 
   SmaxMSR = -inf 
   nocan=noofelements(CAND) 
   for  I =1: nocan  do 
       calculate H[i]← MSR{ bicluster  U CAND[i]} 
          if H[i ]<SminMSR 
             SminMSR=H[i] 
          Endif 
             if  H[i ]>SmaxMSR 
                SmaxMSR=H[i] 
                Endif 
     Endfor 
     RCLthresh=SminMSR+α*(SmaxMSR-             
                                               SminMSR 
     RCL={} 
      For i=1:nocan 
             If  H[i]<RCLthresh  
                RCL=RCL U{CAND[i]} 
            Endif 
      end(for) 
   end BuildRCL 

 
 
5.1.3.4 Algorithm for the Local Search phase  

Algorithm Local_Search(bicluster) 
 

//local search  
While there exists s є genelist or conditionlist  
   If  MSR(biclusterU s)<MSR(bicluster)  
   bicluster={bicluster U s} 
   endif  
 end(while) 
end(Local_Search) 
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5.1.4 Time Complexity of the Algorithm 

The basic operation for the identification of biclusters is the 

calculation of MSR of a submatrix. Time complexity for calculating MSR 

is O(mn). In this algorithm conditions are added first followed by genes. 

There is construction phase and local search phase for both genes and 

conditions. In both these phases, for including a condition, the MSR value 

of all submatrices which result from adding a single condition, is to be 

calculated for all conditions. This number decreases by one after each 

iteration. That means the complexity can be calculated by the formula (n 

+ (n-1) + (n-2) + ...1). This is equal to n(n+1)/2 which is equivalent to 

O(n2). Hence for adding conditions the worst case complexity is 

O(mn)(n2).   Similarly for adding genes the worst case complexity is 

O(mn)(m2). Hence the worst case complexity for adding genes and 

conditions is O(mn)(m2+n2) where m and n are the number of genes and 

conditions respectively.  

5.1.5 Biclusters obtained Using GRASP (Basic GRASP) 

In seed growing phase more conditions and genes are added to the 

seed. For this purpose list of conditions and genes not included in the 

bicluster is maintained. Thus a separate gene list and condition list is 

formed. From this list the candidate gene list and candidate condition list 

is formed by those elements whose incorporation into the seed will not 

exceed the MSR value above the MSR threshold.  From this candidate list 

RCL list is formed by selecting the best elements. The best elements will 

have an MSR value less than RCL threshold where RCL threshold= 
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MSRmin+ α (MSRmax-MSRmin). The maximum of the MSR value 

obtained when a single gene or condition is added from the candidate list 

is MSRmax.  The minimum value of MSR when a gene or condition is 

added from the candidate list for a given iteration is MSRmin. The value 

of α can range from 0 to 1. The amounts of greediness and randomness 

are controlled by the parameter α.  The RCL list thus obtained is called 

value based. The number of elements in the RCL list will vary in each 

iteration. In seed growing phase, the next element to be added to the 

bicluster is selected randomly from the RCL. After adding the node the 

candidate list and RCL are updated. The process of adding the node is 

continued till the MSR value of the bicluster reaches the given MSR 

threshold.  

5.1.5.1 Bicluster Plots for Yeast Dataset  

In Figure 5.1 the eight biclusters obtained using GRASP are shown.  

Biclusters with all 17 conditions are obtained using this method. From the 

bicluster plots which show strikingly similar up-regulation and down-

regulation we can conclude that GRASP is an ideal method for 

identifying coherent biclusters from gene expression data. All the means 

squared residues are lower than 215. 
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 Figure 5.1  Eight biclusters found for the Yeast Dataset by GRASP. Bicluster labels 

are (yva7), (yvb7), (yvc7), (yvd7), (yve7), (yvf7), (yvg7) and (yvh7) 
respectively. In the bicluster plots X axis contains conditions and Y axis 
contains expression values. The details about biclusters can be obtained 
from Table 5.1 using bicluster label. 

 
Table 5.1 

Information about Biclusters of Figure 5.1 

Bicluster 
Label 

Number 
of Genes 

Number of 
Conditions 

Bicluster 
Volume 

MSR 

(yva7) 783  8 6264 215.0790 

(yvb7)   42 17   714 121.6900 

(yvc7)   12 17   204   69.9591 

(yvd7) 208 13 2704 193.6400 

(yve7) 108 17 1836 200.7372 

(yvf7) 140 17 2380 200.0088 

(yvg7)   47 17   799 145.3612 

(yvh7)  44 17   748 163.9544 
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In the above table the first column contains the label of each 

bicluster. The second and third columns report the number of rows 

(genes) and the number of columns (conditions) of the bicluster 

respectively. The fourth column reports the volume of the bicluster and 

the last column contains the mean squared residue or hscore of the 

bicluster.  

5.1.5.2 Bicluster Plots for Human Lymphoma Dataset 

In Figure 5.2 eight biclusters obtained using GRASP are shown.  A 

biclusters with maximum 89 conditions is obtained using this method. 

From the bicluster plots it is clear that biclusters show strikingly similar 

up-regulation and down-regulation. All the means squared residues of the 

biclusters are lower than 1200. 
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Figure 5. 2 Eight biclusters found for the Lymphoma Dataset by GRASP. Bicluster 

labels are (lva7), (lvb7), (lvc7), (lvd7), (lve7), (lvf7), (lvg7) and (lvh7) 
respectively. In the bicluster plots X axis contains conditions and Y axis 
contains expression values. The details about biclusters can be obtained 
from Table 5.2 using bicluster label. 
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Table 5.2 

 Information about Biclusters of Figure 5.2 

Bicluster 
Label 

Number of 
Genes 

Number of 
Conditions 

Bicluster 
Volume MSR 

(lva7) 16 89 1424 1196.9 

(lvb7) 38 74 2812 1189.8 

(lvc7)        175 50 8750 1075.2 

(lvd7) 10 83   830 1182.1 

(lve7) 62 82 5084 1197.3 

(lvf7) 34 74 2516 1019.5 

(lvg7) 24 73 1752 1197.9 

(lvh7)        132 32 4224   751.9 
 

In the Table given above the first column contains the label of each 

bicluster. The second and third columns report the number of rows 

(genes) and of columns (conditions) of the bicluster respectively. The 

fourth column reports the volume of the bicluster and the last column 

contains the mean squared residue or hscore of the bicluster.  

5.1.5.3 Details of Significant Biclusters obtained by GRASP  
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Figure 5.3 Four significant biclusters obtained by the GRASP algorithm on Yeast 

dataset. The bicluster labels are sv71, sv72, sv73 and sv74. The details about 
the biclusters can be obtained from Table 5.3 using bicluster label.  
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Table 5.3  

Information about Biclusters of Figure 5.3 

Bicluster 
Label 

Number of 
Genes 

Number of 
Conditions MSR Row Variance 

Sv71         121 17 199.9395         483.2784 
Sv72 107 17 199.4776 568.0833 
Sv73          36 17 297.6071 1806.9000 
Sv74        224  9 228.1477   403.6127 

Biological relevance of biclusters obtained using GRASP algorithm 

is verified using the four biclusters shown in Figure 5.3. GO annotation 

database is used to verify the biological significance of biclusters.  In the 

bicluster Sv71 there are 121 genes. They are YBL014C, YBL083C, YBL084C, 

YBR293W, YCL016C, YCL031C, YCL053C, YCL054W, YCR072C, YCR087W, 

YDL008W, YDL030W, YDL076C, YDL150W, YDL153C, YDL166C, YDL167C, 

YDL189W, YDL215C, YDL231C, YDR017C, YDR020C, YDR038C, YDR057W, 

YDR060W, YDR080W, YDR083W, YDR108W, YDR120C, YDR121W, YDR170C, 

YDR172W, YDR211W, YDR234W, YDR262W, YDR289C, YDR299W, YDR312W, 

YDR321W, YDR339C, YDR352W, YDR361C, YDR365C, YDR392W, YDR416W, 

YDR449C, YDR469W, YDR477W, YDR478W, YDR518W, YDR524C, YDR542W, 

YEL015W, YEL055C, YER005W, YER075C, YER099C, YER107C, YER166W, 

YER168C, YER171W, YFL001W, YGL085W, YGL099W, YGL214W, YGR042W, 

YGR090W, YGR187C, YGR200C, YGR216C, YHR062C, YJL011C, YJL069C, 

YJR017C, YJR066W, YKR056W, YKR060W, YLL008W, YLL034C, YLR051C, 

YLR088W, YLR107W, YLR146C, YLR215C, YLR222C, YLR227C, YLR401C, 

YML066C, YML080W, YML093W, YMR093W, YMR211W, YMR235C, YNL041C, 

YNL132W, YNL163C, YNL164C, YNL199C, YNL227C, YNL299W, YNR003C, 

YNR038W, YOL021C, YOL022C, YOL036W, YOL080C, YOL124C, YOL140W, 

YOL144W, YOR006C, YOR056C, YOR061W, YOR098C, YOR145C, YOR160W, 

YOR252W, YOR272W, YPL126W, YPL268W, YPR053C, YPR112C.  
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In bicluster sv72 there are 107 genes namely YAL003W, YAL038W, 

YAR020C, YBL030C, YBL072C, YBL092W, YBR009C, YBR031W, YBR048W, 

YBR084C-A,YBR106W, YBR118W, YCR013C, YCR031C, YDL061C, YDL075W, 

YDL081C, YDL083C, YDL130W, YDL136W, YDL191W, YDL192W, YDL208W, 

YDL221W, YDL228C, YDL229W, YDR012W, YDR025W, YDR050C, YDR064W, 

YDR154C, YDR353W, YDR382W, YDR385W, YDR417C, YDR433W, YDR447C, 

YDR450W, YDR471W, YDR500C, YEL034W, YER074W, YER117W, YGL102C, 

YGR118W, YHR141C, YJL136C, YJL188C, YJL189W, YJL190C, YJR009C, 

YJR094W-A, YJR123W, YKL056C, YKL060C, YKL096W-A, YKL152C, YKL153W, 

YKL180W, YKR057W, YKR094C, YLL066C, YLL067C, YLR029C, YLR048W, 

YLR062C, YLR075W, YLR076C, YLR110C, YLR167W, YLR185W, YLR249W, 

YLR325C, YLR333C, YLR340W, YLR388W, YLR406C, YLR441C, YLR467W, 

YML024W, YML026C, YML039W, YML045W, YML063W, YML133C, YMR045C, 

YMR202W, YNL030W, YNL067W, YNL162W, YNL302C, YNL339C, YOL039W, 

YOL040C, YOL127W, YOR167C, YOR234C, YOR293W, YOR312C, YOR369C, 

YPL037C, YPL081W,YPL090C,YPL143W, YPL283C, YPR102C,YPR204W.   

In the bicluster Sv73 there are 36 genes. They are YAR007C, 

YAR008W, YBL035C, YBR073W, YBR088C, YBR089W, YCR065W, YDL003W, 

YDL010W, YDL018C, YDL164C, YDR097C, YDR507C, YER095W, YFL008W, 

YGR151C, YGR152C, YHR154W, YIL026C, YJL181W, YJL187C, YKL042W, 

YKL113C, YLL022C, YLR103C, YLR386W, YML021C, YML102W, YMR076C, 

YMR078C, YNL273W, YNL303W, YNL312W, YOR074C, YPL208W, YPR120C. The 

fourth seed results in a bicluster with more than 400 genes. Since there are 

a large number of genes, there is no search result. Hence the algorithm is 

executed in such a way to get only 224 genes. These genes are YAL028W, 

YAL035W, YAL041W, YAL059W, YBL004W, YBL014C, YBL024W, YBL026W, 

YBL032W, YBL037W, YBL042C, YBL049W, YBL052C, YBL056W, YBL068W, 
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YBL075C, YBL083C, YBL088C, YBR021W, YBR038W, YBR060C, YBR075W, 

YBR079C, YBR094W, YBR123C, YBR133C, YBR138C, YBR140C, YBR155W, 

YBR257W, YBR270C, YBR295W, YCL012W, YCL031C, YCL054W, YCL059C, 

YCR014C, YCR024C, YCR036W, YCR043C, YCR060W, YCR062W, YCR063W, 

YDL008W, YDL030W, YDL043C, YDL058W, YDL069C, YDL076C, YDL079C, 

YDL142C, YDL150W, YDL153C, YDL166C, YDL167C, YDL189W, YDL202W, 

YDL215C, YDL230W, YDL231C, YDL243C, YDR011W, YDR020C, YDR038C, 

YDR057W, YDR060W, YDR080W, YDR083W, YDR108W, YDR109C, YDR120C, 

YDR150W, YDR170C, YDR172W, YDR185C, YDR197W, YDR198C, YDR211W, 

YDR214W, YDR235W, YDR236C, YDR262W, YDR272W, YDR282C, YDR286C, 

YDR288W, YDR312W, YDR313C, YDR324C, YDR352W, YDR363W, YDR375C, 

YDR391C, YDR392W, YDR419W, YDR456W, YDR466W, YDR524C, YEL043W, 

YEL053C, YEL055C, YER005W, YER034W, YER064C,YER107C, YFL006W, 

YFL036W, YGL021W, YGL248W, YGL255W, YGR035C, YGR092W, YGR108W, 

YGR129W, YGR187C, YGR200C, YGR216C, YHR023W, YHR062C, YHR073W, 

YHR151C, YIL007C, YIL097W, YIL106W, YIL117C, YIL158W, YIL162W, YJL096W, 

YJL192C, YJR002W, YJR092W, YKL057C, YKL118W, YKL129C, YKL143W, 

YKL173W, YKL205W, YKR021W, YKR031C, YKR060W, YKR079C, YLL008W, 

YLR014C, YLR051C, YLR068W, YLR107W, YLR131C, YLR190W, YLR215C, 

YLR222C, YLR227C, YLR277C, YLR320W, YLR353W, YLR420W, YLR434C, 

YLR438W, YML033W, YML034W, YML052W, YML064C, YML082W,YML093W, 

YML094W, YML103C, YML119W, YML130C, YMR001C, YMR025W, YMR032W, 

YMR033W, YMR059W, YMR072W, YMR093W, YMR132C, YMR156C, YMR211W, 

YMR212C, YMR225C, YMR278W, YMR291W, YNL041C, YNL051W, YNL053W, 

YNL132W, YNL163C, YNL171C, YNL172W, YNL196C, YNL201C, YNL223W, 

YNL227C, YNL299W, YNR003C, YOL021C, YOL022C, YOL042W, YOL060C, 

YOL070C, YOL080C, YOL113W, YOR006C, YOR049C, YOR061W, YOR098C, 

YOR104W, YOR127W, YOR145C, YOR152C, YOR160W, YOR205C, YPL029W, 

YPL150W, YPL173W, YPL183C, YPL198W, YPL205C, YPL242C, YPR003C, 

YPR026W, YPR079W, YPR112C, YPR119W. 
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The Table 5.4 given below shows the significant GO terms used to 

describe the genes of the biclusters of Figure 5.3 for the process, function 

and component ontologies. The common terms are described with 

increasing order of p-values or decreasing order of significance.  In Table 

5.3 the first entry of the second column with the title process contains the 

term ribosome biogenesis (44, 1.46e-23) which means that 44 out of the 

121 genes of the bicluster are involved in the process of ribosome 

biogenesis and their p-value is 1.46e-23. Second entry indicates that 46 

out of 121 genes are involved in ribonucleoprotein complex biogenesis. 

Also from the table it is clear that the biclusters are distinct along each 

category. This proves that the bicluster contains biologically similar genes 

and the GRASP method used here is capable of identifying biologically 

significant biclusters from different GO categories.  

 

Table 5.4 

 Significant Shared GO Terms (Process, Function, Component) of 
Biclusters shown in Figure 5.3 

 

Bicluster Process Function Component 
Sv71 Ribosome 

Biogenesis (44, 
1.46e-23) 
Ribonucleoprotien 
complex biogenesis 
(46, 6.18e-23) 
Cellular component 
biogenesis at celluar 
Level (47, 6.22e-20) 
Nitrogen compound 
metabolic process  
(64, 4.18e-06) 

44 out of 121 genes 
are directly 
annotated to the 
term molecular 
function unknown 

Nucleolus (35,8.74e-
21) Preribosome 
(23,5.33e-13)  
Nuclear part (53, 
1.17e-10)   cell part 
(112, 0.00189) 
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Sv72 Translation(69, 
1.52e-56) cellular 
protein metabolic 
process  (72, 1.13e-
27) protein 
metabolic process 
(72, 8.11e-27) 
metabolic process 
(84, 9.28e-07) 
 

Structural 
Constituent of 
ribosome (62, 5.81e-
62) structural 
molecule activity 
(63, 4.33e-49) 
translation  
elongation factor 
activity (5, 0.00011)  
RNA binding (15, 
0.00603 

Cytosolic ribosome 
(55, 3.68e-55) 
cytosolic part 
(55, 4.85e-50) 
Ribosome (59, 3.190e-
46) cytoplasm (74, 
0.00569 

Sv73 DNA metabolic 
process( 19, 5.44e-
11) DNA repair (16, 
9.53e-11) cell 
cycle(20, 8.42e-10) 
nucleobase, 
nucleoside, 
nucleotide and 
nucleic acid (23, 
0.00011) 
 

Structure-specific 
DNA binding 
(5,0.00315) 
double-stranded 
DNA binding 
(4,0.00134) 
 

Chromosome(15,1.21e
-07) replication fork (8, 
1.40e-06) 
Chromosomal part 
(13,4.93e-06 ) 
Nucleus (26, 1.52e-05) 
 

 Sv74 RNA processing 
(42,1.63e-06) 
Ribosome 
biogenesis (35, 
3.86e-06) ncRNA 
processing 
(34,6.13e-06) 
ribonucleoprotien 
complex biogenesis 
(37,1.50e-05) 
ncRNA metabolic 
process(35, 2.40 e-
05) Cellular 
component 
organization or 
biogenesis(100,  
0 .00291) 

84 genes are 
annotated to the 
term molecular 
function unknown. 

Nucleolus(32, 4.08e-
09) Preribosome (19, 
0.00034) 
Intracellular organelle 
(168, 0.00039) 
Organelle (168, 
0.00041) 
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Figure 5.4  Sample of Genes for the bicluster sv71, with corresponding GO terms                  

and their parents for Component ontology 
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Figure 5.4 shows the significant GO terms for the set of genes in 

bicluster sv71 along with their p-values. It shows the branching of cellular 

component into sub-components like cell and membrane-enclosed lumen. 

These components are clustered using genes to produce the final result. 

Figure 5.4 is obtained when gene ontology database is searched by 

entering the names of genes of bicluster sv71 and by selecting component 

ontology. Only 4 genes (YDL153C, YDR339C, YDR449C, YJL069C) are 

searched to reduce the size of the Figure. 

5.1.6 Biclusters obtained Using CGRASP 

In seed growing phase more conditions and genes are added to the 

seed. A separate list is maintained for genes and conditions not included 

in the bicluster. From this list, the candidate gene list and candidate 

condition list are formed by those elements whose incorporation into the 

seed will not exceed the MSR score above the MSR threshold.  From this 

candidate list, RCL is formed by selecting the best elements. The best 

elements will have an MSR value less than RCL threshold where RCL 

threshold= MSRmin+ α (MSRmax-MSRmin).  When this formula is used 

the RCL is called value based. For cardinality based GRASP P best 

elements are selected from the RCL. So the number elements which can 

be considered for inclusion in the bicluster will be fixed for each iteration.  

5.1.6.1 Bicluster Plots for Yeast Dataset  

In Figure 5.5 nine biclusters obtained using CGRASP are shown.  

Biclusters with all 17 conditions are obtained using this method. From the 

bicluster plots which show strikingly similar upregulation and down 
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regulation we can conclude that CGRASP is an ideal method for 

identifying coherent biclusters from gene expression data. All the means 

squared residues are lower than 215. 

 

0 2 4 6 8 10 12 14 16 18
100

150

200

250

300

350

400

450

500

550

600

Conditions

E
xp

re
ss

io
n 

V
al

ue
s

0 2 4 6 8 10 12 14 16
50

100

150

200

250

300

350

400

450

Conditions

E
xp

re
ss

io
n 

V
al

ue
s

0 2 4 6 8 10 12 14 16 18
300

350

400

450

500

550

600

Conditions

E
xp

re
ss

io
n 

va
lu

es

 

0 2 4 6 8 10 12
0

50

100

150

200

250

300

350

400

450

Conditions

E
xp

re
ss

io
n 

V
al

ue
s

  
0 2 4 6 8 10 12 14

50

100

150

200

250

300

350

400

450

Conditions

E
xp

re
ss

io
n 

V
al

ue
s

  
0 2 4 6 8 10 12 14 16

0

50

100

150

200

250

300

350

400

450

Conditions

E
xp

re
ss

io
n 

V
al

us

 

0 2 4 6 8 10 12 14 16 18
350

400

450

500

550

600

Conditions

E
xp

re
ss

io
n 

V
al

ue
s

0 2 4 6 8 10 12 14 16 18
380

400

420

440

460

480

500

520

540

560

580

Conditions

E
xp

re
ss

io
n 

V
al

ue
s

1 2 3 4 5 6 7 8 9
50

100

150

200

250

300

350

400

450

Conditions

E
xp

re
ss

io
n 

V
al

ue
s

 
Figure 5.5  Nine biclusters found for the Yeast Dataset by CGRASP. Bicluster labels are 

(yac7), (ybc7), (ycc7), (ydc7), (yec7), (yfc7), (ygc7), (yhc7) and (yic7) 
respectively. In the bicluster plots X axis contains conditions and Y axis 
contains expression values. The details about biclusters can be obtained from 
Table 5.5 using bicluster label.  
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Table 5.5 

Information about Biclusters of Figure 5.5 

Bicluster label Number of 
Genes 

Number of 
Conditions 

Bicluster 
Volume 

MSR 

(yac7) 107 17 1819 199.1857 

(ybc7)  63 17 1071 148.1866 

(ycc7)  64 16 1024 149.6244 

(ydc7) 324 12 3888 193.7751 

(yec7) 256 13 3328 199.7194 

(yfc7) 164 16 2624 199.7293 

(ygc7)  24 17  408 104.5418 

(yhc7)  21 17  357    94.4589 

(yic7) 146  9 1314  250.1285 

 

In the above table the first column contains the label of each 

bicluster. The second and third columns report the number of rows 

(genes) and of columns (conditions) of the bicluster respectively. The 

fourth column reports the volume of the bicluster and the last column 

contains the mean squared residue or hscore of the bicluster.  

