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Preface

Since the experimental observation of the Josephson effect, there
has been continuously growing interest in the fundamental physics
and the applications of this effect. The achievements in the Joseph­
son junction technology has made it possible to develop a variety
of sensors for detecting ultra low magnetic field, gravitational radi­
ation and weak electromagnetic radiation and a number of devices.
The study of coupled Josephson junctions has been stimulated by
the interest in constructing coherent arrays of junctions for technical
applications. Above all, Josephson junction has been proved to be
an ideal candidate for studying nonlinear dynamics and chaos and
hence the system is of fundamental theoretical interest. The study
of the dynamics of Josephson junction is an area of great theoretical
interest because of the richness of the dynamics of the junction. The
supercurrent in Josephson junction has a highly nonlinear depen­
dence on the applied electromagnetic field making it different from
the nonlinear dynamics of other systems. The high sensitivity of the
supercurrent to the electromagnetic field makes it highly sensitive
to fluctuations in the applied fields and it makes the dynamics more
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complex.

This thesis is devoted to the study of Josephson junction systems
in the presence of an external ac biasing. The ac biasing when ap­
plied to a short Josephson junction represented by a second order
differential equation becomes an ideal system to study chaos. The
similarity of the equation of a short Josephson junction equation to
the equation of a driven damped oscillator makes it a case where
theoretical predictions can be experimentally verified, while the long
Josephson junction is equivalent to the continuum limit of a chain
of torsion coupled pendula immersed in a viscous medium and sub­
ject to an oscillatory torque. Hence these studies are very important
experimentally as well as theoretically.

Chapter 1 gives a review 011 Joesphson junctions, from its pre­
diction to the equations describing various junction models necessary
for the studies done in this thesis. The basic ideas of chaos and syri­
chronization are also presented. A brief review on the works done in
chaos in Josephson junctions is also presented and the importance
of such studies is projected.

In Chapter 2, we discuss the case of two coupled Josephson
junctions which are linked in parallel with a linking resistor Rs. The
dynamics of the system is studied and the parameter space where the
system exhibits chaotic motion is recognized. Lyapunov exponent
spectrum reveals that the system is in chaotic regime for all values
of coupling strength in the parameter regime considered. The effect
of an applied phase difference on such a system is studied. The
parameter regime in which the system is synchronized is identified
and a small phase difference is found to desynehronize the system.
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Large values of phase difference is found to suppress chaos and bring
in periodic behavior. Lyapunov exponent spectrum in tl1e presence
of phase difference reveals that the system exhibits periodic behavior
for certain range of values of coupling strength when the system is

synchronized.

Chapter 3 is an extension of the work given i11 chapter 2 for
an array of N Josephson junctions. For this, we start with a system
of three Josephson junctions and study the synchonization behav­
ior. It is found that the system exhibits the phenomenon of relay
synchronization where two outer systems get synchronized while re­
maining uncorrelated with the middle system through which both
are connected. This study is of relevance because of the similarity of
the behavior of this model to the neural models currently studied.
The stability of synchronization for the outer junctions is found and
it is also shown that in the presence of an external drive the outer
junctions do not synchronize with the middle one. Following this
argument we show that for an array of N junctions, N / 2 solutions
can exist if the number of junctions is even and (N + 1) / 2 solutions if
the number of junctions is odd. I11 the presence of a phase difference
between the external fields, the system exhibits periodic behavior
with a definite phase relationship between all the three junctions.

In Chapter 4 we consider an array of three Josephson junctions
with a time-delay in the coupling term. Time-delayed systems find
applications in secure communication and the bidirectional coupling
makes two way transmission of signals possible. As in the previous
case, in the chaotically synchronized manifold, we find that only the
out-er systems get synchronized while remaining uncorrelated with
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the middle junction. The sum of the transverse Lyapunov exponents
(TLE) are evaluated and is found to be negative. Comparing the
cross-correlation and TLE spectrum, we show that we can get the
qualitative nature of the spectrum in cases where the explicit cal­
culation of TLE is not possible. The effect of time-delay on system
dynamics and synchronization are also studied. The effect of phase
difference between the applied fields and frequency detuning is also
analyzed.

Semicircular Josephson junction was proved to be an ideal can­
didate to make Josephson junction based diode, rectifiers etc. In
Chapter 5 we study the influence of an applied ac biasing on a
semicircular Josephson junction. We derive an expression for the
potential ir1 the presence of the external biasing following perturba­
tional analysis. The effect of the oscillating potential on one fluxon,
two fluxon and three fluxon input is studied. It is found the mag­
netic field along with the biasing induces creation and annihilation
of fluxons in the junction. The I-V characteristics of the junction is
studied by considering the surface loss term also i11 the model equa­
tion. The system is found to exhibit chaotic behavior in the presence
of ac biasing.

In Chapter 6 the results are briefed and the future works are
presented. The fortran and matlab codes used for the numerical
simulations are given in the Appendix.
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Chapter 1

Josephson junctions

Kamrnerlingh Onnes and his assistants in 1908 liquefied helium
paving the way for experimenting at temperatures very close to ab­
solute zero. In 1911, he observed that when the temperature was
lowered to 4.3 K, the resistivity of mercury suddenly dropped to a
near zero value. This phenomenon is now known as superconductiv­
ity. Later, it was understood that at a critical temperature TC, the
specimen would undergo a phase transition from a normal to a su­
perconducting state. It was also observed that a superconductor is a
perfect diamagnet in addition to being a perfect conductor. The su­
perconducting state is an ordered state of the conduction electrons
in the metal. The conduction electrons interact with the crystal
lattice through phonons, and this effect gives rise to an effective
attractive interaction between the electrons with opposite spin and
angular momentum which then make the electrons to form a pair.
Such pairs of electron with bosonic nature are called Cooper pairs.
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All the Cooper pairs are in the Bose-condensed state at zero temper­
ature and are separated by an energy gap A from the quasi particle
state. The value of the energy gap is proportional to the effective
binding energy of the Cooper pair. The energy gap depends on the
temperature and as the temperature is increased, the value of the
energy gap decreases and vanishes when the critical temperature is
reached. Because of the bosonic nature, all the Cooper pairs can be
represented by the ground state wave function,

\I' = \/§exp(6), (1.1)
where \P is often called the superconducting order parameter. n is the

Cooper pair density while 6 is the quantum mechanical phase factor.
Later superconductivity phenomenon was discovered in many metals

and alloys

In 1962, B D Josephson predicted that several new interesting
phenomena could be observed in the weak electrical contact between

two superconductors  When an insulator is present between two
superconductors the value of the wave function reduces from its bulk
value near the link. However the superconductors get weakly coupled
to each other due to the small overlap between the macroscopic wave

functions (Fig. 1.1). Josephson pointed that a supercurrent I 5 will
flow through the junction even in the absence of an external voltage,
which is related to the voltage V developed across the junction by
a11 unusual formula which follows directly from the basic ideas of
quantum mechanics and contains the Planck’s constant fl. Experi­
mental evidence for the Josephson supercurrent was obtained in 1963
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[3]. Josephson’s discovery has not only contributed to the develop­
ment of superconductivity, but also to the development of nonlinear

dynamics as a whole. The Josephson junctions have enabled the
engineers to develop several new devices with extraordinary charac­
teristics which find immense applications in various fields of science

and technology specially for producing huge magnetic fields [4, 5]. By

the beginning of 1970’s the study of Josephson junctions was divided
into solid state physics and dynamics. In solid state physics, various

expressions connecting I (t) and V(t) are derived from the theory of
superconductivity. The aim of the dynamics part is to describe var­
ious phenomena observed using the relation between I and V. This
latter part of the general theory has turned to be more difficult than
the former one due to the more complex dynamical behavior shown
by the system. The supercurrent has a highly nonlinear dependence
on the electromagnetic field making it different from the nonlinear
dynamics of other systems. The high sensitivity of the supercurrent
to the electromagnetic field makes it highly sensitive to fluctuations
and it makes the dynamics more complex  When a voltage is
applied, a current is produced in the junction and the study of the
resulting current is interesting. Among the various dynamical be­
havior, chaotic dynamics has also been a11 active area of research.
In this thesis, we concentrate on the chaotic dynamics of Josephson
junction in the presence of applied external ac and dc biasings.

Josephson junction

The tunneling of Cooper pairs through an insulating barrier of a
Superconductor-Insulator-Superconductor (SIS) was predicted by B
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Figure 1.12 The wave function of the superconductor overlapping .

D Josephson in 1962 [2] and experimentally observed by Anderson
and Rowell in 1963  One of the most intriguing properties of
Josephson junctions arises from the fact that the dynamics of the
charge carriers and the electromagnetic fields in the junction are
governed by the phase difference between the quantum mechanical
wavefunctions describing the superconducting electrons in the su­
perconductors of the junction. The supercurrent density is not a
function of the voltage, but of the phase difference Q5 of the wave
functions across the junction:

J8 = Jc SiI1(15, (1.2)



where Jc, the critical current density is a constant depending on the

shape and structure of the junction. The nonlinear properties of
this system arises due to the Josephson current which depends on
the sine of the phase difference across the junction. The maximum

supercurrent density JC was calculated by Ambegaokar and Bartoff
from the microscopic theory and is given as

.1. = Egg-1 tanh  , (1.3)
where A(T) is the temperature dependent energy gap of the super­
conductor and p is the normal tunnel resistance of the junction per
unit area. e is the electron charge and kb is the Boltzmann constant.
Eq. 1.2 is called as the dc Josephson equation.

The phase is related to the voltage V developed across the junc­
tion by the relation

V = —(?i9di, (1.4)21r dt

where (D0 is the flux quantum given ash’ -15 r
{>0 = Z3 = 2.07 >< 10 Wb. (1.0)

dc Josephson effect

An interesting feature of Josephson junction is that a dc current
flows through the junction even in the absence of any external ap­
plied field. This is known as dc Josephson effect. Let 1111 and 102
be the probability amplitudes on either side of the junction. The
time dependent Schrodinger equation ihohj)/(')t I H 1,/1 applied to tl1e
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probability amplitude gives two equations of motion

. 5 ,Zflgllfi-l' = hfllig, (1.6). 5' _
255% = hT¢1,

where hT gives the transfer interaction across the junction. Depend­
ing on the nature of the junction the value of T varies. Substituting
11:1 = 11}/2 exp(j61) and zpg = '11;/2exp(j62) in Eq.1.6 and solving we
get an equation for the current flowing through the junction in the
absence of the applied voltage as

J8 = Jc sin Q5, (1.7)
where gb = 61 — 92. n1 and 712 are the Cooper pair densities and
61,2 are the phase factors of the wavefunction. The value of Jc will
depend on the value of T. From Eq. 1.4 it can be seen that for zero
voltage there is no rate of change for the phase difference qf). Thus
in the absence of an external voltage a constant current will flow
through the junction which is known as the “dc Josephson effect”.

ac Josephson effect

In the presence of an applied constant voltage V, the equations of
motion become,

ih = hT'¢)2 — 6l/1,01, (1.8)and 8
ih——&£-t2- = HTIP1 + el/2/)2. (1.9)



1. 1 Josephson junction model 7
In this case substituting the values of 1/11,2 and solving we get the

expression for the current flowing through the junction as

J8 = JG sin (am) -  .

The current oscillates with a frequency w = (261/t) / ii a11d thus a
constant dc voltage gives an ac current as the output. This is known
as the “ac Josephson effect”.

In the presence of an applied ac-biasing the dynamics of the
Josephson junction becomes more complex and the system exhibits
even chaotic motion.

1.1 Josephson junction model

A Josephson junction shown in Fig.(1.2) consists of two supercon­
ducting films separated by an oxide barrier thin (~ IOAO) enough for
Cooper pairs to tunnel through the barrier. The Josephson junction
may be characterized by the current and voltage at the terminals as
if it is a two terminal device. The junction may be categorized as
short or long junctions depending on the junction area.

1.1.1 Short Josephson junctions

In the case of short Josephson junctions, the variation of the phase
difference across the area of the junction may be neglected. This
kind of an approximation is valid in cases where the lateral junction
dimensions are smaller than the characteristic length scale A; of the
variation of gt. Small Josephson junctions may be modeled using a
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Figure 1.2: The Josephson junction consisting of two superconducting elec­
trodes soparated by thin oxide barrier.

resistor capacitor and a Josephson junction current element as shown
in Fig 1.3. The junction is represented by a parallel connection
of an ideal Josephson junction, a resistor to represent the junction
resistance and a capacitor for accounting for the Cooper pair, the
quasiparticle and the capacitive contribution of the total current.
Using Kirchoff laws the total current through the junction is given
by

I=Icsinq5+%+C£fi-ii?/. (1.10)

This model is known as the resistively and capacitively shunted
Josephson junction (RCSJ) model [7, 8]. Substituting the value of
V from Eq. 1.4 in Eq. 1.10 we get

$0 d¢ ‘P05 032$
I= IcSiI1¢-i" QWR dt + 27% ‘(#2 . (1.11)
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Figure 1.32 Short Josephson junction and equivalent circuit model.

Substituting Eq. 1.5 in Eq. 1.11 we get

. ii dcb RC d2Q51 Z Ic~ -__ __. 1.12smqfi + 26R dt + 2e (it? ( )
In this thesis, we assume that the Josephson junction is driven by a
current source having both dc and ac components,

I = [dc + I0 sin(wt).

Here [dc and I0 are the amplitudes of the dc and rf currents and
w = 21r f is the angular frequency of the rf current source. In the
presence of the external biasing and damping, the phase qb can have a
complex time-dependent behavior. The voltage in this case is taken
as the time-average of the evolution of the phase across the junction

dqb (1)0V = V = — —.
( > < (it > 2'rr

Depending on the value of the bias current and the clamping, the
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phase can rotate with small amplitude Q5 < 2¢r, or it can rotate
over 2¢r. If the phase rotates, a dc voltage drop across the junction
appears, whereas the average voltage for small oscillations of the
phase is zero

The stored energy U as a function of <75 may be written as

<15

= v/Isl/dt = 512%-/l sin ¢>dd> = Es(l — cosgb),U

where E3 = his/2e is th Josephson coupling energy. The dynamic
behavior of a Josephson junction in the Stewart - McCun1ber model

[7, 8] is thus analogous to the motion of a particle in a sinusoidal
potential, often called as the washboard potential. The nonlinearity
of the system is due to the sinusoidal shape of the potential and the
strength of the nonlinearity is determined by the Josephson coupling
energy E1.

Usually a Josephson junction is represented by the simplified di­
mensionless form of equation. For this, a dimensionless time is de­

fined as t’ = wpt where wp = (2eIc/fiC)1/2 is the plasma frequency
of the junction. With this, Eq. 1.12 becomesd2 d _ ,

82-2 + 138% + sin gb = idc —l_— to s1n(Qt'), (1.13)I

where [3 = G (h/2eIcC)2 is the normalized junction conductance,
Q = w/rap is the bias frequency normalized to the plasma frequency,
and idc = Id‘,/IQ and 110 = I0/L, are the amplitudes of the dc and rf
bias normalized to the critical current. This form of the normalized

equation is used in Chapter 2, Chapter 3 and Chapter 4 to study the



1,1 Josephson junction model j J
chaotic dynamics and synchronization in Josephson junctions .

1.1.2 Long Josephson junctions

While the Stewart - McCumber model is adequate for most of the
situations, there is a limitation for the model as it neglects the spatial

dependence of (£5 over the junction area. If the area of the junction
is large, then the phase difference qb between the superconducting
layers will also vary in space and hence the dynamics of large area
Josephson junctions is much more rich and diverse than that of the
short junctions. The long Josephson junction may be modeled with
two small RCSJ-like junctions connected parallely using an induc­
tance and a resistance as shown in Fig 1.4. Using Kirchoff laws and
making necessary normalization, the equation for a long Josephson
junction may be given as2 2 2

€gI%+gy—€—g—§—sir1¢—ag—T=O, (1.14)

where a = G8 (ii/2eJCC$)1/2. In this case, the junction is char­
acterized by a critical current density J5, specific conductance G5
and specific capacitance CS which determine the pair, quasiparticle
and displacement currents per unit area. The spatial coordinates
are normalized to the Josephson penetration depth as :1; = zr’/Aj
and y : y’/A3-. A; depends on material parameters by the relation
/\;" = [2eu0JC (s + 2)\;,) /h]_1/2, where pg is the permeability of free
Space, s is the thickness of the oxide barriers, and /\L is the London

penetration depth of the superconductor. Eq. 1.14 is solved with
the boundary conditions that include the appropriate bias currents
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in order to study the dynamics of the system.
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Figure 1.4: Equivalent circuit model for long Josephson junction .

Among these extended Josephson junction systems, the investi­
gation of one dimensional long Josephson junction is of particular
interest and a lot of investigation has been done in this direction

Rectangular Josephson junction

The rectangular one dimensional Josephson junction can be modeled
by the following equation.

52¢ 52¢ . <9¢
5-52-—-(,—9—@——s1nqz§='y+a-Z,’—;L'-, (1.15)

where "y is the applied biasing. The boundary condition for an infinite
long linear junction is

== :l:oo) = 0.
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If we neglect the perturbations on the R.H.S of Eq. 1.15, the equation
becomes the sine-Gordon equation

02 62 .
-59-;;—$é—s111q5=O (1.16)

whose solution is given as

:1; — at — :20W) :  [exp ( . W
Depending on the sign of the solution, Q5.“ represents a kink or an
antikink solution. The kinks in Josephson junctions are examples
of solitons. Solitons are solitary waves which exist in media where
dispersion and nonlinearity compensate each other leading to stable
wave propagation in the media. In Josephson junction systems there
is no dynamical restriction in the existence of the solitons and hence
they are examples of topological solitons. This is in contrast to the
dynamical solitons which need to have certain minimum energy for
dispersion to be managed by nonlinearity.

