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Reinforcement Learning Approaches To 

Power System Scheduling 

ABSTRACT 

One major component of power system operation is generation 

scheduling. The objective of the work is to develop efficient control strategies 

to the power scheduling problems through Reinforcement Learning approaches. 

The three important active power scheduling problems are Unit Commitment, 

Economic Dispatch and Automatic Generation Control. Numerical solution 

methods proposed for solution of power scheduling are insufficient in handling 

large and complex systems. Soft Computing methods like Simulated Annealing, 

Evolutionary Programming etc., are efficient in handling complex cost 

functions, but find limitation in handling stochastic data existing in a practical 

system. Also the learning steps are to be repeated for each load demand which 

increases the computation time. 

Reinforcement Learning (RL) is a method of learning through 

interactions with environment. The main advantage of this approach is it does 

not require a precise mathematical formulation. It can learn either by interacting 

with the environment or interacting with a simulation model. Several 

optimization and control problems have been solved through Reinforcement 

Learning approach. The application of Reinforcement Learning in the field of 

Power system has been a few. The objective is to introduce and extend 

Reinforcement Learning approaches for the active power scheduling problems 

in an implementable manner. The main objectives can be enumerated as: 

(i) Evolve Reinforcement Learning based solutions to the Unit 

Commitment Problem. 



(ii) Find suitable solution strategies through Reinforcement Learning 

approach for Economic Dispatch. 

(iii) Extend the Reinforcement Learning solution to Automatic Generation 

Control with a different perspective. 

(iv) Check the suitability of the scheduling solutions to one of the existing 

power systems. 

First part of the thesis is concerned with the Reinforcement Learning 

approach to Unit Commitment problem. Unit Commitment Problem is 

formulated as a multi stage decision process. Q learning solution is developed 

to obtain the optimwn commitment schedule. Method of state aggregation is 

used to formulate an efficient solution considering the minimwn up time I down 

time constraints. The performance of the algorithms are evaluated for different 

systems and compared with other stochastic methods like Genetic Algorithm. 

Second stage of the work is concerned with solving Economic Dispatch 

problem. A simple and straight forward decision making strategy is first 

proposed in the Learning Automata algorithm. Then to solve the scheduling 

task of systems with large number of generating units, the problem is 

formulated as a multi stage decision making task. The solution obtained is 

extended in order to incorporate the transmission losses in the system. To make 

the Reinforcement Learning solution more efficient and to handle continuous 

state space, a fimction approximation strategy is proposed. The performance of 

the developed algorithms are tested for several standard test cases. Proposed 

method is compared with other recent methods like Partition Approach 

Algorithm, Simulated Annealing etc. 

As the final step of implementing the active power control loops in 

power system, Automatic Generation Control is also taken into consideration. 



Reinforcement Learning has already been applied to solve Automatic 

Generation Control loop. The RL solution is extended to take up the approach 

of common frequency for all the interconnected areas, more similar to practical 

systems. Performance of the RL controller is also compared with that of the 

conventional integral controller. 

In order to prove the suitability of the proposed methods to practical 

systems, second plant ofNeyveli Thennal Power Station (NTPS IT) is taken for 

case study. The perfonnance of the Reinforcement Learning solution is found to 

be better than the other existing methods, which provide the promising step 

towards RL based control schemes for practical power industry. 

Reinforcement Learning is applied to solve the scheduling problems in 

the power industry and found to give satisfactory perfonnance. Proposed 

solution provides a scope for getting more profit as the economic schedule is 

obtained instantaneously. Since Reinforcement Learning method can take the 

stochastic cost data obtained time to time from a plant, it gives an 

implementable method. As a further step, with suitable methods to interface 

with on line data, economic scheduling can be achieved instantaneously in a 

generation control center. Also power scheduling of systems with different 

sources such as hydro, thermal etc. can be looked into and Reinforcement 

Learning solutions can be achieved. 

Key words: Power system. Reinforcement Learning. Unit Commitment. 

Economic Dispatch. Automatic Generation Control. 
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CHAPTER 1 

INTRODUCTION 

Power systems form the largest man made complex system. It basically 

consists of generating sources, transmission network and distribution centers. Secure 

and economic operation of this system is a challenging task. The primary concern of 

electric power system operation is to guarantee adequate optimal generation to meet 

load demand satisfying the numerous constraints enforced from different directions. 

Active power or MW power generated in a power system is controlled in three 

time based control loops: Unit Commitment, Economic Dispatch and Automatic 

Generation Control. Unit Commitment and Economic Dispatch loops are to schedule 

the generating sources in economic manner to meet the forecasted load demand 

Automatic Generation Control continuously monitors the load variations and adjusts 

the power output of the generators in optimum manner which results in efficient 

constant frequency operation for the equipments. 

A variety of strategies have been developed to make the operation of these 

three control loops efficient and fast. In the present economic scenario, the growing 

sophistication of power systems motivates the development of more and more 

computationally faster methods, suitable for the existing systems. 

Several methods have been employed for solving the various power scheduling 

problems. Dynamic Programming method has been widely used for solving Unit 

Commitment Problem and Economic Dispatch. However it suffers from the curse of 

dimensionality. Stochastic search methods like Genetic Algorithm, Evolutioruuy 

Programming and Simulated Annealing also have been used. However all these 

methods were demonstrated only for deterministic cost data. 

All of the existing methods require a well defined model of the system to 

handle the control problems. But accurate model of the system may not be available for 



all practical systems. Developing control methodology which is implementable in the 

practical environment is also a good direction in the power system control sector. 

Reinforcement Learning is one popular method, which has been applied for the 

solution of many optimization problems. It is a learning strategy which relies on 

continuous interaction with the problem environment. Till now, application of 

Reinforcement Learning to power system problems has been a few (Imthias et al. 

[2002], Emest and Glavic [2004], Gajjar et al. [2003]). The main objective of the 

research work is to extend existing Reinforcement Learning algorithms and to evolve 

new algorithms to the three control loops concerned with active power control. The 

three control problems belong to different classes. In this thesis, various efficient ways 

of using Reinforcement Learning to solve these problems will be explored. Expectation 

is that, this thesis will help to improve the understanding of various possibilities of 

applications of Reinforcement Learning in Power system. 

In the following sections, the overall structure of power system conb:!>l: Unit 

Commitment, Economic Dispatch and Automatic Generation Control are discussed 

Then an outline of the presentation structure of the thesis is given. Finally the 

important contributions are highlighted in the concluding section. 

1.1 Power system control 

Customer's Load demand in electric power systems is not steady and is subject 

to change because of the change in human activities with time. Economic production of 

electric energy is one of the challenging tasks in the power generation sector due to the 

limited and variant generating resources. A great deal of effort is required to maintain 

the electric power supply quality and quantity within the requirements of various types 

of consumers being served. The requirements of consumers include mainly availability, 

quality, reliability and reasonable cost for the power. As electric energy can't be stored, 

the loads should be met by variations in the power generation. It is required to commit 

enough number of generating units to meet the load demand in real time. In short, the 

load demands are to be met while operating the power system in the most economic 

manner. 



A modern power system consists of several kinds of generating resources of 

which Hydro, Thennal and Nuclear sources form the major part. These different 

generating stations are connected to various load centers through transmission lines. 

Hydro and nuclear sources need more investment in setting up, which contributes to 

the fixed cost of power generated. The cost of thermal power is mainly dependent on 

the variable cost, majority of which is due to the fuel cost. 

The economic production of power relies on mainly two stages of scheduling. 

Long term scheduling which involves resource acquisition and allocation for a long 

duration, commonly one year in advance and short term planning involving the 

scheduling for one day or one week. At a load control centre, the load demand profile 

is studied from the past history or experience and based on that, a pre - dispatch 

schedule is prepared in advance. This scheduling involves the selection of sources of 

generation available, depending on the constraints and the amount of thermal power to 

be generated. 

Thermal power is usually used to meet the base load during the peak hours. 

Since the cost of thermal power is more, proper selection and scheduling of these units 

has become the essential step in power generation planning. Also the different thermal 

generating units have different fuel characteristics and hence the cost of production 

varies from unit to unit (Elgerd [1984J. Wood and Wollenberg [2002J). Apart from 

this, the cost of generation in any existing power system is not deterministic. It varies 

instantaneously. Therefore, economic production of electric energy from a thermal 

power plant demands the optimum selection of units and also the generation levels 

considering the stochastic nature of cost. In this thesis, focus is made on the economic 

scheduling of thermal generating stations. 

Scheduling the thermal stations is a two step procedure. In the ftrst step termed 

as Unit Commitment, decision is made on which all generating units are to be operated 

during each slot of time. This is normally done for separate intervals of one hour each. 

While deciding the commitment status, cost of production is minimized by accounting 

the various system and unit constraints. The second part of scheduling is to fmd the 



real power generation of the different generating units and is termed as Economic 

Dispatch. Through the dispatch solution, generation levels of the units are set for 

duration of several minutes. Power generation from the different units should be so as 

to satisfy the different constraints and in the most economic manner. 

The load on a power system varies instantaneously. Meeting the instantaneous 

variations of load needs a continuous change in the generation. When a load is 

suddenly added to the system. initially the kinetic energy stored in the rotating parts of 

the generators will be utilized to meet the same. Consequently the speed and hence 

frequency drops. Then the governor mechanism act to increase the fuel input to the 

system in order to meet the increased load. The primary governor control alone cannot 

bring the frequency to the scheduled value. The function of real time control or on-line 

scheduling, termed as Automatic Generation Control (AGC) in a power system, is 

changing the control valve or gate openings of the generator prime movers in response 

to load variations so as to maintain the scheduled frequency. 

In short, active power or MW control in a power system is done in three time 

based loops. First two loops termed as Unit Commitment and Economic Dispatch are 

parts of pre dispatch and the third loop or Automatic Generation Control is part of on­

line or real time control. 

1.2 Research Focus 

Economic scheduling is very important in the power industry since the saving 

of even several paise per unit of generated power will accumulate to an electric utility 

profit of thousands of rupees per day. A variety of solution strategies have been 

evolved for handling the power generation control problems. 

Mathematical programming methods like Dynamic Programming suffer from 

the curse of dimensionality. Other methods like Genetic Algorithm, Simulated 

Annealing, etc. take more computation time and are proved only for deterministic cost 

data. Also the existing strategies find difficulty in implementing in a practical power 
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system. Main focus is to develop a practically implementable solution for the 

generation scheduling problems. 

Reinforcement Learning is one solution strategy which had been applied for 

solution of several search and optimization problems. The capacity of this solution 

method in the economic scheduling of power generation has not yet been fully 

explored. The direction of this research work is to develop solutions through 

Reinforcement Learning approaches to the three control loops in the generation 

control, in a way more suitable for implementation in an existing power system. In the 

next sections, these three control problems are described. 

1.2.1 Unit Commitment Problem 

The general objective of Unit Commitment Problem is to minimjze the system 

operating cost by selecting the units for operation in each slot of time. It determines the 

combination of available generating units in order to meet the forecasted load demand 
.. -

with minimum production cost. At the same time the various operating constraints 

enforced by the system should be satisfied during the period mentioned. The period of 

forecasting varies from 24 hours to one week. Forecasting is based on the previous 

history, environmental factors, social factors etc. On deciding the commitment 

schedule to achieve minimum production cost, a number of operating constraints are to 

be satisfied. Some of these are listed below: 

(i) Power generation constraints 

System generation constraints include power balance, spinning reserve, 

import/export, transmission line constraints etc. Active power generation 

should be equal to the total power demand plus losses. Demand in one control 

area includes the load to be met in that area, transmission losses, scheduled 

interchange power etc. Total maximum capacity of on-line units must include 

some spinning reserve also. This spinning reserve is necessary to fulfill the 

unexpected increase in demand or forced outage of any of the generating units. 

The amount of the required spinning reserve is usually determined by the 
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maximum capacity of the largest generating unit in the system or a given 

percentage of the forecasted peak demand during the scheduled period. 

(ii) Minimum and Maximum generation output constraints 

There exist a number of physical and economical considerations regarding the 

operating range of a generating unit. A range of power outputs is specified for 

each machine by either machine output limits or economic operation of other 

associated units. 

(ill) Minimum Up time I Down time constraints 

Each individual thermal unit has its own constraints which include initial 

condition, minimum and maximum generation output limits, minimum up 

timel down time, unit status restrictions etc. Initial condition of a generating 

unit includes the number of hours that it has been continuously on-line or off­

line and its generation output at the starting instant of present scheduling slot. 

Minimum up time refers to the number of hours a unit has to be on-line before 

it can be shut down. Minimum Down time is the number of hours a unit must 

be offbefore it can be started up. Both the initial number of on-line or off- line 

hours and the initial generation output associated with other constraints limit 

the present status and generation output of the unit. 

(iv) Unit status restriction 

Unit status restrictions include must run and must off restrictions. Generating 

units with such restrictions will be pre defined and must be excluded while 

rmding the commitment schedule. Some units must be forced to run or to be on 

line due to various practical and economic reasons. Such units may be using 

expelled steam from other machinery or units or from some renewable energy 

sources or may be necessitated due to coupling with other units. The units 

which are under maintenance are termed as must off units. Also the availability 

of fuel forces certain plants to be on I off during a particular period. These two 



sets of units must be excluded while fmding a commitment schedule in the 

Unit Commitment Problem. 

1.2.2 Economic Dispatch 

The Economic Load Dispatch problem is a problem of minimizing the total 

fUel cost of generating units for a specified period of operation so as to accomplish 

optimal generation dispatch among operating units and at the same time satisfying the 

various constraints. The fuel cost of the different thermal generating units can be 

smooth or non smooth. 

The cost functions will usually be given in quadratic or higher order 

polynomial forms. Due to the use of mUltiple fuel options for the generating units, the 

cost functions will sometimes be super position of piecewise quadratic functions or in 

other words will be non smooth over the generation range. 

The Economic scheduling of generators for any slot of time will be subject to a 

variety of constraints. These constraints include: 

(i) Power balance constraints or Demand constraints 

This constraint is based on the balance between the total system generation and 

the total connected load and the losses in the transmission system. 

(ll) Generator constraints 

The output power of each generating unit has lower and upper bounds so that it 

should lie within these limits at any point of time. 

(ill) Ramp rate limits 

Ramp rate limit restricts the operating range of all the on line units for 

adjusting the generator operation between two operating periods. The 

generation can be changed according to the increasing and decreasing ramp 

rate limits only. 
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(iv) Prohibited operating zones 

The generating units may have certain ranges where the operation is restricted 

on the grounds of physical limitations of machine components or operational 

instability. 

(v) Valve point effects 

The valve opening process of multi valve steam turbines produce a ripple like 

effect in the heat rate curve of the generators and it is usually taken into 

account by some modifications in the cost functions of the units. 

(vi) Transmission loss 

While finding an optimum schedule of generation, transmission loss is one 

important constraint since the generating centers and the connected load exist 

in geographically distributed fashion. 

1.2.3 Automatic Generadon Control 

In a power system. turbo generators must be continuously regulated to match 

the active power demand, failing which the machine speed will vary with a consequent 

change in frequency, which is highly undesirable. Also the excitation of the generators 

must be continually regulated to match the reactive power demand with reactive power 

generation; otherwise the voltages of the system buses will vary (Elgerd [1982]). 

By Unit Commitment and Economic Dispatch solutions, the required active 

power generation is distributed among the different generating units in an optimum 

manner leading to the minimum cost of generation. The final and on-line control of 

generation in a power system is done through the control of frequency measured from 

the system bus. This third or inner control loop is Automatic Generation Control 

(AGC) or more specifically Load Frequency control. This control loop handles the 

instantaneous variations in the customer load. 

Power system loads and losses are sensitive to frequency_ Therefore for 

satisfactory operation, a nearly constant frequency is necessary. The frequency of the 

8 



system is dependent on active power balance. Therefore any imbalance in the active 

power is reflected as a change in system frequency. In an isolated power system, 

generation control is just controlling of the frequency by means of changing the fuel 

intake by the governor. 

Once a generating unit is tripped or a block of load is added to the system, the 

~er mismatch is initially compensated by the extraction of kinetic energy from 

system inertial storage which causes a decline in system frequency. As the frequency 

decreases. power taken by loads decreases. Equilibrium for large systems is often 

obtained when the frequency sensitive reduction of loads balances the output power of 

the tripped unit or that delivered to the added block of load at the resulting new 

frequency (Athay [1987]). 

If the frequency mismatch is large enough to cause the frequency to deviate 

beyond the governor dead band of the generating units (generally in the range of 30-

3SmHz.), their output will be increased by the governor action. For such mismatches, 

equilibrium is obtained when the reduction in the power taken by the loads plus the 

increased generation due to governor action compensates for the mismatch. Such 

equilibrium is often obtained within 10-12 seconds. Typical speed droop are in the 

range of 5% and therefore at the expense of some frequency deviation, generation 

adjustment is carried out by governors. In order to compensate for the offset deviation 

and to bring back the system to the original scheduled frequency, a manual or 

automatic (through AGe) follow up and corresponding control are required. 

The Automatic Load Frequency Control is done based on the concept of tie 

line bias control in which the Area Control Error (ACE) is calculated at specified 

discrete intervals of time and control action in the form of change in the reference 

setting of the governor is carried out. The control decision has been developed by 

several mathematical and soft computing methods by various researchers. Imthias et al. 

[2002] proposed a Reinforcement Learning control strategy for the load frequency 

control problem. For the completeness of the attempt to develop Reinforcement 

Learning based strategies for all the control loops in the power generation control, a 
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Reinforcement Learning algorithm for Automatic Generation Control (AGC) with a 

new approach is presented. 

1.3 Objectives 

Efficient and Economic solution of the above discussed three control 

problems: Unit Commitment, Economic Dispatch and Automatic Generation Control is 

the main focus of the research work. The objective is to introduce Reinforcement 

Learning approaches for the economic scheduling problem in an implementable 

manner and extend the Reinforcement Learning solution to Automatic Generation 

Control. The main objectives can be enumerated as: 

(i) Evolve Reinforcement Learning based solutions to the Unit Commitment 

Problem. 

(ii) Find suitable solution strategies through Reinforcement Learning approach for 

Economic Dispatch. 

(ill) Extend the Reinforcement Learning solution to Automatic Generation Control 

with a different perspective. 

(iv) Check the suitability of the scheduling solutions to one of the existing power 

systems. 

1.4 Outline of the thesis 

The thesis focuses on introducing Reinforcement Learning based approaches 

to various power system control problems. Power scheduling problems and the 

constraints enforced are studied. Different existing methodologies for the solution to 

the power scheduling problems are reviewed in detail emphasizing the advantages and 

limitations. 

As the first step towards applying Reinforcement Learning strategy to Unit 

Commitment problem, the problem is formulated as a multi stage decision making 

task. Review of the basic solution introduced by Imthias [2006 a] is done and the 

solution is extended to make it implementable in a practical power system. These 
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.,..-a1gOrithms in general are denoted as RL_UCP. Minimum up time and down time 

constraints are first neglected to introduce the new solution strategy. Efficient solution 

methods are then put forth taking into account the start up and shut down constraints. 

State aggregation method is also used to develop efficient solution to this constrained 

optimization problem. Solutions are verified for different standard test systems. A 

comparison with other solution methods including Simulated Annealing and Genetic 

Algorithm are made to prove the efficacy of the proposed method. 

Economic Dispatch solutions are obtained through Reinforcement Learning 

algorithms considering different types of complexities of the problem. For simplicity of 

introducing the new algorithms, transmission loss in the system are first neglected. 

Then the transmission losses are incorporated. In order to make learning efficient 

function approximation method is used. Verification and validation are carried out for 

several systems having different types of cost functions and constraints. The solution 

given by the proposed algorithms (termed as RL_ED) are compared with other 

stochastic techniques. 

A control strategy for Load Frequency Control in an interconnected power 

system is also proposed. The control areas connected are considered to operate at a 

common system frequency. The reference power setting is changed by the control 

action proposed by the RL controller which acts according to the variation in the Area 

Control Error (ACE). 

Finally, one of the existing thermal generating stations (Neyveli Thermal 

Power System Corporation) is considered for case study to check the suitability of the 

developed solutions to a practical system. 

The different chapters of the thesis are organized as follows: 

Unit Commitment is a combinatorial optimization problem which has been 

solved earlier by several numerical as well as soft computing methods. Numerical 

methods include Lagrange Relaxation, Priority List, Dynamic Programming etc. and 

soft computing strategies include Neural Network, Simulated annealing, Genetic 

Algorithm, Evolutionary Programming etc. For fmding the schedule of generation 
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through Dispatch solution, a number of methods including lambda iteration, genetic 

algorithm, simulated annealing, evolutionary programming etc. have been proposed 

by various researchers. Chapter 11 gives a review of the existing solution strategies 

for the three control problems. Implementation details of the different techniques are 

also looked into. Reinforcement learning method and a few of the applications 

existing in the various fields are also explained. 

Reinforcement Learning is explained in detail in Chapter Ill. The different 

components of Reinforcement Learning problem include state, action, reward and 

value function. A discussion on these components, the different solution strategies 

including Q learning and the different ways of exploring the action space including e -

greedy and pursuit are discussed. Function approximation method using Neural 

Networks is also explained. A review of application of Reinforcement Learning to 

some of the power system problems is also given. 

Formulation of Unit Commitment Problem as a multi stage decision making 

problem and Reinforcement Learning based solutions are given in Chapter IV. First 

the basic algorithm is reviewed. An efficient solution through exploration using 

pursuit method is introduced without considering minimum up time and down time 

constraints. Then more efficient algorithms suitable for existing power systems are 

proposed considering minimum up time and down time limitations. 

In Chapler V, Economic Dispatch problem is solved using Reinforcement 

Learning strategy. The ftrst set of algorithms neglect the constraint enforced by the 

transmission losses in the system. Then the transmission losses are also included and 

an extended algorithm is put forth to get economic distribution. A function 

approximation method using Neural Network is proposed to make the dispatch 

solution more efficient one. Simulation studies are also presented. 

To give completeness of formulating Reinforcement Learning solution to the 

power generation control problems, the on line dispatch problem or Load Frequency 

Control is solved using Reinforcement Learning method in Chapter VI. Comparison 

of the results with an integral controller for the same parameters is given. 
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A practical power system: Neyveli Thermal Power Station is taken for case 

study and the simulation results of the developed algorithms applied to the system is 

given in Chapter VII. The results obtained are compared with two of the recent 

techniques: Fuzzy Dynamic Programming and Evolutionary programming with Tabu 

search. 

The important contributions are given in the concluding chapter, Chapter VIIL 

Also the limitations and scope for further work are explained. 



A REVIEW OF TECHNOLOGIES FOR POWER 

SYSTEM SCHEDULING 

1.1 Introduction 

A thorough literature survey has been conducted to study the various 

approaches existing for the solution of the three major scheduling problems: Unit 

Commitment, Economic Dispatch and Automatic Generation Control. Applications of 

Reinforcement Learning to the various fields are also reviewed. 

Unit Commitment is the process of determining the optimal schedule of 

generatiilg units over a period subject to system operating constraints. Various 

approaches to the solution of this combinatorial optimization problem have been 

proposed. The different methodologies applied for the same are discussed in the next 

section. 

Economic Dispatch is the problem of scheduling the committed units so as to 

meet the desired load at minimum cost. Due to the non convexity of cost functions 

and the different constraints existing on the operation of thermal power plants, 

solution of this optimization problem is difficult A number of classical and soft 

computing techniques have been developed over years for solution of this problem. 

The different techniques and solution strategies are reviewed in section 2.3 

Control strategy for adjusting the reference power setting in Automatic 

Generation Control is adopted in several ways. A brief review of the different models 

and solution strategies are also detailed in section 2.4. 

Reinforcement Learning is a good learning strategy which relies on interactive 

learning. It has found applications in several fields. A brief discussion on the different 

existing applications is also included in section 2.5. 
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2.2 Solution Methodologies for Unit Commitment 

Unit Commitment Problem is a very challenging optimization problem. 1bis is 

because of the huge number of possible combinations of ON / OFF status of the 

generating units in the power system over the different time periods considered. 

Solution to this combinatorial optimization problem has been developed by several 

exact and approximate methods. Padhy [2004] gives a good survey on the different 

solution methods for Unit Commitment Problem. Some of the existing solution 

methods are discussed below: 

2.2.1 Priority list 

It is one of the simplest Unit Commitment solution methods (Wood and 

Wollenberg [2002]). Priority list is obtained after enumerating the various 

combinations of the units possible at each load demand. The generating unit priorities 

are determined according to their average production cost. For every slot! period of 

time, units are committed one by one according to their priorities until the power 

balance and security constraints are satisfied. Each time, minimum up time and down 

time are checked before commitment. This is a one simple and efficient method and 

has been widely used in several practical power industries. One limitation is that the 

solution obtained need not be optimal always since the initial status and start up cost of 

the different units are not considered in preparing the list. 

In order to obtain an optimal Unit Commitment solution, an adaptive list 

method is suggested (Lee [1988]). The units are grouped based on their initial unit 

operating characteristics, minimum shut down and start up times, spinning reserve etc. 

At each hour to be scheduled, within each group, the units are ranked according to the 

economic cost of production and prior system operation. Comparison is made in terms 

of a cost index which accounts the prior system marginal cost and production cost 

Initial set of units (initial feasible solution) at each hour consists of top ranked units 

from the different groups. At each iteration, based on the relative economic cost, the 

dominated unit in the set is identified and removed from further consideration. The 

load balance condition is evaluated. Additional comparison will be made among the 
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.. ......,mug units and the 'next unit to commit' is found. Comparison and refinement is 

CQIItinued to get the optimum. solution satisfying the load demand. 

2.1.1 Dynamic Programming 

Dynamic Programming (DP) is another major approach introduced in 19608 to the 

solution of several optimization problems (BelIman and Dreyfus [1962]). Dynamic 

Programming is a method based on well known "Bellman's optimality principle". 

Based on the same, an optimization problem is ftrst divided into a number of stages. 

Possible states and solutions of the problem at each stage are identified. 

Ac:cording to the optimality principle, an optimal decision made at one stage does 

not depend on the policy or decisions made at its previous stages. To achieve the 

optimum. starting from the ftrst stage the various solutions at each stage are 

enumerated. Each decision will make a transition of the system to one of the states at 

the next stage. Enumeration of the decisions or solutions at each stage corresponding to 

the states encountered is continued, until the final stage is reached. 

A variety of Dynamic Programming (DP) solutions have been proposed by a 

number of researchers. The basic steps in the Dynamic Programming based solution to 

Unit Commitment (Wood and Wollenberg [2002]) are: 

(i) Identify the number of stages in the scheduling problem. It is same as the 

number of hours to be scheduled. 

(ii) Define the possible states at each stage of the problem. The states are defined 

as the possible combinations of the units or the ON! OFF status of one 

particular unit. 

(ill) Filter the feasible or permissible states for each time slot based on the 

constraints enforced in the problem. This is dependent on the load demand to 

be met at the particular time slot and the operating limitations. 

(iv) Starting from the initial state (status of the units), find the feasible solutions 

(unit combinations) at each stage to make stage transition. Corresponding to 
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each state, the cost is calculated by considering the production cost and start up 

cost of the units. 

(v) Reaching the final stage, backtrack from the optimum combination (baving 

minimum cost) till the initial stage to obtain the optimum schedule. 

The solutions proposed by the different methods based on DP are a slight 

variation of this basic procedure. Some of them are reviewed here. In the simplest DP 

approach (Ayoub and Patton [1971]), the commitment of generating units is 

determined independently for every time period. For every unit, the start up and shut 

down costs are assumed to be constant and the total cost of every output level is the 

sum of production and start up costs. In this method, time dependence of start up cost 

is not considered. It cannot take into account the minimum up time and down time of 

the generating units. 

In 1976, Pang and Chen suggested a DP based algorithm considering the start 

up costs. In this, each stage represents a particular time period, and in every stage, 

corresponding states represent different combinations of commitment status during that 

period. The solution procedure considers the interdependence between the different 

time slots and hence the start up cost is considered as dependent on the transition 

information. Also the minimum up / down time constraints are incorporated. 

In order to consider the huge dimension arising for large systems, additional 

techniques with DP are proposed (pang et al. [1981]). In each period subset of the 

states are identified to get optimal policy. This subset is formed based on the 

constraints forced on the status of the generating units, which is dynamic in nature. 

This truncated DP approach efficiently reduces the computation time. But the limiting 

of the state space is not always optimum.. Hence the solution does not turn to be 

optimum in many cases. 

Another modified DP termed as sequential DP combines the Priority List and 

the conventional Dynamic Programming approach (Meeteran [1984]). In this method, 

in order to increase the speed of computation, search space is reduced to certain 

subspaces termed as windows. But, the optimality is to be attained regarding the 
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accuracy and window size. For large scale systems, a large search range is required to 

get proper solution. Even if window size or subset range is selected by several heuristic 

techniques, the computational efficiency is very poor. 

A variable priority ordering scheme is proposed (Synder et al. [1987]) to 

enhance the computational efficiency. The approach again suffers from the 

dimensionality as the state space becomes enormously large with the number of 

generating units. An enhanced Dynamic Programming method considering the reserve 

constraints is proposed by Hobbs et al. [1988J. 

The power system dynamic stability problem is also considered and a Dynamic 

Programming solution to multi area unit commitment is proposed (Hsu et al. [1991]). 

Eigen values are used to find the stability of the units at the optimum generation point 

obtained at each hour. 

Ouyang [1991] proposed an intelligent Dynamic Programming method, which 

eliminates infeasible states and reduces the decision space in each hour of the problem. 

The variable window Dynamic Programming suggested, adjusts the window size 

according to the received load increments. 

The spinning reserve constraints form an important part in the solution of Unit 

Commitment problem. Scheduling of hydro electric plant is done through Dynamic 

Programming considering the reserve constraints (Finandi and Silva [200S]). 

2.2.3 Lagrange Relaxation 

Lagrange Relaxation technique is a numerical solution method based on dual 

optimization. The method decomposes the linear programming problem into a master 

problem and more manageable sub problems. Sub problems are linked by Lagrange 

multipliers which are added to the master problem to get the dual problem. This low 

dimension dual problem is then solved. For the same, Lagrange mUltipliers are 

computed at the master problem level and are passed to the sub problems. The 

updating of Lagrange multipliers is done by either analytical methods or heuristic 

methods. 
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The solution strategy can eliminate the dimensionality problem encountered in 

the Dynamic Programming by temporarily relaxing the coupling constraints and 

separately considering each sub problem. It provides the flexibility for handling the 

constraints and is computationally efficient. 

For obtaining the optimum solution, Unit Commitment Problem is formulated, 

in terms of the cost function, set of constraints associated with each unit and the set of 

coupling (system) constraints, into one primal problem and one dual problem. The 

primal sub problem is the objective function of the Unit Commitment Problem. Dual 

problem incorporates the objective function and the constraints multiplied with the 

Lagrange multipliers. 

Lagrangian dual function is formed by adjoining the power balance and 

security constraints into the cost function, via two sets of Lagrange multipliers. 

Equality constraints are incorporated by one set of multipliers (usually denoted by A) 

and inequality constraints byanothor set (denoted by J.1). The dual procedure attempts 

to maximize the dual function (minimum of Lagrange function) with respect to 

Lagrange multipliers. In the solution process, at each iteration, the Lagrange 

multipliers are taken as fixed Once the values of multipliers have been fixed, each sub 

problem is solved (minimized) with those constraints which represent the operating 

characteristics of the corresponding unit. 

For the minjmization procedure, any of the linear programming method is 

used. Corresponding to the obtained values of the system variables, the dual function 

and primal function are evaluated to obtain the duality gap which is the measure of 

convergence. When the duality gap is more, the Lagrange multipliers are updated to 

start the next iteration in the solution process. Tolerable value of duality gap indicates 

the convergence of the algorithm. 

From the early 1970's, researchers focus on developing solution to Unit 

Commitment Problem using Lagrange Relaxation. Muckstadt and Koeing [1977] have 

provided a Lagrange Relaxation solution using branch and bound decision making 

technique. A node in the branch and bound tree represents the problem 'P' with 

20 



)I ~ ofrtecrmofDgies for Power System Sclietiuli1l{J 

appropriate set of variable Xi I (Xi I = 0 or 1). The Lagrangian Relaxation of the problem 

at each node is solved with shortest path algorithm solving each of the single generator 

sub problems. This provides the lower bound for the optimal solution of the problem at 

each node. The bounds are used to direct the search through the decision tree. At each 

node in the tree, sub gradient method is used to update the values of the Lagrange 

Multipliers so as to make the bounds better. The updated multiplier values are used to 

compute the next solution of Lagrange Relaxation. The method has proved to give 

optimal solutions to smaller problems and with acceptable tolerance limit to a bit larger 

problems. But for lager problems the number of nodes in the decision tree is very large 

in number which increases the computational complexity. 

A modified solution strategy was proposed by Lauer et al. [1982]. In this case 

in addition to the lower bound, an upper bound is also obtained at each node in the 

branch and bound tree. The lower bounds are provided by the solution of the dual 

problem and then the upper bounds are fixed using dynamic priority lists which 

depends on time, state of the units and the demand The sub gradient method of 

solution to dual problem does not provide sufficient information for getting optimal 

solution to primal problem and this makes the number of nodes to be examined is very 

large for a satisfactory solution of complex and real world problems. 

To address the large size and real world problems, another approach was 

suggested by Bertsekas et al. [1983]. In this case, the dual problem is approximated to 

a twice differentiable problem and then solved by constrained Newton's method The 

solution to dual problem gives the values of Lagrange Multipliers to solve the relaxed 

primal problem. Since the number of iteration required in Newton's method is 

insensitive to the number of generation units, computational requirement for getting the 

optimal solution is much less ( 10 - 12 minutes for 200units and 24 hour load pattern) 

Cohen and Sherkat [1987] have reported the solution to general Unit 

Commitment problem using Lagrange multipliers. Bard [1988] also solved the short 

term Unit Commitment of thermal generators using Lagrange mUltipliers. 
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Solution through Lagrange Relaxation method depends on the values of 

Lagrange multipliers. Therefore setting the initial Lagrange multipliers and updating 

them are significant to the optimality of the solution The solution from the simple 

Lagrange Relaxation method is not optimal always due to improper adjustment of the 

Lagrange multipliers. The non convexity of the problem is also not handled 

satisfactory by simple Lagrange Relaxation method. 

To handle the non convexity of the Unit Commitment problem, modifications 

have been proposed to the basic method of Lagrange Relaxation. A three phase 

method is proposed by Zhaung and Galiana [1988]. Lagrangian dual of the problem is 

maximized using sub gradient technique in the first phase. A reserve feasible dual 

solution is developed in the second phase and the third phase solves the Economic 

Dispatch. 

Unit Commitment solution is obtained considering the transmission 

constraints (Bataut and Renaud [1992]). The solution often oscillates around the global 

optimum point. The non convexity of solution method is overcome in the modified 

method termed as Augmented Lagrange Relaxation (Wang et al. [1995]). In this 

solution, quadratic pena1ity terms are considered and added with the objective function 

in order to handle the convexity of the problem. These multipliers relax the system 

demand multipliers and the oscillations of the solution are avoided. 

Peterson and Brammer [1995] suggested a Lagrange Relaxation method 

considering the various constraints including ramp rate constraints of the generating 

units. Beltran and Heredia [2002] also proposed an Augmented Lagrange Relaxation 

with a two phase method of solution to improve the convergence of the short term Unit 

Commitment problem. But it is more complicated and slower due to the updating 

needed for each of the Lagrange multipliers and penalty factors at each step. which 

increases the time for convergence. 

Lu and Schahidehpur [2005] used the Lagrange method considering the 

generating unit with flexible constraints. A case of Lagrange Relaxation and mixed 

integer programming are proposed by Li and Shahidehpour [2005]. The method is to 
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find the global optimum using the classical Lagrange Relaxation method and to obtain 

local optimum through Augmented Lagrange Relaxation method. 