5.1.6.2. Bicluster Plots for Lymphoma Dataset 

This is the first time CGRASP metaheuristics is applied to find 

biclusters from Lymphoma dataset. Eight biclusters obtained by applying 

CGRASP to lymphoma dataset are shown in Figure 5.6.  
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Figure 5.6 Eight biclusters found for the Lymphoma Dataset by CGRASP. The 
bicluster labels are (lac7), (lbc7), (lcc7), (ldc7), (lec7), (lfc7), (lgc7) and 
(lhc7) respectively. The details of the biclusters can be obtained from Table 
5.6 using bicluster label. 

 
 

Table 5.6 

Information about Biclusters of Figure 5.6 

Bicluster 
Label 

Number of 
Genes 

Number of 
Conditions 

Bicluster 
Volume MSR 

(lac7) 26 26 676 883.6869 

(lbc7) 30 19 570 441.5052 

(lcc7) 52 10 520 307.5545 

(ldc7) 18 10 180 368.0541 

(lec7) 14 21 294 409.6572 

(lfc7) 24 16 384 542.8357 

(lgc7) 10 26 260 388.4876 

(lhc7)         112 12         1344 492.4187 
 

In the Table given above the first column contains the label of each 

bicluster. The second and third columns report the number of rows 
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(genes) and of columns (conditions) of the bicluster respectively. The 

fourth column reports the volume of the bicluster and the last column 

contains the mean squared residue or hscore of the bicluster.  

5.1.6.3 Details of Significant Biclusters obtained by CGRASP  
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 Figure 5.7 Four significant biclusters obtained by the CGRASP algorithm on Yeast 
dataset. The bicluster labels are sc71, sc72, sc73 and sc74. The details about 
the biclusters can be obtained from Table 5.7 using bicluster label.  

 
 

Table 5.7  

Information about Biclusters of Figure 5.7 
 

Bicluster 
Label 

Number of 
Genes 

Number of 
Conditions MSR Row 

Variance 
Sc71         121 17 199.9395      483.2784 

Sc72 107 17 199.4776   568.0833 

Sc73          36 17 297.6071 1806.9000 

Sc74        224  9 228.4546   403.1319 
 

In the first bicluster sc71 there are 121 genes. They are YBL014C, 

YBL083C, YBL084C, YBR293W, YCL016C, YCL031C, YCL053C, YCL054W, 

YCR072C, YCR087W, YDL008W, YDL030W, YDL076C, YDL150W, YDL153C, 

YDL166C, YDL167C, YDL189W, YDL215C, YDL231C, YDR017C, YDR020C, 

YDR038C, YDR057W, YDR060W, YDR080W, YDR083W, YDR108W, YDR120C, 

YDR121W, YDR170C, YDR172W, YDR211W, YDR234W, YDR262W, YDR289C, 

YDR299W, YDR312W, YDR321W, YDR339C, YDR352W, YDR361C, YDR365C, 
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YDR392W, YDR416W, YDR449C, YDR469W, YDR477W, YDR478W, YDR518W, 

YDR524C, YDR542W, YEL015W, YEL055C, YER005W, YER075C, YER099C, 

YER107C, YER166W, YER168C, YER171W, YFL001W, YGL085W, YGL099W, 

YGL214W, YGR042W, YGR090W, YGR187C, YGR200C, YGR216C, YHR062C, 

YJL011C, YJL069C, YJR017C, YJR066W, YKR056W, YKR060W, YLL008W, 

YLL034C, YLR051C, YLR088W, YLR107W, YLR146C, YLR215C, YLR222C, 

YLR227C, YLR401C, YML066C, YML080W, YML093W, YMR093W, YMR211W, 

YMR235C, YNL041C, YNL132W, YNL163C, YNL164C, YNL199C, YNL227C, 

YNL299W, YNR003C, YNR038W, YOL021C, YOL022C, YOL036W, YOL080C, 

YOL124C, YOL140W, YOL144W, YOR006C, YOR056C, YOR061W, YOR098C, 

YOR145C, YOR160W, YOR252W, YOR272W, YPL126W, YPL268W, YPR053C, 

YPR112C.  

In the second bicluster sc72, there are 107 genes namely YAL003W, 

YAL038W, YAR020C, YBL030C, YBL072C, YBL092W, YBR009C, YBR031W, 

YBR048W, YBR084C-A,YBR106W, YBR118W, YCR013C, YCR031C, YDL061C, 

YDL075W, YDL081C, YDL083C, YDL130W, YDL136W, YDL191W, YDL192W, 

YDL208W, YDL221W, YDL228C, YDL229W, YDR012W, YDR025W, YDR050C, 

YDR064W, YDR154C, YDR353W, YDR382W, YDR385W, YDR417C, YDR433W, 

YDR447C, YDR450W, YDR471W, YDR500C, YEL034W, YER074W, YER117W, 

YGL102C, YGR118W, YHR141C, YJL136C, YJL188C, YJL189W, YJL190C, 

YJR009C, YJR094W-A, YJR123W, YKL056C, YKL060C, YKL096W-A, YKL152C, 

YKL153W, YKL180W, YKR057W, YKR094C, YLL066C, YLL067C, YLR029C, 

YLR048W, YLR062C, YLR075W, YLR076C, YLR110C, YLR167W, YLR185W, 

YLR249W, YLR325C, YLR333C, YLR340W, YLR388W, YLR406C, YLR441C, 

YLR467W, YML024W, YML026C, YML039W, YML045W, YML063W, YML133C, 

YMR045C, YMR202W, YNL030W, YNL067W, YNL162W, YNL302C, YNL339C, 

YOL039W, YOL040C, YOL127W, YOR167C, YOR234C, YOR293W, YOR312C, 
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YOR369C, YPL037C, YPL081W, YPL090C, YPL143W, YPL283C, YPR102C, 

YPR204W.   

In the third bicluster sc73, there are 36 genes. They are YAR007C, 

YAR008W, YBL035C, YBR073W, YBR088C, YBR089W, YCR065W, YDL003W, 

YDL010W, YDL018C, YDL164C, YDR097C, YDR507C, YER095W, YFL008W, 

YGR151C, YGR152C, YHR154W, YIL026C, YJL181W, YJL187C, YKL042W, 

YKL113C, YLL022C, YLR103C, YLR386W, YML021C, YML102W, YMR076C, 

YMR078C, YNL273W, YNL303W, YNL312W, YOR074C, YPL208W, YPR120C 

The fourth seed results in a bicluster with more than 400 genes. 

Since there are a large number of genes, there is no search result. Hence 

the algorithm is executed in such a way to get only 224 genes. These 

genes are YAL028W, YAL035W, YAL041W, YAL059W, YBL004W, YBL014C, 

YBL024W, YBL026W, YBL032W,YBL037W, YBL042C, YBL049W, YBL052C, 

YBL056W, YBL068W, YBL075C, YBL083C, YBL088C, YBR021W, YBR038W, 

YBR060C, YBR075W, YBR079C, YBR094W, YBR123C, YBR133C, YBR138C, 

YBR140C, YBR155W, YBR257W, YBR270C, YBR295W, YCL012W, YCL031C, 

YCL054W, YCL059C, YCR014C, YCR024C, YCR036W, YCR043C, YCR060W, 

YCR062W, YCR063W, YDL008W, YDL030W, YDL043C, YDL058W, YDL069C, 

YDL076C, YDL079C, YDL142C, YDL150W, YDL153C, YDL166C, YDL167C, 

YDL189W, YDL202W, YDL215C, YDL230W, YDL231C, YDL243C, YDR011W, 

YDR020C, YDR038C, YDR057W, YDR060W, YDR080W, YDR083W, YDR108W, 

YDR109C, YDR120C, YDR150W, YDR170C, YDR172W, YDR185C, YDR197W, 

YDR198C, YDR211W, YDR214W, YDR235W, YDR236C, YDR262W, YDR272W, 

YDR282C, YDR286C, YDR288W, YDR312W, YDR313C, YDR324C, YDR352W, 

YDR363W, YDR375C, YDR391C, YDR392W, YDR419W, YDR456W, YDR466W, 

YDR477W, YDR524C, YEL043W, YEL053C, YEL055C, YER005W, YER034W, 

YER064C, YER107C, YFL006W, YFL036W, YGL021W, YGL248W, YGL255W, 

YGR035C, YGR092W, YGR108W, YGR129W, YGR187C, YGR200C, YGR216C, 

YHR023W, YHR062C, YHR073W, YHR151C, YIL007C, YIL097W, YIL106W, YIL117C, 
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YIL158W, YIL162W, YJL096W, YJL192C, YJR002W, YJR092W, YKL057C, YKL118W, 

YKL129C, YKL143W, YKL173W, YKL205W, YKR021W, YKR031C,YKR060W, 

YKR079C, YLL008W, YLR014C, YLR051C, YLR068W, YLR107W, YLR131C, 

YLR190W, YLR215C, YLR222C, YLR227C, YLR277C, YLR320W, YLR353W, 

YLR420W, YLR434C, YLR438W, YML033W, YML034W, YML052W, YML064C, 

YML082W, YML093W, YML094W, YML103C, YML119W, YML130C, YMR001C, 

YMR025W, YMR032W, YMR033W, YMR059W, YMR072W, YMR093W, YMR132C, 

YMR156C, YMR211W, YMR212C, YMR225C, YMR278W, YMR291W, YNL041C, 

YNL051W, YNL053W, YNL132W, YNL163C, YNL171C, YNL172W, YNL196C, 

YNL201C, YNL223W, YNL227C, YNL299W, YNR003C, YOL021C, YOL022C, 

YOL042W, YOL060C, YOL070C, YOL080C, YOL113W, YOR006C, YOR049C, 

YOR061W, YOR098C, YOR104W, YOR127W, YOR145C, YOR152C, 

YOR160W,YOR205C, YPL029W, YPL150W, YPL173W, YPL183C, YPL198W, 

YPL205C, YPL242C, YPR003C, YPR026W, YPR079W, YPR112C,YPR119W, 

The Table 5.8 given below shows the significant GO terms used to 

describe the genes of the biclusters of Figure 5.7 for the process, function 

and component ontologies. The common terms are described with 

increasing order of p-values or decreasing order of significance.  In Table 

5.8 the first entry of the second column with the title ‘process’ contains 

the term ribosome biogenesis (44, 1.46e-23) which means that 44 out of 

the 121 genes of the bicluster are involved in the process of ribosome 

biogenesis and their p-value is 1.46e-23. Second entry indicates that 46 

out of 121 genes are involved in ribonucleoprotein complex biogenesis. 

Also from the table it is clear that the biclusters are distinct along each 

category. This proves that the bicluster contains biologically similar genes 

and the CGRASP method used here is capable of identifying biologically 

significant biclusters from different GO categories.  
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Table 5.8 

 Significant Shared GO Terms (Process, Function, Component) of 
Biclusters shown in Figure 5.7 

 

Bicluster Process Function Component 
SC71 Ribosome Biogenesis 

(44, 1.46e-23)  
Ribonucleoprotien 
complex biogenesis 
(46, 6.18e-23) 
Cellular component 
biogenesis at celluar 
Level(47, 6.22e-20) 
Nitrogen compound 
metabolic process  
(64, 4.18e-06) 

44 out of 121 genes 
are directly annotated 
to the term molecular 
function unknown 

Nucleolus (35,8.74e-
21) Preribosome 
(23,5.33e-13)  
Nuclear part(53, 
1.17e-10)  cell part 
(112, 0.00189) 

SC72 Translation(69, 1.52e-56) 
cellular protein metabolic 
process (72, 1.13e-27) 
protein metabolic 
process(72, 8.11e-27) 
metabolic process (84, 
9.28e-07) 
 

Structural constituent 
of ribosome(62, 
5.81e-62) structural 
molecule activity 
(63, 4.33e-49) 
translation  elongation 
factor activity (5, 
0.00011) RNA 
binding (15, 0.00603 

Cytosolic ribosome 
(55, 3.68e-55) 
cytosolic part 
(55, 4.85e-50) 
Ribosome (59, 
3.190e-46) cytoplasm 
(74, 0.00569 

SC73 DNA metabolic process  
( 19, 5.44e-11) DNA 
repair (16, 9.53e-11) 
cell cycle(20, 8.42e-10) 
nucleobase, nucleoside, 
nucleotide and nucleic 
acid (23, 0.00011) 

Structure-specific 
DNA binding 
(5,0.00315) 
double-stranded DNA 
binding(4,0.00134) 
 
 

Chromosome(15,1.21
e-07) replication fork 
(8, 1.40e-06) 
Chromosomal 
part(13,4.93e-06 ) 
Nucleus (26, 1.52e-
05) 

SC74 RNA processing (42, 
1.92e-06) ribosome 
biogenesis (35, 4.45e-06) 
ncRNA processing (34, 
7.03e-06 ) cellular 
Component Organization 
or biogenesis 
(101,0.00194) 

84out of 224input 
genes are directly 
annotated to root term 
'molecular function 
unknown' 

Nucleolus 
(32,4.65e-09) 
Intracellular 
Organelle 
(169,0.00031) 
Organelle 
(169,0.00033) 
Intracellular(189,0.00
105) 
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Figure 5.8: Sample of Genes for the Bicluster sc73, with corresponding GO terms and 

their parents for Function Ontology 
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Figure 5.8 shows the significant GO terms for the set of genes in 

bicluster SC73 along with their p-values. It shows the branching of 

molecular function into sub-functions binding and catalytic activity. 

These fuctions are subdivided further and clustered using genes to 

produce the final result. Figure 5.8 is obtained when gene ontology 

database is searched by entering the names of genes in bicluster sc73 and 

by selecting the function ontology. 

5.1.7 Biclusters obtained Using RGRASP  

In seed growing phase more conditions and genes are added to the 

seed from the Restricted Controlled List (RCL). RCL is formed by 

selecting best elements from candidate list. Candidate list is formed by 

those elements which can be added to the bicluster without incrementing 

the MSR value above the MSR threshold. From the candidate list RCL 

list is formed by selecting the best elements. The best elements will have 

an MSR value less than RCL threshold where RCL threshold= MSRmin+ 

α (MSRmax-MSRmin). For value based GRASP, the value of α is fixed. 

For reactive GRASP the value of α is selected from a discrete set of 

possible values. Initially all these values are given equal probability. Then 

the probability of αi is updated based on the quality of solution obtained. 

This updation will be such that, the αi with good solution will have higher 

probability of being selected. In this study the set of values assigned for α 

for condition list is {0.01, 0.02, 0.03, 0.04, 0.05, 0.06} and the set of 

values assigned for α for gene list is {0.0001, 0.0002, 0.0003, 0.0004, 

0.0005, 0.0006}. 
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5.1.7.1. Bicluster Plots for Yeast Dataset  

In Figure 5.9 eight biclusters obtained using RGRASP are shown.  

Biclusters with all 17 conditions are obtained using this method. From the 

bicluster plots which show strikingly similar up-regulation and down-

regulation it is concluded that RGRASP is an ideal method for identifying 

coherent biclusters from gene expression data. All the means squared 

residues are lower than 205. 

0 2 4 6 8 10 12 14 16 18
350

400

450

500

550

600

Conditions

E
xp

re
ss

io
n 

V
al

ue
s

0 2 4 6 8 10 12 14 16 18
0

50

100

150

200

250

300

350

400

450

Conditions

E
xp

re
ss

io
n 

V
al

ue
s

0 2 4 6 8 10 12 14 16 18
100

150

200

250

300

350

400

450

500

550

600

Conditions

E
xp

re
ss

io
n 

V
al

ue
s

0 2 4 6 8 10 12 14
0

50

100

150

200

250

300

350

400

450

Conditions

E
xp

re
ss

io
n 

V
al

ue
s

0 5 10 15
0

50

100

150

200

250

300

350

400

450

Conditions

E
xp

re
ss

io
n 

V
al

ue
s

0 2 4 6 8 10 12 14 16 18
200

220

240

260

280

300

320

340

360

380

Conditions

E
xp

re
ss

io
n 

V
al

ue
s

0 2 4 6 8 10 12 14 16 18
50

100

150

200

250

300

350

400

Conditions

E
xp

re
ss

io
n 

V
al

ue
s

0 2 4 6 8 10 12 14 16 18
150

200

250

300

350

400

450

Conditions

E
xp

re
ss

io
n 

V
al

ue
s

 
 

Figure 5.9  Eight biclusters found for the Yeast Dataset by RGRASP. Bicluster labels 
are (yar7), (ybr7), (ycr7), (ydr7), (yer7), (yfr7), (ygr7) and (yhr7) 
respectively. In the bicluster plots X axis contains conditions and Y axis 
contains expression values. The details about biclusters can be obtained 
from Table 5.9 using bicluster label.  

 



Metaheuristic Algorithms 

 - 193 -

Table 5.9 

 Information about Biclusters of Figure 5.9 
 

Bicluster Label Number of  
Genes 

Number of 
Conditions 

Bicluster  
Volume MSR 

(yar7)  17 17  289    75.2721 

(ybr7) 145 17 2465 202.0707 

(ycr7) 107 17 1819 199.1857 

(ydr7) 336 13 4368 199.8158 

(yer7) 169 15 2535 199.7847 

(yfr7)  10 17   170 115.9704 

(ygr7)  55 17   935 199.3416 

(yhr7)  16 17   272 104.2135 

 
 

In the above table the first column contains the label of each 

bicluster. The second and third columns report the number of rows 

(genes) and the number of columns (conditions) of the bicluster 

respectively. The fourth column reports the volume of the bicluster and 

the fifth column contains the mean squared residue or hscore of the 

bicluster. 

5.1.7.2 Bicluster Plots for Lymphoma Dataset 

This is the first time RGRASP metaheuristics is applied to find 

biclusters from Lymphoma dataset. Eight biclusters obtained by applying 

RGRASP to Lymphoma dataset are shown in Figure 5.10. Biclusters 

(ldr7) and (lhr7) are having very large volume. 

 

 



Chapter 5 

 

 - 194 -

0 10 20 30 40 50 60 70 80 90
-300

-200

-100

0

100

200

300

Condition

E
xp

re
ss

io
n 

V
al

ue
s

0 10 20 30 40 50 60 70
-200

-150

-100

-50

0

50

100

150

200

Conditions

E
xp

re
ss

io
n 

V
al

ue
s

0 10 20 30 40 50 60
-150

-100

-50

0

50

100

150

Conditions

E
xp

re
ss

io
n 

V
al

ue
s

0 5 10 15 20 25 30 35 40 45
-250

-200

-150

-100

-50

0

50

100

150

200

250

Conditions

E
xp

re
ss

io
n 

V
al

ue
s

 

0 10 20 30 40 50 60 70
-200

-150

-100

-50

0

50

100

150

200

250

Conditions

E
xp

re
ss

io
n 

va
lu

es

0 10 20 30 40 50 60
-200

-150

-100

-50

0

50

100

150

200

Conditions

E
xp

re
ss

io
n 

va
lu

es

0 10 20 30 40 50 60
-150

-100

-50

0

50

100

150

200

250

Conditions

E
xp

re
ss

io
n 

V
al

ue
s

0 2 4 6 8 10 12 14 16 18 20
-150

-100

-50

0

50

100

150

200

Conditions

E
xp

re
ss

io
n 

V
al

ue
s

 
Figure 5.10: Eight biclusters found for the Lymphoma Dataset by RGRASP. The 

bicluster labels are (lar7), (lbr7), (lcr7), (ldr7), (ler7), (lfr7), (lgr7) and 
(lhr7) respectively. The details of the biclusters are given in Table 5.10 

 
 

Table 5.10 

 Information about Biclusters of Figure 5.10 
 

Bicluster 
Label 

Number of  
Genes 

Number of 
Conditions 

Bicluster 
Volume MSR 

(lar7) 10 83 830 1182.10 

(lbr7) 11 70 770 1106.70 

(lcr7) 20 54         1080 874.59 

(ldr7)        261 45       11745 1197.70 

(ler7) 11 68           748 1117.30 

(lfr7) 18 56         1008   904.40 

(lgr7) 15 58 870   952.83 

(lhr7)        220 19 4180   961.05 
 

In the table given above the first column contains the label of each 

bicluster. The second and third columns report the number of rows (genes) 
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and the number of columns (conditions) of the bicluster respectively. The 

fourth column reports the volume of the bicluster and the last column 

contains the mean squared residue or hscore of the bicluster. 