The fluxons (kink solutions) in Josephson junction can be driven
by external forces. In the presence of an external magnetic field, the
boundary conditions of the rectangular junctions change to

@¢ _ _—H:I

where H is the normalized magnetic field. The interaction of the
fiuxons with the boundaries strongly influences the dynamics of the
fiuxon inside the junction. In long Josephson junctions the behavior
of the fluxons may be described as follows [10].
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Zero-field steps(ZFSs): In the absence of magnetic field, flux­

ons get nucleated for certain bias current giving rise to ZFSs in the
current-voltage characteristic of tl1e junction. The applied bias cur~
rent drivcs the fiuxon, which changes the polarity after reflecting at
the boundary.

Fiske steps(FSs): If the magnetic field applied to the long
linear Josephson junction is above some critical value, fiuxons are
nucleated at one end and annihilated at the other end of the junction.
Upon annihilation, plasma waves are generated which resonates as
cavity modes of the long Josephson junction generating the so called
Fiske modes.

Flux Flow steps(FFSs): At high magnetic fields resonant
Fiske states overlap and the dynamics is purely determined by
the flux flow i. e. , a dense chain of fluxons moving unidirectionally
through the junction.

N on-rectangular Josephson junction

N on-rectangular Josephson junctions have been in the focus of fiuxon

dynamics studies in recent years because of the non uniformity
caused by the shape. Among the various non-rectangular geometries
proposed, the annular Josephson junction has been studied exten­
sively both theoretically and experimentally because the number of
fiuxons are conserved. An annular Josephson jurzction [9] is formed
by two ring shaped superconducting electrodes separated by a thin
barrier as shown in Fig 1.5. The equation for an annular junction
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may be given as

62¢ 62¢ . _. _ 845
5? - -5? —s1n¢= bs1n(k:L) +7+oz0t. (1.18)

where b = BA21r/Z and is = 2'rr/l. A is the coupling between the
external field B and the flux density of the junction. The annular
Josephson junctions are represented by the boundary conditions

¢(a: = 0) = <1>(;c =1) — 21m

and

3-it-@>=§_j<.»B-1>
where l is the circumference of the junction. n is the number of flux­
ons initially present in the junction and it is a conserved quantity due
to the closed topology of the junction. The second boundary condi­
tion enforces the continuity of the magnetic field along the junction.
In annular Josephson junctions the motion is smoother  the fluxons
cannot collide with the boundaries.

The localized topological solitons can be treated as relativis­
tic pseudo-particles with a center of mass and momentum. They
also carry magnetic moment which causes an interaction with exter­
nal magnetic field. The magnetic moment is always normal to the
junction. Therefore, by shaping the junction, a suitable potential
for these pseudo-particles can be formed. Among the other non­
rectangular shaped Josephson junctions , the heart shaped junction
has been found to be an ideal candidate for quantum computation
because of the double well shaped potential of the system. The junc­
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Figure 1.5: Annular Josephson junction model.

tion composed of a large arc, which corresponds to half an annular
junction. Then two small arcs were connected at the top to form a
heart shaped junction [11]. It was shown by Kemp et al. [11] that
a double well potential can be created in a heart shaped Josephson
junction and it can be effectively used as a qubit. Considering this
idea Josephson junctions with other shapes like scmiannulav‘, quar­
ter annular and S’-shaped junctions were put forward by Shaju et
al. [12, 13, 14]. Among these, semiannular Josephson junction was
shown to have immense applications. The semiannular shape creates
opposite polarities at the ends of the junction making it an ideal can~
didate for the realization of Josephson junction based diodes. It was
also shown to have characteristics which makes it find applications
as magnetic rectifiers, oscillators etc. S-shaped Josephson junction
was found to have a double well potential making it ideal for Joseph­
son junction based qubits. In Chapter 5 of this thesis, we discuss in



1.2 Chaos g _ 17
detail the dynamics of fiuxon in a semiannular Josephson junction
in the presence of a magnetic field. .

1.2 Chaos

Chaos is the phenomenon of occurrence of bounded nonperiodic evo­
lution in completely deterministic nonlinear dynamical systems with

high sensitive dependence on initial conditions [15]. It is a charac­
teristic property of nonlinear systems. A dynamical system may be
defined as a deterministic mathematical prescription for evolving the
state of a system forward in time. Dynamical systems are normally
regulated by system parameters and the change in the values of the
system parameter is reflected in the behavior of the system. Even­
though all dynamical systems evolve according to some deterministic
set of equations, the behavior becomes unpredictable for some pa­
rameter values. The only uncertainty in such systems is in tl1e long
term predictability of the system.

Nonlinear differential equations are in general difficult to solve
analytically and there are no general ways to solve them as i11 the
case of a linear equations [16]. The linear systems can be broken to
parts and each part may be solved separately and all may be recom­
bined to get the final answer. Also, methods like Laplace transform,
Fourier analysis and superposition principle may be applied in the
Case of linear differential equations. But there are no such general
methods for the nonlinear systems. However, there are alternative
Ways to study the dynamics of systems without analytically finding
Out the solutions. Chaotic dynamics rely heavily on these “geomet­
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ric methods” for gathering information about the dynamics of the
system as analytic solutions do not exist in the chaotic regime. If we
know the position and velocity at a particular instant of time, we can
construct the trajectory in the phase space representation without
actually solving analytically the equation of mot-ion. A great amount
of information may be gathered from the trajectories constructed.

For a continuous dynamical system, the necessary number of de~
grees of freedom for observing chaos is three or more though there
is no such restriction in the case of discrete maps. Maps may be
defined as dynamical systems represented by discrete time-difference
equations and a general form may be given as

3?.,.+1 = FM(?.,.) (1.19)
where p, is the control parameter. Consider a system represented by
n differential equations

$1 = f1(1I1,...,£En) (1208,)

in = fn ($1, ...,:r:n) (1.2Ob)

where the overdots represent differentiation with respect to time t.
The phase space for such a system is the space with coordinates
1:1, ...,a:n and hence is an n dimensional space. Given the initial
conditions, for a deterministic system we can find the trajectory at
a later instant.

In the case of nonautonomous system (ie. system with explicit
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time dependence) time is taken as the last variable. For example, if
there is a second order nonautonomous differential equation by tak­

ing the third variable as time, the system can be represented by an
equivalent three dimensional system. Hence a second order differen­
tial equation with an external drive exhibits chaotic dynamics.

1.2.1 Ways to characterize chaos

The identifying characteristics of a chaotic system is that its occur­
rence is neither due to the uncontrolled external forces like noise nor

due to the large number of degrees of freedom, but because of the
inherent nonlinearity associated with the system that induces the
sensitivity to initial conditions.

Sensitive dependence to initial conditions: The main feature
of chaotic dynamics is its extreme sensitive dependence to ini­
tial conditions. Considering two trajectories a;1(t) and a:g(t) start­
ing from nearby initial conditions separated by 6, it can be seen
that for a chaotic system the difference between the trajectories
A = :r;1(t) — :cg(t) grows exponentially with time. However, the orbit
should remain bounded for the system to be characterized as chaotic.
Due to the exponential sensitivity to the initial conditions, small er­
rors in the solution can grow very rapidly with time. Hence effects
such as noise and computer round off can totally change the solu­
tion from what it would have been in the absence of these effects. All

these make the lo11g term predictability of chaotic system completely
impossible in a practical sense. An important question which arises
in this context is whether the trajectory obtained by numerical sim­
ulation is an artifact of the chaos amplified by computer roundoff?
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By rigorous mathematical proof of the shadowing property of certain
chaotic systems it was shown that although a numerical trajectory
diverges exponentially from the true trajectory with the same initial
condition, there exists a true trajectory with slightly different initial
conditions that stays near the numerical trajectory [17, 18, 19].

Poincaré maps: Poincaré maps are a method used to construct a
discrete mapping of a deterministic dynamical system which is orig­
inally described by nonlinear differential equations. Let 0': = f
represent an n dimensional system and S be an n — 1 dimensional
surface of section defined such that all trajectories starting on S will
flow through it and not parallel to it. The Poincare map P is a
mapping from S to itself and is obtained by following the trajecto­
ries frorn one intersection with S to the next [20]. Consider a three
dimensional phase plane where we define a section S in the two di~
mensional plane. The trajectories are followed and marking is made
when the trajectory crosses the section in the same direction. The
points obtained by this method constitute the Poincare section and
the points will be related to each other as P,,+1 : f (P(n)), where
f is a nonlinear function. Thus taking a Poincaré section reduces
the dimension of the system. In cases where the system is driven by
a periodic force, say f cos(wt), the points are picked at intervals of
tn = n2¢r/cu + to where n is an integer, 21r/w is the period of the
driving force and to is arbitrary [15] .

Bz'furcati0n:When the value of a system parameter is changed, the

qualitative properties of the attractor of a dynamical system may get
changed. The motion may change from periodic to quasiperiodic or
to chaotic taking different routes. An abrupt qualitative change of
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this kind is called a bifurcation. During bifurcation, an attractor may

appeal‘, disappear or one attractor may be replaced by another one.
Bifurcation diagrams help us to view these transitions. They are the

plots of attractor points versus the system parameter values which
cause these transitions. The onset of chaos is usually associated with

a few types of bifurcation [20, 21]. For plotting the bifurcation of
continuous dynamical systems, a set of values of a single variable
representing the attractor must be obtained. One way to do this is
by taking the return map from the Poincare section. There is an­
other method for obtaining discrete mapping from the flow. Lorentz
constructed a one dimensional map from the three dimensional flow
by taking the consecutive maxima of a single variable and plotting it
against the system variable [22]. In this thesis, we plot bifurcation by
taking the maxima of the time series and plotting the values against
the parameter. So for a particular parameter value, if the motion is
single periodic it will correspond to a single point in corresponding
bifurcation plot. As the parameter value is increased the number of
points increases depending on the change of the motion to doubly
periodic or chaotic.

Lyapunov exponents: The Lyapunov exponents are a convenient
indicator of the sensitivity to the small orbit perturbations of the
chaotic attractors. They quantify the average exponential rate of
divergence of nearby orbits. A positive Lyapunov exponent implies
Chaotic motion. In order to define the Lyapunov exponent, consider
the nonlinear continuous differential equation

5% = F(x(t)),x e RN (1.21)
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where F (x(t)) is a nonlinear function of vector x(t) representing the
state variables given by x = (:r1,a:2, ..., zrn). Let x(0) represent the
initial condition at which a solution x(t) exists. Consider another
trajectory starting from a nearby initial point x(O) + 6x(0). If 6x(t)
is the separation between the trajectories after a time t, then the
Lyapunov exponent may be defined as [21]

/\(x(0), 6x(0)) =  % log  (1.22)
In order to evaluate the Lyapunov exponents numerically, different
algorithms are followed out of which the algorithm by VVolf et al. is
the commonly used one [23].

Nwnervlcal methods: Most of the nonlinear equations are not ex­

actly solvable. Even in cases where exact solutions are obtained,
it may involve many integrals or infinite series making it virtually
useless. So mostly we rely on computer simulations to find the form
of the solution. By using step-by-step method on a computer, most
of the equations may be solved numerically. However, for nonlinear
equations that could not be solved analytically, there is no rigorous
method to make certain that these simulations are faithful to the

equations. The only way to make sure is that the simulated system
must agree for cases where any analytic solution is known and the
systems simulated by different numerical methods should agree. In
order to solve second order differential equation we use the fourth
order Runge-Kutta method.

Range-Kutta method: Numerical approximation to a solution to
any first order differential equations depends on the Taylor series
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3,pp1'OXiII18.ti0n. In principle one can get the value of a function at
a value y(:i:.,,, + h), if we know the value of the function as well as
its derivatives at 9:7, where h is the step size. All available methods
are different in the way by which they choose the order of truncating

the Taylor series at various order in the powers of the step size h.
We categorize them according to various order in the powers of the
step size h. First is the Euler’s method where linear approximation
is used to find the value of the function at zrn + It. For this method
the requirement is the value of the function at zen and the slope of
the function. In this case truncation is at the first order and error

is O(h2). From second order onwards we can see various methods
which differ from each other in calculating the slopes. These different

methods come under the big family called Runge-Kutta methods,
and they are infinite in number for each order. It is for the users to
choose among them, each one having its own merits and demerits.
The general expression for the value of the function at :1: + It is

y(a: + h) = y(:c) + Average of the slopes >< h.

In order to get the accuracy, we add higher and higher orders in
h, which make the numerical evaluation cumbersome. Thus a corn­

promise should be made between accuracy and time for evaluation.
It was observed that taking these into consideration, the 4th order
Runge-Kutta expression was more appropriate for the usual situa­
tions, which in fact is called as ‘the classic Runge-Kutta formula’.
This has the form

yn+1= yard-h. X (K1 +2/t'2+2k3+;€4)/6 (1.23)



24 Josephson junctions
where

l—4[\Jl—*\._/

t\Dr—*l\Dr—­

kl Z f($Tl1y71

k2 =  "l" —}t>yn 'l' -191)

A73 = f($n + §h>yn + "k‘2)
k4 == f(:l7n + h,y,,_ + kg).

Here k’s are the average of slopes and a:,,+1 = an + h.

1.3 Different routes to chaos

As discussed in Section 1.2.1, depending upon the system parameter
values the dynamics may change from periodic to chaotic. There
are several routes through which a dynamical system enter a chaotic
regime as revealed by bifurcation diagrams. The common routes to
chaos are period doubling route, quasiperiodic routes and intermit­
tency. In the period doubling or Feigenbaum route to chaos, as the
value of the control parameter is varied, a stable fixed point becomes
unstable and a new set of two fixed point appears. As the parameter
value changes, this process repeats and for seine values of parameter
the system becomes chaotic. The phenomenon where a set of 2"
fixed points in the phase space of a system disappears and a new
set of 2"“ fixed points arise is called a period doubling bifurcation
or a pitchfork bifurcation. Instead of this mechanism, there is an­
other case where the stable fixed points bifurcate into a limit cycle
at seine critical value of control parameter. This is known as Hopf
bifurcation [24]. The basic mechanism in the quasipcriodic or Rue1le­
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Takens route to chaos is the Hopf bifurcation. The Hopf bifurcation
is followed by a transition to a double periodic torus and this torus
bifurcates into a chaotic attractor having fractal dimensions [25]. In
the intermittent route to chaos, the dynamics is characterized by
alternate bursts of chaotic behavior and almost periodic oscillations.

1.3.1 Chaos in Josephson junctions

A major field in the physics of Josephson junction is concerned with
the classical 11on-linear electrodynamics of small junctions, arrays of

small junctions and extended junctions. If the Josephson junction
were a linear device, then a periodic forcing would yield a steady­
state solution having the same period as the rf bias. The sine term
in Eq. 1.2 makes Josephson junction a nonlinear system and hence
quasiperiodic or chaotic attractors may be expected in it. Due to the
nonlinearity, the junction phase may fail to synchronize with the rf
bias and advance by a regular amount during each rf cycle. Such solu­

tions are said to be quasiperiodic. There is also a possibility that the
steady state motion includes a pseudorandom component and this
state is referred to as chaotic [26]. Though the first system in which
chaos was mathematically established by Poincare [27] had equations
Similar to that of an undamped Josephson junction , the recognition
of chaos in Josephson junction was raised by Belykh et al. in 1977
[28]. Chaos in Josephson junction (J J ) has been studied extensively

after its presence was demonstrated using numerical simulation [29].
The rf- biased J J s find practical importance in the construction of de­

vices like parametric amplifiers, voltage standards, pulse generators,

SQUID for detection of very weak magnetic fields, etc. [30, 31, 32].
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JJs consisting of Superconduct0r-Insulator-Normal metal-Insulator­
Superconductor (SINIS) showing non-hysteretic I-V characteristics
with high damping has been fabricated for programmable dc-voltage

standards [33] or ac-voltage standards based on synthesis of calcu­
lable wave forms[34]. For these devices, it is essential to avoid all
types of noise, chaos etc. Devices like voltage standards [35] which
rely on nonlinearity to create a phase lock between the internal junc~
tion variable and an applied rf bias, has an optimum operating point
in regions near chaos. Understanding of the onset of chaotic behavior
is very crucial in understanding the stability of an rf-biased junction.

Eq. 1.12 describing the behavior of J J is identical to the equation
for a driven damped pendulum which has been studied theoretically

for several routes to cl1aos[36, 37]. Sulivan and Zimmerman con­
structed such a mechanical analogue and measured average rotation
as a function of applied torque which is the analogue of the I-V curve

of Josephson junctions. In the mechanical analogue, junction voltage
is represented by particle velocity, bias currents are represented by
external forces, the junction capacitance becomes particle mass, and
the junction conductance G = 1 / R translates into viscous damping.
From Eq. 1.13 it is clear that the dynamic properties of an rf biased
Josephson junction depends on four parameters, £3, Q, idc and to. So

an important goal in the study of Josephson junction dynamics is to
determine the ranges of these parameters over which the system is
chaotic.