Stochastic methods are also developed for the updating of Lagrange 

multipliers. Cheng et al. [2000} employed genetic algorithm in the calculation of 

Lagrange multipliers. Balci and Valenzuela [2004] proposed Particle Swarm 

Optimization for the computation of the multipliers. 

Lagrange Relaxation is an attractive and efficient method due to the flexibility 

of incorporating the constraints in the problem and suitability for large systems. 

2.2.4 Deeommitment method 

Decommitment method determines the Unit Commitment schedule by 

decommitting the units from an initial state in which all the available units are brought 

on line over the planning horizon. A unit having the highest relative cost is 

decommitted at a time until there is no excessive spinning reserve or minimum up 

time. Tseng et al. [1997] demonstrated that the decommitment method is reliable, 

efficient and quick approach for solving Unit Commitment Problem. Tseng et al. 

[2000] and Ongasakul and Petcharakas [2004] applied decommitment method as an 

additional step along with Lagrange Relaxation. 

2.2.5 Artiflcial Neural Networks 

Artificial Neural Networks (ANN) offers the capability of parallel 

compUtation. They are computational models composed of interconnected and 

massively parallel processing elements. For processing information, the neurons 

operate concurrently and in parallel and distributed fashion. The interconnection of the 

different neurons in the network is through the parameters termed as weights which are 

modified during the training phase of Neural Network. Once trained, the network gives 

the optimum output for the input data supplied to the network. Several models and 

learning algorithms associated with Neural Networks have been developed. 

The network learning is generally of three types: Supervised Learning in which 

learning is carried out from the set of examples or known input - output pairs, 
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Unsupervised Learning in which without the use of examples the network learn for 

optimum weights and Reinforcement Learning where learning is carried out through 

interaction, getting rewards for actions at each time step. 

Of the different Neural Network architectures, Hopfield Neural Network and 

Radial Basis Function networks are most commonly used for optimization tasks. 

Hopfield Neural Network is one recurrent network that operates in unsupervised 

manner. Radial Basis Function (RBF) networks are used as interpolating networks, 

used mainly for function approximation tasks. 

Several Neural Network solutions have been proposed for Unit Commitment 

Problem. Unit Commitment can be treated as a discrete optimization problem since the 

ON I OFF status is the decision to be carried out. In the early work by Ouyang and 

Shahidehpour [1992], a pre schedule according to the load profile is obtained using a 

three layer Neural Network and supervised learning. The input layer of the network 

consists of T neurons for a T hour scheduling task and accepts the load demand profile. 

The input neurons are normalized by the maximum swing in the MW. The neurons in 

the output layer provide the output schedule which is an N x T matrix, N being the 

number of machines to be scheduled. Since the status variable can take only '1' or 

'O'corresponding to ON I OFF, output matrix is having only these two elements 

corresponding to the different variables. Training of the network is carried out using 

representative load profile and commitment schedule obtained through mathematical 

programming technique. After training, Neural Networks gives the commitment 

schedule for any load demand. But the limitation is that the training pattern is to be 

properly selected to get the accurate scheduling of the units. 

In order to make the solution more efficient, Hopfield Neural Network is used 

for solution of Unit Commitment problem and results are obtained for scheduling of30 

units (Sasaki et al.[1992]). Discrete energy function is associated with the different 

neurons in the network so as to handle the discrete nature of Unit Commitment 

Problem. 
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Ramp rate constraints are also incorporated in fmding the Unit Commitment 

schedule by Wang and Shahidehpor [1993]. To handle the problem more accurately, 

Walsb. and Malley [1997] proposed Augmented Hopfield Neural Networks. In this 

case, energy function comprises both the discrete and continuous terms to handle the 

problem more efficiently considering the optimum dispatch for the generating units. 

To provide more flexibility and to adaptively adjust the weights in the 

network, an evolving weight method is suggested (Chung et al. [1998]). Genetic 

Algorithm is used to evolve the weights and interconnections. 

One limitation of using Neural Network alone is the need for larger time for 

convergence. By using Neural Network as a classification network and then using 

Dynamic Programming in the smaller space obtained., convergence is easily obtained 

(Daneshi et al. [2003]). 

The attractive feature of the method suggested by Swamp and Simi [2006] is 

the use of separate discrete networks (instead of neurons in the previous cases) for each 

of the constraint in the Unit Commitment Problem and a continuous Hopfield network 

for solving Economic Dispatch problem. The two sorts of networks remain decoupled, 

but learnt simultaneously. This avoids the use of complex unified energy function. It 

provides more flexibility on adding more constraints, without affecting the objective 

function block. But the major limitation comes from larger state spaces, difficult to be 

learnt while finding the schedule of a number of units and for a large profile of load 

data. 

2.2.6 Evolutionary Programming 

EvolutionaIY Programming and Genetic Algorithm are optimization tools 

developed motivated by the natural evolution of organisms. Each of them maintains a 

set of solutions called population, through modification and selection. They differ in 

the representative technique, type of alteration and selection procedure adopted. The 

basic idea behind is to mathematically imitate the evolution process of nature. 
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Evolutionary Programming algorithm considers evolution as a change in 

adaptation and diversity of population (Fogel [1995]). Unlike Genetic Algorithm, 

Evolutionary Programming imposes no restriction on the coding that may be employed 

for the optimization task. 

An Evolutionary Programming algorithm for solving simple Unit scheduling 

task is proposed by Juste et al. [1999]. Each population is having a set of n individuals. 

Each individual represents a solution to the problem. The populations are evolved 

considering the entire state space, without giving any priority to the evolved 

generations and individuals. Each individual is a matrix representing the status of the 

units for the forecasted load period. Binary encoding is used and the decimal 

equivalent of the binary string representing the status for Thours is used for each of the 

units. Each individual is thus encoded as a vector of N decimal numbers. Therefore 

each population is represented by a matrix of N x n decimal numbers. 

From the initial population, randomly selected as haviLg n individuals, the next 

population is evolved through selection. The fitness value of each individual is 

calculated using the cost functions associated with the units. From each parent 

individual, an offspring is created by adding a Gaussian random variable to the 

elements. The parameter of the Gaussian distribution takes into account the fitness 

values of the parent population. The evolved members and the parent individuals 

together are ranked according to their fitness value and the best n individuals are 

selected as the next population. As a number of populations are evolved through this 

iterative procedure, the individuals will approach to the optimum status for the units. 

Evolutionary Programming algorithms are also developed which differ in the 

generation and selection of the offspring from the parent population. By incorporating 

a search technique along with Evolutionary Programming, Rajan and Mohan et al. 

[2004] proposed an algorithm to find Unit Commitment schedule at much lesser time. 

They also considered the cooling and banking constraints and optimum schedule is 

obtained through a hybrid approach of Tabu search and Evolutionary Programming. 
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Due to the use of Evolutionary Programming, the search complexity in the Tabu list is 

reduced. 

Since a large number of populations are to be generated for getting the 

optimum schedule, the time complexity is more in all Evolutionary Programming 

methods. 

D.7 Genetic Algorithm 

Genetic Algorithms (GA) are well-known stochastic methods of global 

optimization based on the evolution theory of Darwin. The various features that 

characterize an individual are determined by its genetic content, represented as 

chromosomes. In GA based solution strategies a population of chromosomes are 

considered and evaluated. Each chromosome is represented as a string. 

In case of Evolutionary Programming the off springs are generated by using a 

Oaussian distribution while in case of genetic algorithm the next generation is evolved 

by changing of the chromosome string through mutation and cross over operations. 

The individuals in the population are encoded using either binary or real 

numbers. The population in GA is treated with genetic operations. At iteration i, the 

population Xi consist of a number of n individuals or solutions Xj where n is called as 

population size. The population is initialized by randomly generated individuals. 

Suitability of an individual is determined by the value of the objective function, called 

fitness .function. A new population is generated by the genetic operations selection, 

crossover and mutation. Parents are chosen by selection and new off springs are 

produced with crossover and mutation. All these operations include randomness. The 

success of optimization process is improved by elitism where the best individuals of 

the old population are copied as such to the next population. 

Kazarilis et al. [1996] applied simple Genetic Algorithm for solution of Unit 

Commitment problem. Binary encoding representing the status of the generating units 

is used and the non linear cost function is employed to calculate the fitness value of the 

individuals. Binary numbers '1' and '0' indicate ON I OFF status of the generating 
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units. Each individual is a solution corresponding to N generating units and T hours. 

Therefore it is represented as N x T matrix of binary numbers. There are 'n' such 

candidate solutions in one population. Through the genetic operators mutation, cross 

over and selection among the parent individuals, new population is created from parent 

population. Recombination of the binary strings is made through cross over which 

exchanges portions between strings. Mutation makes random alteration of the bits in a 

string and thus provides diversification in the competing solutions. A new population is 

produced by selecting the best individuals after applying cross over and mutation. 

Fitness or goodness of a particular individual is measured through evaluation of the 

cost function. 

Since the size of the matrix representing the individual increases with the 

increase in the number of hours and generating units, search space becomes huge. 

Orera and Irving proposed a hybrid genetic algorithm [1997] to handle the 

huge space of variables. A priority order commitment is emJjloyed which gives a sub 

optimal solution to generate the initial GA population. The problem is decomposed in 

the hourly basis to reduce the search space from 2NT to 2N. Starting from the first hour, 

the algorithm sequentially solves the scheduling problem by limiting the search to one 

hour and considering the minimum uptime and down time constraints. For the 

remaining hours, solution for the previous hour is taken as an initial solution instead of 

taking in random. To make the solution more efficient a hybrid method incorporating 

Tabu search and Genetic Algorithm is also proposed by Mantawy et al. [1999 a]. 

Considering the competitive market and import / export constraints, a solution 

to Unit commitment is found (Richter and Sheble [2000]). But the solution neglected 

many other constraints such as cooling period. Cheng et al. [2000] incorporated the 

Genetic Algorithm into Lagrange relaxation method to update the Lagrange multipliers 

and thus to obtain efficient solution. 

A cooperative co evolutionary Programming solution is proposed by Chen and 

Wang [2002]. The algorithm is more powerful in handling more complex problems. 

The method is a two phase method. In the first level, sub gradient method is used to 
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solve the Lagrange multipliers and in the second level, GA is used to solve the system 

variables. 

Xing and Wu [2002] considered the energy contracts while fmding the 

commitment schedule. Senjuy et al. [2002] considered the unit characteristics more 

pn:cisely and found a schedule through Genetic Algorithm. Swamp et al. [2002] 

coasidered the constrained Unit Commitment problem and solution is obtained using 

problem specific operators. Damousis et al. [2004] used an integer coded genetic 

algorithm, which used coding in terms of integer rather than binary as in conventional 

geaetic algorithm. Dudek et al. [2004] explained the application of some improved 

search fitcilities to improve the performance. 

Genetic method involves extensive computation time since a large number of 

popaIations with sufficient number of individuals are to be generated to reach the 

optimum. Therefore this method is not much suitable for larger systems. Also optimal 

soIutiOll-is not always guaranteed. 

U.8 Tabu search 

Tabu search technique applies a meta heuristic algorithm, which uses the 

search history for a good solution among a set of feasible solutions. It uses a flexible 

memory system. The adaptive memory system avoids the trapping to local optimum 

poiDIs, by directing the search to different parts of the search space. Tabu search can be 

treated as an extension of steepest descent algorithm. It selects the lowest cost 

neighbour as the starting point in the next iteration. At each step. the algorithm 

maintains a list of recent solutions. 

Tabu search begins with a randomly chosen initial solution. The initial solution 

is treated as the current solution and the corresponding cost as the current cost. This 

current solution is then modified randomly to get a set of neighbourhood solutions. The 

best solution in the neighbourhood is selected for transition. Each transition through 

the solution space is termed as 'move'. The move is chosen based on the cost of the 

neighbourhood solutions. Usually the lowest cost neighbour is selected for the move 
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even if it is costlier than the current solution. But if the move has been already 

encountered in the near history, it will be discarded if having higher cost. A lower cost 

move will be accepted even if it is already present, to provide sufficient exploration in. 

the search space. 

For comparing the moves and to ascertain the acceptance a list called Tabu list 

is created. In every iteration, the move corresponding to the selected solution is 

inserted in the Tabu list. When an entry is inserted, the earliest one is deleted and the 

cost of the current solution is inserted as the aspiration level of the list to compare the 

cost in the next iterations. This refinement of the list and selection is carried out 

iteratively to reach the optimum solution. 

For solving Unit Commitment problem several solutions based on Tabu search 

are proposed (Mantawy et al. [1998]). Tabu list created is of size Z x N, where Z is the 

list size chosen and N being the number of generating units. Each vector in the matrix 

represents the Tabu Lh.t for one generating unit. That is, each vector records the 

equivalent decimal number of the binary representation of a specific trial solution 

(Uil> t ::: 1, ...... 1) corresponding to unit i. On iterative solution, the infeasible solutions 

are removed from the list and the list reduces to optimal solutions. 

Borghetti et al. [200 1] compared the strength and weakness of Lagrange 

Relaxation and Tabu search for models of competitive electricity market. It revealed 

that there is no guarantee that the Tabu search will yield the global optimal result in 

large systems. Mitani et al. [2005] proposed a combined approach of Lagrange 

relaxation and Tabu search for obtaining the schedule. This method guaranteed the 

optimality, but due to complexity, computational speed is less. 

2.2.9 Particle Swarm Optimization 

In 1995, a solution method termed as Particle Swarm Optimization (PSO), 

motivated by social behavior of organisms such as fish schooling, bird flocking was 

introduced. PSO as an optimization tool provides a population based search procedure 
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in which individuals called particles change their position with respect to time. In a 

PSO system, particles fly around a multi dimensional search space. During flight, each 

particle adjusts its position according to its own experience and the experience of its 

neighbouring particles, making use of the best position encountered by itself and its 

neighbours. The swarm direction of a particle is defmed by the set of particles 

neighbouring the particle and its history or experience. PSO can generate high quality 

IOlutions in less convergence time, compared to other stochastic methods. 

Xiaohui et al. [2005] used the discrete particle swarm algorithm for solving 

Unit Commitment Problem for a ten generating unit system and 24 hour load pattern. 

Each particle is having the elements corresponding to the ON I OFF of the units. 

Starting from a random initial position (state) of the particle, at each position of the 

particle the fitness function (which accounts the production cost and start up cost) is 

evaluated. The best particle position Pbul and also the global best position (on 

... compadngPHII value with the previous best values) are stored. Then the particles 

change their position based on 'velocity' parameter. The velocity parameter of each 

particle accounts the deviation of the current position from the best observed value, at 

the same time accounting the unvisited positions of the solution space. Through the 

iterative procedure, the entire solution space is searched to get the optimum position. 

1bis updating of particle position flight is continued for each slot of time. 

An adaptive strategy for choosing parameters is proposed in the improved 

particle swarm optimization method suggested by Zhao et al. [2006J. It proved to give 

higher quality solutions compared to Evolutionary Programming. 

Even though Particle Swarm Optimization gives a better solution than other 

methods for simpler systems, for large and complex space the particles do not move 

always towards the optimum point. 
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2.2.10 Simulated Annealing 

Simulated Annealing is one powerful stochastic search technique, suitable for 

solution of many optimization problems, derived from material science. The method is 

based on the process of annealing of the metals through heating to a high temperature 

followed by slow cooling, in steps, to obtain the low energy state of the solid. 

In applying this technique to such combinatorial optimization tasks, the basic 

idea is to choose one feasible solution at random and then move to another solution in 

the neighborhood. A neighbouring solution is generated by perturbation to the current 

solution. The fitness value of the neighbouring solution and that of the present solution 

are calculated at each iterative step of the procedure. The neighbouring solution is 

accepted whenever it seems to be better (having less cost). Also some of the higher 

cost solutions are accepted based on a probability distribution and considering their 

fitness values. 

The probability of acceptance of a higher cost solution is decided by the 

control parameter. The value of the control parameter, 'temperature' is initially chosen 

as a high value and reduced in the iterative steps in order to approach to the optimum 

point. Higher temperature at the initial points ensures the proper exploration of the 

solution space and as the temperature is reduced the convergence of the solution is 

achieved. Therefore in order to reach the optimum solution with sufficient exploration, 

a good cooling schedule is to be formulated. 

Zhuang and Galiana [1990] first proposed a Simulated Annealing algorithm to 

solve Unit Commitment problem. The algorithm is a direct implementation of the basic 

Simulated Annealing procedure. The initial solution is obtained using a priority list 

method. In the subsequent iterations, the current solution is perturbed by changing the 

status of an arbitrary unit at an arbitrary hour to generate the next solution. The 

feasibility of the solution is then checked and the cost function is calculated to accept 

or not the same. The temperature is reduced by multiplying the current temperature by 

a factor (in the range 0.8 -0.9). 
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An Enhanced Simulated Annealing is proposed by Wong [1998]. Instead of 

random perturbation, next solution is developed by applying one of the specific steps in 

random. Mantawy et a1.[1999] proposed a hybrid algorithm for solution of Unit 

Commitment Problem using combined Simulated Annealing, Genetic Algorithm and 

Tabu search. The algorithm is superior to the individual methods. 

Purushothama and Lawrence Jenkins [2003] made use of local search method 

to select the best neighbouring solution. At each temperature, a number of 

neishbouring solutions are generated and using local search method best among these 

is selected. The solution obtained is optimum, but computation time is increased. 

2.3 Economic Dispatch ~ Solution strategies 

Economically distributing the load demand among the various committed units 

at each hour I time slot is one optimization task in power generation control. It has 

beea solved by many researchers using different methodologies. The complexity of 

this problem comes from the non convexity of cost functions, piece wise incremental 

cost functions associated with many of the units, transmission loss associated with the 

system etc. A number of classical and stochastic methods have been proposed for the 

IOlution of this constrained optimization problem. 

Chowdhury and Rahman [19901 gave a detailed review of the methods 

.~1oped ti111990. After that a variety oftecbniques have been developed of which 

most of them are soft computing tec~ques. A brief review of the latest methods is 

given here with an evaluation point of view. 

13.1 Classical Methods 

Lambda iteration is one of the conventional methods for solving the 

CODStrained optimization problem (Wood and Wollenberg [2002]). It has been very 

successfully implemented for the solution of the problem by many researchers. In this 

method, a Lagrange function is formulated by adding with the objective function, the 

CODStmint function mUltiplied by the multiplier 'lambda'. The iterative adjusting of the 

parameter lambda is carried out. When the difference between the total generation and 
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demand falls within a tolerable limit or after sufficient large number of iterations, the 

updating of the parameter lambda is stopped. This method is found to be good. but has 

a slow convergence or yield an unacceptable result if the initial lambda and the method 

of updating of lambda are not properly selected. Also for effective implementation of 

this method. the cost functions need to be continuous. 

Base point participation factor method is one of the earlier methods used in 

Economic Dispatch solution. In this case, each generating unit is having a participation 

factor associated with it depending on its generation and cost constraints. 

Incorporating this weighted constraint function along with the objective function a new 

objective function is formulated. Solution of the function is then carried out using 

iterative or graphical methods. This method is simple, but not capable of 

accommodating larger number of units and complex cost functions. 

Gradient method is one analytical method in which the objective function is 

minimized by finding the steepest descent gradient. The solution depends on the initial 

starting point. If the initial solution is better, it gives the optimum result very easily. 

But if the initial solution points in a wrong direction, getting an optimum result is 

much difficult. 

Also, these methods require the generator cost curves to be continuous 

functions, which is not possible in the case of practical situations. Also these methods 

have oscillating tendency in large scale mixed generating unit systems leading to high 

computation time. A lot of other techniques have been evolved to tackle the non 

convexity of the cost functions. 

2.3.2 Dynamic Programming 

Dynamic Programming (DP) is a good solution method for solving non linear 

and discontinuous optimization tasks. It is an efficient method for solving of the 

Economic Dispatch problem also (Wood and Wollenberg [2002]). DP works with the 

unit input output information directly by enumerating all possible solutions. It consists 

of evaluating the problem in stages corresponding to each unit for choosing the 

optimal allocation for a unit. 
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On solving Economic Dispatch, first a forward approach is carried out to 

generate tables of costs. In the fIrst step considering a power demand D the fIrst two 

units (considered in random) are scheduled to fmd the minimum cost. For the same, 

some power (say PI) is assumed to one of the generating unit and the balance (D - PJ 

to one from the remaining set (2Dd unit) as P2. This constitutes a table of discrete 

values and corresponding costs. From the table of values corresponding to each value 

of power minimum cost and the corresponding distribution among the two units can 

be found. Then the next unit is considered. The power allotment to the third unit is 

then made in the next step by allocating PJ to it and allocating power D - PJ 

economically among the fIrst two units (finding the allocation schedule P',P2 

corresponding to the minimum cost from the previous table). 1bis generates the 

second table of values. This is continued till the last unit, to get the cost distribution 

. tables corresponding to different power allocation to the different generating units. 

Then a backward search is carried out through the distributions to obtain the minimum 

cost allocation to each of the units. 

This backward dynamic programming method has been successfully applied to 

several systems. It gives an optimum solution for smaller systems. But as the number 

of generating units and the constraints of the system increases, it becomes difficult to 

generate and manage the larger number of entries in the discrete tables. Therefore 

when number of units and scheduled power range increases Dynamic Programming 

method fails. In other words, Dynamic Programming method suffers from the curse of 

dimensionality. It leads to higher computational cost even when incorporating the 

zoom feature (Liang and Glover [1992], Shoults et al. [1996]). The method leads to 

local optimal solutions when avoiding the problem of dimensionality. 

2.3.3 Neural Networks 

The ability of Neural Networks to realize some complex non linear functions 

makes them attractive for system optimization including Economic Dispatch problem. 

Hopfield Neural Networks have been successfully applied to the solution of Economic 

Dispatch problem. Since the allocation of power to the different generators comes from 
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a continuous space, Hopfield Neural Networks with continuous activation functions are 

found suitable for dispatch problem. Energy function of the continuous Hopfield 

Network is defined differently by different researchers. 

Kasangaki et al. [1997] proposed Hopfield Neural Network solution for 

handling Unit Commitment and Economic Dispatch. The problem variables are first 

modeled as stochastic differential equations considering the constraints. Then Hopfield 

Neural Network with augmented cost function as energy function find the optimum 

values of these variables. 

Su and Lin [2000] also proposed a Hopfield Neural Network as a solution 

method for simple Economic Dispatch problem. They considered some of the security 

constraints and used simple back propagation algorithm to obtain the optimum 

solution. The energy function is formulated by combining the objective function with 

the constraint function using appropriate weighting factors. 

Yalcinoz and Cory [200 I] developed Hopfield Neural Network solutions for 

various types of Economic Dispatch problems. In this case also. the constraints are 

handled by modification of the activation functions. Radial Basis Function networks 

are used by Aravindhababu and Nayer [2002] to get an optimum allocation. Farooqui 

et al. [2003] proposed an algorithm based on Hopfield Neural Networks considering 

ramp rate constraints. Balakrishnan et al. [2003] considered the emission constraints 

also in thermal dispatch. Later, Silva et al. [2004] introduced one efficient Hopfield 

Neural Network solution with transmission system representation. 

Senthilkumar and Palanisamy [2006] suggested a Dynamic Programming 

based fast computation Hopfield Neural Network for solution of Economic Dispatch 

problem. Swarup and Simi [2006] proposed the solution using continuous Hopfield 

Neural Networks in which weighting factors are calculated using adaptive relations. 

But the computational effort is high in these methods due to the large number of 

iterations needed to obtain optimality. 
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13.4 Genetic Algorithm 

While applying GA for solution of Economic Dispatch, the encoding 

commonly used is the binary encoding, representing the MW generation as the 

canesponding binary string. The fitness function is the cost function considering the 

ramp mte constraints, prohibited operating zones etc. 

A variety of GA based algorithms are developed to get the economic schedule. 

Walters and Sheble [1993] used this method for solving Economic Dispatch problem. 

A hybrid form of Genetic Algorithm and Back propagation network is given by Ping 

ml Huanguang [2000]. Ongasakul and Tippayacbai [2002] suggested a modified 

Genetic Algorithm termed as Micro Genetic Algorithm for solution. He considered 

ctiffereot types of cost functions to prove the flexibility of the algorithm. Basker et al. 

[2003] proposed a real coded algorithm., instead of binary coding. Won and Park 

[2003] worked out an improved genetic algorithm solution and found to be better than 

CQIlveutional genetic algorithm a..le to the improved selection operator based on 

Gaussian distribution chosen for generating a new population. 

13.5 Evolutionary Programming 

Evolutionary Programming (EP) method is capable of rendering a global or 

near global optimum without gradient information. For generating units having non 

convex cost function, Evolutionary Programming seems to be a good method. 

In solution of Economic Dispatch, the initial parent is generated as the MW 

distribution in proportion to the generation capacity of the different generating units. 

The successive populations are generated from the parent using the different 

distribution patterns. The fitness values of the off springs are mostly evaluated based 

OD the cost function or cost distribution. Then n fittest off springs are selected for 

generating the next generation. The iterative procedure is continued till optimum 

allocation is obtained after generating a number of populations. 
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Yang et al. [1996] suggested a solution for Economlc Dispatch problem using 

a Gaussian distribution for generation of off springs. Later, an evolutionary 

programming algorithm for a utility system having fuel restricted and fuel unrestricted 

units has been suggested by Kumarappan and Mohan [2003]. They also considered the 

transmission losses by executing the fast decoupled load flow for the system. Even 

though it gives one optimum allocation schedule, the computation seems to be more 

expensive and a lot of memory is required. 

Sharkh et al. [2003] combined the approaches of Evolutionary Programming 

with fuzzy logic and formulated an algorithm which considered the uncertainty in the 

constraints. 

Evolutionary Programming method is applied for Economic Dispatch problem 

by Somasundaram and Kuppusamy [2005] incorporating the efficiency of conventional 

lambda iteration method. In this, system lambda is taken as the decision variable and 

power mismatch is taken as the fitness function. The method used two steps of 

computation, one to find the optimum decision space and then the second finding the 

optimum decision point. 

Jayabarathi et al. [2005] explored evolutionary programming algorithms for 

the solution of various kinds of Economic Dispatch problems such as considering 

prohibited operating zones, ramp rate limits etc .. Classical Evolutionary Programming, 

Fast Evolutionary Programming and Improved Fast Evolutionary Programming 

methods are developed for the solution of the problem. Classical and Fast 

Evolutionary Programming methods take more computation time and Improved Fast 

Evolutionary Programming requires more complex computations. 

Ravi et al. [2006] proposed a fast evolutionary programming technique for 

handling heuristic load patterns. A modification of this method named as clonal 

algorithm is applied by Panigrahi et al. [2006]. Coelho et al. [2007] gave an 

Evolutionary Programming technique for solution of security constrained Economic 
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Dispatch problem. The line flow and bus voltage constraints are taken into 

consideration. 

These methods seem to have the disadvantages of slow convergence due to a 

Jarae number or generations to be manipulated and also need a large number of 

decision variables. It also suffers from indeterministic stopping criteria. 

2.3.6 Partlcle Swarm Optimization 

Particle Swarm Optimization (PSO) is one of the heuristic algorithms which 

CID be used to solve the non linear and non continuous optimization problems . 

. 'lheleiOle many researchers find it suitable for solution of Economic Dispatch 

problem. The individuals called particles change their position based on its own 

pnvious experience and the experience of the neighbouring particles. 

Each individual or particle is represented as a string representing the power 

:.Docation!O the different units. If there are N units to be dispatched then lit individual 

Jarepesentedas PN := [Pl/, Pa ........ , PiN]' The dimension of the population is n x N, 

.. ,Where" is the number of particles in the population. The evaluation of fitness function 

. it die reciprocal of the cost function in order to obtain the minjmization of the problem. 

~ fitness value of each individual h is calculated and compared with that of the 

J'fIIIIining individuals in the population. The best value among these is stored as the 

particle best vale. Also comparison is made with the best value already found in the 

already generated populations and it is stored as the global best value of the 

'1"imizatjon function. A velocity parameter is updated based on the deviation of each 

particle fitness value from the best value and the positions of the particles are updated 

This basic PSO method for Economic Dispatch is used with modifications in the 

updating of the velocity parameters, the number of individuals and populations stored 

ad selection of individuals for the population. 

Giang [2003] proposed the algorithm for solution through basic PSO method. 

Sclwkumar and Thaushikodi [2007] proposed a modified algorithm for solution of 

Ecoaomic Dispatch problem. In this method, along with particle's best position worst 
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position is also stored. This gives more exploration of search space. Performance 

evaluation proved it to be better than classical PSO method. 

2.3.7 Taguchi method 

Taguchi method involves the use of orthogonal arrays in estimating the 

gradient of cost functions. The controlled variables are called factors. The method 

involves an analysis that reveals which of the factors are most effective in reaching the 

goals and the directions in which these factors are most effectively adjusted. This is 

done by varying the factors in a disciplined manner and recording the corresponding 

values of the objective function. When the factors reach the optimum, optimum 

solution is obtained. 

This method provides with a solution having reduced complexity for solving 

the Economic Dispatch problem (Liu and Cai [2005]). A vector having N elements. 

[al. a2, ....... aN] which corresponds to the relative contribution of the generator to the 

total power is taken as the factors to be optimized. The values of these factors are 

iteratively computed using the method of orthogonal array. The algorithm is found to 

provide better performance and lesser solution time than Evolutionary Programming 

and Neural Networks. But the computational complexity is more due to the large 

matrices to be handled and hence more difficult to incorporate additional system 

constraints. 

2.3.8 Direct search method 

This is a search technique which achieves the global optimum point by 

searching the solution space through exploration. Search technique seems to give 

optimum result always since the entire solution space is considered without 

elimination. Chen proposed an algorithm to apply this method for Economic Dispatch 

problem (Chen [2005J, [2007]). For improving the performance of the direct search 

procedure, a novel strategy with multi level convergence is incorporated in search 

method to minimize the number of iterations and achieve faster convergence. 
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J.M Tabu search 

The search method provided by Tabu search is applied to Economic Dispatch 

JllDbian (Lin et al. [2002]). It takes care to avoid trapping in the local minima points 

1Jt1lliDi an adaptive size for the tabu list. A number of searches are carried out inside 

.. " of the iterations of the algorithm and the best solution point is fixed Also the 

"~ individuals are ranked in descending order according to their fitness scored, 

"by. aortiDg algorithm. This ensured the optimum solution to the constrained problem. 

. Bat. the search space which is large for larger systems leads to take more computer 

.~ and thus sometimes is difficult to get converged. 

UtO Decision trees 

Inductive Inference system is used to build the decision tree by classifying the 

amples to different learning sets (Sapulveda et al. [2000]). For generating the 

"~ learning sets certain values of attributes are considered. The power 

~ values of the units are used as attributes to define the learning set and the 

JdDement and intensifying is done by evaluating the objective function. Sapulveda et 

111.., f2OO3] suggested an objective function comprising of the power mismatch, total 

fall coat and transmission line losses. The weighting factors associated with the terms 

11'0 adjusted through lambda iteration method. The algorithm seems to be suitable for 

IIIIDY systems considering transmission losses. But there exists a chance of trapping in 

local optimum. points. 

A similar technique termed as Partition Approach algorithm was proposed by 

Un and Gow [2007]. The method gave optimum result in lesser time, but for obtaining 

the same, a number of trials are to be executed out of which average has to be 

calculated. 

2.4 Automatic Generation Control 

Automatic Generation Control which is the third loop in the generation control 

scheme tries to achieve the balance of generation and load in each area and maintain 

the system frequency and tie line flows at the scheduled values. Load frequency action 
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is guided by the Area Control Error (ACE), which is a function of the system 

frequency and the tie line interchange. AGC studies are generally carried out using 

simulation models. 

2.4.1 Automatic Generation Control- Models of Power system Network 

AGC studies are widely done using simulation model proposed by Elgerd 

[1982]. According to this approach, in each area, a group of generators are closely 

coupled internally and swing in unison. Also, the generator turbines tend to have the 

same response characteristics. Then each control area is represented by a single loop. 

The turbine, generator and load parameters represent the equivalent values considering 

all the generators in that area. The different control areas are connected by loss less tie 

lines. The power flowing through the tie line appears as a load decrease I increase in 

the other area, depending on the direction of flow. A change of power in one of the 

areas is met by a change in generation of all interconnected areas followed by a change 

in the tie line power. Correspondingly, the frequency change will occur in all the 

interconnected areas. 

In a practical network, the interconnected power system operate at a single 

frequency and this common frequency (common to all areas) is determined by the net 

generated power and connected load of all the areas. In such a system, the tie line 

power of each area is computed as the difference of generated power and load power of 

that area (Divya and Nagendra Rao [2005]) 

Advantages of such a system are enumerated as 
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(i) The system model is closer to practical power system network. 

(ii) It does not require the calculation of tie line constant (which depends on 

the nature and no: of lines of interconnection) 

(ill) Model does not require a composite prime mover model representing the 

entire area. 
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lA.2 AGe - Control strategies 

The basic control strategy is, to set the reference point in each area of the 

interconnected system. The change in the set point is guided by the variation in the 

frequency resulting from the addition or removal of a load. The various control 

strategies make the decision on the reference set point, by calculating the Area 

Control Error (ACE). 

Classical as well as modern control strategies are being used in AGC. Athay 

[1987] gives a review of the early works done in this area. Also several soft 

computing techniques have been applied for finding the control strategy for AGC. 

Abdel Magid and Dawoud [1997] proposed the Generation control using Genetic 

Algorithm. Neural Networks is used for the control solution by Zeynelgil et al. 

[2002]. Fuzzy Logic controllers which take into account the uncertainty in the 

instantaneous variations are developed (Demiroren and Yesil [2004]). Simulated 

Annealing is used as the solution method in a multi area thermal generating system 

(Ghosal [2004]). Imthias Ahamed et al.[2002] proposed a Reinforcement Learning 

approach to a two area system. But the models used in all these assume different 

frequencies for the two areas (model proposed by Elgerd). 

Automatic Generation Control, considering the same frequency for all the areas 

has not yet been developed by any of the stochastic techniques till now. Since in the 

practical system, all the areas have a common frequency, it is worth to think in this 

direction. 

2.5 Reinforcement Learning and Applications 

Reinforcement learning theory is a formal computational model of learning 

through continuous interaction (Sutton and Barto [1998]). It forms a way of 

programming agents by reward and punishment without needing to specify how the 

task is to be achieved. It relies on a set of learning algorithms to trace out the pay otTs 

at each interaction and analyzing the same. In the standard Reinforcement Learning 

framework, a learning agent which can be a natural or artificially simulated one 
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repeatedly observes the state (present status in terms of a set of parameters or 

observations) of its environment and performs an action from the many choices 

possible. Performing an action changes the state or 'a transition of state' is said to 

occur. Also, the agent obtains an immediate (numeric) payoff, based on the state and 

the action performed. The agent must learn to maximize a long term sum of the 

reward that it can receive. 

One reason that Reinforcement Learning is popular is that it mimics the natural 

behavior. It serves as a theoretical tool for studying the principles of agents learn 'how 

to act'. It has also been used by many researchers as an effective computational tool 

for constructing autonomous systems for various fields of control. Since the learning 

agent improves through experience, it has been found as a good tool for closed loop 

control action which is the fundamental behavior of all the learning systems. 

Reinforcement Learning can also be viewed as an approximation to Dynamic 

Programming. 

Si et al. [2004] have given a good detailed description of Approximate 

Dynamic Programming. Description on neuro dynamic programming and linear 

programming approaches for Adaptive Dynamic Programming are explained. Multi 

objective control problems, Robust Reinforcement Leaning and Supervised actor 

critic Reinforcement Learning concepts are also detailed. Along with the design 

concepts, the book is having one separate section dedicated for the different 

applications of these adaptive optimization concepts including missile control, heating 

and ventilation control of buildings, power system control and stochastic optimal 

power flow. 

