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INTRODUCTION

1.1 History and Development

1.2 Summary of the Thesis

1.3 Some Basic Definitions and Results from Fuzzy Set Theory
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1. 1 History and Development.

A crisp set is defined in such a way as to dichotomize the individuals in

some given universe of discourse into two groups - members and non members.

A sharp unambiguous distinction exists between the members and nonmembers

of the class or category represented by the crisp set. Many of the collections and

categories we commonly employ, however, do not exhibit this characteristic.

Instead their boundaries seem vague, and the transition from member to

nonmember appears gradual rather than abrupt. Thus fuzzy set introduces

vagueness by eliminating the sharp boundary dividing members of the class from

nonmembers. Real situations are very often not crisp and deterministic and they

can not be described precisely. Such situations in our real life which are

characterized by vagueness or imprecision can not be answered just in yes or no.

Lotfi A. Zadeh [76] in 1965 introduced the notion of a fuzzy set to describe

vagueness mathematically in its very abstractness and tried to solve such

problems by giving a certain grade of membership to each member of a given

set. This in fact laid the foundation of fuzzy set theory. Zadeh has defined a

fuzzy set as a generalisation of characteristic function of a set wherein the degree

of membership of an element is more general than merely “yes” or “no”. A fuzzy

set can be defined mathematically by assigning to each possible individual in the

universe of discotnse a value representing its grade of membership in the fuzzy

set. This grade corresponds to the degree to which that individual is compatible
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with the concept represented by the fuzzy set. The membership grades are very

often represented by real number values ranging in the closed interval between 0

and 1. The nearer the value of an element to unity, the higher the grade of its

membership. The term Fuzzy in the sense used here seems to have been first

introduced by Zadeh [75] in 1962. In that paper Zadeh called for a mathematics

of fuzzy or cloudy quantities which are not describable in terms of probability

distributions. This paper was followed in 1965 by the technical exposition of just

such a mathematics now termed the “Theory of Fuzzy Sets”

Although the range of values between O and 1, both inclusive, is the most

commonly used, for representing membership grades, an arbitrary set with some

natural total/partial ordering can in fact be used. Elements of this set are not

required to be numbers as long as the ordering among them can be interpreted as

representing various strengths of membership degree. Thus the membership set

can be any set that is at least partially ordered and the most frequently used

membership set is a lattice. J. A. Goguen [14] in 1967 introduced the notion of a

fuzzy set with a lattice as the membership set. Fuzzy sets defined with a lattice as

the membership set are called L-fiizzy sets or L-sets, where L is intended as an

abbreviation for lattice.

The fuzzy set theory - a theory of graded concepts, a theory in which

every thing is a matter of degree - can be considered as a generalisation of the

classical set theory. Because of this, the fuzzy set theory has a wider scope of
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applicability than classical set theory in solving various problems. Since the

inception of the theory of fuzzy sets, applications of this theory have

mushroomed. Applications appear in computer science, artificial intelligence,

decision analysis, information science, system science, control engineering,

expert systems, pattern recognition, management science, operations research

and robotics. Theoretical mathematics has also been touched by the concept of

fuzziness.

Roughly speaking fuzzy set theory in the last three decades has developed

along two lines.

(1) As a formal theory which became developed by generalising (fuzzifying) the

original ideas and concepts in classical mathematical areas such as algebra,

graph theory, topology and so on.

(2) As a very powerful modeling language, that can cope with a large fi'action of

uncertainties of real life situations. Because of its generality it can be well

adapted to different circumstances and contexts.

Fuzzy set theory, a developing subject in Mathematics is making inroads

into different disciplines of pure mathematics also. Among various branches of

pure mathematics, algebra was one of the first few subjects where the notion of

fuzzy set was applied. The first paper on fuzzy groups was published by A.

Rosenfeld [62] in 1971, in which the concepts of fuzzy subgroupoid and fuzzy

subgroups were introduced. In 1979 J.M. Anthony and H. Sherwood [1]
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redefined fiizzy subgroup under the so called triangular norm function and

studied some results of Rosenfeld under this new notion. After a considerable

period of time W. J. Liu [41] opened the way towards the development of fuzzy

algebraic structures by introducing the notions of fuzzy normal subgroup, fuzzy

subring and the product of fuzzy sets. Liu [42] introduced the notion of a fuzzy

ideal of a ring. N. Kuroki [38] demonstrated the utility of the notion of the fuzzy

set in the more general setting of semigroups. The concepts of fuzzy fields and

fuzzy linear spaces were introduced by S. Nanda [54]. Ever since A. Rosenfeld

introduced fuzzy sets in the realm of group theory, many researchers have been

involved in extending the notions of abstract algebra to the broader fi'amework of

fuzzy setting. J. N. Mordeson, D. S. Malik, M. M. Zahedi, M. Das, M. K Chakra­

borty, B. B. Makamba, V. Murali, A. K. Katsaras, D. B. Liu, M. Asaad, P.S. Das,

N. P. Mukherjee, P. Bhattacharya, F. I. Sidky, M. A. Mishref, and M. Akhul, T.

K. Mukherjee, M. K. Sen, V. N. Dixit, N. Ajmal, R. Kumar are a few among the

others who contributed a lot to the theory of fuzzy algebraic structures. As a

consequence, a number of concepts have been formulated and explored.

The concept of fuzzy modules and L-modules were introduced by Negoita

and Ralescu [56] and Mashinchi and Zahedi [47] respectively. Subsequently they

were further studied by Golan [15], Muganda [51], Pan [58, 59, 60, 61], Zahedi

and Ameri [78, 79, 80, 81]. The notion of free fuzzy modules was introduced by

Muganda [51] in 1993 as an extension of fi-ee modules in the fuzzy context. In
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I994 Zahedi and Ameri [80] introduced the concept of fuzzy exact sequences in

the category of fiizzy modules and in 1995 they introduced the concepts of fuzzy

projective and injective modules [81]. Tremendous and rapid growth of fuzzy

a\gc‘ora'1c comx-:o\s tcs\u\2.c.‘m avas\\\\s:.ta\\ne. .'Yne. ‘cock oi\l\c>rucson 'mA\l\a\'k

\49\ gives an account of all these up to I998. However many concepts are yet to

be “fuzzified” The main objective of this thesis is to extend some basic concepts

and results in module theory to the fuzzy setting.

1.2 Summary of the Thesis.

The thesis contains five chapters.

In this chapter we are giving the history and development of the subject,

the summary of the thesis and the prerequisites including some basic definitions

and results in fuzzy set theory which are required in the subsequent chapters.

In the second chapter afler the introduction, in the second section we give

the basic concepts of an L-module and give some definitions and results in this

area contributed by pioneers in this field. In the third section we give some

theory related to the L-submodules of a quotient module. In the next section we

prove some results regarding direct sums of L-modules which include:

0 If L is regular and if ,u, 17, v eL(M), (where L(M) denotes set of all L­

submodules of a module M) are such that p = 17 $ v, then ,u' = 17' 69 v. with a
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counter example to show that the converse need not be true. Here p', rf and v'

respectively denote supports of p , 1] and v.

0 If L satisfies the complete distributive property, ,u,-, (iel) and /1 are elements

in L(M) such that Zp, is adirect sum£Q,u,; and if/lngp, = lw}, then 1+iel

Zp, isadirect sum 1$(gp,).tel

In the third chapter the first section is the introduction and in the second

and third sections the concepts of simple and semisimple L-modules respectively

are introduced and explored. In this chapter we prove some interesting results

which include:

0 Results analogous to the results “every submodule of a semisimple module is

semisimple”, “a semisimple module contains a simple submodule” in crisp

theory.

We also prove that

0 If L is regular, then M is simple if and only if 1M is a simple left L-module.

0 If M is a left module over a ring R, then M is semisimple if and only if 1M is a

semisimple lefi L-module.

0 If ;1eL(M) is a semisimple L-module, then pa’ is a semisimple submodule of

M V a¢0 e L.

Finally we get some equivalent conditions for peL(M) to be semisimple.
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In the fourth chapter the section after the introduction contains the

concept of exact sequences of L-modules. Recall that a sequence of R-modules

and R-module homomorphisms  —>/14 fl >A, 1'11 >AH —> . .. is said to be

exact at A ,- if Im (f,-) = Ker(fi+ ,). In this section we extend this concept to the fuzzy

setting and prove some results in this direction. The following are some of the

results we prove in this section.

0 Let A f T) B 8 ,5 be a sequence of R-modules exact at B and let

peL(A), 17 eL(B), v eL(C). Then the sequence F 8 f "7 8 W of L-modules

is exact at 1) only if y‘ _L,,7' __8'_,v' is a sequence of R-modules exact at 17',

where f ’ and g’ are restrictions of f and g to y‘ and 17' respectively.

0 Let A f >38 8 )@ be a sequence exact at B and let p eL(A), 17 eL(B),

veL(C') be such that y __L-; 1; __8_> v is a sequence of L-modules exact at

1;. Thenj(p,,>) g Ker g V aeL.

Also we define weakly isomorphic exact sequences of L-modules and get

the conditions under which the exact sequence 0-» p, -’—>;4, 69,14, —"—> p, —>0

is weakly isomorphic to the given exact sequence 0 —> ,u, —L>r7 —5—-> p, -> 0.

We also get the conditions for the exact sequence 0 -> p, —L->1) -5->p, —> 0 to

be weakly isomorphic to the exact sequence 0—>y, —'->,L1, $,u, -"—>,r1, —>0.
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In the next section of this chapter we defme split exact sequences of L­

modules and establish a relation between semisimple L-modules and split exact

sequences of L-modules.

In the fiflh chapter after the introduction, in the second section we

introduce the concept of projective L-modules and prove results in this context,

some of which are:

0 Every free L-module is a projective L-module.

0 Let P be a projective module and p eL(P) be a projective L-module. If

() _> ,4_.£__; B_L.> P _> () is a short exact sequence of R-modules and r7eL(A),

v e L(B) are such that 0 —> 1) —’—> v —5——> /1 —> 0 is a short exact sequence

of L-modules, then 17 G9 p is weakly isomorphic to v. That is 1] $ p = v.

0 A projective L-module is the fuzzy direct summand of a free L-module.

0 3 pi is projective only if /.1, is projective V i.

In the next section we introduce the notion of injective L-modules and

prove results regarding this concept, some of which are:

¢ Let J be an injective module and p eL(J) be an injective L-module. If

() _> _]_.L) B_€_;C _> () is a short exact sequence of R-modules and veL(B),

17 eL(C) are such that 0 —> p —-’—> v —L-> 1; —> 0 is a short exact sequence

of L-modules, then vis weakly isomorphic to p GB 1]. That is v == ,u $ 17.
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0 Let Q, (ael) be injective R-modules and ,uaeL(Q,,) (ael) be L-modules.

Then $ /4 e L( G9 Qa) is injective if and only if pa is injective V ael.aael ael
In the last section we defme the concept of essential L-submodules of an L­

module and prove that:

v If L is regular, p eL(M), 1“); ¢ 1] g p ; then 1; eL(M) is an essential L­

submodule of p if and only if for each 0 ¢ x e M, with ,u(x) > 0, there exists an

re Rsuchthatrx ¢0and 11(rx)>0.

v If 17, v, p eL(M) satisfy 1;; vgp. Then ngepifandonlyifng, vand

vg, p. ( g, means ‘is an essential submodule of ’.)

' ' Let Th» '72, /11» I12 EL(M)- If '71 Eel‘: and '72Q¢#2, 31611 '71 n '12 Q #1 n I12­

0 Let L be regular 1], ,u eL(M) where 17 c_: p. Let fi A->M be a module

homomorphism such that j( v) g ,u where v eL(A). If 17 Q, /.1, then f " (1)) cg, v.

0 Let L be regular and 111, '72, /11, #2 €L(M) be such that 17,-;,,u,; i =1, 2. If

mom =l{<>;,th=n/1m #2 = 1{o}al1d 12169 112 Q./11 EB #2­

The thesis ends with a conclusion of the work done and further scope of

the study.

Some of the results contained in this thesis have been presented in

seminars/communicated to joumals as given below :



Chapter - l : Introduction 11

(1). On L-modules, Proceedings of the National Conference on Mathematical

Modeling, March 14-16, 2002; Baselius College, Kottayam, Kerala, India, 123­

134.

(2). Simple and Semisimple L-modules, The Journal of Fuzzy Mathematics,

12(4); 2004 (to appear).

(3). On Semisimple L-Modules, Proceedings of the National Seminar on Graph

Theory and Fuzzy Mathematics, August 28-30, 2003; Catholicate College,

Pathanamthitta, Kerala, India, 81-90.

(4). Exact sequences of L-modules (communicated).

(5). Semisimple L-modules and Split Exact Sequences of L-modules

(communicated).

(6). Free L-modules and Projective L-modules, Proceedings of the National

Seminar on Fuzzy Mathematics and Applications, January 08-10, 2004;

Payyannur College, Payyannur, Kerala, India.

(7). On Projective L-modules (to appear in Iranian Journal of Fuzzy Systems.).

(8). On Injective L- Modules (communicated).

(9). Essential L-Submodules of an L-Module (communicated).

1.3 Some Basic Definitions and Results of Fuzzy Set Theory.

In this section unless otherwise stated, L(v, A, l, 0) represents a

complete distributive lattice with maximal element ‘ l ’ and minimal element ‘0’;

‘v’ denotes the supremum and ‘A’ the infimum in L. L is said to be regular if
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a/\b ¢ O V a, b eL such that a ¢ 0 ¢ b. The closed interval [0, l] together with

the operations ‘min’, ‘max’, and ‘s’ form a complete distributive lattice. ‘Q’

denotes the inclusion and ‘c’ the strict inclusion.