In Josephson junction systems, the state space ordinarily requires

two state variables (qi and v = dgb/dt’). If a time-dependent bias is
present, then time is taken as the third variable by defining z = Qt’
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in Eq. 1.13. Thus the rf biased system may be considered as time­
invariant on a three dimensional state space. The minimum dimen­
sion required for a continuous system to exhibit chaos is three a11d
hence the rf-biased Josephson junction is among the simplest sys­
tems to exhibit chaos. Lyapunov exponents for the chaotic solutions
for the rf-biased Josephson junction were first computed by St-eeb et

al. [38]. Since the rf-biased Josephson junction does not have any
fixed points, one of the three Lyapunov exponents is always zero.
It was shown by Kautz [39] that as the state-space volume always
shrinks, it implies the sum rule

M + A2 = -3

where A is the Lyapunov exponent .

1.4 Synchronization of chaotic systems

Synchronization is an adjustment of rhythms of oscillating objects
due to their weak interaction. The colloquial meaning of synchro­
nization is “agreement or correlation of time in different processes”.

It was an active topic of research since the time of Huygens [42].
Huygens noticed that two weakly coupled pendula get synchronized
in phase. However, identification of synchronized motion in chaotic
Systems was indeed surprising as chaotic systems are very sensitive to

initial conditions. Hence the natural tendency of two chaotic systems
C011pled together will be to defy synchronization as the trajectories
Starting with nearby initial conditions will diverge in phase space.
Therefore synclironization among such systems is of great impor­
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tance and interest. Since it was shown that chaotic systems could
be synchronized by linking them to a common signal [43, 44], many
works have been done in this direction because of its applications in

secure communication [45].

The coupling configuration is very important while considering
synchronization of systems. Pecora and Carroll demonstrated that
chaotic systems could be synchronized with unidirectional coupling
in a master-slave model [46]. In this type of coupling one subsystem
(drive) evolves freely and drives the evolution of the other. Here the
slave system is forced to follow the dynamics of the drive system
which is chaotic. In the area of communication with chaotic systems
this kind of coupling is used. The second type of configuration is the
bidirectional coupling where both the subsystems are coupled to each
other and the coupling factor induces an adjustment of rhythm into
a common synchronization manifold, thus inducing mutual synchro­

nization behavior [47]. Typical examples are the interaction between
neurons or between lasers with a feedback in between. The result

due to the two types of coupling are different and interesting in their
own ways.

In an attempt to provide a unified definition for different kinds
of synehronizations the following definition was given by Brown et
al. [49].

The subsystem given by

iI=f1(I;2/;¢); 2)=f2(y;-'1r;f)

are synchromzed on the trajectory l<:(zg), with respect to the proper­
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ties, gm and gy, if there is a time independent mapping h : Rk®Rk —>
Rf‘ such that

l|hl9(1v),9(y)ll| = 0,

where  is the norm. Here the time-dependent function h :
Rk ® Rk -—> Rk compares the measured properties of the two sub­

systems, and the two measurements agree in time if and only if
h[g(;i:),g(y)] = 0. k(z0) is the trajectory of the total system which
can be separated into kl-(zo) and ky(:/:0) of the smaller subsystems. ga,
is the property that we measure of the first subsystem. In the above
definition for synchronization, the details of initial conditions are also

present. In the case of chaotic synchronization, it depends strongly
on the trajectory. While two subsystems may synchronize on one
trajectory, the same subsystem may not synchronize on another tra­
jectory. However the problem about the stability of synchronization
is not included in the above definition. Hence a second definition is

given as [49]

the subsystem given by

Yb: f1(1‘;'y;¢); 1)= f2(y;w;i)

are synchronized with respect to the properties gw and gy, if there is
<1 time independent mapping h : Rk ® RI“ ——-> Rk such that

|lhl9(w),.q(y)]|| = 0

holds on all trajectories. This definition demands that if there is a
Small perturbation from one trajectory still the condition  = O
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holds good and hence it takes into account of the stability of the
synchronized state.

In the following sections, we discuss the various types of synchro­
nization in detail.

Complete synchronization

For identical systems, synchronization may appear as the equality
of state variables while evolving in time. This condition is referred
to as complete synchronization or identical synchronization. In this
kind of synchronization the properties of the subsystem are the phase

variables themselves i.e g(:c) =  and g(y) I y(t). In complete
synchronization the chaotic trajectories of the subsystems remain
in step with each other for the entire course of time. This kind
of synchronization was first shown to occur in two unidirectionally
coupled systems [46]. All the conditional Lyapunov exponents of
the synchronized subsystems would be negative. This type of syn­
chronization is also referred to as conventional synchronization [50].
Complete synchronization is exhibited by systems with both unidi­
rectional and bidirectional coupling. The appearance and robustness
of the synchronization states for different coupling schemes have been

discussed in references [51, 52, 53].

Complete synchronization may be achieved in identical systems
which are properly coupled. However, in real physical systems there
may be parameter mismatches and hence the systems are not identi­
cal. Complete synchronization may not occur in such cases as there
does not exist an invariant manifold st" = y.
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Frequency synchronization

Frequency is the subsystem property which we measure in this syn­
chronization. Measuring a property indicates that we are calculating
a, numerical value for that property. So in this case g,,; is the property

being measured and the numerical value gx = w is the frequency. In
frequency synchronization comparison is made between properties
that are time averages on the trajectory. Hence in this kind of syn­
chronization there is no restriction on the instantaneous values of

the coordinates ax and y [49].

Phase synchronizat ion

For unsynchronized chaotic oscillators, as the coupling strength is
gradually increased, a weak degree of synchronization referred to as
phase synchronization may occur, where the suitably defined phases
of the chaotic oscillators become locked, while the amplitudes remain
uncorrelated. In order to define the “phase” of a chaotic system
different methods are used. If the dynamics is chaotic and phase
coherent one way is to define the phase as the angle coordinate <p(t).
Another method is to define the phase by a Hilbert transform in cases

where the phases are not uniquely defined on the subsystem [48].
Phase synchronization compares only the phase variables. Hence in
this state the amplitudes can remain relatively uncorrelated.

The two kinds of synchronization described above can be included

in the definition for synchronization as the definition depends on the
P1‘0perty of the subsystem that we measure and not on the difference

between the variables  — y|| as most of the definitions do.
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If the chaotic oscillations cover a broad range of time scales, the

phase will not completely synchronize, but will have intermittent
phase slips. This is known as imperfect phase synchronization[54].

Lag synchronization

As the coupling strength is increased further, the synchronization
becomes stronger with even the amplitudes getting correlated, but
with a proper shift in time. This is known as lag synchronization and
in this case the properties measured lag behind each other by at fixed
time, 'r. In order to characterize lag synchronization quantitatively,
similarity function is used which is discussed in detail in Chapter 2.
With strong enough coupling, the time lag may become zero and the

two systems may become completely synchronized [47].

Generalized synchronization

For strong enough coupling the dynamics of the system represented
by Pb = f1(:v) and y :- f2(y) is constrained to a subspace in the whole
phase space of the system (x,y). But as it is non-identical systems
this subspace is not the x=y, but defined by a more complicated
functional relationship between them. This hidden synchronization
is known as generalized synchronization [55, 56].

1.4.1 Stability of synchronization

Consider a system represented by the variables $1, 2:2, 2:3 coupled to

a second system with variables y1,y2,y3. In a drive response sys­
tem yl can be replaced by 3:1 and under suitable conditions after a
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long time we may get the two equalities 2:2 = yg and 2:3 =  This
condition is identical synchronization and it restricts the motion of
the system to a lower dimensional hyperplane. In general, when
systems are synchronized, the phase space trajectories of the com­
bined system are confined to a low dimensional hyperplane called

synchronization manifold. The coordinates of the space orthogo­
nal to the synchronization manifold should be zero if the motion is
in the synchronization manifold. The stability of the synchronized
state depends on the property whether the system is attracted to
that manifold when started away from it. The minimal condition
for the stability of the synchronized state is that the Lyapunov ex­
ponent associated with the equation for the space transverse to the
synchronization manifold should be negative [51, 57].

1.5 Outline of the thesis

The main goal of this thesis is to study the dynamics of Josephson
junction system in the presence of an external rf-biasing. A system of
two chaotically synchronized Josephson junction is studied in Chap­
ter 2. The change ir1 the dynamics of the system in the presence of at
phase difference bet-ween the applied fields is considered. Control of

chaos is very important from an application point of view. The role
Of phase difference in controlling chaos is discussed. Chapter 3 is
an extension of the work presented in the previous chapter for an ar­
ray of N Josephson junctions. An array of three Josephson junctions
iS studied for the effect of phase difference on chaos and synchro­
nization and the argument is extended for a system of N Josephson
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junctions. In the presence of a phase difference between the external
fields, the system exhibits periodic behavior with a definite phase re­
lationship between all the three junctions. Chapter 4 deals with an
array of three Josephson junctions with a time delay in the coupling
term. It is observed that only the outer systems synchronize while
the middle system remain uncorrelated with t-he other two. The ef­
fect of phase difference between the applied fields and time-delay on
system dynamics and synchronization is also studied. In Chapter
5 we study the influence of an applied ac biasing on a serniannular
Josephson junction. It is found the magnetic field along with the
biasing induces creation and annihilation of fluxons in the junction.
The I-V characteristics of the junction is studied by considering the
surface loss term also in the model equation. The system is found to
exhibit chaotic behavior in the presence of ac biasing. In Chapter
6, the results are briefed and the future plan of work is also presented



Chapter 2

Suppressing chaos in
coupled Josephson
junctions

2.1 Introduction

The interaction of Josephson junctions(.lJ) with external fields plays
important roles in the development of physics and chaotic dynamics

of J.]s [58, 59, 60, 61]. The existence of chaos in rf-biased JJ has
been verified through theory, numerical simulation and experiments
l62l- Control of chaos continues to be an active area of research
l40] because of the many undesirable effects chaos brings in mechan­

ical systems and other devices. By controlling chaos in rf-biased
JJs, it was shown that even in the presence of thermal noise, they
could be used as voltage standards [63]. Suppression of temporal
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and spatio-temporal chaos allows complex systems to be operated in

highly nonlinear regimes. This is required in many physical systems.
Most of the Josephson junction devices are made of more than one
junction coupled together. Depending upon the values of the param­
eters, these coupled Josephson junctions may exhibit both periodic
and chaotic: motion. It becomes necessary to control chaos in such
systems for obtaining optimum working condition. For example, it
was shown that the optimum working condition for Josephson june~

tion based voltage standards are near the region of chaos [39]. Thus
the study of these nonlinear systems in the chaotic regime comes of
practical importance.

2.1.1 Coupled Josephson junctions

In this chapter, we consider the dynamics of two short Josephson
junctions in the presence of applied external biasing. The equations
for the short Josephson junction may be given by the RCSJ [7, 8]
model described in Section 1.1.1. Each junction is characterized by
the phase difference <,2'>,- between the order parameters representing
the superconducting state, a critical current 2'6,-, capacitance C, and
normal resistance R, with 21 = 1, 2. There are two ways by which
such junctions may be coupled.

Parallely connected Josephson junctions

The coupled Josephson junctions consists of a pair of junctions wired
in parallel with a linking resistor Rs. The resistor Rs provides the
coupling between the junctions. Schematic representation of the sys­
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tem is given in Fig(2.1). 1 and 2 represent tlie applied external fields.

Rs

a s at
Figure 2.12 Schematic representation of a coupled Josephson junction connected
in parallel with a linking resistor Rs. 1 and 2 represents the applied fields.

The dynamical equations can be written by using the Kirchoff law

/\/\/\/M ——

SS

I10 d’</> h d</5 . . . . .
261 dt/21 + 26R; dt} + 1,61 S111 Q51 =-1,116 + 2:) eos(wt') — -as (2.1)

502 d2¢2 5 (M52 . . ., ., , .
28- dt:2— ‘l’ 26122 dt, + 262 S1I1¢2 = zdc + 20 cos(wt + 6) + 25, (2.2)

where is is the current flowing through the coupling resistor and is
given as - __ 5 d¢>1 d¢2 €

Z” “ 2@Rs lat’ aw l ' (23)
In order to express Eqs.(2.1) and (2.2) in dimensionless form

the jL1I1Ci]iOIll plasma frequencies w_;1 and LJJ2 given by wJ1 =- _ . i .
(2ez¢1/hC1)2 and 01;; = (2ezC2/hCg)2 are introduced. The normal­
ized time scale is written as t = w_;1t'. The dimensionless damping
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parameter B is defined as

1 h
0-= s 4/». a.R1 2ez,;1C1

The dc bias current 2'26 and the rf amplitude if) are normalized to the
critical current 1161. The actual frequency w is re-scaled to Q = w/w_;1

and the coupling factor is defined as

as = gfi-H.

For identical JJs, Eqs.(2.1) and (2.2) can be written as

$1 + .5¢1 + Sin £151 = idc + in ¢0S(Qt) - (Is [$1 - Q52] ,

<52 + W52 + $i11¢2 = idc + "110 ¢°5(m + 9) — <13  —  -(2-4)

It can be seen that the coupling arises as a natural consequence of
the exchange of current through the resistor Rs and it depends on
the differential voltage ($1 — 1&2). For JJ devices, phase derivatives
are of central importance because they are proportional to junction
voltages.

Series-connected Josephson junctions

The Josephson junctions may also be coupled in series with at link­

ing resistor RS to a common bias as shown in F ig.2.2[73, 74]. The
equations for the phase variables now becomes

hC1 d2¢1 it d¢1
+  +ic1SiI1q§1 =1 iiic +  cos(wt') —— -is (2.5)
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Figure 2.21 Schematic representation of a coupled Josephson junction connected
in series.

5C d2q5 ii dqb _ , , , _
262 di/22 'l" QGRQ id; + zcg s111 $2 : zjic + 16 c0s(wt' + 6) -13, (2.6)

where is is the current flowing through the shunt resist-or and is given

. __ n @ d¢2
‘S "' 2@R8 ldt’ + dt’l' (27)

3-S

In this case instead of the difference, it is the sum of the voltages
that comes into play.

In this thesis we deal with parallcly connected Josephson junc­
tion systems. I11 order to study the system numerically Eqs.(2.4) is
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written in the first order differential form as

¢l1 = TP1,

1/31 = -fir/)1-sin¢1+e.+¢@c<>s(z)-as [¢1—~1./12].2 = Q, (2.8)
052 = 1/12,

IZJ2 = -5192 — Sill $2 + idc +10 ¢0Sl(Z) + 9] - 01$-[1/12 — TF1] ­

where z = Qt. Eq. (2.8) is studied using fourth order Runge-Kutta
method. The time grid is set as 0.005 and it is checked for different
values of At. The maxima of the time series is plotted. In order
to eliminate the transients, the first 50,000 iterations are left out.
Also random initial conditions are given. The nonlinear equations
are numerically integrated using fourth order Runge-Kutta method
as given in Appendix A.1. The values of the system parameters are
fixed as H = 0.15, 2'0 = 0.7, idc = 0.3 and Q = 0.6 for numerical
simulation.

2.1.2 Lyapunov exponents

A positive Lyapunov exponent indicates chaos. There are different
algorithms developed by several authors to determine the complete
set of Lyapunov exponent from a set of differential equations. For the

numerical evaluation of the Lyapunov exponents, they are defined by

the long-term evolution of the axes of an infinitesimal sphere [75, 76].



2.1 Introduction g 41
-——

Then Lyapunov exponents are given by as

}—-l

P» ‘S?/"K/-\Z01­\_/%-/

A1 :  —£ logg  (2.9)
where pi is the length of the ellipsoid principal axis. If we con­
sider the evolution of an infinitesimal n-sphere of initial conditions
which represents a continuous dynamical system in an n-dimensional

phase space, the sphere will become an n-ellipsoid due to the locally
deforming nature of the flow. A well defined direction cannot be
associated with the Lyapunov exponent as the orientation of the
ellipsoid changes continuously with the evolution. For implement­
ing this method the principal axes are defined with initial conditions
whose separations are small as computer limitations allow. The main
drawback of this approach is that in a chaotic system the condition
of small separations for the times on the order of hundreds of orbital
periods needed for the convergence of the spectrum cannot be guar­
anteed. This problem is avoided in the algorithm developed by Wolf
et al. [23]. A fiducial trajectory is created by integrating the non­
linear equations of motion for some post-transient initial conditions.
The arbitrarily oriented n orthonormal vectors are defined by si­
multaneously integrating the linearized equations of motion. Gram­
Schmidt orthogonalization procedure is applied on the vector frame
to overcome the collapse toward a common direction caused by fi­
nite precision of computer calculation. The rate of growth of the
first k principal axes is obtained from the projection of the evolved
vectors onto the new orthonormal frame. This provides an estimate
Of the It largest Lyapunov exponents. We follow the algorithm by
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Wolf et al. to compute the Lyapunov exponent spectrum. Fig. 2.3 is
Lyapunov exponent spectrum plotted against the coupling strengths
corresponding to Eq.2.8. We observe that the maximum Lyapunov
exponent is positive for all values of coupling strength and it remains
at the same positive value. Hence the system exhibits chaotic be­
havior for all values of coupling strength in the parameter range we

05. e — r — — ei _ _ _ _, _ _ __ ,_ _0 _— _— _ _ ._I _ _ _ _ _ if __ _-os ­
selected.