5.1.7.3 Details of Significant Biclusters obtained by RGRASP  
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 Figure 5.11 Four significant biclusters obtained by the RGRASP algorithm on Yeast 

dataset. The bicluster labels are sr71, sr72, sr73 and sr74. The details about 
the biclusters can be obtained from Table 5.11 using the bicluster label. 

 

Table 5.11 

Information about Biclusters of Figure 5.11 
 

Bicluster 
Label 

Number of 
Genes 

Number of 
Conditions MSR Row 

Variance 
Sr71         121 17 199.9395      483.2784 

Sr72 107 17 199.4776   568.0833 

Sr73          36 17 297.6071 1806.9000 

Sr74        224 10 204.2154   500.7598 

In the first bicluster Sr71 there are 121 genes. They are YBL014C, 

YBL083C, YBL084C, YBR293W, YCL016C, YCL031C, YCL053C, YCL054W, 

YCR072C, YCR087W, YDL008W, YDL030W, YDL076C, YDL150W, YDL153C, 

YDL166C, YDL167C, YDL189W, YDL215C, YDL231C, YDR017C, YDR020C, 

YDR038C, YDR057W, YDR060W, YDR080W, YDR083W, YDR108W, YDR120C, 

YDR121W, YDR170C, YDR172W, YDR211W, YDR234W, YDR262W, YDR289C, 

YDR299W, YDR312W, YDR321W, YDR339C, YDR352W, YDR361C, YDR365C, 

YDR392W, YDR416W, YDR449C, YDR469W, YDR477W, YDR478W, YDR518W, 
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YDR524C, YDR542W, YEL015W, YEL055C, YER005W, YER075C, YER099C, 

YER107C, YER166W, YER168C, YER171W, YFL001W, YGL085W, YGL099W, 

YGL214W, YGR042W, YGR090W, YGR187C, YGR200C, YGR216C, YHR062C, 

YJL011C, YJL069C, YJR017C, YJR066W, YKR056W, YKR060W, YLL008W, 

YLL034C, YLR051C, YLR088W, YLR107W, YLR146C, YLR215C, YLR222C, 

YLR227C, YLR401C, YML066C, YML080W, YML093W, YMR093W, YMR211W, 

YMR235C, YNL041C, YNL132W, YNL163C, YNL164C, YNL199C, YNL227C, 

YNL299W, YNR003C, YNR038W, YOL021C, YOL022C, YOL036W, YOL080C, 

YOL124C, YOL140W, YOL144W, YOR006C, YOR056C, YOR061W, YOR098C, 

YOR145C, YOR160W, YOR252W, YOR272W, YPL126W, YPL268W, YPR053C, 

YPR112C.  

In the second bicluster sr72 there are 107 genes namely YAL003W, 

YAL038W, YAR020C, YBL030C, YBL072C, YBL092W, YBR009C, YBR031W, 

YBR048W, YBR084C-A,YBR106W, YBR118W, YCR013C, YCR031C, YDL061C, 

YDL075W, YDL081C, YDL083C, YDL130W, YDL136W, YDL191W, YDL192W, 

YDL208W, YDL221W, YDL228C, YDL229W, YDR012W, YDR025W, YDR050C, 

YDR064W, YDR154C, YDR353W, YDR382W, YDR385W, YDR417C, YDR433W, 

YDR447C, YDR450W, YDR471W, YDR500C, YEL034W, YER074W, YER117W, 

YGL102C, YGR118W, YHR141C, YJL136C, YJL188C, YJL189W, YJL190C, YJR009C, 

YJR094W-A, YJR123W, YKL056C, YKL060C, YKL096W-A, YKL152C, YKL153W, 

YKL180W, YKR057W, YKR094C, YLL066C, YLL067C, YLR029C, YLR048W, 

YLR062C, YLR075W, YLR076C, YLR110C, YLR167W, YLR185W, YLR249W, 

YLR325C, YLR333C, YLR340W, YLR388W, YLR406C, YLR441C, YLR467W, 

YML024W, YML026C, YML039W, YML045W, YML063W, YML133C, YMR045C, 

YMR202W, YNL030W, YNL067W, YNL162W, YNL302C, YNL339C, YOL039W, 

YOL040C, YOL127W, YOR167C, YOR234C, YOR293W, YOR312C, YOR369C, 

YPL037C, YPL081W,YPL090C,YPL143W, YPL283C, YPR102C, YPR204W.   
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In the third bicluster sr73 there are 36 genes. They are YAR007C, 

YAR008W, YBL035C, YBR073W, YBR088C, YBR089W, YCR065W, YDL003W, 

YDL010W, YDL018C, YDL164C, YDR097C, YDR507C, YER095W, YFL008W, 

YGR151C, YGR152C, YHR154W, YIL026C, YJL181W, YJL187C, YKL042W, 

YKL113C, YLL022C, YLR103C, YLR386W, YML021C, YML102W, YMR076C, 

YMR078C, YNL273W, YNL303W, YNL312W, YOR074C, YPL208W, YPR120C.  

The fourth seed results in a bicluster with more than 400 genes. Since 

there are a large number of genes, there is no search result. Hence the 

algorithm is executed in such a way to get only 224 genes. These genes are 

YAL035W, YAL059W, YAR015W, YBL004W, YBL005W, YBL014C, YBL018C, 

YBL024W, YBL026W, YBL037W, YBL049W, YBL054W, YBL083C, 

YBL084C,YBL088C, YBR002C, YBR021W, YBR032W, YBR038W, YBR060C, 

YBR075W, YBR076W, YBR084W, YBR094W, YBR123C, YBR133C, YBR138C, 

YBR155W, YBR228W, YBR257W, YBR266C, YBR267W, YBR270C, YBR293W, 

YBR295W, YCL012W, YCL016C, YCL054W, YCR036W, YCR043C, YCR051W, 

YCR062W, YCR063W, YCR072C, YCRX16C, YDL030W, YDL043C, YDL058W, 

YDL063C, YDL076C, YDL150W, YDL153C, YDL160C, YDL167C, YDL215C, 

YDL231C, YDL247W,YDR011W, YDR020C, YDR038C, YDR060W, YDR080W,  

YDR091C, YDR108W, YDR120C, YDR150W, YDR151C, YDR170C, YDR198C, 

YDR213W, YDR234W, YDR249C, YDR275W, YDR282C, YDR299W, YDR311W, 

YDR324C, YDR361C, YDR363W, YDR364C, YDR374C, YDR449C, YEL015W, 

YEL043W, YEL053C, YEL055C, YEL057C, YER005W, YER034W, YER064C, 

YER081W,  YER107C, YER128W, YER137C, YER171W, YFL036W, YFL058W, 

YGL021W, YGL099W, YGL128C, YGL155W, YGL214W, YGL234W, YGR023W, 

YGR108W, YGR129W, YGR169C, YGR187C, YGR200C, YGR216C, YHR023W, 

YHR062C, YHR151C, YIL007C, YIL097W, YIL106W, YIL158W, YIL171W, YIL172C, 

YJL011C, YJL039C, YJL051W, YJL053W, YJR002W, YJR092W, YJR127C, 
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YKL057C,YKL129C, YKL173W, YKL205W, YKL222C, YKR056W, YKR060W, 

YLL008W, YLR014C, YLR023C, YLR068W, YLR107W, YLR131C, YLR146C, 

YLR190W, YLR215C, YLR222C, YLR227C, YLR277C, YLR353W, YLR430W, 

YLR453C, YML033W, YML034W, YML080W, YML082W, YML093W, YML103C, 

YMR001C, YMR021C, YMR032W, YMR033W, YMR093W, YMR132C, YMR211W, 

YMR235C, YMR265C, YMR278W, YMR281W, YMR291W, YNL041C, YNL049C, 

YNL053W, YNL124W, YNL132W, YNL163C, YNL164C, YNL171C, YNL172W, 

YNL196C, YNL227C, YNL299W, YNR002C, YNR003C, YNR038W, YNR039C, 

YOL021C, YOL028C, YOL041C, YOL042W, YOL060C, YOL080C, YOL081W, 

YOL113W, YOL124C, YOL130W, YOL144W, YOR006C, YOR012W, YOR061W, 

YOR098C, YOR145C, YOR152C, YOR160W, YOR205C, YOR206W, YOR272W, 

YOR315W, YOR318C, YOR364W,  YPL002C, YPL126W, YPL148C, YPL150W, 

YPL174C, YPL183C, YPL192C, YPL205C, YPL242C, YPL248C, YPR026W, YPR040W, 

YPR046W, YPR079W, YPR084W, YPR112C, YPR119W, YPR129W 

The Table 5.12 given below shows the significant GO terms used to 

describe the genes of the biclusters of Figure 5.11 for the process, function 

and component ontologies. The common terms are described with increasing 

order of p-values or decreasing order of significance. In Table 5.12 the first 

entry of the second column with the title process contains the term ribosome 

biogenesis (44, 1.46e-23) which means that 44 out of the 121 genes of the 

bicluster are involved in the process of ribosome biogenesis and their p-value 

is 1.46e-23. Second entry indicates that 46 out of 121 genes are involved in 

ribonucleoprotein complex biogenesis. Also from the table it is clear that the 

biclusters are distinct along each category. This proves that the bicluster 

contains biologically similar genes and the RGRASP method used here is 
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capable of identifying biologically significant biclusters from different GO 

categories.  

Table 5.12 
 

 Significant Shared GO Terms (Process, Function,                                     
Component) of Biclusters shown in Figure 5.11 

 
Bicluster Process Function Component 

Sr71 Ribosome Biogenesis (44, 
1.46e-23) Ribonucleoprotien 
complex biogenesis 
(46, 6.18e-23) Cellular 
component biogenesis at 
celluar Level (47, 6.22e-20) 
Nitrogen compound metabolic 
process (64, 4.18e-06) 

44 out of 121 genes are 
directly annotated to the 
term molecular function 
unknown 

Nucleolus 
(35,8.74e-21) 
Preribosome 
(23,5.33e-13) 
Nuclear part(53, 
1.17e-10)  cell 
part(112, 0.00189) 
 

Sr72 Translation(69, 1.52e-56) 
cellular protein metabolic 
process (72, 1.13e-27) protein 
metabolic process(72, 8.11e-
27) metabolic process (84, 
9.28e-07) 
 

Structural constituent of 
ribosome(62, 5.81e-62) 
structural molecule 
activity (63, 4.33e-49) 
translation  elongation 
factor activity (5, 
0.00011) RNA binding 
(15, 0.00603 

Cytosolic ribosome 
(64, 1.42e-70) 
cytosolic part 
(64, 3.93e-64) 
ribosome (68, 
1.10e-58) 
intracellular 
organelle (86, 
0.00076 ) 

Sr73 DNA metabolic process( 19, 
5.44e-11) DNA repair (16, 
9.53e-11) cell cycle (20, 8.42e-
10) nucleobase, nucleoside, 
nucleotide and nucleic acid (23, 
0.00011) 

Structure-specific DNA 
binding (5,0.00315) 
double-stranded DNA 
binding(4,0.00134) 
 

Chromosome 
(15,1.21e-07) 
replication fork  (8, 
1.40e-06) 
Chromosomal 
part(13,4.93e-06 ) 
Nucleus (26, 1.52e-
05) 

Sr74 Ribonucleoprotein complex 
biogenesis(52, 4.56e-15) 
ribosome biogenesis (45, 
1.63e-12) cellular component 
biogenesis at cellular level (53, 
9.69e-12)  nucleobase, 
ucleoside, nucleotide and 
nucleic acid metabolic process  
(86, 0.00032) 

85 out of 224 input 
genes are directly 
annotated to root term 
'molecular function 
unknown': 
 

Nucleolus (36, 
3.34e-12) nucleus 
(110, 5.96e-08) 
preribosome (24, 
7.91e-08) nuclear 
part (69, 8.88e-06) 
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Figure 5.12 Sample of Genes for Bicluster sr74, with corresponding GO terms and their 
parents for   the Fuction Ontology. 
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Figure 5.12 shows the significant GO terms for the set of genes in 

bicluster sr74 along with their p-values. Only 36 out of 224genes are used 

to search the gene ontology database to reduce the size of the Figure. It 

shows the branching of molecular function into sub-fuctions like catalytic 

activity which are further divided are divided into sub-fuctionss and 

clustered using genes to produce the final result. Figure 5.12 is obtained 

when gene ontology database is searched by entering the names of genes 

in bicluster sr74and by selecting function ontology. 

5.1.8 Comparison with other Algorithms 
5.1.8.1 Comparison on the basis of Statistical and Biological Significance 

To evaluate the statistical significance for the genes in each bicluster p-

values are used. P-values indicate the extent to which the genes in the 

bicluster match with the different GO categories. If the p-value is smaller, 

then the match will be better. In Table 5.11 the GO terms along with their p-

values and percentage of genes associated with the GO term in the bicluster 

for the GRASP, CGRASP and RGRASP algorithms  are compared with that 

of  MOGAB, SGAB, CC, RWB, Bimax, OPSM, ISA  and BiVisu. From the 

table it is clear that in terms of best p-value obtained by a bicluster which is 

used to denote statistical significance, GRASP, CGRASP and RGRASP 

algorithms are better than all the other algorithms namely MOGAB, SGAB, 

CC, RWB, Bimax, OPSM, ISA and BiVisu for all the five GO terms. The 

percentage of genes involved in the first GO term for GRASP variants is 

better than that of all the other algorithms except MOGAB, SGAB and 

Bimax. The percentage of genes involved in the second, third, fourth and 

fifth GO terms are better than that of all the other algorithms. 
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5.1.8.2 Comparison in Terms of Bicluster Size and MSR 

The performance of GRASP algorithms in comparison with that of 

SEBI [36], Cheng and Church’s algorithm (CC) [29], and the algorithm 

FLOC by Yang et al. [106] and DBF [109] are given in Table 5.14. With 

regard to the GRASP algorithm presented in this study, all the fields in it 

are better than that of SEBI, CC, FLOC and DBF. But DBF is having a 

lower value for the average residue score and for SEBI the average 

number of conditions is better than that of GRASP. In terms of average 

number of conditions the RGRASP in this study is better than all other 

algorithms listed in Table 5.12. For CC the average number of genes is 

better than RGRASP and CGRASP in this study. But this is due to the 

fact that the average number of conditions in RGRASP and CGRASP are 

greater than that of CC.  

In this study there are biclusters with all 17 conditions for Yeast 

dataset. But in metaheuristic methods like multi-objective evolutionary 

computation [15] the maximum number of conditions obtained is only 11 

in Yeast dataset. For the Yeast dataset the maximum number of genes 

obtained by RGRASP in this study in all the 17 conditions is 145 with 

MSR value 202.0707 (label of bicluster is (ybr7) in Table 5.9). The result 

in this study is superior because the maximum number of genes obtained 

so far in a bicluster with all 17 conditions is only 141 genes for multi-

objective PSO [62].  Moreover the MSR value of the bicluster (ybr7) is 

better (202.0707) than that of the bicluster obtained by multi-objective 

PSO (203.25).  
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Table 5.14 

 Performance Comparison between GRASP Variants and                              
other Algorithms for the Yeast Dataset 

 
 

Algorithm ANG ANC AV AMR LB 

GRASP  215.50 14.83 2350.33 166.85 6264 

CGRASP  163.00 15.17 2292.33 181.70 3888 

RGRASP  106.88 16.25 1606.63 161.96 4368 

SEBI   13.61 15.25   209.92 205.18 1394 

CC 166.71 12.09 1576.98 204.29 4485 

FLOC 195.00 12.80 1825.78 187.54 1200 

DBF 188.00 11.00 1627.20 114.70 4000 
 

ANG is average number of genes. ANC is the average number of 

conditions. AV is average volume. AMR is average mean squared 

residue. LB is largest bicluster. As clear from the above table the average 

mean squared residue, the average number of genes and conditions, 

average volume and largest bicluster size are compared for various 

algorithms.  For the average mean squared residue field lower values are 

better where as higher values are better for all other fields. 

The Table 5.15 given below provides a summary of results obtained 

by related algorithms on Lymphoma dataset. GRASP variants is not 

applied for finding biclusters from Lymphoma data so far. Only SEBI and 

CC are used for comparison in the Lymphoma dataset. Here RGRASP is 

better than all other algorithms in terms of average number of genes 

except CC. This is due to the fact that in CC average number of 

conditions is very low compared to RGRASP. In GRASP average number 
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of conditions is greater than all other algorithms. Average volume is better 

for CC than all other algorithms. This is due to the fact that reducing the 

MSR by removing one condition can result in the addition of more than 20 

genes. Average MSR is better for CGRASP than all other algorithms. In 

metaheuristic methods like multi-objective evolutionary computation [15] 

the maximum number of conditions obtained is only 40 in Lymphoma 

dataset. In this study, using GRASP a bicluster with 89 conditions is 

obtained (label lva7 Table 5.2). Maximum value of conditions obtained in 

multi-objective PSO is only 84 for Lymphoma dataset  

Table 5.15 

 Performance Comparison between GRASP Variants and                          
other Algorithms for Human Lymphoma Dataset 

 

Algorithm ANG ANC A V AMR 

GRASP 61.38 69.63 3424.00 1101.35 

CGRASP 35.75 17.50   528.50   479.27 

RGRASP 70.75 56.25 2653.87 1037.08 

SEBI 14.07 43.57   615.84 1028.84 

CC      269.22 24.50 4595.98   850.04 
 

ANG is average number of genes. ANC is the average number of 

conditions. AV is average volume. AMR is average mean squared residue. 

As clear from the above table the average mean squared residue, the average 

number of genes and conditions and average volume are compared for 

various algorithms.  For the average mean squared residue field lower values 

are better where as higher values are better for all other fields. 
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5.2  Particle Swarm Optimization (PSO) 

Particle swarm optimization is a biologically inspired computing 

technique. In this section a PSO based algorithm developed for 

biclustering gene expression data is described. This algorithm has three 

steps. In the first step high quality bicluster seeds are generated using K-

Means clustering algorithm. From these seeds biclusters are generated 

using particle swarm optimization. In the third stage an iterative search 

is performed to check the possibility of adding more genes and 

conditions within the given threshold value of mean squared residue 

score. Experimental results on real datasets show that our approach can 

effectively find high quality biclusters. 

5.2.1 Initial Population for PSO 

PSO is a population based optimization technique like genetic 

algorithm. Usually PSO is initialized with a population of random 

solutions. Here the seeds obtained from K-Means are used to initialize 

PSO. The advantage of initializing with seeds is that of faster 

convergence compared to random initialization. Another advantage of it is 

that it maintains diversity in the population.  

5.2.2 PSO based Biclustering 

The particle swarm optimization proposed by Kennedy and 

Eberhart [66] is a heuristics based optimization approach simulating the 

movements of a bird flock trying to find food. Particle swarm 

optimization (PSO) is a population based evolutionary computation 

method and the members of the whole population are maintained 
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throughout the search procedure. It is different from all other 

evolutionary-type methods in that it does not use the filtering operation 

such as crossover or mutation. What makes PSO extremely suitable for 

solving the optimization problems is its convergence speed and relative 

simplicity. Biclustering is an optimization problem with an objective to 

search for biclusters with low mean squared residue and high volume. 

Hence PSO is extremely suitable for solving it. Each potential solution of 

PSO is named as particle and is initialized with random velocity. Each 

particle is flown to the optimal solution in the solution space.  

In the solution space of PSO each particle keeps track of its best 

position achieved hitherto.  This is denoted by pbest (personal best). The 

optimal solution attained by the entire swarm is gBest (global best). PSO 

iteratively converts the velocity of each particle towards its pBest and 

gBest positions efficiently. For finding an optimal or near-optimal 

solution to the problem, PSO keeps updating the current generation of 

particles. Each particle is a candidate for the solution of the problem. The 

whole function is accomplished by using the information about the best 

solution obtained by each particle and the entire population. Each particle 

has got a set of attributes such as current velocity, current position, the 

best position discovered by the particle so far and, the best position 

discovered by the particle and its neighbours so far. Each particle begins 

with an initial velocity and position. Thereafter the nth component of the 

new velocity and the new position for the ith particle are updated in 

accordance with the following equations: 
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Vi,n(t+1)=w*Vi,n(t)+c1*r1[Gi(t)-Xi,n(t)]+c2*r2[Gi(t)-Li,n(t)]  ........... (1) 

Xi,n(t+1)=Xi,n(t) +Vi,n(t+1) .................................................................. ( 2) 

In equation (1), w is the inertia weight; r1 and r2 are random 

numbers, Gi is the best particle found so far within the neighbors and Li,n 

is the best position discovered so far by the corresponding particle [30]. 

Vi,n(t+1) is the new velocity and Xi,n(t+1) is the new position of the ith 

particle. In binary PSO [67], Vi,n that is velocity of the ith particle is a 

probability, and it must be constrained to the interval [0, 1]. A logistic 

transformation S(Vi,n) can be used to attain this modification. The 

consequent change in the position is defined by the rule: If (rand() < 

S(vi,n)) then Xi,n = 1;else Xi,n = 0 where the function S(v) is a sigmoid 

limiting transformation and rand() is a  random number selected from a 

uniform distribution in [0,1].  