1.3.1 Definition [49]:

By an L-subset of X, we mean a mapping fiom X into L. The set of all L­

subsets of X is called the L-power set of X and is denoted by LX. In particular,

when L is [0, 1], the L-subsets of X are called fuzzy subsets.

1.3.2 Definition [49]:

Let Y QX and a e L. We define aYeLX as follows.

a if xeY
am): 0 if x¢Y

For xeX, aeL the L-subset which takes the value a at x and O elsewhere is

_ a 1f y = x
denoted by am. That 1s a{,,}(y)= 0 _f at1 y x

1.3.3 Definition [49]:

Let p, v eLX. If/.l(x) 5 v(x) V xeX, then we say that p is contained in v

(or vcontains p) and we write pg v(or v; p). Ifpgvandpak v, thenpis said

to be properly contained in v (or v properly contains y) and we write p c: v.

1.3.4 Definition [49]:

Let p, v eLx. Defme puv and pnvin LX as follows: V xeX

(,uuv)(x) = p(x) v v(x) and
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(p n v)(x) = Ax) /\ v (x).

Then p u v and y n v are called the union and intersection of p and v

respectively.

1.3.5 Definition [49]:

For p eLX , we define the following.

(i) { Ax) : x e X } is called the image of /1, and is denoted by AX) or Im(/.1);

(ii) ,u' = {x e X : Ax) > 0}; called the support of p.;

(iii) For aeL, ,u,, = {x e X : Ax) 2 a}; called the a- cut or a-level subset of ,u

and ,u,,> = {x e X : Ax) > a}; called the strict a-cut or strict a- level subset

of ,u

It is easy to verify that for any ,u, v eLX,

(i) 11; v,aeL =>u..<; Va»

(ii) asb; a, b eL =>,u,,g,u,,,

(iii) ,u = v <:>p,,= v,,, VaeL

The next theorem gives some basic properties of cuts and its proof is

straightforward.

1.3.6 Theorem [49]:

Suppose {p,- I i el } c; LX where I denotes an arbitrary nonempty index

set. Then for any aeL,

(1) |_l€J,(#.-). Q (Q, /1,»).
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n(/li)a =  #i)arel iel
Moreover, when L is a finite chain, we have equality in (1). I

1.3.7 Dtfillififlll [49]:

Let f be a mapping from X into Y, and let p eLX and v eLy. The L-subsets

M eL'andf'(v) er)‘, defined by v ye Y,

= \I\u\1\'-1*'=X.f\1\=v\ vi r‘o\==¢
N"y\ \% o\‘r\ew~i\se.

andv xeX, f '1 \v\\x\ = v\f\x\\ .

are called, respectively, the image of /.1 under f and the pre-image of vunder f.

It is not very diflicult to see the following:

1.3.8 Theorem [49]:

Let f be a mapping from X into Y. Then the following assertions hold:

(i) For {pi | i el } c; LX , where I an arbitrary nonempty index set,

f(l_EJI /1.-) = jg’ f(/1.-) aI1dh¢n¢° #1 Qllz => fll-11) Q K/12)’ V/11» /12 E LX­

(ii) For { 15- | j e J } g LY , where J an arbitrary nonempty index set,

f-l(jL€JJV,-) = HJf"(V,-) and f_l(jQJV,-) = IQ] f'l(V,-)

and hence v, Q v2 2 f"(v,) c_; f"(v;) Vv,, v; e LY.

(iii) f "(f(;1)) Q p Vp eLX. In particular if f is an injection, then f " (/(p)) =p

V ,u e LX.
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(iv) j(f"(v)) g v Vv e LY. In particular if f is a smjection, then j(f "( v))= v

VveLY.

(v) fl,u)gv<=> pgf"(v) VpeLXand VveLy. I

In this chapter in the last section we have given the basic concepts and

results in fuzzy set theory which are essential for the study in fuzzy

commutative algebra. In the next chapter we introduce the concept of L­

modules and give some necessary definitions and results which are required in

the subsequent chapters.

*##***###**###*##



Chapter 2

L-MODULES

2.1 Introduction

2.2 Basic Concepts

2.3 L-Submodules of Quotient Modules

2.4 Direct Sum of L-Modules

* Some results of this chapter have appeared in the Proceedings of the National

Conference on Mathematical Modelling held at Baselius College, Kottayam, Kerala; March

14-16, 2002.
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2.1 Introduction.

It is well known that the central concept of the axiomatic development of

linear algebra is that of a vector space over a field. The concept of a module is an

immediate generalisation of a vector space obtained by replacing the underlying

field by a ring. The concept of a module seems to have made its first appearance

in algebra in algebraic number theory-in studying subsets of rings of algebraic

numbers closed under addition and multiplication by elements of a specified ring.

They became important with the development of homological algebra in the

l940’s and 1950’s.

Fuzzy set theory in the last three decades has developed in one way as a

formal theory by fuzzifying the original ideas and concepts in classical

mathematical areas such as algebra, graph theory, topology and so on. Among

various branches of pure and applied mathematics algebra was one of the first

few subjects where the notion of fuzzy set was applied. The concept of fuzzy

modules and L-modules were introduced by Negoita and Ralescu [56] and

Mashinchi and Zahedi [47] respectively. Subsequently they were further studied

by Golan [15], Muganda [51], Pan [58, 59, 60, 61], Zahedi and Ameri [78, 79,

80, 81],. Tremendous and rapid growth of fuzzy algebraic concepts resulted in a

vast literature. The book of Mordeson and Malik [49] gives an account of all

these up to 1998.



Chapter - 2 : L-Modules 18

In this chapter we quote from [49] basic definitions like L-modules,

quotients and direct sums of L-modules and theorems which are essential for our

study. Also some new related theorems of interest are stated and proved.

Let R be a ring with unity. A lefi R-module is an additive group M

together with an operation ‘ . ’ from R x M into M such that

(1) (r+s).x=r.x+s.x

(2) r. (x+y)=r.x+r.y

(3) r. (s. x) = (rs).x

(4) I. x = x

V r, seR; x, yeM. We write r x for r. x. Similarly we define a right R-module.

If R is commutative, we do not distinguish between a left and a right R-module

and simply call it an R-module. If R is a field then obviously an R-module is a

vector space.

Throughout this thesis, unless otherwise stated, L(v, A, 1, 0)

represents a complete distributive lattice with maximal element ‘l ’ and minimal

element ‘O’; R a ring with unity ‘l’ and M a left module over R. ‘v’ denotes the

supremum and ‘A’ the infimum in L. ‘Q’ denotes the inclusion and ‘c’ the strict

inclusion. The set of all L- subsets of M is denoted by L”.
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2.2 Basie Concepts.

In this section, we consider some operations of L-subsets of a module

induced by the operations in the module. We then give the definition of an L­

module and quote some related theorems.

2.2.1 Definition [49]:

For y, v e L”, we define /1 + v, -,u e LM as follows.

(/1+ v)(X)= \/{/10')/\ v(Z)Iy»ZG M y+Z=X}

and -MI) = #(-I)

V x e M. Then p + v is called the sum of p and v, and -,u the negative of p.

2.2.2 Definition [49]:

Let pi e L”, i e I be a family of L-subsets of M. Then we define

Z ,u,(x) = v{_/\l,u,.(x,.):x,. e M,ie 1,2 x, = x}tel ‘G Iel
where in the expression x = Z x, , at most fmitely many x,- ’s are =# 0. Z p, istel tel
called the weak sum of the pi ’s.

2.2.3 Definition [49]:

Letr e R andp e L“. Define rp e L” as (r,u)(x) = v{p(y):ye M ry =x}

V x e M. Then rp is called the product of r and p.

2.2.4 Theorem [49]:

Suppose M and N are left R-modules and f : M —> N is a module homomor­

phism. Let r, s e R and ,u, v e L”. Then
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(i) f(/1+v)=f(#)+f(v)

(ii) f (P/1) = Pf (11)

(iii) f (P/1 + W) = rf(/1) + Sf(v)­

2.2.5 Definition [49]:

Let p e L”. Then ,u is said to be an L- submodule of M if

(i) #40) = 1

(ii) ;.(x+y)2/.(x)/\,u(y) Vx,yeM

(iii) p(rx)Zp(x)VreR, VxeM

Note: By saying p is a lefl L-module we mean p is an L-submodule of some lefl

module M over a ring R. The set of all L-submodules of M is denoted by L(M).

2.2.6 Definition [49]:

Let /1 6 L". Then /1 is said to be a left L-ideal of R if

(i) M0) = 1

(ii) /41+ y)ZH(I)/\#(y)Vm/ER

(iii) #(Iy) Z #0’) V 1,)’ G R

Similarly a right L-ideal of R is defined by replacing (iii) with

(iii)’ p(xy) 2 _u(x) V x, y e R

Note: Clearly ,u is a lefi L-ideal of R if and only if p is an L-submodule of the

lefl module RR.
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2.2.7 Example:

Let R be a ring. Consider M= R2= {(p, q) :p, q e R}. Then Mis a

module over R with respect to the usual operations. Define ,u : M —> [0, 1] by

1 if x=(0,0)
#(r)= '/= if r=(p.0);P==0

0 if x=(P.q);q==0

Then p is an L-module where L is [0,1].

2.2.8 Theorem [49]:

Let p e L”. Then p e L(M) if and only if y satisfies the following

conditions:

(i) 11(0) = 1

(ii) ;(rx+.sy)2,u(x)/\/.4(y)Vr,seRandx,yeM

2.2.9 Theorem [49]:

Let y e L”. Then p e L(M) if and only if ,u satisfies the following

conditions:

(i) 1(0) E /1

(ii) rp+spgp Vr,seR

2.2.10 Theorem [49]:

Let p, v e L(M), then /1 + v eL(M). Moreover if ,u,- e L(M), ( i e I ) then

Z/1. E L(M)­
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2.2.11 Theorem:

Let p e L”. Then /1 eL(M) ifand only ifg, is a submodule ofM V a e

L, where ,u,, = {x e X : Ax) 2 a}, the a-level subset of ,u .

Proof:

Let ,u e L(M). Then for a e L, consider ,u,,. Then clearly A0) = l 2 a.

Therefore 0 e pa.

Also x,yey,, =>Ax)2a,Ay)2a

=Ax+ y)2Ax)/\Ay)2a/\a=a

=> x + y e pa

and x esp, => Ax) 2 a

=> Arx) 2 Ax) 2 a

2 rzx e pa

Thus ,u,, is a submodule of M.

Conversely suppose that pa is a submodule of M V a e L. Then /1,,

contains 0, V a e L, and in particular for a = 1. Therefore A0) = 1. Also for x,

y e M, let Ax) =p, Ay) = q. Considerp, where r =p A q.

Then x,ye;1, =>x+yep,

=>/41+ Y)?’ = P/\q = 11(1)/\#0')

So Ax+y)2Ax)/\Ay) Vx,yeM.

Now forx e M, let Ax) = a . Thenx e /1,, and so rx e ,u,,, which implies Arx) 2

a = Ax).
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Thus Arx)ZAx)V re R, VxeM.

Therefore p e L(M). This completes the proof of the theorem. I

2.2.12 Theorem:

If L is regular and if p eL(M), then ,u' is a submodule of M where p‘ =

{xeX: Ax) > 0}, the support of/1.

Proof:

We have,

A0) =1 => 0 E p‘

Also x,yep' =>Ax)>O,Ay)>O

=> Ax + y) 2 Ax) /\ Ay) > 0 ( since L is regular)

=> x + y e A.

And, xe,u'=>Ax)>0

=>Arx)2Ax)>0, Vre R

=> rx e ,u'.

Therefore ,u' is a submodule of M. I
Note: If L is not regular, then p‘ need not be a submodule of M as we see in the

following example.

2.2.13 Example:

Suppose L is the lattice having four elements 0, 1, a & b where a v b = 1

anda /\ b = 0. ConsiderM= R2= {(p, q) Zp, q E R}; R a ring. ThenMis a

module over R with respect to the usual operations. Define p : M —> L by:
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fl if x=(0,0)
a if x=(p,0); p¢0
b if x=(O,q); q¢0
_O if x=(p,q); p¢Oandq¢O

#(x) =*

Then clearlyp eL(M). But p’ = M- {(p, q) tp #0 andq #0} = (R, 0) U

(0, R) which is not a submodule of M.

2.2.14 Theorem:

Letp, 17 e L(M).Then(;1+ 17)'g ;1'+ 17'. If Lis regularthen (p+ 17)‘

=y"+r;'.

Proof:

We have,x e (,u+ 1])'=> (,u+ 17)(x) > 0

=>v{,u(y)/\11(z):y,zeM; x=y+z}>O

=>,u(y)/\r7(z)>0 for some y,zeM; x=y+z

=>p(y)>0 and 17(z)>0 for some y,zeM;x=y+z

=> yep‘ and ze rf for some y,zeM ;x=y+z

=> xe;1'+r]'

Therefore (,u + r])' g /I + 17'.

Conversely if L is regular,

xe;f+r7' 2 x=y+z forsome yep', ze If

:> p(y)>0, r7(z)>0

=> p(y) A 11(2) > 0 (since L is regular)

:> (,u+ 1))(x)>0 (since x=y+z)
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=rEw+W

Therefore ,u'+ 17' g (/1 + r;)'.

Hence (,u + 1;)‘ = /I + rf if L is regular. This completes the proof. I

Note: The regularity of L is essential for equality in the above theorem. For

example consider the following:

2.2.15 Example:

Let M and L be as in example 2.2.13. Then L is not regular. Define

p, 1] eLM as follows:

l if x=(0,0) 1 if x=(0,0)
/1(r)= a if r=(P,0); p==0 and fl(r)= b if X=(0,q); q¢00 otherwise 0 otherwise

Then obviously p, 1] eL(M); and ,u'+ 17' = M. But (p + 1])'¢ M

2.3 L-Submodules of Quotient Modules.

In this section we give the definition of an L-submodule of a quotient

module and the definition of the quotient v/p of an L-module v with respect to

an L-submodule p of v, which are available in the literature, and quote some

theorems in connection with this.

