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Reinforcement Learning Approaches To
Power System Scheduling
ABSTRACT

One major component of power system operation is generation
scheduling. The objective of the work is to develop efficient control strategies
to the power scheduling problems through Reinforcement Learning approaches.
The three important active power scheduling problems are Unit Commitment,
Economic Dispatch and Automatic Generation Control. Numerical solution
methods proposed for solution of power scheduling are insufficient in handling
large and complex systems. Soft Computing methods like Simulated Annealing,
Evolutionary Programming etc., are efficient in handling complex cost
functions, but find limitation in handling stochastic data existing in a practical
system. Also the learning steps are to be repeated for each load demand which

increases the computation time.

Reinforcement Learning (RL) is a method of learning through
interactions with environment. The main advantage of this approach is it does
not require a precise mathematical formulation. It can learn either by interacting
with the environment or interacting with a simulation model. Several
optimization and control problems have been solved through Reinforcement
Learning approach. The application of Reinforcement Learning in the field of
Power system has been a few. The objective is to introduce and extend
Reinforcement Learning approaches for the active power scheduling problems

in an implementable manner. The main objectives can be enumerated as:

(i) Evolve Reinforcement Leaming based solutions to the Unit

Commitment Problem.



(ii) Find suitable solution strategies through Reinforcement Leaming

approach for Economic Dispatch.

(iii) Extend the Reinforcement Learning solution to Automatic Generation

Control with a different perspective.

(iv) Check the suitability of the scheduling solutions to one of the existing

power systems.

First part of the thesis is concerned with the Reinforcement Learning
approach to Unit Commitment problem. Unit Commitment Problem is
formulated as a multi stage decision process. Q learning solution is developed
to obtain the optimum commitment schedule. Method of state aggregation is
used to formulate an efficient solution considering the minimum up time / down
time constraints. The performance of the algorithms are evaluated for different
systems and compared with other stochastic methods like Genetic Algorithm.

Second stage of the work is concerned with solving Economic Dispatch
problem. A simple and straight forward decision making strategy is first
proposed in the Learning Automata algorithm. Then to solve the scheduling
task of systems with large number of generating units, the problem is
formulated as a multi stage decision making task. The solution obtained is
“extended in order to incorporate the transmission losses in the system. To make
the Reinforcement Learning solution more efficient and to handle continuous
state space, a function approximation strategy is proposed. The performance of
the developed algorithms are tested for several standard test cases. Proposed
method is compared with other recent methods like Partition Approach
Algorithm, Simulated Annealing etc.

As the final step of implementing the active power control loops in

power system, Automatic Generation Control is also taken into consideration.



Reinforcement Learning has already been applied to solve Automatic
Generation Control loop. The RL solution is extended to take up the approach
of common frequency for all the interconnected areas, more similar to practical
systems. Performance of the RL controller is also compared with that of the

conventional integral controller.

In order to prove the suitability of the proposed methods to practical
systems, second plant of Neyveli Thermal Power Station (NTPS II) is taken for
case study. The performance of the Reinforcement Learning solution is found to
be better than the other existing methods, which provide the promising step
towards RL based control schemes for practical power industry.

Reinforcement Learning is applied to solve the scheduling problems in
the power industry and found to give satisfactory performance. Proposed
solution provides a scope for getting more profit as the economic schedule is
obtained instantaneously. Since Reinforcement Leamning method can take the
stochastic cost data obtained time to time from a plant, it gives an
implementable method. As a further step, with suitable methods to interface
with on line data, economic scheduling can be achieved instantaneously in a
generation control center. Also power scheduling of systems with different
sources such as hydro, thermal etc. can be looked into and Reinforcement

Learning solutions can be achieved.

Key words: Power system, Reinforcement Learning, Unit Commitment,

Economic Dispatch, Automatic Generation Control.
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CHAPTER 1

INTRODUCTION

Power systems form the largest man made complex system. It basically
consists of generating sources, transmission network and distribution centers. Secure
and economic operation of this system is a challenging task. The primary concern of
electric power system operation is to guarantee adequate optimal generation to meet
load demand satisfying the numerous constraints enforced from different directions.

Active power or MW power generated in a power system is controlled in three
time based control loops: Unit Commitment, Economic Dispatch and Automatic
Generation Control. Unit Commitment and Economic Dispatch loops are to schedule
the generating sources in economic manner to meet the forecasted load demand.
Automatic Generation Control continuously monitors the load variations and adjusts
the power output of the generators in optimum manner which results in efficient

constant frequency operation for the equipments.

A variety of strategies have been developed to make the operation of these
three control loops efficient and fast. In the present economic scenario, the growing
sophistication of power systems motivates the development of more and more
computationally fastgr methods, suitable for the existing systems.

Several methods have been employed for solving the various power scheduling
problems. Dynamic Programming method has been widely used for solving Unit
Commitment Problem and Economic Dispatch. However it suffers from the curse of
dimensionality. Stochastic search methods like Genetic Algorithm, Evolutionary
Programming and Simulated Annealing also have been used. However all these
methods were demonstrated only for deterministic cost data.

All of the existing methods require a well defined model of the system to
handle the control problems. But accurate model of the system may not be available for



all practical systems. Developing control methodology which is implementable in the

practical environment is also a good direction in the power system control sector.

Reinforcement Learning is one popular method, which has been applied for the
solution of many optimization problems. It is a learning strategy which relies on
continuous interaction with the problem environment. Till now, application of
Reinforcement Learning to power system problems has been a few (Imthias er al.
[2002], Emest and Glavic [2004], Gajjar et al. {2003]). The main objective of the
research work is to extend existing Reinforcement Learning algorithms and to evolve
new algorithms to the three control loops concerned with active power control. The
three control problems belong to different classes. In this thesis, various efficient ways
of using Reinforcement Learning to solve these problems will be explored. Expectation
is that, this thesis will help to improve the understanding of various possibilities of
applications of Reinforcement Learning in Power system.

In the following sections, the overall structure of power system contiol: Unit
Commitment, Economic Dispatch and Automatic Generation Control are discussed.
Then an outline of the presentation structure of the thesis is given. Finally the
important contributions are highlighted in the concluding section.

1.1 Power system control

Customer’s Load demand in electric power systems is not steady and is subject
to change because of the change in human activities with time. Economic production of
electric energy is one of the challenging tasks in the power generation sector due to the
limited and variant generating resources. A great deal of effort is required to maintain
the electric power supply quality and quantity within the requirements of various types
of consumers being served. The requirements of consumers include mainly availability,
quality, reliability and reasonable cost for the power. As electric energy can’t be stored,
the loads should be met by variations in the power generation. It is required to commit
enough number of generating units to meet the load demand in real time. In short, the
load demands are to be met while operating the power system in the most economic

manner.