5.2.3 Fitness Function  

As an optimization problem the main objective here is to search 

for biclusters with low mean squared residue and maximum size.  

(Given the value of δ (δ>0), the following fitness function can be used 

to assess the quality of each bicluster B [12]. G(B)=  |I|.|J|   if MSR(B) 

less than or equal to δ otherwise G(B) =δ/MSR(B). Here size of the 

bicluster B is IxJ.  
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Algorithm PSObiclustering(seeds, δ, noofpar,maxiter) 

For i=1 to noofpar 

Initialize particle i using seed i generated by K_Means 

Initialize velocity of particle i 

END (for) 

While  iterno<=maxiter 

For each particle do 

Calculate fitness value 

If the fitness value is better than the best fitness value (pBest) in history set 

current value as the new pBest 

End (for) 

Choose the particle with the best fitness value of all the particles as the 

gBest 

For each particle do 

Calculate particle velocity according equation (1) 

Update particle position according equation (2) 

End (for) 

End (while) 

 

5.2.4 Time Complexity  

The basic operation for the identification of biclusters is the 

calculation of mean squared residue of a submatrix. Time complexity for 

calculating MSR is O(mn). In order to include a gene or condition MSR 

value is calculated once. Hence this calculation is performed atmost P*I 

times where P is the number of particles and I is the number of iterations. 
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That means the worst case time complexity of the algorithm is 

O(P*I*(mn)) where m and n are the number of genes and conditions 

respectively. 

5.2.5 Biclusters obtained Using PSO 

5.2.5.1 Bicluster Plots for Yeast Dataset 

Figure 5.13 shows eight biclusters obtained by Binary PSO 

algorithm on Yeast dataset. Some of the biclusters contain all 17 

conditions. All the biclusters show strikingly similar up-regulation and 

down-regulation.  
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  Figure 5.13  Eight biclusters found for the Yeast dataset by binary PSO. Bicluster 
labels are (ya8), (yb8), (yc8), (yd8), (ye8), (yf8), (yg8) and (yh8) 
respectively. The details about the biclusters can be obtained from Table 
5.16 using bicluster label. 
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Table 5.16 

 Information about Biclusters of Figure 5.13 

Bicluster 
Label 

Number of 
Genes 

Number of 
Conditions 

Bicluster 
Volume MSR 

(ya8)   32 10   320   63.0642 
(yb8)  75 17 1275 199.5888 
(yc8)  80 10   800 190.3379 
(yd8) 100 10 1000 298.6600 
(ye8) 136 17 2312 297.9888 
(yf8) 323 16 5168 286.1017 
(yg8)        1030 10 1030 299.9427 
(yh8) 150 10 1500 298.8481 
(yi8) 882 11 9702 299.7275 
(yj8)        1399 8       11192 299.9149 
(yk8) 656 12 7872 299.8829 
(yl8) 848 11 9328 299.8653 
(ym8) 145 17 2465 299.6139 
(yn8) 318 16 5088 281.5787 

 

In Table 5.16 given above the first column reports the label of each 

bicluster, the second column contains the number of rows (genes), third 

column contains the number of columns (conditions), fourth column 

contains the volume or size of the bicluster and the last column reports the 

mean squared residue score. Table 5.16 contains the details of some more 

biclusters which are not shown in Figure 5.13. The labels of these 

biclusters are (yi8), (yj8), (yk8), (yl8), (ym8) and (yn8). 

5.2.5.2  Bicluster Plots for Human Lymphoma Dataset 

In Figure 5.14 eight biclusters obtained from Human Lymphoma 

dataset using Binary PSO algorithm are shown. The algorithm is better for 
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identifying more genes than conditions where as some other metaheuristic 

methods like GRASP can identify more number of conditions. The 

maximum number of conditions obtained here is only 27. The maximum 

number of genes obtained is 1180. 
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Figure 5.14 Eight biclusters found for the Lymphoma dataset by binary PSO. Bicluster 

labels are (la8), (lb8), (lc8), (ld8), (le8), (lf8), (lg8) and (lh8) respectively. 
The details about the biclusters can be obtained from Table 5.17 using 
bicluster label. 

 

Table 5.17 

 Information about Biclusters of Figure 5.14 

Bicluster 
Label 

Number of 
 Genes 

Number of 
Conditions 

Bicluster 
Volume 

MSR 

(la8) 1180 15 17700 1198.8 

(lb8) 1060 16 16960 1192.2 

(lc8) 747 20 14940 1198.0 

(ld8) 974 20 19480 1199.7 

(le8) 505 23 11615 1199.9 

(lf8) 339 27   9153 1199.4 

(lg8) 967 15 14505 1197.7 

(lh8) 836 17 14212 1199.0 
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5.2.6 Advantages of PSO based Biclustering 

The method identifies biclusters with large number of genes from 

both Yeast and Lymphoma datasets. Number of iterations required for 

convergence is less than 100. In this method biclusters with best p-value 

is obtained which is better than some of the algorithms like MOGAB, 

SGAB, CC, RWB, Bimax, OPSM, ISA and BiVisu. 

5.2.7 Details of Significant Biclusters obtained by PSO  
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Figure 5.15 Three significant biclusters obtained by the binary PSO algorithm on Yeast 

dataset. The bicluster labels are s81, s82 and s83. The details about 
biclusters can be obtained from Table 5.18 using bicluster label.  

  

Table 5.18  

Information about Biclusters of Figure 5.15 
 

Bicluster 
Label 

Number of 
Genes 

Number of 
Conditions MSR Row Variance 

S81         136  17  297.9888      587.8266 

S82 145 17  299.6139 585.0625 

S83          92 10  198.7709 450.1407 

These biclutsters are overlapping in the sense that some genes are 

common. As a population based technique it is more difficult to obtain 

biclusters of distinct category compared to seed growing methods because 

in PSO all particles are flying towards the global best.   



Chapter 5 

 

 - 214 -

In the bicluster s81 there are 136 genes. They are YAL001C, 

YAL002W, YAL003W, YAL004W, YAL007C, YAL009W, YAL011W, YAL030W, 

YAL038W, YAR009C, YAR020C, YBL030C, YBL072C, YBL092W, YBR009C, 

YBR031W, YBR048W, YBR084C-A, YBR106W, YBR111C, YBR118W, YBR181C, 

YBR189W, YCR013C, YCR031C, YDL061C, YDL075W, YDL081C, YDL083C, 

YDL130W, YDL136W, YDL191W, YDL192W, YDL208W, YDL221W, YDL228C, 

YDL229W, YDR012W, YDR025W, YDR050C, YDR064W,YDR133C, YDR154C, 

YDR353W, YDR382W, YDR385W, YDR418W, YDR433W, YDR447C, YDR450W, 

YDR471W, YDR500C, YEL034W, YER074W, YER102W, YER117W, YER138C, 

YER160C, YGL102C, YGR118W, YHR141C, YJL136C, YJL158C, YJL177W, 

YJL188C,YJL189W, YJL190C, YJL225C, YJR009C, YJR094W-A, YJR123W, 

YJR145C, YKL006W, YKL056C, YKL060C,YKL096W-A, YKL152C, YKL153W, 

YKL180W, YKR057W, YKR094C, YLL045C, YLL066C, YLL067C, YLR029C, 

YLR048W, YLR062C, YLR075W, YLR076C, YLR110C, YLR167W, YLR184W, 

YLR185W, YLR249W, YLR325C, YLR333C, YLR340W, YLR388W, YLR406C, 

YLR441C, YLR467W, YML008C, YML024W, YML026C, YML039W, YML045W, 

YML063W, YML133C, YMR007W, YMR045C, YMR050C, YMR074C, YMR202W, 

YMR230W, YNL030W, YNL067W, YNL162W, YNL209W, YNL302C, YNL339C, 

YOL039W, YOL040C, YOL127W, YOR167C, YOR234C, YOR293W, YOR312C, 

YOR369C, YPL037C, YPL081W, YPL090C, YPL143W, YPL283C, YPR043W, 

YPR102C, YPR204W.  

Similarly in bicluster S82 there are 145 genes. They are: YAL001C, 

YAL002W, YAL003W, YAL007C, YAL009W,YAL011W, YAL030W, YAL038W, 

YAR009C, YAR020C, YBL030C, YBL072C, YBL077W, YBL092W, YBR009C, 

YBR010W, YBR031W, YBR048W, YBR078W, YBR084C-A, YBR106W, YBR118W, 

YBR181C, YBR206W, YCL018W, YCLX11W, YBR189W, YCR013C, 

YCR031C,YDL061C, YDL075W, YDL081C, YDL083C, YDL130W, YDL136W, 

YDL191W,YDL192W, YDL208W, YDL221W, YDL228C, YDL229W, YDR012W, 

YDR025W,YDR035W, YDR050C, YDR064W, YDR133C, YDR134C, YDR154C, 
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YDR158W,YDR225W, YDR276C, YDR353W, YDR382W, YDR385W, YDR417C, 

YDR418W, YDR433W, YDR447C, YDR450W, YDR471W, YDR500C, YEL034W, 

YER074W, YER102W, YER117W, YER138C, YER160C, YGL102C, YGR118W, 

YHR141C, YJL136C,YJL158C, YJL177W, YJL188C, YJL189W, YJL190C, YJL225C, 

YJR009C, YJR094W-A, YJR123W, YJR145C, YKL006W, YKL056C, YKL060C, 

YKL096W-A, YKL152C, YKL153W, YKL180W, YKR057W, YKR094C, YLL045C, 

YLL066C,YLL067C, YLR029C, YLR048W, YLR062C, YLR075W, YLR076C, 

YLR110C, YLR167W, YLR185W, YLR249W, YLR294C, YLR325C, YLR333C, 

YLR340W,YLR388W, YLR406C, YLR441C, YLR467W, YML008C, YML024W, 

YML026C, YML039W, YML045W, YML063W, YML133C, YMR007W, YMR045C, 

YMR050C, YMR202W, YMR230W, YNL030W, YNL067W, YNL162W, YNL209W, 

YNL302C, YNL339C, YOL039W, YOL040C, YOL127W,YOR167C, YOR234C, 

YOR293W, YOR312C, YOR369C, YPL037C, YPL081W, YPL090C, YPL143W,  

YPL283C, YPR043W, YPR102C, YPR204W.  

In the third bicluster s83 there are 92 genes namely YAL003W, 

YAL038W, YBL072C,YBL092W, YBR009C, YBR010W, YBR031W, YBR048W, 

YBR078W, YBR084C-A, YBR106W, YBR118W, YBR181C, YBR189W, YCL018W, 

YCLX11W,YCR013C, YCR031C, YDL061C, YDL075W, YDL081C, YDL083C, 

YDL130W, YDL136W, YDL191W, YDL192W, YDL208W, YDL228C, YDL229W, 

YDR012W, YDR025W, YDR035W, YDR050C, YDR064W, YDR133C, YDR134C, 

YDR158W, YDR225W, YDR276C, YDR382W, YDR385W, YDR418W, 

YDR433W,YDR447C, YDR450W, YDR471W, YDR500C, YGL102C, YJL136C, 

YJL158C, YJL177W,YJL189W, YJL190C, YKL006W, YKL060C, YKL096W-A, 

YKL152C, YKL153W, YKL180W, YKR057W, YLR029C, YLR048W, YLR075W, 

YLR110C, YLR167W, YLR185W, YLR249W, YLR325C, YLR406C, YML024W, 

YML039W, YML063W, YNL030W, YNL067W, YNL162W, YNL209W, YNL302C, 

YNL339C,YOL039W, YOL040C, YOL127W, YOR167C, YOR234C, YOR293W, 

YOR312C,YPL037C, YPL081W, YPL090C, YPL143W, YPL283C, YPR043W, 

YPR102C. 
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The Table 5.19 given below shows the significant GO terms used to 

describe the genes of the biclusters of Figure 5.15 for the process, 

function and component ontologies. The common terms are described 

with increasing order of p-values or decreasing order of significance.  In 

Table 5.19, the first entry of the second column with the title process 

contains the term translation (80, 0.99e-62) which means that 80 out of 

the 136 genes of the bicluster are involved in the process of 

translation and their p-value is 0.99e-62. Second entry indicates that 83 

out of 136 genes are involved in cellular protein metabolic process. This 

proves that the biclusters contain biologically similar genes and the binary 

PSO method used here is capable of identifying biologically significant 

biclusters. 

Table 5.19 

Significant Shared GO Terms (Process, Function,                                     
Component) of Biclusters shown in Figure 5.15 

 
Bicluster Process Function Component 

S81 Translation (80, 
.99e-62) cellular 
protein metabolic 
Process (83, 1.29e-
27) protein 
metabolic process 
(83, 1.18e-26) 
cellular 
macromolecule 
biosynthetic process 
(81, 7.36e-23) 
macromolecule 
biosynthetic process 
(81, 9.52e-23) 
 

Structural 
constituent of 
ribosome (72, 
7.00e-70) structural 
molecule activity 
(74, 3.27e-55) 
RNA-directed 
DNA polymerase 
activity (7, 2.21e-
05) RNA binding 
(20, 0.00023) 

Cytosolic ribosome          
(74, 1.01e-79) cytosolic 
part (74, 1.37e-71) 
ribosome (78, 2.59e-63) 
cytosol (80, 1.09e-60)  
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S82 Gene expression(84, 
1.36e-19) 
Biosynthetic process 
(92, 3.52e-19) 
ribosome biogenesis 
(40, 3.21e-16) 
translational 
elongation (17, 
7.81e-16) 

RNA-directed 
DNA polymerase 
Activity (7, 3.47e-
05) translation 
elongation factor 
activity (5, 
0.00055) DNA-
directed DNA 
polymerase 
activity (7, 
0.00324) DNA 
polymerase activity 
(7, 0.00438) 

Ribonucleoprotein complex 
(81, 1.59e-43) 
Cytosolic small ribosomal 
subunit (35, 3.99e-36) 
cytosolic large ribosomal 
subunit (37, 5.49e-36) 
small ribosomal subunit(35, 
6.82e-31) 

S83 Macromolecule 
metabolic process 
(69,7.47e-12) 
primary metabolic 
process (76, 4.37e-
11) ribosomal small 
subunit 
biogenesis (19, 
6.89e-11) cellular 
component 
biogenesis at cellular 
level (31, 1.03e-10) 

Structural 
constituent of 
ribosome(55, 
1.25e-55) structural 
molecule 
activity (57, 2.47e-
46) translation 
elongation factor 
activity (4, 
0.00148) 

Macromolecular complex 
 (67, 2.33e-17) cytoplasmic 
part (70, 7.06e-12)  
organelle part (62, 3.52e-
08) intracellular organelle 
part (62, 3.52e-08) 
cytoplasm(72, 1.75e-05) 

S84 Translation (52, 
1.24e-23) ribosome 
biogenesis(44, 
3.56e-19) 
ribonucleoprotien 
complex biogenesis 
(44, 1..38e-16) 
ncRNA metabolic 
process (29, 2.25e-
06) rRNA transport 
(10, 9.55e-06) 
 

Structural 
constituent of 
ribosome (45, 
4..48e-27) 
structural molecule 
activity (52, 6.13 e-
25) 
 

Cell (140, 5.65e-05) 
90S preribosome (12, 
0.0004) Cytoplasmic part 
(84, 0.00126) 
Nucleolus (17, 0.00691) 
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Figure 5.16 Sample of genes for the bicluster s81, with corresponding GO terms and 

their parents for Function Ontology 
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Figure 5.16 shows the significant GO terms for the set of genes in 

bicluster s81 along with their p-values. It shows the branching of molecular 

function into sub-components like structural molecule activity, binding, 

enzyme regulator activity and catalytic activity. These sub-functions are 

further divided into and are clustered using genes to produce the final result. 

Figure 5.16 is generated when gene ontology database is searched by 

entering the names of genes in bicluster s81 and by selecting function 

ontology. Only 17 genes (YAL003W,  YBR118W,  YBR189W,  YDL075W, 

YDL081C,   YDL130W, YDL229W, YDR382W,YDR385W, YEL034W,  YGR118W,  

YJR123W, YLR249W,  YLR340W,  YLR406C,  YNL209W, YOL039W) out of 136 

genes are selected to search the GO database to reduce the size of the Figure. 

5.2.8 Comparison with other Algorithms 
5.2.8.1 Comparison on the basis of Statistical Significance 

In Table 5.20 the GO terms along with their p-values and percentage 

of genes associated with the GO term in the bicluster for the binary PSO 

algorithm is compared with that of MOGAB, SGAB, CC, RWB, Bimax, 

OPSM, ISA and BiVisu.  From the Table 5.20 it is clear that in terms of the 

p-value obtained by a bicluster which is used to denote statistical 

significance, PSO algorithm is better than MOGAB, SGAB, CC, RWB, 

Bimax, OPSM, ISA and BiVisu for all GO terms. The percentage of genes 

involved for the first GO term is better than that of RWB, OPSM and 

BiVisu. The percentage of genes involved for the second, third and fifth 

GO terms are better than that of all the other algorithms mentioned in the 

Table 5.20. The percentage of genes involved for the third GO term is 

better than that of all the other algorithms except MOGAB. 
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5.2.8.2 Comparison in terms of Bicluster Size and MSR 

The performance of Binary PSO is compared with that of SEBI 

[36], Cheng and Church’s algorithm (CC), and the algorithm FLOC by 

Yang et al. [106], DBF [109] and  single objective GA [20] for the Yeast 

dataset are given in Table 5.21. Single objective GA (SGAB) [20] has 

been used with local search to generate overlapped biclusters.  In terms of 

average number of genes, average volume and largest bicluster size 

Binary PSO is better than all other algorithms listed in Table 5.21. The 

MSR value is relatively high for Binary PSO. But for the Yeast dataset it 

can be within the maximum limit of 300. 

Table 5.21 

 Performance Comparison between Binary PSO and                                           
other Algorithms for Yeast dataset 

 
Algorithm ANG ANC AMR AV LB 

Bin. PSO 581.70 12.80 285.49 6422.70 11192 
DBF 188.00 11.00 114.70 1627.20 4000 
SEBI   13.61 15.25 205.18    209.92 1394 
CC 166.71 12.09 204.29 1576.98 4485 

FLOC 195.00 12.80 187.54 1825.78 2000 
SGA 191.12   5.13   52.87    570.86 1408 

 

ANG is average number of genes. ANC is the average number of 

conditions. AMR is average mean squared residue. AV is average 

volume. LB is the largest bicluster size. As clear from the above table the 

average mean squared residue, the average number of genes and 

conditions and average volume are compared for various algorithms.  For 
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the average mean squared residue field lower values are better where as 

higher values are better for all other fields. 

The Table 5.22 given below lists the performance comparison of 

different algorithms for Human Lymphoma dataset. SEBI and CC 

algorithms are compared with Binary PSO. It is observed that the method 

is good in identifying large number of genes compared to the number of 

conditions.  In Lymphoma dataset the biclusters obtained by Binary PSO 

is better than that of CC and SEBI in terms of average number of genes 

and average volume. 

 

Table 5.22 

Performance Comparison between Binary PSO and                                          
other Algorithms for Lymphoma Dataset 

 
 

Algorithm ANG ANC AMR AV 
Bin.PSO 826.00 19.13 1198.09 14820.63 

SEBI   14.07 43.57 1028.84    615.84 
CC 269.22 24.50    850.04 4595.98 

 

ANG is average number of genes. ANC is the average number of 

conditions. AMR is average mean squared residue. AV is average 

volume. In the table given above the average number of genes and 

conditions, average volume and average mean squared residue are 

compared for various algorithms. For the average mean squared residue 

field lower values are better where as higher values are better for all other 

fields. 
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5.3 Greedy Search-Binary PSO Hybrid  

5.3.1 Initial Population for PSO  

PSO is a population based evolutionary optimization algorithm. 

Usually PSO is initialized with a population of random solutions. In this 

algorithm the results obtained from greedy search algorithm mentioned in 

chapter 4 is used to initialize PSO. This will result in faster convergence 

compared to random initialization. Maintaining diversity in the population 

is another advantage of initializing with biclusters from greedy search 

method. Moreover greedy methods suffer from local minima problem 

which can be eliminated by methods like PSO. 

5.3.2 PSO based Biclustering  

Each particle of PSO explores a possible solution. It adjusts its 
flight according to its own and its companions flying experience. The 
personal best position is the best solution found by the particle during the 
course of flight. This is denoted by pbest (personal best). The optimal 
solution attained by the entire swarm is gBest (global best). PSO 
iteratively updates the velocity of each particle towards its pBest and 
gBest positions efficiently. For finding an optimal or near-optimal 
solution to the problem, PSO keeps updating the current generation of 
particles. Each particle is a candidate for the solution of the problem. The 
whole function is accomplished by using the information about the best 
solution obtained by each particle and the entire population. Each particle 
has got a set of attributes such as current velocity, current position, the 
best position discovered by the particle so far and, the best position 
discovered by the entire particle so far. Each particle begins with an initial 



Chapter 5 

 

 - 224 -

velocity and position. Thereafter a swarm particle-i will update its own 
speed in accordance with the following equations: 

V (i+1)=w*Vi+ {Cp*r1*(pBesti – Xi)} +{Cg*r2*(gBest-Xi)} ---------- (3) 

 X(i+1)=Xi +V(i+1)  ----------------------------------------------------------- (4) 

In equation (1), w is the inertia weight; r1 and r2 are random 
numbers within the range {0,1}. Cp is the Cognitive learning rate and Cg 
is the Social learning rate. gBest is the best particle found so far and 
pBesti is the best position discovered so far by the corresponding particle.  