.. 1 ­
e< i

-1.5
l

-2_g 5‘ .i _3 fO 02 O4 O8 OB I
(I

S

Figure 2.3: Lyapunov exponent spectrum is plotted for different values of cou­
pling strength as with I9 = 0, B = 0.15, to = 0.7 and w == 0.6. It can be seen that
the system is in chaotic motion for all values of coupling strength.

2.2 Synchronization of Josephson junctions

Since Josephson junction is one of the simplest nonlinear systems to
exhibit chaos which can also be verified experimentally, it has been
studied both numerically and experimentally for various aspects of
the dynamics [26, 29]. Synchronization in J Js has been an interesting
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Figure 2.4: Maxima of tl1e difference in voltage against coupling
strength as. 6 = 0, [3 = 0.15, 2'0 : 0.7 and w = 0.6.

area of research [64, 65]. The studies on synchronizing arrays of
Josephson junction has gained momentum since these are identified
as sources of electromagnetic radiation in the tertrahertz range. In
an array of Josephson junctions, when all the junctions oscillate in
phase, the total emitted power is expected to be proportional to
the square of the total number of junctions in the array. However
desynchronization leads to dramatic drop in emission power. The
major challenge arising in this context is to synchronize Josephson
oscillations in all junctions in the stack to get significant radiation
Out of the crystal. There are many methods suggested to bring
about synchronization i11 such arrays. One way is to couple the
junctions with resonant cavity and this has been proved efiicient both

8Xperirnentally[66, 67] and numerically [68, 69]. Another popular
Way is to apply a magnetic field along the junction [70]. Blackburn
et al. studied the intermittent chaotic synchronization in a system of
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two coupled Josephson junctions [71].
The robustness of synchronization of chaotic systems is of cur­

rent interest because of its application in secure communication. lt
is seen that synchronization could be lost even due to small param­
eter mismatches. In the case of Josephson junctions, even junction
capacitances which are often ignored are seen to affect synchroniza­

tion [72]. A phase difference between the applied fields is found to
desynchronize a synchronized system. The effect of phase difference
on a system of mutually coupled oscillators was studied by Yin et
al. [95]. It is observed that a phase difference destroys synchroniza­
tion in chaotic oscillators and even brings in lag synchronization. In
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Figure 2.5: a and c show the system is synchronized for 6 = 0, ,8 = 0.15, 210 =
0.7, idc = 0.3, as = 0.45 and w = 0.6. b and d show the system desynehronized
for a phase difference of 0 = O.l1r

the system we considered, for large values of coupling strength, it
is observed that the difference between the variables of the two sys­
tems get smaller. For a complete synchronized state it is expected
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that (zpl — 1/12) should be equal to zero. But in real practical cases
there will always be a small [(1/11 — 1/1g)| < 6 which can be associ­
ated with synchronization. The value of 6 varies from systems to

systems. Fig. 2.4 shows the variation in the difference between the
voltage against the coupling strength. It can be observed that as the
coupling strength is increased the difference between the variables
decreases drastically. From the various coupling strength values we
chose as = 0.45 as the system exhibited perfect synchronization in
this region. This can be observed from Figs. 2.5  and  Figs.
2.5 (b) and (d) shows the effect of phase difference on synchroniza­
tion which is discussed in detail in Section 2.4.

2.3 Controlling chaos

Chaos occurs in many systems naturally and in many cases chaos is a
nuisance. Hence control of chaos has been an important research field

with a great deal of work going 011. The process of controlling chaos is

classified into two broad categories. The first is the feedback method
where some feedback process is employed to maintain the trajectory
in the desired mode. The second is the nonfeedback method whore

the knowledge of the system is used to modify chaotic behavior.
Feedback method do not change the system and it usually stabilizes
the unstable periodic orbits. On the other hand nonfeedback method
slightly changes the controlled system, mainly by a small permanent
shift in the control parameter and changes the system behavior from
Chaotic to the periodic regime.

Among the feedback methods, the Ott-Grebogi-Yorke method
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[77] is extremely general and makes use of the fact that a chaotic
system has infinite number of periodic solutions lying within it. Im­
plementation of specifically adapted techniques to control the system
from irregular chaotic motion to one or more of these periodic solu­

tions is proving beneficial in many physical situations [40, 41, 78, 79].
However this method requires following the trajectory and e1nploy­
ing a feedback control system which is highly flexible and respon­
sive. Also even small amount of noise will cause large departures
from the operating trajectory. Pyragus [80] proposed two methods
to control chaos. One is to use a feedback and a periodic external
forcing while the second is to use a self controlling delayed feedback.
These methods being noise resistant could be easily implemented in
experimental systems. However nonfeedback methods have definite
advantages over the feedback methods in that in the case of nonfeed­

back control we do not have to follow the trajectory and there is also
no need to wait until the trajectory is close to the appropriate unsta­
ble orbit. Many works have been carried out by using nonfeedback
control, in various chaotic systems analytically [81, 82, 83], numer­
ically [81, 82, 83, 84, 85] and experimentally[86, 87, 88]. Virtually
all engineering and natural systems are usually subjected to an ex­
ternal forcing. This forcing can be planned to include a component
which will help to shift to a parameter space where the system is
not chaotic. Periodic perturbation applied to the system as external
forcing [37, 89, 90, 91] or as a perturbation to one of the internal
parameters [92] is found to suppress chaos. It is even shown that
the addition of a suitable random noise can change the chaotic dy­
namics to a periodic one [93]. Chaotic systems can also be stabilized
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by applying a small time-dependent modulation to a parameter of
the system. However in practical applications, this method requires
that the characteristic times of the system is 11ot too short compared
with the times of the feed back. In the case of J J oscillators, the
characteristic times of the dynamics response are of the order of few

picoseconds which is too short for any electronic feedback control
system. A phase difference between the applied fields was found to
play an important role in suppressing chaos [94]. In the following
section, we study the influence of phase difference between the ap­

plied fields 011 suppression of chaos and synchronization in Josephson

junctions .

2.4 The effect of phase difference

The question of the influence of phase difference between the ap­
plied fields in taming chaos was first addressed by Zhilin et al. [94].
They found that in a Duffing oscillator system, by properly choosing
the phase difference between the two applied sinusoidal fields, one
can greatly reduce the amplitude of the control forcing to achieve
effective control of chaos. As phase control can be easily achieved in
experiments by phase locking techniques, this has great potential ap­
plications. Another observation is that regular appearance of chaotic
and periodic motions occur which are termed as breathers when the

two harmonic forces slightly deviate from resonance. A phase dif­
ference between the applied fields on two chaotically synchronized
Duffing oscillator was found to destroy synchronization and bring in
Periodic motion [95].
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In order to study the effect of phase difference of the applied
sinusoidal driving fields on JJ systems, we define new variable in
terms of the difference between the variables as S¢ = $1 — Q52 and
51;, = 1/11 — zpg. The derivatives of S¢ and Sw are taken as

5"¢=¢51-952

a11d

$1» = 1111 - 1/12

Substituting the values of Q51, $2, 1/)1, $2 from Eq. (2.8) we get

90> = st, (2.10). 6 6
Sq, = —,6S,;, — sin $1 + sin $2 — 201831;, + 2:10 sin (Qt +  sin

First we consider the case where no phase difference is present be­
tween the applied fields. i.e., 6 = O and in this case the term
22L@ sin(§lt + 9/2) sin(6/2) becomes zero. By suitably choosing the
values of as and 3, it is possible to find a region where the difference

between the voltages is zero. ie., zpl m ipg. Now both §¢ and Sit.-, go
to zero or the system is synchronized. The value of as is chosen as
0.45 which satisfies this condition.

However, even small values of applied phase differences desyn­
chronizes the system as can be seen from Eq.2.10. The presence of 9
makes the right hand side of the equation a nonzero value and hence

there is no possibility of synchronization in this case.  2.5(a)
and 2.5(c) show that the system is synchronized i11 the absence of
a phase difference. The system gets desynchronized by an applied
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Figure 2.62 Similarity function S('r) versus 1' for different values of phase dif­
ference 6. Curve l is with phase difference 9 = 0, 2 for 6 == O.l1r and 3 for
6 = O.5'rr.

phase difference of 6 = 0.11r as shown in Figs. 2.5(b) and 2.5(d).
The level of mismatch of chaotic synchronization can be given quan­

titatively by taking the similarity function S('r) as a time averaged
difference between the variables 1/11 and 1112 taken with time shift "r

2

[<~¢/»%<=:>>] [<1/»%u>>11”

The similarity function is defined to characterize lag synchroniza­
tion. This measure is similar to the cross correlation function

((w1(t + T)'</2g(t))2), but S is specially suitable to measure lag syn­
chronization from bivariate time series because S (T0) Q 0 at a certain
nonzero 1'0 indicates lag synchronization. So essentially we search for

the minimum a = mz'nTS('r) = S'("r =1" T0) [47]. The value 5(7) plot­
ted against T for different values of phase difference 9 is shown in
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Fig. 2.6. It is observed that for e =: 0, the system is in complete

synchronization. For a finite value of phase difference, a minimum of

S(TO) appears which indicates the existence of a certain phase differ­

ence between the interacting systems. In the phase synchronization

regime the curve has a clear minimum (J #- O. However finite S(To)

means that in this regime the amplitudes are uncorrelatcd. Thus a

phase difference desynchronizes the system though for small values

of phase difference, a phase correlation may be expected between the

two systems.

The next airn is to check how the dynamics of the system is

affected by the application of a phase difference. For this, the values

of () is varied from 0 to 2n and the value of the difference in voltage

is plotted against the phase in Fig. 2.7. From the inset of Fig. 2.7,

it can be seen that the system exhibits a change in the dynamics in

the region where () = O.341r to O.47T". By evaluating the time series

we observe that the system exhibits periodic behavior in this region.

However even a slight change in system parameter values would bring

the system back to chaotic regime. For a phase difference of (} =

O.951r to 1.51T" the system exhibits periodic motion. The difference

in voltage and voltage of a single junction for () == 7r plotted against

time are shown respectively in Figs. 2.9(c) and 2.9(d). Figs. 2.9(a)

and 2.9(b) show difference in voltage and voltage of a single junction

against time for an applied phase difference of () == O.

In order to explain the periodic behavior in the presence of a

phase difference between the applied fields we define t\VO new vari­

ables in the synchronization manifold, When rpl ~ cP2 and .l/J] ~ ~)2

\ve can write P4J == [<Pt + cP2] /2 and p~ == [~l + 1/;2] /2. Taking the
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Figure 2.7: Maxima of the difference in voltage is plotted against phase dif­
ference applied, 0 = 0 — 21r. a, = 0.45, 114.; = 0.3, fl = 0.15, 2'0 = 0.7 and
w = 0.6.

derivatives we have

Pd) :  Zand _ _
Pd’ : [$1 2%]

. and from Eq. (2.8) we get

1%,, = Pw, (2.12)- 0 6
Pw = —flP,), - sin(P¢) + idc +110 cos  cos (Qt +  .

Eq. (2.12) is similar to the equation for a single Josephson junc­
tion represented by Eq. (1.13) and we can see that 110 is replaced
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Figure 2.8: Maxima of the difference in voltage is plotted against amplitude of
driving field, 0 = 0. a, = 0.45, idc = 0.3, [3 = 0.15and w = 0.6.

by 2'0 cos (0/2) and the phase of the driving field leads by (0/2) as
a result of coupling. The nonfeedback methods usually change the
controlled system by bringing in a small permanent shift in the con­
trol parameter and change the system behavior from chaotic to the
periodic regime. Thus the phase difference changed the parameter
space to a region where the system is periodic. Though the effect of
a phase difference seems to be similar to a change in the amplitude
of the driving field, both are not equivalent. This can be see from
Fig. 2.7 and Fig. 2.8. In both cases the difference in voltage is plot­
ted against 0 and "£0 respectively and it can be seen that the system
behavior is entirely different. In Fig. 2.8 the system is synchronized
for values of 2'0 upto 0.5 with 6 = 0.

From the Lyapunov exponent spectrum in Fig. 2.10 with 6? = 1r
it can be seen that the system is in periodic motion for most of the
coupling values. The system turns from hyperchaos (two positive
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Figure 2.92 (a) shows the differential voltage plotted against time and (b) is
the voltage of one junction with 6 = 0. It is observed that the variation is
chaotic and the maximum difference in voltage is 0.05. In (c) and (d) shows the
corresponding voltages with an applied phase difference of 1r. Other parameter
values are as = 0.45, ,3 = 0.15, 1'0 = 0.7 and w = 0.6.

%§
i

Lyapunov exponent) to chaos and then to a limit cycle (two negative
exponents) 011 increasing the coupling strength. Fixing the phase
difference between the driving fields as 1r, tl1e change in the response

of the system to other parameter variations are then studied.
Fixing the value of a as 0.45 and the amplitude of the driving

rf field is changed from 0 to 1. Without an applied phase difference
the system exhibits chaotic motion from a value of 0.43 onwards
with some periodic windows in between (Fig. 2.11). However, on
the application of a phase difference, the system stays in periodic
state for a wide range of amplitude values which are chaotic before.
Fig. 2.12 shows the response of the system when the amplitude of the

driving field is changed from 0 to 1 with an applied phase difference
of 71'.

The combined effect of phase difference and the applied dc bias
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Figure 2.101 Lyapunov exponent spectrum plotted against coupling strength
as for 6 = 1r,[3 = 0.15, in = 0.7 and w = 0.6.

on the system is also studied. For this, all the other parameter
values are fixed and idc value is changed from 0 to 0.4. First, the
phase difference is taken to be zero and Fig 2.13 shows that the
system exhibits chaotic behavior with some periodic windows. But
for majority of values the system is in the chaotic region. However
a phase difference between the applied fields changes the scenario
completely. Fig. 2.14 shows that the system is periodic for most of
the idc values. Thus the system exhibits periodic motion for a wide
range of parameter values for an applied phase difference between
the driving fields. This may be of great practical importance in JJ
devices like voltage standards, SQUIDS, detectors etc.

A key point to be noted is that the parameter values at which
we apply phase difference is to be chosen carefully. We are able to
suppress chaos by applying a phase difference between the driving
fields only in regions where the coupled systems were synchronized.
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2,5 Conclusion

The role of an applied phase difference between the driving fields in

3, system of two coupled J J has been studied. Suppression of chaos
is found to be possible when a phase difference is applied to the sys­
tem in the synchronization manifold. However, when the difference
in voltage between the two junctions are 11ot negligible, chaos can­
not be controlled by just applying a phase difference between the
driving fields. Though the application of a phase difference between
the applied fields desynchronizes the system, a phase correlation has
been found to exist for small values of applied phase differences. The

difference between changing the amplitude of the driving fields and
applying a phase difference between the fields has been discussed.
For a phase difference of 6 = 0.95% to 1.5¢r the dynamics of the sys­
tem has been found to change from chaotic to periodic. By fixing
the phase difference as rr and varying other parameters such as dc
bias, amplitude of applied field and coupling strength the change in
the response of the system has been studied. It has been found that
even for large variation of these parameters, the system continues
to be in periodic motion. So, this may be of great practical impor­
tance as phase difference can be easily applied to the rf-field in an
experimental set up. Thus, it offers an easier way to control chaos
and will provide an enhanced capability to design superconducting
circuits in such a way as to maximize the advantages of nonlinearity
While minimizing the possibility of instabilities.
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Chapter 3

Synchronization in an
array of coupled
Josephson junctions

3.1 Introduction

Arrays of Josephson junctions constitute one of the most intrigu­
ing examples of coupled nonlinear oscillators. The main interest in
these complex systems is not just because of the richness of their
physics, but also for the possibility of using these arrays in the pro­
duction of cryogenic devices with unique properties and low power
Consumption. Josephson voltage standards [96], fast logic elements
[97, 98], neural networks [99] and photofluxonic detectors [100] are
SOme of the examples of devices made of Josephson junction arrays.

The studies on Josephson junction arrays have increased during the
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past few years because of the improved reliability of the lithographic
and fabrication which allows a much higher degree of integration
than before and the availability of inexpensive personal workstations
which made simulations of discrete systems possible. Lcvinsen et al.

conceived a new type of voltage standard from an array of Joseph­
son junctions which promised to provide voltages much larger than
that obtained from the existing voltage standards [101]. However
when the experiments were performed it was observed that the cur­
rent - voltage curves characterized predominantly by irregularities
and noise rather than the predicted regions of constant voltage [39].
Later it was understood that these instabilities were due to determin­

istic chaos intrinsic to the rf-biased junction. Hence practically it is
important to study chaos associated with Josephson junction arrays
and methods to control it. In this chapter, we extend the studies of
the influence of phase difference made in the second chapter to an
array of chaotic Josephson junctions .

3.2 The model

We consider an array of Josephson junctions linked in parallel by
linking resistor Rs between them. A schematic representation of an
array of J J wired in parallel with linking resistors is given in Fig. 3.1.
The equation of motion for an array of N coupled current driven J J s
can be written in the normalized form as
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R!

1 2
Figure 3.12 Schematic representation of an array of JJ linked in parallel with
a linking resist-or R8. 1 and 2 are the driving fields.