A modern power system consists of several kinds of generating resources of
which Hydro, Thermal and Nuclear sources form the major part. These different
generating stations are connected to various load centers through transmission lines.
Hydro and nuclear sources need more investment in setting up, which contributes to
the fixed cost of power generated. The cost of thermal power is mainly dependent on
the variable cost, majority of which is due to the fuel cost.

The economic production of power relies on mainly two stages of scheduling.
Long term scheduling which involves resource acquisition and allocation for a long
duration, commonly one year in advance and short term planning involving the
scheduling for one day or one week. At a load control centre, the load demand profile
is studied from the past history or experience and based on that, a pre — dispatch
schedule is prepared in advance. This scheduling involves the selection of sources of
generation available, depending on the constraints and the amount of thermal power to
be generated.

Thermal power is usually used to meet the base load during the peak hours.
Since the cost of thermal power is more, proper selection and scheduling of these units
has become the essential step in power generation planning. Also the different thermal
generating units have different fuel characteristics and hence the cost of production
varies from unit to unit (Elgerd [1984], Wood and Wollenberg [2002]). Apart from
this, the cost of generation in any existing power system is not deterministic. It varies
instantaneously. Therefore, economic production of electric energy from a thermal
power plant demands the optimum selection of units and also the generation levels
considering the stochastic nature of cost. In this thesis, focus is made on the economic

scheduling of thermal generating stations.

Scheduling the thermal stations is a two step procedure. In the first step termed
as Unit Commitment, decision is made on which all generating units are to be operated
during each slot of time. This is normally done for separate intervals of one hour each.
While deciding the commitment status, cost of production is minimized by accounting

the various system and unit constraints. The second part of scheduling is to find the



real power generation of the different generating units and is termed as Economic
Dispatch. Through the dispatch solution, generation levels of the units are set for
duration of several minutes. Power generation from the different units should be so as

to satisfy the different constraints and in the most economic manner.

The load on a power system varies instantaneously. Meeting the instantaneous
variations of load needs a continuous change in the generation. When a load is
suddenly added to the system, initially the kinetic energy stored in the rotating parts of
the generators will be utilized to meet the same. Consequently the speed and hence
frequency drops. Then the governor mechanism act to increase the fuel input to the
system in order to meet the increased load. The primary governor control alone cannot
bring the frequency to the scheduled value. The function of real time control or on-line
scheduling, termed as Automatic Generation Control (AGC) in a power system, is
changing the control valve or gate openings of the generator prime movers in response
to load variations so as to maintain the scheduled frequency.

In short, active power or MW control in a power system is done in three time
based loops. First two loops termed as Unit Commitment and Economic Dispatch are
parts of pre dispatch and the third loop or Automatic Generation Control is part of on-
line or real time control.

1.2 Research Focus

Economic scheduling is very important in the power industry since the saving
of even several paise per unit of generated power will accumulate to an electric utility
profit of thousands of rupees per day. A variety of solution strategies have been
evolved for handling the power generation control problems.

Mathematical programming methods like Dynamic Programming suffer from
the curse of dimensionality. Other methods like Genetic Algorithm, Simulated
Annealing, etc. take more computation time and are proved only for deterministic cost

data. Also the existing strategies find difficulty in implementing in a practical power



system. Main focus is to develop a practically implementable solution for the
generation scheduling problems.

Reinforcement Learning is one solution strategy which had been applied for
solution of several search and optimization problems. The capacity of this solution
method in the economic scheduling of power generation has not yet been fully
explored. The direction of this research work is to develop solutions through
Reinforcement Leaming approaches to the three control loops in the generation
control, in a way more suitable for implementation in an existing power system. In the

next sections, these three control problems are described.

1.2.1 Unit Commitment Problem

The general objective of Unit Commitment Problem is to minimize the system
operating cost by selecting the units for operation in each slot of time. It determines the
combination of available generating units in order to meet the forecasted load demand
with minimum production cost. At the same time the various operating constraints
enforced by the system should be satisfied during the period mentioned. The period of
forecasting varies from 24 hours to one week. Forecasting is based on the previous
history, environmental factors, social factors etc. On deciding the commitment
schedule to achieve minimum production cost, a number of operating constraints are to
be satisfied. Some of these are listed below:

(i) Power generation constraints

System generation constraints include power balance, spinning reserve,
import/export, transmission line constraints etc. Active power generation
should be equal to the total power demand plus losses. Demand in one control
area includes the load to be met in that area, transmission losses, scheduled
interchange power etc. Total maximum capacity of on-line units must include
some spinning reserve also. This spinning reserve is necessary to fulfill the
unexpected increase in demand or forced outage of any of the generating units.

The amount of the required spinning reserve is usually determined by the



maximum capacity of the largest generating unit in the system or a given
percentage of the forecasted peak demand during the scheduled period.

(ii) Minimum and Maximum generation output constraints

There exist a number of physical and economical considerations regarding the
operating range of a generating unit. A range of power outputs is specified for
each machine by either machine output limits or economic operation of other

associated units.
(iii) Minimum Up time / Down time constraints

Each individual thermal unit has its own constraints which include initial
condition, minimum and maximum generation output limits, minimum up
time/ down time, unit status restrictions etc. Initial condition of a generating
unit includes the number of hours that it has been continuously on-line or off-
line and its generation output at the starting instant of present scheduling slot.
Minimum up time refers to the number of hours a unit has to be on-line before
it can be shut down. Minimum Down time is the number of hours a unit must
be off before it can be started up. Both the initial number of on-line or off- line
hours and the initial generation output associated with other constraints limit

the present status and generation output of the unit.
(iv) Unit status restriction

Unit status restrictions include must run and must off restrictions. Generating
units with such restrictions will be pre defined and must be excluded while
finding the commitment schedule. Some units must be forced to run or to be on
line due to various practical and economic reasons. Such units may be using
expelled steam from other machinery or units or from some renewable energy
sources or may be necessitated due to coupling with other units. The units
which are under maintenance are termed as must off units. Also the availability

of fuel forces certain plants to be on / off during a particular period. These two



sets of units must be excluded while finding a commitment schedule in the
Unit Commitment Problem.

1.2.2 Economic Dispatch

The Economic Load Dispatch problem is a problem of minimizing the total
fuel cost of generating units for a specified period of operation so as to accomplish
optimal generation dispatch among operating units and at the same time satisfying the
varjous constraints. The fuel cost of the different thermal generating units can be

smooth or non smooth.

The cost functions will usually be given in quadratic or higher order
polynomial forms. Due to the use of multiple fuel options for the generating units, the
cost functions will sometimes be super position of piecewise quadratic functions or in
other words will be non smooth over the generation range.

The Economic scheduling of generators for any slot of time will be subject to a
variety of constraints. These constraints include:

(i) Power balance constraints or Demand constraints

This constraint is based on the balance between the total system generation and

the total connected load and the losses in the transmission system.
(ii) Generator constraints

The output power of each generating unit has lower and upper bounds so that it
should lie within these limits at any point of time.