2.3.1 Theorem [49]:

Let p eL(M) and let A be a submodule of M. Define §eLM”' as follows:

§(I+/4) =\/{#001 yer +14}

V x e M, where M/A denotes the quotient module of M with respect to A. Then

§ eL(M/A ).
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2.3.2 Definition [49]:

Let p, v eL(M) be such that p c; v and assume L is regular. Then obvi­

ously ,u' and v' are submodules of M and ,u' g v'. Thus /4' is a submodule of v'.

Moreover v I,» eL( v‘). Now define 5 e L”/"' as follows:

§(x+/.1')=v{v(y):yex+p'} Vxe v'.

Then § e L( v'/p’) and is called the quotient of v with respect to p and is written

as v/p.

2.3.3 Theorem [49]:

Let p eL(M) and assume that N is also a left R-module and f: M —+ N is

a homomorphism. Then f (/.1) eL(N).

2.3.4 Definition [49]:

Let M and N be left R-modules and let p eL(M), v eL(N).

(l) A homomorphism f of M onto N is called a weak homomorphism

of p into v if f (p) c; v. If f is a weak homomorphism of p into v, then we say

that p is weakly homomorphic to v and we write ,u ~ v.

(2) An isomorphism f of M onto N is called a weak isomorphism of p

into v if f (p) c; v. If f is a weak isomorphism of p into v, then we say that ,u is

weakly isomorphic to v and we write p = v.

(3) A homomorphism f of M onto N is called a homomorphism of p

onto v if f (/1) = v. If f is a homomorphism of p onto v, then we say that p is

homomorphic to v and we write p w v.
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(4) An isomorphism f of M onto N is called an isomorphism of p onto

v if f (/.1) = v. If f is an isomorphism of p onto v, then we say that /1 is isomor­

phic to vand we write ,u EV.

2.3.5 Theorem [49]:

Let p, v e L(M) be such that ,u Q v and assume L is regular. Thenv|,,-zv/y. I
2.3.6 Theorem [49]:

Let v e L(M) and assume that N is also a left R-module and -f e L(N) is

such that v w §. Suppose that L is regular. Then there exists p e L(M) such that

pg vand v/peg];-. I
2.3.7 Theorem [49]:

Let ,u, v eL(M) and assume that L is regular. Then v/(,u n v) = (,u + v)/,u. I

2.4 Direct Sum of L-Modules.

In this section we recall the definition of the direct sum of L-submodules

of a module M which is a straight forward generalisation of that concept in crisp

theory to the fuzzy setting. Also we prove some nice results in this context.

2.4.1 Definition [49]:

Let ,u, 17, v eL(M). Then p is said to be the direct sum of 17 and v if

(i) ll = '7 + V

(ii) 17 n v = lw;



Chapter - 2 : L-Modules 28

Inthis case wewrite ,u = 17$ v.

2.4.2 Defmition:

Let,u,-eL(M), Vie I. Thenwe saythatpisfl1edirectsumof{p,:ie I}

denoted  ,u,-, if

(i) #= Z/1,
iel

Z /1' = l{0}
351-U}

2.4.3 Example:

Let M=R2= {(p, q) tp, q e R} whereR is any ring and letL =[o,1].

Definep, 17, v in L” by

if x = (0,0)

#(x) = <- if I =(p,0), P¢0

— otherwise

ow---‘

if x = (0,0)

v(x) = <— if I = (P,0),P==0

if I = (p,q), q¢0
k

f

c>-:>--—­

if x = (0,0)

and v(x) = <— if x = (0,q),q¢O

_ if I = (p,q),P==0

It is a matter of routine verification to see that p, 17, v eL(M); p = 1; + v

and nn v = lw}. Therefore ,u= 17$ v.
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2.4.4 Theorem:

Suppose L is regular. If /.1, 17, v eL(M) are such that p = 17 Q v, then

p'= 17‘ 69 v'.

Proof:

We have, xe/1' => /.4(x) > 0

=> v{r](y)/\ v(z): y,z e M, y+z=x} >0

:> 17(y)/\ v(z)>0forsomey, z e M, with y+z=x

=>3 y, z e M suchthat r7(y)>0, v(z)>0and y+z=x

:>3 y e rf, z e v‘ suchthat y+z=x;

Thus x e,u' 2 El ye 17', ze v' such that y + z = x. From this it follows that

‘U. = ”.+ V.‘

Also, x e rfn v‘ => r7(x)>0, v(x)>0

=> 17(x) A v(x) > O (since L is regular)

:> r7(x) A v(x) = 1 (since 17r\v= l{0})

2 x = O

Hence 17' rw v‘ = {0} and so p‘ = 17' 69 v'. I
Note: The converse of the above theorem need not be true as we see in the

following example.

2.4.5 Example:

Let M= R2 = {(p, q) Ip, q e R} where R is any ring. And let L =[0,1].

Definep, 17, ve LM by
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f

rQJl-5[\)l—l'—*

/1(1) = <­

F

row»-—*

12(1) = *­

o-|=---3

and v(x) = <­

k

Then ,u, 17, v e L(M); ,u' = M = R2; If = (R, 0) and v = (0, R) Obvlously

,u'= rf$ v‘.

->--t~Jv-~’_‘

But (17+v)(x) = <

k

Thus p'= rf$ v‘, butnoteven p= 17 + v

Note: The above theorem doesn’t hold if L is not regular, because 1f L 1s not

regular, then p‘ need not be a submodule of M even if p eL(M)

if x = (0,0)

if I = (p,0),P¢0

otherwise

if x = (0,0)

if I = (1>,0),P¢0

if I = (nq), q¢0

if x = (0,0)

if I = (0,q), q==0

if I = (p,q),1>=*0

if x = (0,0)

if I = (p,0),P=#0

otherwise
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2.4.6 Theorem:

Suppose L satisfies the complete distributive property. Suppose ,u,, (i el )

and ,1 are elements in L(M), where Z p, is a direct sumfia p,; and supposeiel 6
).r\(Z;1,.)= lw}. Then 2.+(Zp,.)isadirect sum l69(fi?p,).:51 tel E
Proof:

Given Zp, is a direct sum and A nip, = lw}. Let Ii denotes the set I - {i}.tel tel
Then we have,

E~1~[~§~*Jl<I>

= /1,<x> A [/1+Z#.)<x>

=,uj(x) A v{().(xi) A  ,u,.(x,.)) : x = xi+Zx,.; xi, x,eM; ielj}‘G1 iel]
= {yj(xi+Zx,) A v(2.(xi) A “A ,u,.(x,)) :rel, I

x = xi+Zx,; xi, x, eM; ielj}ielj

= [v{,uj(xi) A '_Qp}.(x,.) :x = xi+Zx,.; xi, x, eM; ieljn A1 ielj
[v{(/1(xi) A is p,.(x,)) : x = xi +zx,; xi, x, eM; ieljw1 rel,
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= v {(~,<x.> A ,€Aj~,<x,>]A(1<x.> A 11.-<x..>]

: x = x1+Zx,.; xA,x,eM;ieI1}IQ

= V {/1,0.) A lo.) A ieA1(~,<x.>A#.<x.>)

: x = xA+Zx,; x1,x,eM; ielj}tell

l if xA=0, x, =0 Vielj
_ 0 if xA¢0 orx, #0 forsome ie I].

(sinceg nk= lw} and ,u,-mp,-= l{0}Vie1,-)

_ l ifx=O
' 0 Hx¢0

Thus ,l1jf\[Z.+Zp,.] =lm Vjel andtherefore ,1.+Zp, isadirectsumMQ ml
A $ (Q ,u, ). This completes the proof. I

In this chapter we have given the basic concepts regarding L­

modules which are required for the further development of the theory given in

the subsequent chapters. In the next chapter we introduce the notion of simple

and semisimple L-modules and study some properties.

###*####*#####*##*#**
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SIMPLE AND SEMISIMPLE

L-MODULES

3.1 Introduction

3.2 Simple L-Modules
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3.1 Introduction.

The concepts of simple and semisimple modules form an important area

of study in the theory of R-modules. Recall that a left module M over a ring R is

said to be simple if it does not contain any submodule other than 0 and M, and if

M ¢ 0. A lefi module M is said to be semisimple if each of its proper submodules

is a direct summand of M and there are several other equivalent definitions in the

literature. In this chapter we extend these notions to the fuzzy setting and

investigate some properties.

3.2 Simple L-Modules.

In this section we introduce the concept of simple L-modules and prove

that if L is regular, then M is simple if and only if l M is a simple lefi L-module.

3.2.1 Definition:

Let p eL(M) be a lefi L-module. Then /1 eLM is said to be an L­

submodule of p if 2. itself is a lefi L-module such that /I Q y. That is if

(i) /1(0) = 1

(ii) »i.(x+y)2/i.(x)/\/i(y) Vx,yeM

(iii) /ii(rx)2/i.(x)VreR,VxeM

(iv) /i(x) 3 u(x) V x e M

3.2.2 Definition:

Let ,u : M —> L be a left L-module. Then a left L-module 17 : M —> L is said
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to be a strictly proper L-submodule of y if 1; c_; p, 17 1= lw}, q(x) = ,u(x) ‘v’ x

for which r;(x) > 0 and 17' <: ,u'; and 17 : M——> L is said to be a proper L­

submodule of,u if 1) Q ,u, 1] ¢ lw}, 17' c: pi.

3.2.3 Definition:

tr eL(M) is said to be a simple left L-module if p has no proper L­

submodules.

3.2.4 Example:

Let D be a division ring. Let R = M,,(D) be the set of all n >< n matrices

with entries in D. Let R, = {A eR zj th column ofA is 6, f0tj=’= i}. Then R, is a

left R- module.

Fori= l,2,3...,n; definep,~:R—> [0, l] as

K ._;1 1fA=O

~.<A>=*-21-; if/16 R. -{0}
L 0 if Ate R’.

Then ,u,-; i = l, 2, 3..., n are simple lefi L-modules.

3.2.5 Theorem:

Suppose L is regular. Then M is simple if and only if 1M is a simple left

L-module.

Proof:

Suppose M is simple. Then M has no proper submodules. If possible let

1 M be not a simple left L—module. Then 1M has a proper left L-submodule say /1
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such that ,u ¢ lw}, ,u' c 1,] = M. Since ,u eL(M), and since L is regular, /1' is a

submodule of M and ,u' 1= {O}, ;f 4* M. That is ,u' is a proper submodule of M.

This contradicts the fact that M is simple.

Conversely suppose that 1M is a simple left L-module. If possible assume

that M is not simple. Let N be a proper submodule of M. Then N =’= {O}, N at M.

Define;u:M->Lby

() lifxeNx";” 0 ifx¢N
Then p eL(M); p;1M, ,u #1“); or 1M and ,u' c: M= 1M‘. Hence ,u is a

proper L-submodule of 1M which is a contradiction. I

3.3 Semisimple L-Modules.

Now we introduce the notion of semisimple L-modules and prove the

fuzzy analogues of the theorems ‘every submodule of a semisimple module is

semisimple’ and ‘every semisimple module contains a simple submodule’ in the

crisp case. We also prove some other theorems which are relevant in the fuzzy

setting.

3.3.1 Definition:

Let p eL(M). Then /1 is said to be a semisimple lefi L-module if whenever

,1 is a strictly proper L-submodule of ,u, there exists a strictly proper L-submodule

17 of psuchthat ,u =lEB 17.
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That is if /I is a proper L-submodule of /1 such that 2.(x) = /.t(x) V x for

which Z(x) > 0; then there exists a proper L-submodule 1; of p satisfying 1)(x) =

,u(x) V x for which r7(x) > 0, such that ,u = Z G9 17.

3.3.2 Example:

Let D be a division ring. Consider R = M3(D) ={3x3 matrices over D},

which is a ring with unity with respect to the addition and multiplication of

matrices. Let R, = {A eR : j "' column of A is T) , for j ¢ 1'}. Then R,- is a simple left

module over R for 1' = 1, 2, 3 and RR is a semisimple left module.

Definep : R —>[0, 1] by

fiA¢0

1;.»--lg)---[\_).;T>-i‘

1_ if AER,-{0}

MA): l- ifAeR,+ R2-{R,}

— ifAeRl+R2+R3-{R, +122}

Then p is a semisimple left L-module.

3.3.3 Theorem:

Let M be a lefi module over a ring R. Then M is semisimple if and only if

1 M is a semisimple left L-module.

Proof :

Suppose M is semisimple. To prove that 1 M is a semisimple lefi L-module.

Let ,u be a strictly proper L-submodule of 1 M. To show that there exists a strictly

proper L-module 17 eL(M) such that 1 M = ,u 6 11.
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For this let S = {x e M : p(x) = 1}. Then obviously S is a submodule

of M ; S ¢ 0, S 1 M. Therefore since M is semisimple, S is a direct summand of

M. Hence we can write M = S 69 T for some submodule T of M. Now define 17 :

M -> L by,

l if xeT
'70‘): {0 if x¢T

Then 17 eL(M). Further 1;(x) = 1M(x) V x for which r](x) > 0. Now (p +17)(x)

=v{,u(y)/\ q(z):y,z e M,y+z=x}. SinceM=SG9 T,x e Mcanbe uniquely

expressed as x = s + t, where se S and re T. Thus x = s + t; where ,u(s) = 1,

r7(t) = 1. Therefore (,u +r7)(x) = 1 V x e M. Thus we get _u +17 = 1M. Also,

since Sn T = {O}, we get pm 17 =1“); and hence lM=,u€B 1;. This proves the

first part.