<51 + 5&1 + sin (bl = idc + '60 c0s(Qt) — as  —  (3.1a)

Q51 + 5451' + 3i11¢¢ = 013 [¢5¢+1 + fiih-1 -* 2</51] (3-lb)

qziiv + ,8qb}v + sin ¢N = idc +'1l0 cos(Qt) —— as  -— q5N_1q3.1c)

where i varies from 2 to N-1 and the dimensionless da,mpi11g param­
eter ,6 is defined as

1 / I‘)8 : Eezc
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The normalized time scale is written as t = w_;1t' where w_;1 =1 . . . .
(20601/hC1) 2 . The dc bias current zit and the rf amplitude 26 are nor­
malized to the critical current icl. The actual frequency w is re-scaled

to Q = w/wJ1 and the coupling factor is defined as as = (R1/RS) L3.

These equations can be numerically simulated by using fourth
order Runge-Kutta method. The Josephson junction is found to be
chaotic for the parameter values ,8 = 0.3, "£0 : 1.2,w = 0.6 and idc =
0.3. VVe fix these parameter values for the numerical simulations.
First we take the case of three Josephson junctions and then extend
it to N junctions. The junctions are taken to be identical and for
a coupling strength of as = 0.37, the outer junctions synchronize
while the inner junction remains uncorrelated with the two outer
ones. It can be seen from Fig 3.2(a) that the outer junctions are
synchronized whereas Fig.3.2(b) shows that it is uncorrelated with
the middle junction for an array of three J Js.

3 VI’ ——— ** 37 . r-"r or or

We

V3“§\it ~‘_ , _ \-,\.~>~,\\  _\.'r;:?\‘. ‘T \\_u \_ \ \ \
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,2 l _2 I __1,,, 1, 1 1 1-2 -1 0 1 2 3 -2 -1.5 -* -0.5 0 05 1 15 2V, V2
Figure 3.2: (a) The outer junctions are synchronized (b) Outer junction and
middle junction is uncorrelated. The parameter values are [5 = 0.3, in = 1.2, w =
0.6, idc = 0.3, as = 0.37.
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This kind of a situation where tl1e connecting middle system re­

mains unsynchronized with the outer systems is termed as relay syn­
chronization. Synchronization of three laser systems are studied for

relay synchronization experimentally, numerically and analytically

[I02]. It is observed that the outer system synchronized while the
middle system remained unsynchronized with the two outer ones.
The importance of this configuration lies in the similarity with the
various neural models [103]. Important functional information about
the brain states could be obtained by modeling it with equivalent
scale-free small-world networks [104]. A configuration for such a
model is given by considering three bidirectionally coupled oscilla­
tors in a line. The outer elements are seen to synchronize isochronally

while the middle element lags behind. It is also verified for a neuron
model with three elements that the outer elements gets synchro­
nized while remaining lag synchronized with the middle one[105]. It­
is demonstrated using Rossler oscillators that during the transmis­
sion of information about a stimulus through an active array, the
stimulus created the way to be transmitted by making the chaotic
elements to phase synchronize [106]. The stability of synchronous
state is analyzed by Lyapunov function method [107] and the master
stability approach [108]

3.3 Stability analysis

In this section, we find the stability of the synchronous solution and
also try to find the condition in which the middle junction might
Synchronize with the outer ones. In order to perform the stability
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analysis for the synchronized state of N-coupled Josephson junctions,
we first consider three JJs linked in parallel. In first order, Eqs. 3.1
may be represented as

<I51 = 1111 (3-2a)
1131 = -01/»1 - sine + id. +10 <><>s<m) — as an - $2]<52 = 1/12 (3-2b)
wk I -5% " Sin Q52 + as [1111 + 193 -' 2192]Q53 = 1P3 (3-2°)

I

'4/)3 = -51113 * Sill <53 + idc + 130 <>0$(Qt + 9) — as [1/13 "" '1/)2]

From Eq.3.2a and 3.20, it can be observed that the outer junctions
are identical and symmetric with interchange of variables in the
absence of a phase difference 6 between the applied fields. Hence
there exists an identical solution for the outer systems given by
gbl = (353 = ¢>(t) and this type of behavior where systems show iden­
tical behavior is called complete synchronization. The equation for
the middle junction being different from the two outer ones, it may
have a different solution.

The aim of the present study is to examine the behavior of the
system just off the synchronization manifold. For this we define
the difference variables ¢f3 = @—§—‘2-3! and $1} =  and the ap­
proximate dynamics transverse to the synchronization manifold is
obtained by linearizing the corresponding subsystem consisting of

the outer junctions. For this first we take the derivative of ¢>]_3 and
112;}; and substituting the value of $1, Q5-2,1/)1 and 1&2 form eq.3.2a and
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3.2c and simplifying we get

<53 = ws (3-3)
1,l;1'3 = —fl2pf3 -— cos (bill; sin qbfq — Q5’!/)1—3

Linearizing eq. 3.3 we get the approximate dynamics transverse to
the synchronization manifold. I11 terms of the Jacobian matrix we
can rewrite the above equation as

‘ills I 0 1 ¢T,3
wig Cosfibl —z8_O5s 1/11-,3 ’

where sin <;5f3 flw (bi; and cos d>il'3 w cos Q51 as (bl w $3 in the syn­
chronization manifold. The eigen values of the matrix are

m1,g=— 1i\/1+ J. (3.4)
The stability of the synchronous state is controlled by the eigen val­

ues m1,2 [109, 16]. If mm are complex conjugates with negative real
part, the corresponding synchronized state is stable. I11 the above
case the average of the term in the radical is found and it is a com­
plex number with real part greater than unity. The real part of the
largest eigen value is thus found to be negative and hence satisfy the
criterion for stability of synchronization.

Now we analyze the subsystem constituted by the outer and the

middle junctions. We define new variables $5 =  and '1;’1z-"F; =
where 2' = 1,3. As the outer junctions are identical, it is
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enough to study any one subsystem. So considering the case with
z' = 1, we write,és = W2 (3.5)
Ififz = —B¢§ — cos qfifz sin ¢f2 + é [idc +110 cos(Qt)] — as(g¢§).

From Eq. 3.5 we conclude that in the presence of an external applied
field it is not possible to synchronize all the three junctions due to
the asymmetry induced by the applied fields. However in the absence
of an external field, an identical solution can exist for all the three
junctions.
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Figure 3.3: (a)shows the time series plot for an array of 7 JJs and (b) for 8
junctions. [3 = 0.3, 2'0 = 1.2,w = 0.6, idc = 0.3, a, = 0.37and 0 = 0.51r.

Extending the symmetry analysis to a system of N J J s coupled in

parallel with nearest neighbor coupling, the second and the (N —1)”‘
junction may have an identical solution for certain parameter values.

Similarly, the third and the (N — 2)"d junctions may have identical
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Solutions and so on. Thus in the case of an array, from symmetry
considerations we may deduce that N / 2 solutions may exist if there

are even number of junctions in the array and % solutions will be
present for odd number of junctions. The time series plot for an array
of 7 and 8 junctions is plotted in Fig.3.3. It can be observed from
Fig.3.3(a) that in an array of seven JJs, four solutions exist for the
parameter range considered. The fourth junction has an independent
solution. In Fig.3.3(b) we have plotted the time series for 8 J Js.

s. 25-~ . ...*—.s—-_1'2 - Ir  . _ \ —.,% \"5 *""' 2.5- ­1 1 ~ 1'>19 °s_ _ 3‘? 05,. I " .0 0' ‘' l05 -05' ‘1 -1 '  .  '15 .' ' 15 ' '2 15 1 -as u os 1 15 2 2s 15 -1 -05 0 05 1“'1 “'2
Figure 3.4: (a) and (b) shows that t-he junctions are phase correlated. B =
0.3, to = 1.‘2,w = 0.6, idc = 0.3,a_, == O.37and 0 = 0.51r.

3.4 Phase effect

In this section, we study the dynamics of the array in the presence
Of a phase difference. The presence of a phase difference between
the applied fields changes the scenario completely. On the applica­
tion of at small phase difference between the applied fields, the outer
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junctions desynchronize and all the three junctions are thus uncor­
related. But for sufficiently large values of phase differences, all the
three junctions are found to be in phase synchronization. Consider­

ing the difference variables 1,/;1,2,'i/)1’3,¢3,2 as defined in Section 3.3,
we explain the phenomena as follows. Due to the asymmetry that
arises between the outer junctions in the presence of the phase dif­

ference we need the extra variable 1/13,2 to analyze this situation.
The equations for the three difference variables may be written by
substituting eq.3.2 as-_ _ . _ 1 . .

1,b12 = —,8z[1l2 — cos Q51} sin ¢12 + -2- [zdc + to cos(Qt)] (3.6a)
,_

—@$(3’g1 + vs):_ _ . _ . . 9
1,013 =: —[3zj)13 — cos qZ>]L3 S1I1 @2513 + 26 s1n(Qt +  (3.6b)

“as(¢1_3 _~__ _ . _ 1 . .
1/J32 = —,81f;32 — cos qbgz sin (.632 + -2- [MC + 20 cos(Qt + 6l)](3.6c)

-@.<3”§_@ +¢s>.

where 216 = to sin g. Thus each subsystem experiences a different
driving field with the same frequency but different phases. Due to
the phase relationship between the driving fields, a definite phase
relationship is found to exist between all three junctions as shown in
Fig. 3.4.

The level of mismatch of chaotic synchronization can be given
quantitatively by taking the similarity function S('r) as a time av­
eraged difference between the variables 1,/); taken with time shift T
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Figure 3.5: Line (1) is similarity function for variables 1,51&1//-3 , (2) for 1,b1&1,L'2.
Line (1) shows complete synchronization while the other is not synchronized.
Both these lines are plotted with no phase difference applied (3) and (4) gives
the similarity function for the variables 1/11&iD3 and 1,(21&z,bg in the presence of
phase difference 6 = 0.51r. The second figure shows line 4 where the dip can be
observed clearly.

[111]
25120?.) :  + T) _   )

1<111<1>>1 1<11§<1>>11” 7
8.11d .

S-2(,7_) :  (t +7) _‘ .
[<11/»%(1)>] l<11»§(1)>l

and searching for its minimum 0 = minTS If 1/21  = 1/;3(t), then
S('r) has a minimum value 0 = O for T = O. If both 'd11(t) and 1/)3(t)
are independent then S'('r) m 1 for all the time. Line 1 in Fig. 3.5
shows complete synchronization between the end junctions and line 2

shows that the outer and middle junctions are desynchronized when
no phase difference is present. A minimum of S (T) indicates the
existence of a time shift between the two variables related to the
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phase shift. The amplitudes are uncorrelated in this regime, but;
phase correlation is present as indicated by lines 3 and 4 in the
presence of a phase difference between the applied fields.

On the application of a phase difference of rr/2 the dynamics
changes to periodic one as can be seen from Fig. 3.6
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Figure 3.6: The variables corresponding to the three JJs are plotted against
time which indicates the periodic behavior.

3.5 Result and discussion

We consider a parallel array of JJs with linking resistor Rs and the
conditions for complete synchronization is discussed. The outer junc­
tions being symmetric, can possess identical solution and hence may
synchronize depending on the parameter values. Linear stability
analysis is done to find the stability of the synchronous solution of
the outer junctions. From symmetry considerations we show that
all three junctions could be synchronized only in the absence of an

4:.-ILUEI._..1
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external field. Similarly in an array of N Josephson junctions, N / 2
identical solutions may exist if the number of junctions is even and

5%! solutions may exist if the number of junction is odd. In the
presence of a small phase difference, the system desynchronizes due
to the asymmetry induced by the phase difference. As the phase
difference is increased, in the case of three junctions all the three

junctions act as if they are driven by different driving fields having
the same frequency, but different phases. A phase synchronization
is observed between all the three junctions and the motion becomes
periodic. Thus, suppression of chaos ca11 be obtained in Josephson
junction systems in the presence of a phase difference between the
applied fields and this property may find applications in the working
of devices constructed using .l.ls.



Chapter 4

Effect of phase difference
on bidirectionally coupled
system with time-delay

4. 1 Time-delay systems

Time-delayed systems are interesting because the dimension of
chaotic dynamics can be made arbitrarily large by increasing the
time-delay and hence find applications in secure communications.
Time-delay is ubiquitous in physical, chemical and biological sys­
tems due to finite transmission times, switching speeds and mem­
Ory effects. The equations with time-delay are important because of
their potential applications to the theory of automatic regulators and
Servomechanisms. The value of the variables in at system with time­
delay is determined by the values of the variables at some previous
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moments of time. The delay equation may be given as

d 1
2-’; = x,»($1(¢ + 19), ...,$n(¢ + 19),t) (44)

with 2' = 1,2,...,n. X¢(:z:1(t + i9),...,a:n(t + z9),t) are functionals
defined for piecewise-continuous functions  of the argument 19,
which is restricted to the interval —h § 19 § O, where h is a positive

constant. Thus to determine the derivative day /dt at a given moment
of time, it is necessary to know the values of the functions at,-(t +
19) which describe the behavior of the system at the previous time
which are involved in the functional X4. The numerical value of
this functional then gives the value of the derivative at an instant
t. A dynamical system is infinite dimensional if a11 infinite set of
independent numbers are required to specify the initial conditions
[112]. A time-delay system is an infinite dimensional system as the
values of the variable xi in the interval [t, t—'r] is required to calculate
the value at the instant t.

Delay-coupled systems, i. e. , systems where the value of the vari­
able at a previous time of the second system is coupled to the first has
been investigated for chaos and synchronization. A time lag between
the oscillators is observed in the cross correlation in delay coupled
systems. This is referred to as achronal synchronization and was ob­

served theoretically [113] and experimentally[114] in laser systems.
Also, when achronal synchronization occurs, the situation will some­

times get complicated by the switching between the leader and the
follower [1l5, 116]. Anticipatory, lag, projective and phase synchro­
nizations have been reported in time-delayed systems [117, 118, 119]­
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In 3, drive response system, the response system sometimes antici­

pates the dynamics of the driver. This is known as anticipatory
synchronization. This has been observed in delay coupled lasers
[120, 121].

A generalized stability theory for synchronized motion of coupled
oscillator systems was developed by Fujisaka and Yarnada [43, 44].
However the addition of a time-delay considerably complicates stabil­

ity analysis by introducing an infinite number of degrees of freedom
into the system. The condition for stability of synchronization for
unidirectionally coupled piece-wise linear time-delayed systems can
be obtained using the Lyapunov-Krasovskii method [122, 123]. Inter­
mittent anticipatory, intermittent lag and complete synchronization
are found to exist at the same time in unidirectionally coupled nonlin­

ear time-delayed system having two different time-delays [124]. The
phenomena of synchronization of the outer lasers in a system of three
lasers has been explained using the ideas of generalized synchroniza­

tion [11O]. Isochronal synchrony in coupled semiconductor and fiber

ring laser models with mutual delay-coupling was also studied [I25].
Time-delay has been studied experimentally in J J transmission lines

represented by a sequence of overdamped underbiased J J s [126]. The
Synchronous variation of all the bias currents causes a change in the
time required for the pulses to pass through the 1i11e, and hence pos­
sible to provide a required time-delay.

Most of the chaos based communication techniques use synchro­
Ilization in unidirectional drive response system. A limitation which
arises in this case is that messages can be sent only in one direction.
Thus for a two way transmission of signals, a bidirectional coupling
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is required. In this chapter, we deal with an array of three Josephson
junctions coupled in a line with a finite time-delay in coupling and

study the system dynamics in the presence of an external driving
field. The effect of phase difference and a small frequency mismatch
between the driving fields on a chaotically synchronized system with

time~delay is also discussed.

4.2 Time-delay equations

The dynamical equations for three Josephson junctions with a time­
delay in coupling can be given as

Q51 + 5&1 + $i11¢1 = iac + '50 C056“) - as  - <?52(i - Tl]

¢5.2+5¢.2+Si11¢52 = as l<?>.1(i"T)+<i5.3(T'"T)*2¢-2]

<53 + 5&3 + Sin $3 == Z-dc +150 COSKQ + Amt + 9l "' 01$  - <»52('5 —

where 'r is the time-delay applied and as is the coupling term which
takes into account of the contribution from the delay circuit. AQ
is the frequency detuning and 6 is the phase difference among the
applied fields. Phase synchronization has been studied in a similar
system of chaotic rotators without time-delay [I27]. In the present
work we have considered the systems to be identical and Eq. (4.2)
may be written in equivalent form as
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4351 = ‘P1

1&1 = -‘/31’/11 — $iT1¢1 + lac + i0 605623) ' as W1 -* '¢2(t * Tll

<52 =

1/lg = -51./12-8iI1¢2+0<s[1!’1(¢-T)+@/13('5—T)—2¢2]

$3 = 1/13

#53 =

For the case AQ = 9 = O, it can be seen from Eq. 4.2 that the sub­
systems consisting of the outer J J s possess symmetry with respect to
interchange of variables and hence may possess identical solutions.
This type of situation where identical solutions exist for coupled sys­
tems is known as complete synchronization. Chaotic systems also
exhibit complete synchronization for some values of parameters. An
array of JJ s with no delay in coupling is found to be chaotically syn­
chronized for the parameter values ,8 = O.3,i0 = 1.2, Q = O.6,1ldc =

0.3 with as = 0.37 [128]. We have selected these values of parame­
ters for numerical studios unless specified otherwise. In the presence
of a time-delay in coupling, it is found that the dynamics changes
between periodic and chaotic motions. However synchronization is
found to be unaffected by the time-delay.