(iii) Ramp rate limits

Ramp rate limit restricts the operating range of all the on line units for
adjusting the generator operation between two operating periods. The
generation can be changed according to the increasing and decreasing ramp
rate limits only.



(iv) Prohibited operating zones

The generating units may have certain ranges where the operation is restricted
on the grounds of physical limitations of machine components or operational

instability.
(v) Valve point effects

The valve opening process of multi valve steam turbines produce a ripple like
effect in the heat rate curve of the generators and it is usually taken into

account by some modifications in the cost functions of the units.

(vi) Transmission loss

While finding an optimum schedule of generation, transmission loss is one
important constraint since the generating centers and the connected load exist
in geographically distributed fashion.

1.2.3 Automatic Generation Control

In a power system, turbo generators must be continuously regulated to match
the active power demand, failing which the machine speed will vary with a consequent
change in frequency, which is highly undesirable. Also the excitation of the generators
must be continually regulated to match the reactive power demand with reactive power
generation; otherwise the voltages of the system buses will vary (Elgerd [1982]).

By Unit Commitment and Economic Dispatch solutions, the required active
power generation is distributed among the different generating units in an optimum
manner leading to the minimum cost of generation. The final and on-line control of
generation in a power system is done through the control of frequency measured from
the system bus. This third or inner control loop is Automatic Generation Control
(AGC) or more specifically Load Frequency control. This control loop handles the

instantaneous variations in the customer load.

Power system loads and losses are sensitive to frequency. Therefore for

satisfactory operation, a nearly constant frequency is necessary. The frequency of the



system is dependent on active power balance. Therefore any imbalance in the active
power is reflected as a change in system frequency. In an isolated power system,
generation control is just controlling of the frequency by means of changing the fuel
intake by the governor.

Once a generating unit is tripped or a block of load is added to the system, the
po\;ra mismatch is initially compensated by the extraction of kinetic energy from
system inertial storage which causes a decline in system frequency. As the frequency
decreases, power taken by loads decreases. Equilibrium for large systems is often
obtained when the frequency sensitive reduction of loads balances the output power of
the tripped unit or that delivered to the added block of load at the resulting new
frequency (Athay [1987)).

If the frequency mismatch is large enough to cause the frequency to deviate
beyond the governor dead band of the generating units (generally in the range of 30-
35mHz.), their output will be increased by the governor action. For such mismatches,
equilibrium is obtained when the reduction in the power taken by the loads plus the
increased generation due to governor action compensates for the mismatch. Such
equilibrium is often obtained within 10-12 seconds. Typical speed droop are in the
range of 5% and therefore at the expense of some frequency deviation, generation
adjustment is carried out by governors. In order to compensate for the offset deviation
and to bring back the system to the original scheduled frequency, a manual or
automatic (through AGC) follow up and cormresponding control are required.

The Automatic Load Frequency Control is done based on the concept of tie
line bias control in which the Area Control Error (ACE) is calculated at specified
discrete intervals of time and control action in the form of change in the reference
setting of the governor is carried out. The control decision has been developed by
several mathematical and soft computing methods by various researchers. Imthias et al.
[2002] proposed a Reinforcement Learning control strategy for the load frequency
control problem. For the completeness of the attempt to develop Reinforcement
Learning based strategies for all the control loops in the power generation control, a



Reinforcement Learning algorithm for Automatic Generation Control (AGC) with a

new approach is presented.

1.3 Objectives

Efficient and Economic solution of the above discussed three control
problems: Unit Commitment, Economic Dispatch and Automatic Generation Control is
the main focus of the research work. The objective is to introduce Reinforcement
Learning approaches for the economic scheduling problem in an implementable
manner and extend the Reinforcement Learning solution to Automatic Generation

Control. The main objectives can be enumerated as:

(i) Evolve Reinforcement Learning based solutions to the Unit Commitment
Problem.

(ii) Find suitable solution strategies through Reinforcement Learning approach for
Economic Dispatch.

(iii) Extend the Reinforcement Learning solution to Automatic Generation Control
with a different perspective.
(iv) Check the suitability of the scheduling solutions to one of the existing power

systems.
1.4 Outline of the thesis

The thesis focuses on introducing Reinforcement Learning based approaches
to various power system control problems. Power scheduling problems and the
constraints enforced are studied. Different existing methodologies for the solution to
the power scheduling problems are reviewed in detail emphasizing the advantages and

limitations.

As the first step towards applying Reinforcement Learning strategy to Unit
Commitment problem, the problem is formulated as a multi stage decision making
task. Review of the basic solution introduced by Imthias [2006 a] is done and the

solution is extended to make it implementable in a practical power system. These
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"algorithms in general are denoted as RL_UCP. Minimum up time and down time
constraints are first neglected to introduce the new solution strategy. Efficient solution
methods are then put forth taking into account the start up and shut down constraints.
State aggregation method is also used to develop efficient solution to this constrained
optimization problem. Solutions are verified for different standard test systems. A
comparison with other solution methods including Simulated Annealing and Genetic

Algorithm are made to prove the efficacy of the proposed method.

Rconomic Dispatch solutions are obtained through Reinforcement Learning
algorithms considering different types of complexities of the problem. For simplicity of
introducing the new algorithms, transmission loss in the system are first neglected.
Then the transmission losses are incorporated. In order to make learning efficient
function approximation method is used. Verification and validation are carried out for
several systems having different types of cost functions and constraints. The solution
given by the proposed algorithms (termed as RL ED) are compared with other
stochastic techniques.

A contro] strategy for Load Frequency Control in an interconnected power
system is also proposed. The control areas connected are considered to operate at a
common system frequency. The reference power setting is changed by the control
action proposed by the RL controller which acts according to the variation in the Area
Control Error (ACE).

Finally, one of the existing thermal generating stations (Neyveli Thermal
Power System Corporation) is considered for case study to check the suitability of the
developed solutions to a practical system.

The different chapters of the thesis are organized as follows:

Unit Commitment is a combinatorial optimization problem which has been
solved earlier by several numerical as well as soft computing methods. Numerical
methods include Lagrange Relaxation, Priority List, Dynamic Programming etc. and
soft computing strategies include Neural Network, Simulated annealing, Genetic
Algorithm, Evolutionary Programming etc. For finding the schedule of generation

11



through Dispatch solution, a number of methods including lambda iteration, genetic
algorithm, simulated annealing, evolutionary programming etc. have been proposed
by various researchers. Chapter II gives a review of the existing solution strategies
for the three control problems. Implementation details of the different techniques are
also looked into. Reinforcement learning method and a few of the applications

existing in the various fields are also explained.

Reinforcement Learning is explained in detail in Chapter III. The different
components of Reinforcement Learning problem include state, action, reward and
value function. A discussion on these components, the different solution strategies
including Q learning and the different ways of exploring the action space including € -
greedy and pursuit are discussed. Function approximation method using Neural
Networks is also explained. A review of application of Reinforcement Learning to

some of the power system problems is also given.