In binary PSO, Vi is a probability, and it must be constrained to the 
interval {0, 1}.  A logistic transformation S(Vi) is used to convert the 
value to this range. The consequent change in the position is defined by 
the following rule: If (rand() < S(Vi)) then Xi = 1;else Xi = 0. The 
function S(v) is a sigmoid limiting transformation and rand() is a random 
number selected from a uniform distribution in {0,1}. 

5.3.3 Fitness Function  

The main objective is to find maximal biclusters with low mean 

squared residue.  Algorithm is used to maximize the objective function. 

Given the value of δ (δ>0), the following fitness function can be used to 

assess the quality of bicluster [12].  

 

   G(B(I,J) =  |I|.|J|   if MSR(I,J) less than or equal to δ 

                = δ/MSR(i,j) otherwise 
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5.3.4 Biclusters obtained Using Greedy-PSO Hybrid 

5.3.4.1 Bicluster Plots for Yeast Dataset 
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Figure 5.17  Eight biclusters obtained from the Yeast dataset by greedy-PSO. Bicluster 
labels are (yag8), (ybg8), (ycg8), (ydg8), (yeg8), (yfg8), (ygg8) and (yhg8) 
respectively. In the bicluster plots X axis contains conditions and Y axis 
contains expression values. The details about the biclusters can be 
obtained from Table 5.23 using bicluster label.  

 
Table 5.23 

 Information of Biclusters of Figure 5.17  

Bicluster 
Label 

Number of 
Genes 

Number of 
Conditions 

Bicluster 
Volume 

MSR 

(yag8) 25 17 425 195.9666 
(ybg8) 21 17 357 178.1294 
(ycg8) 28 17 476 189.1636 
(ydg8) 36 17 612 195.7957 
(yeg8) 22 17 374 146.7061 
(yfg8) 54 11 594 192.1012 
(ygg8)        500   8           4000 199.4028 
(yhg8) 23 17 391 150.2494 
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5.3.5  Details of Significant Bicluster obtained by Greedy-PSO Algorithm 
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 Figure 5.18 A significant bicluster obtained by the greedy-PSO algorithm on Yeast 
dataset. The bicluster label is sgp81. The size, MSR and row variance of 
the bicluster is (36*17, 195. 7957, 606.0198) 

In the bicluster selected there are 36 genes namely YAL003W, 

YBL072C, YBL092W, YBR009C, YBR031W, YBR048W, YBR084C-A, YBR118W, 

YCR031C, YDL061C, YDL075W, YDL081C, YDL083C, YDL130W, YDL136W, 

YDL191W, YDL192W, YDL208W, YDL228C, YDL229W, YDR012W, YDR025W, 

YDR050C, YDR060W, YDR064W, YDR369C, YDR382W, YDR385W, YDR447C, 

YDR450W, YDR471W, YJL177W, YKL180W, YOL127W, YPL037C, YPR102C. 

The Table 5.24 given below shows the significant GO terms used to 

describe the genes of the bicluster of Figure 5.18 for the process, function 

and component ontologies. The common terms are described with increasing 

order of p-values or decreasing order of significance.  In Table 5.24 the first 

entry of the second column with the title ‘process’ contains the term 

translation (28, 5.00e-25) which means that 28 out of the 36 genes of the 

bicluster are involved in the process of translation  and their p-value is 5.00e-

25. Second entry indicates that 30 out of 36 genes are involved in cellular 
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protein metabolic Process. This proves that the biclusters contains 

biologically similar genes and the greedy search-binary PSO method used 

here is capable of identifying biologically significant biclusters. 

Table 5.24 

 Significant Shared GO Terms (Process, Function,                                                   
Component) of Bicluster shown in Figure 5.18 

 
 

Bicluster Process Function component 
Sgp81 Translation (28, 

5.00e-25) cellular 
protein metabolic 
process (30, 2.84e-
15) protein 
metabolic  process 
(30, 6.56e-15) 
cellular 
macromolecule 
biosynthetic process 
(28, 1.22e-11) 
macromolecule 
biosynthetic process 
(28, 1.34e-11) 

Structural 
constituent of 
ribosome (24, 
1.73e-24) 
structural molecule 
activity (24, 8.97e-
20) translation 
elongation factor 
activity (.00149) 
 
  
 

Cytosolic ribosome (24, 
1.49e-25) ribosome (27, 
7.35e-25) cytosolic 
part (24, 1.09e-23) 
cytosol (25, 4.68e-20)  

 

5.3.6 Comparison with other Algorithms 

5.3.6.1 Comparison on the basis of Statistical and Biological Significance 

In Table 5.25 the GO terms along with their p-values and 

percentage of genes associated with the GO term in the bicluster for the 

Greedy-Binary PSO hybrid algorithm is compared with that of MOGAB, 

SGAB, CC, RWB, Bimax, OPSM, ISA and BiVisu.  From the Table it is 

clear that in terms of the p-value obtained by a bicluster which is used to 
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denote statistical significance, Greedy-PSO algorithm is better than RWB, 

Bimax, OPSM and BiVisu for the first GO term.  In terms of p-value 

Greedy-PSO is better than all other algorithms mentioned in Table 5.25 

except MOGAB and SGAB for the second GO term. In terms of p-value 

Greedy-PSO is better than all other algorithms mentioned in Table 5.25 

except MOGAB for the third and fourth GO terms. It is better than all the 

other algorithms for the p-value obtained for the fifth GO term. In terms 

of percentage of genes involved in a GO term greedy-PSO algorithm is 

better than that of all the other algorithms for all the five GO terms.  

 



Metaheuristic Algorithms 

 - 229 -

         

T
ab

le
 5

.2
5 

R
es

ul
t o

f B
io

lo
gi

ca
l S

ig
ni

fic
an

ce
 T

es
t:

 T
he

 T
op

 F
iv

e 
Fu

nc
tio

na
lly

 E
nr

ic
he

d 
Si

gn
ifi

ca
nt

 G
O

 T
er

m
s  

   
   

   
  

Pr
od

uc
ed

 b
y 

G
re

ed
y-

 P
SO

 a
nd

 o
th

er
 A

lg
or

ith
m

s f
or

 Y
ea

st
 D

at
as

et
 

 



Chapter 5 

 

 - 230 -

5.3.6.2 Comparison based on MSR and Bicluster Size 

Table 5.26 lists a comparison of results of various algorithms on 

Yeast data.  Performance of Greedy Search- Binary PSO hybrid with that 

of SEBI [36], Cheng and Church’s algorithm (CC) [29], and the algorithm 

FLOC by Yang et al. [106] and DBF [109] are given. Here biclusters with 

MSR less than 100, obtained from greedy search, is used as initial 

population of PSO. Computation time required is very less compared to 

greedy search running completely to attain the desired MSR.  The average 

value of MSR for greedy binary PSO hybrid is better than all other 

algorithms except DBF. Average number of conditions is better than all 

other algorithms except SEBI. Average number of genes is better than 

SEBI. The largest Bicluster size is the same as DBF, and better than 

FLOC and SEBI.  

Table 5.26 

 Performance Comparison between Greedy Search Binary                                
PSO Hybrid and other Algorithms for the Yeast Dataset 

 
 

Algorithm ANG ANC AMR AV LB 

GS Binary PSO    88.62 15.13 180.94   903.63 4000 

DBF 188.00 11.00 114.70 1627.20 4000 

SEBI   13.61 15.25 205.18   209.92 1394 

Cheng-Church 166.71 12.09 204.29 1576.98 4485 

FLOC 195.00 12.80 187.54 1825.78 2000 

Greedy 515.57 13.36 185.86 4690.36 12645 
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ANG is average number of genes. ANC is the average number of 

conditions. AMR is average mean squared residue. AV is average 

volume. LB is the largest bicluster size. In the table given above the 

average number of genes and conditions, average volume, average mean 

squared residue and largest bicluster size are compared for various 

algorithms. For the average mean squared residue field lower values are 

better where as higher values are better for all other fields. 

5.4  Comparison of Greedy and Metaheuristic Algorithms 
5.4.1  Comparison on the basis of Statistical Significance  

To evaluate the statistical significance for the genes in each 

bicluster p-values are used. P-values indicate the extent to which the 

genes in the bicluster match with the different GO categories. Four 

different seeds, which on enlargement result in biologically significant 

biclusters, were selected.  These seeds are enlarged by the greedy and 

GRASP variants and the p-values of the GO terms of these biclusters are 

compared for all these algorithms. Since PSO is a population based 

technique a significant bicluster similar to the enlargement of seed 2 is 

obtained for Binary-PSO and Greedy-PSO. Hence only in bicluster 2 such 

comparisons are given for these two algorithms.  
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5.4.1.1 Comparison based on p-values of GO Terms for Four Different Seeds 

Table 5.27 

 Comparison of Greedy and GRASP Variants based on GO Terms for                  
Biclusters Generated from First Seed and the Corresponding p-value                        

obtained for each Algorithm for Process Ontology 
 
 

GO Terms 
p-value and Percentage of Genes 

GREEDY GRASP CGRASP RGRASP 

Ribosome biogenesis 1.45e-23 
36.7% 

1.46e-23 
36.7% 

1.46e-23 
36.7% 

1.46e-23 
36.7% 

Ribonucleoprotein complex 
biogenesis 

6.13e-23 
38.3% 

6.18e-23 
38.3% 

6.18e-23 
38.3% 

6.18e-23 
38.3% 

Cellular component biogenesis 
at cellular level 

6.18e-20 
39.2% 

6.22e-20 
39.2% 

6.22e-20 
39.2% 

6.22e-20 
39.2% 

ncRNA processing 3.68e-19 
32.5% 

3.71e-19 
32.5% 

3.71e-19 
32.5% 

3.71e-19 
32.5% 

ncRNA metabolic process 1.80e-18 
33.3% 

1.81e-18 
33.3% 

1.81e-18 
33.3% 

1.81e-18 
33.3% 

rRNA processing 1.93e-15 
25% 

1.94e-15 
25% 

1.94e-15 
25% 

1.94e-15 
25% 

RNA processing 8.59e-17 
35% 

8.65e-17 
35% 

8.65e-17 
35% 

8.65e-17 
35% 

rRNA metabolic process 6.16e-17 
26.7% 

6.21e-17 
26.7% 

6.21e-17 
26.7% 

6.21e-17 
26.7% 

RNA metabolic process 3.59e-14 
49.2% 

3.25e-14 
49.2% 

3.25e-14 
49.2% 

3.25e-14 
49.2% 

In this case similar p-values and percentage of genes are obtained 

for greedy, GRASP CGRASP and RGRASP.   

Table 5.28 

  Comparison of Greedy and GRASP Variants based on GO Terms                  
for Biclusters Generated from the First Seed and the Corresponding                

P-value obtained for each Algorithm for the Function Ontology 
 
 

GO Terms GREEDY VGRASP CGRASP RGRASP 

Number of genes annotated to the term 
molecular function unknown 44 genes 44 genes 44 genes 44 genes 
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From the above Table it is clear that for function ontology a fixed 

number of genes are annotated to the term ‘molecular function unknown’ 

for all the algorithms.  

Table 5.29 

 Comparison of Greedy and GRASP Variants based on GO Terms                
for Biclusters Generated from the First Seed and the Corresponding                     
P-value   obtained for each Algorithm for the Component Ontology 

 

 

GO terms 
p-vales and percentage of genes for each GO Term 
GREEDY GRASP CGRASP RGRASP 

Nucleolus 8.74e-21 
29.2% 

8.74e-21 
29.2% 

8.74e-21 
29.2% 

8.74e-21 
29.2% 

Preribosome 5.33e-13 
19.2% 

5.33e-13 
19.2% 

5.33e-13 
19.2% 

5.33e-13 
19.2% 

90S preribosome 3.22e-08 
12.5% 

3.22e-08 
12.5% 

3.22e-08 
12.5% 

3.22e-08 
12.5% 

Nuclear part 1.28e-10 
44.2% 

1.17e-10 
44.2% 

1.17e-10 
44.2% 

1.17e-10 
44.2% 

Nuclear lumen 1.74e-10 
36.7% 

1.57e-10 
36.7% 

1.57e-10 
36.7% 

1.57e-10 
36.7% 

Organelle lumen 4.12e-09 
39.2% 

3.47e-09 
39.2% 

3.47e-09 
39.2% 

3.47e-09 
39.2% 

Intracellular organelle lumen 4.12e-09 
39.2% 

3.47e-09 
39.2% 

3.47e-09 
39.2% 

3.47e-09 
39.2% 

Ribonucleoprotein complex 2.32e-05 
26.7% 

2.32e-05 
26.7% 

2.32e-05 
26.7% 

2.32e-05 
26.7% 

 
Nucleus 

8.71e-10 
60% 

8.71e-10 
60% 

8.71e-10 
60% 

8.71e-10 
60% 

Nucleolar part 1.89e-06 
10% 

1.89e-06 
10% 

1.89e-06 
10% 

1.89e-06 
10% 

Macromoleular complex 2.04e-05 
50.8% 

2.04e-05 
50.8% 

2.04e-05 
50.8% 

2.04e-05 
50.8% 

Smallsubunit processome 0.00011 
7.5% 

0.00011 
7.5% 

0.00011 
7.5% 

0.00011 
7.5% 

Organelle part 0.00016 
57.5% 

0.00015 
57.5% 

0.00015 
57.5% 

0.00015 
57.5% 

Intracellular organelle part 0.00016 
57.5% 

0.00015 
57.5% 

0.00015 
57.5% 

0.00015 
57.5% 
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In this case similar p-values and percentage of genes are obtained 

for greedy, GRASP, CGRASP and RGRASP. 

Table 5.30    

Comparison of Greedy and GRASP Variants based on GO Terms for 
Biclusters Generated from the Second Seed and the Corresponding p-value 

obtained for each Algorithm for the Process Ontology 
 

GO terms 
P-value and percentage of genes of GO Terms 

GREEDY GRASP CGRASP RGRASP PSO GREEDY
-PSO 

Translation 
1.52e-56 
64.5% 

1.52e-56 
64.5% 

1.52e-56 
64.5% 

1.52e-56 
64.5% 

3.99e-62 
58.8% 

5.00e-25 
77.8% 

Cellularprotein metabolic 
process 

1.13e-27 
67.3% 

1.13e-27 
67.3% 

1.13e-27 
67.3% 

1.13e-27 
67.3% 

1.29e-27 
61% 

2.84e-15 
83.3% 

Protein metabolic process 
8.11e-27 
67.3% 

8.11e-27 
67.3% 

8.11e-27 
67.3% 

8.11e-27 
67.3% 

3.96e-23 
61% 

6.56e-15 
83.3% 

Cellular macromolecule 
biosynthetic process 

6.21e-22 
64.5% 

6.21e-22 
64.5% 

6.21e-22 
64.5% 

6.21e-22 
64.5% 

7.36e-23 
59.6% 

1.22e-11 
77.8% 

Macromolecule 
biosynthetic process 

7.76e-22 
64.5% 

7.76e-22
64.5% 

7.76e-22 
64.5% 

7.76e-22 
64.5% 

9.52e-23 
59.6% 

1.34e-11 
77.8% 

Gene expression 3.70e-20 
64.5% 

3.70e-20
64.5% 

3.70e-20 
64.5% 

3.70e-20 
64.5% 

1.90e-20 
60.3% 

1.34e-11 
80.6% 

Translational 
elongation 

1.32e-14 
14% 

1.32e-14
14% 

1.32e-14 
14% 

1.32e-14 
14% 

2.54e-16 
12.5% 

1.41e-08 
22.2 

Cellular biosynthetic 
process 

7.02e-18 
68.2% 

7.02e-18
68.2% 

7.02e-18 
68.2% 

7.02e-18 
68.2% 

9.12e-19 
64% 

1.55e-08 
77.8% 

Biosynthetic process 2.96e-17 
68.2% 

2.96e-17
68.2% 

2.96e-17 
68.2% 

2.96e-17 
68.2% 

3.99e-18 
64% 

2.58e-08 
77.8% 

Ribosome biogenesis 1.49e-15 
31.8% 

1.49e-15
31.8% 

1.49e-15 
31.8% 

1.49e-15 
31.8% 

2.85e-17 
29.4% 

3.01e-08 
41.7% 

rRNA processing 4.00e-09 
20.6% 

4.00e-09
20.6% 

4.00e-09 
20.6% 

4.00e-09 
20.6% 

2.81e-10 
19.1% 

4.40e-06 
30.6% 

rRNA metabolic 
process 

1.04e-08 
20.6% 

1.04e-08
20.6% 

1.04e-08 
20.6% 

1.04e-08 
20.6% 

8.79e-10 
19.1% 

7.11e-06 
30.6% 

Cellular macromolecule 
metabolic process 

3.82e-11 
71.0% 

3.82e-11
71.0% 

3.82e-11 
71.0% 

3.82e-11 
71.0% 

2.03e-09 
64.7% 

9.46e-09 
88.9% 
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In this case the best p-values are obtained in the order PSO, Greedy, 

GRASP, CGRASP, RGRASP and Greedy-PSO respectively. Similar p-

values are obtained for greedy, GRASP, CGRASP and RGRASP. The 

order of algorithms based on the percentage of genes for the first GO term 

is Greedy-PSO, Greedy and GRASP Variants and PSO. 

Table 5.31 

 Comparison of Greedy and GRASP Variants based on GO Terms for 
Biclusters Generated from the Second Seed and the corresponding                 

p-value obtained for each Algorithm for the Function Ontology 
 

GO Terms 
p-values and percentage of genes for GO Terms 

GREEDY GRASP CGRASP RGRASP PSO GREEDY-
PSO 

Structural 
constituent of 
ribosome 

5.81e-62 
57.9% 

5.81e-62 
57.9% 

5.81e-62 
57.9% 

5.81e-62 
57.9% 

7.00e-70 
52.9% 

1.73e-24 
66.7% 

Structural molecule 
activity 

4.33e-49 
58.9% 

4.33e-49 
58.9% 

4.33e-49 
58.9% 

4.33e-49 
58.9% 

3.27e-55 
54.4% 

8.97e-20 
66.7% 

Translation 
elongation factor 
activity 

0.00011 
4.7% 

0.00011 
4.7% 

0.00011 
4.7% 

0.00011 
4.7% 

0.00039 
3.7% 

0.00149 
8.3% 

RNA-directed DNA 
polymerase activity - - - - 

2.21e-05 
5.1% 

- 

RNA binding 
0.00603 

14% 
- - - 

0.00023 
14.7% 

- 

Translation 
elongation factor 
activity 

- - - - 
0.00039 

3.7% 
- 

DNA-directed 
DNA polymerase 
activity 

- - - - 
0.00211 

5.1% 
- 

DNA polymerase 
activity - - - - 

0.00287 
5.1% 

- 
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In this case the p-values are obtained in the order PSO, Greedy 

GRASP, CGRASP, RGRASP, and Greedy-PSO for the first two GO 

terms. The order of algorithms based on the percentage of genes is 

Greedy-PSO, Greedy, GRASP, CGRASP, RGRASP, and PSO for the 

first two GO terms. Similar p-values and percentage of genes are obtained 

for greedy, GRASP, CGRASP and RGRASP.  

Table 5.32 

Comparison of Greedy and GRASP Variants based on GO Terms for 
Biclusters Generated from the Second Seed and the corresponding p-value 

obtained for each Algorithm for the Component Ontology 
 

GO Term 
p-values and Percentage of Genes for GO Terms 

GREEDY GRASP CGRASP RGRASP PSO GREEDY
-PSO 

Cytosolic ribosome 1.42e-70 
59.8% 

1.42e-70 
59.8% 

1.42e-70 
59.8% 

1.42e-70 
59.8% 

1.01e-79 
54.4% 

1.49e-25 
66.7% 

Cytosolic part 3.93e-64 
59.8% 

3.93e-64 
59.8% 

3.93e-64 
59.8% 

3.93e-64 
59.8% 

1.37e-71 
54.4% 

1.09e-23 
66.7% 

Ribosome 1.10e-58 
63.6% 

1.10e-58 
63.6% 

1.10e-58 
63.6% 

1.10e-58 
63.6% 

2.59e-63 
57.4% 

7.35e-25 
75% 

Cytosol 
 

4.32e-57 
65.4% 

4.32e-57 
65.4% 

4.32e-57 
65.4% 

4.32e-57 
65.4% 

1.09e-60 
58.8% 

4.68e-20 
69.4% 

Ribonucleoprotein 
complex 

1.36e-43 
65.4% 

1.36e-43 
65.4% 

1.36e-43 
65.4% 

1.36e-43 
65.4% 

3.01e-46 
59.6% 

4.34e-23 
83.3% 

Cytosolic small 
ribosomal subunit 

7.82e-32 
28% 

7.82e-32 
28% 

7.82e-32 
28% 

7.82e-32 
28% 

3.95e-37 
25.7% 

9.12e-08 
25% 

Cytosolic large 
ribosomal subunit 

1.63e-32 
29.9% 

1.63e-32 
29.9% 

1.63e-32 
29.9% 

1.63e-32 
29.9% 

4.73e-37 
27.2% 

2.21e-16 
41.7% 

Large 
ribosomal subunit 

5.06e-27 
29.9% 

5.06e-27 
29.9% 

5.06e-27 
29.9% 

5.06e-27 
29.9% 

3.54e-30 
27.2% 

2.86e-14 
41.7% 

Non-membrane-
bounded organelle 

7.56e-25 
66.4% 

7.56e-25 
66.4% 

7.56e-25 
66.4% 

7.56e-25 
66.4% 

2.09e-25 
61% 

1.13e-14 
83.3% 

Intracellular non-
membrane-
bounded organelle 

7.56e-25 
66.4% 

7.56e-25 
66.4% 

7.56e-25 
66.4% 

7.56e-25 
66.4% 

2.09e-25 
61% 

1.13e-14 
83.3% 
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In this case the p-values are obtained in the order PSO, Greedy 

GRASP, CGRASP, RGRASP, and Greedy-PSO for all the GO terms. The 

order of algorithms based on the percentage of genes is Greedy-PSO, 

Greedy, GRASP, CGRASP, RGRASP, and PSO for all GO terms, except 

for the sixth GO term. Similar p-values and percentage of genes are 

obtained for greedy, GRASP, CGRASP and RGRASP for all GO terms.  