Conversely suppose that 1 M is a semisimple lefi; L-module. To prove that

M is semisimple. For this let S be any proper submodule of M. To prove that S is

a direct summand of M. Define y eLM by,

M) 1 if xeSx =
0 if xES

Then clearly ,u Q L(M) and ,u is a strictly proper L-submodule of 1M. Since 1M is

semisimple, 1M = p G9 1) for some strictly proper L-submodule 17 of 1 M. Take T =

{x e M : r;(x) = 1}. Then T is a submodule of M. We show that M = S G9 T. For

all xe M, we have,

1=lM(x)==(,u +r7)(x) = v{,u(y)/\17(z): y+z=x; y,zeM}
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which implies /.l(y) = 17(2) = 1 for some y, z e M, where y + z = x. (since ,u(y) =

1or0 and r7(z)= 1 or0). Thus if x e M then x=y+zforsome ye S, z eT.

So M= S+T. Also, since ;1r\17=l{0}, we getS r'\T= {O}. Therefore M = S £9 T.

This completes the proof. I
3.3.4 Theorem:

Let peL(M) be a semisimple left L-module. Then _ua> is a semisimple

submodule of M V a ¢ 0e L.

Proof :

Given ,ue L(M) is semisimple. To prove that pa’ is a semisimple sub­

module of M V a =# 0 e L. Assume a ¢ 0. Let A be a submodule of pa’. To show

that A is a direct summand of pa) = {x e M : _u(x) > a}. Define 1; e L” by

={:;‘” 1:1:
Then clearly r7eL(M) and 17 is a strictly proper L-submodule of p such that 00>

= A. Since ,u is semisimple and 17 is a strictly proper L~submodule of ,u, there

exists a strictly proper L-submodule v of ,u such that y =17 GB v. Then v(x) =

p(x) V x for which v(x) > 0. Take B = vf = {x e M : v(x) > a}. We prove that

pa’ = A €B B. That is we prove that pa’ = 27,,>€B v,,>.

For: x ego) :>,u(x)>a

3 ('1 69 v)(x) > <1

=°V{'7(V)/\ "(Z)1}’>Z G M; 7+-ZZX} >0
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:3y,z e M with y+z=x suchthat17(y)/\v(z)>a

::>Ely,z e M with y+z=x suchthat 17(y)>aand v(z)>a

Thus x e pa’ :> El y,ze M with y+z=x suchthat y e 1),,’ and ze v,,>.

Hence pa’ = r7a>+ v,,>.

Also, x e 17a>r\v,,> :>x e 17,), x e V;

:> r;(x)>a, v(x)>a

:‘>(17 KW v)(x) = 1)(x)/\ 1»(x)2a>0

:> x = 0 (since 11$ v is a direct sum)

Thus nf A va> = {0}. Hence pa’ = 1],,’ 63 v,,> = A G3 B. That is A is a direct

summand of pa’. So pf is a semisimple submodule of M V a #= 0eL. I

Note : In the above theorem, if L is regular, pa) is semisimple even if a = 0.

That is /1‘ is a semisimple submodule of M, if L is regular.

3.3.5 Theorem:

Suppose L satisfies the complete distributive property. Then every strictly

proper L-submodule of a semisimple left L-module is semisimple.

Proof:

Let p be a given semisimple lefi L-module and 2. be a strictly proper L­

submodule of ,u. To show that /"L is a semisimple left L-module. For this let 17 be a

strictly proper L-submodule of 3.. Since 2. is a strictly proper L-submodule of p

we see that 17 is a strictly proper L-submodule of ,u. Since p is semisimple there

exists a strictly proper L-submodule 5 of ,u such that ,u = 17 G3 6.
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Now we prove that 2. rw (nee 6) = (am 17) es (,1 rw Q. We have

[lfi ('1 +5)](I)

= /Kr) A (17 +<5)(x)

= 10¢) /\(\/{fl(y) /\ 5(1); y;z G M; y+Z =x})

=(\/{l0/)/\ 1(1); y;z E M; y+Z=r}) /\ (\/{fl(v)/\ 5(1) I

y,z e M; y+z=x})

(Since A being an L- module, for x = y + z, ).(x) = ,i(y+z) z

).(y)/\/1(2); and equality is attained for x = x + 0 or x = 0 + x)

=\/{(101) /\l(z)) /\ (1101) /\ 5(1)); y;z e M; y+Z=r}

=\/{(1»(y) /\ T/01)) /\ (W) /\ 5(1)) I y;Z 6 M; y+Z=r}

=\/{(/1“ v)(y)/\(»'~F\ 6)(z)= y;-Z E M; y+Z=r}

= [(1 K“ 11) + (1 H <5)](r)

Thus »1f"(fl+¢5)=(/1r\'7)+(/1fir5)=17+(»1f\<5) (Since 12;/1)

NOW ('2 K“ (/1 Q 5 ))(r) = ('7 N5“ l))(r)

= ((1205) H /1)(r)

:1{0}(x)/\ /Kr)

== 1fo>(x)

Thus rm(,in 5)=1{0,. Hence r,+(,m o)= r7®(/In o).

Therefore in (779 r>)= n€B(/in 6). Sowe get /1=).r\,u=/1f\(1;@6)= 17$

(/1 n 5). Obviously ,1 n 5 is a strictly proper L-submodule of ,1. Therefore ,1 is a

semisimple L-module. This completes the proof of uieorerri. n
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3.3.6 Theorem:

Suppose L is regular. Let ,ueL(M) be a semisimple lefi L-module. Then ,u

contains a simple left L-module.

Proof :

Given that peL(M) is semisimple. Then for aeL, pa’ is a semisimple

submodule of M. Therefore pa) contains a simple submodule say A. That is A

has no proper submodule.

Define r7:M->L by

pm if xeA gm’17(X)= ,O 11° x¢A

We claim that 17 is a simple left L-module. If not 11 has a proper L-submodule v;

v¢ lw}, vi c If QA. Thus {0} c 1/*c:A. But vi = {x e M: v(x)> 0} is clearly

a submodule of A. (since L is regular and v eL(M)). Thus vi is a proper sub­

module of A which is a contradiction. Hence 17 is a simple left L-module. I

For a left R-module RM the equivalence of the following three properties

is well known in crisp theory.

(1) M is semisimple.

(2) M is the sum of a family of simple submodules.

(3) M is the direct sum of a family of simple submodules.

Similar to this result we have the following theorem in the fuzzy case.
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3.3.7 Theorem:

Let L be a complete distributive lattice and let y eL(M) be a left L~

module. Then the following are equivalent.

(1) /1 is semisimple.

(2) p is the sum of a family of strictly proper simple L-submodules

,u,-, ( i e I ) of p.

(3) p is the direct sum of a family of strictly proper simple L-submodules

/5, (j e J ) of p.

Proof :

§1):> (2). Suppose ,u eL(M) is semisimple. Let /1 be the sum of all strictly

proper simple L-submodules ,u,-, (i e I) of p , where ,u,(x) = ,u(x) Vx for which

,u,-(x) > 0, ( 1' e1 ). Then clearly ,1 is a strictly proper L-submodule of p such that

/1(x) = u(x) V x for which /l(x) > 0. Therefore there exists a strictly proper L­

submodule 17 of ,u such that ,u = /1 63 17. We claim that 17 = lw} so that ,u = 2.. If

not, being an L- submodule of p which is strictly proper, 1) is semisimple and so

17 contains a simple L- submodule say 6. Moreover we can choose 6 such that

6(x) = r7(x) V x for which 6(x) > 0, and so 6 (x) = ,w(x) V x for which (Xx) > 0

(since 17 is a strictly proper submodule of ,u). Then 6 ¢ lm, 6 Q 27 and 6 ' c rf.

Also being a strictly proper simple L-submodule of p such that fix) = ,u(x) V x

for which 6(x) > 0, we get 6 Q /1. Thus we get 6 Q J. rw 17 which in turn implies

that 6 = 1{0;. This is a contradiction. Hence 17 = lw} and so /.1 = it.
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{2} ::> 1] 1. Conversely let p be the sum of a family of strictly proper simple L­

submodules ,u,- ( iel ) of ,u say ,u =2 /1, where for i e I, p,-(x) = p(x) V x for
tel

which ,u,(x) > 0. To show that ,u is a semisimple lefl L-module. That is to show

that corresponding to any strictly proper L-submodule /1 of ,u there exists a

strictly proper L-submodule 1) of ,u such that ,u = /I EB 1).

Let /1 be a strictly proper L-submodule of p. Consider subsets J g I with

the properties

(i)  pl is a direct sum  pl

2 1{O}
jeJ

Consider the family Fof all such J ’s with respect to ordinary inclusion. F: ¢ as

it contains the empty set. By Zorn’s lemma there exists a maximal element in F.

Take such a maximal J. For this J, let ,u’ = it +Z:,uj= /1 69 (G9 pj). Then p’ is161 “J
such that ,u’(x) = ,u(x) V x for which p’(x) > 0. Now we show that /J’ = p. For

this we prove that ,u,- g ,u’ V 1' e I. Suppose not. Then ,u,- (Z y’ for some i.

Consider p’ rw ,u,- for this i. It is an L-submodule of ,u,-. Since ,u,- is simple we have

y’ A ,u,- = lw} or (p’ rw ,u,-)' = ,u,-'. Therefore p’ m ,u,- = lm or ,u,- (since L is

regular, if (,u’ rw ,u,-)(x) > 0 then both p’(x), ,u,(x) > 0; and then /.1,-(x) = ,u(x) ==

,u’(x)). Since ,u,-cz: /1’ we get ,u’ A ,u,- = lm. Therefore _u’ + ,u,~ is a direct sum p’ €B

,u,- = A G9 (3 ,uJ.)® ,u,-. This contradicts the maximality of J. Therefore /1, g ,u’
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V i e I. This implies ,u = 2,41,. Q p’. That is ,u Q ,u’. Clearly p’ Q ,u. Hence ,u
IIE

= p’ = 2. 69 Z #1 . Thus there exists a strictly proper L-submodule 17 = 2,11}. ofjg.) jeJ
,u, where 17(x) = ,u(x) V x for which r](x) > 0, such that ,u = /1 69 17. Therefore ,u

is semisimple.

12) => (3). Suppose peL(M) is the sum of a family of strictly proper simple

L-submodules ‘u,-, (i e I) of p where ,u,(x) = ,u(x) V x for which p,(x) > 0. To

show that p is the direct sum of a family of such simple L- submodules.

Consider p = 2,11,. where ,u,-’s are strictly proper simple L-submodules of
ml

p such that /1,-(x) = p(x) V x for which p,(x) > 0. Consider the family F = {J Q I :

Z/1]. is a direct sum} with respect to the ordinary inclusion. Then Fcontains a
1e.I

maximal element J. Then as in the proof of (2) :> (1) it is easy to see that ,u =

{3} 2:» (2 1. This is obvious. I

#*******#*******#**
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4.1 Introduction.

The concepts of exact sequences and split exact sequences of R—modules

form an important area of study in module theory. Zahedi and Ameri [80]

introduced the notion of fuzzy exact sequences in the category of fuzzy modules.

According to them, a sequence . . . —> ,u,_lA_ I —’l=1-—> p,.A'_ --5-—>/1,+,Ai I —> .. .l— +
of R-fuzzy module homomorphisms is said to be fuzzy exact if Im Z-_, = Ker

for all 1', where Im f,-_1 and Ker fl mean ,u,-1 1,“ fH and /1,-I Kc,  respectively.

ln this chapter, as an extension of the concept of exact sequences of R-modules

in classical module theory to the fuzzy setting, we give a more general definition

and prove some interesting results in this context

4.2 Exact Sequences of L-modules.

From the theory of R-modules recall that a sequence of R-modules and R­

module homomorphisms ...——’;%>A,._, —i->A, —f"='-—>A,+,  is said to

be exact at A, if Im ()1) I Ker (fl+,); and the sequence is said to be exact if it is

exact at each A ,-. In this section we extend this notion to the fuzzy setting and

prove some results.

4.2.1 Definition:

Let A,-; i e Z be R-modules and let p, e L(A,-). Suppose that

...—-5=L—>A,_, —i—-> Al. -—-LL->A,.+,  is an exact sequence of R-modules.
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Then the sequence ...———’-'5='——>,u,_, ——5'—-> ,u, —i*'——>p,.+,  of L-modules is

said to be exact if, for all ie Z,

(i) fl+1(l1i)§. PM and

(ii) fl{/1,-_,)(x) > 0 if x e Ker fit , ; and fi(,u,-_;)(x) = 0 if x E Ker ]§+ , .

Remark: From here onwards the above situation in the definition will be

mentioned by saying that

.____I¢__>A‘__] __/?_.>,4i _i'+_1_)Am11- ft f.-+ f.-+
---——-‘—>#,--1 -—~—>#,- _"'L_>/1:+1

is an exact sequence of L-modules.

Recall from chapter 2 that if L is regular and if p, 17 eL(M) are such

that ,u + 17 is a direct sum of L-modules, then ,u' + 17' is a direct sum of R­

modules.

4.2.2 Theorem:

Let L be a regular lattice. Let ,u, 1] eL(M) be such that p ® 17 is a direct

sum of L-modules so that ,u' EB If is a direct sum of R-modules. Then the

sequence 0 -> p —i—> ,u £9 1;—’¥5—->17 —> 0 is exact, considering ,u, 27 as _u eL(,u'),

12 eL(rf)­

Proof:

Note that the sequence 0-—> ;f —'¥—> ,u' 6917' ——l——>17' —>0 is an exact sequ­

ence of R- modules where ‘ 1' ’ and ‘ rr ’ are respectively the canonical injection
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and projection. We have to prove that the sequence 0 —> ,u-%-> p691;--3-'->17 —>0

is an exact sequence of L-modules.