Formulation of Unit Commitment Problem as a multi stage decision making
problem and Reinforcement Learning based solutions are given in Chapter IV. First
the basic algorithm is reviewed. An efficient solution through exploration using
pursuit method is introduced without considering minimum up time and down time
constraints. Then more efficient algorithms suitable for existing power systems are

proposed considering minimum up time and down time limitations.

In Chapter V, Economic Dispatch problem is solved using Reinforcement
Learning strategy. The first set of algorithms neglect the constraint enforced by the
transmission losses in the system. Then the transmission losses are also included and
an extended algorithm is put forth to get economic distribution. A function
approximation method using Neural Network is proposed to make the dispatch

solution more efficient one. Simulation studies are also presented.

To give completeness of formulating Reinforcement Learning solution to the
power generation control problems, the on line dispatch problem or Load Frequency
Control is solved using Reinforcement Learning method in Chapter V1. Comparison

of the results with an integral controller for the same parameters is given.
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A practical power system: Neyveli Thermal Power Station is taken for case
study and the simulation results of the developed algorithms applied to the system is
given in Chapter VII. The results obtained are compared with two of the recent
techniques: Fuzzy Dynamic Programming and Evolutionary programming with Tabu
search.

The important contributions are given in the concluding chapter, Chapter VIII.
Also the limitations and scope for further work are explained.

13



CGCHAFTER &

A REVIEW OF TECHNOLOGIES FOR POWER
SYSTEM SCHEDULING

2.1 Introduction

A thorough literature survey has been conducted to study the various
approaches existing for the solution of the three major scheduling problems: Unit
Commitment, Economic Dispatch and Automatic Generation Control. Applications of
Reinforcement Leaming to the various fields are also reviewed.

Unit Commitment is the process of determining the optimal schedule of
generating units over a period subject to system operating constraints. Various
approaches to the solution of this combinatorial optimization problem have been
proposed. The different methodologies applied for the same are discussed in the next
section.

Economic Dispatch is the problem of scheduling the committed units so as to
meet the desired load at minimum cost. Due to the non convexity of cost functions
and the different constraints existing on the operation of thermal power plants,
solution of this optimization problem is difficult. A number of classical and soft
computing techniques have been developed over years for solution of this problem.
The different techniques and solution strategies are reviewed in section 2.3

Control strategy for adjusting the reference power setting in Automatic
Generation Control is adopted in several ways. A brief review of the different models
and solution strategies are also detailed in section 2.4.

Reinforcement Learning is a good leaming strategy which relies on interactive
learning. It has found applications in several fields. A brief discussion on the different

existing applications is also included in section 2.5.
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2.2 Solution Methodologies for Unit Commitment

Unit Commitment Problem is a very challenging optimization problem. This is
because of the huge number of possible combinations of ON / OFF status of the
generating units in the power system over the different time periods considered.
Solution to this combinatorial optimization problem has been developed by several
exact and approximate methods. Padhy [2004] gives a good survey on the different
solution methods for Unit Commitment Problem. Some of the existing solution

methods are discussed below:

2.2.1 Priority list

It is one of the simplest Unit Commitment solution methods (Wood and
Wollenberg [2002]). Priority list is obtained after enumerating the various
combinations of the units possible at each load demand. The generating unit priorities
are determined according to their average production cost. For every slot/ period of
time, units are committed one by one according to their priorities until the power
balance and security constraints are satisfied. Each time, minimum up time and down
time are checked before commitment. This is a one simple and efficient method and
has been widely used in several practical power industries. One limitation is that the
solution obtained need not be optimal always since the initial status and start up cost of
the different units are not considered in preparing the list.

In order to obtain an optimal Unit Commitment solution, an adaptive list
method is suggested (Lee [1988]). The units are grouped based on their initial unit
operating characteristics, minimum shut down and start up times, spinning reserve etc.
At each hour to be scheduled, within each group, the units are ranked according to the
economic cost of production and prior system operation. Comparison is made in terms
of a cost index which accounts the prior system marginal cost and production cost.
Initial set of units (initial feasible solution) at each hour consists of top ranked units
from the different groups. At each iteration, based on the relative economic cost, the
dominated unit in the set is identified and removed from further consideration. The

load balance condition is evaluated. Additional comparison will be made among the
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_umtiiing units and the ‘next unit to commit’ is found. Comparison and refinement is
continued to get the optimum solution satisfying the load demand.

2.2.2 Dynamic Programming

Dynamic Programming (DP) is another major approach introduced in 1960s to the
solution of several optimization problems (Bellman and Dreyfus [1962]). Dynamic
Programming is a method based on well known “Bellman’s optimality principle”.
Based on the same, an optimization problem is first divided into a number of stages.
Possible states and solutions of the problem at each stage are identified.

According to the optimality principle, an optimal decision made at one stage does
not depend on the policy or decisions made at its previous stages. To achieve the
optimum, starting from the first stage the various solutions at each stage are
enumerated. Each decision will make a transition of the system to one of the states at
the next stage. Enumeration of the decisions or solutions at each stage corresponding to
the states encountered is continued, until the final stage is reached.

A variety of Dynamic Programming (DP) solutions have been proposed by a
number of researchers. The basic steps in the Dynamic Programming based solution to
Unit Commitment (Wood and Wollenberg [2002)) are:

(i) Identify the number of stages in the scheduling problem. It is same as the
number of hours to be scheduled.

(ii) Define the possible states at each stage of the problem. The states are defined
as the possible combinations of the units or the ON/ OFF status of one
particular unit,

(i) Filter the feasible or permissible states for each time slot based on the

constraints enforced in the problem. This is dependent on the load demand to
be met at the particular time slot and the operating limitations.

(iv) Starting from the initial state (status of the units), find the feasible solutions

(unit combinations) at each stage to make stage transition. Corresponding to
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each state, the cost is calculated by considering the production cost and start up

cost of the units.

(v) Reaching the final stage, backtrack from the optimum combination (having

minimum cost) till the initial stage to obtain the optimum schedule.

The solutions proposed by the different methods based on DP are a slight
variation of this basic procedure. Some of them are reviewed here. In the simplest DP
approach (Ayoub and Patton [1971]), the commitment of generating units is
determined independently for every time period. For every unit, the start up and shut
down costs are assumed to be constant and the total cost of every output level is the
sum of production and start up costs. In this method, time dependence of start up cost
is not considered. It cannot take into account the minimum up time and down time of

the generating units.

In 1976, Pang and Chen suggested a DP based algorithm considering the start
up costs. In this, each stage represents a particular time period, and in every stage,
corresponding states represent different combinations of commitment status during that
period. The solution procedure considers the interdependence between the different
time slots and hence the start up cost is considered as dependent on the transition

information. Also the minimum up / down time constraints are incorporated.