Table 5.33 
  Comparison of greedy and GRASP variants on GO terms for biclusters 
generated from the third seed and the corresponding P-value obtained            

for each algorithm for the Process ontology 
 

 

GO terms p-value and percentage of genes for GO terms 
GREEDY GRASP CGRASP RGRASP 

DNA repair 9.53e-11 
44.4% 

9.53e-11 
44.4% 

9.53e-11 
44.4% 

9.53e-11 
44.4% 

Response to DNA damage 
stimulus 

1.03e-09 
44.4% 

1.03e-09 
44.4% 

1.03e-09 
44.4% 

1.03e-09 
44.4% 

DNA metabolic process 
5.44e-

11(high) 
52.8% 

5.44e-
11(high) 
52.8% 

5.44e-
11(high) 
52.8% 

5.44e-
11(high) 
52.8% 

Cell cycle 8.42e-10 
55.6% 

8.42e-10 
55.6% 

8.42e-10 
55.6% 

8.42e-10 
55.6% 

cell cycle process 4.80e-09 
52.8% 

4.80e-09 
52.8% 

4.80e-09 
52.8% 

4.80e-09 
52.8% 

double-strand break repair 1.86e-07 
27.8% 

1.86e-07 
27.8% 

1.86e-07 
27.8% 

1.86e-07 
27.8% 

cellular response to stress 1.44e-07 
47.2% 

1.44e-07 
47.2% 

1.44e-07 
47.2% 

1.44e-07 
47.2% 

response to stress 4.62e-06 
47.2% 

4.62e-06 
47.2% 

4.62e-06 
47.2% 

4.62e-06 
47.2% 

mitotic sister chromatid 
cohesion 

7.19e-06 
19.4% 

7.19e-06 
19.4% 

7.19e-06 
19.4% 

7.19e-06 
19.4% 

cellular response to 
stimulus 

6.59e-06 
50% 

6.59e-06 
50% 

6.59e-06 
50% 

6.59e-06 
50% 

cell cycle phase 5.98e-08 
44.4% 

5.98e-08 
44.4% 

5.98e-08 
44.4% 

5.98e-08 
44.4% 

M phase 3.89e-07 
38.9% 

3.89e-07 
38.9% 

3.89e-07 
38.9% 

3.89e-07 
38.9% 

chromosome organization 3.89e-07 
38.9% 

7.15e-06 
38.9% 

7.15e-06 
38.9% 

7.15e-06 
38.9% 
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In this case similar p-values and percentage of genes are obtained 

for Greedy, GRASP, CGRASP and RGRASP for all GO terms. 

Table 5.34 

Comparison of Greedy and GRASP Variants based on GO Terms for 
Biclusters Generated from the Third Seed and the Corresponding p-value 

obtained for each Algorithm for the Function Ontology 
 
 

GO Terms 
p-value and Percentage of Genes for GO Terms 

GREEDY GRASP CGRASP RGRASP 

Double-stranded DNA 
binding 

0.00341 

11.1% 

0.00341 

11.1% 

0.00341 

11.1% 

0.00341 

11.1% 

structure-specific DNA 
binding 

0.00315 

13.9% 

0.00315 

13.9% 

0.00315 

13.9% 

0.00315 

13.9% 

 

In this case similar p-values and percentage of genes are obtained 

for Greedy, GRASP, CGRASP and RGRASP for all GO terms. 
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Table 5.35 

 Comparison of greedy and GRASP variants based on GO terms for 
biclusters generated from the third seed and the corresponding P-value 

obtained for each algorithm for the Component ontology 
 
 

GO Terms 
p-value and percentage of genes for GO Terms 

GREEDY GRASP CGRASP RGRASP 

Replication fork 1.40e-06 
22.2% 

1.40e-06 
22.2% 

1.40e-06 
22.2% 

1.40e-06 
22.2% 

Chromosome 1.21e-07 
44.7% 

1.21e-07 
44.7% 

1.21e-
07(highest) 
44.7% 

1.21e-07 
44.7% 

Chromosomal part 4.93e-06 
36.1% 

4.93e-06 
36.1% 

4.93e-06 
36.1% 

4.93e-06 
36.1% 

Nuclear chromosome 1.53e-05 
33.3% 

1.53e-05 
33.3% 

1.53e-05 
33.3% 

1.53e-05 
33.3% 

Nuclear replication fork 0.00019 
16.7% 

0.00019 
16.7% 

0.00019 
16.7% 

0.00019 
16.7% 

Nuclear chromosome part  0.00050 
27.8% 

0.00050 
27.8% 

0.00050 
27.8% 

0.00050 
27.8% 

Condensed nuclear 
chromosome 

0.00014 
19.4% 

0.00014 
19.4% 

0.00014 
19.4% 

0.00014 
19.4% 

Mitotic cohesin complex 0.00042 
8.3% 

0.00042 
8.3% 

0.00042 
8.3% 

0.00042 
8.3% 

Nuclear mitotic cohesin 
complex 

0.00042 
8.3% 

0.00042 
8.3% 

0.00042 
8.3% 

0.00042 
8.3% 

Nucleus 1.52e-05 
72.2% 

1.52e-05 
72.2% 

1.52e-05 
72.2% 

1.52e-05 
72.2% 

Condensed chromosome 0.00030 
19.4% 

0.00030 
19.4% 

0.00030 
19.4% 0.00030 

Nuclear cohesin complex 0.00104 
8.3% 

0.00104 
8.3% 

0.00104 
8.3% 

0.00104 
8.3% 

Cohesin complex 0.00104 
8.3% 

0.00104 
8.3% 

0.00104 
8.3% 

0.00104 
8.3% 

 

In this case similar p-values and percentage of genes are obtained 

for Greedy, GRASP, CGRASP and RGRASP for all GO terms. 
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Table 5.36 

 Comparison of Greedy and GRASP Variants based on GO Terms for  
Biclusters Generated from the Fourth Seed and the Corresponding p-value  

Obtained for each Algorithm for Process Ontology 
 
 

 

GREEDY GRASP CGRASP RGRASP 

Ribonucleoprotein 
complex biogenesis 
1.55e-14 
22.9% 

RNA processing  
1.63e-06 
18.9% 

RNA processing  
1.92 e-06 
18.8% 

Ribonucleoprotein 
complex biogenesis 
4.56e-15 
23.4% 

Ribosome 
biogenesis 
9.55e-13 
20.2% 
 

Ribosome 
biogenesis  
3.86e-06 
15.8% 

Ribosome 
biogenesis  
4.45e-06 
15.7% 

Ribosome 
biogenesis  
1.63e-12 
20.3% 

Cellular component 
biogenesis at 
cellular level 
3.72e-11 
23.3% 

ncRNA 
processing 
6.13e-06 
15.3% 

ncRNA 
processing 
7.03e-06 
15.2% 

Cellular component 
biogenesis at cellular 
level 
9.69e-12 
23.9% 

RNA processing 
8.10e-09 
20.6% 

Ribonucleoprotei
n complex 
biogenesis 
1.50e-05 
16.7% 

 Ribonucleoprotei
n complex 
biogenesis 
1.74e-05 
16.6% 

RNA processing 
3.04e-08 
20.3% 

ncRNA processing 
2.31e-08 
17.0% 

ncRNA metabolic 
process 
2.40e-05 
15.8% 

ncRNA metabolic 
process 
2.76e-05 
15.7% 

ncRNA processing  
8.36e-08 
16.7% 

In the biclusters obtained by the fourth seed, there are more than 

400 genes. Hence the algorithms are executed to get only 224 genes and 

only these genes are used to search for GO terms of process, function and 
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component ontologies.  Since the conditions in the biclusters are different 

for each algorithm, the genes selected are different, and hence the order of 

the GO terms is also different. Hence in Table 5.36, the GO term, p-value 

and percentage of genes are included in each entry.  Here the order of 

algorithms in terms of p-value for the first and third GO terms is 

RGRASP, Greedy, GRASP and CGRASP. But for the second, fourth and 

fifth GO terms, the order of algorithms based on p-value is Greedy, 

RGRASP, GRASP and CGRASP. The variation in p-value for GRASP 

and CGRASP is very less. 

Table 5.37 

Comparison of Greedy and GRASP Variants based on GO Terms for 
Biclusters generated from the Fourth Seed and the corresponding p-value 

obtained for each Algorithm for  Function Ontology 
 

GO TERM GREEDY GRASP CGRASP RGRASP 

'Molecular function 

unknown' 

Endonucleas

e activity   

(9, 0.00591) 

84 genes 84 genes 85 genes 

From the Table 5.37 it is clear that for function ontology a fixed 

number of genes are annotated to the term ‘molecular function unknown’ 

for all algorithms except for the greedy approach. 
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Table 5.38 
  Comparison of Greedy and GRASP Variants based on GO Terms for 

Biclusters generated from the Fourth Seed and the corresponding p-value  
obtained for each Algorithm for Component Ontology 

 

GREEDY GRASP CGRASP RGRASP 
Nucleolus 
3.68e-12 
16.1% 

Nucleolus 
4.08e-09 
14.4% 

Nucleolus 
4.65e-09 
14.3% 

Nucleolus 
3.34e-12 
16.2% 

Nucleus 
8.02e-08 
49.3% 

Preribosome 
0.00034 
8.6% 

Intracellular 
Organelle 
0.00031 
75.8% 

Nucleus 
5.96e-08 
49.5% 

Preribosome 
8.27e-08 
10.8% 

Intracellular 
Organelle 
0.00039 
75.7% 

Organelle 
0.00033 
75.8% 

Preribosome 
7.91e-08 
10.8% 

Nuclear part 
7.92e-07  
32.3% 

Organelle 
0.00041 
75.7% 

Preribosome 
0.00037 
8.5% 

Nuclear part 
8.88e-06 
31.1% 

90s 
Preribosome 
3.88e-05 
7.2% 

Intracellular Part 
0.00066 
84.7% 

Intracellular Part 
0.00055 
84.8% 

90s 
preribosome 
3.83e-05 
7.2% 

Nucleolar part 
5.49e-05 
6.3% 

Intracellular 
0.00123 
84.7% 

Membrane bounded 
organelle 
0.00105 
68.6% 

nucleolar part 
5.46e-05 
6.3% 

Nuclear 
Lumen 
7.74 e-05 
 23.8% 

Membrane 
bounded organelle 
0.00134 
68.5% 

Intracellular 
Membrane bounded 
organelle 
0.00105 
68.6% 

Nuclear 
Lumen 
.00035 
 23.0% 

In this case the order of algorithms based on p-value is RGRASP, 

GREEDY, GRASP and CGRASP in most of the GO terms.   But for the 

fourth and seventh GO terms, the p-vale of Greedy is better than 

RGRASP. For the first three seeds, these methods results in the same 

bicluster. For the fourth seed Greedy and RGRASP are better than 

CGRASP and GRASP. RGRASP is better than Greedy for some GO 

terms. There are also GO terms for which Greedy is better than RGRASP.  
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5.4.1.2 Comparison based on best Five GO Terms 

Here in Table 5.39 all the algorithms are compared on the basis of 

the best 5 p-values obtained from all the four biclusters. In this case the 

order of algorithms based on p-value is PSO, RGRASP, GREEDY, 

CGRASP, GRASP and GREEDY-PSO for all GO terms. The p-value is 

the same for GREEDY, GRASP, CGRASP and RGRASP for all GO 

terms. In terms of percentage of genes involved Greedy-PSO is better 

than all the other methods for all the five GO terms. 

5.4.2 Comparison of Algorithms based on Size and MSR 

Three different seeds are selected. These seeds are enlarged by 

Greedy and GRASP variants. The bicluster size and MSR are compared 

for biclusters obtained from all these algorithms. From Table 5.40 it is 

clear that for the three seeds, same bicluster is obtained by greedy, 

RGRASP, GRASP and CGRASP. But due to randomization in GRASP, if 

the conditions selected are different, these algorithms result in different 

biclusters. Analysing the algorithms based on the biclusters obtained from 

the same seed, it should be noted that among the algorithms Greedy, 

GRASP, CGRASP and RGRASP result in different biclusters, only if the 

conditions selected are different. These algorithms then differ in the order 

in which the genes are added. The local search phase also results in the 

addition of similar genes.  
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5.5 Summary 

In this chapter algorithms based on the metaheuristic methods 

GRASP and its variants, PSO and greedy-PSO hybrid are used for finding 

biclusters in gene expression data. The algorithms are implemented on the 

Yeast dataset and also the Human Lymphoma dataset. This is the first 

time that GRASP metaheuristics and its variants are applied for 

identifying biclusters from Human Lymphoma dataset. The biologically 

significant biclusters obtained from these algorithms are compared with 

other algorithms. In terms of the best p-value obtained GRASP, 

CGRASP, RGRASP and PSO algorithms are better than that of MOGAB, 

SGAB, CC, RWB, OPSM, Bimax, ISA and Bivisu. The metaheuristic 

algorithms and Greedy approach are compared based on p-value, bicluster 

size and MSR. It is found that when the conditions selected are different 

these algorithms result in different biclusters. 

 

….. ….. 
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In this chapter the performance of all MSR based algorithms are 

evaluated based on the quality of biclusters obtained.  High row variance 

is an important quality of the bicluster.  MSR has a problem in the 

detection of biclusters with highly significant change in the expression 

level. This problem is clearly illustrated in this chapter. Constraint based 

algorithms SGSC and MSRT solve this problem to a certain extent 

compared to all other algorithms which are trying to minimize MSR, 

including the metaheuristic and greedy approach developed in this study.  

The performance of all these algorithms are also evaluated and compared 

based on the other qualities of bicluster namely bicluster size, MSR and 

p-values obtained for different GO terms.   
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6.1 A Critical Problem of MSR in the Identification of 
Biclusters with High Row Variance  

The mean squared residue introduced by Cheng and Church has 

become one of the most popular measures to identify biclusters in most of 

the biclustering algorithms. In this section a critical problem with MSR in 

detecting highly significant biclusters is discussed by giving examples 

from both Yeast and Lymphoma datasets.  These biclusters are highly 

significant because the row variance of some of these biclusters is far 

greater than the row variance of all the biclusters detected so far by any 

other algorithm using MSR. These biclusters are also coherent even 

though their MSR value exceeds the predefined MSR threshold.  Cheng 

and Church [29] defined a bicluster as a uniform submatrix having low 

Mean Squared Residue (MSR).  MSR is used to compute the coherence 

among the group of genes. There is a threshold value denoted by δ for 

MSR which depends on the dataset. Many biclustering algorithms were 

developed using MSR.  

6.1.1 Relationship between Row Variance and MSR  

Algorithms using mean squared residue uses row variance as an 

accompanying score to eliminate trivial biclusters. Biclusters with high 

row variance are more interesting because they make significant changes 

in the expression level of the genes.  Hence they are biologically more 

relevant. According to the general notion it is assumed that the biclusters 

should have low MSR and high row variance. Now the question is how 

MSR and row variance are related. The MSR is used for measuring the 
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variance of the set of all elements in the bicluster, plus the mean row 

variance plus the mean column variance [10]. From this statement it is 

clear that row variance forms an incremental factor in the calculation of 

MSR. It is observed that genes having low row variance fills the MSR 

value by small amounts so that such biclusters can accommodate more 

genes whereas biclusters with high row variance fill the MSR value by 

larger amounts, so that only few genes can be accommodated within the 

given MSR threshold. MSR depends on row variance, column variance 

and the variance of the set of all elements in the bicluster. Hence it is 

found that when one more condition in which the genes are expressing 

similarly is added to a bicluster and the row variance is  making only a 

slight variation, then sometimes both MSR and row variance are 

increasing and sometimes one is increasing and the other is decreasing,  

and in some other situations both are decreasing. The problematic 

situation is when both are increasing because biclustering algorithms are 

trying to maximize row variance and minimize the MSR. MSR is 

minimized thinking that the increase in the value is due to the lack of 

coherence. This may not be true always because some of the conditions 

which make a significant increase in the row variance will make a 

significant increase in the MSR value also. So in the optimization 

methods which are trying to minimize MSR, there is least chance of 

identifying such biclusters.  Sometimes this increase in MSR will be 

above the predefined MSR threshold value of the dataset so that the 

biclustering algorithm using the MSR will never identify such biclusters 

with highly significant variation in the expression level.   These facts are 



Chapter 6 

 - 250 -

established by giving example biclusters from Yeast and Lymphoma 

datasets. 

6.1.2 Biclusters from Yeast dataset 

Some biclusters which can clearly illustrate the problem of MSR are 

given in Figure 6.1. From one of these biclusters (yc9) it can be noticed 

that how the MSR increases above the predefined MSR threshold and 

how row variance increases abruptly just by adding a single condition.  
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Figure 6.1Ten biclusters from the Yeast dataset. From left to right and top to bottom the 

bicluster labels are: ya9, yb9, yc9, yd9, ye9, yf9, yg9, yh9, yi9 and yj9 
respectively. The details about the biclusters can be obtained from Table 6.1 
using bicluster label. 

 

Table 6.1 

Information about Biclusters shown in Figure 6.1 

Bicluster 
Label 

Number of 
Genes 

Number of 
Conditions MSR Row Variance 

ya9 20 17 598.59 2930.10 

yb9 20 2   88.17   271.77 

y c9 20 3 608.22 4771.60 

yd9 20 5 555.58 3528.90 

ye9 20 6 658.84 5401.50 

yf9 12 3 477.11 6509.40 

yg9  8 14 510.67 2263.60 

yh9 24 13 322.83 1782.00 

yi9 21 14 416.47 2609.20 

yj9 27 8 458.39 3085.80 
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The set of genes and conditions shown with the label ya9 is 

obtained by expanding a seed from K-Means clustering algorithm 

under 17 conditions without imposing any constraints on conditions. 

The set of 20 genes in all 17 conditions are shown to clarify how 

significantly the expression level changes from its normal level in two 

conditions. In ya9 genes are not expressing similarly under all 17 

conditions.  

6.1.3  MSR and Row Variance Increase Significantly by the Addition 
of a Single Condition 

A bicluster is shown with label yb9 which contains the same 20 

genes in the bicluster plot labelled ya9. In the bicluster labelled yb9 

there are two conditions.  The genes in yb9 present similar behaviour 

under these two conditions. When one more condition with a 

significant change in the expression level is included to the bicluster 

yb9, then the bicluster yc9 is obtained. The row variance of yc9 is 

4771.60 whereas the row variance of yb9 is only 271.77.  Similarly the 

MSR value of yc9 is 608.22 where as for yb9 the MSR is only 88.17. 

Thus the addition of a single condition increases the MSR above the 

predefined MSR threshold and row variance increases from 271.77 to 

4771.60.  This high variation in MSR is not due to the lack of 

coherence but because of the significant change made in the expression 

level of the genes which is denoted by row variance. Biclusters with 

labels yd9 and ye9 are also obtained from the same set of genes and 

has high row variance and MSR.   
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6.1.4  Row Variance and MSR are very high even for Genes Converging 
to a Single Point 

From the bicluster labeled yc9 it is clear that the 20 genes in this 

bicluster are divided into four groups depending on the point to which the 

expression value reaches. In one of the 20 genes, the expression value 

changes from 264 to 139. Two of them reach the value 110. Five of them 

reach the value 69. Twelve of them reach the value 0. In order to see the 

effect of genes converging to a single point, only such genes are selected 

from bicluster yc9 whose expression level reaches 0. The bicluster with 

such genes are shown as bicluster labeled yf9. Even though the genes are 

converging to the same point, the MSR value is above the threshold 

which is 477.11 and row variance is 6509.40. When the condition which 

makes the significant change is removed from this bicluster the MSR 

value is only 93.30 and the row variance is only 393.75.  

6.1.5 A Bicluster with the Highest Row Variance Identified 

Biclusters with labels yg9 to yj9 contain another set of genes with 

high row variance and MSR above the threshold. The maximum row 

variance among different biclustering algorithms for the Yeast Dataset is 

obtained by Cheng and Church [29] and the value they obtained is 4162. 