4.3 Stability analysis

In order to check for the stability of synchronization and its depen­
dence on various parameters, we need to know the transverse Lya­

1!12 (
-51/)3 — Sill $3 "l" idc -1-1,9 COS[((Q + AQ)i "l" 6)] — (1)23  -- 7.P2(t -—

4.3

r)l
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punov exponents (TLE) and its dependence on the parameters. The
necessary and suflicient condition for stability of the synchronous
solution is that all the transverse Lyapunov exponents (TLE) cal­
culated with respect to the perturbation out of the synchronization
manifold should be negative. However calculation of Lyapunov expo­

nents gets complicated when tirne-delays are involved. By linearizing
the equation for the outer JJs about the synchronization manifold,
we can arrive at a necessary condition for synchronization, i.e., the
sum of the T LE should be negative. If the sum of the 'l"LEs is
negative, it implies that the phase space is shrinking. Let ¢>(t) and
1/2(t) represent the synchronous solution and we define new variables
A¢5¢(t) = ¢¢(t) — <;$(t) a11d A1/11-(t) = $1-(t) — 1,b(t) with 2' = 1,3. Here

Aq5,;(t) and Ad),-(t) are the perturbations of the outer oscillators from
the synchronization manifold. Linearizing Eq.4.3 transverse to the
synchronization manifold , we get after dropping the subscripts [110]

(2;€)=(? _;_...)(§§Z)­
We have approximated sin(A¢) 2 Aqb as Agb is small. Due to the

delay in coupling, perturbations will not affect the coeflicient matrix
until it — t1 Z 21'. The Wronskian of the linearized system can be
related to the trace of the matrix by Abel’s formula

Aqfi mp

we) = M.) M |= e:1:p(./t1t(—a3 -mar).
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The Wronskian gives the phase space dynamics of the system. Taking
the natural log of the Wronskian we get

1n[W(t)] -I ln |AQ§A1,[l — A'l,D£Q(Z.5l = — ft(a5 + fi)dt. (4.4)t1

This is a monotonically decreasing function of t which means that
the phase space volume of the system perturbed from the synchro­
nization manifold contracts as a function of time. The sum of the

transverse Lyapunov exponents is given as [110]

Q.)

M“
>­

Q9

~ = t1inog%in|A¢A1/L - A1/1Ag5], (4.5)

The sum of the transverse Lyapunov exponents can be now approx­
imated using Eq. 4.4 as

/\1 + A2 re -(as + 8). (4.6)

which is negative indicating that the phase space of the coupled sys­
tem shrinks to a trajectory representing the synchronous state. The
sum of the Lyapunov exponents depends on the coupling term and
damping parameter. Even though the sum of the conditional Lya­
pu11ov exponents is negative, if one of the exponents is positive, the
solution will blow up along the unstable direction. This kind of a sit­
uation, where isoehronally synchronized solution gets unstable even
though the sum of Lyapunov exponents is negative was addressed in
ref. [125]. The quality of synchronization is usually quantified using
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Figure 4.12 (a)C'rosscorrelation (CC) between the two outer J.ls for different
values of coupling strength with all other values ,5 == 0.3, 2'0 = 1.2, Q = 0.6,z'dC =
0.3 (b) Transverse Lyapunov exponents plot-ted for the same parameter values.
T=0.1 in-both cases.

the correlation coeflicient (CC) given by

CC I  <w».<r> 1 <v1<t>>i_wr<t>p- <vm>1>  (4,)
\/<11». <t> - <1/11(t))|2)\/(|¢¢('5)'(1/1¢(¢))|2>

with 2' = 2, 3. The value of correlation coeflicient lies between
-1 5 CC § 1 with large value of I CC I meaning better synchrony.
The cross correlation of the dynamics is shown in Fig.4.1(a) for the
J J system, from which we observe that for very low values of cou­
pling constant there is loss of synchrony. In F ig.4.1(b) the transverse
Lyapunov exponents are plotted. I11 order to numerically evaluate
T LE the difference between the variables is defined. The linearized

equation corresponding to the difference equations are found out.
Then the original nonlinear equation together with the nonlinear
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equations are evolved numerically. A sample program is given in
Appendix A.1. It can be seen that the sum of the TLE will always
be negative as given by Eq.4.6. We observe that corresponding to the
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Figure 4.22 (a) CC between the two outer .]Js for different values of damping
parameter with as = 0.37 (b)CC between the outer and middle junction.

values where cross correlation is lost, there is a small positive value
for one of the TLE. Thus by comparing the cross correlation with the
stability condition one can obtain a qualitative idea about the nature
of the TLE. In the coupling scheme we considered as in the differ­
ence equation the time-delay part get canceled the evaluation is not
so tediuos. However if time-delay comes in the difference equations,
then the evaluation of Lyapunov exponent is difficult as the sys­
tem will have infinite dimension. In such cases this method may be
used to know the nature of T LE without explicitly evaluating them.
Fig.4.2 (a) shows tl1c cross correlation between the outer junctions
for various values of damping parameter. It can be observed from
Fig.4.2 (b) that the middle junction remains uncorrelated with the
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outer ones for most of the values of damping parameter. Thus the
middle junction mediates synchronization between the outer junc­
tions while remaining unsynchronized with both the outer junctions.

In the presence of a time-delay T, the dynamics of the system
changes considerably. It is observed that for some values of time­
delay (for T nearly equal to 0.35 onwards) the system exhibits pe­
riodic synchronized motion. Fig. 4.3(a) is the bifurcation plot for
various time-delays which shows periodic and chaotic behavior for

different delay times. With Fig. 4.4(a), we show that the system re­
mains synchronized for most of the values of time-delay. The TLEs
plotted in Fig. 4.4(b)show that one of the TLEs has positive value
for regions where CC is lost.
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Figure 4.3: (a)Bifurcation diagram for {P1 against 1' (b)Bifurcation diagram for
1/12 against 1'. Parameter values are fl = 0.3, 2'0 = 1.2, Q = 0.6, idc = 0.3, a, = 0.37
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4.4 Effect of phase difference and frequency
detuning

A phase difference between the applied fields is found to suppress
chaos effectively in an array of coupled Josephson junctions. In this
section, we study the effect of phase difference in bidirectionally cou­

pled time-delay systems. From Eq. 4.2, we can see that in the
presence of an applied phase difference, the equation for the outer
junctions is no longer identical. In terms of the difference variable

$11,, = $1 — 1&3 we can write the equation for the outer junctions
from Eq. 4.3 as' ¢+ — 1 . _
1&3 = -B¢1',3—2cos(—%’§)sin(%)+1l0 s1n(Qt+6/2)—asz/11,3 (4.8)
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Where $i3 = $1 — $3, $11,, : $1 + $3 and if) = 2110 sin(t9/2) and it can
be seen that for a finite value of phase difference the outer junctions

cannot get synchronized. The phase difference which usually desy11_
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Figure 4.52 The outer and inner junctions are (lesynehronized on the application
of a phase difference 6 = O.15¢r with ¢ = 0.

ehronizes the system may be used to suppress chaos in time-delayed
systems. From Figs. 4.3 and 4.4, it can be seen that for a time-i
delay of "r = 0.25 the system is chaotic and synchronized. Fig. 4.5
shows that an applied phase difference of 6 = O.151r desynehronizes
the system with 'r = O. But when a timedelay along with a phase
difference is applied the system exhibits periodic motion. Prom the
time series plotted in Fig. 4.6, it can be observed that the appli­
cation of a phase difference 9 = O.15¢r along with the time-delay,
the system goes to a periodic state. To complete the discussion, we
consider the ease of frequency detuning as it is difficult to apply a
second frequency which is exactly same as the first. Small devia­
tions in the applied frequencies are inevitable. So we consider the
system with a small frequency detuning and the initial phase differ­
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Figure 4.62 Periodic when a time-delay 1' = 0.25 along with a phase difference
0 = 0.15'rr applied.

ence is taken to be zero. In order to investigate the difference in the
dynamics brought about by frequency detuning, we first check the
case where AQ = O in Eq.4.2, i.e, the case without any detuning.
Fig. 4.7 shows the temporal dynamics of the system considered with
no detuning. Fig. 4.7(a) shows the time series plot for 1/)1 with no
detuning. Fig. 4.7(b) shows the time series plot for the difference
between the variables of the outer and the middle junction while Fig.
4.7(c) is time series plot for the outer junctions. The outer junctions
are completely synchronized while remaining uncorrelated with the
inner junction. VVhen a frequency detuning is applied, it can be
observed that the outer junctions gets completely synchronized in
regular intervals. Fig. 4.8(a) is the time series plot for the variable
for the outer junction with AQ = 0.004 and it can be seen that a
periodic modulation has appeared due to detuning. Here we observe
that though the qualitative behavior is repeated, the trajectory of



Effect of phase difference on bidirectionally coupled
86    at System with time-delay

1 "*'*—|" I I I ' i‘ | I 7‘S - (I) ­
>" Q MWWW WWW

-5 - - 4‘ __ _ A n I H 5 _ I | ­3&0 3100 Q00 3300 34(1) 3500 3600 3700- *' u I | r" I | '
0 3000 0 Tslinfoi 3500 3300 3465" asbo

v W2
Lyons­

Ii’

BM 05- (c)|__ 0 -'*
> -051»-1 '~ ' ‘ ' . -J - - - l ‘ Wu;E00 30$ 3200 3100 SBU) 3%0 4000 42@ 4400

I

Figure 4.72 The temporal dynamics of the variable with no detuning for Oz =
0.37

the system cannot be completely repeated due to the chaotic seg­
ments in the evolution process. This type of motion is referred to as

breathers. Fig. 4.8(b) shows the time series plot for the difference
between the variables of the outer and middle junctions and it can
be seen that they remain uncorrelated. Fig. 4.8(c) shows the time
series plot for the difference between the variables of the outer junc­
tions. It can be seen that they get synchronized periodically with a
period of T = 2w/AQ. The qualitative behavior of the system is not
affected by time delays.

4.5 Result and discussion

In this work we deal with bidirectionally coupled time-delayed sys­
tems and study the effect of delay and phase difference between the
applied fields on synchronization. The sum of the Lyapunov expo­
nents transverse to the synchronization manifold is evaluated and
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Figure 4.82 The temporal dynamics of the variable with AQ == 0.004 for (I =
0.37

it is found to be negative indicating the shrinking of phase space
of the coupled system to a trajectory representing the synchronous
state. However cross correlation coefficient reveals positive TLE for
some values of coupling constant and damping pararneter where syn­
chrony is lost, though the sum would be still negative. ’lransverse
Lyapunov exponents are evaluated numerically and are found to be
in good agreement with the analytic results. By varying the time­
delay, we have analyzed the behavior of the system and it is observed
that for small values of time-delays, periodic motion occur and as the
delay time is increased chaotic motion reappears. However the sys­
tem rernained synchronized for most of the values of time-delay and
hence may find applications in secure communication. The study on
a configuration of three oscillators in a line is of importance because
of the current recognition that it has resemblance with neuron mod­
els. Phase difference between the applied fields together with the
time-delays may be effectively used to suppress chaos. The practical
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situation where a small frequency detuning will be present between
the applied fields is also studied. As the frequency detuning is like
a time dependent phase difference, periodic and chaotic motions are

repeated with a period of T = 21r / AQ. T ime~delay does not change
the effect of frequency detuning. Experimentally it is possible to
apply a required delay in JJ [I26]. Hence by suitably adjusting the
time-delay, chaos may be controlled in JJ devices like voltage stan­

dards, detectors, SQUIDS etc where chaotic instabilities are least
desired.



Chapter 5

Dynamics of semiannular
Josephson junctions with
external ac-biasing

5.1 Introduction

A long Josephson junction serves as a very good system for studying
nonlinear phenomena such as excitation of a fiuxon and an anti­
fiuxon, their propagation, interaction, scattering and breakup. The
study of fluxon dynamics is important as it is employed in the fabrica­

tion of devices like constant voltage standards [35, 129], flux flow os­

cillators [13O, 131], logic gates [132, 133] and also in qubits [l34, 135].

LJJ s of various geometries have been thoroughly studied both experi­

mentally and theoretically in the past. The dynamical properties like

fluxon pinning [136], fluxon trapping [137], and phase locked states
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have been studied for rectangular [138, 139] and annular [140] LJJs_

Scmiannular geometry for Josephson junction was proposed by
Shaju ct al. which consisted of the half an annular junction [12].
From the numerical study of the fluxon dynamics of this system, it
was found to have many practical applications [I41]. It has been
shown that in the presence of an external magnetic field applied par­
allel to the dielectric barrier of such a geometry, the ends of the junc­

tion has opposite polarities. Because of this effect opposite polarity
fluxons can enter the junction from the ends under a properly biased
dc-current. If the direction of the current is reversed, flux penetra­
tion and progression are not possible and flux free state exists in the

junction. Thus this junction behaves as a perfect diode[142]. Semi­
annular geometries with the magnetic field applied in the plane of the
dielectric barrier was found to have application in bidirectional oscil­

lators, current rectifiers and in rf magnetic field rectifiers[143].The re­
sponse of a fluxon to an ac-drive was investigated by several authors.
It was shown that in a system with periodic boundary conditions av­
erage progressive motion of fluxon commences after the amplitude
of the ac-drive exceeds a certain threshold value [l44]. Complex
switching distributions has been obtained for ac-driven annular JJs
and theoretical explanation has been provided for the rnultipeaked
experimental observations [145]. The behavior of fluxon under two
ac forces has been studied and it was shown that the direction of mo­

tion of fluxon is dependent on the ratio of frequencies, amplitudes
and phases of the harmonic forces [146]. In this chapter, we study the
effect of an ac-bias applied in the plane of a semi-annular Josephson
junction. This method of applying ac- biasing offers a much eas­
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ier and controllable way to induce a harmonic periodic modulation
to the junction. Providing modulation in the junction is important
from an application point of view because of its importance in syn­
chronizing the Josephson oscillations in a stack for the emission of
electromagnetic radiation in the tetrahertz range [70]. We demon­
strate creation and annihilation of fluxons in semiannular Josephson
junctions in the presence of an ac-bias and an external magnetic
field. The current-voltage characteristics is studied and the regime
of chaos is identified.

5.2 Semiannular Josephson junction
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Figure 5.12 Semiannular Josephson junction with magnetic field in plane

The semiannular Josephson junction consists of half of an annu­
lar junction as shown in Fig. 5.1. In the configuration considered,
the semiannular junction is under the influence of an in-plane mag­
netic field applied perpendicular to the plane containing the junction
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boundaries. The dynamics of such a system with ac a11d dc-biasings
is studied here. The equation for the vortex dynamics of such a
system in the presence of a static magnetic field can be written as
[147] 6 . .
901;, —<,0m; +sin3p := —a<p,¢+,8cpm¢—A;9—:;(B.n) +7+z0 s1n(wt) (5.1)

In the case of a linear junction where n is independent of x, the
presence of a homogenous magnetic field makes no perturbation in­
side the junction and the influence would be through the boundaries
alone. However if the junction has semiannular or any other shape,
there would be perturbation to the interior of the junction [11].

In the presence of a homogenous static magnetic field, the equa­
tion for a semiannular Josephson junction as obtained from Eq. 5.1
is

<,o,,,, — (pm; + sin cp = —oup¢ + ficpmt — bcos(ka:) + 7 +710 sin(wt) (5.2)

where g0(:13,t) is the superconducting phase difference between the
electrodes of the junction with the spatial coordinate :1: normalized
to A], the Josephson penetration depth and time t normalized to the

inverse plasma frequency 0161 and wo = -jg-, E being the maximum
velocity of the electromagnetic waves in the junction. R is the re­
sistance per unit length, LP is the inductance per unit length, C is

the capacitance per unit length, and "y = jiois the normalized ampli­
tude of a dc-bias normalized to maximum Josephson current jg and
2'0 sin(wt) is the applied ac-biasing. Oz is the quasiparticle tunneling
loss and ,8 is the surface loss term i11 the electrodes and their values
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vary from 0.001 to 0.3 in experiments[148]. The Egon, term gives
the dissipation caused by the flow of normal electrons parallel to the
barrier. The term bcos(ka:) is due to the semiannular geometry of

the junction and is = § and b = 21r/\JABk'/¢>0 == 2k(B/B61), where

B61 = ;%§—J- is the first critical field of the Josephson junction and
B is the applied magnetic field. $0 = -%— is the flux quantum and its
value is 2.064 >< 10-]i5Wb. The extra term bcos(k;z;) corresponds to
a force that drives fluxons towards the left and anti fluxon towards

the right. Thus in the absence of an external field a flux free state
will exist in the junction as any static trapped fluxon present in the
junction will be removed [141]. In this configuration the external
magnetic field link only with the interior of the junction and not
with the boundaries [I41]. The boundary conditions of the junction
are ¢:i:(0,t) = <j5,,,(l,t) = 0. It may be helpful to view Eq. 5.2 to the
continuum limit of a chain of torsion coupled pendula immersed in
a viscous medium and subjected to an oscillatory torque [149] with
"y and b equal to zero. The term on represents the interaction be­
tween pendula and the field at the end will represent the torque at
the extremes of the chain. For a single pendulum on = 0 which
is similar to the short Josephson junction equations studied in the
previous chapters.