In order to consider the huge dimension arising for large systems, additional
techniques with DP are proposed (Pang et al. [1981]). In each period subset of the
states are identified to get optimal policy. This subset is formed based on the
constraints forced on the status of the generating units, which is dyramic in nature.
This truncated DP approach efficiently reduces the computation time. But the limiting
of the state space is not always optimum. Hence the solution does not tum to be

optimum in many cases.

Another modified DP termed as sequential DP combines the Priority List and
the conventional Dynamic Programming approach (Meeteran [1984]). In this method,
in order to increase the speed of computation, search space is reduced to certain

subspaces termed as windows. But, the optimality is to be attained regarding the
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accuracy and window size. For large scale systems, a large search range is required to
get proper solution. Even if window size or subset range is selected by several heuristic

techniques, the computational efficiency is very poor.

A variable prionity ordering scheme is proposed (Synder et al. [1987]) to
enhance the computational efficiency. The approach again suffers from the
dimensionality as the state space becomes enormously large with the number of
generating units. An enhanced Dynamic Programming method considering the reserve
constraints is proposed by Hobbs ef al. [1988].

The power system dynamic stability problem is also considered and a Dynamic
Programming solution to multi area unit commitment is proposed (Hsu et al. [1991]).
Eigen values are used to find the stability of the units at the optimum generation point
obtained at each hour.

Ouyang [1991] proposed an intelligent Dynamic Programming method, which
eliminates infeasible states and reduces the decision space in each hour of the problem.
The variable window Dynamic Programming suggested, adjusts the window size
according to the received load increments.

The spinning reserve constraints form an important part in the solution of Unit
Commitment problem. Scheduling of hydro electric plant is done through Dynamic
Programming considering the reserve constraints (Finandi and Silva [2005]).

2.2.3 Lagrange Relaxation

Lagrange Relaxation technique is a numerical solution method based on dual
optimization. The method decomposes the linear programming problem into a master
problem and more manageable sub problems. Sub problems are linked by Lagrange
multipliers which are added to the master problem to get the dual problem. This low
dimension dual problem is then solved. For the same, Lagrange multipliers are
computed at the master problem( level and are passed to the sub problems. The
updating of Lagrange multipliers is done by either analytical methods or heuristic
methods.
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The solution strategy can eliminate the dimensionality problem encountered in
the Dynamic Programming by temporarily relaxing the coupling constraints and
separately considering each sub problem. It provides the flexibility for handling the
constraints and is computationally efficient.

For obtaining the optimum solution, Unit Commitment Problem is formulated,
in terms of the cost function, set of constraints associated with each unit and the set of
coupling (system) constraints, into one primal problem and one dual problem. The
primal sub problem is the objective function of the Unit Commitment Problem. Dual
problem incorporates the objective function and the constraints multiplied with the
Lagrange multipliers.

Lagrangian dual function is formed by adjoining the power balance and
security constraints into the cost function, via two sets of Lagrange multipliers.
Equality constraints are incorporated by one set of multipliers (usually denoted by A)
and inequality constraints by anothcr set (denoted by p). The dual procedure attempts
to maximize the dual function (minimum of Lagrange function) with respect to
Lagrange multipliers. In the solution process, at each iteration, the Lagrange
multipliers are taken as fixed. Once the values of multipliers have been fixed, each sub
problem is solved (minimized) with those constraints which represent the operating
characteristics of the corresponding unit.

For the minimization procedure, any of the linear programming method is
used. Corresponding to the obtained values of the system variables, the dual function
and primal function are evaluated to obtain the duality gap which is the measure of
convergence. When the duality gap is more, the Lagrange multipliers are updated to
start the next iteration in the solution process. Tolerable value of duality gap indicates
the convergence of the algorithm.

From the early 1970°s, researchers focus on developing solution to Unit
Commitment Problem using Lagrange Relaxation. Muckstadt and Koeing [1977] have
provided a Lagrange Relaxation solution using branch and bound decision making
technique. A node in the branch and bound tree represents the problem ‘P’ with
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appropriate set of variable x;, (x;, = 0 or 1). The Lagrangian Relaxation of the problem
at each node is solved with shortest path algorithm solving each of the single generator
sub problems. This provides the lower bound for the optimal solution of the problem at
each node. The bounds are used to direct the search through the decision tree. At each
node in the tree, sub gradient method is used to update the values of the Lagrange
Multipliers so as to make the bounds better. The updated multiplier values are used to
compute the next solution of Lagrange Relaxation. The method has proved to give
optimal solutions to smaller problems and with acceptable tolerance limit to a bit larger
problems. But for lager problems the number of nodes in the decision tree is very large
in number which increases the computational complexity.

A modified solution strategy was proposed by Lauer et al. [ 1982]. In this case
in addition to the lower bound, an upper bound is also obtained at each node in the
branch and bound tree. The lower bounds are provided by the solution of the dual
problem and then the upper bounds are fixed using dynamic priority lists which
depends on time, state of the units and the demand. The sub gradient method of
solution to dual problem does not provide sufficient information for getting optimal
solution to primal problem and this makes the number of nodes to be examined is very
large for a satisfactory solution of complex and real world problems.

To address the large size and real world problems, another approach was
suggested by Bertsekas ef al. [1983). In this case, the dual problem is approximated to
a twice differentiable problem and then solved by constrained Newton’s method. The
solution to dual problem gives the values of Lagrange Multipliers to solve the relaxed
primal problem. Since the number of iteration required in Newton’s method is
insensitive to the number of generation units, computational requirement for getting the
optimal solution is much less ( 10 — 12 minutes for 200units and 24 hour load pattern)

Cohen and Sherkat [1987] have reported the solution to general Unit
Commitment problem using Lagrange multipliers. Bard [1988] also solved the short

term Unit Commitment of thermal generators using Lagrange multipliers.
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Solution through Lagrange Relaxation method depends on the values of
Lagrange multipliers. Therefore setting the initial Lagrange multipliers and updating
them are significant to the optimality of the solution The solution from the simple
Lagrange Relaxation method is not optimal always due to improper adjustment of the
Lagrange multipliers. The non convexity of the problem is also not handled
satisfactory by simple Lagrange Relaxation method.

To handle the non convexity of the Unit Commitment problem, modifications
have been proposed to the basic method of Lagrange Relaxation. A three phase
method is proposed by Zhaung and Galiana [1988]. Lagrangian dual of the problem is
maximized using sub gradient technique in the first phase. A reserve feasible dual
solution is developed in the second phase and the third phase solves the Economic
Dispatch.

Unit Commitment solution is obtained considering the transmission
constraints (Bataut and Renaud [1992]). The solution often oscillates around the global
optimum point. The non convexity of solution method is overcome in the modified
method termed as Augmented Lagrange Relaxation (Wang et al. [1995]). In this
solution, quadratic penality terms are considered and added with the objective function
in order to handle the convexity of the problem. These multipliers relax the system

demand multipliers and the oscillations of the solution are avoided.