But in this study the row variance is above 6000 for bicluster yf9. For the 

Yeast dataset MSR threshold is only 300. Hence no algorithm using MSR 

can identify biclusters from yc9 to yj9. From the bicluster plots it is clear 

that the genes present a similar behavior in the biclusters from yc9 to yj9 

even though their MSR value is above the threshold. The row variance of 

these biclusters is also very high.  
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6.1.6 Biclusters from Human Lymphoma Dataset  

Some biclusters from Human Lymphoma dataset which can 

illustrate the problem of MSR are shown in Figure 6.2.  
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 Figure 6.2 Eight Biclusters from the Lymphoma Dataset. From left to right and top to 

bottom Bicluster labels are la9, lb9, lc9, ld9, le9, lf9, lg9 and lh9 
respectively. The details about the biclusters can be obtained from Table 6. 
2 using bicluster label. Biclusters lb9, ld9, lf9 and lh9 are obtained from 
la9, lc9, le9 and lg9 respectively. 
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Their row variance is very high showing that there is significant 

change in the expression level. They are coherent even though their MSR 

value is above the predefined MSR threshold.   

Table 6.2 

 Information about Biclusters of Figure 6.2 
 

Bicluster 
Label 

Number of 
Genes 

Number of 
Conditions MSR Row Variance 

la9 11 34 1142.0  7936.9 
lb9 11 84 3927.8 27674.0 
lc9 10 77 1187.7   5428.8 
ld9 10 94 1562 .0   8813.4 
le9 10 77 1140.5   4630.4 
lf9 10 96 2092.5 19160.0 

lg9 10 39 1173.3   8691.7 
lh9 10 96 4522.8  25431.0 

 

Biclusters la9, lc9, le9 and lg9 are identified by enlarging seeds 

from K-Means by adding more conditions. The seed bicluster will contain 

some conditions. All other conditions are verified for inclusion in the 

bicluster. An added condition is removed if the MSR value of the 

resulting bicluster exceeds the MSR threshold as in SGSC and MSRT 

algorithms. Bicluster lb9 is obtained from la9 by adding more conditions 

and by checking visually using bicluster plot whether the increase in MSR 

above the threshold value is due to the lack of coherence or significant 

change.  In the same way Biclusters ld9, lf9 and lh9 are obtained from 

lc9, le9 and lg9 respectively. In the bicluster plot la9 which is obtained by 
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enforcing MSR threshold, the Y axis varies from -200 to 400. But in lb9 

which is obtained from la9, Y axis varies from -600 to 600. Similar 

difference in the range of Y axis can be observed in biclusters lc9 and ld9, 

le9 and lf9, lg9 and lh9 respectively. This clearly indicates that the 

conditions which make significant variations are eliminated by enforcing 

MSR threshold.   The row variance of bicluster lb9 is 27674. This is far 

above the row variance obtained so far by algorithms using MSR. The 

previous instance of maximum value of row variance for Lymphoma data 

is obtained by ISA [56] and the value is only 14682.47 [75]. The 

significant changes in the expression levels of the genes which result in 

high row variance can be verified from the bicluster plots in Figure 6.2.  

The MSR threshold value for the Lymphoma dataset is 1200. This 

threshold value prevents the identification of highly coherent biclusters such 

as lb9, ld9, lf9 and lh9 shown above. It is difficult for other biclustering 

algorithms to identify even the biclusters la9, lc9, le9 and lg9 even though 

their value is less than the MSR threshold. This is because these biclusters 

are having significant variation in the expression level denoted by their row 

variance. These biclusters were identified by algorithms MSRT and SGSC 

which allowed maximum possible variation for MSR. In these algorithms an 

added condition is removed if it exceeds the MSR threshold. Hence it allows 

maximum variation for MSR. The objective of other biclustering algorithms 

is to minimize MSR. When the objective is to minimize MSR, conditions 

which do not make significant change will get more preference than the 

conditions which make significant change. It is because in the latter case 

incremental increase in the MSR will be greater than the former.    
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When the MSR exceeds the predefined threshold it prevents the 

inclusion of other conditions and genes which are coherent. For 

biclustering algorithms which enlarge seeds by adding more genes and 

conditions, incremental increase in MSR above the MSR threshold could 

be a situation in the intermediate stage due to the addition of some 

conditions with significant change. In such cases the conditions will have 

to be removed. If those conditions are retained, even though the MSR of 

the bicluster is greater than the threshold, after adding more genes to the 

bicluster the MSR value will get reduced. For example, in the case of 

bicluster shown in Figure 6.1 with label yh9, MSR value is 322.83 and 

row variance is 1782. There are 24 genes in this bicluster. But when there 

were only 10 genes in the bicluster, the MSR value was 367.5 and the row 

variance was 2040.5. This means that both MSR and row variance got 

reduced after adding more genes. Sometimes such additions will reduce 

the MSR below the threshold.   

In short, some conditions which make significant changes in the 

expression level are not included in the bicluster due to the value of MSR 

threshold. So the knowledge discovered by the algorithm is that the genes 

are exhibiting similar expression levels only under X conditions. In fact 

the genes are coherent under Y conditions. Here Y is greater than X.  In 

this context SGSC and MSRT algorithms are better than all other 

algorithms mentioned in this study because in these algorithms maximum 

possible variation is allowed for MSR. 
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6.2 Comparison of Biclusters Generated from Four 
Different Seeds by MSR based Algorithms  

To evaluate the statistical significance for the genes in each bicluster 

p-values are used. P-values indicate the extent to which the genes in the 

bicluster match with the different GO categories. P-value indicates the 

statistical significance of a bicluster. Four different seeds, which in the 

event of enlargement results in biologically significant biclusters, were 

selected.  These seeds are enlarged by all the eight algorithms and the p-

values of the GO terms of these biclusters are compared for all these 

algorithms. Since PSO is a population based technique a significant 

bicluster similar to the enlargement of seed 2 is obtained for Binary-PSO 

and Greedy-PSO. Hence only in bicluster 2 such comparisons are given for 

these two algorithms. All the eight seed growing algorithms are also 

compared based on bicluster size and MSR by enlarging the three different 

seeds. These comparisons are given in this chapter.  

6.2.1 Comparison based on p-values obtained for GO Terms 

The first seed was enlarged by all the algorithms developed. The 

names of the genes in each bicluster are found out. Then the names of the 

genes are entered into the gene ontology database and GO terms for 

process, function and component ontology are searched. Terms for each 

ontology, the corresponding p-value and the percentage of genes involved 

in a particular ontology are given in the following tables. The findings 

derived from each Table are given after the Table and the final conclusion 

is summarized at the end of the chapter. 
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From Table 6.3 it is clear that similar p-values are obtained for 

greedy, RGRASP, GRASP AND CGRASP. The order of algorithms 

based on p-value is greedy, RGRASP, GRASP, CGRASP, ISIMSRDT, 

MSRT, MSRDT and SGSC respectively based on the first GO term. The 

p-values obtained for SGSC is very low. The reason is that since the 

difference threshold value assigned for genes is very low, there are only 

23 genes in the bicluster. By increasing this value more genes will be 

included, and this will increase the p-value of GO terms for SGSC 

algorithm. The p-value and the percentage of genes involved for greedy 

and GRASP variants are the same for all the GO terms.  For all GO terms 

the p-value obtained by greedy and GRASP variants are better than all the 

other algorithms except for the last GO term. For the last GO term, the p-

value obtained by ISIMSRDT is the best.  The order of algorithms based 

on the percentage of genes involved for the first GO term is ISIMSRDT, 

greedy, GRASP variants, MSRT, SGSC and MSRDT. For the first three 

GO terms, the percentage of genes involved is the highest for ISIMSRDT 

algorithm. For all other GO terms except the third and the seventh, the 

percentage of genes involved in SGSC is the highest. 
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Table 6.4 

  Comparison of MSR based Algorithms based on GO Terms for Biclusters 
Generated from First Seed and the Corresponding p-value obtained for 

each Algorithm for the Function Ontology 
 

GO Terms 

p-value 

M
SR

T
 

M
SR

D
T

 

IS
IM

SR
D

T
 

SG
SC

 

G
R

E
E

D
Y

 

V
G

R
A

SP
 

C
G

R
A

SP
 

R
G

R
A

SP
 

Number of 
genes 

annotated 
to the term 
molecular 
function 
unknown 

27 
genes 
Out of 

61 
genes 

32 
genes 
Out 0f 

77 
genes 

- 10 out of 
23genes 

44  
genes 

44  
genes 

44  
genes 

44  
genes 

snoRNA 
binding - - 0.00480 - - - - - 

 

 From the Table 6.4 it is clear that for function ontology a fixed 

number of genes are annotated to the term ‘molecular function unknown’ 

for all the algorithms except ISIMSRDT. For ISIMSRDT algorithm, 4 

genes from the bicluster are annotated to the term snoRNA binding and its 

p-value is 0.0048. 
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From Table 6.5 it is clear that the order of algorithms based on p-

value for the first GO term is greedy, GRASP, CGRASP, RGRASP, 

ISIMSRDT, MSRT, MSRDT, and SGSC for the first GO term. Similar p-

values are obtained for greedy, GRASP, CGRASP and RGRASP for all 

GO terms. Since there are only 23 genes in the bicluster obtained by the 

SGSC algorithm there is only one GO term associated with it for the 

component ontology. The best value for the percentage of genes involved 

is obtained by ISIMSRDT algorithm for all GO terms. Out of the 14 GO 

terms, the best p-value is obtained by ISIMSRDT algorithm for all GO 

terms except in the case of GO terms 1, 9, 10, 13 and 14. 

From Table 6.6, it is clear that the p-values are obtained in the order 

PSO, Greedy, RGRASP, CGRASP, GRASP, ISIMSRDT, SGSC, greedy-

PSO, MSRT and MSRDT respectively for the first GO term. Out of the 

13 GO terms, p-value obtained by binary PSO is better than all other 

algorithms, except for the GO terms 2, 3, 7 and 13. For GO terms 2 and 3, 

the greedy and GRASP variants obtained the best p-value. For the seventh 

GO term, the best p-value is obtained by ISIMSRDT and for the 13th GO 

term the best p-value is obtained by SGSC. In terms of percentage of 

genes involved the greedy-PSO hybrid is better than all the other 

algorithms for all the GO terms. 
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 From Table 6.7, it is clear that in terms of p-value the order of 

algorithms are PSO, Greedy, RGRASP, CGRASP, GRASP, ISIMSRDT, 

SGSC, greedy-PSO, MSRDT and MSRT respectively for the first and 

second GO terms. Similar p-values and percentage of genes are obtained 

for greedy, GRASP, CGRASP and RGRASP for all GO terms. The 

percentage of genes involved is the highest for greedy-PSO for the first 

three GO terms. More GO terms are obtained for PSO compared to that of 

all the other algorithms. 

From Table 6.8, it is clear that the best p-values are obtained in the 

order PSO, Greedy, RGRASP, CGRASP, GRASP, ISIMSRDT, SGSC, 

MSRDT, MSRT and greedy-PSO for all the GO terms. The order of 

MSRDT and MSRT is changing for a few GO terms. The percentage of 

genes involved is the highest for greedy-PSO in all cases except for the 

GO term cytosolic small ribosomal subunit.  
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From Table 6.9, it is clear that for most of the GO terms the order 

of algorithms based on p-values are MSRDT, MSRT, SGSC, Greedy, 

GRASP, CGRASP, RGRASP and ISIMSRDT. The percentage of genes 

involved is the highest for MSRDT in most of the GO terms. Similar p-

values and percentage of genes are obtained for Greedy, GRASP, 

CGRASP and RGRASP for all the GO terms. 

 
From Table 6.10, the order of algorithms based on p-value and 

percentage of genes involved is MSRT, MSRDT, SGSC, ISIMSRDT, 

Greedy, GRASP, CGRASP and RGRASP for the first GO term. Similar 

p-values and percentage of genes are obtained for Greedy, GRASP, 

CGRASP and RGRASP for all the GO terms. Only two GO terms are 

obtained for all algorithms except MSRT, MSRDT and SGSC. 
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From Table 6.11, the order of algorithms based on p-value is 

ISIMSRDT, SGSC, MSRDT, MSRT, Greedy, GRASP, CGRASP and 

RGRASP for the first and third GO terms. Similar p-values and 

percentage of genes are obtained for Greedy, GRASP, CGRASP and 

RGRASP for all the GO terms. In this case constraint based algorithms 

are better than Greedy and GRASP variants. For the second GO term, the 

order of algorithms based on p-value is MSRDT, ISIMSRDT, MSRT, 

Greedy, GRASP variants and SGSC. The percentage of genes involved is 

the best for the MSRDT algorithm for the first, second and third GO 

terms. 

In the significant biclusters obtained from the fourth seed, since the 

conditions selected are different for each algorithm, the genes selected are 

also different. Hence the GO terms are different for biclusters obtained by 

each algorithm. Hence GO terms along with the p-values are given in the 

order of p-values. From Table 6.12 the order of algorithms based on p-

value is RGRASP, Greedy, GRASP, CGRASP, MSRDT, SGSC, 

ISIMSRDT and MSRT for the first and third GO terms. For the second, 

fourth and fifth GO terms, the order of algorithms based on p-value is 

Greedy, RGRASP, GRASP, CGRASP, MSRDT, SGSC, ISIMSRDT and 

MSRT. The percentage of genes involved in a GO term, is the highest for 

MSRDT algorithm in the case of the first, second, third and fifth GO 

terms. For the fourth GO term, the percentage of genes involved is the 

highest for MSRT. 
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Table 6.13 

 Comparison of MSR based Algorithms based on GO Terms for Biclusters  
generated from Fourth Seed and the Corresponding P-value  

obtained for each Algorithm for  Function Ontology 
 

GO Terms 

p-value 

M
SR

T
 

M
SR

D
T

 

IS
IM

SR
D

T
 

SG
SC

 

G
R

E
E

D
Y

 

G
R

A
SP

 

C
G

R
A

SP
 

R
G

R
A

SP
 

'molecular 
function 

unknown' 

13 out 
of 34 
input 
genes 

11 out 
of 28 
genes 

12out of  
33 genes

13 out 

33 

genes 

Endonuclease 
activity      

(9, 0.00591) 

84genes

Out of 
224 

84 genes 

Out of 
224 

85 genes 

Out of 224 

 

From the Table 6.13, it is clear that for function ontology a fixed 

number of genes are annotated to the term ‘molecular function unknown’ 

for all algorithms except for the Greedy algorithm. For Greedy algorithm, 

9 out of the 224 genes are annotated to the term Endonuclease activity 

and the corresponding p-value is 0.00591.  
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From Table 6.14, it is clear that the order of algorithms   based on p-

value is RGRASP, Greedy, SGSC, ISIMSRDT, MSRDT, GRASP 

CGRASP and MSRT for the first GO term. The order of algorithms   

based on p-value is MSRDT, SGSC, ISIMSRDT, Greedy, RGRASP, 

MSRT, CGRASP and GRASP and for the second GO term. The order of 

algorithms   based on p-value is MSRDT, SGSC, ISIMSRDT, RGRASP, 

Greedy, MSRT, CGRASP and GRASP for the third GO term. For the first 

GO term the percentage of genes involved is the best for SGSC and 

ISIMSRDT. In short, from these results we cannot conclude that a single 

algorithm is best in terms of p-value. The order is changing for each 

bicluster and in some situation for a particular ontology. 

6.2.2  Comparison based on best 5 p-values obtained for the MSR 
based Algorithms 

In Table 6.15 all the MSR based algorithms are compared on the 

basis of the best 5 p-values obtained from all the four biclusters. In this 

case, the order of the algorithms is PSO, RGRASP, Greedy, CGRASP, 

GRASP, ISIMSRDT, SGSC, MSRDT, MSRT and Greedy-PSO for the 

first GO term. PSO is the best in terms of p-value for all GO terms. The 

percentage of genes involved is the best for SGSC and Greedy-PSO for 

the first GO term. The p-value obtained by Greedy, GRASP, CGRASP 

and RGRASP are the same for all GO terms.  
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6.2.3 Comparison of Algorithms based on Bicluster Size and MSR 

Three different seeds are selected. These seeds are enlarged by all 

the MSR based algorithms. The bicluster size and MSR are compared for 

biclusters obtained from all these algorithms. 

Table 6.16.a 

 Comparison of Size and MSR of 3 Biclusters by Enlarging Three              
Different seeds by each one of the MSR based Algorithms  

 

B
ic
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st

er
s MSRT MSRDT ISIMSRDT 

Si
ze

 

M
SR

 

R
ow

 
va

ri
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ce
 

si
ze

 

M
SR

 

R
ow

 
va

ri
an

ce
 

si
ze

 

M
SR

 

R
ow

 
va

ri
an

ce
 

1 61*17 198.95 469.4058 77*16 199.54 533.1660 98*17 199.97 482.8 

2 56*17 199.78 587.8461 64*17 199.32 654.5732 98*17 199.99 600.9 

3 28*17 299.85 1937.5000 28*17 286.34 2034.1000 33*17 299.22 1970.1 
  

 
Table 6.16.b 

 Comparison of Size and MSR of 3 Biclusters by Enlarging 3              
Different seeds by each one of the MSR based Algorithms 

 

SGSC Greedy 

Size MSR Row Variance Size MSR Row Variance 

23*17 131.39   506.7582 121*17 199.94   483.2784 

63*17 167.43   615.9798 107*17 199.48   568.0833 

31*17 297.19 2036.0000   36*17 297.61 1806.9000 
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Table 6.16.c 

 Comparison of Size and MSR of Three Biclusters by Enlarging Three                       
Different seeds by each one of the MSR based Algorithms 

 

B
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s GRASP RGRASP CGRASP 

Si
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M
SR
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M
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R
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1 121*17 199.94 483.278 121*17 199.94 483.278 121*17 199.94 483.278 

2 107*17 199.48 568.083 107*17 199.48 568.083 107*17 199.48 568.083 

3 36*17 297.61 1806.900 36*17 297.61 1806.900 36*17 297.61 1806.900 

 

Analysing the algorithms based on the biclusters obtained from the 

same seed, it is noted that among the algorithms SGSC produced 

biclusters of low size but coherence is high since the MSR value is very 

low. ISIMSRDT is the best among the four constraint based algorithms in 

terms of bicluster size. Reducing the increment factor in ISIMSRDT can 

improve the bicluster size further. But Greedy and GRASP algorithms 

identify better biclusters than the four constraint based algorithms in 

terms of bicluster size and MSR. CGRASP, RGRASP and GRASP 

algorithms result in different biclusters only if the conditions selected are 

different. These algorithms differ in the order in which the genes are 

added. The local search phase also results in the addition of similar genes.  

From Tables 6.16 (a), 6.16 (b) and 6.16 (c), it is clear that for the 

first seed, same bicluster is obtained by Greedy, RGRASP, GRASP and 

CGRASP. This is the largest in terms of bicluster size. The second highest 

is in the order ISIMSRDT, MSRDT, MSRT and SGSC. For the second 
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seed the order of algorithms in terms of bicluster size is Greedy, 

RGRASP, CGRASP, GRASP, ISIMSRDT, MSRDT, SGSC, and MSRT. 

For the third seed the order is Greedy, RGRASP, CGRASP, GRASP, 

ISIMSRDT, MSRDT, SGSC, and MSRT. In short Greedy, RGASP, 

CGRASP, GRASP, ISIMSRDT, MSRDT, MSRT and SGSC are the order 

of algorithms in terms of bicluster size. The order of MSRT and SGSC 

changes for different biclusters depending on the value selected for the 

difference threshold. 

6.3  Summary 

Mean Squared Residue (MSR) is used as a measure of coherence in 

many of the biclustering algorithms developed so far. In this chapter a 

problem with the MSR in the identification of biclusters with large row 

variance is presented. The problem is that most often the large 

incremental increase in MSR may be due to the lack of coherence. But 

sometimes it may be due to the significant change in the expression level 

of the genes indicated by the high value of the row variance. When the 

row variance increases significantly, the MSR value also increases.  But 

sometimes this increase in MSR will be above the predefined MSR 

threshold.   The visual inspection of the bicluster plot can help towards 

differentiating between lack of coherence and significant change. Genes 

with such highly significant change in the expression level are of great 

biological significance. In this context SGSC and MSRT algorithms are 

better than all other algorithms mentioned in this study, because in these 

algorithms maximum possible variation is allowed for MSR. In all other 
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algorithms which are trying to minimize MSR, it is difficult to identify 

biclusters from Yeast and Lymphoma datasets with high row variance and 

coherence (even though the MSR value exceeds the predefined threshold) 

as shown in Figure 6.1 and 6.2. 

In terms of bicluster size (high) and MSR (low) Greedy and GRASP 

variants are better than the constraint based algorithms. In terms of p-

value Greedy and GRASP variants are better than the constraint based 

algorithms for the biclusters from first two seeds. But in the case of the 

constraint based algorithms, the p-value is better than Greedy and GRASP 

variants for the bicluster generated from the third seed. For the fourth 

seed it is difficult to make a final conclusion. In terms of time complexity 

the constraint based algorithms are better than Greedy and metaheuristic 

approaches. 

 Biclustering problem is NP-Hard [29, 36]. Heuristic based search 

methods are used to solve the biclustering problem in polynomial time 

[27, 91]. Similar problem solving methods are used in this study for the 

identification of biclusters.  