Let x E if + rf. Then i(/.l)(JC) = v{,u(t): rep‘, i(t) = x}

_ p(x) ifx€u*
*{ 0 ifxé,Z,u* " (1)

A180, (#+'7)(r) =\/{/10')/\'I(Z)1 y.zeM, }’+Z=x}

1 #(x) if X E #1‘ (2)
(Note that ,u G9 1; is a direct sum. If x = y + z with x e pi, then the only

possibility is x = x + 0 or x = y + z; y, z e ,u'. But in the second case n(z)= 0.)

It follows from (1) and (2) that z'(p) Q ,u + 17.

For rEv',(1r(# + mxx) = \/{(11 + 10(1): 1 e .u" + 17'; 1:<0=x}

= \/{U1 + 1r)(r + x)= r 611'}

(since 1:: [G9 17' —> 17' is the projection)

= v{u(r) A n(x)= r E J}

= r)(x) (since ,u(r) = 1 with r = 0)

Hence 7r(,u+ q)= 27. Now by (1), i(p)(x)= ” (x) >0 ‘f "e”_:K°”’0 if xE/J =Ker2r

Therefore 0 —> ,u ——’—> p GB 17——’-’—->17 ——> 0 is an exact sequence of L-modules. I

Remark: Note that in the above theorem, for convenience, we have denoted the

L-module 1“), eL(M) by 0.
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Also if 0- —>A. I ~>B is a sequence of R-modules and /1eL(A),

r7eL(B), then it is easy to see that 0 e as .->,u 5 >1; is an exact sequence of L­

modules if and only if Os e >A I > B is an exact sequence of R- modules, if

and only if f is injective.

4.2.3 Definition:

Let L be a regular lattice. Let p, 17 eL(M) be such that p 6 1; is a direct

sum of L-modules. Then the exact sequence 0 —> ,u——’—> p69 r)—5-—>1] -> 0 of

L- modules is called a split exact sequence of L- modules.

Now we obtain a necessary condition for a given sequence y _£_>;7.__8_>v

to be exact at 17.

4.2.4 Theorem:

Let A__L_> 3__8_._>C be a sequence of R-modules exact at B and let

/J eL(A), 1; eL(B), v eL(C). Then the sequence y J "7 8",‘, of L-modules

is exact at 1; only if p‘ __1f'__>;7‘ _£'__>v' is a sequence of R-modules exact at

17‘, where f ’ and g’ are restrictions of f and g to /1' and 11' respectively.

Proof:

Suppose the sequence p for , U  8-, V is exact at 17. Then by definition

f(#)_<; 12, 202); v 1m<11f(#)(r)>0 if x E Kerg; f(#)(r) =0if X ¢ Kers­

(That is (f(,u))‘ = Ker g) . Now consider the sequence /1’ __L'_,,7‘ __$'__,v' We

claim that this sequence is exact at 17'.

FOII X 6 (f(#))' '=> f(/1)(r)>0
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<:>v{p(t) : f(t) =x, t eA} >0

<:>3 te A suchthat x =f(t), p(t)>0

<=> X E f (1/)

Thus we get (f (,u))' = f (;u'). Similarly we get (g(r7))' = g(1f). Therefore f ’ (/1')

=fw‘) = 001))‘ Q If as /01); 17- similarly gm = (g(m>‘ Q vi Now

since (f(p))* = Ker g it follows that f ’(;f) = Ker g’. Thus the sequence

P‘ ._f_'._>,7’ .L.>v‘ is exact at 17' which completes the proof of the theorem. I

Remark: The converse of the above theorem is not true. That is the sequence

p‘___>;7‘__>v’ is exact at 17' doesn’t imply that the sequence p_____>,;___W

is exact at 17.

4.2.5 Example:

Let M be an R-module, A and B be submodules of M such that A $ B is a

direct sum. Let L = [0, 1]. Define ,u eL(A), 17 eL(B), v eL(A 63 B) as follows.

1 if x=O

#0‘): 1 if x=A\{0}
2

1 if x=O

12(r)= 1
3 if x=B\{0}

l H x=O
v(r) = 1

Z if x=A€BB\{0}
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Then ,u' = A, q‘ = B and v‘ = A @ B. Obviously A_."_.>_4 Q3 B_£_.>B is exact at

A @ B .That is ,;__*_,,,'_~._.,,,' is exact at v‘. Now i(}.t)(x) = V941) 1 1 6 A,

i(t)= x} = ,u(x) (with t = x e A). That is i(p) = ,u and clearly ,u ¢ v. Therefore

the sequence p—‘—> v—-"—->17 is not an exact sequence of L-modules.

4.2.6 Theorem:

Let A_._L_)B___8i___)C be a sequence exact at B and let p eL(A), 17

eL(B), v eL(C) be such that H f sq __§_,v is a sequence of L-modules exact

at 1;. Thenj(pa>) g Ker g V aeL.

Proof:

For aeL, consider the strict a-level subsets pa), r),,> and v,,>.

Then x e j(_ua>) :> El t such that x =j(t), ,u(t) > a

:>v {,u(t): x=j(t)} >a

Therefore it follows that f(,u)(x) > a and hence x e (f(,u))a>. Thus we get j(/10>)

Q (f(#)).f- Similarly We s@lg(12i) Q (g('2))..”­

NOW I E fl/1.1’) Q (fl/1))a> =>f(/1)(I) > 0­

Therefore it follows that j(;1)(x) > 0. Hence we get x e Ker g. (since by defini­

tion f(,u)(x) > 0 if and only if x e Ker g). Thus f(,u,,>) §_:_ Ker g V aeL. I

4.2.7 Definition:

Let () _..> A reefer; BMi~.>C __) 0 be a short exact sequence of R-modules.

Let p eL(A), 17 eL(B), and v eL(C). Then an exact sequence of L-modules of the

form 0 ~—> /1 -J-~> 1;-—g—> v —> 0 is called a short exact sequence of L-modules.
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Extending the concept of isomorphism between short exact sequences of

R-modules in classical module theory to the fuzzy setting, we define

isomorphism and weak isomorphism between short exact sequences of L­

modules and obtain some sufficient conditions under which the exact sequence

0—>,u, ——'->,u, ®,u2 -L->,u2 —+0 is weakly isomorphic to the exact sequence

0 —>/J1 —1—->2; -L->,u_, ->0. Also we get another set of sufficient conditions under

which the exact sequence 0-—>,u, -1->27 —L>p, —>0 is weakly isomorphic to the

exact sequence 0—>,u, -‘—>,u, ®,u, -—"-—>,u, ->0.

Recall that two short exact sequences of R-modules are said to be

isomorphic if there is a commutative diagram of module homomorphisms

0-—-->A —l——>B—i->C€>0

lap My $4‘
0———>A' fie >B' we §'~+c'-->0

such that ¢, 1//, § are isomorphisms.

4.2.8 Definition:

0--—>A J» B» 8» c —->0
Let .1, (P 1, 1/, 1. 5 be two isomorphic short exact

0-->/1' f'»B' 8~lgg>c'-->0

sequences of R-modules with the given isomorphisms. Let ,ueL(A), veL(B),

1) eL(C), ,u’eL(/1’), v’eL(B’) and r7’eL(C') be such that

0-» it -f_> v -*1-> q ->0 (1)

and 0-—>,¢1'—--Q-->.o.v'—‘L>r7'-—>0 (2)
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are two short exact sequences of L—modules. Then the sequence (1) is said to be

weakly isomorphic to the sequence (2) if ¢(,u) g_ p ’, |p( v) g_ v’, and 5(1)) Q 1; ’.

The sequence (1) is said to be isomorphic to the sequence (2) if (0(;1) = p ’,

I//(v)= vi and é(n)= '1’­

4.2.9 Definition:

Let A and B be two R-modules; ,u eL(A), 17 eL(B). Consider the direct sum

A €B B. We extend the definition of p and 17 to A EB B to get p’ and 17’ in

L(A ® B) as follows.

,u(x) if xe/I ,u(a) if b=0
,u'(x)={ 0 if “EA i.e.,u'(a,b)={ 0 if bio for(a,b)eA$B

r](x) if xeB 17(b) if a=0
and r7'(x)={ 0 if HEB i.e.r;’(a,b)={ 0 if aio for(a,b)eA69B

1 'f =0
Then,u', r;’eL(AEBB). Moreover()u’m r7')(x) = ,u’(x)/\ r7’(x) ={0 ff xzto .1 x

Hence ,u’+r7’ is in fact a direct sum and we denote it by ,u 9 17 .

Remark: Note that

(/1 + fl)(@, b) = (/1’+ fl’)(@, b)

= v{p’(a,, b;)/\ 17’(a;, b2): (a,, bl), (a2, b2) 6 A $3;

(Q1, bl) ‘L (512, 52) = (Q 5)}

= #’(a, 0) /\ r1’(0,b)

= #01) /\ n(b)»
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If 0->A,s f e>Be~~§ >A2 ->0 is a short exact sequence of R-module

homomorphisms, the equivalence of the following conditions is well known in

crisp module theory.

(i) There is an R-module homomorphism h : A 2 —> B with g O h =1 A2

(ii) There is an R-module homomorphism k : B —> A , with k O f = I AI

(iii) The given sequence is isomorphic to the direct sum short exact sequence

0->/1, +>/1, ea/1, _”->/12 ->0~

Related to this we have the following theorems in fuzzy module theory.

4.2.10 Theorem:

Let 0 —> Al -—‘/—>B—$—>A2 —> 0 be a short exact sequence of R-modules

and let ,u, eL(A,), pg eL(A2), 17 eL(B) be such that 0 —>,u1 —L—>1; —-$—>,u, —>0

is a short exact sequence of L-modules. If there is an R-module homomorphism

h : A 2 ——> B with g 0 h = IA2 such that h(;u_-;) Q 17, then the short exact sequence

0->,u1 —"—>/1, 69,412 -L>,u_, -—>0 is weakly isomorphic to the given short seque­

nce 0—>,u1 »/>17 g >/12-—>0. Inparticular,u;®;.z2~.= 17.

Proof :

We have by definition, f (/11) Q 1), g(17) Q #2 and f (,u,)(x) > 0 if xeKer g;

f (,u,)(x) = 0 if xeEKer g. Also it is given that h(,u;) Q 17. Now we consider the

diagram:
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0-->A,-'->A,eaA,-1'-> A,——>0
0———-—>;1,—"—>,i:1EB,r12—5’—>;12 ——>0

$1,“ ¢¢ $1,‘:
0———-—>,u,—#> 17 -5-) /.12?->0

0-->A,-L> B -J-> A,-->0

where ¢ : A, ® A2 —> B is defined by ¢ (a,, a2) =f(a,) + h(a2). Then ¢ is a

module homomorphism. Moreover ¢ 0 i = f OI A1 and g O ¢ = IA2 O 1:. Since I A]

and IA2 (identity maps) are isomorphisms ¢ is also an isomorphism (by short

five lemma for exact sequences of R-modules) and so B is isomorphic to A19 A 2,

and the Sequences 0 -> A, -i->A, es A2 —1’—->A2 -> 0 and 0—~>A, -I->B-L>A, ->0

are isomorphic short exact sequences of R-modules. Obviously I A‘ (A1,) = p, and

1,4, (#2) = /12­

Now let x = ¢(a, 1 Q2’) e B be arbitrary where a; ’e A,, afe A2. Then we get

(¢ (#1 E9 /12))(X)

= \/{O11 69 11z)(I1, I2) I (11, ¢z)E A1 9 A2; ¢ (11, I2) = X}

I \/{(/11)(f1) /\ /1z(1‘2) I I16 A1, 126 A2; f (11) + /1(0) = ¢(a1Z 02 ’ )}

= \/{(/11)(I1) /\ /1z( I2) I I/6 A1 , I26 A2; f (I1) + /1(6) =1’ (01 ’) + /1(az')}

= \/{(,u,)(t,) /\ M1,) 1 1‘,e A,, tze A2;

f(f:) =f(@i ’ )» 7102) = h(0z ’ )} --- (1)

(since A, E ¢(A,) =f(A,); A, 5 ¢(A2) = h(A2), we get B e A, ea A,

§f(/11) 9 h(/12))
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Also since f(,1,); 1; and h(p2) Q 1; it follows that

\/{/11(I1)I I1 E A1; f(11) =f(a/)} $ Tl(f(a1')) --- (2)

and \/(,1, (1,); :2 e A2; hug) = h(a2’)} 5 17(h(a;’ )) ... (3)

Since 1; is an L-module, from (2) and (3) we get

(\/{l11(I1)I I1 E A1;f(f1)=f(a1’)})/\(\/{/1202)? be A2; /'1(1‘z) I h(@z’)})

3 '7(f(a1’) + h(az')) = fl(¢(<11',az’))= 17(1)

From this using the complete distributive property 0fL we get

\/{#1(=‘1)/\ /12(6) I 11 E A) , re e A2; f (I1) =f(@1 ’ )» W2) = h(@z')} $ 17(10­

Therefore from (1) we get (¢ (11; as ,U3))(x) 5 11(x)V xeB. Thus ¢(;t, ea 11,) Q 1;

and hence by definition, the short exact sequence 0—>,u, ——'i—->_u, EB,u2 —1->)u, —>0

is weakly isomorphic (with identity maps on p) and /lg) to the given exact

sequence 0—>;¢, --1->1; -i—+,u_,—>0 and ,u)€3,u;= 17. I

4.2.11 Theorem:

Let () _> Al  '£"—*‘> B 1* s, A2 _> () be a short exact sequence of R-modules

and let ,u) eL(A,), /1; eL(A2), 17 eL(B) be such that 0—>,a, -—L->1) —5——~>,u2 —>0 is a

short exact sequence of L-modules. If there is an R-module homomorphism

k : B —-> A, with k <> f= IA, such that k(17) <_;_ p), then the given short exact

sequence 0 —> ,u, —-I-—> 17 -5--> ,u, —> O is weakly isomorphic to the short exact

sequence 0 ——>[11-—i——))£1I 69p, ——"'——>,u, -> 0. Inparticular 17 = ,u)G9)u2.