Peterson and Brammer [1995] suggested a Lagrange Relaxation method
considering the various constraints including ramp rate constraints of the generating
units. Beltran and Heredia [2002] also proposed an Augmented Lagrange Relaxation
with a two phase method of solution to improve the convergence of the short term Unit
Commitment problem. But it is more complicated and slower due to the updating
needed for each of the Lagrange multipliers and penalty factors at each step, which

increases the time for convergence.

Lu and Schahidehpur [2005] used the Lagrange method considering the
generating unit with flexible constraints. A case of Lagrange Relaxation and mixed
integer programming are proposed by Li and Shahidehpour [2005]. The method is to
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find the global optimum using the classical Lagrange Relaxation method and to obtain
local optimum through Augmented Lagrange Relaxation method.

Stochastic methods are also developed for the updating of Lagrange
multipliers. Cheng et al. [2000] employed genetic algorithm in the calculation of
Lagrange multipliers. Balci and Valenzuela [2004] proposed Particle Swarm
Optimization for the computation of the multipliers.

Lagrange Relaxation is an attractive and efficient method due to the flexibility
of incorporating the constraints in the problem and suitability for large systems.

2.2.4 Decommitment method

Decommitment method determines the Unit Commitment schedule by
decommitting the units from an initial state in which all the available units are brought
on line over the planning horizon. A unit having the highest relative cost is
decommitted at a time until there is no excessive spinning reserve or minimum up
time. Tseng ef al. [1997] demonstrated that the decommitment method is reliable,
efficient and quick approach for solving Unit Commitment Problem. Tseng et al.
[2000] and Ongasakul and Petcharakas [2004] applied decommitment method as an
additional step along with Lagrange Relaxation.

2.2.5 Artificial Neural Networks

Artificial Neural Networks (ANN) offers the capability of parallel
computation. They are computational models composed of interconnected and
massively parallel processing elements. For processing information, the neurons
operate concurrently and in paralle] and distributed fashion. The interconnection of the
different neurons in the network is through the parameters termed as weights which are
modified during the training phase of Neural Network. Once trained, the network gives
the optimum output for the input data supplied to the network. Several models and
learning algorithms associated with Neural Networks have been developed.

The network learning is generally of three types: Supervised Learning in which

learning is carried out from the set of examples or known input — output pairs,
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Unsupervised Learning in which without the use of examples the network learn for
optimum weights and Reinforcement Learning where learning is carried out through

interaction, getting rewards for actions at each time step.

Of the different Neural Network architectures, Hopfield Neural Network and
Radial Basis Function networks are most commonly used for optimization tasks.
Hopfield Neural Network is one recurrent network that operates in unsupervised
manner. Radial Basis Function (RBF) networks are used as interpolating networks,
used mainly for function approximation tasks.

Several Neural Network solutions have been proposed for Unit Commitment
Problem. Unit Commitment can be treated as a discrete optimization problem since the
ON / OFF status is the decision to be carried out. In the early work by Ouyang and
Shahidehpour [1992], a pre schedule according to the load profile is obtained using a
three layer Neural Network and supervised leaming. The input layer of the network
consists of T neurons for a T hour scheduling tas and accepts the load demand profile.
The input neurons are normalized by the maximum swing in the MW. The neurons in
the output layer provide the output schedule which is an N x T matrix, N being the
number of machines to be scheduled. Since the status variable can take only ‘1’ or
‘O’comresponding to ON / OFF, output matrix is having only these two elements
corresponding to the different variables. Training of the network is carried out using
representative load profile and commitment schedule obtained through mathematical
programming technique. After training, Neural Networks gives the commitment
schedule for any load demand. But the limitation is that the training pattern is to be
properly selected to get the accurate scheduling of the units.

In order to make the solution more efficient, Hopfield Neural Network is used
for solution of Unit Commitment problem and results are obtained for scheduling of 30
units (Sasaki et al[1992]). Discrete energy function is associated with the different
neurons in the network so as to handle the discrete nature of Unit Commitment
Problem.
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Ramp rate constraints are also incorporated in finding the Unit Commitment
schedule by Wang and Shahidehpor [1993]. To handle the problem more accurately,
Walsh and Malley [1997] proposed Augmented Hopfield Neural Networks. In this
case, energy function comprises both the discrete and continuous terms to handle the

problem more efficiently considering the optimum dispatch for the generating units.

To provide more flexibility and to adaptively adjust the weights in the
network, an evolving weight method is suggested (Chung et al. [1998]). Genetic
Algorithm is used to evolve the weights and interconnections.

One limitation of using Neural Network alone is the need for larger time for
convergence. By using Neural Network as a classification network and then using
Dynamic Programming in the smaller space obtained, convergence is easily obtained
(Daneshi ez al. [2003]).

The attractive feature of the method suggested by Swarup and Simi [2006] is
the use of separate discrete networks (instead of neurons in the previous cases) for each
of the constraint in the Unit Commitment Problem and a continuous Hopfield network
for solving Economic Dispatch problem. The two sorts of networks remain decoupled,
but learnt simultaneously. This avoids the use of complex unified energy function. It
prov1des more flexibility on adding more constraints, without affecting the objective
function block. But the major limitation comes from larger state spaces, difficult to be
learnt while finding the schedule of a number of units and for a large profile of load
data.

2.2.6 Evolutionary Programming

Evolutionary Programming and Genetic Algorithm are optimization tools
developed motivated by the natural evolution of organisms. Each of them maintains a
set of solutions called population, through modification and selection. They differ in
the representative technique, type of alteration and selection procedure adopted. The
basic idea behind is to mathematically imitate the evolution process of nature.
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Evolutionary Programming algorithm considers evolution as a change in
adaptation and diversity of population (Fogel [1995]). Unlike Genetic Algorithm,
Evolutionary Programming imposes no restriction on the coding that may be employed
for the optimization task.

An Evolutionary Programming algorithm for solving simple Unit scheduling
task is proposed by Juste et al. [1999]. Each population is having a set of n individuals.
Each individual represents a solution to the problem. The populations are evolved
considering the entire state space, without giving any priority to the evolved
generations and individuals. Each individual is a matrix representing the status of the
units for the forecasted load period. Binary encoding is used and the decimal
equivalent of the binary string representing the status for T hours is used for each of the
units. Each individual is thus encoded as a vector of N decimal numbers. Therefore

each population is represented by a matrix of N x n decimal numbers.

From the initial population, randomly selected as havir.,g # individuals, the next
population is evolved through selection. The fitness value of each individual is
calculated using the cost functions associated with the units. From each parent
individual, an offspring is created by adding a Gaussian random variable to the
elements. The parameter of the Gaussian distribution takes into account the fitness
values of the parent population. The evolved members and the parent individuals
together are ranked according to their fitness value and the best n individuals are
selected as the next population. As a number of populations are evolved through this
iterative procedure, the individuals will approach to the optimum status for the units.