 
 

….. ….. 
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Different types of algorithms namely constraint based, greedy and 

metaheuristic algorithms are developed in this work for the identification 

of coherent biclusters from high dimensional gene expression data. Some 

of the constraint based algorithms are able to identify biclusters with 

significant change in the expression level of the genes. The row variance 

of some of such biclusters is higher than that of any other algorithm using 

MSR. In terms of the best p-value obtained these algorithms are better 

than some of the well known biclustering algorithms namely MOGAB, 

SGAB, CC, RWB, Bimax, OPSM, ISA and BiVisu. The algorithms 

developed in this work overcome some of the disadvantages associated 

with the already existing biclustering algorithms. The results obtained 

and the performance analysis, show that these algorithms are suitable for 

the identification of coherent biclusters. Suggestions for the further work 

in this area of research are also given.  
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7.1  Conclusion  

In recent years large amounts of high-dimensional data in gene 

expression profiles are generated. Analyzing such high-dimensional gene 

expression data have become an issue of significant research interest. 

Elucidating the patterns hidden in high-dimensional gene expression data 

is a highly relevant and challenging research endeavour.  

Biclustering identifies local patterns from high dimensional data. 

Biclustering is simultaneous clustering of both the rows and columns of a 

data matrix. In this thesis algorithms are developed for the identification 

of coherent biclusters from gene expression data using different algorithm 

design techniques. All these algorithms are using a measure called mean 

squared residue to search for biclusters. Biclustering is an optimization 

problem with the objective of maximizing the volume and minimizing the 

mean squared residue of the bicluster. All these algorithms are enlarging 

the seeds obtained from K-Means clustering algorithm.  

Different types of algorithms, namely constraint based, greedy and 

metaheuristic algorithms are developed in this work for the identification 

of coherent biclusters from high dimensional gene expression data. There 

are four constraint based algorithms, one greedy approach, four 

metaheuristic algorithms and the last one is a combination of greedy and 

metahueristic approach. The different algorithms are: 

1) Mean Squared Residue Threshold (MSRT) algorithm 

2) Mean Squared Residue Difference Threshold (MSRDT) algorithm 
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3) Iterative Search with Incremental MSR Difference Threshold 

(ISIMSRDT) algorithm 

4) Seed Growing using Separate Constraints (SGSC) algorithm 

5) Algorithm based on Greedy approach  

6) Algorithm based on Greedy Randomized Adaptive Search 

Procedure (GRASP) 

7) Algorithm  based on Cardinality based Greedy Randomized 

Adaptive Search Procedure (CGRASP) 

8) Algorithm based on Reactive Greedy Randomized Adaptive 

Search Procedure (RGRASP) 

9) Algorithm based on Binary Particle Swarm Optimization (PSO) 

10) Algorithm based on Greedy - Binary Particle Swarm Optimization 

hybrid 

In all the constraint based algorithms node (gene or condition) 

addition follows node deletion if necessary. The added node is deleted 

depending on the constraints used by the algorithm. The MSRT 

algorithm uses the only constraint namely the MSR threshold.  This 

method allows maximum variation possible for MSR. It is advantageous 

for including conditions which make significant change in the bicluster. 

But the disadvantage is that the added node may not be optimal in terms 

of MSR value. Hence one more constraint called the MSR Difference 

Threshold (MSRDT) is introduced with the objective of minimizing 

MSR. This constraint resulted in different research findings in connection 
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with the gene expression data. It is found that this threshold value is 

different for genes and conditions. Reducing the difference threshold 

value for genes increases coherence and reducing the threshold value for 

conditions eliminates conditions which make significant change in the 

expression level. It is also found that the difference threshold for the 

negatively correlated genes is higher than that of other genes. It is 

difficult to find a suitable value of difference threshold for each bicluster. 

Hence in ISIMSRDT algorithm, the MSR difference threshold is 

initialized with a small value and it is incremented after each iteration. 

Iterative search has the advantage of including the nth condition whose 

MSR value got reduced after adding the (n-k)th condition. After 

experimenting with MSRDT algorithm it is found that reducing the MSR 

difference threshold for genes increases coherence and reducing the MSR 

difference threshold for conditions eliminates conditions which make 

significant change in the expression level. Thus it is concluded that 

separate constraints should be used for genes and conditions. Hence the 

algorithm Seed Growing using Separate Constraints (SGSC) for genes 

and conditions is developed. Highly coherent biclusters can be identified 

with this algorithm. Moreover, with the help of bicluster plot this 

algorithm can identify some biclusters with very high row variance from 

both Yeast and Lymphoma datasets. These biclusters are coherent even 

though there MSR value is above the predefined MSR threshold.  

As optimization problem the main objective of biclustering is to 

identify highly coherent biclusters. With this objective in mind a Greedy 

approach is used to enlarge the seeds obtained by K-Means clustering 
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algorithm. The greedy approach used by Cheng and Church has random 

interference problem. When seeds from K-Means are used this problem 

can be eliminated. Moreover MSR is biased towards the flat biclusters. 

Seeds from K-Means help the identification of biclusters with high row 

variance.  

Greedy approach usually suffers from local minima problem. 

Metahueristic methods like Greedy Randomized Adaptive Search 

procedure incorporate randomization for eliminating the local minima 

problem. Three variants of GRASP namely (basic) GRASP, 

Cardinality based GRASP (CGRASP) and Reactive GRASP 

(RGRASP) are used for the identification of biclusters. The GRASP 

variants implemented in this approach is able to find biclusters with more 

size and low MSR. Moreover, in this study GRASP variants are applied 

for the first time to Lymphoma dataset. Another metahueristic method 

which can eliminate local minima problem namely the Particle Swarm 

Optimization (PSO) is used for the identification of coherent biclusters. 

This is the only technique which is population based, whereas all other 

methods are enlarging a single seed at a time.  One more approach which 

is a combination of Greedy and Binary PSO is used for the 

identification of biclusters in which the biclusters obtained by the greedy 

approach is used as initial population for PSO. 

These algorithms identified biclusters from both Yeast and Human 

Lymphoma datasets. These algorithms are compared with other 

biclustering algorithms based on bicluster size and MSR. Biologically 
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relevant and statistically significant biclusters are identified by all these 

algorithms. The algorithms are also compared based on p-value which 

denotes the statistical significance. All the algorithms developed in this 

work are better than some of the well known biclustering algorithms 

namely RWB, Bimax, OPSM and Bivisu, in terms of the best p-value 

obtained. The best p-value obtained by binary-PSO, Greedy, GRASP 

variants, SGSC and ISIMSRDT, which are developed in this work, are 

even better than that of MOGAB, SGAB, CC and ISA.  

In short the following limitations of already developed 

biclustering algorithms can be overcome by using one or more of the 

algorithms, which are developed in this work. 

1) The maximum limit for the number of conditions that can be 

identified for a bicluster. For example the multi-objective 

evolutionary approach the maximum number of conditions 

obtained for the Yeast dataset is only 11 and Human 

Lymphoma dataset is only 40 [15]. 

2) The maximum limit for the number of genes that can be 

identified for a bicluster. For example in SEBI [36] the 

maximum number of genes obtained for the Yeast dataset is 

only 82. 

3) The difficulty in identifying biclusters with different shapes.  

4) Random interference problem in the Greedy approach of 

Cheng and Church.  
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5) Difficulty in finding genes with overlap. For example in the 

Greedy approach of Cheng and Church, for identifying 

different biclusters, the identified biclusters are replaced with 

random values. This affects the identification of genes with 

overlap.  

6) Inability to identify biclusters with very low row variance. The 

genes in such biclusters are useful for marker gene 

identification. Since row variance is not given as a measure for 

optimization, biclusters with low row variance as well as high 

row variance will be obtained in the methods developed in this 

work. In this work biclusters obtained from unfiltered data will 

contain biclusters of low row variance compared to that of 

filtered data. 

7) Inability to identify biclusters with very high row variance and 

mean squared residue above the predefined threshold. 

Finally the MSR based algorithms are compared based on the 

quality of biclusters. In terms of best p-value and bicluster size, the binary 

PSO, Greedy and GRASP variants are better than constraint based 

algorithms. But for some biclusters, the p-value obtained by constraint 

based algorithms is better than Greedy and Metaheuristic algorithms. 

Some biclusters with very high row variance are identified from both 

Yeast and Lymphoma datasets with the help of constraint based 

algorithms SGSC and MSRT. In terms of time complexity, the constraint 

based algorithms are better than Greedy and Metaheuristic algorithms.  
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Biclustering is a multi-objective optimization problem and some of 

the objectives of biclustering like low MSR and high row variance are 

conflicting. Hence no single algorithm can be considered as the best in 

terms of different parameters. Based on the experiments and the analysis 

of the results of all the algorithms in this study, the following 

recommendations can be made.  The recommendations are presented in 

the Table 7.1 given below. 

 Table 7.1 

Recommendations for the Selection of an Algorithm                                   
Based on different Bicluster Qualities  

 
Bicluster Quality Recommendations 

Bicluster Size Greedy and Metaheuristic approaches are better than 
Constraint based algorithms.  

Conflicting nature of 
MSR and ROW 
variance 

MSRT, SGSC algorithms are better than Greedy and 
Metaheuristic algorithms  

p-value 

Greedy and Metaheuristic approaches obtained best p-
value, but for biclusters of some category the Constraint 
based algorithms are better than Greedy and Metaheuristic 
approaches. 

Percentage of   genes 
involved SGSC, Greedy-Binary PSO hybrid 

Biclusters with 
different shape 

Seed growing approaches are better than population based 
techniques like PSO. 

Time Complexity Constraint based algorithms are better than Greedy and 
Metaheuristic approaches. 
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7.2  Suggestions for Future Work 

1) There are many metaheuristic approaches available. But only 

some of these methods are applied for the identification of 

biclusters from gene expression data so far. The remaining 

methods can also be used for the identification of biclusters. 

2) Mean squared residue is used as a measure of coherence in 

many of the biclustering algorithms developed so far. There is 

a problem with the mean squared residue in the identification 

of biclusters with large row variance. The problem is that 

most often the large incremental increase in MSR may be due 

to the lack of coherence. But sometimes it may be due to the 

significant changes in the expression levels indicated by the 

high value of the row variance. When the row variance 

increases significantly the MSR value also increases.  But 

sometimes this increase in MSR will be above the predefined 

MSR threshold.  At present only visual inspection of the 

bicluster plot can help towards differentiating between lack of 

coherence and significant change. Further research can be 

directed towards developing new measures and methods to 

solve this problem. 

 
 

….. ….. 
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Appendix I: Some more Biclusters obtained from the MSR based 
Algorithms for Yeast Dataset. The Bicluster Labels are from Ap1 to 
Ap76, from left to right and top to bottom. The details of the 
Biclusters can be obtained from the Table in Appendix 2 using 
Bicluster Label. 
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Appendix II: Details of the Biclusters of the MSR based Algorithms 
shown in Appendix 1 

Bicluster 
Label  

Number 
of Genes  

Number of 
Conditions MSR Row Variance  

Ap1     229 17 289.0000 412.2021 
Ap2 68 17 199.2974 496.7250 
Ap3 10 17 255.2242 792.5869 
Ap4 12 17 186.9630 663.1355 
Ap5 10 15 294.6495   1538.9000 
Ap6 14 17 130.1876 501.2056 
Ap7 10 17 261.8143 695.2803 
Ap8 10 17 258.5586 568.9377 
Ap9 21 17 198.4656 465.4810 
Ap10 10 17 215.9523 833.7370 
Ap11 10 15 299.4252 943.3236 
Ap12 23 17 198.3296 556.8663 
Ap13 29 17 168.4380 701.6955 
Ap14 12 17 113.1148 505.9383 
Ap15 10 17 237.8181 467.6422 
Ap16 10 17 266.2193   1763.5000 
Ap17 10 17 212.1967 703.9460 
Ap18 32 17 212.6103 492.3886 
Ap19 10 17 148.6853 409.3723 
Ap20 23 17 202.9663 607.4846 
Ap21 33 17 138.7529 479.2220 
Ap22 19 17 107.2792 482.5351 
Ap23 13 17 133.5914 921.8440 
Ap24 18 17 165.9538 756.5682 
Ap25 10 17 185.6726 705.5066 
Ap26 11 17 265.9692   1074.0000 
Ap27 10 17 271.2748   1091.5000 
Ap28 12 11 187.3307 1160.1000 
Ap29 11 17 110.2305  519.7502 
Ap30 29 17 147.6002  433.5421 
Ap31 10 17 213.4028  961.9329 
Ap32     358 10 299.9277  458.4218 
Ap33     158 12 299.8289  736.6941 
Ap34       23 17 133.9864  449.2968 
Ap35  49 17 184.8044 487.7615 
Ap36  20 17 187.6572 429.4796 
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Ap37   10 17 409.3723 148.6853 
Ap38   21 17 151.8050 603.8359 
Ap39    7 17 297.8726 1538.7000 
Ap40  13 17 299.2638 1835.8000 
Ap41     172 17 299.9067  507.5788 
AP42   3 17 184.2414 1952.5000 
AP43     229 17 299.5817  402.5612 
AP44  12 17 195.3356 725.5283 
AP45 11 17 198.4083 642.3693 
AP46 25 17 205.2872 532.9982 
AP47 38 17 274.4020   1043.1000 
AP48 93 17 629.6392 244.5466 
Ap49 26 17 221.4451 781.5637 
AP50 18 17 293.4744   1215.2000 
AP51 13 17 267.3184   1664.2000 
AP52 10 17 255.2242 792.5869 
AP53 21 17 199.7015 687.8534 
AP54 10 15 299.4252 943.3236 
AP55 80 17 243.7829 538.3563 
AP56     108 17 217.3164 521.2705 
AP57 44 15 177.3988 547.1125 
AP58 35 15 234.9981 855.1088 
AP59 27 17 266.6634 975.0855 
AP60 181 9 144.6135 240.0470 
AP61 26 16 241.6395 765.3514 
AP62 36 17 194.1223 592.8078 
AP63 25 17 251.0314   1086.1000 
AP64 12 17 207.8144  926.1125 
AP65 54 11 186.1359  532.1206 
AP66 12 15 288.9307 1094.4000 
AP67 16 17 226.4725  939.5225 
AP68 13 17 222.4583 1369.9000 
AP69 17 17 294.0819 1253.9000 
AP70     149 17 255.2447  479.9828 
AP71       17 17 255.9226  970.2308 
AP72 12 17 185.0830 528.7670 
AP73 19 7 199.1124  882.3008 
AP74 49 17 270.3296  606.0990 
AP75 23 17 214.2337 1045.1000 
AP76 12 17 207.8144  926.1125 
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Appendix III: More Biclusters obtained by MSR based algorithms 
from Human Lymphoma Dataset. The Bicluster Labels are from 
APL1 to APL57, from left to right and top to bottom. The details of 
the Biclusters can be obtained from the Table in Appendix 4 using 
Bicluster Label. 
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Appendix IV: Details of the Biclusters of the MSR based Algorithms 
shown in Appendix 3. 

Biclusters 
Label 

Number 
of Genes 

Number of 
Conditions 

MSR Row Variance 

APL1   16 73 1198.1 3378.7 
APL2   30 68 1199.6 2699.2 
APL3   16 62 1195.7 2863.3 
APL4   22 59 1198.5 2314.2 
APL5 105 20  774.5 1248.6 
APL5   37 18 2714.4  953.0 
APL6 368 25 1198.7 1272.9 
APL7 537 30 1199.5 1239.4 
APL8 663 22 1199.3 1230.9 
APL9   2 31   364.9 7713.3 
APL10  26 44 1032.7 3195.6 
APL11  54 25   894.2 1621.5 
APL12  73 17   738.5 1248.5 
APL13  13 72 1099.8 3486.8 
APL14   2 78 1091.5 6163.2 
APL15 13 73 1098.9 3497.0 
APL16   2 36 1164.1 5508.8 
APL17 12 30 1118.6 3572.9 
APL18 48 48  946.8 2168.7 
APL19 4 23  742.6 3293.1 
APL20      215  9  375. 5  476.9 
APL21 34 15 737.1 1944.2 
APL22 96  9  415.6  639.8 
APL23 11 39 738.1       1862.4 
APL24 30 18 978.8        2674.0 
APL25 26 27     1003.5 2283.3 
APL26 13 71     1159.7 2843.6 
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APL27 10 43     1172.9 6865.4 
APL28  3 72     1149.8 2853.8 
APL29 13 75     1070.6 2311.6 
APL30   2 78     1090.3 5797.3 
APL31 14 47     1096.4 6839.7 
APL32 18 50     1071.3 4628.7 
APL33       896 16       1199.1 1239.4 
APL34  33 73 1197.4 3822.9 
APL35 997 17 1198.6 1213.4 
APL36    3 57   962.5 7029.5 
APL37 140 18 1198.3 2301.2 
APL38   11 33 1138.2 3650.6 
APL39    2 59 1155.0 9515.6 
APL40 40 49   973.1 2285.4 
APL41  2 67 1073.5 5975.9 
APL42  2 51 1193.0 7497.1 
APL43 31 28   984.2 1721.2 
APL44 22 46 1057.5 4062.9 
APL45   6 70  999.8 2733.4 
APL46 36 37  956.1 1540.3 
APL47      126 48 1200.0 2317.5 
APL48 10 70 1190.5 5308.5 
APL49 35 50 1195.8 4365.1 
APL50 18 61 1195.2 4842.6 
APL51 582 26 1197.5 1250.6 
APL52 285 32 1199.3 1241.9 
APL53 468 25 1198.9 1237.6 
APL54 358 22 1199.3 1240.6 
APL55 936 15 1198.9 1221.7 
APL56 440 30 1200.0 1252.0 
APL57 997 17 1198.6 1213.4 
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Appendix V: Some more Biclusters with High Row Variance & MSR 
above the Pre-defined Threshold obtained from Yeast Dataset. The 
Bicluster Labels are from APL1 to APL57, from left to right and top 
to bottom. The details of the Biclusters can be obtained from the 
Table in Appendix 4 using Bicluster Label. 
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Appendix VI:  Details about the Biclusters  with High Row Variance 
& MSR above  Pre-defined Threshold shown above in Appendix 5 

Bicluster 
Label  

Number 
of Genes 

Number of 
Conditions 

MSR Row variance  

APR1 13 17 340.7195 2150.9 

APR2 18 17 350.0203 1732.5 

APR3 72 17 359.5201   969.2 

APR4 34 17 318.1225 1002.0 

APR5 10 17 383.3512 1178.8 

APR6 10 17 680.2878 2086.2 

APR7 89 17 414.1173  979.9 

APR8 10 17 440.5057        1303.2 

APR9 10 17 322.1075 1133.8 

APR10 10  9 515.0200 2323.8 

APR11     178  9 306.4028  916.7 

APR12 22 17 426.8087 2117.8 

APR13 10 17 365.2835 2375.0 

APR14 13 17 494.7380 1590.2 

APR15 56 17 300.5922 1002.0 

APR16 21 17 463.2928 1366.4 
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Appendix VII:  Sample Yeast Dataset (Only 31 rows out of 2884 rows 
are displayed here). 

161 110 139 139 161 139 110 161 161 110 161 195 220 139 139 139 161 
208 139   69 110 139 110 139 161 161 110 139 139 179 139 161 139 110 
425 429 451 423 465 395 472 448 416 507 466 464 432 463 494 458 484 
289 248 220 161 161 110 179 139 139 110 110 161 161 139 161 139 179 
366 364 340 256 283 208 240 208 195 208 179 208 208 195 220 208 264 
271 300 347 300 304 294 337 294 277 309 300 326 314 309 322 277 283 
179   69 139 110 161 110 161 161 161 110 139 179 179 139 139 110 161 
240 179 139 161 179 139 195 208 195 139 161 179 195 161 179 179 179 
179 161 139 139 208 161 208 208 179 179 161 179 179 195 179 161 179 
337 326 322 330 397 326 376 358 322 333 314 333 343 337 353 314 337 
195 220 179 161 264 179 248 264 230 220 220 220 230 220 208 179 230 
294 289 264 230 264 248 283 283 264 256 240 256 277 240 264 248 256 
271 300 300 462 300 300 340 309 289 294 289 300 304 304 314 277 277 
264 110 110 139 208 161 179 179 161 161 208 220 230 179 161 139 195 
139   69   69   69     0    0    69   69   69     0   69     0   69   69     0   69     0 
264 248 264 230 264 230 271 264 240 208 230 240 240 195 208 179 220 
179 110 139 110 110   69 110 110   69   69   69 110 110 110   69   69 110 
277 264 277 264 283 248 300 277 283 248 271 289 294 256 277 248 248 
264 256 277 240 230 248 340 343 343 304 304 294 283 294 330 330 340 
304 333 369 347 340 322 353 330 314 318 330 347 347 326 340 304 294 
277 353 353 309 340 330 381 347 314 294 294 309 322 326 322 277 322 
161 161 161 378 179 179 220 179 195 179 161 179 208 179 179 161 161 
240 161 179 179 195 161 220 208 195 139 179 195 195 179 195 179 195 
161     0     0   69 110   69 110   69   69     0   69   69   69   69   69     0   69 
350 353 314 318 361 330 376 369 350 330 356 361 350 343 353 350 350 
358 300 294 289 322 283 347 314 309 347 326 333 322 326 350 322 309 
220 139 161 179 195 161 195 179 179 179 179 179 208 179 195 195 179 
271 283 300 283 289 256 314 304 283 240 248 271 271 264 294 248 289 
110 139 195 161 161 139 161 110   69 110 139 179 179 110 110   69   69 
    0 110 110   69 110   69 110   69   69   69   69 110 110   69   69     0   69 
264 326 347 300 314 314 350 326 314 318 300 309 322 304 326 277 304 
 
  

….. ….. 