Proof:

We have f(p,) g 17, g(r7) Q /12 , k(17) g ,u, and we have the diagram
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0--———>A,—i-—> B _*‘t->14,--+0

0————-—->;z,——% 17 —-‘5—>,u2———>0

$1,,‘ ~LI;/ $1,‘:
0———+,u1 -—’—>;1,®p2—%p2 ——-+0

0——>A,--"—>A,®A,-1-'—->A2 ——->0

where 1;/: B —> A , EB A 2 is defined by :p(b) = (k(b), g(b)). Then 2/1 is a module

homomorphism. Moreoveri<>IA1= 1;/of and 1:0 2//= IA2=>g. Since IA] and IA:

are isomorphisms 1,11 is also an isomorphism (by short five lemma for exact

sequences of R-modules) and so B is isomorphic to A I €B A 2, and the sequences

0 -> A, ~1~A>B 8 >112 -> 0 and 0->A1—"—->A, €BA2—i-'—>A2 ->0 are isomor­

phic short exact sequences of R-modules. Also IA‘ (_u,) = ,u; and I A2 (/12) = /1;.

Now, for (a;, a2) e A; 69A; , we get

I/»(fl)(@:, Hz) = \/{17(b) I b@B; k(b) = as 3(5)) = 02} - - (1)

Also since k(1;) <_; ,u, and g(r)) Q ,u; we get

\/{'I(b)= b E B; k(b) = Q1} i /11(0)) (2)

and \/{fl(b)1 b G B; 8(5) = 02 } 5/1z(@z) (3)

From (2) and (3) we deduce that,

\/{T7(b) 3 b 6 B; /((5) I 01» 3(5)) = 02} 5 #101) /\ /~l2(a2)

Hence from (1) it follows that, |p(r7)(a,, a2) 3 ,u,(a,) /\ ,u2 (a2) . . . (4)

Also we get,

(#163 .U2)(a1, 02) : \/{#1(x1, I2) /\ #2()’1» J/2) 3 (X1, X2)» U1» Y2) E A159 A2;

(I1, X2) + (ynyz) Z (ah 02)}
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= /11(a1) /\ #2 (02) (5)
Now from (4) and (5) we see that 11(1)); ,u, G9 /12. Thus the given short sequence

0 —> /11 I >1; 8 .> ,u, -+0 is weakly isomorphic (with identity maps on ,u,

and ,u2) to the short exact sequence 0 —> ,u1 —"-—>,u, EB ,u, ~—’#"—>p2 —>0. In particular

17 2 ,u, EB /12 . This proves the theorem. I
We have defined the concepts of exact sequences and split exact

sequences of L-modules. We obtained some results which are extensions of

results available in classical module theory. In the last two theorems we gave

some sufficient conditions for the exact sequence 0—>,u, -——"—->,u, EB,u, —-—”-—>,u, —>0

to be weakly isomorphic to the exact sequence 0-> ,u, —L—>17 -5-> p, ——>0

and for the exact sequence O —+ pl —L>r) J—>,u_., ->0 to be weakly isomorphic

to the exact sequence 0-> ,u1 ——'—>,u, ® ;1_, —L>,u2 —->0. In the crisp case the condi­

tions given in these two theorems are equivalent and become necessary also.

4.3 Semisimple L-modules and Split Exact Sequence of L-modules.

In this section we establish a relation between semisirnple L-modules and

split exact sequence of L-modules.

4.3.1 Theorem:

Let L be a regular lattice, A and B be two lefi R-modules and ,u eL(A),

17 eL(B) where ,u' = A. Then the sequence

0—>A—’—+A®B—4’!-+B—>0

0—>;1—-—+ ,u®17-——>r; -+0
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is an exact sequence of L-modules.

Proof:

We have to prove that 0——> ,u——i-> ,u 6317--1—>r; —> 0 is exact.

Let (a, b) e/1 $12. Then i(/1)(a, b) = v{;1(t)I teA, 1-(1) =(a, b)}

_ hm) if b=0
"{ 0 if b#=0  (1)

Also, (/1 + 12) (Q, b) = Ma) A n(b)

=,u(a) ifb-=0  (2)
From (1) and (2) we get i(,u)(a, b) <__; (;t+1;) (a, b) v (a, b)eA e B

Therefore tat) <_;_ h + 1;. (3)
For X 6 B, (mt + fl))(r) = \/{(11 + H) (Q, b) I (0, b) E A @ B; Ma. b) =x}

=v{(;t+ 17)(a, x): a e A}

(since 2:: A e B -> B is the projection.)

= v{_u(a)/\17(x) 1 a e A}

= ha) (since ,u(a) = 1 with a -= 0)

Thus we get ,,(,, + 1;)(x) = ha) VxeB. Hence 4,, + U) = 1;.  (4)

Now, SinC6 ,1‘ = A, it follows from (1) that

i(p)(a, 1») > 0 ifb = 0, that is if (a, b) e Ker 1:

and i(,u)(a, b)=0 ifb ¢O, that is if (a, b) e Ker 1;.  (5)

From (3), (4) and (5) we see that 0—+,u——'-—-> ,u(€Br7——”¥-->17->0 is an exact

sequence of L-modules. I



Chapter - 4 : Exact Sequences of L-Modules 61

4.3.2 Definition:

Let A and B be two left R-modules; let 1) eL(A), v eL(B) and yeL(A@B).

Then a short exact sequence of L-modules of the form

0-—>A—-'—>A®B-—"—>B—>0

0->17———> ,u ———>v——>0

is said to be a split exact sequence if ,u = 17 QB v.

4.3.3 Definition:

Let A, B and C be left R-modules and let 17 eL(A), ,u eL(B), v eL(C).

Then a short exact sequence of L-modules of the form

0->Ae1-+B gs ~>C—>0

0—>r]———->,u———-—>v—>0

is said to be a split exact sequence if B =A ® C and ,u =17 EB v so that the given

sequence is isomorphic to the short exact sequence

0-—>A—-'—>/l®Ci"~>C->0

0->17——->r7€Bv—-—->v —>0

4.3.4 Theorem:

Suppose L is regular. Then all short exact sequences of L-modules split if

and only if all L-modules are semisimple.

Proof:

Assume all short exact sequences of L-modules are split exact sequences.

Let M be a semisimple R-module and let ,ueL(M). To show that p is semisimple.

That is to show that if 17 eL(M) is such that 1] Q p, 17 ¢ 1w}, 17(x)= ,u(x) V x
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for which r7(x) > 0, If C pi, then there exists a A eL(M) such that 2. Q p, /1 ¢ 1“);

, /1(x) = ,u(x) v x for which /'l(x) > 0, ,1‘ C ,2’ satisfying it = 1; ea ,1.

Since 17' c ,u‘ we have the short exact sequence of R-modules

0 -—> If -—-1-) ,u' ——"—>  —> 0 . We consider the L-modules r;eL(1;'), ,ueL(,u')
7?

and Z eL . We claim that the sequenceTI '7

0-—>rf-#> ,u'-1-'—> , —>0

T‘:Qhd

0—>r7  p > s~s —>0

of L-modules is exact. For:

(i) i('7)(x) =\/{1I(¢)I1E 17', i(f)=x}

: 17(x) if xerf
0 if xérf

Since 17 Q/1 we get i(n)g/1.

(ii) ("(/1))(I+ '7*):\/{/1(1)I YE/1'; 1F(1‘)xx+ '7'}

==v{/1(1)1 1611"; 1+ fl'= x+v'}

=v{#(1)11€;/R; rer+'?'}

= —;i(x + 1;‘) (S88 the definition 2.3.2)

Thus<m1)>(x + 11') = £7;-<x+ 11') andso 1:0») =
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. . n(r) ifxerf
and (111) slnce z( r])(x) = 0 _f ‘ we see that1 x as 27

i(17)(x)> 0 if x e Ker 12' and i(r;)(x) == 0 if x as Ker 1:.

Since all exact sequences of L-modules are split exact sequences we get

,1/= r7'®  and/1 =r7® 5 where 2; e L(rf) and 5-e  Now  can'7 77 77 7? 77
be considered as a submodule say N of p‘ and hence of M and -'2 e  =Y7 7?

L(N) can be extended to M by taking 5-(x) = 0 V x E N and thus 51- can be'7 '7
considered as an L-submodule of M. Also note that

[5] ={x+n'e FT: -‘i<x+n'>>0}77 '7 T?
={x+12'E  : (vale): IEr+1f})>0}

={x+r7‘e -"12; 3 tex+17' with;1(t)>0}
77

I./L
11

Thus pl = 27' 69 N where /1', 17* and N are all submodules of M, and since ,u = 1]

EB 5- it follows that —‘-£(x) = ,u(x) V x e N =  = £15] . Thus there exists a'7 '7 T7 '7
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O

strictly proper L-submodule £~ of /1 such that -E (x) = y(x) V x e (-8-) and ,u =TI T7 77
17 G9 5 . Therefore /1 is semisimple.

'7

Conversely suppose that all L-modules are semisimple. Consider the short

exact sequence of L-modules

0->A —-i-> B -3-—>C—>0

0->rf——{L1—>/1'——$1“l—>v'—>0

0-->r7 ————> p —-—-> v —>0

To show that this sequence splits. For this it is enough to show that ,u = r) G9 v.

Note that since B is semisimple we have B=A €BC and so the short exact sequence

0->A-1-->B——5-—>C-+0 is isomorphic to 0—+A—-5->A€BC-5-+C->0 So we

consider the sequence

0->A -—‘—->A€BC-—’4'-->C—->0

O—->17*-—-15 ,u"'——=‘——-+"" 1/*-->0

0—>r7 —-——> ,u -————> v —->0

Obviously r7 = i( 17) c_; ,u . Therefore since p is semisimple p = 17 69 ,6 for some

strictly proper L-submodule ,8 of ,u . Since L is regular we get ,u' = rf GB H. Also

since a submodule of a semisimple R-module is semisimple we see that if is

O

semisimple and so we get ,u' = 27' EB v‘. Hence fl' 2  -:2 v'. So ,6 can be
77

considered as an L-submodule of C and we can define ,6 to be v so that

,u = 17 @ v. This completes the proof of the theorem. I
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The main focus of this chapter was to introduce the concept of exact

sequences of L~modules by fuzzifying the concepts in crisp theory. We

established a relation between semisimple L-modules and split exact sequences

of L-modules. In the next chapter we introduce the concepts of projective and

injective L-modules and study some properties.

¥l=*1l=#**=lI=lI=l=***=l"l=#****



Chapter 5

PROJECTIVE AND INJECTIVE

L-MODULES

5.1 Introduction

5.2 Projective L-Modules

5.3 Injective L-Modules

5.4 Essential L-Submodules of an L-Module

* Some results of this‘ chapter will appear  a paper aecepted for publication by the

Iranian Journal of Fuzzy Systems.

** Some other results of this chapter have been presented in the National Seminar on

Fuzzy Mathematics and Applications held at Payyannur College, Payyarmur, Kerala;

January 08-10, 2004. '
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5.1 Introduction.

The notion of free modules, projective modules, injective modules and the

like form an important area of study in commutative algebra. Recall that an R­

module F is a free module on the set X with respect to the function 1' : X —> F if

for every module A over R and for any map k : X —) A there exists a unique

homomorphism h : F —+ A such that k = h 0 i . Also an R-module P is projective

if for every epimorphism of R-modules g : A —> B and for every R-module homo­

morphism f : P —> B there exists an R-module homomorphism h : P —> A such

that g 0 h = f. Free modules are most like vector spaces. The concept of a proje­

ctive module is a generalisation of that of a free module. From crisp module

theory it is well known that every free module is a projective module and an

arbitrary projective module (which need not be free) has some of the same

properties as a flee module. Injectivity is the dual notion to projectivity in crisp

theory.

The notion of a free fuzzy module was introduced by Muganda [51] in

1993 which is later generalised to that of a free L-module [49]. Zahedi and Ameri

[81] introduced the concepts of fuzzy projective and injective modules in 1995.

In this chapter we give an alternate definition each for projective L-modules and

injective L-modules, and prove some related results. Also we introduce the

concept of essential L-submodules of an L-module with some related results.
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5.2 Projective L-Modules.

In this section we give an alternate definition for projective L—modules

and prove that every free L-module is a projective L-module. Also we prove that

if ,ueL(P) is a projective L-module, and if 0-)!) ———f--> v —L> ,u —>0 is a short

exact sequence of L-modules then 17 G3 p e-I v. Ftuther it is proved that if

;1eL(P) is a projective L-module then ,u is a fuzzy direct summand of a free L­

module.

5.2.1 Definition [49]:

Let F be a flee module over R on the set X with respect to the function

i:X—> F. Let B be an L-subset ofX. Let p eL(F). Then ,u is said to be free with

respect to ,6 if i(fl) = ,u on i(X) and for every module A over R, and 17 eL(A)

with k : X —-> A and k([D = 17 on k(X), there exists a unique homomorphism

h : F->A suchthatk=h<>iandh(,u)<; 17.

5.2.2 Definition:

Let ,u be a fuzzy set in a set S. Then ,u is said to have the supremum

property if for each subset A g S, there exists y in A such that v{,u(x) : x e A} =

M01)­

5.2.3 Definition:

Let P be a projective R-module and let peL(P). Then ,u is said to be a

projective L-submodule of P if for every epimorphism of R-modules g : A —> B,
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1; eL(A) with supremum property, v eL(B) with g(17) = v on g(A), and for every

R-module homomorphism f : P -—> B with f (,u) = v on f (P), there exists an R­

module homomorphism h : P —-> A such that g O h = f and h(,u) g 17.