From Eq. 5.2 we observe that the parameters a,,(i,b,*y and
"£0 sin(wt) governs the dynamic behavior of the long Josephson junc­
tion . All these parameters influence the chaotic and periodic motion
of the junction. Besides these parameters which explicitly influence
the dynamics of the long Josephson junction, there are two implicit
parameters which also influence the dynamics of the fiuxon: the
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length of the junction and the initial conditions. In the case of zero
magnetic field applied, depending on the initial conditions the be_
havior of the perturbed sine-Gordon is different as the number of
fluxons moving in a long Josephson junction is fully determined by
the initial condition. However, the presence of the magnetic field
and the ac-biasing applied can generate fluxons from one end of the
junction.

In the absence of any perturbation Eq. (5.2) reduces to simple
sine-Gordon equation with fluxon solution given by

<p(1:,t) = 4tan_l[exp ] (5.3)
where u is the velocity of the fluxon and X = ut + 1:0 is the instan­
taneous location of the fluxon. 0 -= :l:1 is the polarity of the flux
quantum (which means there are two orientations for the fluxon). A
quantum of flux in one direction is called tl1e kink solution (fluxon)
and that in other direction is called antikink solution(antifluxon).
The perturbational parameters a and 5 cause both the fluxons and
antifluxons to slow down, while 7 term drives Huxons in one direction

and antifluxon in the opposite direction. Strong perturbations, both
internal and external will alter the speed and locations of the fiuxons
and may also create and destroy fluxons. It is necessary to establish
control over such interactions for making the junctions suitable for
applications as in logic gates etc.
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5.3 Perturbational analysis

The presence of a11 external bias current gives rise to a force on
the fiuxon which results in the propagation of the fluxon through
the junction. The effect of dissipation, damping and driving force
balance among themselves leading to a steady state velocity for the
fluxon. The general perturbation method developed by Rubinstein
[150] was applied for the ease of Josephson junction by McLaughlin
and Scott [138]. In this method the effect of perturbation is assumed
to influence only the dynamics of the center of mass coordinate of
the fluxon and not its shape. Using perturbational analysis, the rate
of change of velocity of the fluxon in an applied field may be derived
in the following way. The Hamiltonian of the system is written as
a cornbination of the Hamiltonian of the unperturbed sine-Gordon
part plus the Hamiltonian of the perturbation part [138]. Energy of
the unperturbed sine-Gordon system is

°° 1
HS“ = f go? +<pi + 1 —c@s<p>1dw (5.4)—oo
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Substituting(5.3) in (5.4) we getd du_HSG Z 1 _ 2 -3/2___.<1: 8“( U ) at (55)
If qfi is any solution of Eq. 5.2, we can compute

d
&€(HSG) = iipxiptiiooo _ (56)

ffooo (cup? + flip; + [b cos(k:z:) + '7 +21) si11(wt)]<,0t)d.'1:.

Here the first term on the right hand side accounts for the boundary
conditions and vanishes. Substituting (5.3) in above equation we
obtain the equation for rate of dissipation as

—(—i—(HSG) = 21ru ('7 + £0 sin(wt)) — —§g-22-— (5.7)dt \/ 1 — ug8 2 2 /1 _ 2
-— § —- 21rbusech(Zr——5Z——/1-) cos(kX).

Equating Eqs. 5.5 and 5.7 yield an expression for the rate of change
of velocity

%L- = g('y + £0 sin(wt)) (1 — u2)3/2 — om (1 — u2) (5.8)
21 1r \/1 — 2

— 55-u — gb (1 — u2)3/2 sec h.(-———é-I-9-) eos(kX).

Eq. 5.8 describes the effect of perturbations on the vortex velocity.
The first term represents the effect of applied biasing, the second and
the third terms represent dissipation and fourth term is due to the
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effect of tl1e external magnetic field on the serniannular geometry.

5.3.1 Expression for potential function

In this section, we obtain the expression for the potential function
in the presence of an applied ac-biasing. The Lagrangian density of
Eq. 5.2 witl1'y=a='i0=fl=Ois

1 1 b , 2
L = 5gp? — 5 (mm — E s1n(k:1:)) — 1 + cosrp (5.9)

where the first term is the kinetic energy associated with the energy
density of the electric field, the second term accounts for the poten­
tial energy density associated with the magnetic field and the third
term represents the Josephson coupling energy density. From the
potential energy density term, the change in potential energy due to
the combined effect of fluxon motion and the applied field can be

determined by integrating the term -1,:-sir1(/<£I?)50=v over the length of
the junction [141]. The fluxon induced potential as a function of the
fluxon coordinate X may be calculated as

U(X) = —% /loo sin(k;r)cp,;d:1:. (5.10)

The integration over —oo to oo may be justified as the length of
the junction is very large as compared to the size of the fiuxon.
Substituting Eq. 5.3 in Eq. 5.10 and integrating we get the expression
for potential

2

U(X) = —2blsec h \/1 — 11,2) sin(kX). (5.11)
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For u 2 0 we can write

2

U(X) = -2bZ sech  sin(l<:X), (5.12)

which has a potential well form with the depth of the well depending
on b and Z. The vortex will be pinned to the potential minima as
long as the bias current is smaller than the depinning current. The
pinned state of a vortex corresponds to a zero voltage state. The
dc-bias at which the zero voltage switches to a finite voltage is called

the depinning current.

Now we arrive at an expression for the potential function of the
perturbed system. In perturbational analysis, a vortex is considered
as a non-relativistic particle of rest mass mo = 8 moving in one
dimension. Therefore the effective potential can be obtained using

the force relation 6U deff =__ _ _'fax m0 at‘ (513)
Substituting Eq. 5.8 in Eq. 5.13 and integration yields an ex­

pression for effective potential at u = 0 in the form

Ueff(XO) = —2bl sec h(ZT{-j)sir1(kX0) — 2rr('*/ + 2'0 sin(wt))X0 (5.14)

The potential energy function Ueff(X) has a well form in the
absence of external biasing and the flnxon will remain pinned to the
center of the junction under such a potential. As the biasing is in­
creased the potential gets tilted finally favoring the motion of the
vortex. The dc-bias at which the zero voltage switches to a finite
voltage is called the depinning current. Fig. 5.2 shows the form of
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the potential for b = 0.1 for a junction of length l = 15 for different
external biasing. It can be seen that in the presence of an external
bias the potential gets tilted favoring motion of the fluxon. While
moving through such a potential, the fluxon(antifluxon) after bounc­
ing from the edge turns into an antifluxon (fluxon) and hence will
move in the opposite direction. In the presence of an ac-bias, the
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Figure 5.2: Potential well form for a JJ of length l=15. Other parameter values
are b = 0.1, 1'0 = O. The 7 value is increasing from top to bottom line.

potential gets oscillating with a frequency equal to the frequency of
the applied field and the shape of the potential depends on the am­
plitude of the applied ac and dc-biasings. In the presence of external
ac-biasing along with the dc-bias, the potential gets time varying as
shown in Fig.5.3. In Fig. 5.3(a), the applied ac-bias has an ampli­
tude of 0.1 and it can be seen that as time goes on, the potential
gets a. well form in a time period equal to the period of oscillation
of the applied field. The applied dc-bias is 0.1 in this case. Hence
progressive motion of fluxon does not occur for this value of biasing
as the average velocity of a fluxon moving in such a potential would
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Figure 5.3: Form of the oscillating potential for a JJ of length l=15. Parameter
values are b = 0.1, 1'0 = O.2,w = O.3,'7 = 0.1. a) applied dc-bias is 7 = 0.1 b)
'7 = 0.4

be zero. However as the dc-biasing is increased though the form of
the potential is still oscillating, there is a definite tilt which makes
progressive motion of fluxon possible. Thus, when an ac-biasing
is applied to the semi-annular JJs, progressive motion occurs only
when dc-biasing value exceeds a certain threshold value which would

be greater than the depinning current value in the absence of an
ac-biasing. The response of the system to such a potential can be
investigated by measuring the velocity of the fiuxon in the potential.

5.3.2 Numerical methods

Eq. 5.2 along with the boundary conditions are studied numerically
by finite difference method by representing the phase q5(:r,t) by a
square mesh ¢§" = ¢(ih,nk) where h is the space step size and k is
the time step size. An explicit method is used and by treating qbm
with a five point, qbtt with a three point and qfit with a two point
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finite difference method. Expressing the derivatives in the following
difference form

¢t = §(¢?*1 — </>1”)

<a = §<¢?+1 — ¢?_1>

$1.‘: = %(¢?+1- 2¢? + ¢?_1)

as = %<¢;1:q1 ~ 2¢?+1 + age? + @1151 - 2¢>?"1 + @111‘)1 _ _ _
¢a;;:z I §W(¢?j_+11 — 2<;§:‘+1 + ¢>?j11 * ¢5?+1l -I" QQ5? 1 — $111)

, and substituting these in Eq.5.2, we get

c1¢?j_fl1 + 02¢?“ + c1¢?_+11 = c3(d>?;11 + <;’>;’_'11) — c4¢5?”1 + c5¢§‘

+ c6(sir1(¢§‘) + 7 +71“ sin(wt) -— bcos(ka:

where c1= 5 -1- k, C2 = -—(ah,2 + (2/12)/k + 25+ 2k), c3 = ,5’ — k,

c4 = (On/Z2 — (2h2)/k + 20 — 214:), c5 = —(4h2)/k, C5 = 21:122.

i=LZ&wN, n=QL2“

The boundary conditions are treated by the introduction of imagi­
nary points and the corresponding finite difference equation is solved

using standard tridiagonal a.lgorithm[151]. Numerical simulations
are carried out on the J J of normalized length (1:15). The time step
is taken as 0.0125 and the space step is 0.025. The numerical results
are checked by systematically halving and doubling the time steps
and space steps[139, 12]. After the simulation of the phase dynamics
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for a transient time, we calculate the average voltage V for a time
interval T to be

1 T s<>(T) — <p(0)V == — dt = ————————— 5.T L 90¢ T ( 15)
Also for the faster convergence of the averaging procedure, the phases

in the equation were averaged over the length of the junction.
The spatial averaging increases the accuracy in the calculation of
the voltages in cases where the time period over which integration is
made is not an exact multiple of the time period of oscillation. Once
the voltage averaging for a current *7 is complete, it is increased in
small steps of 0.01 to calculate the next point of the characteristic
graph. The average velocity of the fluxons can be calculated from
the average voltage using the relation u = V(l/2'/T).

5.4 Creation and annihilation of fluxons

The dynamical properties of magnetic flux quanta are critical for
the fabrication of logic devices. The motion of a fluxon is drasti­
cally modified by the presence of perturbations. The threshold for
the generation of fiuxon by current pulse is evaluated by Sakai et.al
[152] An annular LJ J preserves the number of trapped fluxons in it.
However in an open ended geometry, the number of fluxons is not a
conserved quantity. In this section we investigate the creation and
annihilation of fluxons in semiannular JJ with open boundary con­
ditions in the presence of an external magnetic field together with ac
and dc biasings. Three cases are considered where the initial number
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of fluxons are varied. The creation or annihilation of fiuxons results

in a change in the voltage across the junction. Hence this investiga­
tion is of importance while designing devices as we ca11 choose the
range which is most optimal for our need.

Fluxon-fluxon interaction: The destructive line and the non­

destructive line was used by Nakajima et al. [98] in the design of
Josephson junction based computers. In the destructive line the
fiuxon and the antifluxon will annihilate on collision while in the

nondestructive line they will pass through each other after collision.
When a junction terminates, in a similar way, there can either be
reflective or reflectionless cases depending on whether the incident
fluxon disappears or gets reflected as an antifluxon. Since the bound­

ary condition at the termination ($5.1: = 0) can be satisfied by assum­
ing collision with a virtual antifiuxon, the reflective and reflectionless
cases are similar to the first two cases.

5.4.1 One fluxon solution

The collision of fluxons with localized obstacles leads to creation
and annihilation of fiuxons. The fluxon creation and annihilation

process for a single fiuxon solution as input is described here. A
fluxon solution is launched from the center of the junction with an
initial velocity of "0 == 0.6. For each value of biasing the fluxon is
allowed to propagate for some time in order to stabilize its motion
in the junction. The fluxon gets reflected from the boundaries and
moves on till "y -: 0.57. For an external magnetic field of strength
0.1 it is numerically observed that fluxon motion is not possible for
a "7 value higher than 0.57.
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However, the presence of an ac-bias, creation and annihilation

of fluxon is observed for values of dc-biasing which give one fluxon
solution earlier. For a '7 value of 0.1 the fiuxon propagates through
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Figure 5.4: (a)The pattern shows annihilation of fluxon propagating in a JJ
with l=15 for a dc-bias of 7 = 0.1 and inc = 0.2. (b) Creation of fluxon with 7 =
0.1 and iac = 0.1 Other parameter values are w = 0.3, fl = 0.02, a = 0.05, b = 0.1

the semiannular junction, while an ac-bias of 0.2 destroys the fluxon

as can be seen from Fig. 5.4(a). Similarly Fig. 5.4(b) shows that a
fluxon is created for '7 = 0.5 and io = 0.1.

5.4.2 Two fluxon solution

Two fluxon solutions are launched with at different initial points in
the junction with initial velocity v = 0.6. An dc-biasing of more than
0.1 is needed to support motion of two fluxons in the junction. For
7 = 0.1 it is observed that only a single fluxon propagates through
the junction as can be seen from Fig. 5.5(a). A dc-bias of 0.12 -0.45
supports two fluxon propagation in the junction in the absence of
an ac-biasing. However, if an ac-bias of 0.1 is applied along with
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'7 = 0.41, creation of a fiuxon occurs as shown in Fig. 5.5
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Figure 5.5: The pattern shows single fluxon propagating in a JJ with l=15 for
'7 = 0.1 for 2 fluxon input.(b)Creation of a third fiuxon. io = 0.1, '7 = 0.41

5.4.3 Three fluxon solution

In this case, three fiuxons are launched at different initial points. A
dc-bias of '7 = 0.4 is needed to support the three fluxon propagation
in the junction. In Fig.5.6(a) we numerically show that only two
fluxons propagate through the junction for a '7 value of 0.3. Also
for "y = 0.4, if an ac-bias is applied annihilation of one fluxon occurs

again giving the two fluxonic propagation as shown in 5.6(a). The
ac-biasing causes annihilation and if the ig value is increased to 0.19
or more the fluxonic profile is lost.

Creation of fluxon is observed for 'y values of 0.55 as shown in Fig.

5.6(b) with ac-biasing destroying the structure even for 110 = 0.1. It
is to be noted that all these effects take place only in the presence
of an external magnetic field in semiannular J Js. In the absence of
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Figure 5.6: The pattern shows two fiuxons propagating in a JJ with l=15.
Other parameter values are 7 = 0.3(b)Creation of fourth fluxon 'y = 0.55

magnetic fields, we are not able to observe creation and annihilation
of fluxons.

5.5 Chaos in semiannular Josephson junction

Systems modeled by driven damped sine-Gordon equation have been
shown to be fruitful for studying temporal chaos and spatio-temporal

patterns. Since long Josephson junctions are fairly well understood,

the studies on these systems will help in the understanding of the
origin of chaotic dynamics in these systems. The problem of control­

ling spatiotemporal chaotic pattern induced by an applied rf signal

in a J J has earlier been discussed [153]. In this section, we study the
dynamics of a semiannular Josephson junction in the presence of an

external ac-biasing. As explained earlier, depending on the values
of 110 cos(wt), 'y, [3, a and b, the system may exhibit chaotic behavior.

For this we first study the I-V characteristics of the system. In this
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Figure 5.7: The velocity- bias characteristics of a LJJ of length l=15 with
no external magnetic field applied. Other parameter values are cu = 0.3,B =
0.02, a = 0.05

context we neglect the surface loss term B and study the velocity
change with increase in dc-biasing is observed. Fig.5.7 shows the
velocity change with dc-biasing for different values of amplitude of
the ac-biasing. In the presence of ac-biasing the averaging interval
T is taken as a multiple of the ac drive’s period 21r/w [144]. If an ac­
biasing is present, the depinning current is found to increase which
can be seen from Fig.5.7.

In the presence of external magnetic fields, the velocity versus
dc-bias is shown in Fig. 5.8. The value of dc-bias to cause a finite
velocity for the fluxon in a JJ with a magnetic field of b = 0.1 and
no ac-biasing is 0.1 while for b = 0 the depinning current is 0.04.
Thus the external magnetic field also increases the depinning current
value. The depinning current to be applied to the semi-annular J J
in the absence of ac-bias, and a magnetic field of b = 0.1 is 0.125.
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Figure 5.8: The velocity- bias characteristics of a LJJ of length [=15 in the
presence of an external magnetic field b = 0.1.

Also for an ac-bias of amplitude 0.2 and 0.3 the velocity shoots to
a higher value even for a dc-biasing of 0.46 and 0.36 as shown in
Fig. 5.9. Quasiperiodic or chaotic motion may exist in the system
for higher values. In order to identify if ac-biasing makes the system
chaotic, we follow the averaging procedure given by Goldobin et al.

[144]. For finding the voltage given in Eq. 5.15, the averaging is
done over one period 21r/w of the ac drive and the amplitude 2'0 is
changed in extremely small steps, say 5119 = 0.0001. Thus we get very

closely situated points and if the dynamics is chaotic all these points

will have a large spread in the value of average velocity and hence
voltage. On the other hand if the dynamics is regular all the values
will have almost same value. Though some artifacts may appear in
the regimes of bifurcation, this method has proved good enough to
get an insight into the dynamics of the system. Fig. 5.10 shows
the bifurcation plot for a semiannular junction in the presence of an
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Figure 5.9: The velocity- bias characteristics of a LJ J of length l=15
in the presence of an external magnetic field b = 0.1. The damping
parameter B = 0.035

ac-biasing. A sample program is given in Appendix A.2.