The applications where Reinforcement Learning has been applied include 

combinatorial search and optimization problems like game playing, industrial process 

control and manufacturing, robotics, medical image processing, power system etc. 

These practical applications have proved Reinforcement Learning as a useful and 

efficient learning methodology. In the next section, a review of some of the 
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applications where Reinforcement Learning has been successfully applied is 

discussed. 

2.5.1 Game playing 

Artificial Intelligence (AI) has been providing several solutions to one of the 

search problems in computer science: Game playing. It varies from single player to 

multi player games. These problems are formulated as optimization problems in A1 

Many researchers applied Reinforcement Leaming algorithms for various classes of 

game playing. Tesauro and Gammon [1994] applied the temporal difference algorithm 

to Backgammon. Two types of learning algorithms were developed, one with little 

knowledge of the board positions in the game and the other with more knowledge 

about the board positions or the game environment (Tesauro and Gammon [1995]). In 

these algorithms, no exploration strategy was used It took more computation time but 

guaranteed convergence and best reward position in finite time. Since it mimics the 

human p!ay at top level, the algorithms were impressive among AI researchers. 

Reinforcement Learning combined with function approximation provided by 

Neural Network is a very effective tool while dealing with large state spaces. The 

implementation of board game Othello by Nees and Wezel [2004J is a very good proof 

for the same. 

2.5.2 Robotics And Control 

Since the emergence of Reinforcement Learning, it has been successively 

applied by many researchers in the derivation of suitable control strategy for robot. 

Mataric [1992] described robotic experiments which learned from Q learning. 

Crites and Barto [1997] applied the Q learning strategy in an elevator control 

task. The problem involved several elevators servicing the various floors. The 

objective is to minimize the average squared wait time for passengers. Ibis discounting 

problem is effectively solved using Reinforcement Learning and take less computation 

time than other methods. Handa and Ninimy [2001] proposed a robust controller, 

through temporal difference learning method. 
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Autonomous helicopter flight represents a challenging control problem with 

complex and noisy dynamics. Andrew et al. [2004] described a successful application 

of Reinforcement Learning to autonomous helicopter flight. 

Kehris and Dranidis (2005] investigated the generation of an entry control 

policy for an assembly plant using a Reinforcement Learning agent. The assembly 

plant consists of ten workstations and produces three types of products. The objective 

is to control and sequence the machines in an optimum manner, ensuring the correct 

combination in production mix. The RL optimization gives a better allotment to the 

various work stations. 

2.5.3 Computer Networking 

Effective network routing is a complex task in the interconnected system. 

Along with other intelligent methods, Reinforcement Learning has also been used in 

this area. Kelley [2005] proposed Q learning strategy for achieving an efficient and 

fast routing strategy. Another traffic hancUing method is suggested by Sahad [2005]. 

He proposed an intelligent method which used the concept of fuzzy logic along with 

Reinforcement Learning strategy. 

2.5.4 Process management 

A Job scheduling problem has been solved by Zhang [1995] .This gives a 

general framework for applying the Reinforcement Learning strategy to delayed 

reward situations. Q learning with exploration strategy is applied for achieving the 

computationally effective solution. 

2.5.5 Medical images 

One widely used technique for medical diagnosis is ultra sound imaging. The 

difficulty with the diagnosis is due to poor image contrast, noise and missing or diffuse 

boundaries which makes difficult for segmentation. Reinforcement learning scheme is 

effectively applied for transrectal ultra sound images by Sahba and Tizhoosh [2008] 

very recently. 
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2.6 Conclusion 

A detailed review of the existing methodologies in the field of power system 

scheduling has been carried out in this chapter. Several classical and heuristic 

methodologies adopted for the solution of scheduling problems have been looked at. 

Even though numerous solution methodologies exist, thinking of more efficient and 

computationally faster stochastic strategy is still relevant In the next chapter the 

Reinforcement Learning problems and learning method are discussed. 
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CHAPTER 3 

REINFORCEMENT LEARNING 

3.1 Introduction 

Reinforcement Learning (RL) is the study of how animals and artificial 

systems can learn to optimize their behavior in the face of rewards and punishments. 

One way in which animals acquire complex behaviors is by learning to obtain rewards 

and to avoid punishments. Learning of a baby to walk, a child acquiring the lesson of 

riding bicycle, an animal learning to trap his food etc. are some examples. During this 

learning process, the agent interacts with the environment. At each step of interaction, 

on observing or feeling the current state, an action is taken by the learner. Depending 

on the goodness of the action at the particular situation, it is tried in the next stage 

when the same or similar situation arises (Bertsekas and Tsitsikilis [1996]. Sutton and 

Barto [1998], Sathyakeerthi and Ravindran [1996]). 

The learning methodologies developed for such learning tasks originally 

combine two disciplines: Dynamic Programming and Function Approximation (Moore 

et al. [1996]). Dynamic Programming is a field of mathematics that has been 

traditionally used to solve a variety of optimization problems. However Dynamic 

Programming in its pure form is limited in size and complexity of the problems it can 

address. Function Approximation methods like Neural Networks learn the system by 

different sets of input - output pairs to train the network. In RL. the goal to be achieved 

is known and the system learns how to achieve the goal by trial and error interactions 

with the environment. 

In the conventional Reinforcement Learning frame work, the agent does not 

initially know what effects its actions have on the state of the environment and also 

what the immediate reward he will get on selecting an action. It particularly does not 

know what action is best to do. Rather it tries out the various actions at various states, 
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gradually learns which one is the best at each state so as to maximize its long term 

reward. The agent thus tries to acquire a control policy or a rule for choosing an action 

according to the observed current state of the environment. One most natural way to 

acquire the above mentioned control rule would be the agent to visit each and every 

state in the environment and try out the various possible actions. At each state it 

observes the effect of the actions in terms of rewards. From the observed rewards, best 

action at each state or best policy is manipulated. However this is not at all practically 

possible since planning ahead involves accurate enumeration of possible actions and 

rewards at various states which is computationaliy very expensive. Also such planning 

is very difficult since some actions may have stochastic effects, so that performing the 

same action at two different situations may give different reward values. 

One promising feature in such Reinforcement Learning problems is that there 

are simple learning algorithms by means of which an agent can learn an optimal rule or 

policy without the need for planning ahead Also such learning requires only a minimal 

amount of memory: an agent can learn if it can consider only the last action it took, the 

state in which it took that action and present state reached (Sutton and Barto [1998]). 

The concept of Reinforcement Learning problem and action selection is 

explained with a simple N - arm bandit problem in the next section. A grid world 

problem is taken to discuss the different parts of the RL problem. Then the multi stage 

decision making tasks are explained. The various techniques of solution or learning are 

described through mathematical formulations. The different action selection strategies 

and one of the solution methods namely Q learning are discussed. The few applications 

ofRL based learning in the fields of power system are also briefly explained. 

3.2 N - Arm bandit Problem 

The N ann bandit is a game based on slot machines. The slot machine is 

having a number of arms or levers. For playing the game, one has to pay a fixed fee. 

The player will obtain a monetary reward by playing an arm of his choice. The 

monetary reward may be greater or lesser than the fee he had paid. Also the reward 

from each arm will be around a mean value with some value of variance. The aim of 
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the player is to obtain maximum reward or pay, by playing the game. If the play on an 

arm is considered as an action or decision, then the objective is to find the best action 

from the action set (set of arms). Since the reward is around a mean value. the problem 

is to find the action giving highest reward or the arm with highest mean value which 

can be called as best arm. 

To introduce the notations used in the thesis, action of choosing an arm is 

denoted by "a ". The goodness of choosing an arm or quality of an arm is the mean 

value of arm and is denoted by Q(a). If the mean of all anns are known the best arm is 

given by the equation, 

a· = argmax Q(a)' .. 
aEcIl 

where.Jl= {1.2 •.......... N} (3.1) 

As mentioned earlier, the problem is that the Q(a) values are unknown. One 

simple and direct method is to play each arm a large number of times. Let the reward 

received in playing an arm in It trial is rk(a). Then an estimate of Q(a) after n trials 

is obtained using the equation, 

n 

(In (a) = ~ I r"(a) 
k=1 

By law of large numbers, 

Urn fin (a) = Q(a) 
n->oo 

(3.2) 

Now the optimal action is obtained by equation (3.1). To make the notation 

less cumbersome, the estimate of Q(a) will also be denoted by Qn(a). 

The above method termed as Brute force is time consuming. As a preliminary 

to understand an efficient algorithm for rmding Q values (mean values corresponding 

to each arm), a well known recursive method is now derived. 

As explained earlier, average based on 1J observations is given by, 

) Clg = argmaxafA Q(a) => Q(ag ):?; Q(a)Va e cl! 
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Therefore, 

n+1 
on+1 Ca) = _1_,,\, rkCa) 

n+1L 
k=1 

n 

= _1_ { ~ "\' rkCa) + rn+1Ca)} 
n+l nL 

k=1 

Then, using equation (3.3), 

That is, 

fin+1 Ca) = _l_{non Ca) + r n+1Ca)} 
n+l 

n ~ 1 1 = - Qn Ca) +- rn+ Ca) 
n+1 n+1 

= (1 - _1_) fin Ca) + _1_ rn+1Ca) 
n+1 n+1 

On+1 Ca) = on Ca) +_1_[rn+1Ca) - on Ca)] 
n+1 

(3.3) 

(3.4) 

The above equation tells that the new estimate based on n+ t" observation, 

rn+1Ca) is old estimate QnCa) plus a small number times the error, (rn+1Ca)­

Qn Ca)). 
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There are results which say that under some technical conditions a decreasing 

sequence {an} can be used instead of _1_ to get a recursive equation (Robbins and 
n+l 

Monro [1951 D. That is, 

The sequence an is such that L an = 00; L ai < 00. 

Different variants of the above equation are used throughout the thesis. 

Now, an efficient method to fmd the best arm of the N- arm bandit problem can be 

explained (Thathachar and Sastry [2003]). 

Initialize n;:O, a ;: 0.1 

Initialize QO(a) = 0, "I a E cA 

Select an action "a" using an action selection strategyD 

Step 1 

Step 2 

Step 3 

Step 4 : Play the arm corresponding to action"a" and obtain the 

reward rn(a) 

Step 5 Update the estimate of Q(a), 

Step 6 n;: n+1 

Step 7 If n < mat _iteration, go to step 3 

Step 8 Stop. 

To use the above algorithm, an efficient action selection strategy is required. 

One method would be to take an action with uniform probability. In this way one will 

play all the arms equal number of times. That is, throughout the learning the action 

space is explored. 

11 Action selection strategy is defined in the next paragraph 
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Instead of playing all the arms more nwnber of times, it makes sense to play 

the arms which may be the best arm. One such efficient algorithm for action selection 

is e -greedy (Sutton and Barto [1998], Thathachar and Sastry [2003]). In this 

algorithm, the greedy arm is played with a probability (1- e) and one of the other arms 

with a probability e. Greedy arm (ag ) corresponds to the arm with the best estimate of 

Q value. That is, 

ag = argmax Qn(a) 
aEcA 

It may be noted that if e = I, the algorithm will select one of the actions with 

uniform probability and if e ;:::0, the greedy action will be selected. Initially, the 

estimates Qn(a) may not be true value. However as n -+ 00, Qn(a) -+ Q(a). and then 

we may exploit the information contained in Qn(a). So in e greedy algorithm, initially 

e is chosen close to 1 and as n increases e is gradually reduced. 

Proper balancing of exploration and exploitation of the action space ultimately 

reduces the number of trials needed to find out the best arm. For a variety of such 

algorithms refer (Thathachar and Sastry [2003]). A more detailed discussion on the 

parts of Reinforcement Learning problem is given in the following sections. 

3.3 Parts of Reinforcement Learning problem 

The earlier example discussed had only one state. In many practical situations, 

the problem may be to find the best action for different states. In order to make the 

characteristics of such general Reinforcement Learning problems clearer, and to 

identify the different parts of a Reinforcement Learning problem, a shortest path 

problem is considered in this section. Consider the grid world problem as given in 

Fig 3.1. 
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Fig 3.1 Grid world problem 

The grid considered is having 36 cells arranged in 6 rows and 6 columns. A 

robot can be at anyone of the possible cells at any instant. 'G I denotes the goal state to 

which the robot aim to reach and the crossed cells denote cells with some sort of 

obstacles. There is a cost associated with each cell transition while the cost of passing 

through a cell with obstacle is much higher compared to other cells. Starting from any 

initial position in the gri~ robot can reach the goal cell by following different paths 

and correspondingly cost incurred will also vary. The problem is to find an optimum 

path to reach the goal starting from anyone of the initial cell position. With respect to 

this example, the parts of the Reinforcement Learning problem can now be defined. 

3.3.1 State space 

The cell number can be taken as state of the robot at any time. The possible 

state the robot can occupy at any instant is coming from the entire cell space. In 

Reinforcement Learning Terminology. it is termed as state space. State space in 

Reinforcement Learning problem is defined as the set of possible states the agent 

(learner) can occupy at different instants of time. At any instant, the agent will be at 
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anyone of the state from the entire state space. The state of the robot at instant k can be 

denoted as Xl- The entire state space is then taken as '1., so that at any instant le, Xk FE Z. In 

order to reach the goal state 'G' from the initial state Xo. the robot has to take a series of 

actions or cell transitions, a(}, al .... ...... .... aN.I. 

3.3.2 Action space 

At any instant k, the robot can take any of the action (cell transition) ah from 

the set of permissible actions in the action set or action space .All:. The permissible set 

of actions at each instant k depends on the current state Xk of the robot. If the Robot 

stays in any of the cells in the first column, 'move to Left' is not possible. Similarly for 

each cell in the grid world, there is a set of possible cell movements or state transitions. 

The set of possible actions or cell transitions at current state Xk is denoted as .AXle which 

also depend on the current state Xk. For example ifxA: =7 • .AXle ={ right, up, down} and 

ifxA: =1, .AXle ={ right, down}. 

3.3.3 System model 

Reinforcement Learning can be used to learn directly by interacting with the 

system. If that is not possible a model is required. It need not be a mathematical model. 

A simulation model would also be sufficient. In this simple example, a mathematical 

model can be obtained. 

On taking an action the robot proceeds to the next cell position which is a 

function of the current state and action. In other words the state occupied by the robot 

in k+ 1 , Xk+/ depends on Xk and aA:. 1bat is, 

XHI = f(xk., aJ (3.5) 

For example, if Xk = 7 and ak =down, then XH/= 13 while when at = up ,xk+1 = 1. 

For this simple grid world, Xk+/ is easily obtained by observation. For problems with 

larger state space, the state Xk+1 can be found from the simulation model or studying the 

environment in which robot moves. The aim of a robot in the grid is to reach the goal 

state starting from its initial position or state at minimum cost. At each step it takes an 
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action which is followed by state transition or movement in the grid The actions which 

make state transitions to reach the goal state at minimum cost points out the optimum 

solution. Therefore the shortest path problem can be stated as finding the sequence of 

actions at), ab ...... , aN_! starting from any initial state such that the total cost for 

reaching goal state G is minimum. 

3.3.4 Policy 

As explained in the previous section, whenever an action at is taken in state x.., 
state transition occurs governed by equation (3.5). illtimate learning solution is to find 

out a rule by which an action is chosen at any of the possible states. In other words a 

good mapping from the state space X to action space cA is to be derived. 

In Reinforcement Learning problems, any mapping from state space to action 

space is termed as policy and denoted as p. Then p(x} denotes the action taken by the 

robot on reaching state x. At any state x, since there are different possible paths to 

reach the goal, they are treated as different policies: plx}, plx}, ... etc. The optimum 

policy at any state x is denoted as 7f*Cx). Reinforcement Learning methods go through 

iterative steps to evolve this optimal policy 7f*Cx). In order to find out the optimum 

policy, some modes of comparison among policies are to be formulated. For the same. 

the reward function to be defined which give a quantitative measure of the goodness of 

an action at a particular state. 

3.3.5 Reinforcement function 

Designing a reinforcement function is an important issue in Reinforcement 

Learning. Reinforcement function should be able to catch the objective of the agent. In 

some cases, it is straight forward; in some other cases it is not. For example, in the case 

of N - arm bandit problem (which can be viewed as a Reinforcement Learning 

problem with just one state), the reinforcement function is the return obtained while the 

agent play an arm. In the case of the grid world problem, the objective is to find the 

shortest path. In this case, it can be assumed that the system will incur a cost of one 

unit when the agent moves from one cell to another normal cell and incur a cost of "B" 
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units when it moves to a cell with obstacle. The value "B" should be chosen depending 

on how bad the obstacle is. 

More formally, at stage k the agent perform an action ale at the state Xle and 

move to a new state Xle+1' The reinforcement function is denoted by g(Xlel alel Xle+1)' 

The reinforcement obtained in each step is also known as reward and is denoted by 

Tle.The agent learns a sequence of action to minimize L o (Xlel alel X1c+l)' 

In the case of learning by animals, the reward is obtained from the 

environment. However in the case of algorithms, the reinforcement function is to be 

defined. 

In this simple grid world, reinforcement function can be defined as, 

o (Xle. ale. Xle+l) = 1, if Xle+1 is anormal cell 

= B. if Xle+l is a cell with obstacles. 

If cell with obstacle has to be avoided, choose B::: 10,00,000. If the obstacle is 

having very smaller effect then B can be chosen as 10. 

To fmd the total cost, cumulate the costs or rewards on each transition. Now 

the total cost for reaching the goal state can be taken as LZ:(~-l) g(Xle. ale. X1c+l) I 

Xo being the initial state and Nbeing the number of transitions to reach the goal state. 

3.3.6 Value function 

The issue is how the robot (in genernl, agent in Reinforcement Learning 

problem) can choose 'good' decisions in order to reach the goal state, starting from an 

initial state x, at minimum cost. Robot has to follow a good policy starting from the 

initial state in order to reach the goal at minimum cost. One measure to evaluate the 

goodness of a policy is the total expected discounted cost incurred while following a 

policy over N stages. Value function for any policy 1t, yn: X -. flI is defIned to rate 

the goodness of the different policies. y1f(x) represents the total cost incurred by 

starting in state x and following a policy 1t over N stages. Then, 
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N-l 

V1l'(X) = I yg(Xk. a".Xk+1)' 
k=O 

I Xo = x 

(3.6) 

Here y is the discount factor. The reason for incorporating a discount factor is 

that, the real goodness of an action may not be reflected by its immediate reward. 

Value of y is decided by the problem environment to account how much the future 

rewards to be discounted to rate the goodness of the policy at the present state. 

Discount factor can take a value between 0 and 1 based on the problem environment. A 

value 1 indicates that all the future rewards are having equal importance as the 

immediate reward. In this shortest path problem since all the costs are relevant to the 

same extent, y is taken as1. 

On formulating this objective function, a policy 1rJ is said to be better than a 

policy 1r] when V1ft(x) S V1f:z(x), V x E .1. The problem is to find an optimal policy 

1C. such that starting from an initial state x, the value function or expected total cost is 

lower when following policy 1C. compared to any other policy 1r € n That is, find 

1C. such that, 

V1f• (x) S V1l'(x), V x E Z, V 1tEI1 ,II being the set of policies. 

The minimum cost or optimal cost thus obtained is also denoted as V· (x) and 

is called optimal value function. 

There are various methods to find 1C.. Here one method, Q- learning is 

explained. Q learning is based on learning Q- values which is defined as: 

N-l 

Q1f(x,a) = I yk Tk, Xo = x, ao = a 
k=O 

(3.7) 

Q1f(x, a)is the long term reinforcement when the robot start in state x, take an 

action a and thereafter follow policy p. 

From equations (3.6) and (3.7), Q1f(x, 1C(X) = V1l'(x), V x E .1. 
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Therefore corresponding to optimum policy. we have 

(3.8) 

Optimal Q value is denoted as Q-Cx, a) or Qex, a) and optimal value function 

as V-ex) or VCx). Once an optimal Q value is obtained, 

7t"Cx) = argminae cA Q·Cx,a) 

(3.9) 

Here, argminae ell Q-Cx,a) = a·,i{ Q-Cx,a-) :s; Q-Cx,a), "la E cA. 

Thus to obtain optimum policy, Q-Cx, a) is to be obtained. How the 

Reinforcement Learning algorithm finds the optimum Q- value is explained in a more 

general frame work in section 3.6. 

It may be noted that optimal Q- values are denoted by Q-Cx, a) or QCx, a). 

Estimate of the Q- values are denoted by QnCx, a) or Qncx, a). 

In this section. the various parts of Reinforcement Learning are explained and 

the notations are introduced using a simple problem. But Reinforcement learning is 

capable of solving more general problems. In general, the environment will be non 

deterministic. Ibat is, taking an action in the same state under two different situations 

may result in different final states and different values of reinforcement. In such cases 

the learning becomes more important. In the next section. a general multi stage 

decision making problem is considered and how it can be solved using Reinforcement 

Learning is explained. 

3.4 Multistage Decision Problem (MDP) 

In the last sections, Reinforcement Learning solutions for simple toy problems 

were discussed. Reinforcement Learning can be applied to any problem which can be 

modeled as Multi stage Decision Problem (MOP). These problems are concerned with 

situations in which a sequence of decisions is to be made to minimize some cost. The 
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reward received at each step of decision making may be stochastic. Reinforcement 

Learning solution for such a general class of problems is explained below. 

At any time step, the agent observes the current state of the environment, x E Z 

and executes an action a E c/l. As a result, the system moves to the new system state y 

with a transition probability P:y where 

a Pxy ~o 

=1 

Vx, yE zand atE.,/[ 

Vx tE Z and aE.,/[ 

(3.10) 

Also, an immediate cost is incurred depending on the action and state 

transition. ie, payoff or reward 'g' is defined as a function g(x, a, y). 

The agent's task is to determine a policy for selecting actions at various states 

of the environment such that the cumulative measure of payoffs received is optimum. 

Such a policy is called an optimal policy. The number of time steps over which the 

cumulative payoff is determined is called the horizon of MDP. There are two classes 

ofMDPs. 

(i) Finite horizon problem in which the number of stages of decision is finite and 

is known. The number of stages is usually denoted as N. 

(ii) The infinite horizon problem in which the number of stages is indefinite 

For a finite horizon problem with N stages like grid world problem discussed 

before, value function V1r(x) is given by equation (3.6). To get a more insight of the 

same, first consider a one stage problem (N = 1). Then at instant k = 0, from state Xo 

an action prescribed by policy n; 1C(xrJ is applied and state transition occurs to XI, 

which is the terminal state. Then due to this state transition two types of reward are 

received. The immediate payoff g(Xo. 1C(xrJ. xJ and reward G(xJ which is the terminal 

reward received from state XI' 

Then the value function, 

Vt
X (xrJ = E [g (Xo. Jr (xrJ, xJ + r G(xJ], 0 = r = 1 is the discount factor. 
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IfN = 2 or for a two stage problem, from xo, on taking action 7r (xoJ reaches the 

state Xl; then an action ;r(xJ taken leads to state Xl. Then the state Xl gives a reward 

G(xJJ, for the policy 1t. Now, the value function for the two stage problem with policy 

1t is, 

= E [g (Xo, 1t (Xo), Xl ) + y G(XI) ] 

= E [g ("0, 7t (Xo). XI ) + y (g (XIt 7t{XI), X2 ) + y G(X2» ] 

= E [g ("0, 7t{Xo), Xl ) + Y g (XIt 1t{XI), X2 ) + i G(X2) ] 

Thus, In general for an N stage problem, 

The discount factor 0 = y = 1 allows the terminal rewards distant in time to be 

discounted or weighted less than immediate pay offs. 

The policy re· is also termed as a greedy policy since it gives the best action 

and hence the best reward at one particular state. The minimum cost or optimal cost for 

N stage problem corresponding to the greedy policy n· is called optimal value V; (x). 

To fmd V; (x), recursive calculation is used. 

Considering the case with N = J and assume a transition probability P~. for 

the expectation operator, 

Vl (x) = I p~:C)[g(x,n(x),y) + yG(y)], 'Ix E z· 
YEZ 

The optimal value function is, 

Vi (x) = min ~ p;;:C)[ g(x. n(x),y) + yG(y) 1. 'Ix E z .EIlL 
YEZ 

If 7r (X) is a fIxed one for any state x, then 
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ae.llL 

yez 

The above equation implies that the optimal action and thus the optimal value 

function is implied by the minimization of the two terms g(x, a,y) and G(y). The first 

one is the immediate reward and the second term is the 'cost to go'. If a k stage 

problem is considered, the optimal value will be obtained only when the 'cost to go' 

from k·JIII stage is also optimum. That is, V';(x) is obtained corresponding to 

V';-l (y). Thus, the optimal value function for 1(. stage, 

V'; (x) = min ~ P:y[g(x,a,y)+yVk_1(y)],Vx E X 
aEAL 

YEZ 

Therefore, the optimal value function for N stages can be calculated recursively 

starting from Vo (x) = G(x), and searching the action space ell, N times. Thus the 

solution for a finite MDP is obtained. 

Now the formulation can be extended to infinite horizon problems. In these 

problems, the number of stages is indefinite or very large in number. For obtaining a 

solution according to the previous procedure, a value function is to be deftned. Since 

the number of stages is very large, there is no terminal cost. Then the value function 

under policy It, 

N 

y1f(x) = Hm E [ ~ y" 9 (x", ll(X,c;),X1c+l) I Xo = x], tfx EX 
N-+cO L 

"=0 
(3.11) 

Since the immediate cost g (., ., .)is considered as finite or bounded, y1f(x) given by 

equation (3.11) is defined if 0 < y < 1. Problems with y < 1 are called discounted 

problems. 

Next, the definition of value function can be extended to infinite horizon 

problems considering the initial transition from Xo to XI> 

63 



Cliapter 3 

N 

Vrr(X) = E[ ( g( Xo rr (XO),Xl) + y Hm ~ yk-l 9 (Xk, Jr(Xk), Xk+1)! 
• N-+ooL., 

k=l 

Xo = X], Vx EX 

(3.12) 

It can be again simplified as, 

Since the expectation operator is with respect to the transition probabilities, 

Vrr(X) = LP;?) [g(x,rr(x),y) + yVrr(y)] 

yEX 

(3.13) 

Equation (3.13) gives a set of linear equations which will give Vlr(x), if the transition 

probabilities p:;X) are known. 

Then, the optimal policy 11'* can be defined to be the one for which 

VrrO(x):::; Vir (x), t>X EX. VJrEll 

For an N stage problem. optimal value function is then defined as in Dynamic 

Programming steps as, 

V·(x) = min ~ P;y [gex, a,y) + y V';-l (y)], Vx EX; 
ae.ll L 

YEZ 

starting from the initial state or initial condition V';(x) = o. 
(3.14) 

If the number of stages N~ GO, it gives general infinite horizon problem. Then 

putting the limit k-)<:o, the optimum value of the value function, 
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If 'X. and rA are finite and if the transition probabilities are known, iterative 

methods can be used to solve the unknowns. When the value function is obtained, 

optimum policy can be retrieved as 

ll-CX) = argminaEJl I P;y [gCx, a,y) + y Y*(Y)], It'x EX 
yex 

Some methods for finding Y-Cx) are explained in the next section. 

(3.16) 

Now, Multi stage decision making problems are formulated mathematically. 

Also the steps to reach an optimum policy or decision sequence in the various states to 

get the optimum net reward or cost are described. In the next section the different 

methods for reaching the optimum policy are explained. 

3.5 Methods for solving MDP 

For solving Markov Decision Problems, classical solutions based on Bellman's 

optimality principle are widely used. Reinforcement Learning Based solutions are 

developed keeping the basic principle of optimality itself. Value iteration and Policy 

iteration are the two basic methods based on optimality. 

3.5.1 Value iteration 

Value iteration is an iterative method for obtaining the optimal value function 

V-(x). First start with an initial guess of value pO (xJ, i = 1,2, .... n. At each iteration of 

the learning phase, an estimate of the value is obtained. The algorithm is obtained by 

using JI"-I instead of V- in the Bellman equation (3.15). Then, at ntlt iteration of 

learning the estimate JI" is obtained from y--I using 

yn Cx) = min' P;Y [g CX,a,y) + y y n- 1 (y)] 
QEJlL 

ye-X 

(3.17) 

For the infinite horizon problems, if finite and bounded values of payoff or 'g' 

function are available, then the sequence of value estimates pO, v', ....... will converge 

to v".When the optimal value V- is reached, the optimal policy 'It* is obtained as 
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rr*ex) == argmina~.A I P:y [gex,a,y) + y V*(y)], Vx EX 
y~X 

3.5.2 Policy iteration 

(3.18) 

Another iterative method to obtain optimal policy is policy iteration. In this a 

policy is first evaluated and then improved Policy evaluation consists of working out 

the value of every state x under policy 1r. That is, expected long term reward starting 

from the given initial state and following policy K. Algorithm starts with an arbitrary 

policy, say tt, and improves it on each iteration or generates a sequence of policies tt, 
;I, ............. such a way that the policy, r J is better than the previous policy 11. 

Each iteration involves two phases; a policy evaluation step and a policy 

improvement step. In the policy evaluation step of the JI" iteration, the value function 

corresponding to policy 11 is evaluated by solving the set of equations given by, 

Vntex) = L p;;(x} [O(x,trkex),y) + r Vnk(y)], Vx EX 
'YEX 

(3.19) 

In the policy improvement phase, improved policy 1fk+1 is obtained as 

(3.20) 

Implementing either policy or value iteration requires the agent to know the 

expected reward and transition probabilities. In most applications, this may not be 

available. If the agent does not know these, but it can learn interacting with the 

environment, Reinforcement Learning based solutions are more promising. 

3.6 Reinforcement Learning approach for solution 

As seen in the previous section, value iteration and policy iteration can be 

applied, when the state transition probabilities P:y are known. If it is unknown, just 

like in practical stochastic situations, probabilities can be estimated using Monte Carlo 
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simulation (Bertsekas and Tsitsikilis [1996]).Starting from some initial state, choice of 

action is made based on some strategy; obtain the next state using the simulation 

model. That is a sequence of samples of the form (Xh ah Xk+J is used to learn and 

obtain the optimal policy. 

Reinforcement Learning techniques provide one such method to obtain the 

optimal policy, using training samples of the form (Xh ah Xk+J. After training using 

these samples sufficient number of times, the optimum value and optimum policy are 

reached. In the next section Q - learning is discussed for a general multi stage problem. 

3.6.1 Q learning 

Q learning is a Reinforcement Learning algorithm that learns the values of the 

function Q(x, a) to find an optimal policy. The value of the function Q(x, a) indicate 

how good is to perform action 'a' at the given state 'x '. When Q-value without any 

qualifier is used, it means the optimal Q- value. Q - value under a policy rr is defined 

as, 

(3.21) 

Comparing with equation (3.13), 

'r/XEX 

(3.22) 

Considering the optimal policy ;r., 

Qn:O(x,rr· (x») = Vn:o(x) = V·(X),XEX will be the optimum Q value for the state 

action pair (x, rr· (x». 

Now the optimal Q- value for a minimization problem is defined. 

Q·(x, a) = minQ 6 (x,a) 
6 

it implies that, 
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Then, 

From the definition of Q" and V" , 

Q" (x, a) = I P':y [( g(x, a,y) + y V* (Y»), VXEX, 
y£X 

Since V· (x) is the minimum of Q* (x, a) over the action set rIl, 

V·(x) = min Q* (x, a) 
a&ll 

Using equations (3.24) and (3.25), 

Q*(x,a)= I P':y[g(x.a,y)+ y ~~Q. (y,a~], 
y€X 

VXEX. 

(3.23) 

VaEeIl 

(3.24) 

(3.25) 

Thus, if the transition probabilities are known, the optimal Q values can be computed 

iteratively. 

Qn+l(X, a) = ~ p:" [g(x, a,y) + y ~in Qn (y, a~], V x EX. V a E ell L aE.II 
YEX 

(3.26) 

When the transition probabilities are unknown the Q learning method can be 

employed by generating a sequence of samples. At each and every iteration of the 

algorithm, from the current state x, it chooses an action a based on some strategy and 

reaches the new state y and obtains reward g (x, a, y) which is used for updating the Q 

value of the state - action pair as, 

Qn+1(x.a) = Qn(x, a) + a[g(x. a,y) + y rQin Qn (y,aj - Qn(x,a)] 
a 1:.11 

(3.27) 
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a E (0, I) is the learning parameter and determines the extent of modification 

of the Q value at each iteration of the learning phase. 

When the learning parameter a is sufficiently small and if all possible (x, a) 

combinations of state and action occur sufficiently often then the above iteration given 

by equation (3.27) will result (! converging to Q" (Bertsekas and Tsitsikilis [1996]. 

Sutton and Barto [1998]). 

A complete and general algorithm for Q learning is described below: 

For 0/1 states XE X and for all action a E cIl, 

Initialize (f (x, a) to zero 

Repeat for each iteration or trial 

Initialize or get the current state Xo 

Repeat for each stage 

Select an action 'Ok' using action selection strategy 

Execute the action ak and obtain the next state Xt+J 

Receive the immediate reward 

Until, the terminal stage is reached. 

If the environment is a stable MDP with finite and bounded rewards. the 

estimated Q values can be stored in a look up table. Each action is executed in each 

state a number of times and fmally the estimated Q values are found to converge to true 

Q values. The discount factor r is taken a suitable value in the range (0, I) and the 

learning parameter a is also a value in the range (0, I). For choosing an action from the 

action set at each step, different exploration strategies are employed. In the next section 

the action selection methods are explained. 
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3.7 Action selection 

If the true Q values are known, the optimal action is found by finding the 

greedy action, baving the minimum Q value. However, during the initial part of the 

learning, true Q values are unknown. But there is a set of estimated Q values, g(x, a), 

where n is the iteration number. During the initial phase of learning g(x, a) will not 

be close to Q·(x, a). But as the learning proceeds, (!(x, a) approach to Q·(x, a). Hence, 

while learning, initially the action space is to be explored and as the learning proceeds, 

the infonnation available in (!(x, a) should be exploited. There are various methods 

for striking a balance between exploration and exploitation (Tbathachar and Sastry 

[2003]). Two of them are discussed here: 

3.7.1 e ~ greedy method 

The action which has been found good or baving highest estimated Q value is 

termed as greedy action. But, there is a possibility that one among the remaining 

actions being as good or even better than the greedy action. 

In & - greedy strategy of action selection, the greedy action is selected with a 

probability of (1- e) and one of the other actions in the action set in random is selected 

with a probability of E. Value of & decides the balancing between exploration and 

exploitation. Value of & is normally chosen as close to 1 at the initial stages and then 

reduced in steps as the learning proceeds. As it reaches the fmal stages of learning 

greedy action will turn to be the best action and therefore & is reduced to a very small 

value. 

3.7.2 Pursuit Method 

The & - greedy method discussed above provides a good method of action 

selection, for providing better exploration in the initial phases of learning while 

exploiting the goodness of greedy action during the later phases. However e -greedy 

requires a gradual reduction of e. That is, a proper cooling schedule is to be designed 

which gradually updates the value of e as the learning proceeds so that proper 
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convergence and correctness of the result are assured. The length of learning phase 

mainly depends on this cooling schedule and therefore it is one significant part of 

e- greedy method. It is a difficult task to develop a good cooling schedule so as to 

ensure minimum time for convergence. 

Another stochastic policy followed for selection of action in the Reinforcement 

Learning task is Pursuit algorithm.. In this method along with maintaining estimates of 

Q values as measure of goodness of actions, some preference is also associated with 

actions. Each action ale at any state xle is having a probability PX,t (ale) of being chosen. 