It is well known from classical module theory that every free R-module is

a projective R-module. The same is also true in the case of L-modules as we see

in the following theorem.

5.2.4 Theorem:

Every free L-module is a projective L-module.

Proof:

Suppose F is free on X with respect to the function i :X —-> F and let /1 e

L(F) be free with respect to ,6’ eLX. We have to show that p is a projective L­

module. Consider the epimorphism of R-modules g : A —> B. Let 17 eL(A) satis­

fies the supremum property, v e L(B) and g(r7) = v on g(A). Also let f : F -> B

be a homomorphism such that f (p) = v on f (F). We show that there exists an

R-module homomorphism h : F —> A such that g O h = f and h(,u) g 1).

Now for x e X, i(x) e F, f (i(x)) e B. Since g is onto there exists a e A

such that g(a) = f (i(x)). Since 17 e L(A) satisfies the supremum property there

exists a, in A such that g(a,,) =f(1'(x)) and r](a,) = v{17(a) : a eA , g(a) = f (i(x))}

and if f (i(x)) = f (i(y)), we choose ax = ay. Now consider the map k :X —> A defi­

ned by k(x) = ax. Since F is free on X, this extends to an R-module homomor­
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phismh:F->A suchthath<>i=k. Thus wehave (h<>i)(x) =k(x) =a,Vx EX

which implies (g O h 0 i)(x) = g(a,,) = f (i(x)) V x e X. Since F is free on X it

follows that g <> h =f

It remains to prove that h(,u) Q 17. Since ,u is a free L-module with respect

to ,6, we have i(fl) =,uon z'(X). Also we havef(,u) = v on f(F) and g(1y) = v on

g(A). If we show that k(fi ) = 17 on k(X), then by the definition of a free L-module

it follows that h(;1) g 17. Therefore we need only prove that k(,6) = 1) on k(X).

Consider the restriction of the map g : A —> B to the subset k(X) of A. For

convenience we denote this restriction by g itself. Then g is a one~one mapping

from k(X) onto f (i(X)). Therefore we can consider g "1 f (i(X)) -—> k(X). Then

obviously k == g '1 of O 1'. Since g(r7) = v on g(A) we get g(r)) = v on g(k(X)) =

woo). Thus for Q, 6 km we get v (gm = g(1r)(g(ax)) = v{ ma): go) = gm

a e A} = r7(a,,). So we have g"( v)(a,) = r7(a,) V axe k(X). Thus on k(X), 17 =

g"’o»> = g"’<f</1)) = g"’o"< ="<fl>> = <2’ ofo ='>(.6>_ The is 11 = kw) on wo­

This completes the proof of the theorem. I
It is well known in classical module theory that an R-module P is

projective if and only if every short exact sequence () _> A _f_> B-5-> P -> 0

splits so that B 5 A €B P. Also we know that P is projective if and only if there

exists a free R-module F and an R-module K such that F 3- K G9 P. Analogous to

these, in the case of L-modules we have the following theorems.
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5.2.5 Theorem:

Let P be a projective module and p eL(P) be a projective L-module. If

Q __, A . I - > B 8 > p ._> () is a short exact sequence of R-modules and qeL(A),

v e L(B) are such that 0 --> 17 4-) v —§—> p —> 0 is a short exact sequence

of L-modules then 17 ® ,u is weakly isomorphic to v. That is 17 69 ,u = v.

Proof:

Given ()_> A I >3  >1->_>() is a short exact sequence of R­

modules. Consider the diagram:

P/ii
B"—Z{_;—">P———>o

Since P is projective there exists a module homomorphism h : P —> B such that

g 0 h = IP. Therefore the short exact sequence 0 _.> A_L._> B_8_, p _; () splits

and B 2 A G9 P and the exact sequence 0—>A—-"—>A€.l3P—”—>P ->0 is isomor­

phic to the exact sequence 0->A reef >B he 8 >P-—>0.

Now since ,u eL(P) is a projective L-module, from the definition we get

h(,u) Q v. Thus there exists a homomorphism h : P —> B such that g O h = Ip and

h(/1) g v. Then by the theorem 3.2.10 we get 0—>17 -4-) 1763;: 4) ,u —>0

isweaklyisomorphicto 0—>17 ——’5--> v ——‘-‘~—> ,u —>0 and nG9,u=v. I
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5.2.6 Theorem:

Let P be a projective module and p eL(P) be a projective L-module. Then

there exists a free R-module F and a free L-module 5 eL(F) such that 4,’ = 0' 69 ,u

for some L—module 0'.

Proof:

Since P is projective, there exists a free R-module F and an epimorphism

g : F —-> P such that 0—>Kerg——-9->F——5—+P—->0 is split exact so that F 5 Ker g

G9 P. Suppose F is free on B and consider the diagram:

P
h/ ti

F ——g--> P —-—> 0

Since P is projective there exists an R-module homomorphism h : P —-> F such

that g <> h = IP. Define .f e L(F) by 5 = g"(;1). We will show that § is a free L­

submodule of F. Obviously g(§ )(x) = p(x) V x e g(F) = P. That is g(§) = ,u on

g(F) =P. Thus we haveIP(p) =,uonIp(P) =P andg(§) =,u ong(F) =P.

Therefore since p eL(P) is projective, h : P —> F is such that g O h = IP and

h(p) g 4‘ Z g "(pl Take fl = i "(§) so that i(fl) = .§on i(B). Let Ybe any R­

module and 1; e L(Y), and let k : B —> Y be a given map. Since F is free on B,

there exists an R-module homomorphism h’ : F —> Y such that h ’ 0 i = k. If 17 e
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L(Y ) is such that k(fl) = 17 on k(B), then we have to show that h ’(§ ) c; 17. But

obviously 17 = k(fl ) = k(i '1 (§ )) = (h ’ <> i)(i 'I(§ )) = h ’(§ ). Therefore § is a fiee

L-submodule of F. B P
k\hl1P
Y4——;-F-'?'-PP —">o

Now it remains to show that 5 == 0' 69 ,u for some L-module 0'. We have F

£2 Ker g ® P. Define 0' e L(F) by

§(x) if xeKerg
0 if x92Kerg0(1) ={

Also we can extend the p e L(P) to p e L(F) by defining ,u(x) = 0 for x QP.

Then for all x e F, we have:

(0+#)(X) = \/{<T(V)/\#(Z)1y»Z 6 F, y +2 =I}

=v{o'(y)/\,u(z): ye Kerg, z e P; y+z =x}

=v{§(y)/\.§(z): y e Kerg, ze P; y+z=x}

(since g: F -3 Ker g 6B P —-> P is onto it can be considered

as the projection map and so we get §(z) = ,u(z) on P.)

=v{.§(y+z): yeKerg, zeP; y+z=x}

(since § is an L-module)
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= 5(1)­

lifx=0
Also (0'f\,u)(x) = o'(x) /\ ,u(x) ={0 if x at 0

Therefore 0' + ,u is a direct sum. Thus we get Q,‘ = 0' G9 ,u. I

5.2.7 Theorem:

Let P be an R-module and ,u eL(P). Let F be a free R-module and K be an

R-module such that F =K EB P. If 5 eL(F) is a free L-module such that § = o'® p

for some 0" eL(K), then ,u is a projective L-module.

Proof:

Consider the diagram

P

f

A-;*'-PB'*">O

Let 1) eL(A) satisfies the supremum property, v eL(B), g(17) = von g(A), j(/.1) =

v onf(P). Since F 5 K G9 P, we have the canonical maps i : P —-> F .=.=_ K G9 P (inj­

ection) and rr : F 2 K GB P —-> P (projection). Since F is free it is projective and

therefore there exists an R-module homomorphism h’ : F —+ A such that g <> h’ =

f<> 1r. Considerh = h’<>i:P——>A.Theng<>h =g<>h’<>i== (f<> 2z')<> i ==f<>(1r<=z')

= f <> IP = f Therefore P is projective. Now since 5 eL(F) is free it is projective.

Since 1] eL(A) satisfies the supremum property, v eL(B), g(7)) = v on g(A),
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f(,u)= v on f(P)andsincerf=o' 63,u;F=K®Pweget (f<> n')(§)= v on

(f° fl)(F) =f(P)- FOII

13>

o 3'.‘
°==‘

* =2
3

Given b e (fe 1r)(F) =f(P) we have,

(fo 1r)(é)(b) = \/{6(y)1y e F; (f° 100') =b}

=\/{(0 @#)(k+p)= ke K, pe P; (f°1r)(k+p) =11}

=v{(v(k)/\/1(p) = MK, P G P;f(P) =b}

= v{(v(0)/\#(p)= P E P; ft») = b}

:\/{/1(P)3PEP;f(P):b}

=f(#)(b)

= v(b)

Thus (fe 1z')(§ )(b) = v (b) v b e (fa rr)(F) = f(P). Therefore since 5 e L(F) is

projective we get h ‘(g ) g 1; where g Q h’ = fe 2:: Now to prove that ,u eL(P) is

projective we need only prove that h(,u) Q 1;.

NOW h(/0(0) = \/{#1 (1)1 X 6 P; h(x) = a}

=\/{#(x)r re P; (h’°i)(r) =0}
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= \/{§(I'(X))I X E P; h’(i(I)) = 0}

-<\/{$01}? y E F; h’(y) =61} = h’(§)(@)

3 1;(a)

Thus we have h(;1)(a) 3 17(0) V a e A. Therefore p eL(P) is projective. I

5.2.8 Corollary:

Let P, (i e I) be a projective R-module and ,u,- eL(P,-) V i e I. Then 2 ,u,

is projective only if /1, is projective V 1'.

Proof:

In the above proof we used only the fact that Q‘ is a projective L-module

and therefore the result follows by replacing 5 with .99 /ii, 0' with Z ju, and p"51 ieI\{ 1"}

with ,u,- in the above proof. I
5.3 lnjective L-Modules.

Injectivity is the dual notion to projectivity in crisp theory. An R-module

J is said to be injective if for any pair of R-modules A, B ; for any monomer­

phism g : A —-> B and for any R-module homomorphism f : A —> J, we have

that there exists an R-module homomorphism h : B —-> J such that h O g = f .

Zahedi and Ameri [81] introduced the concept of fuzzy injective modules in

1995. In this section we give an alternate definition for injective L-modules and

prove that a direct sum of L-modules is injective if and only if each L-summand
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is injective. Also we prove that if ,u e L(J) is an injective L-module, and if

0->,u sf > v BB8 > 17 —>0 is a short exact sequence of L-modules then v =,u 69 17.

5.3.1 Definition:

Let J be an injective R-module and let ,u eL(J). Then p is said to be an

injective L-submodule of J if for R-modules A, B and r7 eL(A), v eL(B), g any

monomorphism from A to B such that g(1]) = v on g(A), and f: A —> J any R­

module homomorphism such that j(17) = ,u on j(A), we have that there exists an

R-module homomorphism h : B -> J such that h O g = f and h( v) g it

From the crisp module theory we know that an R-module J is injective if

and only if every short exact sequence () _> _]. fut) 3 W8 )6‘ __> () splits so that

B E J 69 C. We have an analogous result in the case of L-modules also.

5.3.2 Theorem:

Let J be an injective module and ,u e L(J) be an injective L-module. If

() _.> _]_..l_> B.__&._>C __> 0 is a short exact sequence of R-modules and v eL(B)

and 1; e L(C) are such that 0->,u —i--> v ii» 17 ->0 is a short exact sequence

of L-modules, then vis weakly isomorphic to ,u EB 17. That is v= ,u 69 17.

Proof:

Given 0 —> J —-1->B—-—g—>C —> 0 is a short exact sequence of R­

modules. Consider the diagram:
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0———-> J—L->B

1.1

J

Since J is injective there exists a module homomorphism h : B —~> J such

that h O f = 1,.

0--——>J——f——>B

bfi
J

Therefore the short exact sequence 0 —-> J if-»B~ mg e>C —> 0 splits and B 5 J

G9 C and the exact sequence 0->J  >B 3 ~>C—>0 is isomorphic to the

exact sequence 0->J—#->J $C—-'4'-—>C —->0. Now since p eL(J) is an injective

L-module, from the definition we get h( v) Q p. Thus there exists a homomor­

phism h : B —-> Jsuch that h <>f= I_, and h(v) Q 14 Then by the theorem 3.2.11 we

get that the exact sequence 0-)/.1 -—l—-> v ——g——+ 1; —->0 is weakly isomorphic to

the exact sequence 0—>;1 —-"—> #6917 —”—> 17 —>0 and in particular v = ,u ® 17. I

In the crisp theory we have the theorem: ‘A direct sum of modules is

injective if and only if each summand is injective’. The same is also true in the

fuzzy case.
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5.3.3 Theorem:

Let Qa (a e I) be an injective R-module and pa e L(Qa) V a e I. Then

G9] pa e L( $1 Qa) is injective ifand only ifpa is injective V a e I.

Proof:

We know from theory of modules that 6 Q is injective if and only if Qaaael

is injective Va e I. Also we know that (214,, e Mg Qa). Suppose fl; pa is an

injective L-submodule of EB] Qa. To prove that pa is injective V a e I. Let A, B

be R-modules, 17 eL(A), v eL(B); g any monomorphism from A to B such that

g(q) = v on g(A). For a e I if fa: A —> Qa is any R-module homomorphism

such that fa(17) = pa on fa(A), then we have to show that there exists an R­

module homomorphism ha: B —-> Q, such that has g = fa and ha( v) g pa.