5.6 Conclusions

We have studied the dynamics of a fiuxon trapped in a semiannu­
lar JJ in the presence of an external magnetic field along with an
ac-biasing. This method of applying ac-biasing offers a much easier
and controllable way to induce a harmonic periodic modulation to
the junction. In the presence of an external magnetic field the vor­
tex remains pinned in the potential well. The ac-biasing modulates
the form of the potential and we obtain an oscillating potential with
frequency of oscillation equal to the driving field. The change in
the pinning current brought about by the ac field may be used for
detection of such fields. In the presence of an ac-drive and magnetic
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Figure 5.10: The average velocity versus in plotted by increasing the value by
5z'0 = 0.0001. The scattered points corresponds to the regions of chaotic motion.

field, fluxon creation and annihilation phenomena are observed. This
has been demonstrated for one, two and three fluxons and can be
extended to higher number fiuxons. Higher values of ac-amplitudes
induces chaotic dynamics in the junction. The fluxon creation and
annihilation process being crucial for the understanding of the inter­
nal dynamics of the junctions, it will have important applications in
the design and fabrication of superconducting digital devices.



Chapter 6

Results and discussion

Josephson junction has been proved to be an ideal candidate for the
study of nonlinear dynamics and chaos. In this thesis, we study the
response of the Josephson junction system to an applied ac bias. The
main conclusion of the thesis are as follows.

1. A phase difference between the applied fields in a bidirec­
tionally coupled Josephson junction system desynchronizes the
synchronized system, while certain values of phase difference
brings the system from chaotic to periodic regime. The sys­
tem remained in the periodic regime for large changes in the
control parameter values in the presence of an applied phase
difference.

2. In the case of a system with three Josephson junctions con­
nected parallely, relay-synchronization is observed, i.e., the
outer junctions got synchronized while remaining uncorrelated
with the middle junction. A phase correlation exists between
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all the three junctions in the presence of a phase difference be­
tween the applied field. In an array of N Josephson junctions
we find that N / 2 identical solutions can exist if the number of

junctions is even and —M2i-1- solutions can exist if the number of
junction is odd.

3. Transverse Lyapunov exponents evaluated for delay coupled
Josephson junctions reveals that the system can remain syn­
chroninized for most of the values of time-delay. Tirne-delay
along with a phase difference between the applied fields is found

to suppress chaos. Thus a phase difference between the applied
fields proves to be an efficient non feedback method to control
chaos as a phase difference can easily be provided in an exper­
imental set-up.

4. In the presence of an ac-biasing, the fiuxon in a long Josephson
junction experiences an oscillating potential which increases
the depinning current. Creation and annihilation of fluxons
occur in the presence of an ac biasing together with the mag­
netic field. Chaotic behavior is observed for high amplitudes
of ac-biasing.

Future prospects

A square network of short Josephson junctions need to be investi­
gated for the effect of phase difference between the applied fields
and also to find how the oscillators influence each other because

this study can help in the development of neural networks. This
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should be done for the time-delayed case also which is of importance

in secure communication. Chaotic phase synchronization and
the effect of phase difference between the applied fields on phase
synchronization need to be investigated as this can reveal important
dynamical behavior of the system.

Long Josephson junctions need to be coupled and the effect of
phase difference between the applied fields on the system need to be
studied in order to find whether suppression of chaos ca11 be achieved

by applying a phase difference in this case.



Appendix A

Numerical Programs

A.1 Transverse Lyapunov Exponent
Program for finding transverse Lyapunov exponents.

program josephson
c Code for Lyapunov exponent by Wolf et al. modified for
c transverse Lyapunov exponent of the time—de1ay system.
c The nonlinear equations are numerically integrated using
c fourth order Runge-Kutta method.
c n = number of nonlinear odes
c nn =n*(n+1)= total number of odes
c nn1=nn+1 (for compilers that start arrays at element 0)
c

implicit none
integer n,nn,nn1,i,j,m,nstep,irate,io,k,l,it
integer mm,q, 0,00
parameter (n=7, nn=11, nn1=12, q=10)
double precision y(nn),yprime(nn),v(nn),A(nn),B(nn),C(nn)
double precision ll(q),dd(q),ee(q)
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double precision D(nn),cum(2),znorm(2),gsc(2)
double precision t,tme,stpsze,con,be,omega,idc,iac,ic,de1c
external fcn
open(unit=1,fi1e="input")
open(unit=2,fi1e="delay.dat")

c open(unit=3,file="var.dat")
c NSTEP is the total number of reorthonormalization steps that
c will be performed.
c IRATE is the number of numerical integration time steps per
c reorthonormalization.
c STPSZE is the integration stepsize in seconds.
c I0 is the rate at which output is generated.
c

write(*,111)
111 format(1x,’nstep, stpsze, irate, io : ’)

read(1,*) nstep,stpsze,irate,io
c

c initial conditions for nonlinear 0DBs
c (** Choose within the system’s basin of attraction **)
c

delc = 0.001dO
ic = 0.0d0
do 1000 it=1,1000
cou=ic+de1c*real(it-1)

be = 0.3d0
omega= O.6d0
idc = O.3d0
iac = 1.2d0

write(*,*)’beta,¢ou,alpha=’,be,cou,idc
v(1:7) = 0.1356
ll(1:10) = 0.0
dd(1:10) = 0.0
ee(1:1O) = 0.0
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tme = 0.0
cum(1:2) = 0.0

c

c initial conditions for linearized 0DEs
c

c do 10 i=n+1,nn
v(8) = 1.0
v(9) = 0.0
v(10)= 0.0
v(11)= 1.0

c1O continue
c do 20 i=1,n
c v((n+1)*i)=1.0
c20 continue
c

c print *, v
c

do 100 m=1,nstep
c

do 25 j=1,irate
c

Q #******+*************#******1:**¢********************
c

do 26 i=1,nn
y(i)=v(i)

26 continue
t=tme

call fcn(t,y,yprime,nn1,be,idc,iac,omega,cou,q,dd,11,ee)
do 27 i=1,nn

A(i)=yprime(i)
27 continue
c

Q ##1###*!l=#*=ll#*****I|lI|=*1ll1ll*#*#*Il=***=lI*************#*=|l***=|l#Ill
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C

do 28 i=1,nn
y(i)=v(i)+(stpsze*A(i))/2.0

28 continue
t=tme+stps2e/2.0
call fcn(t,y,yprime,nn1,be,idc,iac,omega,cou,q,dd,l1,ee)
do 29 i=1,nn
B(i)=yprime(i)

29 continue
C

C #*****#*#****it***#****##*#***#****#********#********
C

do 30 i=1,nn
y(i)=v(i)+(stpsze*B(i))/2.0

30 continue
t=tme+stpsze/2.0
call fcn(t,y,yprime,nn1,be,idc,iac,omega,cou,q,dd,ll,ee)
do 31 i=1,nn

C(i)=yprime(i)
31 continue
c

¢ **********¢##**#m*****#*******#***##*********#*******
c

do 32 i=1,nn
y(i)=v(i)+(stpsze*C(i))

32 continue
t=tme+stpsze
call fcn(t,y,yprime,nn1,be,idc,iac,omega,cou,q,dd,1l,ee)
do 33 i=1,nn

D(i)=yprime(i)
33 continue
C

C **#*#*****#****$#***#*##*********#*¥#*$****###*****#*
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C

34

C

C

C

555

c

556

c

557

C

C

do 34 i=1,nn
V(i)=V(i)+Stpsze*(A(i)+D(i)+2.0*(B(i)+C(i)))/6.0

continue

tme=tme+stpsze

**#****#***#*#*####*****##**ii#****#****#*#****#****#

Steps to give time-delay to the system
do 555 mm=q—1,1,-1

11(mm+1)=11(mm)

continue
l1(1)=v(5)

do 556 o=q—1,1,-1
dd(o+1)=dd(o)

continue
dd(1)=v(2)

do 557 oo=q-1,1,—1
ee(oo+1)=ee(oo)

continue
ee(1)=v(7)

write(3,333) v(5),1l(10),v(2),dd(10),v(7),ee(1O)
@333 format(1x,f12.6,2x,e12.6,2x,e12.6,2x,e12.6,2x,e12.6,2x,e12.6)

25

c

c

c

c

continue

construct new orthonormal basis by gram—schmidt orthogonalization

normalize first vector
znorm(1) = 0.0
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do 38 j = 0,1

znorm(1)=znorm(1)+v(n+2*j+1)**2
38 continue

znorm(1) = sqrt(znorm(1))
do 40 j = 0,1

v(n+2*j+1)=v(n+2*j+1)/znorm(1)
40 continue
c generate new orthonormal set
c make j—1 gsr coefficients
c

c do 80 j=2,n
c gg = 2

j = 2
c

do 50 k=1,j—1
gsc(k)=0.0
do 50 l=1,2

gsc(k)=gsc(k)+v(n+2*1)*v(n+2*1-1)
50 continue
c construct a new vector

do 60 k=1,2
do 60 1=1,j-1

v(n+2*k)=v(n+2*k)-gsc(l)*v(n+2*k—1)
60 continue
c calculate the vector’s norm
c

znorm(j)=0.0
do 70 k=1,2

znorm(j)=znorm(j)+v(n+2*k)**2
70 continue

znorm(j)=sqrt(znorm(j))
c

c normalize the new vector
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c

do 80 k=1,2
v(n+2*k)=v(n+2*k)/znorm(j)

80 continue
c update running vector magnitudes
c

do 90 k=1,2
cum(k)=cum(k)+log(znorm(k))/log(2.0)

90 continue
c

if(mod(m,i0).ne.0) goto 100
write(2,334) cou,(cum(k)/tme,k=1,2)

334 format(1x,f12.6,2x,e12.6,2x,e12.6)
c

100 continue
1000 continue

c1ose(1)
close(2)

c c1ose(3)
end

(_‘, ******#****##1lI*##*#*******¥********##***#*Ill*#******¥#*IllIll*##**#*

c

subroutine fcn(t,y,yprime,nn1,be,idc,iac,omega,cou,q,dd,11,ee)
c

implicit none
integer nn1,i,q
double precision t,y(nn1),yprime(nn1),be,idc,iac,omega,cou
double precision dd(q),11(q),ee(q)

c Nonlinear coupled Josephson junction
yprime(1)=y(2)
yprime(2)=—be*y(2)-sin(y(1))+idc+iac*cos(y(3))—cou*(y(2)—l1(q))
yprime(3)=omega
yprime(4)=y(S)
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yprime(5)=-be*y(5)-sin(y(4))+cou*(dd(q)+ee(q)—2*y(5))
yprime(6)=y(7)

yprime(7)=-be*y(7)-sin(y(6))+idc+iac*cos(y(3))—cou*(y(7)~ll(q))
C

c Linearized Josephson junction
C

do 10 i=O,1
yprime(8+i)=y(10+i)
yprime(10+i)=(—be-cou)*y(1O+i)-cos(y(1))*y(8+i)

10

c

continue

return
end

A.2 Finite Difference method for a semian­
nular Josephson Junction

clear all
close all
clcN =
SSTEP =
TSTEP =
ITN =
STBITN =
ALPHA

BETA =
IL1 =
idc = 0.
iac = 0.
ome = 0.
VEL1 =

1500 ; Number of Grid points
0.01 ; Grid Size in distance
0.02; Grid Size in time
27300; Total number of iterations
26250; Number of iterations for stabilization

= 0.05 ; Dissipation parameter
0.02; Dissipation parameter

(N/2)*SSTEP;Initial location
2 ; dc—bias
0 ; ac—bias
3 ; frequency of the ac—bias
0.0; Initial velocity of fluxon
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abc = 1;
a = zeros(1,N)
d = zeros(1,N)
cout=zeros(1,N)
buf1=zeros(1,N)
g=zer0s
x /*--­

cl =
c2 =

c3 =
c4 =

c5 =
c6

Z /*
a=[0

, b=zeros(1,N) ; c=zeros(1,N);
I

Y dout=zeros(1,N) ;
buf2=zeros(1,N) ; buf3=zeros(1,N);

, time=0.0;
———— —— Coefficients -———--—--—----—~*/

TSTEP;

(1,N)

BETA +

-(ALPHA * (SSTEP*SSTEP) + (2.0 * (SSTEP*SSTEP))/
TSTEP + 2.0 * BETA + 2.0 * TSTEP);

BETA - TSTEP;
(ALPHA * (SSTEP*SSTEP) — (2.0 * (SSTEP*SSTEP))/

TSTEP + 2.0 * BETA - 2.0 * TSTEP);
—( (4.0 * (SSTEP*SSTEP))/TSTEP);
2.0 * (SSTEP*SSTEP) * TSTEP;

———————————— -— Matrix Elements -——--——--——-———-*/

,c1*ones(1,N—2),2.0*c1];
b=[c2*ones(1,N)];
c=[2 .0*c1,c1*ones(1,N—2),0];

Z/* ——————————— -— Initial Fluxon solution ——————————— —-*/

whi1e(iac<=O.6)

buf1(i)
buf2(i)

buf3(i)
k

k1

ES

for j=1
Z/*——-—

d(1) =

P

i=1:N;
= 4*atan(exp((i*SSTEP-IL1)/ sqrt(1—VEL1*VEL1)));
= 4*atan(exp((i*SSTEP-IL1- VEL1*TSTEP)/

sqrt(1-VEL1*VEL1)));
= 0.0;

STBITN;

k;
0.0;

:ITN+10

------- -- Predictor —--——-———--——*/
(2*c3)*buf1(2)—c4 * buf1(1) + c5*buf2(1)
+c6*(ESP*cos(0.0)+ sin(buf2(1)) + idc + iac*sin(ome*time))
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for i=2:N-1

d(i) = ¢3*buf1(i—1) - c4 * buf1(i) + c3*buf1(i+1) + c5*buf2(i)

end
+¢6*(ESP*cos(3.14*i/N)+ sin(buf2(i)) +idc + iac*sin(ome*time

d(N) =(2*c3)*buf1(N—1)— C4 * buf1(N) + c5*buf2(N)+

+¢6*( E5P#¢Qs(3,14)+sin(buf2(N)) + idc + iac*sin(0me*time));
cout(1) = c(1)/b(1);
dout(1) = d(1)/b(1);

for

end

i=1:N-1
cout(i+1) =
dout(i+1) =

C(i+1) / (b(i+1) - (&(i+1)*¢0ut(i)));
(d(i+1) - (a(i+1)*dout(i)))/
(b(i+1) - (a(i+1)*cout(i)));

buf3(N) = dout(N);

for i=N—1:-1:1

buf3(i) = dout(i) - cout(i)*buf3(i+1);
end

Z/* ——————————— —- Corrector ----------- -—*/

d(1) = (2*¢3)*buf1(2)—c4 * buf1(1) + c5*buf2(1)

for

end

+ c6*(ESP*cos(0.0)+ (sin(buf1(1))+sin(buf3(1))/2)
+ idc + iac*sin(0me*time));

i=2:N-1

d(i) = c3*buf1(i-1) - c4 1 buf1(i) + ¢3*buf1(i+1) + c5*buf2(i)
+ c6*(ESP*cos(3.14*i/N)+ (sin(buf1(i))+sin(buf3(i))/2)
+idc + iac*sin(ome*time));
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d(N) =(2*c3)*buf1(N-1)- 04 * buf1(N) + c5*buf2(N)
+ c6*( ESP*cos(3.14)+(sin(buf1(N))+sin(buf3(N))/2)
+ idc + iac*sin(ome*time));

c0ut(1) = c(1)/b(1);
d0ut(1) = d(1)/b(1);

for i=1:N—1

cout(i+1) = c(i+1) / (b(i+1) - (a(i+1)*cout(i)));
dout(i+1) = (d(i+1) - (&(i+1)*dout(i)))/(b(i*1)

" (a(i+1)*¢0Ht(i)));
end

buf3(N) = dout(N);
for i=N—1:-1:1
buf3(i) = dout(i) - cout(i)*buf3(i+1);
end

Z/* ----------- -— Final State ----------- --*/
1£( j == STBITN)

tdevl = sum(buf3);
end

1£( j == ITN)
tdl = Sum(buf3);

end

Z/* — — — - — — — - - - — — — — - — - — — - — — - —-—*/

if(j>=k1)
t=1:N-2;
phi1(t) = (buf3(t+2) - buf3(t))/(2*SSTEP);

t=1:N;

phi2(t) = (buf1(t) - buf3(t))/(2*TSTEP);
kl = k1 + 30;

end

Z /* ----------- -- Swapping buffers ——————————— -—*/
for i=1:N
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buf1(i) = buf2(i);
buf2(i) = buf3(i);

end

time=time+TSTEP;
end

Z/* ------------ ——j loop -—--— Iteration loop ends
ftdevl = (tdevl — tdi)/N;
tdev3 = ftdevi/((ITN-STBITN)*TSTEP);
iacn(abc)=iac;
voltage(abc) = tdev3;
ve1ocity(abc) = tdev3*(N*SSTEP/6.283);
abc=abc+1;
iac=iac+0.0001;

end

plot(buf3)
figure; p1ot(voltage,iacn,’k.’,’markersize’,10)
figure; p1ot(ve1ocity,iacn,’k.’,’markersize’,1O)

Z /***#** -— THE END —- #**#***####/
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