These probability values will be same for all actions and all states initially assuring 

sufficient exploration of the action space. Then on performing an action ale at any state 

xle during learning, the numerical reward is used to update the estimate of Q value 

associated with the state - action pair. Along with that, based on the current estimates 

of Q values, probability values associated with actions are also modified as. 

p::l(alc) = P:,t (ale) + P[l - P:1e (ale)], when ale = Clg 

p::1(ale) = P:,t (ale) - PP:1e (ale)' when ale '* ag 

(3.28) 

where 0 <.B <1 is a constant. Thus at each iteration n of the learning phase, algorithm 

will slightly increase the probability of choosing the greedy action ag in state xle and 

proportionally decrease the probability associated with all other possible actions. 

Initially since all probabilities are made equal, sufficient exploration of action space is 

assured. When the algorithm proceeds a number of iterations, with high probability 

QJ\(x, a) will approach to QO(x, a) corresponding to all states. This is because, when 

the parameter .B is properly chosen, after sufficient number of iterations, the greedy 

action in state x, with respect to Q' would be the same as greedy action in state x with 

respect QO which gives the optimal action. In other words, through the iterative 

updating of probabilities by equation (3.28), probability of optimal action increases 

successively. This in turn indicates an increase in probability of selecting the optimum 
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action in the succeeding steps. If a. and J3 are sufficiently small, p;(rr·(x)) would 

converge with bigh probability to unity. 

3.8 Reinforcement Learning with Function Approximation 

The Reinforcement Learning described above involves the estimating of value 

functions that indicate how good an action is, in a particular state. Q values of the 

different state action pairs are stored as a look up table. Q value of a state action pair 

Q (x, a) indicate how good action a is, at the particular state x. But such look up table 

storage of Q values is having two major limitations: 

(i) The state and action should have discretised values. 

(ii) The number of state action pairs is to be finite. 

In cases with very large number of state action pairs and with continuous state values, 

the look up table approach cannot be directly used for Q learning. 

For large state space or continuous state space, some kind of function 

approximation is nt.:eded. In this case the approximating function is used to store the Q 

values. That is, the state space X is treated as continuous and the Q values are 

represented using a parameterized class of functions, {Q (x, a, 9) : 9 E md; Q : 

I x cA X md -+ 9t} where? is the parameter vector. When such a parameterized class 

of function is used, learning the optimal Q values involves learning the optimum 

parameter vector 0* such that Q (x, a, 0*) is a good approximation of 

Q* (x, a), x E ,rand a E cA. 

The main tasks in obtaining such a function approximator for Q* (x, a)are: 

(i) selection of proper parameterized class of functions Q (x, a, 9) that suits the problem 

and (ii) suitable algorithm to learn the optimal parameter vector 0* (Bertsekas and 

Tsitsikilis [1996], Sutton and Barto [1998]). 

There are many parameterized classes of functions that can be used as 

approximating functions. Due to the ability to represent and learn non linear functions, 

Neural Networks are used as function approximators (Haykin [2002]). Two of the most 

popular Neural Networks used for function approximation task are Multi Layer 
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Perceptrons (MLP) and Radial Basis Function (RBF) networks. These networks can be 

used for approximating the continuous functions CV an Roy [1996], [200 I n. 
While used with Q learning task or getting the approximated parameterized 

function for obtaining the optimal Q values, the network should capture the 

characteristics of Q learning. Since the action space is discretised and the optimal 

action in a small neighbourhood varies very little, the function approximation for Q. 

can be constructed through a set of local approximations. It is verified that Gaussian 

RBF networks with the exponentially decaying nonlinearities provide nonlinear 

mapping in an efficient manner (Haym [2002]).Therefore RBF networks is a good 

choice for using in approximating the Q values. In the next section, a description of 

RBF network and the learning parameters are given. 

3.8.1 Radial Basis Function Networks 

Radial Basis Function networks are one class of function approximators that 

can be used in Reinforcement Learning. In this case the output function is represented 

as the sum of many local functions. A simple RBF network with n input nodes, m 

hidden nodes and one output node is shown in Fig 3.2. 

Fig 3.2 Radial Basis Function network 

The output of the network is given as, 

y 

y = Li~r Wi 01 (x), WI, i = 1, ..... rn, are the weights of the connections into the 

linear output node and 0,(x), i = 1, ..... rn represent the m radial basis function 
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networks. These m radial basis functions represent the m hidden nodes in the network 

structure. Gaussian function is the commonly used function in RBF networks. The 

output of a Gaussian RBF network with m hidden nodes is given by 

_ ~ - 'LJ=l(Xj - cl) 2 

y - ~ Wt exp( 2(0")2 
1=1 

(3.29) 

where CL = [cl. ................... cA ]. i = 1 •....... m are called the centres of the RBF 

network and u f• i = 1 ........... m are called their widths. Such an RBF network can be 

described by the parameter vector? = rc, cr, W], where 

c = { Cl • ............. cm }. u = { u1 • ............... U m } and 

W = {W1 ....... ....... Wm} 

Therefore, fmding a good approximating function using such an RBF network is to 

fmd an optimum parameter vector (J. = [ c·. 0' •• W·]. 

In these networks. adjustin~ the weight associated with a given basis function, Wt 

which is the weight associated with 0L(X) = exp( - r,~1(~:): cJ) Z will effect the value of 

the function only in a small region around the center of the ilh RBF, cL E mn. For any x 

- r,ll (xr cl) z 
away from ct, 0t(x) = exp( 1;1(11)2 1 will be close to zero. In a straight forward 

solution of this optimum parameter vector 0*, the centers c· are placed on a uniform 

grid and width u* are fixed as a function of grid spacing. based on the problem 

environment. This reduces equation (3.29) to a linear one in W. Then the 

approximating task is to find W· which can be done by the learning procedures. 

3.9Advantages of Reinforcement Learning 

While most of the optimization and soft computing techniques provide solution for 

static optimization tasks, Dynamic Programming and Reinforcement Learning based 

strategies can easily provide solution for dynamic optimization problems. This makes 

Reinforcement Learning a good learning strategy suitable for real time control tasks 

and many optimization problems. In case of RL based solution strategies, the 

environment need not be a mathematically well defined one. It can acquire the 
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knowledge or learn in a model free environment. Acquiring the knowledge of rewards 

or punishments to an action taken in the environment or state of the system. the 

learning strategy improves the perfonnance step by step. Through a simple learning 

procedure with sufficient number of iterative steps, the agent can learn the best actions 

at any situation or state of the system. Also the reward or return function need not be a 

deterministic one, since at each action step the agent can accept the reward from a 

dynamic environment. 

3.10 Reinforcement Learning Application to Power system 

In the field of Power system, only a few applications have been found till now. 

Automatic Generation Control problem for a two area system is solved using 

Reinforcement Learning strategy (Imthias et al. [2002]). The input state space is 

constituted by the Area Control Error (ACE) and the action space is the different 

discretised values in the reference input to the controller. Pursuit method of action 

selection is used and through Q learning an efficient control policy is learned. 

Application of Adaptive Design for handling the damping problems in large 

power system is addressed by Venayagamoorthy et al. [2002]. They proposed an 

efficient heuristic controller for turbo generators in an integrated power system using 

Adpative Dyanamic Programming. Feed forward neural networks are used to 

implement the Adaptive Critic Design based adaptive controllers for turbo generators 

which is adaptive to even larger disturbances in the integrated power system. The 

adaptation starts with an optimal arbitrarily chosen control by the action network and 

the critic network guides towards the optimal action. The technique of using critic 

network avoids the need of learning process of the control network. The critic network 

learns to approximate the 'cost to go' or strategic ability function and uses the output 

of the action network as one of its inputs directly or indirectly. 

The optimal bidding for Genco in a deregulated power market is an involved 

task. Gajjar et al. [2003] have formulated the problem in the framework of Markov 

decision process. The cumulative profit over the span is the objective function 
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optimized. The temporal difference technique and actor-critic learning algorithm are

employed

Vlachogiannis and Nikos [2004] solved the optimal load flow problem using

Reinforcement Learning. The RL method formulates the constrained load flow

problem as a multistage decision problem. More specifically, the model-free learning

algorithm through Q learning learns by experience how to adjust a closed-loop control

rule, mapping states (load flow solutions) to control actions (offline control settings) by

means of reward values. Rewards are chosen to express how well control actions cause

satisfaction ofoperating constraints.

Power system stability problem is solved through RL by Ernest and Glavic

[2004] .They proposed the method of finding the control variables in a power system

[2005]. Two Reinforcement Learning modes are considered: the online mode in which

the interaction occurs with the real power system and the offiine mode in which the

interaction occurs with a simulation model of the real power system. They developed

algorithm for learning control policy and showed how the methodology can be applied

to control some devices aimed to damp electrical power oscillations. The control

problem is formalized as a discrete-time optimal control problem and the information

acquired from interaction with the system as a set of samples.

In the deregulated power system, pricing mechanism is one important part.

Auction pricing is one method used for the same. A Reinforcement Learning model to

assess the power to be used in the auction pricing is developed by Nanduri and Das

[2007].

Lu et al. [2008] have also employed the adaptive design concepts in

implementing a power system stability controller for a large scale power system having

non linear disturbances. The actor and critic parts are realized using Multi layer

perceptrons and using the reinforcement or cost function as the feed back signal to the

controller, learning is carried out. The proposed controller is found to be efficient in

handling large scale real power system examples.
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3.11 Conclusion 

In this chapter, an introduction and discussion on the Reinforcement Learning 

frame work has been carried out. The mathematical description of the optimum policy 

and the learning strategies to reach the optimum policy has been explained. The 

different action selection strategies are also discussed. Also the various recent 

applications of Reinforcement Learning have been discussed. In the field of power 

system a few applications have been developed using Reinforcement Learning 

methodology. Active power scheduling problem has not been solved till now through 

this efficient learning method Therefore, the development of solution for active power 

scheduling is proposed in the following chapters. 
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CHAPTER 4 

REINFORCEMENT LEARNING ApPROACHES 

FOR SOLUTION OF 

UNIT COMMITMENT PROBLEM 

4.1 Introduction 

Unit Commitment Problem (UCP) in power system refers to the problem of 

determining the onJ off status of generating units that minimize the operating cost 

during a given time horizon. Formulation of exact mathematical model for the same is 

difficult in practical situations. Cost associated with the different generating units is 

also different and random. Most often it is difficult to obtain a precise cost function for 

solving UCP. Also availability of the different generating units is different during each 

time slot due to the numerous operating constraints. 

The time period considered for this short term scheduling task varies from 24 

hours to one week. Due to the large number of ON IOFF combinations possible, even 

for small number of generating units and short period of time, UCP is a complex 

optimization problem. Unit Commitment has been formulated as a non linear, large -

scale, mixed integer combinational optimization problem (Wood and Wollenberg 

[2002]). 

From the review of the existing strategies, mainly two points can be concluded: 

(i) Conventional methods like Lagrange Relaxation, Dynamic Programming etc. 

fmd limitation for higher order problems. 

(H) Stochastic methods like Genetic Algorithm, Evolutionary Programming etc. 

have limited computational efficiency when a large number of units involved. 
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Since Reinforcement Learning has been found to be a good tool for many of 

the optimization problems, it appeared to be very much promising to solve this 

scheduling problem using Reinforcement Learning. 

In this chapter, a stochastic solution strategy based on Reinforcement Learning 

is proposed. The class of algorithms is termed as RL _ VCP. Two varieties of 

exploration methods are used: e greedy and pursuit method. The power generation 

constraints of the units, minimum up time and minimum down time are also considered 

in the formulation of RL solution. A number of case studies are made to illustrate the 

reliability and flexibility of the algorithms. 

In the next section, a mathematical formulation of the Unit Commitment 

Problem is given. For developing a Reinforcement Learning solution to Unit 

Commitment problem, it is formulated as a multi stage decision making task. The 

Reinforcement solution to simple Unit Commitment problem is reviewed (RL_VCPI). 

An efficient solution using pursuit method without considering minimum up time and 

minimum down time constraints is suggested (RL _ UCP2). Then the minimum up time 

and down time constraints are incorporated and a third algorithm (RL_UCP3) is 

developed to solve the same. To make the solution more efficient one, an algorithm 

with state aggregation strategy is developed (RL_UCP4). 

4.2 Problem Formulation 

Unit Commitment Problem is to decide which of the available units has to be 

turned on for the next period of time. The decision is subject to the minimization of 

fuel cost and to the various system and unit constraints. At the system level, the 

forecasted load demand should be satisfied by the units in service. In an interconnected 

system, the load demand should also include the interchange power required due to the 

contractual obligation between the different connected areas. Spinning reserve is the 

other system requirement to be satisfied while selecting the generating units. In 

addition, individual units are likely to have status restrictions during any given time 

period The problem becomes more complicated when minimum up time and down 

80 



~forcement LearningApproacfies for Sofution ofVnit Commitment (fro6fem 

time requirements are considered, since they couple commitment decisions of 

successive hours. 

The main objective of this optimization task is to minimize the total operating 

cost over the scheduled time horizon, while satisfying the different operational 

constraints. The operating cost includes start up cost, shut down cost, running cost, 

maintenance cost etc. The uCP can be formulated as: 

Minimize Operational cost 

Subject to 

~ Generation constraints 

~ Reserve constraints 

~ Unit capacity limits 

~ Minimum Up time constraints 

~ Minimum Down time constraints 

~ Ramp rate constraints 

~ Unit status restrictions 

4.2.1 Objective 

As explained above, the objective of UCP is the minimization of total 

operating cost over the complete scheduling horizon. The major component of the 

operating cost for thermal units is the fuel cost. This is represented by an input / output 

characteristics which is normally approximated as polynomial curve (quadratic or 

higher order) or as a piecewise linear cmve. For quadratic cost, the cost function is of 

the form 

where ail bi and Ci are cost coefficients, 

Pi k - Power generated by i'" unit during hour k 

If a unit is down for a time slot, it can be brought back to operation by incurring an 

extra cost, which is due to the fuel wastage, additional feed water and energy needed 
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for heating. Accordingly, the total fuel cost FT which is the objective function of UCP 

is: 
T N 

FT = I 2)ci (Pi k)Ui k + STi (Ut k)(l - Uik-l)] 
k=lf=l 

where T is the time period (number of hours) considered, e;{PI J is the cost of 

generating power PI during J(1t hour by ;tit unit, STj is the start up cost of the ;tit unit, Uik 

is the status of the ;tit unit during J(" hour and Ull.1 is the status of the ;tit unit during the 

previous hour. 

4.2.2. The constraints 

The variety of constraints to UCP can be broadly classified as System constraints and 

Unit constraints 

System Constraints: 

~ Load demand constraint: The generated power from all the committed 

or on line units must satisfy the load balance equation 

rr=lPikUtk = lk; 1 ~ k ~ T, 

where I k is the load demand at hour le. 

Unit Constraints: 
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~ Generation capacity constraints: Each generating unit is having the 

minimum and maximum capacity limit due to the different operational 

restriction on the associated boiler and other accessories 

o ~ i ~ N - 1, 1 ~ k ~ T 

~ Minimum up time and down time constraint: Minimum up time is the 

number of hours unit i must be ON before it can be turned OFF. 

Similarly, minimum down time restrict it to turn ON, when it is 

DOWN. If toff j represents the number of hours ,-Ut unit has been shut 

down, tOll I the number of hours ,-Ut unit has been on line, Ut the 

minimum up time and Dj the minimum down time corresponding to ,-Ut 

unit, then these constraints can be expressed as: 

O~i~N-l 
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}> Ramp rate limits: The ramp rate limits restrict the amount of change of 

generation of a unit between two successive hours. 

PI k - PI (k-l) ~ URI 

Pi (k-l) - Pi k ~ DRI 

where UR; and DR, are the ramp up and ramp down 

rates of unit i . 

}> Unit status restrictions: Some of the units will be given the status of 

'Must Run' or ' Not available' due to the restrictions on the 

availability of fuel, maintenance schedule etc. 

4.3 Mathematical model of the problem 

The mathematical description of the problem considered can be summarized as: 

Minimize the objective function, 

T N 

FT = L2)CI (P1k)Un+ Sli(Ulk)(l- Ufk-l)] 
k=lf=l 

subject to the constraints, 

N 

LPikUlk= 'k; 1Sk~T 
i=l 

P min (i) S PI k ~ Pmax (i), o ~ i S N - 1, 1 ~ k S T 

OSi~N-1 

(4.1) 

(4.2) 

(4.3) 

(4.4) 

In order to formulate a Reinforcement Learning approach, in the next section 

UCP is formulated as a multi stage decision task. 
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4.4 Unit Commitment as a Multi Stage decision making task 

Consider a Power system having N generating units intended to meet the load 

profile forecasted for T hours, (IQ, h h ... ...... · ... .IT.J. The Unit Commitment Problem 

is to fmd which all units are to be committed in each of the slots of time. Objective is 

to select units so as to minimize the cost of generation, at the same time meeting the 

load demand and satisfying the constraints. That is to find a decision or commitment 

schedule ao. ab a2 •............ ... aT.1-> where at is a vector representing the status of the N 

generating units during It' hour. 

ak = [a~,a1, .. · .. ·· .... ·,a~-1] 

al = 0 indicates the OFF status of tit unit during It'time slot while atl = 1 indicates 

the ON status. 

For finding the schedule of T hour load forecast, it can be modeled as a T 

stage problem. While defining an MOP or Reinforcement Learning problem, state, 

action, transition function and reward function are to be identified with respect to the 

scheduling problem. 

In the case of Unit Commitment Problem, the state of the system at any time 

slot (hour) k can represent the status of each of the N units. 1bat is, the state Xt can be 

represented as a tuple (k, Pk) where Pk is a string of integers, 

[ 0 1 N-l] , be' th' . th f -lit • Wh Pk. Pk • ............. Pk • Pk mg e mteger representmg e status 0 ,umt. en 

the minimum up time and down time constraints are neglected the ON I OFF status of 

each unit can be used to represent pLo Then the integer pL will be binary; ON status 

represented by '1' and OFF status by '0'. Consideration of the minimum up time and 

minimum down time constraints force to include the number of time units each unit has 

been ON IOFF in the state representation. Then the variable pk can take positive or 

negative value ranging from -DI to +u,. 
The part of the state space at time slot or stage k can be denoted by 

%k = {( k. [ P~.P~/·· .... p:-1
])} and the entire state space can be defmed as 

% = Xo U Xl U ...... "%T-l 

84 



~forcement Leamine Jlpproac{,es for SolUtion ojVnit Commitment (J'ro6fem 

Next is to identify the actions or decisions at each stage of the multi stage 

problem. In case of UCP, the action or decision on each unit is either to commit or not 

the particular unit during that particular hour or time slot Therefore action set at each 

stage k can be defIned as c:I4 = {{ a~. a~ • ............ ,a~-l ]. aL = 0 or 1}. When 

certain generating units are committed during particular hour k, ie, at' =1 for certain 

values of i, then the load demand or power to be generated by these committed units is 

to be decided. This is done through an Economic Dispatch solution. 

The next part to be defined in this MDP is the transition function. Transition 

function defines the transition from the current state to the next state on applying an 

action. That is, from the current state Xk , taking an action ah it reaches the next state 

Xt+l' Since the action is to make the units ON IOFF, the next state Xt+l is decided by the 

present state XI: and action at. Transition function f (XI> aJ depends on the state 

representation. 

Last part to be defined is the reinforcement function. It should reflect the 

objectives of the Unit Commitment Problem. Unit Commitment Problem can have 

multiple objectives like mjnimization of cost, minimizing emissions from the thermal 

plants etc. Here, the minimization of total cost of production is taken as the objective 

of the problem. The total reward for the T stages should be the total cost of production. 

Therefore, the reinforcement function at If' stage is defined as the cost of production of 

the required amount of generation during the If' period. 

That is, 

Here, P iJc is the power generation by lit unit during It' time slot and Ut k is the status of 

,"" unit during It' time slot. 

In short, Unit Commitment Problem is now formulated as a Multi Stage 

decision making problem, which passes through T stages. At each stage k, from one of 

the states Xk = (k, Pk) an action or allocation ak is chosen depending on some 

exploration strategy. Then a state transition occurs to Xk+/ based on the transition 
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function. Each state transition results in a reward corresponding to power allocation to 

the committed units. Then the problem reduces to fmding the optimum action at at 

each state Xl and corresponding to each time slot k. 

In the next sections a class of Reinforcement Learning solutions is proposed. 

In all these algorithms the action space and the reinforcement function are the same. 

The defmition of state space, transition function and the update strategy are different. 

4.5 Reinforcement Learning Approach to Unit Commitment 

Problem 

Having formulated as a Multistage Decision Problem, implementable solutions 

are developed using Reinforcement Learning approach. First a review of the basic 

algorithm is given. Neglecting the minimum up time and minimum down time 

constraints and using exploration through e - greedy strategy, solution is presented 

(RL_UCPl). Then employing pursuit method for action selection, algorithm for 

solution is proposed (RL _ UCP2). 

Next, Minimum up time and down time constraints are incorporated which 

needs the state of the system (status of the units) to be represented as integer instead of 

binary representation in the previous solutions. To handle the large state space, an 

indexing method is proposed while developing solution (RL_ UCP3). A more efficient 

solution is then proposed using state aggregation strategy. In the next sections, the 

solution methods and algorithms are presented in detail. 

4.6 & - greedy algorithm for Unit Commitment Problem 

neglecting minimum up time and minimum down time 

(RL_UCP1) 

In the previous section, a T hour allocation problem is modeled as a T stage 

problem. In this section, an algorithm based on Reinforcement Learning and using 

e- greedy exploration strategy is presented. For the same, different parts of 

Reinforcement Learning solution are fIrst defIned precisely. 

When the minimum up time and minimum down time are neglected, the state 

of the system at any hour k can be represented by the ON IOFF status of the units. 
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Hence, state can be represented by the tuple, xk = (k. Pk), where Pk = 

[ 0 1 N-l] d i - 1 'f th "It •• ON i - 0 'f th.Jh .. Pk' Pk' ............. Pk an Pk - 1 e z urnt IS , Pk - 1 e z urnt IS 

OFF. 

The part of the state space at time slot or stage k can be denoted by 

Xk == {( k, [ P~,P~ ... · ... p:-1
]). Pt = 0 or 1} 

The state space can be defmed as , 

x = Xo U Xl U ... .... ·XT-I 

Action or decision at any stage of the problem is the decision of making ON I 

OFF of a unit. Therefore the action set at stage k is represented by, 

4t == {[ a~. a~, ........ , ... , a~-l ], aL = 0 or 1 }. 

The transition function defines the change of state from Xl to Xk+J. In this case, 

the next state (in RL terminology) is just the status of units after the present action or 

decision. Therefore the transition function! (Xb aJ is defined as, 

Xk+1 == at-

Lastly. the reward is the cost of allocating the committed units with power Pti 

i == 0, ... N-1 and status of the unit U, k == 1. Thus the reward function, 
N-l 

g(xk,ak. Xk+l) = 2)c,(Ptk)U,k + sri (Uik)( 1- Ulk-l)] 
1=0 

(4.5) 

For easiness of representation, the binary string in the state as well as action 

can be represented by the equivalent decimal value. The state at any stage can be 

represented as a tuple (le. d) where k represents the stage or time slot and d represents 

the decimal equivalent of the binary string representing the status. For example (2, 4) 

represent the state (2, [0100]) which indicate the status 0100 during 2ad hour for a four 

unit system. Or in other words it indicates only unit 1 is ON during 2ad hour. 

Now a straight forward solution using Q learning is suggested for solving this 

MDP. Estimated Q values of each state - action pairs are stored in a look up table as 

Q (Xb aJ, Xi having the information on the time slot and present status of the different 
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units. At each step of the learning phase, the algorithm updates the Q value of the 

corresponding state - action pair. The algorithm (RL _ UCP 1) for the learning phase is 

described below: 

The initial status of the different generating units is read from the unit data 

Then the different possible states and actions possible are identified. Q value 

corresponding to different state - action pairs are initialized to zero. 

The generating units are having their minimum and maximum generation 

limits. At each slot of time, the unit combinations or actions should be in such a way as 

to satisfy the load requirement. Therefore, using the forecasted load profile and the 

unit generation constraints, the set of feasible actions cA" is identified for each stage k 

of the multi stage decision problem. Using the &- greedy strategy one of the actions Ok 

from the permissible action set ell" is selected. Depending on the action selected, state 

transition occurs to next stage k+ 1 as Xk+ I = ak- The reward of state transition or action 

is calculated using the power allocation to each unit PI k through disp .. tch algorithm and 

using the equation (4.5). 

The cost function can be non convex in nature and can be represented either in 

piece wise quadratic form or higher order polynomial form. While finding the dispatch 

among the committed units, for simplicity, linear cost function is taken. This method 

gives only tolerable error. After that, cost of generation is obtained using the given cost 

functions. In this approach of solution a defined mathematical cost function is not at all 

necessary. The net cost of generation is taken as the reward g (Xk, • a", Xk+J. Using the 

reward, estimated Q value of the corresponding state - action pair is updated at each of 

the stages until the last stage using the equation: 

Qn+l(Xk, ak) = Qn(Xk. aTe) + a [g(xk,ak.xk+1) + ymina 'e.A.t+l Qn (xTe+1,a') -

Qn(Xk,ak)] 

(4.6) 

here, a is the step size ofleaming and y is the discount factor. 
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During the last stage (k = 1), since there is no more future stages the second 

term in the update equation will turn to be zero, the updating is carried out as 

(4.7) 

This constitutes one episode. In each episode the algorithm passes through all 

the T stages. Then the algorithm is executed again from the initial state :to. These 

episodes are repeated a large number of times. If a. is sufficiently small and if all 

possible (:t., aJ;) combinations of state and action occur sufficiently often then the 

above iteration will result in Qf1 converging to Q. (Bertsekas and Tsitsikilis [1996], 

Sutton and Barto [1998]). 

In the initial phases of learning the estimated Q values. Qn(Xt. at) may not be 

closer to the optimum value Q·(Xk, at). As the learning proceeds, the estimated Q 

values turn to be better. When the estimated Q values approach to optimum, change in 

the value in two successive iterations will be negligibly small. In other words, 

Qn+1(xk,ak) will be the same as Qn(xk,at). 

In order to apply the proposed Reinforcement Learning algorithms, first 

suitable values of the learning parameters are to be selected. Value of E balances the 

rate of exploration and exploitation. A small fixed value result in premature 

convergence, while a large fixed value may make the system oscillatory. For balancing 

exploration and exploitation, a reasonable value between 0 and I is taken for the 

learning parameter e initially and is decreased by a small factor successively. 

In the learning procedure, a block of consecutive iterations are examined for 

modification in the estimated Q values. If the change is negligibly small in all these 

iterations, the estimated Q values are regarded as optimum corresponding to a 

particular state - action pair. The iteration number thus obtained can be taken as 
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maximum number of iterations in the learning algorithm. The learning steps are 

described as RL_UCPl. 

Algorithm for Unit Commitment solution using & - greedy (RL _ UCP 1) 

Read the unit data 
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Read the initial status Xo 

Read the forecast for the next T hours 

Identify thefeasible states and actions 

Initialize r;! (x, a) =0 Vx ez' Va ec/l 

Initialize k =0 

Initialize e = 0.5, a =0.1 and r=1 

For n = 0 to max iteration 

Begin 

End 

For (le =0 to T-1) 

Do 

End do 

Choose an action using e - greedy algorithm 

Find the next state Xk+J 

Calculate the reward using equation (4.5 ) 

If( k < T-J) Update the f! to f!+J using equation (4.6) 

Else update f! to f!+J using equation ( 4.7) 

Update the value of e 

Save Q values. 
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4.7 Pursuit algorithm for Unit Commitment without considering 

minimum up time and minimum down time (RL_ UCP2) 

As explained before, in case of pursuit algorithm, actions are selected based on 

a probability distribution function P-rkO. This probability distribution function is 

updated as the algorithm proceeds. 

In the solution of Unit Commitment problem, initially the probability 

associated with each action a in the action set ell. corresponding to:c are initialized 
1 1 1 

with equal values as 

n - Total number of permissible actions in state x . 
1 k 

As in the previous algorithm, Q values of all state - action pair3 are initialized 

to zero. Then at each iteration step, an action a is selected based on the probability 
1 

distribution. On Performing action a , state transition occurs as:c = a . 
1 ~l 1 

The cost incurred in each step oflearning is calculated as.the sum of cost of 

producing power I with the generating units given by the binary string 'oS' in a and the 
1 k 

cost associated with's' as given in the equation (4.5). Q values are then updated using 

the equation (4.6). At each of the iteration of learning, the greedy action as 

ag = argmin
aEdlk 

Q (Xk, a) is found Then the corresponding probabilities of actions 

in the action set are also updated as : 

(4.8) 
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The algorithm proceeds through several iterations when ultimately the 

probability of best action in each hour is increased sufficiently which indicate 

convergence of the algorithm. As in the previous solution. learning steps can be 

stopped when the change of Q values in a set of successive iterations are tolerably 

small. which gives the maximum number of iterations required for the learning 

procedure. The entire algorithm is given in RL _ UCP2: 

Algorithm for Unit Commitment using Pursuit method (RL_ UCP2) 

Read the Unit data and Load data/or T hours 
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Find out set of possible states (x) and actions( ~ 

Read the learning parameters 

Read the initial status of units x o 
o 

Initialise Q (x,a) = 0, if x e Z and if a e c/l 

Identify thefeasible action set in each hour k as ~ 

Initialize P~ .. (ak) to I1n n the number of actions in c/l 
.. k. k. k 

For n = 0 to max.Jteration 

Begin 

End. 

Fork= Oto T-I 

Do 

End do 

Choose action a
k 
based on the cun-ent 

probability distribution P %k ( ) 

Find the next state x 
k+J 

Calculate g (x ,a x ) 
f k, k+J 

" 1I+J 
Update Q to Q using equation (4.6) and (4.7) 

Update probability P:/c (ak) to p::l (ak) using 

equation (4.8) 

Save Q values. 
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Since the e~loration is based on probability distribution and the probability is 

updated each and every time an action is selected, the speed of reaching the optimum is 

improved by this strategy. In the simulation section the performance of this algorithm 

is compared with the B - greedy method using several standard systems. 

4.8 Policy Retrieval 

Once the learning phase is completed. the schedule of the generating units 

corresponding to the given load profile can be retrieved. During the learning phase Q 

values of the state - action pairs will be modified and will approach to optimum. Once 

the optimum Q values are reached. the best action will be the greedy action at each 

stage k. 

(4.9) 

Algorithmic steps for finding the optimum schedule [ aa. ai, ............ , aT-l ] 
are detailed below: 

Policy Retrieval steps: 

Read the Q values 

Get the imtial status of the units, Xo 

For (le = 0 to T-J) 

Do 

Find the greedy action ak· wing equation (4.9) 

Find the next state, Xk+l = ak 

End do. 

For the above two algorithms, the unit and system constraints are considered 

except the minimum up time and minimum down time. Now, to incorporate the 

minimum up time and minimum down time, algorithms are extended in the next 

sections. 
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4.9 Reinforcement Learning algorithm for UCP, considering 

minimum up time and minimum down time (RL_ UCP3) 

In case of Unit Commitment Problem, one important constraint comes from 

the minimum up time and minimum down time limitation of the units. Therefore the 

'state' of the system should essentially indicate the number of hours the unit has been 

UP or DOWN. Then only the decision to turn on or turn off will be valid Therefore the 

state representation used in the previous sections cannot be used further. 

For resolving this issue, the state representation is modified. Status of each unit 

is represented by a positive or negative number indicating the number of hours it has 

been ON or OFF. Thus, at each stage or hour, system state will be of the form, 

XIc = Ck, Plc ), where Plc = [ pZ, p~, ...... p:-l]. Each p~ has positive or negative 

value corresponding to the number of hours the unit has been UP or DOWN. For 

example. if the state of a four generating unit system during 2nd hour is given as 

X2 = (2, [-2, 1, 2, -1]), it gives the information that first and fourth units have 

been DOWN for two hours and one hour respectively and second and third units have 

been UP for one hour and two hours respectively. 

In principle, for a T stage problem p1 can take any value between - T to + T. That is, 

Zk= {(k, [p2,pl, ...... pZ-l]) I p~ E {-T,-T + 1,-T + 2, ...... + TJ. 

For such a choice state space will be huge. It may be mentioned here that Xt is the state 

of the system as viewed by the learning agent and it need not contain all the 

information regarding the system. Or in other words. only sufficient information need 

to be included in the state. For example, in the previous formulations it does not matter 

how many hours the unit was on, what matters to the learner is whether the unit is ON 

or OFF. Hence in that case pl E { 0, 1}. 

Here, when considering the minimum up time and down time, it is immaterial 

whether the unit has been ON for Vi hours or Vi + L hours (where Vi is the minimum 
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up time). Therefore, if a unit is ON for more than Vi hours pi is taken as V j• Similar is 

the case with Dj. Hence, pL E {-Dj, - D i + 1, ......... , U I}. 

Thus the sub space corresponding to stage le, 

Therefore, the number of elements in Z = T (Do + Uo) (D1 + Ut) ....... (DN- 1 + 

UN- t ). 

For a six generating unit system with minimum up time and down time of 5 

hours for each of the units, the number of states in the state space will be 1 (f x T which 

is a large number. Therefore storing Q- values for all the possible state action pairs is a 

cumbersome task. To resolve the same a novel method is proposed in the next section. 

Regarding the action space, as in the previous solution. each action represents the ONI 

OFF status of the units. For an N generating unit system due to the different 

combinations of ON - OFF status, there will be 2N-I actions possible. At each stage 

depending on the generation constraints enforced by the generating units and the load 

demand to be met there exists a permissible set of actions, 

.A .. = {[ a~,al, ............ ,a:-1 ],a~ = 0 or 1} 

For making the new algorithm simpler, an action is selected based on e -

greedy exploration strategy. Each action selection is accompanied by a state transition. 

In this case, it should account the number of hours one unit has been UP or OOWN. 

Therefore, the transition function is to transform the state 

X1c = (k, [ p~, p~, ...... p:-t]) to xk +1 = (k + 1, [ P~+lI P~+1' ...... p:;l]) and is 

defmedas: 
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pL+l = Pt + 1, if Pt positive, a~ = 1 
pt+l = -1, if Pt positive, a~ = 0 

pt+! = Pk - 1, if Pt negtive, aL = 0 

pL+l = + 1, if Pt negative, aL = 1 

pt+l = Ut, if Pt > Ut 

Pk+l = Di , if Pk < Di 

(4.10) 

Since each action corresponds to a particular unit combination of generating 

units to be on-line, the cost of generation or reward will be the function g (X.b at" X1+J) 

as given in equation( 4.5). 

Q learning described previously is used for solution of this MOP. Q values of 

each state - action pairs are to be stored to find the good action at a particular state. In 

this Unit Commitment Problem, when the minimum up time and down time constraints 

are takeh, the possible states come from a very large state space. Straight forward 

method of storing the Q (XIo aJ values is using a look up table. But all the states in this 

huge state space are not relevant. Therefore a novel method of storing Q values is 

suggested. 

Q values of only those states which are encountered at least once in the course 

of learning are stored. Since the learning process allows sufficient large number of 

iterations, this seems to be a valid direction. The states are represented by an index 

number (ind _x,J, which is an integer and initialized at the first time of encountering 

the state. For example the tuple, (5, (2,[-2,1,1,2])) denote the state (2, [-2,1,1,2]) with 

an index number' 5'. 

Similarly, the actions in the action space can also be represented by an integer, 

which is the decimal equivalent of the binary string representing the status of the 

different units. The index value of action 0011 is '3'. Using these indices for the state 

and action strings, the Q values of the different state action pairs can be stored very 

easily. Q (5,3) indicate the Q value corresponding to the state (2, [-2, 1, 1,2]). which 

is having index value 5 and action [00 I 1]. 
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The possible number of states nstates is initialized depending on the number of 

units N and the minimum down time and minimum up time of the units, since it 

depends on number of combinations possible with N units as well as the given values 

of minimum up time and down time. Since some of the states will not be visited at all, 

the value of lIStates is initialized to 70010 of the total number states. The number of 

actions 'naction' is initialized to 2N -1. Then the permissible action set corresponding 

to each hour based on the load demand at that particular hour are identified. The 

algorithm during the learning phase proceeds as follows. 