0———-> A-—i>B

f\‘ lit,
Q0:

ial I Ha
€BQa

Given GBIQO, is injective. Let ia : Qa —> ®] Qa and Ira : @!Qa ——> Qa be0'6 GE CG
respectively the canonical injection and projection. Consider z'a<>f,: A —> $1 Qa.GE
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First of all we show that (ia <>f,,)(17) = G31 ya on (ia °f,,,)(A). For:

We have (i <>f,,)(1]) e L( 69 Qa) and ifx = EB x e (ia <>fa)(A) C ® Q0 ,a a __0&1 ael
where xa e Qa (a e 1), then x = (i,,,<>fa)(a) for some a e A. That is x = i,,(fa»(a))

where f,,(a) e Qa.

Then (ia°fa)(n)(-x) = v{n(@’) : a’ E A ; (ea/a)<a') = r}

= \/{'1(@’)1 a’ 6 A; (ia°fa)(a’)=(ia°fa)(a)}

= \/{1I(@’)=a’e A; ax/a(a'))=iax/aa))}

= mo’): <1’ e A; ma’) = rm}  (1)

Also e Max) = v{/\/1a(ra) : x = Zxa }

= ;1,,(fa(a)) (since supremum is attained for the direct sum

decomposition x = 0 + 0 +. . .+ 0 +f,,(a) + 0 +. . .+ 0.)

=fa( n)(fa(a))

=\/{'7(@')1 a’eA;fa(a’)==fa(@)} (2)

FY0111 (1) and (2) W1? get (fa °fa)('I)(I) = 99 /1a(I) V I E (i °fa)(A)­ael a
Now since €B pa is injective we get ia O fa : A --> ® Qa has an extensionael ael
k:B-—> G3IQ,,satisfying k(v)g €Bl,ua.Takeha=1r,,<>k.Thenh,,:B-—>Qais

an extension of fa : A —> Q0, satisfying ha O g = fa . It remains to prove that

ha( V) Q fla­



Chapter - 5 : Projective and lnjective L-Modules 81

We have k( v) Q Q ya. Therefore zr,,(k( v)) Q 1r,,( ®/10) . . . (3)

Now for xa e Qa,

wa(g~a>><xa> I \'{g/100/)1 y E 3 Q0; my) = xa

= ;1,,(x,,) (since supremum is attained

fory = (0,. . .,O, x,,,O,. . .,O) )

Thus 1r,,( G9[,u,,) = pa and so fi'om (3) we get (nae k)(v) gpa. Thus h,,(v) ;,u,,

as required.

Conversely suppose that pa is injective V a e I. To prove that 69 ,u isaael

injective.

() _i_> A ——‘g———> B

Irqf

kg

f Q0 k
iai {Ila

€BQa

Since Q0, is injective Va e I we have 69 Q is injective. Let A, B be R-modulesas! a ,
17 e L(A), v e L(B); g any monomorphism from A to B such that g(17) = v on

g(A), and suppose that f : A ——> 691 Qa is a module homomorphism satisfying f (17)

= 69 ya on f (A). Then 1:0, 0 f : A —> Q0, admits an extension ka : B ——> Q0, such thatael
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Ea <> f = ka <> g. These homomorphisms ka give k : B -—> $1 Qa such that Ira O k =

ka and for each x e A, (21,, O k)(g(x)) = k,,(g(x)) = (7l'a O f )(x) Va e I. Therefore

k(g(x)) = f (x) V x e A. Therefore k is an extension of f such that k 0 g = f Now

ifkaare such that k,,(v) c; pa , we have to prove that k(v) g EBl,ua. Sincef(1;) =

gm, On f(/1), W¢ get (1ra°f)(fl) = ml 21/la) :/la on (1ra°f)(A)­

NOW ka(V)§/Java =>(1ra°k)(v)<;#aVa

=> m»(k(v));#a= Mg/1a)V <1

==>k(v)<I @1110__ are]

This completes the proof of the theorem. I

5.4 Essential L-Submodules of an L-Module.

From crisp theory we know that an essential submodule of an R-module B

is any submodule A which has nonzero intersection with every nonzero

submodule of B. We denote this situation by writing A ge B, and we also say that

B is an essential extension of A. In this section we extend the concept of an

essential submodule of an R-module to the fuzzy setting and prove some results.

5.4.1 Definition:

Let M be an R-module and 17, p e L(M) be such that lw} ¢ 1] c; ,u. Then 17

is called an essential L-submodule of p if 1; n 1/#1 {0} Vv e L(M) such that lm} 4%

vg ,u. We denote this by writing 17 gc ,u_
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5.4.2 Theorem:

Let L be regular, p eL(M). Then 1“); =# 17 g ,u ; 17 e L(M) is an essential

L-submodule of ,u if and only if for each 0 ¢ x e M, with p(x) > 0, there exists

anre Rsuchthatrx¢0and 17(rx)>0.

Proof:

Assume that for each 0 at x e M, with /.4(x) > 0, there exists an r e R such

that rx ¢ 0 and r;(rx) > 0. Take any v eL(M),1{0;¢ v<_; ,u. To show that 17m vat

lw}. Let x e Mbe such that x ¢ 0, v(x) > 0. Then ,u(x) 2. v(x) > 0 and therefore

there exists an r e R such that rx ¢ 0 and 17(rx) > 0. Also v (rx) 2 v (x) > 0.

Therefore since L is regular (1; n v) (rx) = 17(rx) /\ v (rx) > 0. Thus there exists rx

¢ 0 such that (17 A v)(r:x) > 0. Therefore 1) A v ¢ lw}.

Conversely suppose that 17 ge ,u. Let 0 at x e M be such that ,u(x) > 0.

Then V r e R, ;z(r.x) 2 ,u(x) > 0. Consider the nonzero submodule R x of M.

Define v e L” by,

_ /1(y) if yERrV0’) — .0 otherwise

Obviously v e L(M) and 1{0} ¢ v Q p.. Therefore 1] O v =# lw; and hence there

exists y =¢ 0 satisfying 17(y) A v (y) > 0. Thus there exists y #= 0 such that r;(y) > 0

and v(y) > 0. From this it follows that y e R x and we get that there exists r e R

such that rx =¢ 0, r7(rx) > 0. This completes the proof of the theorem. I
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5.4.3 Theorem:

Let 17, v, p e L(M) be such that 17 g vg ,u. Then 27 ge_u if and only if

ngc 1/and vgep.

Proof:

Assume that 17g./.1. Then an 6 ¢ lw} V6e L(M), l{0} =# 6g ,u. Since v

g ,u it follows that 17 r\ 6 1: lw, V6 e L(M), 1.0} ¢ 6g v. Therefore 17 gt v.

Also since qm 6¢ l{0;V 6 e L(M), lw} ¢ 6g p, and since rig vwe get vm 6¢

lw} V 6 e L(M), lw} ¢ 6g/,1. Hence vgep.

Conversely suppose that 17 gs vand vge _u To prove that 17 ge ,u. Since v

ge,uwe havevn 6¢ 1:0} V 6 e L(M),1{0}¢ 6g ,u. Then vn 6e L(M) satisfies

lw} ¢ vm 6g v and therefore, since age v, we get 17r'\(vn 6) ¢ l{0;. Since 1)

g vit follows 17 rw 6 #5 lw} V 6 eL(M), lw; ¢ 6g ,u. Therefore 17 ge ,u. I

5.4.4 Theorem:

Let m. '22. /11» #2 eL(M)- If m Q. 11; and 12;» Q. #2. then m o 122 <.;../11 o #2­

Proof:

Let 6 eL(M) be such that lm} ¢ 6g ,u, rw ,u2 g ,u;. Then since 17; g, /1;,

we have 172 n 6¢ 1{0;. Since 6g ,u,, we get lw} ¢ 272 rw 6g ,u,. Therefore since

17, ge ,u,, we get 17, A (172 rw 6) ¥’=1{@}. Thus we get (17; n 172) n 64* l{O} V 6 e

L(M), H0} ¢ 9; I11 f“ ."2- Hence '71 m T72 Q .111 Q /12- I
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5.4.5 Theorem:

Let L be regular 17, ,u e L(M) where 17 g p. Let f : A —> M be a module

homomorphism such that f ( v) Q ,u where v e L(A). If 17 gc p, then f 4(1)) ge v.

Proof:

We have to prove thatf 4(1)) A 6¢ l{0} V 6 e L(M), lw} ¢ 6; v. That is

to show that for given 6 eL(M), Ito} =# 6 g v , there exists 0 ¢ x eA such that

(f"(r7) n 0 )(x) ;# 0; that is Sl1Ch that f'I(17)(x) /\ 0 (x) ¢ 0; that is such that

17(f(x)) /\ 6(x) at O.

If f(6) = lw}, then 6c;f"(n). For: V z withf'I(z) ¢ ¢ we have,

1 if z=0
f(9)(Z)=1{o}(Z) =>\/{9(X)IX6/1,f(x)=Z} = {O ifzio

=>v{6(x):xeA, f(x)=z} =0 ifz¢O

:> {6(x) :x eA, f(x) =2} = {0} ifz¢0

=> 6(x) =0 iff(x)¢0

Also r7(f(x)) = 17(0) = 1 if f (x) = 0. Therefore 6(x) 3 27(f(x)) Vx e A. Thus

in this case 6gf"(17) and so we get f"(17) rx 6 = 6 ¢1{0}.

117(0) ¢ hm, to prove that f"(n) n 9¢ ho} for 6e L(M), 1{0}¢ 0; v.

We have 6g v:>f(6) ;f(v) :>f(6) ;,uasf(v)g,u. Therefore iff(6) ¢

Ito}, since qgep, we get 17r'\f(6)== 1{@}.From this we getf(6)(x) vb 0 for some

x¢0. This shows that there existsy e A with 6(y)¢0, where f (y)=x. For this y
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we have, r7(f(y)) /\f(6 )f(y) ¢ 0. This implies both 1](f(y)) andf(6)f(y) > 0.

Since L is regular we get f"(17)(y) /\ 6(y) ¢ 0. Hencef"(r)) A 6 ¢ l{0,. I

5.4.6 Theorem:

Let L be regular and 17,, 17;, ,u;, /J2 e L(M) be such that 17,- Q, /1,‘. i=1, 2.

If '71“ 772 :1{0}/[hen/11 F\l12=1{0}a11d T71 69 U2 QC #1 @ #2~

Proof:

First of all we prove that if 17 go p then rf Q, ,u' and conversely if L is

regular, and 17' Q, pi then 17;, ,u Suppose that 17 c_;, ,u. Then 17 A 6¢ lw} V 6

eL(M), lw} ¢ 6g ,u. Let 0 ¢ A be a submodule of ,u'. Define 6 e LM by

1 ifxeA
0 if x€EA6(x) = {

Then obviously lw} ¢ 6 e L(M) and therefore 17 A 6 1= 1{0}. Therefore there

exists 0 vb x e A such that 1;(x) /\ 6(x) at 0. This shows that If A 6' ¢ {O}. That is

rfn A ¢ {O}. Hence rfgc ,u'. Conversely suppose that 17' ge ,u'. We prove that, if

L is regular, 17 Q, ;i For this consider any lw} 1: 6; p where 6 e L(M). Then 6'

1: {0} and 6‘ g; ,u'. Therefore If n 6' ¢ {0}.This means that there exists x ¢ 0

such that r)(x) > 0 and 6(x) > 0. Since L is regular we get r)(x) A 6(x) > 0. Thus

we get 170 64¢ lm}. Hence age p.

Now to prove the theorem, we have 17,- Q, ,u,- i. i = 1, 2. Therefore by the

above result we get 17,-‘ Q, M‘, i = 1, 2. Since 17, r\ 172 = lm, the sum 1;, + 172 is



Chapter - 5 : Projective and ]Ilj6CtiV6 L-Modules 37

the direct sum 1), 6 172. Since 17, n 172 ge ,u, rw ,u2, it follows that p, rw /J2 = lm,

and so the sum /1, + p2 is also the direct sum p; ® ,u;. Therefore since L is

regular we have the direct sums of R-modules r7,' GB 172' and ,u,' EB pf. Since

17,-‘ ge ,u,-', i == 1, 2 we get 17,‘ EB 172' Q6 ,u,' G3 pf. From this it follows that (17, €B

'72)tQI=(/11@l12)*a11d 5° 771$ '72Q¢.U1@l12- I

**Il=**********#*##****



Conclusion

Since the publication of the classic paper on fuzzy sets by L.A. Zadeh in

1965, the theory of fuzzy mathematics has gained more and more recognition

from many researchers in a wide range of scientific fields. Among various

branches of pure and applied mathematics, algebra was one of the first few

subjects where the notion of fuzzy set was applied. Ever since A. Rosenfeld

introduced fuzzy sets in the realm of group theory in 1971, many researchers

have been involved in extending the notions of abstract algebra to the broader

fiamework of fuzzy setting. As a result, a number of concepts have been

formulated and explored. However many concepts are yet to be ‘fuzzified’. The

main objective of this thesis was to extend some basic concepts and results in

module theory in algebra to the fuzzy setting.

The concepts like simple module, semisimple module and exact sequences

of R-modules form an important area of study in crisp module theory. In this

thesis generalising these concepts to the fuzzy setting we have introduced

concepts of ‘simple and semisimple L-modules’ and proved some results which

include results analogous to those in crisp case. Also we have defined and

studied the concept of ‘exact sequences of L-modules’.

88
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Further extending the concepts in crisp theory, we have introduced the

fuzzy analogues ‘projective and injective L-modules’. We have proved many

results in this context. Further we have defined and explored notion of ‘essential

L-submodules of an L-module’. Still there are results in crisp theory related to the

topics covered in this thesis which are to be investigated in the fuzzy setting.

There are a lot of ideas still left in algebra, related to the theory of

modules, such as the ‘injective hull of a module’, ‘tensor product of modules’

etc. for which the fuzzy analogues are not defined and explored.

#l¢=l==l==l=Il"l==l=Il=*=l==l==l=*=lI>l==l=
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