Evolutionary Programming algorithms are also developed which differ in the
generation and selection of the offspring from the parent population. By incorporating
a search technique along with Evolutionary Programming, Rajan and Mohan et al.
[2004] proposed an algorithm to find Unit Commitment schedule at much lesser time.
They also considered the cooling and banking constraints and optimum schedule is
obtained through a hybrid approach of Tabu search and Evolutionary Programming.
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Due to the use of Evolutionary Programming, the search complexity in the Tabu list is
reduced.

Since a large number of populations are to be generated for getting the
optimum schedule, the time complexity is more in all Evolutionary Programming
methods.

2.2.7 Genetic Algorithm

Genetic Algorithms (GA) are well-known stochastic methods of global
optimization based on the evolution theory of Darwin. The various features that
characterize an individual are determined by its genetic content, represented as
chromosomes. In GA based solution strategies a population of chromosomes are
considered and evaluated. Each chromosome is represented as a string.

In case of Evolutionary Programming the off springs are generated by using a
Gaussian distribution while in case of genetic algorithm the next generation is evolved
by changing of the chromosome string through mutation and cross over operations.

The individuals in the population are encoded using either binary or real
numbers. The population in GA is treated with genetic operations. At iteration i, the
population .X; consist of a number of » individuals or solutions x; where n is called as
population size. The population is initialized by randomly generated individuals.
Suitability of an individual is determined by the value of the objective function, called
fitness function. A new population is generated by the genetic operations selection,
crossover and mutation. Parents are chosen by selection and new off springs are
produced with crossover and mutation. All these operations include randomness. The
success of optimization process is improved by elitism where the best individuals of
the old population are copied as such to the next population.

Kazarilis ef al. [1996] applied simple Genetic Algorithm for solution of Unit
Commitment problem. Binary encoding representing the status of the generating units
is used and the non linear cost function is employed to calculate the fitness value of the
individuals. Binary numbers ‘1’ and ‘0’ indicate ON / OFF status of the generating
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units. Each individual is a solution corresponding to N generating units and T hours.
Therefore it is represented as N x T matrix of binary numbers. There are ‘n’ such
candidate solutions in one population. Through the genetic operators mutation, cross
over and selection among the parent individuals, new population is created from parent
population. Recombination of the binary strings is made through cross over which
exchanges portions between strings. Mutation makes random alteration of the bits in a
string and thus provides diversification in the competing solutions. A new population is
produced by selecting the best individuals after applying cross over and mutation.
Fitness or goodness of a particular individual is measured through evaluation of the

cost function.

Since the size of the matrix representing the individual increases with the

increase in the number of hours and generating units, search space becomes huge.

Orera and Irving proposed a hybrid genetic algorithm [1997] to handle the
huge space of variables. A priority order commitment is employed which gives a sub
optimal solution to generate the initial GA population. The problem is decomposed in
the hourly basis to reduce the search space from 2™" to 2". Starting from the first hour,
the algorithm sequentially solves the scheduling problem by limiting the search to one
hour and considering the minimum uptime and down time constraints. For the
remaining hours, solution for the previous hour is taken as an initial solution instead of
taking in random. To make the solution more efficient a hybrid method incorporating
Tabu search and Genetic Algorithm is also proposed by Mantawy ez al. [1999 a].

Considering the competitive market and import / export constraints, a solution
to Unit commitment is found (Richter and Sheble [2000]). But the solution neglected
many other constraints such as cooling period. Cheng ez al. [2000] incorporated the
Genetic Algorithm into Lagrange relaxation method to update the Lagrange multipliers

and thus to obtain efficient solution.

A cooperative co evolutionary Programming solution is proposed by Chen and
Wang [2002]. The algorithm is more powerful in handling more complex problems.
The method is a two phase method. In the first level, sub gradient method is used to
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solve the Lagrange multipliers and in the second level, GA is used to solve the system
variables.

Xing and Wu [2002} considered the energy contracts while finding the
commitment schedule. Senjuy et al. [2002] considered the unit characteristics more
precisely and found a schedule through Genetic Algorithm. Swarup et al. [2002]
considered the constrained Unit Commitment problem and solution is obtained using
problem specific operators. Damousis et al. [2004] used an integer coded genetic
algorithm, which used coding in terms of integer rather than binary as in conventional
genetic algorithm. Dudek et al. [2004] explained the application of some improved
search facilities to improve the performance.

Genetic method involves extensive computation time since a large number of
populations with sufficient number of individuals are to be generated to reach the
optimum. Therefore this method is not much suitable for larger systems. Also optimal
solution is not always guaranteed.

2.2.8 Tabu search

Tabu search technique applies a meta heuristic algorithm, which uses the
search history for a good solution among a set of feasible solutions. It uses a flexible
memory system. The adaptive memory system avoids the trapping to local optimum
points, by directing the search to different parts of the search space. Tabu search can be
treated as an extension of steepest descent algorithm. It selects the lowest cost
neighbour as the starting point in the next iteration. At each step, the algorithm

maintains a list of recent solutions.

Tabu search begins with a randomly chosen initial solution. The initial solution
is treated as the current sojution and the corresponding cost as the current cost. This
current solution is then modified randomly to get a set of neighbourhood solutions. The
best solution in the neighbourhood is selected for transition. Each transition through
the solution space is termed as ‘move’. The move is chosen based on the cost of the
neighbourhood solutions. Usually the lowest cost neighbour is selected for the move
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even if it is costlier than the current solution. But if the move has been already
encountered in the near history, it will be discarded if having higher cost. A lower cost
move will be accepted even if it is already present, to provide sufficient exploration in_

the search space.

For comparing the moves and to ascertain the acceptance a list called Tabu list
is created. In every iteration, the move corresponding to the selected solution is
inserted in the Tabu list. When an entry is inserted, the earliest one is deleted and the
cost of the current solution is inserted as the aspiration level of the list to compare the
cost in the next iterations. This refinement of the list and selection is carried out

iteratively to reach the optimum solution.

For solving Unit Commitment problem several solutions based on Tabu search
are proposed (Mantawy et al. {1998]). Tabu list created is of size Z x N, where Z is the
list size chosen and N being the number of generating units. Each vector in the matrix
represents the Tabu List for one generating unit. That is, each vector records the
equivalent decimal number of the binary representation of a specific trial solution
(up t=1,...... T) corresponding to unit i. On iterative solution, the infeasible solutions

are removed from the list and the list reduces to optimal solutions.