At each hour k, the state Xl depending on the previous state and action is found 

as explained previously. The state Xl is added to the set of states b if not already 

present and frod the index of the state Xl. From the permissible action set, one of the 

actions is chosen based on &-greedy method. Then the next state Xt+1 can be found 

corresponding to stage k+ J. On taking action ak, the state of the system proceeds from 

x .. to Xt+1 as given in (4.10). The reward, g (xj) aj) Xt+I) is given by equation (4.5). 

The Q value corresponding to the particular hour Ok', action 'a .. ' (decimal 

value of the binary string) and index no (ind_xk) is then updated using the equation: 

Q7l+1(ind_Xk,ak) = Q71(ind...xk,ak) + a [g(xk,ak,Xt+1) 

+ Y ,min Q71 (ind_xk+l' a') - Q" (Cnd...xt, ak)] 
a EcIlt+l 

(4.11) 

If the stage is the last one (le = 1), corresponding to the last hour to be 

scheduled, there is no more succeeding stages and the updating equation reduces as, 

Q71+1(ind_xk, ak) = Q7l{ind_xt, ak) + a [n(Xt, at, Xt+l) - Q" (Cnd...xt, at)] 

(4.12) 

At each episode of the learning phase, the algorithm passes through all the 'T' 

stages. As the algorithm completes several iterations, the estimated Q values will reach 

nearer to the optimum values and then the optimum schedule or allocation can be 

easily retrieved for each stage k as, ak =: arg minakEcIlt{Q{ind_xk, at») 

The entire algorithm is illustrated as RL _ UCP3. 
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Algorithm for Unit Commitment using state indl!'Xing (RL_ UCP3) 

Read Unit Data 

Read the initial status of the units, Xo 

Read the Loadforecastfor next T hours 

Initialize 'nstates' (number of states) and 'nactions' (number of actions) 

Initialize (f {ind_xh aJ =0, 0 < ind_xt<= nstates,O < al:<= nactions 

Find the set of permissible actions corresponding to each hour k 

Initialize E = 0.5 and a =0.1 

For n=J to max iteration 

Begin 

End 

Read the initial status of the units Xo 

Add the state Xo to set Zo 

For k=0 to T-J 

Do 

Find the feasible set of actions d4 corresponding to state Xt 

considering up and down times. 

Choose an action using So greedy strategy from 

the feasible set of actions 

Find the next state XHl 

IfxHl is present in ZHI Get the index ind_xk+l 

Else Add Xk+l in Zk+l and obtain index ind _ XHl 

Calculate cost as g(Xh ah Xk+V 

If (k /= T-J) Update Q value using equation (4.11) 

Else Update Q value using equation (4. J 2) 

ind_xt = ind_xH/. 

End do 

Update the value of & 

Save Q values. 
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This algorithm can accommodate the minimum up time and down time 

constraints easily, when the number of generating units is small. Up to 5 hours of 

minimum up time and minimum down time the algorithm is found to work efficiently. 

But when the minimum up time and minimum down time increase beyond 5 hours and 

the number of generating units is beyond six, the number of states visited increases. 

Then the number of Q values stored and updated becomes enormously larger. This 

demands more computer memory. In order to solve this issue and make an efficient 

solution, in the next section a state aggregation method is discussed which needs much 

less computer memory than the above formulated algorithm. 

4.10 Reinforcement Learning algorithm for UCP, through State 

Aggregation (RL_UCP4) 

While looking into the Unit Commitment Problem with minimum up time and 

minimum down time constraints, the state space become very huge. The huge state 

space is difficult to handle in a straight forward manner when the minimum up time I 

minimum down time increases or the number of generating unit increases. Storing of Q 

value corresponding to each state - action pair becomes computationally expensive. 

Some method is to be thought of to reduce the number of Q values to be handled. In 

the perspective of Unit Commitment problem one can group the different states having 

the same characteristics so that the goodness of the different groups is stored instead of 

goodness of the different states corresponding to an action. The grouping of states can 

be done based on the number of hours a unit has been UP or DOWN. 

(i) A machine which has been already UP for duration equal to or greater than the 

minimum up time can be considered as to occupy a state 'can be shut down'. 

(ii) A unit which is already UP but not have covered minimum up time can be 

considered as to represent a state 'cannot be shut down'. 
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(iii) An already offline unit which has been DOWN for number of hours equal to or 

more than its minimum down time can be represented as a state • can be 

committed' . 

(iv) A unit which has been DOWN but has not covered the minimum down time so 

that cannot be committed in the next immediate slot of time can be represented 

as a state 'cannot be committed'. 

Thus, at any slot of time, each of the generating unit will be in any of the 

above mentioned four representative states. If these four conditions are denoted as 

decimal integers (0, 1, 2, 3), regardless of the UP time and DOWN time of a generating 

unit, the state is represented by one of this integer value. By aggregating the numerous 

states visited in the previous algorithm to a limited number of states, number of Q 

values to be stored and updated in the look up table is greatly reduced. 

With the decimal numbers 0,1,2,3 representing the aggregated states of a unit, 

for an N generating unit system the state Xl is represented as a string of integers having 

length N and with each integer having any of these four values. Then the state can be 

represented as a number with base value 4. For an N generating unit problem, there 

will be 4N -1 possible states, regardless of minimum up time and down time of the 

different units. (In the previous algorithm RL_UCP3. the number of states increases 

with increase in the minimum up time and / or down time). This reduction in the 

number of states drastically reduces the size of look up table for storing the Q values. 

Now an algorithm is formulated making use of state aggregation technique for 

handling the up/ down constraints of the units. 

The number of states, nstates is initialized to 4N -1 and the number of actions 

naction to 2N_l for an N generating unit system. At any stage kofMDP, the state of the 

system is represented as a string of integers as in the previous algorithm, integer value 

representing the number of hours the unit has been up or down. 
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In order to store the Q values, the state Xl is mapped into set of aggregate 

states. Each aggregate state, 

ag...x/c = {(k, [ag-pZ, ag"p~, ... ... ag-p:-1 D, ag-p~ E { 0,1,2,3}. 

From any state Xl an action is selected using one of the exploration strategies. 

On selecting an action ah the status of the units will change as, Xk+1 = f(x", aJ given by 

equation (4.10). From the above explained categorization of states, ag..,p1 can be 

found corresponding to any Xk = (k, [p~, pl, ...... p~-l ]) as: 

I·· d'>U '0 p" posItIve an Plc - b ag-p,,::: ; 

I·· d' U i 1 Plc positive an Plc < t, ag..,plc = ; 

p~ negative and p~ =:; D" ag-p~ = 2; 

, . d' D '3 Plc negative an Plc> - "ag..,p" = . 

The reward function for the state transition is found using the cost evaluations 

of the different generating units using equation (4.5). For each of the states Xl and Xk+/. 

the corresponding aggregate state representation is found as ag_xl and ag_Xk+/ . Each 

action in the action space is represented as the decimal equivalent of the binary string. 

At each state K, estimated Q value corresponding to the state - action pair (ag_x", aJ is 

updated using the equation, 

Qn+1(ag_x/c,a/c) = Qn(ag_x/c,a/c) + a [g(x/c,a/c,x/C+1) 

+ Y ,min Qn (ag..x/C+lI a') - Qn (ag_x/c, a/c)] 
a E.Jtlc+l 

(4.13) 

During the last hour, omitting the term to account future pay -off Q value is 

updated using the equation, 
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Qn+1(ag_Xk. ak) = Qn(ag_XIe' ale) + a [g(x", a". XIe+l) 

- Qn (ag_x". ale)] 

(4.14) 

After a number of iterations, learning converges and the optimum schedule or 

allocation for each state Xl can be easily retrieved after rmding the corresponding 

aggregate state as, 

The entire algorithm using state aggregation method is given below: 
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Algorithm for Unit Commitment through state aggregation (RL _ UCP4) 

Read Unit Data 

Read the Load forecast for next T hours. 

Initialize nstates (number of states) and nactions (number of actions) 

Initialize (f [ag_xb aJ =0. V ag_xlo V at 

Find the set of permissible actions corresponding to each hour k 

Initialize the learning parameters 

For n=J to max _ episode 

Begin 

Read the initial status of the units Xo 

For k=0 to T-J 

Do 

Find aggregate state ag_ Xl corresponding to X.t 

Find the foasible set of actions eIlt corresponding to state Xl 

considering up and down times. 

Choose an action using ~ greedy strategy from the foasible set 

of actions 

Contd ... 
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Find the next state Xk+l 

End do 

Find the corresponding aggregate state ag_xJ:+J ofxk+l 

Calculate the reward g (Xl, ,ah Xk+J 

If (k 1= T-l) Update Q value using equation (4. J 3) 

Else Update Q value using equation (4.14) 

Update the value of E:. 

End 

Save Q values. 

The optimal schedule [aO. ai, ..... aT-l] is obtained using policy retrieval 

steps similar to the algorithm given in section 4.8. 

4.11 Performance Evaluation 

Solution to Unit Commitment Problem has now been proposed by various 

Reinforcement Learning approaches. Now, one can validate and test the efficacy of the 

proposed methods by choosing standard test cases. The high level programming code 

for the algorithms is written in C language in Linux environment. The execution times 

correspond to Pentium IV, 2.9 GHz, 512 MB RAM personal computer. 

In order to compare the e greedy and pursuit solutions (RL_UCPl and 

RL _ UCP2) a four generating unit system and an eight generating unit system are 

considered. The generation limits, incremental and start up cost of the units are 

specified. Performance of the two algorithms is compared in terms of number of 

iterations required in the learning phase and the computation time required for getting 

the commitment schedule. 

In order to validate and compare the last two algorithms (RL _ UCP3 and 

RL_UCP4), four generating unit system with different minimum up time and down 

time are considered. The schedule obtained is validated and the performance 

comparison is made in terms of execution time of the entire algorithm, including the 

learning and policy retrieval. In order to prove the scalability of the algorithms, an 
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eight generating unit system with given minimum up time and down time limits is also 

taken for case study. 

For comparing with the recently developed stochastic strategies a ten 

generating unit system with different minimum up time and down time limits are taken 

for case study. The schedule obtained and the computation time is compared with two 

hybrid methodologies: Simulated Annealing with Local Search (SA LS) and Lagrange 

Relaxation with Genetic Algorithm (LRGA). 

In order to apply the proposed Reinforcement Learning algorithms, first 

suitable values of the learning parameters are to be selected Value of E balances the 

rate of exploration and exploitation. For balancing exploration and exploitation, a value 

of 0.5 is taken for the learning parameter e initially. In every (maxjteraionllO) 

iterations, s is reduced by 0.04 so that in the final phases, s will be 0.1. 

Discount parameter y accounts for the discount to be made in the present state 

in order to account of future reinforcements and since in this problem, the cost of 

future stages has the same implication as the cost of the current stage, value of y is 

taken as 1. The step size ofleaming is given by the parameter a and it affects the rate 

of modification of the estimate of Q value at each iteration step. By trial and error a is 

taken as 0.1 in order to achieve sufficiently good convergence of the learning system. 

The RL parameters used in the problem are also tabulated in Table 4.1. 

Table 4.1- RL Parameters 

E 0.5 

a 0.1 

y 1 

Now the different sample systems and load profile are considered, for 

evaluating the performance of the algorithms. 
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Case I-A/our generating unit system 

Consider a simple power system with four thermal units (Wood and 

WoUenberg [2002]). For testing the efficacy of the first two algorithms and to compare 

them, minimum up and down times are neglected. Load proflle for duration of 8 hours 

is considered and is given in Table 4.2 

Table 4.2 - Load profde for eight hours 

Hour 0 1 2 3 4 5 6 7 

Load(MW) 450 530 600 540 400 280 290 500 

The cost characteristics of the different units are taken to follow a linear 

incremental cost curve. That is, cost of generating a power Pt by the ,.u. unit is given as, 

C, (PJ =NLj + lCt • Pp 

where NLI represents the No Load cost of t unit and lCj is the Incremental cost of the 

same unit. The values P",iII and P 1fIIJX represent the minimum and maximum values of 

power generation possible for each of the units. The different unit characteristics and 

the generation limits are given in Table 4.3. 

Table 4.3 - Generating Unit Characteristics 

Unit Pmin(MW) Pmax(MW) Incremental No Load Startup 
cost Cost Cost 
Rs. Rs. Rs. 

1 75 300 17.46 684.74 1100 

2 60 250 18 585.62 400 

3 25 80 20.88 213 350 

4 20 60 23.8 252 0.02 
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When the learning is carried out using the flrst two algorithms, learning is flrst 

carried to fmd the maximum number of iterations required for the learning procedure. 

In the learning procedure, 100 consecutive iterations are examined for 

modiflcation in the estimated Q values. If the change is negligibly small in all these 

100 iterations, the estimated Q values are regarded as optimum corresponding to a 

particular state - action pair. The iteration number thus obtained is approximated to 

nearest multiple of 100 is taken as 'maximum iteration (maxjteration), and used in 

next trials. Different successive executions of the algorithm with max_iteration 

provided with almost the same results with tolerable variation. 

RL _ UCP 1 indicated the convergence after 5000 iterations. While using 

RL_UCP2 the optimum is reached in 2000 iterations. The schedule obtained is given in 

Table 4.4 which is same as given in Wood and Wollenberg [2(02). 

Table 4.4 - Commitment sthedule obtained 

Hour 0 1 2 3 4 5 6 7 

State 0011 0011 1011 0011 0011 0001 0001 0011 

The computation time taken by RL_VCP 1 was 15.62 sec while that taken by 

RL_VCP2 was only 9.45sec. From this, it can be inferred that, the pursuit method 

is faster. 

Case IJ- Eight generating unit system 

Now an eight generating unit system is considered and a load profIle of 24 

hours is taken into account in order to prove the scalability of the algorithms. The load 

proflle is given in Table 4.5 
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Table 4.5 - Load profile for 24 hours 

Hour 0 1 2 3 4 5 6 7 

Load(MW) 450 530 600 540 400 280 290 500 

Hour 8 9 10 11 12 13 14 15 

Load(MW) 450 530 600 540 400 280 290 500 

Hour 16 17 18 19 20 21 22 23 

Load(MW) 450 530 600 540 400 280 290 500 

The cost characteristics are assumed to be linear as in previous case. The generation 

limit and the cost characteristics are given in Table 4.6 

Table 4.6 - Gen. Unit characteristics for Eight generator system 

Incremental No. Load Startup 
Unit Pmin Pmax Cost Cost Cost 

(MW) JMWl Rs. Rs. Rs. 
1 75 300 17.46 684.74 1100 

2 75 300 17.46 684.74 1100 

3 60 250 18 585.62 400 

4 60 250 18 585.62 400 

5 25 80 20.88 213 350 

6 25 80 20.88 213 350 

7 20 60 23.8 252 0.02 

8 20 60 23.8 252 0.02 
. . 

The optimal cost obtained for 24 hour penod 1S Rs. 219,5961- and the solution 

obtained is given in Table 4.7. The status of the different units is expressed by the 

decimal equivalent of the binary string. For example during the first hour, the 

scheduled status is '3', which indicate 0000 001 L 
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Table 4.7 Commitment schedule for 24 hours 

Hour 0 1 2 3 4 5 6 7 8 9 10 11 

Status 3 3 131 3 3 2 2 6 6 6 134 6 

Hour 12 13 14 15 16 17 18 19 20 21 22 23 

Status 6 2 2 6 6 6 70 6 6 2 2 6 

Comparison of two algorithms RL _ UCP 1 and RL _ UCP2 are given in 

Table 4.8. The number of iterations as well as computation time is again found to be 

less for the pursuit method when compared with e- greedy method. 

Table 4.8- Comparison oCalgorithms RL_UCPl and RL_UCPl 

RL_UCPl RL_UCP2 

4Unit system No: of 5000 2000 
iterations 

Time(sec.) 15.62 9.45 

8 Unit No: of 106 5 x IO~ 
system iterations 

Time(sec.) 34 17 

Scalabillity of the proposed algorithms are now proved for simple Unit Commitment 

Problem. 

Case III (Four unit system with minimum up time and minimum down time 

considered) 

In order to validate the algorithms RL_ UCP3 and RL_ UCP4, first consider the 

four generator system (Wood and Wollenberg [2002]) with the given minimum up time 

and minimum down time. The unit characteristics and load profile are the same as 

given Table 4.2 and 4.3. The different units require different number of hours as 

minimum up time and minimum down time. The minimum up time, min. down time 

and the initial status of the units are given in Table 4.9. 
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Table 4.9 - Minimum up time and minimum down time, initial status 

Min. 
Min.Down 

Unit Up ime(Hr.) time(Hr.) Initial Status 

1 4 2 -2 

2 5 3 1 

3 5 4 -4 

4 1 1 -1 

The initial status -1 indicate that the particular unit has been DOWN for 1 hour 

and the initial status 1 represent that the unit has been UP for 1 hour. 

The learning of the system is carried out using RL _ VCP3 and RL_ UCP4. A 

number of states are visited and after 10' iterations, the Q values approach optimum. 

RL _ VCP3 enumerates and stores all the visited states. The goodness of each state 

action pair is stored as Q value. On employing state aggregation in RL_UCP4, the 

number of entries in the stored look up table is reduced prominently. This is reflected 

by the lesser computation time. The optimum schedule obtained is tabulated in 

Table 4.10 which is consistent with that given through Dynamic Programming (Wood 

and Wollenberg [2002]) 

Table 4.10 - Optimum schedule obtained 

Hour 1 2 3 4 5 6 7 8 

Status 0110 0110 0111 0110 0110 OllO 0110 0110 

In RL _ VCP3, since the number of states and hence the number of Q values 

manipulated are more, the execution time is more. In case of RL _ VCP4, the number of 

states is drastically reduced due to the aggregation of states and hence the schedule is 

obtained in much lesser time. Time of execution of the algorithms RL _ VCP3 and 

RL_VCP4 are tabulated for comparison in Table 4.11 
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Table 4.11 -Comparison of RL_ UCPJ and RL_ UCP4 

Execution 
Algorithm Time (Sec.) 

RL_UCP3 9.68 

RL UCP4 3.89 

From the comparison of execution time, it can be seen that state aggregation 

has improved the performance very much. 

Case IV-Ten generating unit system 

In order to prove the flexibility of RL_UCP4 and to compare with other 

methods, next a ten generating unit with different initial status given is considered 

(Cheng et al. [2000J). 

In this case minimum up time and minimum down time are also different for 

different units. Minimum up time of certain units is 8 hours, which is difficult to be 

handled by RL_UCP3. The cost functions are given in quadratic cost form, C(P) = 

a + bP + cp2, where a,b and c are cost coefficients and P the power 

generated. The values of the cost coefficients a, b and c for the different generating 

units are given in Table 4.12. For a load profile of eight hours given in Table 4.13, the 

algorithm gave an optimum result in 2 x 10$ iterations. The obtained commitment 

schedule is given in Table 4.14 
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Table 4.12 - Generating Unit characteristics of 10 generator system 

Cost coefficients Start Min. 
up Min.Up Down 

Pmin Pmax cost Initial 
Unit (MW) (MW) a b c (Rs.) (hrs.) (hrs.) status 

1 150 455 1000 16.19 0.00048 4500 8 8 8 

2 150 455 970 17.26 0.00031 4000 8 8 8 

3 20 130 700 16.6 0.00211 550 5 5 -5 

4 20 130 700 16.6 0.002 360 5 5 -5 

5 25 160 450 19.7 0.00031 300 6 6 -6 

6 20 85 370 22.26 0.0072 340 3 3 -3 

7 25 85 480 27.74 0.00079 520 3 3 -3 

8 10 55 660 25.92 0.00413 60 1 1 -1 

9 10 55 665 27.37 0.00222 60 1 1 -1 

10 10 55 670 27.79 0.00173 60 1 1 -1 

Table 4.13 - Load profile for 24 hour 

Hour PLead (MW) Hour PLead (MW) 

1 700 13 1400 

2 750 14 1300 

3 850 15 1200 

4 950 16 1050 

5 1000 17 1000 

6 1100 18 1100 

7 1150 19 1200 

8 1200 20 1400 

9 1300 21 1300 

10 1400 22 1100 

11 1450 23 900 

12 1500 24 800 
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Table 4.14 - Unit Commitment schedule 

Hr Load(MW) 1 2 3 4 S 6 7 8 9 10 

700 0 0 0 0 0 0 0 0 

2 750 0 0 0 0 0 0 0 0 

3 850 0 0 0 0 0 0 0 

4 950 1 0 0 0 0 0 0 0 

5 1000 1 0 1 0 0 0 0 0 

6 1100 0 0 0 0 0 

7 1150 0 0 0 0 0 

8 1200 0 0 0 0 0 

9 1300 1 1 1 0 0 0 

10 1400 1 0 0 

11 1450 0 

12 1500 1 1 1 

13 1400 1 1 0 0 

14 1300 1 1 1 0 0 0 

15 1200 0 0 0 0 0 

16 1050 1 1 0 0 0 0 0 

17 1000 1 1 1 0 0 0 0 0 

18 HOO 1 1 0 0 0 0 0 

19 1200 0 0 0 0 0 

20 1400 0 0 

21 1300 1 1 1 0 0 0 

22 1100 1 0 0 1 0 0 0 

23 900 0 0 0 0 0 0 0 

24 800 1 0 0 0 0 0 0 0 0 
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By executing RL_ UCP4 for the above characteristics, the commitment 

schedule is obtained in 268 sec. The obtained schedule is given in Table 4.14. The cost 

obtained and the computation time are compared with that obtained through hybrid 

methods using Lagrange Relaxation and Genetic Algortihm (LRGA) proposed by 

Cheng et al. [2000] and Simulated Annealing and Local search (SA LS) suggested by 

Purushothama and Lawrence Jenkins.[2003]. Comparison of the cost and time are 

given 4.15. 

Table 4.15 - Comparison of cost and time 

Execution 

Algorithm Cost(Rs.) Time(sec.) 

LRGA 564800 518 

SA LS 535258 393 

RL_UCP4 545280 268 

A graphical representation of Table 4.15 is given in 4.1 
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The comparison revealed that the proposed method gave comparable cost with 

other methods and takes less computation time. Quick decision making is 

advantageous in a practical power system scheduling since the economy of power 

generation directly rely on the same. When a practical system is considered the cost is 

not at all constant and it changes from time to time. Reinforcement Learning provides 

with a solution for handling the same. 

4.12 Conclusion 

Unit commitment has now been formulated as a multi stage decision making 

task and then Reinforcement Learning based solution strategies are developed for 

solving the same. First the minimum up time and minimum down time limitations are 

neglected and the scheduling policy is arrived using £ greedy and pursuit methods for 

action selection. Then the minimum up time and minimum down time of the generating 

units are considered to find the optimum commitment schedule. An index based 

approach has been formulated to reduce the size of the search space in RL_VCP3 and 

state aggregation method is implemented to make the solution more efficient and 

reduce computation time in RL_VCP4. All the four algorithms have been verified for 

different systems with given load profile. The results seem to be good with respect to 

the computation time when compared with some of the recent methods. 

Getting a profitable schedule based on the instantaneous cost is a much needed 

task. This indeed necessitates algorithms which provide the optimum schedule at 

minimum time as far as possible. In a practical power system, at the load dispatch 

centre time to time decision making is a serious task since the impact on the economy 

is very serious. A quick decision making is necessitated at each change of the 

stochastic data. As the Reinforcement Learning method proves to be faster and more 

efficient in handling system data compared to other strategies, it is much suitable for 

practical systems. 
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CHAPTERS 

REINFORCEMENT LEARNING ApPROACHES 

FOR SOLUTION TO 

ECONOMIC DISPATCH 

5.1 Introduction 

In the previous chapter, Unit Commitment Problem has been solved using 

Reinforcement Learning approach. Next loop in power scheduling is Economic 

Dispatch. Economic Dispatch problem is challenging because of the large varieties of 

cost functions. Cost function in some cases may be non convex, discontinuous. In 

some other cases it is not well defined and may be stochastic. 

Classical methods fail to handle the non convexity of the cost data. The soft 

computing methods efficiently handle the non convex cost functions. But most of them 

fail to handle the stochastic nature of the cost. In this thesis, an efficient approach using 

Reinforcement Learning to solve Economic Dispatch problem is presented. This 

approach can handle any kind of cost data, including stochastic cost. Moreover, once 

the Q values are learnt, the schedule for any load value can be retrieved 

instantaneously. 

In the next section, mathematical formulation of the problem is given. Q 

learning method is adopted to develop the different Reinforcement Learning 

approaches in the succeeding sections. The class of algorithms is denoted as RL_ED. 

For simplicity, transmission losses are neglected while formulating the algorithms in 

the flrst stage. 

Finding the correct combination of power values makes the problem a 

combinatorial optimization task. In the flrst step of solution, the power combination or 

optimum dispatch is obtained for each load demand independently. In this case, every 

load dispatch is considered as a separate problem as in methods like Genetic 
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Algorithm. The solution based on an adaptive decision making strategy (Thathachar 

and Sastry (2003]) is proposed, termed as Learning Automata algorithm (RL_EDl). In 

tbjs case, the optimum dispatch is obtained by trying a sequence of possible power 

combinations or actions. The action selection is done in a more scientific manner. At 

each step of trying an action, value of a performance index associated with that action 

is updated. Performance index stores the goodness of an action for further 

consideration in the next steps. 

When the number of generating units increases, the number of possible 

combinations of power allocation will increase beyond a manageable limit. Finding the 

allocation independently for each load demand from the huge action space is a difficult 

task. This motivates the formulation of Economic Dispatch as a multi stage decision 

making task. 

In the second stage of solution, Reinforcement Learning solutions are 

developed for this multi stage decision making problem. Learning is cl!rried out using 

Q- learning. Two types of action selection strategies, e - greedy and pursuit method are 

used to develop the solution steps as RL_ED2 and RL_ED3 respectively. 

The transmission losses occurring in a system are not considered in the 

previous two approaches of solution. As the third step of putting forward a solution 

suitable for practical power system, the transmission losses are also considered. This 

extended algorithm is given as RL_ED4. 

In order to make the solution more efficient in handling the continuous nature 

of input at each stage of the problem, a function approximation approach is also 

suggested as the fourth step of solution. Radial Basis Function networks are used as the 

function approximating network and the learning is carried out through Reinforcement 

Learning. The algorithm is described as RL_ED5. 

The performances of the developed algorithms are evaluated using several 

IEEE standard test systems. To assess the efficacy of the proposed methods, 

comparison is also made with some of the latest solution methods including Simulated 

Annealing and Partition Approach Algorithm. 
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5.2 Problem Description 

Economy of operation, in particular, is more significant in the case of thermal 

stations, as the variable costs are much higher compared to the other type of generators. 

The cost of fuel is the major portion of the variable cost and the purpose of optimal 

operation is to reduce the cost of fuel used. A number of constraints also have to be 

considered while trying to minimize the operating cost. These include generation limits 

of the units, prohibited operating zones, ramp rate limits, valve point loading etc. 

5.2.1 Generation limits 

Each generating unit is having its minimum and maximum generation limit 

specified as 

Pm1n (l) : Min. Power generation of ,-ilt unit 

Pmax(l) : Max. Power generation of i''' unit 

But the assumption of adjusting the unit generation output instantaneously over this 

entire range is not valid at all situations. Some of the practical systems will be having 

prohibited operating zones and ramp rate limits which also force constraint to limit 

their operation in the entire range of possible generation. 

5.2.2 Prohibited Operating Zones 

A thermal generating unit may have prohibited operating zone(s) due to the 

physical limitations of power plant components (e.g. vibrations in a shaft bearing are 

amplified in a certain operating region). As a result, in practice, the whole of the unit's 

operating range is not always available for load allocation. For a prohibited zone, the 

unit can only operate above or below the zone. For example, a 500 MW generator, with 

a minimum generation limit (P ",in) of 100 MW and a maximum generation limit (P 1fUU) 
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of SOO MW, may have a prohibited operating zone, say, between 2S0 MW and 3S0 

MW. This prohibited zone results in two disjoint convex regions -the region between 

100 MW and 2S0 MW (i.e. [100 MW, 2S0 MWJ) and the region between 3S0 MW and 

SOO MW (Le. [3S0 MW, SOO MW]). These two disjoint regions fonn a non-convex set. 

Fig. S.l shows the input-output perfonnance curve for a typical thennal unit. 

Several cases available in the literature discuss the effects of the prohibited zone in the 

Economic Dispatch problem. In practice, the shape of the input-output curve in the 

neighborhood of the prohibited zone is difficult to detennine by actual perfonnance 

testing or operating records. In actual operation, the best economy is achieved by 

avoiding operation in these areas. As such, heuristic algorithms are developed to adjust 

the generation output of a unit in order to avoid unit operation in the prohibited zones. 
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5.2.3 Valve point effects 

The unit input-output curve establishes the relationship between the energy 

input to the driving system and the net energy output from the electric generator. The 

input to thermal equipment is generally measured in Btu's per hour and the output is 

measured in megawatts. 
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valve 
full 
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4 

QWn81Y 
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Fig.S.l Thermal unit-Input versus output with valve point effect 

Fig. 5.2 shows a thermal unit input-output CUlVe showing the valve point 

effects. The ripples in the input-output curve are the result of sharp increase in losses 

due to wire drawing effects, which occur as each steam admission valve starts to open, 

producing a rippling effect. As each steam valve opens, instantaneous output also 

increases sharply and then it settles. Smooth quadratic function approximations are 

used for solution in classical Economic Dispatch methods. Heuristic methods can avoid 

this approximation and provide better solution. 

5.2.4 Multiple fuel options 

Some of the thermal plants may take different types of fuels at different 

regions of power output, for efficient operation. In such cases the fuel cost function 

will not be following the same relation with the power output for the entire range of 

operation. It is better to represent the cost functions as piecewise polynomial functions 

corresponding to the different regions of operation. 
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5.2.5 Transmission Losses 

Since the power stations are usually spread out geographically, transmission 

network losses must be taken into account to achieve true economic dispatch. Network 

loss is a function of power injection at each node. To calculate network losses, two 

methods are in use. One is the load flow computation method and the other is the B 

coefficients method. The latter is commonly used by the power utility industry. 

Considering the operating characteristics and constraints of the thermal 

generating units, Economic Dispatch can be modeled as a constrained optimization 

problem. 

5.3. Mathematical formulation 

Consider a power system having N generating units. Let PD be the power 

demand to be satisfied with these N units at any slot of time and let PL be the total 

transmission less in the system. 

The objective function of Economic Dispatch problem CT is equal to the total 

cost for supplying the load power PD. The problem is to minimize CT subject to the 

constraints that the total generated power and the load demand equals and the power 

constraints on all units are being met. Mathematically the objective function which is 

the total cost of generation (CT ) can be expressed as 

(5.1) 

where Cj denotes the cost function corresponding to ,0lil unit and P, the 

electrical power generated by that particular unit. 

The fuel cost function can be expressed in a variety of forms including quadratic 

cost functions, piecewise quadratic cost functions, higher order polynomials, tabular 

form etc. 
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(i) Quadratic cost functions: 

In this representation, the fuel cost of each unit is expressed as a quadratic 

expression, 

Ci(Pt ) = at + btPt + Ctp? 
Including the effect of valve point, the quadraric cost function is added 

with a recurring sinusoidal term: 

Ct(Pt ) = at + bt Pt + Ct p? + et sin Clt Pmin(L) - Pt) 

Where ab b, , C;, e, and fi are the cost coefficients correponding to {II 

generating unit. 

(iI) IDgher order Polynomials: 

One of the commonly used model is the third order polynomial form as 

given by: 

Ct(Pi ) = at + bi Pt + Ctp? + dtP? 

Where ab bj, C, and d, are the cost coefficients correponding to t" 
generating unit. 

(ill) Piecewise Quadratic functions: 

For making the cost functions accurate, piecewise quadratic functions are 

also used. In this, Cost is represented by different quadratic cost functions 

in the different regions as, 

C/PJ = aj(l) +bi(J)P, + Cj(J?/ (P"'I1I(/) $P/~ PI(J) 

= QI(2) +bi(2?' + Ci(2?/ ( PI(I) S P, ~ Pj(2}) 

= a'(3) +bl (3?i + CI(3?/ ( P
'
(2) .$ P, ~ P IIIIZ% (I)) 

(iv) Tabular form: 

When a mathematical expression is difficult to be arrived, from the 

experimental knowledge, the cost of a generating unit can be expressed in 

tabular form. 

(v) Stochastic cost data 

In the case of practical systems, the known details of the cost function may 

not be deterministic or may fit to any of the mathematical formulations 

exactly. Cost of generation of any power P may be a random variable. 
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The constraints for this optimization problem comes from the various aspects 

of generating unit characteristcs, transmission system effects, power demand etc. Since 

the generated power should meet the load demand and the transmission losses in the 

system, the most basic constratint is the power balance constraint expressed as, 

(5.2) 

WherePD : Tota1load power demand 

Pj : Power generated by ;#' generating unit 

: Loss in the transmission system 

Loss in the transmission system can be calculated by executing power flow algorithms 

or can be approximated by the B - Matrix loss formula. Due to simplicity. B­

Coefficient formulation is widely used by the power utility industry. The B - Matrix 

Loss formula is given (Wood and Wollenberg [2002]) as 

I=N J=N N 

PL = L L Pt BtJ 1'j + L BIOP, + Boo 
t=l J=l i=l 

where Bij is the ill! element of the loss coefficient square matrix; Bjo is the ,0/11 element of 

the loss coefficient vector and Boo is the loss coefficient constant 

The generation limit constraints are given as, 

(5.3) 

Pm1n(l) : Min. Power generation of ,0/11 unit 

Pmax(l) : Max. Power generation of i'" unit 

Ramp rate limits are specified by the limits on the incremental rate of generation as, 

Pi I - PI (I-I) = URj and PI (t-l) - Pi t = DRI 

(5.4) 

URI and DRI are up ramp and down ramp limits of the i" unit, which 

are in the units of MW / hr. In practice, DRI is greater than URI. 

122 



~nfurcement £eamitl{j ;4pproacfies fur So(utwn to <Economic CDispatcn 

In the next sections, some faster and efficient solution strategies to handle this 

allocation problem are proposed. 

5.4 Learning Automata solution for Economic Dispatch 

In Economic Dispatch problem, the Learner (Dispatcher) has to get the 

optimum generation of the N generating units so as to meet the power demand PD. In 

order to develop a simple solution strategy, the transmission losses are neglected for 

the time being. 

In this solution, optimum schedule is obtained for a single load demand in one 

learning procedure. This approach is similar to Genetic Algorithm, Simulated 

Annealing etc. The systematic approach suggested through Learning Automata seems 

to be better than Genetic Algorithm and Simulated Annealing. The solution procedure 

motivates the steps into Reinforcement Learning solution to Economic Dispatch. 

Input to the decision making system is the amount of active power demand to 

be satisfied with the set of committed units. The different actions (decisions) possible 

can be treated as a set of vectors, where each action vector gives the loading of the 

different units (or in other words power combinations). This approach is similar to N 

arm bandit problem discussed previously. 

The set of permissible actions (action set cA) is determined by taking into 

consideration the load demand and minimum and maximum limits of generation that 

can be met by each unit. A suitable discretization value for power increments is taken 

to generate the different power combinations or actions. For small values of discrete 

step, number of possible actions will increase. 

Any action at is represented by a vector, [ Plo P2o "'PHI;j,whereP1o PlO'" PHI; 

are the power allocation to the N units corresponding to action at such that, 

1:F=l Pt k = PD and 

PLk E {Pmin(i)' Pm1n(f) + Sa. Pmin(i) + 2Sa • ......... Pmax(f)} 

Here, Sa is the discrete action step chosen. 
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Now the algorithm can be formulated to solve this learning automata problem. 

ie, to fInd the best action or optimum dispatch. The learning automata system learns 

through continuous taking up of actions and updating of the corresponding 

performance index. The values of the performance index associated with all the actions 

in the action set are fIrst initialized with zero. One of the actions, at E cA. is selected by 

the learning algorithm using any of the exploration strategies. In this case & greedy 

selection strategy is used. 

On applying the action at from the action set, the environment (the generating 

units) gives back a numerical value or reward equal to the cost of generation of power 

with the dispatch corresponding to ak, Cost(aJ. 

N 

Cost (ak) = I Ct(Pt k) 
i=l 

This numerical value can be used to update the performance index 

corresponding to action ak, say Q(at) as given by the equation: 

(['+1 (at) =(['(aJ +a [Cost(aJ -Q"(at)], (5.5) 

where a. is the learning parameter 

The learning parameter influences the convergence and correctness of the 

optimum values of the performance index. A large value of a. will make the algorithm 

oscillatory. A very small value will slow down the convergence. By trial and error 

method, a. is chosen as 0.1. The action selection and updating of performance index 

are repeated for sufficient number of times so that the values of the performance index 

will converge (change in the value become negligibly small) and afterwards the action 

with optimum (minimum) value of performance index will be chosen with highest 

probability. Therefore, once the learning system is converged, the optimum allocation 

(action) is found as: 

a· = argmina1ce.cl QC ak ). which is the greedy action itself. 

The complete algorithm is given as RL_EDl. 

124 



CRsinjorcement Leamino jfpproacfies j(}f Sofution to l£conomic CDispatcli 

Algorithm for Economic Dispatch using Learning Automata (RL_ED1) 

Read the generating unit data 

initialize s = 0.5 and et. = 0.1 

Identify the demand to be met 

Choose a suitable discretization step 

Identify the max. no: of permissible actions 'm' 

Generate the possible actions, ao-... a",.J 

Initialize (/(aJ =0 , 0<k<m-1 

For (n=O to max_iteration) 

Begin 

Select an action ak using e greedy algorithm, 

using the cu"ent values of performance index 

Calculate cost (aJ 

Update !l' (aJ to !l'+J (aJ using eqn (5.5 ) 

End 

Find the greedy action from the updated values ofQ (aJ, 0<k<m-1 

The Learning Automata method provides a very simple method of solving 

Economic Dispatch problem. When the number of generators increases. the action 

space becomes huge. This makes the computation difficult for finding the optimum 

dispatch even for a single load demand. 

To handle the problem efficiently the Economic Dispatch is now formulated as 

a multi stage decision task. The states at each stage of the problem are discretised in 

terms of the demand to be met at each stage. Reinforcement Learning based solution 

strategies are proposed to find the best actions at each stage corresponding to the 

different states. Therefore as the next step. in the proposed method, Economic Dispatch 

is formulated as a multi stage decision making task. 
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5.5 Economic Dispatch as a multi stage decision problem 

To view Economic Dispatch as a Multi stage decision making problem, the 

various stages of the problem are to be identified. Consider a system with N generating 

units committed for dispatch. Then Economic Dispatch problem involves deciding the 

amount of power to be dispatched by Go. Gb Gz, ...... ••.•••.•• GN-J• 

In this formulation the amount of power to be dispatched by G" is denoted as 

action air Action a" in Reinforcement Learning terminology corresponds to a power 

allocation P" MW to generating unit G". p" is numerically same as a". Therefore, the 

action set cA" consists of the different values of power dispatch possible to G". That is, 

cA,,= {Mink, ...... .... ,Maxkj, Mink being the minimum value of power that 

can be allotted to G" and Maxk being the maximum power that can be allotted to Gk.. 

Values of Mink and Maxk depend on the minimum and maximum values of power 

generation possible with /(" unit and also maximum and minimum power that can be 

allotted among the remaining N - k units available. Therefore, action set cA" is a 

dynamically varying one depending on the power already allotted to the previously 

considered units. 

The quantization step (in MW power) is chosen based on the accuracy needed. 

But a very small value is not necessitated due to the setting of the reference point 

setting in a plant. Therefore an optimum value is chosen based on the accuracy needed 

and the setting of the units. Also as number of generating units and hence the range of 

possible demand increases, the number of states in the state space increases. State 

space is also discretized to have definite number of states. For defining the same, an 

optimum value of step size is to be chosen so as to get the required accuracy keeping 

the number of states manageable. 

Now the problem can be stated as follows: Initially there are N units and PD 

MW of power to be dispatched. The initial state is denoted as stageo. In stageo, a 

decision is made on how much power is to be dispatched by Go. This action is denoted 

as ao and corresponds to P oMW allocation to Go. 
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On making this decision, stage 1 is reached Also (PD - aoJ MW of power 

remains to be allocated to the remaining N-J units (GI • G1 •••• GN-/). In stageJ. a 

decision al is made on how much power is to be dispatched to GI. Similarly at stage k, 

a decision is made on how much power is to be dispatched by Gk- Thus, the stage N-l 

is reached where the amount of power to be dispatched by Go. GI • ••• ...... GN-1 are 

already decided as (ao. al ....... aN.:J which give directly the power allocations (PI. 

P1 .............. P,J. 

From the power balance constraint (with PL = 0), it follows that, 

PO+PI +P1+ ...... ",PN-I = PD which directly implies that 

Therefore, in stageN_I, there is no choice but to allocate power PN-I or take action aN-I. 

Each state at any slagel; (k varies from 0 to N-l) can be defined as a tuple (1; 

DJ where k is the number indicating the stage number and DI; , the power to be 

distributed among the remaining N - k units. 

That is, with k = 0, the state information is denoted as (0. DtJ where Do is the 

load demand PD for Economic Dispatch among the N generating units. The RL 

algorithm selects one among the permissible set of actions (between mu. and min. 

power limits corresponding to one of the unit) and allocates to the particular machine 

considered so that it reaches the next stage (le = J) with the remaining power after 

allocation, and N-l units for generation. Transition from (0. DoJ on performing an 

action aoec/lo results in the next state reached as (1. DJ. 

Or in general, in stage le, from state.1"1; on performing an action al; reaches state Xt+/' ie, 

state transition is from (k. DI;) to (k+l. Dk+J, where 

(5.6) 
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This proceeds until the last stage. Therefore, state transition can be denoted as, 

'f' being the function of state transition defined by equation (5.6). 

Thus, Economic Dispatch algorithm can be treated as one of finding an optimum 

mapping from the state space X to action space (possible discrete power allocation 

values) ell. The associative nature of the problem arises from the fact that each action 

denotes distribution of power to one unit so that the power to be distributed among the 

remaining units reduces by that much amount. Design of Economic Dispatch 

algorithm is finding or learning a good or optimal policy (allocation schedule) which is 

the optimum allocation at each stage. Such allocation can be treated as elements of an 

optimum policy 7r.. For finding the net cost of generation, cumulate the costs at each 

of the N stages of the problem. These costs can be treated as reward of performance of 

an action in the perspective of Reinforcement Learning. The net cost of generation on 

following a policy 1r can be treated as a measure of goodness of that policy. Q learning 

technique is employed to cumulate costs and thus fmd out the optimum policy. 

5.6 RL Algorithm for Economic Dispatch using s- greedy 

strategy 

In the previous section, Economic Dispatch is formulated as a multi stage 

decision making problem. To find the best policy or best action corresponding to each 

state, Reinforcement Learning strategy is used. Solution consists of two phases: 

learning phase and policy retrieval phase. 

To carry out the learning task, one issue is regarding how to select an action 

from the action space. The two commonly used action selection methods are & - greedy 

and pursuit. In this section, & greedy strategy of exploring action space is used and the 
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developed solution is termed as RL _ ED2. Pursuit action selection is used to develop 

the learning algorithm in the next section (RL_ED3). 

For solving this multi stage problem using Reinforcement Learning, first step 

is fixing of state space X and action space ell precisely. The different units can be 

considered arbitrarily as corresponding to the different stages. 

Fixing of state space X primarily depends on number of generating units 

available on line and the possible values of power demand (which in turn directly 

depends on mm. and max. values of power generation possible with each unit). Since 

there are N stages for solution of the problem, the state space is also divided into N 

subspaces. Thus, if there are N units to be dispatched, 

X = x.oU XI U .......... 'm-I. 

The dispatch problem should go through N (no: generating units) stages for 

making allocation to each of the N generating units. At any stage (stage,), the part of 

state space to be considered (xJ consists of the different tuples having the stage 

number as k and power values varying from D"'iII(k) to D"'tDl(k). D"""(k) being the 

minimum power possible to be met and DIftQX(k) the maximum power possible at J(h 

stage (with N - k units). 

That is, Xk = {(le, D"'iII(k}, ......... (Ie, DIftQX(k)} 

where D"'i1I(k) =Minimum power possible with N - k units 

_ ~f=N-l P, 
- L.i=k min(f) 

DIfIIU(k) = maximum power possible with N - k units 

_ ~i=N-lp 
- L.i=k max (i) 

At each step, the Economic Dispatch algorithm will select an action from the 

permissible set of discretised values and forward the system to one among the next 

permissible states. 
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The action set cAk consists of different values of MW power that can be allotted 

to It" unit. The action set cAk depends on the demand value Dk at the current state Xk and 

also on the minimum and maximum power generation possible with remaining N - k 

units. Therefore action set cAt is dynamic in nature in the sense that it depends on the 

power already allotted up to that stage and also the minimum and maximum generation 

possible with the remaining N-k units. If Dk is the power to be allotted, minimum value 

and maximum value of action ak are defined as 

Mink = max [(Dk - Lf:~;i Pmax (t)), P min(k)] 

Maxi):= min [(Dk- L~:~;{ Pmin (i)), P 1fIIU(l)] 

(5.7) 

The number of elements in these sets X and cA depends on the minimum and 

maximum limits and also the sampling step. 

For updating the Q value associated with the different state - action pairs. one 

should cumulate the cost at different stages of allocation in a proper way, by taking 

into account the associative nature of the problem. In Economic Dispatch problem, the 

reward function (g) can be chosen as the cost function itself. That is, Reward received 

or cost incurred on taking an action a" or allocating a power Plc at It" stage is the cost 

of generation of the power Plc' In the Reinforcement Learning terminology, the 

immediate reward, 

(5.8) 

Since the aim is to minimize the cost of generation estimated Q values of state­

action pair are modified at each step of learning as, 

Qn+l(X", ak) = Qn(x", a,,) + a [g(x",ak,x"+l) + mioa'e.Ak+l Qn (Xk+l' a)­

Qn (x", a,,)] 

(5.9) 

Here, a is the learning parameter and y is the discount factor. 
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When the system comes to the last stage of decision making, there is no need 

of accounting the future effects and then the estimate of Q value is updated using the 

equation, 

(5.10) 

For finding an optimum policy, a learning algorithm is designed which will go 

through each of the N stages at each step of learning. As the learning steps are carried 

out sufficient number of times, estimated Q values of state-action pairs will approach 

to optimum so that we can easily retrieve the optimum policy (allocation) fr-(x) 

corresponding to any state x. 

The learning procedure can now be summarized. At each iteration of learning 

phase the algorithm. will take the system initial condition (ie, for k = U) which is the 

power demand, as one random value within permissible limits. Then an action is 

performed which will allocate power to one of the units and then pass to the next stage 

(k = J) with the remaining power. This proceeds until all the N-J units are allotted 

power. At each state transition step, the estimated Q value of the state - action pair is 

updated using equation (5.9). 

As the learning reaches the last stage, since there is no choice of action. the 

remaining power to be allotted will be the power corresponding to the action (aN./ = 

DN-J. Then the Q value is updated using equation (5.10). The transition process is 

repeated a number of times (iterations) with random values of initial demand and each 

time the dispatch process goes through all the N-J stages. Value of s is taken closer to 

0.5 in the initial phases of learning and is reduced in every max_iteration/lO iterations 

by 0.04. 

The entire algorithm of Learning is given as RL_ED2: 
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Algorithm for Economic Dispatch using E greedy (RL _ ED2) 

Get Unit parameters 

Initialize the learning parameters 

For all the stages Identify possible state vectors, Xt 

Evaluate minimum and maximum demands permissible at each stage 

Initialize f! (x, a) to zero 

Initialize e = 0.5 

For (n = 0 to max_iteration) 

Begin 

End. 

PD = rand (Dmino. Dmax~, Do = PD 

For k= OtoN-2 

Do 

End do 

State tuple Xt = (le. DJ 

Identify the action space cA.t using eqn. (5.7) 

Select an action at from action set At 

using ~ greedy method. 

Apply action at and allot power to It" unit, 

DIc+I = Dt - at 

Calculate the rewardfunction g(Xk, ak. Xk+1) 

using eqn. (5.8) 

Update f! to f!+1 using eqn. (5.9) 

aN_I = D
N

_
1 

Calculate the reward using eqn. (5.8) 

Update f! to (!+J usingeqn. (5.10) 

Update learning parameter&. 

Save Q values. 

The performance of the algorithm is evaluated for several standard test 

systems. 
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5.7 Pursuit algorithm for Economic Dispatch(RL_ED3)

As explained before, in case of pursuit algorithm, for any given state xi; an

action is selected based on the probability distribution function Px.O. In the case of

Economic Dispatch, initially the probability associated with each action a.in the action

set A.corresponding to x. are initialized with equal values as

where nk is total number of permissible actions at stage le. As in the

previous algorithm, initialize the Q values ofall state - action pairs to zero. That is,

o
Q (x. a) = 0 IfxEX and Ita EA. .. o<=k<=N-J

Then at each iteration step, an action a is selected based on the probability•
distribution. On performing action a., it reaches the next stage with Dk+l=D. - aft. The

cost incurred in each step of learning is calculated as the sum of cost of producing

power Pk(Pk =ak) with the 1!' generating unit. Q values are then updated using the

equation (5.9). At each of the iteration of learning, we find the greedy action as a. =

argmina EA. (Q(x••a )). Then accordingly the probabilities of actions in the action

set are also updated as,

p;:l(ak) =p;.(ak) + p[l- p;.(ak)]. whenak = ag

p;:l(ak) =p;.(ak) - p[p;.(ak) ]. when ak '* ag

(5.11)

The algorithm proceeds through several iterations when ultimately the probability of

best action in each hour is increased sufficiently which indicate convergence of the

algorithm. First the learning is carried out to find the maximum number of iterations

required, checking the updating of Q values in 100 successive iterations. The entire

algorithm is given as RL_ED3.
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Algorithm for Economic Dispatch using Pursuit method (RL_ED3) 

Get Unit parameters 

Initialize learning parameters 

For all the stages Identify possible state vectors, Xl 

Evaluate minimum and maximum demands permissible 

Initialize (/(xoaJ=O 

Initialize Pr" (a/c) = l/n/c. n/c maximum number of actions possible in cA't 

For (n=O to max_iteration) 

Begin 

End. 

PD = rand (Dmino. Dmaxo), Do = PD 

For k = 0 toN-2 

Do 

End do 

State tuple Xl = (le, DJ 

Identify the action space ~ using eqn. (5.7) 

Select an action al using Prlt ( ) 

Apply action ak andfind the next state, D.t+J = Dt - at 

Calculate the rewardfunction g(x/c. a/coXk+l) 

using eqn.(5.8) 

Update fl' to (/+1 using eqn. (5.9) 

Update probability p:,,(a/c) to p::1(a/c) 

using eqn.(5.11) 

aN_I =D}l.1 

Calculate the reward using eqn (5.8) 

Update (/ to (/+1 usingeqn (5.10) 

Update probabilityp:,,(a/c) to p:;l(a/c) usingeqn. (5.11) 

Update learning parameter 6 

Save Q values. 
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This exploration strategy updates the probability of selecting an action at each 

stage. As the learning proceeds the greedy action will turn to be having higher 

probability of selection compared to others. This leads to easy convergence compared 

to & - greedy strategy. 

5.8 Policy retrieval 

As the learning proceeds and updating of Q values of state - action pairs are 

done sufficiently large number of times, (! will be almost equal to Q.. Then the 

optimum Q values are used to obtain the optimum dispatch. For any value of power 

demand PI), initialize Do = PD. Then the state of the system is (0, Dr). Find the greedy 

action at this stage as ag which is the best allocation for (/11 generating unit (PrJ. The 

learning system reaches the next state as (1, DJ where DI = Do - ao. find the greedy 

action corresponding to stagel as al. This proceeds up to (N-l)11I stage. Then a set of 

actions (allocations) ao, aI, a1 .......... aN.1 is obtained which is the optimum schedule Po. 

PI, ... ..... PN.I of generation corresponding to power PI>- The algorithm for getting the 

schedule from the learnt system follows: 

Policy retrieval algorithm: 

Initialize PD = Total power to be dispatched 

DO=PD 

For (k=0 to N-l) 

Do 

End do 

State tuple Xl = (k. DJ 

Find greedy action ag = argmina (Q(xloa)) 

&heduled Power Pt = ag 

Dk+/ =Dl-Pt 

Thus, on executing the learning algorithm and then retrieving the schedule by 

fmding the greedy action corresponding to the input power to each stage of the 
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multi stage decision making task, optimum schedule is obtained for any value of load 

demand. 

Till now, the transmission losses in the system are neglected. Now the 

Reinforcement Learning approach is extended in order to accommodate the 

transmission losses occurring in the system. 

5.9 RL algorithm considering Transmission Losses 

The loss in a transmission network can be estimated by executing power flow 

algorithm or can be approximated using B - Matrix Loss formula. In order to find the 

schedule accounting the transmission losses, one of the previous algorithms can be 

used to carry out the learning steps. For simplicity of introducing the extended method 

£. greedy strategy is employed for learning the system, generating random values of 

initial demand. Once the learning phase is completed, the policy retrieval steps provide 

us with the optimum schedule for any load value. In order to incorporate the 

transmission losses, the learning is carried out frrst and policy retrieval is done 

successively for different values ofload values, accounting the losses. 

First learn the Q value for the different state action pairs. Schedule for the 

required load demand is retrieved by policy retrieval phase. For the schedule obtained, 

transmission losses are calculated by either finding the power flows or using B matrix 

loss formula. The input demand is then modified by adding the calculated loss MW. 

The learning algorithm proceeds to find the dispatch for the new demand value, giving 

out the new schedule of generation. This new power allocation will certainly give a 

new value of transmission loss, which is again used for updating the demand. 

The iterative procedure is continued until the loss calculation converges 

(indicated by the change in loss in two successive iterations coming within tolerable 

limits). By following these steps iteratively for different load values ranging from 

Dmill IV) to D mtUIV), economic allocation schedule for the entire range of possible demand 

(with the given generating units) is obtained. Algorithm incorporating transmission 
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loss to find the schedule for all the possible values of load demand is presented in 

RL ED4. 

Algorithm/or Economic Dispatch considering transmission losses (RL_ED4) 

Get unil parameters including B- coefficient matrix of the system 

Learn the Q values using RL_ED2 

Calculate the range of load values possible Dmi/t (D) to Dwuu (D) 

Initial load PD = Dmi1l (V) 

Do 

Inilialize Plos. and PreY _loss to zero 

Initializejinalloss tolerance 10 a small value)l 

Initialize change in loss (?) to zero 

Do 

PreY ~oss = P/oss 

Find the allocation corresponding to PD using the policy 

retrieval 

Find the loss using B coefficients as Plc6s 

Update PD =PD + Plou 

Compute change in loss? = P10u - preY _loss 

while (? > )l) 

Increment the load PD with suitable discrete step value. 

While (PD <= D1ftIU (V} 

The discrete step for load MW is taken as 10 MW so as to manage the number 

of states at each stage of the problem. Value of J.1 is taken as IMW so that transmission 

loss, less than that can be neglected compared to the load power. Once the learning 

phase is completed, the economic allocation for all the possible load values can be 

obtained instantaneously. The main attraction of these algorithms comes from the fact 

that the learning is carried out only once and need not be repeated for each load 

demand as in other stochastic methods. 
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The learning algorithms discussed in the previous sections have one limitation. 

The input to each stage k of the multi stage problem is the amount of power to be 

dispatched among remaining N - k units. This input power is discretized in order to get 

defInite number of states at each stage of the problem. If the discretization step is 

chosen to be a larger value, accuracy of the result will suffer while a smaller value 

needs longer computation time. In order to make the algorithm more efficient 

accounting the continuous value of input at each stage, a function approximation 

strategy is proposed in the next section 

5.10 Neural Network based solution using Reinforcement 

Learning 

The previous algorithms using Reinforcement Learning is based on fmding a 

policy or mapping from fmite set of states to fmite set of actions. Learning is carried 

out as a multistage process, taking an action from the _available action set when the 

learning system is in any of the possible states in the state space. Initially, the state of 

the system is represented by a tuple (0, PrJ, PD being the power to be allocated among 

the N generating units. The learning proceeds by allocating certain amount of power to 

one of the units and proceeding to successive stages until all the units are allocated. At 

each step of learning. Q value corresponding to state -action pair is modifIed according 

to the reward (cost of generation) of the action. Finally the Q values approach to 

optimum and using the look up table of Q values, the optimum policy is retrieved as a 

mapping of generating unit to power allocation corresponding to an input load value. 

One limitation of this algorithm is that the state and action spaces are 

discretised with certain value of step size. This may give some inaccurate result when 

the discretization step is to be made large in the case of larger ranges of demand 

values. Therefore one issue to be resolved is to somehow incorporate continuous nature 

for the power input values at each of the stages in the multi stage solution process so 

that solution is more efficient. One method that can be introduced is to use some form 
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of function approximation strategy in the learning process. In the next sections the 

method of solution using function approximation strategy is presented. 

S.10.1 Q learning through Function Approximation 

When a continuous state space is considered, the state variable can take any 

value in the continuous state space. Function approximation provides with a strategy in 

which quantization of state space is not necessary. When Q learning technique is used, 

Q values with respect to continuous state space are to be stored somehow. One 

important fact is, in such cases Q values cannot be stored in a look up table. since the 

values of state variable being of continuous nature. One solution is to construct a 

function which will approximate the Q values at different cases based on some 

parameters. That is, continuous state is denoted as x and represent Q values using a 

parameterized class of functions Q(x, a, 0), where () is the parameter vector. With the 

parameterized function to approximate Q value. Q - learning or learning optimum Q 

values is to learn the optimum paramerer vector 0* so that Q (x. a. 9*) is a good 

approximation of Q*Cx. a), V' x € Z , and V'a €c//. (Sutton and Barto [1998J. Imthias et 

al. [2006]). 

Therefore for making this learning through parameterized function possible, 

first a suitable architecture or class of functions Q(x. a, 0) that is well suited for our 

learning problem is to be decided. Secondly formulate a learning algorithm to get 

optimum value of the parameter vector 0* which will give optimum Q 

value, Q*Cx, a, 0). 

In the literature, a variety of parameterized functions are found which can be 

used for function approximation. Recently Neural Networks are being popularly used 

for function approximation due to their extensive learning capability even with non 

linear functions (Haykin [2002]). 

Now, it is required to develop an algorithm to solve Economic Dispatch 

problem using Reinforcement Learning and making use of a function approximating 

network so that continuous nature of input variable can be accounted at each stage. 
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Then the algorithm will ultimately give a policy which is a mapping from the 

continuous state space to discrete action space. For the same, as told earlier, the 

Q values are represented using a parameterized class of functions Q (x, a, B) , where () 

is the parameter vector. The class of functions used is the Radial Basis Function 

network, a category of Neural Network well suited for function approximation. The 

outputs of this network represent the Q - values. 

When Neural Networks are used, mostly supervised learning is employed to 

train the network or adjust the weight vector elements. In such a case, a set of training 

samples are needed which can be used to adjust the weight vector values. In the case 

of Q learning, if supervised learning is employed one should be previously occupied 

with a set of N training samples of the form, 

{(x".a"):Q(x,,.a,,).k = 1, ......... ,N.x" Ez,a" EcA} in order to learn the 

optimal weight values. Then the learning will turn to be a gradient descent method 

such that {Q(x", a,,) - Q·(x", a,,)} is minimized. But in this case, such method is 

impractical. since the exact values for Q. (x", a,,) is not known for any (Xk' a,,) pair. 

Thus supervised mode of learning cannot be used to get the optimal weight vector of 

RBF network which is going to be used as a function approximating network in the 

Q learning method. A set of values of the form{(xk, ak, Xk+1),g(Xk, ak,X"+1)}, where 

X,t is the current state, a,t is the current action, X.l:+J is the succeeding state of applying 

action at and g(x". ak, Xk+l) is the reward corresponding to the particular transition of 

state, are available. Now this information or set of examples can be used in some way 

to learn the neural network for optimum weight adjustment. For the same, 

Reinforcement Learning is used effectively so that optimum value of the parameter 

vector O· is obtained resulting in optimum Q values. For exploring the action space, 

just like in the previous algorithm e - greedy method is employed for action selection. 

In our problem of Economic Dispatch, demand at each stage can be considered 

as continuous. That is input power Dj to each of the stage is a continuous quantity and 

the action at each stage (allocation to one particular unit) at is discrete. The objective is 

to get a policy, which is a mapping from the continuous demand space to discrete 
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power allocation space. Learning optimal Q values involve learning the optimal 

parameter vector (r such that QeD, a, 8*) is a good approximation ofQ*CD, a). Radial 

Basis Function (RBF) neural network is used to store the same. 

5.10.2 Architecture ofRBF Network 

In this section, a novel architecture of the RBF network is proposed to store the 

Q - values in the context of Economic Dispatch. Q - values of each stage is stored in 

one RBF network. Thus for an N unit power system (N stage decision making 

problem), there are N RBF networks. RBF network of all stages consist of an input 

layer, hidden layer and an output layer. The input layer is made up of a single node for 

connecting the input variable to the network. The hidden layer consists of 71Jj hidden 

nodes. This layer applies a non linear transformation from the input space to the m 

dimensional hidden space, 9lm
• The output layer consists of nl linear nodes which 

combine the outputs of hidden nodes (Hay1dn [2002J). 

The architecture of the RBF network for the first stage is given in Fig 5.3 

Fig 5.3 RBF network for Stage 1. 
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The input to this RBF network is D}, the total power to be supplied by 

generators G/t G}, ......... GN and output of the RBF network after learning is 

Q·(Dl'aD,Q·(Dl'aD, ................ Q·(DlJa~l), where al, a~, ......... a~l are the 

different actions possible at stage 1. 

Similarly, the input to the RBF network of I(It stage is the power to be allocated 

to generators Gb Gt+/t ...................... ,.GN, which is denoted as the state of the system 

DIc.A1so, 

The output of this network is Q(D",aD,Q(Dk,a~), ............ , Q(D",a;") 

where nk is the number of actions or power allocations possible at J(" stage. The l" 

output of the RBF network at 1(" stage is given by the expression: 

(5.12) 

where WQ" is nlX ml matrix ofreals, and WQk [i][l], •...... , WQt[i][m,,] are the 

weights of the l" output unit; and { ~ j: fJ{' -> fJI, j = ], ........ mJ is a set of mic radial 

basis functions which constitute the mic hidden units at j(" stage. 

One can use the Gaussian function as the RBF. Then the output of l" RBF (ie, 

l" hidden unit) at J(" stage is given by, 

(5.13) 

where c1 is the centre off' RBF at J(" stage and 0'1 is the width of the RBF at 

l(" stage. 

Substituting ~J (D,,) from equation (5.13) to equation (5.12) we get, 

j=m" 

Q(D",akJ 0) = Yk = I WQk [i]U]exp ((Dk - c1 )2)/2C1~) 
J=l 

(5.14) 
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where i ;:::: 1, .... nJ;. The RBF network at J(Ir stage described above is thus completely 

specified by the parameter vector 

where 

Thus. finding a good approximation of the Q value using the RBF network 

involves finding the optimum parameter vector 8· = [e·, u*, W·]. 

5.10.3 Learning Algorithm for Economic Dispatch (RL_ED5) 

From the previous section it is concluded that finding the optimum parameter 

vector, 8* = [c·,u·, W*] is the task to be resolved in finding the good approximation 

of the Q value function. Next is, how to find the optimal parameters c·, u* and W*. 

In the RBF network described above, adjusting the weights associated with a 

given basis function, say /t basis function at It' stage • will affect the value of the 

output only in a small region around the centre of /Ir RBF. c~. (For a value of input 

DJ: Ef)l, away from c~, exp «Die - cbz /2uf) will be almost zero. This feature of 

RBF network structure which indicates that each hidden layer neuron can be viewed as 

approximating the target function over a small region around its centre makes it 

possible to place the centres on a uniform grid spacing in order to get a better 

interpolation of the input. 

In the case of Economic Dispatch problem, first fix the number of hidden units 

based on the generation limit constraints. The input to this It' RBF network is the 

fraction of the power demand DJ: yet to be distributed among the remaining N - k 

units. Therefore, number of hidden units in each RBF network basically depends upon 
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the maximum and minimum possible demand at that particular stage. Le., for It" stage, 

it depends on the values of Dmin(lc) and Dmaz(lc)o 

For the first stage or first RBF network, the input will be equal to the power 

demand PI>- i.e., DJ = PD-

Minimum and maximum ranges of power demand possible are calculated as 

discussed previously. The number ofunifonnly distributed centres (hidden nodes) mJ at 

this stage is decided by the range of Dmin(J) to D 1ftfU(J)' Similarly for It" stage, the number 

of hidden nodes is decided by Dmill(k) and DIlfIJ%(k). 

Once the number of hidden nodes is fixed, fmd the distance between centres of 

Gaussian functions as, 

gJ; = ( D1fI4%(k) - DmmruJ / (mk-J) 

mk - Number ofRBF centres at It" stage. 

Then the optimal values for the mk centres of the It" RBF network (eiJ are 

chosen uniformly distributed between D mi1l(k) and DINU(k) as 

( D",i1I(l). D",IIl(k) + gk, .............................. ..... Dmax(k)} 

Next is to find the optimum values for the width of the RBF networks at the 

different stages. Since the centres of the Gaussian functions form a uniform grid, width 

of the Gaussian function (0) is taken as a suitable multiple of the distance between the 

centres. This multiplication factor decides the percentage overlapping between the 

successive functions. Thus width of the Gaussian distribution functions is calculated 

as: 

CT = spread factor + distance between centres, where spread factor is the 

multiplication factor chosen to provide sufficient overlapping between successive 

Gaussian functions. The spread factor can be chosen in the range 0.5 - 1 based on the 

complexity of the problem. 

Since the values for e; and ut are fixed, the task of learning now reduced to 

fmding the optimum value for the third element in the optimum parameterised vector 

(r or WQk• In other words, problem reduces to learning the Neural Network for the 

optimum values ofthe weight matrix WQt [i]Ul, i = 1, ..... , nk,j = 1, .......... , mk' 
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As mentioned earlier one can use of Q - learning strategy for getting the 

optimum values for the parameter WQ". 
The network has to learn for the optimal values of the weight elements 

WQ" [i] U] such that y/ would be a good approximation of Q" (Dk , ai). If the Q" values 

are known for each stage corresponding to a large number of state action pairs, the 

learning of the network is an easier task since one can go for supervised learning of the 

weight matrix WQ". But the Q values in the initial stage are unknown and therefore 

one cannot proceed in this direction. Q learning strategy is made use of to make the 

network learn for the optimum values of weight matrix. 

In the standard Q learning method, updating of Q value at each iteration 'n' is 

given by the equation: 

Qn+1 (Xk ,ale) = Qn (Xk • ak) + a[ (g(Xk • ale. Xk+l) + 
.., minaJEoilk+l Qn+1 (xk +1 ,at) - Qn (Xk, ak)] 

(S.lS) 

In the problem of Economic Dispatch, the next state or input to the next stage 

is easily found out as, 

Dk+1. = Dle• - a~ • where a~ is the power allocation denoted by the action 

performed at It stage. That is, on selecting an action a~ from the action space ~. 

input to the next RBF network is modified as the remaining power yet to be allocated. 

In this context, for learning the weight vector elements, Q learning method is 

formulated for modification of the weights. In the network, if the current state is D1c 

and the action is a~. the updating has to be localized to the output node, 

yk = Q(Dk• a~) or in other words the weight values connected to y/c need 

only be modified while keeping the remaining weight values unchanged. 

Since y~ ::0 L~:~kWQ" [i][j] 0j(Dk), to change yL WQt[i]U]. j = 
1, .........• mk need to be modified. Therefore updating equations for Economic 

Dispatch problem for each of the N-l stages are summarised as, 
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j == 1, ...... .... ,mk 

(5.16) 

j == 1, .......... , mle and l == 1, ....... , nk, l *' i 

£1W~ [i] U] is given by the Q learning algorithm as: 

A WQ~(i][ j] = a ( g(Dk, ale, Dk+1) + Y mina'E.Ak+1 Q~+l (Dk+1. a') 

- Qn (~ , ale) ) 0 J (Dk ) 

(5.17) 

The reward, g(Dk' ale, Dk+l) is the cost of generation of power corresponding 

to action at. For the last stage (le = N - J) since there is no choice of action but to 

allocate the power DN-J itself, i.e, action aN-J = DN-J. Therefore update equation is 

expressed as: 

where, 

(5.18) 

The weight values are updated iteratively during the learning phase. At the end 

of learning. Q values will be approaching to optimum. The selection of Gaussian 

distribution function as the functions defIning the hidden nodes, ma1ce the updating a 

localized task which in turn improves the computational efficiency. 

Once the learning is completed and the weight vector elements are converged, 

the allocation schedule is obtained by just retrieving the action element at each stage 

which corresponds to minimum Q values (greedy action). Thus the entire algorithm for 

fmding the optimum allocation schedule is having two phases as in previous cases: 

learning phase and policy retrieval phase. Learning phase is given as RL _ EDS. 
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Function Approximation algorithm/or Economic Dispatch (RL_ED5) 

Read the parameters of the RL algorithm 

Read the Generating unit details 

Read the demanded load power to be dispatched PD 

Fix suitable number of hidden nodes for each RBF network 

Initialize input to the first RBF network DJ = PD 

For each of the N stages 

Do 

End do 

Find the different centres of the RBF network 

Find the set of actions at each stage 

( number of output nodes for each network) 

Initialize all the weight vector elements as zero 

For iteration =1 to TnaX_iteration 

Begin 

For k =0 to N-2 

Do 

Select an action a/from the action set .Ak using e - greedy strategy 

End. 

and check the feasibility of action 

For a feasible action a;, Find the cost of generation Cost (aiD 

Update the weight vector elements using eqn. (5.16) 

Update the input parameter Dk+1 = Dj; - a; 

Enddo 

Find the cost of generation Cost (aN.J 

Update the weight vector elements connected to YN-/ 

using eqn. (5.18) 
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Once the learning is completed, the allocation schedule corresponding to any 

load value can be found by the policy retrieval phase as explained before, by fInding 

the greedy action at each stage. 

5.11 Performance of the Algorithms 

The proposed Economic Dispatch algorithms are assessed using different 

standard test cases. RL based Economic Dispatch can be applied for finding the 

schedule for generating units when the cost of generation is provided in any of the 

different forms like variable cost table, cost coefficient, non convex cost functions and 

actual cost data from a plant. This becomes useful when the cost of power varies in 

every block of time since the availability of power is practically a dynamic one. 

Algorithms are coded in C language and compiled and executed in GNU 

Linux environment. Performance evaluation is done with Pentium IV, 2.9 GHz, 512 

MB RAM personal computer. 

In order to validate the proposed algorithms and make a comparison among 

them, fIrst a three generator system with cost data given in a tabular form is considered 

(Wood and Wollenberg [2002]). The first three algorithms are executed to find the 

dispatch and a comparison of execution time is made. 

Then IEEE 30 bus system with six generating units is taken in order to prove 

the efficacy of the proposed approaches. The suitability of the proposed algorithms for 

a system having generating units with piecewise cost functions is studied by 

considering a 10 generator system In the case of Reinforcement Learning algorithms, 

there is no need of getting exact cost functions. It is evident from the execution results 

for the stochastic cost details. 

The last two algorithms are validated and compared with the other recent 

methods like simulated annealing and partition approach algorithm by considering a 

standard test case, IEEE 6 bus system with three generators. The flexibility of the 

proposed approach is investigated for system with 20 generating unit having given cost 

functions. 
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In order to apply Reinforcement Learning algorithms, first the learning 

parameters are to be ftxed based on the problem environment. The learning parameter & 

accounts for rate of exploration and exploitation needed. Since it indicates a 

probability, it can take any positive value less than 1. A small ftxed value may result in 

premature convergence of the learning algorithm while a large ftxed value may make 

the system oscillatory. Therefore in these RL based algorithms, a value of 0.5 is 

assumed initially providing sufficient exploration of the search space and is decreased 

by a small factor successively. 

Discount parameter y accounts for the discount to be made in the present state 

for accounting of future reinforcements and since in the case of Economic Dispatch 

problem, the cost of future stages has the same implication as the cost of the current 

stage, value of'1 is taken as 1. 

The step size of learning is given by the parameter CL and it affects the mte of 

modiftcation of the estimate of Q--value at each iteration step. By trial and error CL is 

taken as 0.1 for achieving sufficiently good convergence of the learning system. The 

RL pammeters used in the dispatch problem are also tabulated in Table 5.1 

Table 5.1- RL Parameters 

& 0.5 

a 0.1 

r 1 

Case I - Three Generator system 

First a simple example with three generating units (Wood and Wollenberg 

[2002]) is considered for validating and explaining the RL approach of solution. The 

transmission losses are neglected in this case. The cost details are given in tabular 
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form, which can be obtained from experience in case of a practical system. The unit 

characteristics are given in Table 5.2, where Cl stands for the cost of generating P MW 

by {"unit. 

Table5.2 - Cost Table for three generator system 

P(MW) Cl C2 C3 

0 100000 100000 100000 

25 100000 100000 100000 

50 810 750 806 

75 1355 1155 1108.5 

100 1460 1360 1411 

125 1772.5 1655 11704.5 

150 2085 1950 1998 

175 2427.5 100000 2358 

200 2760 100000 100000 

225 100000 100000 100000 

The three generating units are having the minimum and maximum power 

. generation possible as (50,200), (50,150) and (50,175). The discretization step for state 

space and action space, S. and S. are taken as 25 MW for simplicity and fast 

computation. 

Therefore, Dmin(O) = 150 Dmax(O) = 525 

Dmin(J) = 100 Dmax(J) =325 

and Dmin(1) = 50 Dmax(1) =175 

The Learning Automata solution (RL_ED1) was run for a demand of300 MW. 

After 1000 iterations the learning process converged (performance index values remain 
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unchanged). At this point the minimum value of performance index (Qak) is found out 

as Rs. 4168 1- and the corresponding action ak corresponds to the optimum allocation 

schedule. 

In order to understand the perfonnance of RL algorithms (RL_ED2 and 

RL_ED3), the different components of the multi stage decision process are to be 

identified. The state tuples is of the form (k, DJ. Dk being the power to be dispatched 

at JIlt stage. 

Then, State space Z = Zo U Xl U X2 where 

Xo = { (0,150), (0,175), (0,200), .............. (0,525)} 

Xl = { (1,100), (0,125), (0,150), .............. (O,325)} 

and X
2 

= {(2,50), (2,75), (2,100), .............. (0,175)} 

Now identify the action space, which is a dynamic one since it depends on the 

value of power Dk to be dispatched. The minimum and maximum values of actions are 

found out as 

Mino = (Do -D",ta(J) or P mJ,,(O) whichever is greater 

Maxo = (Do - D",in(J) or P 1/fIJX(Q) whichever is smaller 

Max] = (DJ - D"'iIt(J) or P 1/fIJX(J) whichever is smaller 

For the purpose of explaining the algorithm, let the random value generated for the 

demand is 300 MW. Then the action space at stageo is 

cAo = {50, 75, .......... ,200} 

One of these actions is selected and it passes to the next stage k =1. Then the 

action space cAl is identified and action selection continued which brings out the 

remaining power as the allocation for the last machine. Each time cost corresponding 

to the power allotted is found out using the cost table given and Q value of the 
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corresponding state action pair is updated. Allocation to each unit is then found out as 

the action which gives the minimum Q value corresponding to state comprising the 

particular stage number (unit) and the power to be allotted. That is, argmina(Q(xk> a) 

gives the allocation for K" unit for the power demanded D". Similarly the action 

(allocation) corresponding to each of the units (1 = 0 to N-J) is found, calculating DJ: at 

each stage of allocation. 

The three algorithms RL_EDl, RL_ED2 and RL_ED3 are executed. The 

allocation schedule obtained is obtained as (50,100,150) and the cost of generation is 

Rs. 4168/-. The execution time for both the learning and retrieval algorithms is 2.034, 

2.567sec. and 1.754sec. respectively. Once the learning is completed, using policy 

retrieval phase, power schedule for any value of possible input demand values can be 

retrieved. 

The three algorithms are run for various the values of power demand 

D",III(O)<=PD <=Dmtu(O) ie. 150<=PD<=525. !>art of the simulation result is tabulated in 

Table 5.3 which is consistent with results given in (Wood and Wollenberg [2002]). 

Table S.J - Allocation schedule for three generator system 

D(MW) Pl(MW) P2(MW) P3(MW) Cost(Rs.) 

250 50 50 150 3558 

275 50 150 75 3868.5 

300 50 100 150 4168 

325 50 125 150 4463 

350 50 150 150 4758 

375 100 125 150 5113 

400 100 150 150 5408 

425 125 150 150 5720.5 

450 150 150 150 6033 

475 175 150 150 6375.5 

500 200 150 150 6708 
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For comparing the efficacy of the two algorithms, Simulation time for the three 

algorithms are compared in Table 5.4 

Table 5.4 Comparison execution time (or RL_EDI, RL_E02a.d RtEDJ 

RL EDI RL_ED2 RL EDJ 

No: of iterations 10000 100000 50000 

Computation 

time(sec.) 2.034 2.567 1.754 

A graphical layout of the comparison is given in fig 5.4. 

3 

2.567 sec 

2.5 

2 
2.034 

• Rl_EDl 

• Rl_ ED2 

• Rl_ ED3 

o +----~-

Fig 5.4 Comparison of execution time of RL approaches 

On comparing the computation time of the algorithms, Learning Automata 

method gives lesser time compared to {; -greedy solution. {; -greedy provides a simple 

solution method compared to pursuit method. Pursuit strategy is faster compared to 

other two methods. Since execution time is less. all the three algorithms seem to be 
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suitable for such smaller systems. But on analyzing the algorithmic steps, it is found 

that for larger systems, Learning Automata is not preferable due to the large action 

space to be handled which increases the memory requirement. The other two 

algorithms are suitable for larger systems due to the multi stage formulation in the 

solution procedure. 

Case H -IEEE 30 bu system 

To prove the flexibility for larger systems and to make comparison, the 

proposed algorithms are now tested for IEEE 30 bus system consisting of six 

generators (Somasundaram and Kuppusamy [2005]), without considering the 

transmission losses. 1be system cost data is given in quadratic cost coefficient form as 

given in Table 5.5. ie, for any power P, cost of generation is given out by the equation 

C(P) = Ca + Cb·P +Cc·p2 , where Ca, Cb and Cc are the cost coefficients. 

Also the maximum and minimum generations possible for each of the 6 generators are 

specified. 

Table 5.S - Cost coefficients for IEEE 30 bus system 

Ca Cb Cc Pmin(MW) Pmax(MW) 

561 7.92 0.001562 150 600 

310 7.85 0.00194 100 400 

78 7.978 0.00482 50 200 

102 5.27 0.00269 100 500 

51 9.9 0.00172 40 350 

178 8.26 0.00963 100 280 

The maximum generation possible with these 6 generators turns out to be 2330 

MW while minimum generation is 540 MW. Since the number of action vectors 

increases to a very large value Learning Automata method is not preferable when the 

number of generators is increased The RL algorithms (Rl_ ED 1, RL _ ED2, RL _ ED3 

and RL _ ED5) are now applied to get the economic allocation for the six units. 
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The discretization step for action and state space are taken as 10 MW as 

balance between the accuracy and size of the state and action spaces. At each step of 

iteration, action is selected according to the exploration method. The Q values of state­

action pairs are updated for which cost of generation is calculated by evaluating the 

quadratic equation. 

Even after two hours of execution, optimum schedule is not obtained for 

RL_ED1. This is because of the large number of combinations available in the action 

space. 

In RL_ED2, after 5x1Os iterations the Q values approach optimum while 

RL_ED3 converged in 2x105 iterations. The optimum dispatch is found out by tracing 

out the greedy action which give out minimum Q value corresponding to a particular 

state Dk as k vary from ° to N-l. The optimum schedule for the different values of 

power demand is obtained using the policy retrieval phase. Schedule for the entire load 

values ranging from 540 MW to 2330 MW is obtained. The entire schedule is obtained 

in 23.87sec. using RL_ED2 and in 15.63 sec. with RL_ED3 which proves the 

suitability of the algorithms 

In order to apply Neural Network approach for solution, first the number of 

centres in the RBF network and the spread factor of the Gaussian distnbution function 

are to be decided. The number of centres decide the number of interconnections and 

hence the size of the weight matrix. In Economic Dispatch problem, the number of 

centres is decided by the range of demand input to each stage of the multi stage 

decision task. Demand range in the last stages is much smaller compared to the initial 

stages. Therefore for increasing the computational efficiency, more number of centres 

is selected at the initial stages compared to later ones. Here the number of centres is 

taken as 30, 30, 20, 20, 16 and 16. By trial and error spread factor of 0.7 is selected. 

The solution procedure RL_ED5 is executed for learning the network. The six RBF 

networks are made to adjust the weights and the learning converged in 5 x 10 6 

iterations with 14.89sec. 
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The number of iterations required is more in the function approximation 

method. But since the number of weight values to be adjusted is less than the number 

of Q values, execution time is decreased. 

The algorithms are executed in several trials and the cost and allocation 

schedule obtained are almost the same with negligible error in the different trials and 

with RL_ED2, RL_ED3 and RL_ED5. 

A part of the allocation schedule corresponding to various values of power 

demand in steps of 100MW is tabulated in Table 5.6. 

Table 5.6 - Allocation schedule for IEEE 30 bus system 

D(MW) P1(MW) P2(MW) P3(MW) P4(MW) P~(MW) P6(MW) Cost(Rs.) 

600 150 100 50 160 40 100 5951.611 

700 150 100 50 260 40 100 6591.591 

800 150 100 50 360 40 100 7285.371 

900 150 100 50 460 40 100 8032.951 

1000 160 150 50 500 40 100 8847.839 

1100 210 190 60 500 40 100 9698.202 

1200 260 220 80 500 40 100 10563.33 

1300 310 260 90 500 40 100 11443.07 

1400 350 300 110 500 40 100 12337.4 

1500 400 340 120 500 40 100 13246.5 

1600 440 380 140 500 40 100 14170.28 

1700 500 400 160 500 40 100 15109.32 

1800 580 400 180 500 40 100 16070.22 

1900 600 400 200 500 100 100 17070.12 

2000 600 400 200 500 180 120 18108.22 

2100 600 400 200 500 270 130 19175.55 

2200 600 400 200 500 350 150 20272 

2300 600 400 200 500 350 250 21483.2 
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CaseIll-10 Generator system with piece wise quadratic cost functions 

To verify the algorithms for non convex cost functions and compare with one 

of the recent techniques, 10 generator system having piecewise quadratic cost functions 

(Won and Park [2003]) is considered. The different generators are having two or three 

different operating regions. If the Cost function is Cl and the space interval is divided 

into three divisions, then it is represented as follows: 

Ci(P} = al(!) +bl(IJ'; + CI(JJ'/ (P ",i1I(i) ~ Pi ~ Pi(l;) 

= ai(2) +bl(1J'1 + Ci(1J'/ (Pi(!) ~ PI ~ P j (1)} 

= aim +b;(3J'1 + CI(3J'/ (Pi(2) ~P,~ P",ax(i)} 

The data (a;. bu Cu P",w P ~ of generators are given in Table 5.7 

Table 5.7 Generator data for 10 generator system 

Gen. Pmia(MW) PIIIU.(MW) a b 

1 100 196 26.97 -0.3975 

1 196 250 21.13 -0.3059 

2 50 114 1.865 -0.03988 

2 114 157 13.65 -0.198 

2 157 230 118.4 -1.269 

3 200 332 39.79 -0.3116 

3 332 388 -2.876 0.03389 

3 388 500 -59.14 0.4864 

4 99 138 1.983 -0.03114 

4 138 200 52.85 -0.6348 

4 200 265 266.8 -2.338 

c 

0.002176 

0.001861 

0.001138 

0.00162 

0.004194 

0.001457 

0.000804 

1. 18E-05 

0.001049 

0.002758 

0.005935 

Contd .... 
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Table 5.7 Contd ... 

5 190 338 13.92 -0.08733 0.001066 

5 338 407 99.76 -0.5206 0.001597 

5 407 490 53.99 0.4462 0.00015 

6 85 138 1.983 .{).03114 0.001049 

6 138 200 52.85 -0.6348 0.002758 

6 200 265 266.8 -2.338 0.005935 

7 200 331 18.93 .{).1325 0.001107 

7 331 391 43.77 -0.2267 0.001165 

7 391 500 43.35 0.3559 0.000245 

8 99 138 1.983 .{).03114 0.001049 

8 138 200 52.85 .{).6348 0.002758 

8 200 265 266.8 -2.338 0.005935 

9 130 213 14.23 .{).01817 0.000612 

9 213 370 88.53 .{).5675 0.001554 

10 362 407 46.71 '{).2024 0.001137 

10 407 490 61.13 0.5084 4.16E'{)5 

10 407 490 61.13 0.5084 4. 16E'{)5 

The system is made to learn using the algorithms given in RL_ED2, RL_ED3 

and RL_ED5 and the Q values approach optimum in 107
, 5 X 106 and 1.5 x 107 

iterations respectively. The same values of learning parameters are taken as in previous 

cases. The discretization step for state and action spaces is taken as IOMW. 
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Allocation schedule corresponding to values of power demand ranging from 

1400 MW to 3000 MW obtained are given in Table 5.8. The times of execution are 

42.87sec., 38.69 sec. and 34.95 sec. respectively. The cost and allocation schedule 

obtained are comparable with that of improved genetic algorithm (Won and Park 

[2003]). 

Table 5.8 - Part of Schedule - 10 generator system 

Demand 

(MW) PI P2 P3 P4 Ps P6 P7 p. Pg PlO Cost(Rs.) 

1400 100 170 200 190 190 150 50 200 50 100 903.30 

1500 100 190 200 210 210 150 90 200 50 100 948.3638 

1600 100 200 200 220 230 150 150 200 50 100 996.4249 

1700 100 210 200 240 240 150 210 200 50 100 1047.349 

1800 100 220 200 260 270 ISO 250 200 50 100 1101.472 

1900 100 220 200 310 320 150 250 200 50 100 1164.422 

2000 100 220 200 360 370 150 250 200 50 100 1237.691 

2100 110 220 200 400 420 150 250 200 50 100 1321.016 

2200 120 220 210 430 450 150 250 220 50 100 1411.387 

2300 140 220 230 450 470 ISO 250 240 50 100 1507.16 

2400 ISO 220 250 480 490 150 250 260 50 100 1608.295 

2500 170 220 280 500 500 150 250 280 50 100 1715.796 

2600 190 220 310 500 500 150 250 320 50 110 1833.078 

2700 210 220 350 500 500 150 250 350 50 120 1960.531 

2800 230 220 380 500 500 150 250 380 60 130 2097.839 

2900 250 220 410 500 500 160 250 400 70 140 2244.236 

3000 250 220 440 500 500 170 250 440 80 150 2399.784 
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Case IV ( IEEE 6 bus system Considering Transmission losses) 

Next is to validate the solution approaches taking into account the transmission 

network losses occurring in the system. For testing the efficacy of solutions RL_ED4 

and RL_ED5, considering the transmission losses, a three generating unit system with 

given loss coefficients is considered. While executing RL _ ED5 the same procedure of 

updating of demand is carried out with the schedule obtained at each time from the 

Neural Network. Standard IEEE 6 bus system which is having three generating units 

and eight lines (Lin and Gow [2007]) is taken for case study. The fuel cost curve of the 

units is represented by a third order polynomial function: 

C,(Pt) = at + btPt + ctpl + dtP? 

The associated fuel cost coefficients and B-matrix. parameters are given in 

Table 5.9. 

Table 5.9 Generator data and Loss Coefficients of IEEE 6 bus system 

Generator data 

Unit No 1 2 3 

ai 11.1 -631 147.144 

bi 5.101 13.01 4.18997 

Cl -1. 64E-03 -3.06E-Ol 3.08E-04 

dl 3.33E-06 3.33E-05 -I. 77E-07 

P",bJ(MW) 100 100 100 

P 1ItIJX(MW} 500 500 1000 

B Coefficients 

1 7.50E-05 5.00E-06 7.50E-06 

2 5.00E-06 1.50£-05 1.00£-05 

3 7.50E-06 1.00E-05 4.50£-05 
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The learning is first carried out using RL_ED2. Then RL_ED4 is executed to 

fmd out the dispatch for all the possible load values ranging from 500MW to 

1900MW. For getting accurate schedule, the discretization step taken is 2MW. The 

remaining power of the demanded value « 2MW), which is negligibly small compared 

to the total demand is randomly assigned to one of the units without exceeding 

maximum limit. Number of iterations required is 9 x 10" and the time of execution is 

14.87 sec for getting schedule for all the load values. 

In order to apply the function approximation strategy using Radial Basis 

function networks (RL _ E05), Number of RBF centers is taken as 80, 60 and 40 and 

the action step is taken as low as 2MW for accounting the losses more effectively. 

RL_ED5 is executed to learn the Q values. The schedule is obtained for all the load 

values in suitable steps. The learning algorithm converged in 2 x lOs iterations and the 

total time taken is only 12.98 sec. 

The obtained schedule and costs are tabulated in Table 5.10. 

Table 5.10 Schedule and cost obtaIned for IEEE 6 bus system 

Po(MW) Pg1(MW) Pg2(MW) Pg)(MW) Cost Loss(MW) 

500 100 100 306 2383 6 

600 100 100 409 2800 9 

700 261 100 373 3246 14 

800 298 100 420 3696 18 

900 330 100 495 4140 25 

1000 338 100 591 4737 29 

1100 341 100 691 5200 32 

1200 344 100 800 5679 44 

Contd ... 
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Table 5.10 Contd .... 

l300 414 100 835 6002 49 

1400 446 156 851 6474 53 

1500 453 229 874 6896 56 

1600 461 300 899 7438 59 

1700 469 302 992 7772 64 

1800 455 321 991 8320 67 

1900 487 492 996 8801 75 

Case V - IEEE 30 bus system with transmission system parameters 

In the previous case, the transmission network loss is represented through B 

coefficients. For validating the algorithm while considering the entire transmission 

system representation, consider IEEE 30 bus system with entire transmission system 

parameters. The transmission line parameters are given in Table 5.11. 

Table S.11 Line data-IEEE 3();'bu5 system 

Branch 

no. From To R(pu) X(pu) Y/2 (pu) 

1 2 I 0.0192 0.0575 0.0264 

2 1 3 0.0452 0.1852 0.0204 

3 2 4 0.057 0.1737 0.0184 

4 3 4 0.0132 0.0379 0.0042 

5 2 5 0.0472 0.1983 0.0209 

6 2 6 0.0581 0.1763 0.0187 

7 4 6 0.0119 0.0414 0.0045 

Contd ... 
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Table 5.11 Contd ... 

8 5 7 0.046 0.116 0.0102 

9 6 7 0.0267 0.082 0.0085 

10 6 8 0.012 0.042 0.0045 

13 9 11 0 0.208 0 

14 9 10 0 0.11 0 

16 12 13 0 0.14 0 

17 12 14 0.1231 0.2559 0 

18 12 15 0.0662 0.1304 0 

19 12 16 0.0945 0.1987 0 

20 14 15 0.221 0.1997 0 

21 16 17 0.0824 0.1932 0 

22 15 18 0.107 0.2185 0 

23 18 19 0.0639 0.1292 0 

24 19 20 0.034 0.068 0 

25 10 20 0.036 0.209 0 

26 10 17 0.0324 0.0845 0 

27 10 21 0.0348 0.0749 0 

28 10 22 0.0727 0.1499 0 

29 21 22 0.0116 0.0236 0 

30 15 23 0.1 0.202 0 

31 22 24 0.115 0.179 0 

32 23 24 0.132 0.27 0 

33 24 25 0.1885 0.3292 0 

34 25 26 0.2544 0.38 0 

35 25 27 0.1093 0.2087 0 

38 27 30 0.3202 0.6027 0 

39 29 30 0.2399 0.4533 0 

40 8 28 0.0636 0.2 0.0214 

41 6 28 0.0169 0.0599 0.0065 
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The six generators are located at buses: 1, 2, 5, 8, 11 and 13, and the cost 

coefficients are the same as given in Table 5.5. A total load of283 MW is connected to 

the different buses as given in the Table 5.12. 

Table 5.12 Load data-IEEE 30-bus system 

Qo 

Bus no. Po (MW) (MW) 

1 0 0 

2 21.7 12.7 

3 2.4 1.2 

4 7.6 1.6 

5 94.2 19 

6 0 0 

7 22.8 10.9 

9 0 0 

10 5.8 2 

11 0 0 

12 11.2 7.5 

14 6.2 1.6 

15 8.2 2.5 

16 3.5 1.8 

17 9 5.8 

18 3.2 0.9 

Contd ... 
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Table 5.12 Contd ... 

19 3.2 1.6 

20 2.2 0.7 

21 17.5 11.2 

22 0 0 

23 3.2 1.6 

24 8.7 6.7 

25 0 0 

26 3.5 2.3 

27 0 0 

28 0 0 

29 2.4 0.9 

30 10.6 1.9 

In this case, transmission losses are calculated by executing fast decoupled 

power flow solution. In this case since the connected load is given as 283MW, we fix 

the initial demand as the 283MW. First, the learning algorithm takes the total demand 

PD = 283 MW. After sufficient number of iterations, the Q values approach optimum. 

Then by policy retrieval phase, an economic schedule is obtained. The power flow 

algorithm is executed to get the transmission losses in the system. The loss MW is used 

to update the initial demand to the solution algorithm and new schedule is obtained. 

The updating is continued until the iterative algorithm is converged. giving tolerable 

value of updating for the loss in two successive iterations. The results are given in 

TableS.l3. 
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Table 5.13 Economic Schedule for IEEE 6 bus system 

Po(MW) Pg1(MW) Pg2(MW) Pg3(MW) Cost(Rs.) Loss(MW) 

283 45 100 142 1576 4 

Case VJ- Three unit system with stochastic data 

One important point to be considered while formulating the algorithm for 

Economic Dispatch is its flexibility for the different cost functions. In practical 

situation cost of generation for the same MW power may not be the same constant 

always. It exhibits randomness due to various factors. To prove that the proposed 

algorithms efficiently handle the randomness in cost values, next consider the cost 

given in terms of mean and variance. The cost values are given in Table 5.14 for a 

three generating unit system. Cl indicates the cost of generating power P MW by l" 

unit. 

Table 5.14 Cost details with given variance of three generator system 

P(MW) Cl C2 C3 

Mean variance Mean variance Mean variance 

0 100000 100000 100000 

25 100000 100000 100000 

SO 810 60 750 100 806 60 

75 1355 80 1155 100 1108.5 80 

100 1460 100 1360 80 1411 100 

125 1772.5 100 1655 100 11704.5 100 

150 2085 100 1950 80 1998 80 

175 2427.5 80 100000 2358 80 

200 2760 60 100000 100000 

225 100000 100000 100000 
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The three solution steps (RL_EDl, RL_ED2, RL_ED3 and RL_ED5) are 

executed to get the schedule for all the possible load values in steps of 25 MW. In case 

of RL_ED5, for simplicity the same number of RBF centers is taken in all the three 

networks. 12 centers are taken for this case. Spread factor of 0.7 is chosen by trial and 

error to get reduced computation time and sufficient accuracy for the result. The entire 

schedule is obtained in 2.03 sec., 2.70 sec., 2.05sec. and 1.82 sec respectively. The 

obtained allocation values are given in Table 5.15. 

Table 5.15 Schedule obtained for stocbastic data 

D(MW) Pl(MW) P2(MW) P3(MW) Cost(Rs.) 

150 50 50 50 2353 

175 50 50 75 2674 

200 50 100 50 2989 

225 50 100 75 3326 

250 50 SO 150 3592 

275 50 150 75 3902 

300 50 100 150 4150 

325 50 125 150 4466 

350 50 150 150 4742 

375 100 125 150 5109 

400 100 150 150 5394 

425 125 150 150 5735 

450 150 150 150 6067 

475 175 150 150 6431 

500 200 150 150 6745 

525 50 50 125 13241 
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Case VII - 20 Generator system 

For validating the efficacy of Reinforcement Learning based algorithms for 

large systems, next a 20 generator system is considered. The cost function is given in 

quadratic fonn. The unit details are given in Table 5.16. 

Table 5.1fr Generator Details of 20 generator system 

Unit c. Cb Cc Pmin(MW) Pmu(MW) 

1 1000 18.19 0.00068 150 600 

2 970 19.26 0.00071 50 200 

3 600 19.8 0.0065 50 200 

4 700 19.1 0.005 50 200 

5 420 18.1 0.00738 50 160 

6 360 19.26 0.00612 20 100 

7 490 17.14 0.0079 25 125 

8 660 18.92 0.00813 50 150 

9 765 18.97 0.00522 50 200 

10 770 18.92 0.00573 30 150 

11 800 16.69 0.0048 100 300 

12 970 16.76 0.0031 150 500 

13 900 17.36 0.0085 40 160 

14 700 18.7 0.00511 20 130 

15 450 18.7 0.00398 25 185 

16 370 14.26 0.0712 20 80 

17 480 19.14 0.0089 30 85 

18 680 18.92 0.00713 30 120 

19 700 18.47 0.00622 40 120 

20 850 19.79 0.00773 30 100 
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The transmission loss is calculated using B coefficient matrix. Algorithm 

RL_ED4 is executed to give the schedule for the range of load from 1000MW to 

3OO0MW. The execution time taken is 45.87sec. Part of the schedule and the loss are 

tabulated in Table 5.17. 

Table 5.17 Schedule for 20 generator system 

D(MW) 2000 2500 3000 

PI 421 498 530 

P2 140 159 167 

P3 105 120 140 

p .. 94 118 135 

Ps 81 92 97 

P6 51 74 87 

P7 89 115 141 

Ps 81 106 162 

P9 84 103 155 

PlO 70 98 108 

PII 236 290 358 

P12 89 120 136 

P13 82 119 124 

PI .. 90 115 147 

PIS 23 30 70 

PI7 64 87 111 

PI9 72 100 106 

P20 45 54 75 

Loss 39 64 81 
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5.12 Evaluation of Algorithms 

The different Reinforcement Learning algorithms have been tested for their 

efficacy and performance. The computation time of the different RL algorithms for the 

different test cases are tabulated for comparison in Table 5.18. 

Table 5.18 Comparison of Computation times of different RL algorithms 

(rime in sec.) 

RL ED1 RL_EDl RL_ED3 RL_ED4 RL_ED5 

Three gen system with 2.034 2.567 1.754 1.465 

given cost table, 

neglecting 

transmission loss 

IEEE 30 bus system Not 23.87 15.63 14.89 

with 6 generators, giving 

neglecting optimum 

transmission losses result 

10 generator system 42.87 38.69 34.95 

with piecewise 

quadratic cost 

coefficients 

IEEE 6 bus system 9.87 6.98 

with 3 generators, 

considering 

transmission losses 

3 generator system 2.03 2.70 2.05 1.82 

with stochastic cost 

data 
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In order to highlight the efficacy and computational speed of the developed 

algorithms, the results of RL_ED4 and RL_ED5 are compared with other recently 

developed algorithms. 

For comparing with other recent techniques, IEEE 6 bus system (Case IV) with 

a load power of l200MW is considered.. That is, the initial demand to the system is 

l200MW and the corresponding schedule is obtained. The optimal cost is obtained as 

Rs.5679.2 and the power loss calculated is 44MW. The time taken by our proposed 

algorithm is only 9.87 sec and 6.98sec. for RL_ED4 and RL_EDS. The obtained 

schedule is tabulated and a comparison is made with other stochastic techniques (Wong 

et al.[1993] and Lin et al.[2007]) in Table 5.19. The dispatch schedule obtained is 

comparable. Transmission loss in all the case is nearly 43MW. 

For getting the schedule for 10 different load values RL_ED4 took only 10.56 

sec, while RL_ED5 was executed in 7.l2sec. For other methods, the time needed is 

nearly 10 times the time for single load value. This directly highlights the efficiency of 

Reinforcement Learning approach for giving schedule for any forecasted load profile 

instantaneously. 

Table S.19 Comparison with SA and P AA 

Method PAA SA RL ED4 RL EDS 

Pg\(MW) 362.2 342.8 344 343 

Pg2(MW) 100 100 100 100 

Pg3(MW) 781.4 801.4 800 800 

Cost(Rs.) 5671.06 5682.32 5679.2 5676 

Loss(MW) 43.68 43.8 44 43 

Time (sec) 16.82 27.253 9.87 6.98 
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A graphical comparison is also given in Fig 5.5 

30 

25 

20 

15 

10 

5 

o 

. 5A 

. PAA 

• Rl_ED4 

• Rl_ED5 

Fig !S.S Comparison or execution time with other methods 

The above comparison directly depicts the improved performance of 

Reinforcement Learning based so lutions over other recent methods. This faster 

scheduling provided by Reinforcement Learning in effect helps to improve the 

economy of generation. 

5.13 Conclusion 

Even though many techniques are applied for the solution of Economic 

Dispatch problem, Reinforcement Learning provides a good methodology due to its 

faster computing speed and simplicity. Once the learning phase is completed, schedule 

for any load demand can be obtained instantaneously. Also it can effectively handle 

the stochastic cost functions associated with practica l thennal units. The developed 

algorithms are applied on different test systems. In all these cases sat isfactory 

perfonnance is obtained. The result when compared with other stochastic techniques is 

found to be better. As a further step in this direction algorithm incorporating additional 

constraints such as ramp rate limits, valve point effects etc. existing in power systems 

can be developed. 
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CHAPTERS 

REINFORCEMENT LEARNING 

APPLIED TO AGC WITH 

COMMON SYSTEM FREQUENCY 

6.1 Introduction 

Automatic Generation Control (AGC) constitutes the on line dispatch part of 

generation control. Electrical energy is generated by the generators at the generating 

stations, transformed into suitable voltage level by the transformers and dispatched 

through various buses to the loads which consume the electric power. In an 

interconnected system, the overall power system is divided into several grids or pools, 

each comprising several subsystems. Through Tie lines the system is connected to the 

neighbouring systems belonging to the same grid (POOl). The active power demand in 

the system is met by the combined generation of all the generating sources in the 

system. Considering the economic perspective of power generation, the forecasted load 

demand is distributed among the generating units in the system in the most economic 

manner by the pre dispatch control. It consists of Unit commitment and Economic 

Dispatch at each control area. 

Once the pre dispatch or pre scheduling is over, the generating units will be 

entitled to generate the allotted power, (fraction of the forecasted load demand) for the 

specified duration of time. Instantaneous addition and removal of load in the system 

will be reflected by a change in the system frequency. Considerable drop in frequency 

result in high magnetizing currents in induction motors and transformers and decline 

their performance. Control of system frequency ensures constant speed for the 

frequency dependent load such as induction and synchronous motors and thus their 

efficient operation. Thus for satisfactory operation of a system, frequency should be 

maintained constant. The frequency of the system is dependent on active power 
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balance. A change in active power demand at one point is reflected by a change in 

frequency. Since there is more than one generator supplying power to the system the 

demand is allocated to the different generators. 

In case of interconnected system with two or more independently controlled 

areas, in addition to the control of frequency, generation within each area is to be 

controlled so as to maintain scheduled power interchange. When the entire 

interconnected system is operating on a common system frequency, instantaneous load 

variations in any of the control area will affect the common system frequency. This 

makes the task more difficult to solve as the load is not predictable always. Also the 

generation capacities and the means by which generation can be changed are limited. 

Even though primary control action is served by the speed governor associated 

with the generating units, supplementary control is needed to reallocate the generation 

so as to bring the frequency to exact scheduled value. Supplementary control can be 

done manually by setting the reference point so as to increase or decrease the 

generation. Automatic functioning of this supervisory or supplementary control action 

is referred to as Automatic Generation Control. Automatic Generation Control problem 

is discussed in the next section. 

Reinforcement Learning approach for solving the AGe problem for an 

interconnected system (Imthias et al. [2002]) is extended in the next sections with an 

approach of common system frequency. 

6.2 Automatic Generation Control problem 

In a large interconnected power system with several pools having many 

number of generators, manual regulation is not feasible and therefore automatic 

generation and voltage regulation is essential. 

Once a generating unit is tripped or a block of load is added to the system, the 

power mismatch is initially compensated by the extraction of kinetic energy from 

system inertial storage which causes a decline in system frequency. As the frequency 

decreases, power taken by loads decreases. Equilibrium for large systems is often 
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obtained when the frequency sensitive reduction of loads balances the output power of 

the tripped unit or that delivered to the added block of load at the resulting new 

frequency. If this effect halts the frequency decline, happens in less than 2 seconds. 

If the frequency mismatch due to the addition of load M\ is large enough to 

cause the frequency to deviate beyond the governor dead band of the generating units 

(generally in the range of 30-35mHz.), their output will be increased by the governor 

action. For such mismatches, equilibrium is obtained when the reduction in the power 

taken by the loads plus the increased generation due to governor action compensates 

for the mismatch. Such equilibrium is often obtained within 10-12 seconds. Typical 

speed droop are in the range of 5% and therefore at the expense of some frequency 

deviation, generation adjustment is carried out by governors. 

On attaining the new equilibrium state after variation in the load M\, 

where #' is the change in frequency and D is the damping constant. 

Lumped parameter model of the generation system is commonly used for the 

analysis of AGe systems (Elgerd [1982]). In such representation, the aggregate 

frequency sensitivity of all loads is represented by a damping constant. The 

perturbation model of a lumped parameter system is given in Fig 6.1. 

Fig 6.1 Perturbation model 
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In this model, M represents the aggregated inertia constant and D is the 

damping constant. If there is no additional frequency control, the change in the 

mechanical power output Pm is zero. Hence, the system response to load change Lll'L is 

determined by the inertia constant and damping constant. 

Each generating unit is equipped with a speed governor mechanism, which 

provides the function of primary frequency controL But for compensating the offset 

deviation and bringing back to the original scheduled frequency, a manual or automatic 

(through AGC) follow up and corresponding control are required. 

Fig 6.2 represents the equivalent model including the governor and turbine. 

1 
l+,sn 

Fig 6.2 Equivalent model of Governor and Turbine 

In this, R represents the speed regulation provided by the governor. It is usually 

expressed as R = 41/ AP "" 

After addition ofload L1PL and attaining steady state, 

D4f+ (1/R) 4f=.t1PL 
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Thus the frequency of the area depends on the constant B or (D + JIR) value. 

Thus with the governor primary control alone, the frequency will be settled to a lower 

value compared to original system frequency. From the equivalent representation, it is 

evident that, the relationship between the frequency and power output can be varied by 

changing the load reference set point (L!PcJ. Bringing back the system frequency to the 

original value requires supplementary control. This can be done manually by 

increasing or decreasing the reference set point through some potentiometer 

arrangement. Since the system load is a continuously varying one, automatic changing 

of reference power setting is more preferable. Automatic Generation Control provides 

the automatic follow up and adjusting of power generation accordingly. 

In an interconnected power system. according to contractual agreement 

between the different control areas, certain amount of power termed as Tie line power 

(PI;,) will be flowing through the interconnecting transmission lines. When a load is 

added in any part of the interconnected system. the frequency of the entire system will 

change causing a change in the tie line flow. In other words, by addition of a load in 

one area along with a frequency error, a tie line flow error will occur. Then the 

supplementary control should act in such a way as to bring the tie line flow error also 

to zero, in addition to bringing back the system frequency to original value. 

The objectives of Generation Control can be summarized (Athay [1987]) as: 

(i) Matching the total system generation to total system load 

(ii) Regulating the frequency error to zero 

(ill) Regulating the tie line flow error to zero 

(iv) Distributing the area generation among the area generating resources so that 

the operating costs are minimized. 

The first objective is met through the primary governor control and the last one 

is met through Economic Dispatch procedure. The second and third objectives are met 

through Automatic generation control associated with the system. 
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6.3 Automatic Generation Control - Models of Power system 

Network 

AGC studies are carried out using simulation model proposed by Elgerd 

(1982]. In this approach, in each area, a group of generators are closely coupled 

internally and swing in unison. Also, the generator turbines tend to have the same 

response characteristics, ie, coherent. Then each control area is represented by a single 

AGC loop. The turbine, generator and load parameters represent the equivalent values 

considering all the generators in that area. 

In an interconnected system., the different control areas are connected by loss 

less tie line. The power flowing through the tie line. tie line power flow appears as a 

load decrease! increase in each area, depending on the direction of flow. A block 

diagram model is given in Fig 6.3. 

Fig 6.3 Two Area system model with two different frequencies 

A change of power in one of the areas is met by a change in generation of all 

interconnected areas followed by a change in tie line power. Correspondingly the 
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frequency change will occur in all the interconnected areas. Conventional LFC of a 

multi area system is based on tie line bias control, where each area tends to reduce the 

Area Control Error (ACE) to zero. The control error for each area consists 

ACE/ =£ iJP1it +B/AJi, 

4Ii is the change in frequency of tit area and Bi represents the area frequency response 

characteristics. P tU or tie line power is computed as the product of tie line constant and 

the angular difference between the two areas considered. 

The limitation of the above model is that the different areas are assumed to be 

operating at different frequencies and tie line power is computed based on the 

frequency difference. But this is not true as far as practical power system network is 

considered. In a practical network, the interconnected power system operate at a single 

frequency and this common frequency (common to all areas) is determined by the net 

generated power and connected load of all the areas ( Divya and Nagendra Rao 

[2005]). A model of such a system having two areas is given in Fig 6.4. 

At 

Fig 6.4 Two Area model with common system frequency 
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In such a system, the tie line power of each area is computed as the difference 

of generated power and load power of that area. Ptie = Pgell -PLoad• Accordingly the 

different areas will be associated with different values of Plie based on the 

instantaneous values of power generated and consumed (Elgerd [1982]). 

The control action is based on the parameter Area Control Error (ACE) which is 

calculated as 

ACE; = Plie + Bi * 4f, where ~f = f(actual) - f(scheduled) provided f denote the 

common frequency of the system which is determined by the total generated power and 

connected load of the entire system. 

Advantages of such a system can be enumerated as 

(i) The system model is closer to practical power system network. 

(ii) It does not require the calculation of tie line constant ( which depends on the 

nature and no: of lines of interconnection) 

A Reinforcement solution to the AGe problem has already been developed by 

Imthias et al. [2002], using the first model described. In this thesis, the common 

frequency model is taken and the Reinforcement Learning solution is suggested for the 

same. In order to develop the solution strategy, AGC is viewed as a multi stage 

decision process in the following section. 

6.4 AGe as a Multistage Decision Process 

The function of AGC is to change the reference power setting so as to bring 

the frequency back to the original one. In a practical system, Automatic Generation 

Controller monitors the system frequency at different discrete instants of time and 

issues the control signal. With this view point AGC can be treated as a Multi stage 

Decision Process. 

At each instant of time (every AGC cycle), system can take one of the possible 

system states which is described through a set of variables. The system variable 

normally considered include system frequency, change in frequency at two successive 
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time slots, ACE value etc. The controller observes the current state of the system 

through the set of variables. Then a decision or action is taken which corresponds to a 

change in the reference power setting. Accordingly the generator power will change 

which is reflected through a change in the system variables or state transition occurs. 

This state transition will not be always deterministic, since the load is a continuously 

varying quantity. 

In the propOsed formulation ACE is taken as the state variable describing the 

system state completely. The value of ACE will be averaged over the decision making 

period and this average value is the state of the system X,t at any discrete instant k. The 

set of possible states or possible values of ACE is taken as finite or having certain 

quantized values. Therefore the state space X in the AGe problem is the quantized 

values of ACE. 

Next is the action space. Action or decision in AGe solution is the command 

to increase or decrease the reference power setting. Therefore the various discrete 

values of 0' constitute the action space Jl. 

Next is the reinforcement function. The immediate reward or reinforcement of 

any state transition is represented by g(xt, at, .Xk+J. In this case, since the aim is to bring 

the error in ACE to a tolerable limit (approaching to zero discrete level), the g function 

can be taken as binary. Whenever the resulting state is good (tolerable error), g(xt, 

ak,xk+J =0. Otherwiseg(xk,at,xk+J =1. 

On applying an action at to the system, the system moves to a new system 

state. The action selection is based on the current probability distribution, PXt(ak)' The 

new state is indicated by the new frequency and the corresponding quantized ACE 

value. Since the load applied to the system is undergoing instantaneous variations, the 

next state or resulting state of an action at one current state is stochastic. Using the 

simulation model of the turbine generator system, the next state Xk+/ can be observed 

for the action at taken at the current system state. 
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AGC algorithm is to decide what action or change in the reference power 

setting is to be taken for a current system state or ACE value so as to bring back the 

frequency error and tie line flow error to zero. AGC can be modeled as a mapping or 

policy from the state space X. to action space cA. To rate the goodness of policy, value 

function is to be defined A policy 1Cl can be treated as better than another policy 1C2, if 

it leads to one desirable state faster. In this Reinforcement Solution approach, Q 

learning strategy is employed as the method of achieving the optimum policy. 

6.5. Proposed system and control strategy 

A Reinforcement Learning control scheme for AGC is proposed with a 

common frequency for the interconnected areas. The concept of common system 

frequency for a two area system is proposed by Divya and Nagendra Rao [2005]. 

Each of the two areas A and B is having two inputs, one the load disturbance 

in the area and the other reference power setting. Tie line flow is governed by the 

unbalance in the load power and the generation in the particular area. The controllers 

attached to area give out the decisions on the reference setting in each AGC decision 

time. Considering an integration time of 0.05 sec, 40 values of frequency and the Pde 

are given to the pre processor.The preprocessor generates the corresponding discrete 

value of ACE and give it to the Reinforcement Learning Controller (RLC I and 

RLC 2). A block diagram of AGC control strategy used in the simulation is given in 

Fig 6.5 

~ :J PR Processor II--I-~I RLC 11--'-----c .. ~J POA Processor L PeA J Ana 1 I P
doA 

., , ., , ~ L....-__ ....J 

Fig 6.5 Simulation scheme for AGe 
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During the learning phase, the RL controller takes an action based on one of 

the exploration strategies. In this simulation, pursuit method is used for choosing an 

action from the available action space. On selecting an action, the post processor 

associated with the area generates the reference control signal. Each action is 

accompanied by a corresponding state transition and the resulting immediate reward. 

The Q leaning algorithm then updates the Q value corresponding to the state - action 

pair as: 

Qn+l(Xk.ak) = Qn(Xk,ak) + a [g(Xk.ak,Xk+1) + 
mina'e.Ak+1 Qn (Xk+1' a) - Qn(Xk. ak)] 

(6.1) 

The new system state is represented by the new value of state variable or ACE. 

The learning is proceeded on updating of the Q values at each and every AGe decision 

time. At the same time, the probability of the different actions in the action space 

corresponding to the system state is updates according to the equation: 

p;:l(ak) = p;.t(ak) + p[ 1- p;,t(ak)1,whenak = ag 

p;:l(ak) = p;k(ak) - p[p;.t(ak)].whenak"* ag 

(6.2) 

Once learning is completed, the policy or optimum action at each of the system 

state is stored in a look up table by considering the greedy action. 

6.6 Algorithm for AGe 

In the context of Reinforcement Learning problem, state space, action space 

and reinforcement function are to be defmed. The state of the system should capture 

the information on the current status of the system described by the different state 

variables. For the AGe problem since ACE is the signal based on which control action 

can be taken L1 ACE (change in ACE signal between two discrete instants) is taken as 

the state variable. The range of values for this variable depends on the maximum 

values of ACE (on both sides) for which AGe control should respond. 
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Since AGC is to tackle the small load disturbances in the system, its action is 

to correct the ACE in a small limited range. A small value is chosen for LA which is the 

maximum value for which the AGC should act. As the purpose is to maintain ACE 

within a very small value 8ACe. ACE values whose values are less than 8ACE are 

considered as zero discrete level. The range of ACE values between 8,KE and LA are 

divided into finite number of levels, MA' Then MA = LA / 28ACE and the different 

discrete levels are uniformly distributed in the range. The finite quantized values are 

taken as the midpoint of each interval. All the values greater than LA are aggregated to 

the maximum level. Similarly the negative values in the range -8ACE and LA are also 

discretised to MA levels. Thus each value of ACE falls in one of the (2MA + J) level. At 

instant k,.Tt c Z Z = { -MA (28ACFJ, ••• •... -28ACe. 0, 2 8ACe. ... · .... • MA (28ACFJ)· 

The action or control action of AGC is to change the generation set point, &. 

The discrete value of & implies the generation change by a discrete amount. Since the 

range of generation change that can be made in the generators are limited and can be 

fixed as -UJ,lAX and +UMAX• The minimum change in the reference setting can be fixed 

as &",iII and then the action set is defined as, 

eIl= (-UMAlf, .•• •.... -P"'bt> 0, +P"'u., .•.... , UMAXJ. 

The total number of actions in the action space Mp = UMAX / P ",Ut-

Since the main objective of AGC is to maintain the ACE value at desirable 

limit, the immediate reinforcement function g(.TJr,.Tl+J,a,) = 0 whenever .Tl+J ::: 0 

(desirable level) and otherwise g = -J. The algorithm proceeds as follows. 

Q values of different state action pairs are initialized to zero. Also the 

probability of each action will be initialized to J/ (2Mp + J), giving the same chance for 

every action in the action space during the initial iteration of learning. 

At each of the learning step, state .Tt of the system is observed by the current 

value of Area Control Error. Taking a sampling time of 0.05 sec for the ACE signal, 40 

observed values are averaged to find the current state of the system. Then an action 

at cell is selected based on the current probability distribution. On applying an action 
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or applying the change in the reference power setting, the generated power will change 

which will make a change in system frequency. 

Using the simulation model, the new value of frequency and ACE are 

calculated which represents the next state. On accounting the status of the next state as 

'desirable' or not, immediate reward g(x4>xk+J,a~ can be manipulated. Then in the Q 

learning procedure, Q values are updated using equation (6.1). On taking any action, 

based on the present Q values, the probability of state -action pairs are also updated 

according to equation (6.2). As the learning proceeds the probability of optimum action 

will be increased successively at the same time the remaining actions will get the 

probability diminished. Thus after sufficient number of iterations, the action selection 

will be converged to the optimum one. The learning algorithm is summarized below: 

Learning Algorithm 

Initialize Q values (x, a) =0 for every x eX and a € ~ 

Initialize probability of choosing an action a at state x, p~ (a) =11 Mp + 1 

Repeat 

Start the system at some quiescent state, x = Xl 

Do 

End Do 

End 

Choose an action al based on 

the current probability distribution. 

Apply action ak to the system andfind the next state Xk+J 

(by integrating ACE over one AGe decision time) 

Find the discrete level of the state to get Xk+J. 

Calculate the g(X4> a4> Xk+J 

Update (! to (!+I 

Find the greedy action with respect to (!+J 

Update the probability values 
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6.7 Simulation results 

The performance of the AGe algorithm for the two area system with common 

frequency is evaluated through the simulation experiments. Simulation consists of two 

phases: Learning and Testing. During the learning phase, random load disturbances are 

given and the Q values are learnt to approach the optimum. During the testing phase, 

the learnt policy is used to control the power system. 

In the two area model considered, each area is represented by an equivalent 

thermal unit, shown in Fig 6.4. The governor is represented by effective droop 

characteristics with llR and a single time constant Tg is considered. Also the turbine 

unit is represented by single equivalent time constant 1',. Power system dynamic is 

represented by Kp I (J +sTp) , where Kp = lID and Tp :: M ID. D represents the load 

frequency characteristics and M represents the combined inertia of the system. 

The values of the combined system parameters used are given in Table 6.1 

Table 6.1 Generator system parameters 

Ts 0.08s 

Tt 0.3s 

Tp 20s 

R 2.4Hz/pu 

Kp 120 Hz/pu 

T12 0.545 

The two independent RL based AGC controllers used in the two areas. The 

parameters used for learning of these RL AGC controllers are listed in Table 6.2 
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Table 6.2 Learning Parameters for AGe 

EACE 0.002 

LA 0.02 

Umax 0.0025 

y 0.9 

a 0.01 

~ 0.01 

AGCtime 2.0 sec 

Sampling time 0.05 sec 

No: of states 11 

No: of actions 11 

The system derives the policies for the two RL controllers after running the 

system with different random loads at random intervals of time. The controller is 

trained successfully after suitable large number of iterations and the policy then 

derived will be an optimum one. The action corresponding to each state will then be 

the best action possible. 

Using the learnt policy. the system is simulated for different load values to the 

two areas. The simulation results corresponding to a load of 0.02pu applied at t = 5sec. 

to area! is given in Fig 6.6 
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Load applied to Area1 
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Time(sec.) 

Fig 6.6 Load Disturbance 

Load of O.02pu remains connected in the system from 5 sec. onwards. On 

addition of this load. frequency of the system drops. The controller begins to act and 

the reference setting is increased in discrete intervals so as nullify the frequency error. 

Fig 6.7 gives the variation of the base point setting when using an RL controller. 

Variation in ACE values with RL controller at the discrete instants is plotted in Fig 6.8. 
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P-ref applied to Area1 
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Fig 6.7 P rei obtained using RI.. controller 
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Fig 6.8 Variation of ACE of Areal 
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The controller makes use of the look up table of optimum Q values to get the best 

action corresponding to each value of Area Control Error. Correspondingly the 

reference power setting is changed and frequency error begins to decrease in 

successive discrete steps. Variation of frequency with an RL controller is shown in Fig 

6.9. From the observation, it is evident that RL controller picks up the variation in ACE 

very quickly and settles the Area control error to zero in 30 sec. Also the reference 

power setting is changed in steps so that there is no oscillation in the power setting. 

Freq. variation rl Area1 
0.0002 r-----,~_-__ ---.--__ --.--__ - __ -op__ 

o 

-0.0002 ...... 
::J a. -I:; -0.0004 
0 

l1 .;: 
IV -0.0006 > 

¥ - -0.0008 

-0.001 

-0.0012 "----I_ ....... _ ....... _-'-_..a...._&.---I ....... -"_--'-_-I 

o 10 20 30 40 50 60 70 BO 90 100 

Time(sec.} 

Fig 6.9 Variation of system frequency 

In order to compare the performance ofRL controller, an integral controller is 

used for the same system and performance is evaluated for the same load disturbance. 

Variation of frequency with the integral controller is given in Fig 6.10. 
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Fig 6.10 Variation of system frequency with Integral controller 

Comparing the frequency variations in Fig 6.9 and 6.10. it is clear that the RL 

controller makes the frequency settled exactly to zero in 30 sec., while with integral 

controller the frequency does not settle even in 100sec. Variation of frequency with 

much lesser oscillations ensure good performance for frequency sensitive loads. 

6.8 Conclusion 

Choosing the power system as a common frequency operated one gives more 

chance of implementation at practica1leveL Since AGe is a supervisory control action 

to handle stochastic load, apart from all modem control methods, RL is the best choice 

due to the separate time scales considered for the system. Also the flexibility it offers is 

more so as to include the AGC objectives. 
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CHAPTER 7 

UNIT COMMITMENT AND 

ECONOMIC DISPATCH OF 

NEYVELI THERMAL POWER STATION 

7.1 Introduction 

Reinforcement solutions to the economic scheduling problems: Unit 

Commitment and Economic Dispatch, applied for several standard test cases were 

discussed in the previous chapters. Performance of the algorithms has found to be 

satisfactory. Since there is only one learning procedure, schedule for any load demand 

can be obtained instantaneously. So it is assumed to be suitable for practical systems. 

One of the practical systems is now taken to study the suitability and evaluate 

the performance of the developed algorithms. Due to the lack of availability of data to 

compute the cost details, case study is confined to only one of the thermal stations in 

the Southern grid 

Neyveli Thermal Power Stations are South Asia's first and only lignite fired 

Thermal Power Stations and also the first pit-head power stations in India. Today 

Neyveli Lignite Corporation Power Stations are generating about 2490 MW of Power. 

NLC's Power Stations are maintaining very high level Plant Load Factor (PLF) when 

compared to the National average. There are two Power stations NfPS I and NfPS II. 

7.2 NeyveIi Thermal Power Station I 

NfPS I station is having a total of 10 generating units with different capacities 

giving a total of 600MW power. The Power station was first started in 1962 by Indo­

Soviet collaboration. The plant was commissioned with one unit of 50 MW in May 

1962. Presently this power station consists of six units of 50 MW each and three units 

of 100 MW each. The last unit of this power station was synchronized in 

Feburary1970. This Thermal Power Station-I continuously achieved over 70% load 

193 



Cliapter 7 

factor from 1982-83 to 1991-92 against the National Average of around 50%. It is the 

ftrst large thermal power station in South India and is a lignite based station. The 

power generated from the Thenna1 Power Station is fed to the grid of Tamil Nadu 

Electricity Board in order to meet the base load in the country. 

7.3 Neyveli Thermal Power Station n 

Thermal power station - IT has been a major source of power to all southern states 

of India. The 1470MW capacity power station consists of7 units of210MW each. The 

power station was constructed in two stages of 630MW and 840MW.The flrst 210MW 

unit was synchronized in March 1986 and the last unit in June 1993. It is the largest 

lignite fired thermal power station in Asia. It is having software based burner 

management system and is equipped with distributed digital control system (DDC) and 

data acquisition system (D AS) for control and instrumentation. The power generated 

from Second Thermal Power Station is shared by the Southern States viz., Tamil Nadu, 

Kerala, Kamataka, Andhra Pradesh and Union Territory ofPondicherxy. 

7.4 Scheduling of Generating units at NTPS 11 

Due to the variation in the efficiency of boiler attached to the different units, 

all the units having even the same capacity are not capable of generating up to its 

maximum limit. The range of available power generation is different for the different 

units. Since the NTPS IT is generating power for export purpose, economic scheduling 

of these units is important. As the plant works in a more sophisticated environment, 

computational scheduling methods are easy to be incorporated. Economic scheduling 

of the units at the two stations has been done by various methods like Neural networks, 

Fuzzy Dynamic Programming (Senthillrumar et al. [2008]), Evolutionary Programming 

based Tabu search (Rajan and Mohan [2004]) etc. 

The Reinforcement Learning based algorithms are used for solving the two 

parts of scheduling problem in NTPS IT (7 unit system) 

The cost characteristics of the generating units are expressed in quadratic cost 

coefficient form, a;(P/) + b;(PJ +Cj. The startup costs of the units are calculated based 
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on the number of hours the unit has been down and the start up cost coefficients. The 

start up cost of t" unit during time period t is calculated using the equation: 

Sc{ - cold start up cost 

db el - start up cost co efficient for unit i. 

t ofr(i) - Number of hours ith unit has been shut down 

Dj - Minimum Shut down time ofilllunit 

The unit characteristics of the seven generating units ofNTPS 11 are given in Table 7.1 

Table 7.1- Generating Unit Characteristics ofNTPS n 

Unit PmiD Pmax e; bi 8; Se; cl, Cj MiD. Min.Down 

Up 
time(Hr.) 

(MW) (MW) 

time(Hr.) 

1 15 60 750 70 0.255 4250 29.5 10 3 3 

2 20 80 1250 75 0.198 5050 29.5 10 3 3 

3 30 100 2000 70 0.198 5700 28.5 10 3 3 

4 25 120 1600 70 0.191 4700 32.5 9.0 3 3 

5 50 150 1450 75 0.106 5650 32 9.0 5 5 

6 50 150 4950 65 0.0675 14100 3705 405 5 5 

7 75 200 4100 60 0.074 11350 32 5.5 6 6 

A load profile or 24 hr. duration is considered and the schedule is obtained through 

Reinforcement Learning algorithms. Load profile is given in Table 7.2 
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Table 7.2 - Load ProfIle 

Hour 2 3 4 5 6 7 8 9 10 11 12 

Load 840 757 775 773 770 778 757 778 770 764 598 595 

Hour 13 14 15 16 17 18 19 20 21 22 23 24 

Load 545 538 535 466 449 439 466 463 460 434 530 840 

For practical implementation both Unit Commitment and Economic Dispatch 

are to be carried out. In the literature there are solutions which consider the problems 

separately and also as together. Fuzzy Dynamic Programming (FDP) solution 

(Senthilkumar et al. [2008)) and Evolutionary Programming based Tabu search method 

(Rajan and Mohan [2004]) give the Unit Commitment and Economic schedule of the 

generating units. For comparing the performance of the proposed methods the two 

problems are solved The proposed RL approach find an optimum Unit Commitment 

schedule and then economic generation levels are obtained 

Reinforcement Learning based algorithm RL _ UCP4 is used to obtain the 

commitment schedule. Optimum schedule is obtained in 11.67 sec with 80000 

iterations. The commitment schedule obtained is given in Table 7.3. 
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Table 7.3 - Commitment Schedule of NTPS n 

Hour Unit I Unit IT Unit m Unit IV Unit V Unit VI Unit VII 

1 1 1 1 1 1 1 1 

2 1 1 1 1 1 1 1 

3 1 1 1 1 1 1 1 

4 1 0 1 1 1 1 1 

5 1 0 1 1 1 1 1 

6 1 0 1 1 1 1 1 

7 1 0 1 1 1 1 1 

8 1 0 1 1 1 1 1 

9 1 0 1 1 1 1 1 

10 1 0 1 1 1 1 1 

11 1 0 1 1 1 0 1 

12 1 0 1 1 1 0 1 

13 0 0 1 1 1 0 1 

14 0 0 1 1 1 0 1 

15 0 0 1 1 1 0 1 

16 0 0 0 1 1 0 1 

17 0 0 0 1 1 0 1 

18 0 0 0 1 1 0 1 

19 0 0 0 1 1 0 1 

20 0 0 0 1 1 0 1 

21 0 0 0 1 1 0 1 

22 0 0 0 1 1 0 1 

23 1 0 0 1 1 0 1 

24 1 1 1 1 1 1 1 

After obtaining a commitment schedule, The Economic Dispatch algorithm 

(RL_ED2) was run to obtain the economic allocation among the generating units. The 

obtained allocation is given in Table 7.4. The allocation algorithm took only 36.87sec. 
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for fmding the schedule for the entire period of time. Thus, the entire time taken by the 

Reinforcement Learning based algorithms is only 48.34 sec. 

Table 7.4 - Economic Schedule 

Load 
Hr. 

PI P2 P3 P4 Ps P6 P7 

(MW) (MW) (MW) (MW) (MW) (MW) (MW) (MW) 

1 840 60 80 100 101 149 150 200 

2 757 60 60 100 81 106 150 200 

3 775 60 60 100 85 120 150 200 

4 773 60 0 100 113 150 150 200 

5 770 60 0 100 110 150 150 200 

6 778 60 0 100 118 150 150 200 

7 757 60 0 100 100 147 150 200 

8 778 60 0 100 118 150 150 200 

9 770 60 0 100 110 150 150 200 

10 764 60 0 100 104 150 150 200 

11 598 60 0 99 97 142 0 200 

12 595 60 0 100 96 139 0 200 

13 545 0 0 100 99 146 0 200 

14 538 0 0 99 97 142 0 200 

15 535 0 0 100 96 139 0 200 

16 466 0 0 0 116 150 0 200 

17 449 0 0 0 101 148 0 200 

18 439 0 0 0 97 142 0 200 

19 466 0 0 0 116 150 0 200 

20 463 0 0 0 116 150 0 200 

21 460 0 0 0 110 150 0 200 

22 434 0 0 0 95 139 0 200 

23 530 60 0 0 120 150 0 200 

24 840 60 80 100 101 149 150 200 
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The algorithms are implemented in C language and the CPU times are taken 

for a Pentium IV 2.40HZ, 512 MS RAM personal computer. The time for getting the 

schedule for 24 hours load pattern is compared with other methods in Tab le 7.5 

Table 7.5 ComparisoD of ExecutioD time for NTPS 11 

Execution 
Method Cost 

Time (sec) 

EP TS 80818 65 

FOP 85050 158 

RL 81049 48.34 

The graphical layout of the comparison is given in Fig 7.1 
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Fig 7.1 Comparison or execution time (sec) ror NTPS 11 
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Comparisons with the recent methodologies reveal that Reinforcement 

Learning based methods provide appropriate results with lesser computation time. This 

makes it a suitable methodology for power scheduling problems. 

In order to prove the efficiency of the proposed algorithms, we also consider 

one more load profile obtained from a load curve. The load curve of 24 hour duration 

is shown in Fig 7.2. 
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Fig 7.2 Load curve 

The Load at different slots of time varies between 300MW and 840MW. The 

load data is tabulated in Table 7.6 

Table 7.6 Load Profile for NTPS 11 

Hour 2 3 4 5 6 7 8 9 10 11 12 

Load 500 300 300 450 500 600 350 400 800 850 500 595 

Hour 13 14 15 16 17 18 19 20 21 22 23 24 

Load 545 538 450 500 600 400 550 300 550 800 700 840 

As the load demand varies across each time interval, the generation schedule to 

be changed accordingly. The Reinforcement Learning algorithms are executed to get 
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the optimum schedule for each slot of time. The obtained schedule gives a total cost of 

Rs. 48764/- for 24 hour. Economic schedule obtained is given in Table 7.7 

Table 7.7 Economic Schedule for NTPS IT 

Hour Load PI P2 P3 p. P5 P6 P7 

.(¥}Yl (MW) (MW) (MW) (MW) (MW) (MW) (MW) 
1 500 0 0 100 90 110 0 200 

2 300 0 0 0 30 70 0 200 

3 300 0 0 0 30 70 0 200 

4 450 0 0 50 100 100 0 200 

5 500 0 0 100 90 110 0 200 

6 600 60 0 100 96 144 0 200 

7 350 30 0 40 30 50 0 200 

8 400 30 0 40 80 50 0 200 

9 800 60 0 100 110 150 150 200 

10 850 60 0 100 104 150 150 200 

11 500 60 0 99 97 142 0 200 

12 595 60 0 100 96 139 0 200 

13 545 0 0 100 99 146 0 200 

14 538 0 0 99 97 142 0 200 

15 450 0 0 60 66 124 0 200 

16 500 0 0 100 90 110 0 200 

17 600 40 0 100 110 150 0 200 

18 400 0 0 40 40 120 0 200 

19 550 0 0 80 120 150 0 200 

20 300 0 0 30 30 50 0 190 

21 550 0 0 30 50 120 150 200 

22 800 60 80 40 120 150 150 200 

23 700 60 40 40 120 110 150 200 

24 840 60 80 100 101 149 150 200 
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7.5 Conclusion 

In this chapter the previously developed scheduling algorithms based on 

Reinforcement Learning strategy were applied to a practical power system. NTPS n 
seven unit system is scheduled using the Unit commitment and Economic Dispatch 

algorithms. When compared with some of the recent strategies, the newly proposed 

methodologies seem to be very much promising on comparing the computational 

speed. The method proved to be a suitable and efficient one for actual power system 

scheduling task It also proves the ability of Reinforcement Learning techniques to 

handle practical problems of power stations. 
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CHAPTERS 

CONCLUSION AND SCOPE FOR FURTHER WORK 

8.1 Introduction 

One of the main objectives when controlling power generation systems, to 

make the best use of available resources of generation to satisfy the instantaneous 

variations in the load demand without violating any of the constraints existing in the 

system. The various constraints arise in a power system from the operational 

limitations of the generating units and their accessories. Active power generated in a 

power system is controlled in three time based loops: Unit Commitment, Economic 

Dispatch and Automatic Generation Control. Unit Commitment and Economic 

Dispatch loops schedule the generating resources to meet the forecasted load demand 

Automatic Generation Control provides the on line control by continuously monitoring 

the load variations and adjusting the generation accordingly. This also ensures efficient 

constant frequency operation. 

Review of various existing methods for the scheduling problems in power 

system is carried out. All these methods are proved to be efficient only for 

deterministic data. The promising features of Reinforcement Learning in the solution 

of general multi stage decision making problems are investigated. The main objective 

of the work is to solve the scheduling problems in the power generation using 

Reinforcement Learning strategy. 

8.2 Summary and Major Findings 

The review on the existing solution strategies led to the scope of developing 

efficient scheduling methods in the field of power generation. Reinforcement Learning 

is a good solution strategy and has been used for solution in many optimization tasks. 

Number of application of Reinforcement Learning in the field of power system has 
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been a few even now. In this thesis, efficient Reinforcement Learning solutions are 

proposed for solution of the three scheduling problems in the power generation sector. 

8.2.1 Unit Commitment Problem 

In order to develop a Reinforcement Learning based solution strategy, UCP is 

formulated as a Multistage Decision Problem (MDP). The number of stages in the 

problem corresponds to the number of hours to be scheduled. Q learning strategy is 

employed to achieve the optimum scheduling of the units at each time slot. 

For introducing the new approach of solution minimum up time and down time 

constraints are neglected in the initial stages. Then the state of the system at any time 

slot is represented by a binary string indicating the ON/OFF status of the different 

generating units. Action set in this Reinforcement Learning task consists of actions of 

making the units ON /OFF. Q- learning is employed to get the optimum scheduling at 

the different time slots. e greedy strategy of exploration is used in the first solution, 

termed as RL_ UCPl. Pursuit strategy of exploration is then tried in the second 

solution, termed as RI_UCP2. Comparison of these two solution approaches indicate 

that pursuit algorithm is faster compared to e - greedy. 

In the next step of solution, minimum up time and down time constraints are 

incorporated. Then the problem becomes more complex and the state information 

includes the number of hours the units have been ON /OFF. To handle the large state 

space a straight forward strategy is suggested in RL_ UCP3. In this case an indexing 

method is used to manage the large number of states. This method also finds difficulty 

in handling problems with units having large number of hours as minimum up /down 

times. An improved method of solution is suggested through state aggregation 

(RL_UCP4). In this case the number ofQ values to be handled is enormously reduced 

and hence the time of execution is decreased. Also the method proved to be efficient 

for systems with large number of units having different values of minimum up time 

and down time. 
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The developed algorithms are validated with different test cases. Also 

comparison is made with hybrid methods: Lagrange Relaxation with Genetic algorithm 

and Simulated Annealing with Local search. The time of execution of Reinforcement 

Learning algorithm is found to be lesser and the schedule and costs are comparable. 

8.2.2. Economic Dispatch Problem 

As the second stage of the wolk, Economic Dispatch problem is solved using 

Reinforcement Learning approach. Initially the transmission losses are neglected to get 

the optimum schedule of generation. First a Learning automata algorithm is suggested 

as RL_EDI. In this case the different possible power combinations are tried through a 

scientific approach. The goodness of the different actions are stored using performance 

indices and based on the same an action is selected. This novel strategy is found to be 

simple and fast but is found to be insufficient to handle large number or generating 

units. 

In order to develop a solution strategy to handle larger problems, Economic 

Dispatch is formulated as a multi stage decision making process and Reinforcement 

Learning solutions are proposed. Here at each stage, allocation is made to one of the 

generating units. Then the action set at each stage comprises the different power 

allocations possible to the particular unit concerned. 

Using Q learning strategy, the system learns for the best action at each state at 

the different stages. For selecting an action from the action space, taking into account 

the learnt Q values, E - greedy and pursuit methods are employed and the 

corresponding algorithms are RL_ED2 and RL_ED3. 

The transmission loss in the system is also considered while rmding the 

economic allocation schedule and the algorithm for the same is developed as RL_ED4. 

In order to make the solution more efficient by handling continuous state space at each 

stage, a function approximation approach is proposed as RL_ED5. The Radial Basis 

Function networks employed in the solution learns the weights of the network through 

Reinforcement Learning scheme. 
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The different RL algorithms are tested with IEEE standard systems and 

systems having non convex and stochastic cost functions. On evaluating the 

performance of the algorithms, one main attraction is that with a single learning 

sequence, policy or allocation for any load value can be easily obtained. Reinforcement 

Learning algorithms can efficiently handle stochastic cost functions also. Also 

Reinforcement Learning algorithms are found to take lesser computation time 

compared to other stochastic solution methods like Simulated Annealing, partition 

Approach Algorithm. 

8.2.3 Automatic Generation Control 

The third problem in the active power scheduling is the on line dispatch or 

meeting the instantaneous variation in the load through AGC. Extending 

Reinforcement Learning solution to AGC is the next step solved. An interconnected 

system with two control areas is taken for developing RL controller schemes. The 

frequency of the two areas is taken as the same. Learning of the RL ~ontroller in both 

areas is done by random periurbations. After learning, the policy is available in the 

form of look up tables. Using the learnt policy, the performance of the system for a 

given load disturbance is evaluated. The performance of system with RL controller is 

compared to that of integral controller. 

In order to ascertain the suitability and efficiency of the Reinforcement 

Learning algorithms for practical systems, the NTPS 11 system is taken for case study. 

The performance of the algorithm is compared with that of two recent methods: Fuzzy 

Dynamic Programming and Evolutionary Programming with Tabu search. Results 

proved that RL based algorithm took lesser computing time compared to other 

methods. 

8.3 Major Research Contributions 

Reinforcement Learning solutions are developed for the scheduling problems 

in the power generation sector. The performance of the algorithms is found to be good 

compared to other recent methods. In summary, main contributions of this thesis are, 
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~ Reinforcement Learning approach to Unit commitment problem has 

been proposed. 

~ Economic Dispatch problem is solved through Reinforcement 

Learning technique. 

~ Reinforcement Learning solution to AGe has been extended with a 

common frequency model for interconnected systems 

~ The suitability of Reinforcement solution to schedule the thermal 

generation in NIPS IT system is investigated 

Proposed solution provides a scope for getting more profit as the economic 

schedule is obtained instantaneously. Since Reinforcement Learning method can take 

the stochastic cost data obtained time to time from a plant, it gives an implementable 

method. This work can be taken as s step towards applying Reinforcement Learning 

towards the scheduling problems in the power industry. 

8.4 Limitations and Scope for further work 

In this worlr, only thermal stations are considered for the scheduling problems. 

It does not consider the hydro and nuclear sources. Along with the short term 

scheduling task. long term scheduling is also to be solved efficiently for any practical 

power system.. A large number of social and economical factors impose restrictions on 

this scheduling process. This scheduling process is also to be solved through such 

efficient and fast optimization methods. 

In this thesis simulation model is employed to learn the system. The learning 

system is capable to take time to time data from an actual system. 

As a further step, all the generating sources in the power system can be 

incorporated in the solution task. which will give efficient and fast scheduling 

mechanism which in turn will increase the economic profit in the power generation 

sector. Also actual data from a power industry can be incorporated by making use of 

online learning of the system. 
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