Borghetti et al. [2001] compared the strength and weakness of Lagrange
Relaxation and Tabu search for models of competitive electricity market. It revealed
that there is no guarantee that the Tabu search will yield the global optimal result in
large systems. Mitani et al. [2005] proposed a combined approach of Lagrange
relaxation and Tabu search for obtaining the schedule. This method guaranteed the
optimality, but due to complexity, computational speed is less.

2.2.9 Particle Swarm Optimization

In 1995, a solution method termed as Particle Swarm Optimization (PSO),
motivated by social behavior of organisms such as fish schooling, bird flocking was

introduced. PSO as an optimization tool provides a population based search procedure
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in which individuals called particles change their position with respect to time. In a
PSO system, particles fly around a multi dimensional search space. During flight, each
particle adjusts its position according to its own experience and the experience of its
neighbouring particles, making use of the best position encountered by itself and its
peighbours. The swarm direction of a particle is defined by the set of particles
neighbouring the particle and its history or experience. PSO can generate high quality
solutions in less convergence time, compared to other stochastic methods.

Xiaohui e al. [2005] used the discrete particle swarm algorithm for solving
Unit Commitment Problem for a ten generating unit system and 24 hour load pattern.
Bach particle is having the elements corresponding to the ON / OFF of the units.
Starting from a random initial position (state) of the particle, at each position of the
particle the fitness function (which accounts the production cost and start up cost) is
evaluated. The best particle position P, and also the global best position (on
.comparing Py, value with the previous best values) are stored. Then the particles
change their position based on ‘velocity’ parameter. The velocity parameter of each
particle accounts the deviation of the current position from the best observed value, at
the same time accounting the unvisited positions of the solution space. Through the
iterative procedure, the entire solution space is searched to get the optimum position.
This tipdating of particle position flight is continued for each slot of time.

An adaptive strategy for choosing parameters is proposed in the improved
particle swarm optimization method suggested by Zhao et al. [2006]. It proved to give
higher quality solutions compared to Evolutionary Programming.

Even though Particle Swarm Optimization gives a better solution than other
methods for simpler systems, for large and complex space the particles do not move
always towards the optimum point.
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2.2.10 Simulated Annealing

Simulated Annealing is one powerful stochastic search technique, suitable for
solution of many optimization problems, derived from material science. The method is
based on the process of annealing of the metals through heating to a high temperature
followed by slow cooling, in steps, to obtain the low energy state of the solid.

In applying this technique to such combinatorial optimization tasks, the basic
idea is to choose one feasible solution at random and then move to another solution in
the neighborhood. A neighbouring solution is generated by perturbation to the current
solution. The fitness value of the neighbouring solution and that of the present solution
are calculated at each iterative step of the procedure. The neighbouring solution is
accepted whenever it seems to be better (having less cost). Also some of the higher
cost solutions are accepted based on a probability distribution and considering their

fitness values.

The probability of acceptance of a higher cost solution is decided by the
control parameter. The value of the control parameter, ‘temperature’ is initially chosen
as a high value and reduced in the iterative steps in order to approach to the optimum
point. Higher temperature at the initial points ensures the proper exploration of the
solution space and as the temperature is reduced the convergence of the solution is
achieved. Therefore in order to reach the optimum solution with sufficient exploration,
a good cooling schedule is to be formulated.

Zhuang and Galiana [1990] first proposed a Simulated Annealing algorithm to
solve Unit Commitment problem. The algorithm is a direct implementation of the basic
Simulated Annealing procedure. The initial solution is obtained using a priority list
method. In the subsequent iterations, the current solution is perturbed by changing the
status of an arbitrary unit at an arbitrary hour to generate the next solution. The
feasibility of the solution is then checked and the cost function is calculated to accept
or not the same. The temperature is reduced by multiplying the current temperature by
a factor (in the range 0.8 -0.9).
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An Enhanced Simulated Annealing is proposed by Wong [1998]. Instead of
random perturbation, next solution is developed by applying one of the specific steps in
random. Mantawy et al.{1999] proposed a hybrid algorithm for solution of Unit
Commitment Problem using combined Simulated Annealing, Genetic Algorithm and
Tabu search. The algorithm is superior to the individual methods.

Purushothama and Lawrence Jenkins [2003] made use of local search method
to select the best neighbouring solution. At each temperature, a number of
neighbouring solutions are generated and using local search method best among these
is selected. The solution obtained is optimum, but computation time is increased.

2.3 Economic Dispatch - Solution strategies

Economically distributing the load demand among the various committed units
st each hour / time slot is one optimization task in power generation control. It has
been solved by many researchers using different methodologies. The complexity of
this problem comes from the non convexity of cost functions, piece wise incremental
cost functions associated with many of the units, transmission loss associated with the
system etc. A number of classical and stochastic methods have been proposed for the
solution of this constrained optimization problem.

Chowdhury and Rahman [l990]§ gave a detailed review of the methods
-developed till 1990. After that a variety of techniques have been developed of which
most of them are soft computing techniques. A brief review of the latest methods is
given here with an evaluation point of view.

2.3.1 Classical Methods

Lambda iteration is one of the conventional methods for solving the
constrained optimization problem (Wood and Wollenberg [2002]). It has been very
successfully implemented for the solution of the problem by many researchers. In this
method, a Lagrange function is formulated by adding with the objective function, the
constraint function multiplied by the multiplier ‘lambda’. The iterative adjusting of the
perameter lambda is carried out. When the difference between the total generation and
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demand falls within a tolerable limit or after sufficient large number of iterations, the
updating of the parameter lambda is stopped. This method is found to be good, but has
a slow convergence or yield an unacceptable result if the initial lambda and the method
of updating of lambda are not properly selected. Also for effective implementation of

this method, the cost functions need to be continuous.

Base point participation factor method is one of the earlier methods used in
Economic Dispatch solution. In this case, each generating unit is having a participation
factor associated with it depending on its generation and cost constraints.
Incorporating this weighted constraint function along with the objective function a new
objective function is formulated. Solution of the function is then carried out using
iterative or graphical methods. This method is simple, but not capable of
accommodating larger number of units and complex cost functions.

Gradient method is one analytical method in which the objective function is
minimized by finding the steepest descent gradient. The solution depends on the initial
starting point. If the initial solution is better, it gives the optimum result very easily.
But if the initial solution points in a wrong direction, getting an optimum result is
much difficult.

Also, these methods require the generator cost curves to be continuous
functions, which is not possible in the case of practical situations. Also these methods
have oscillating tendency in large scale mixed generating unit systems leading to high
computation time. A lot of other techniques have been evolved to tackle the non
convexity of the cost functions.

2.3.2 Dynamic Programming
Dynamic Programming (DP) is a good solution method for solving non linear
and discontinuous optimization tasks. It is an efficient method for solving of the
Economic Dispatch problem also (Wood and Wollenberg [2002]). DP works with the
unit input output information directly by enumerating all possible solutions. It consists
of evaluating the problem in stages corresponding to each unit for choosing the

optimal allocation for a unit.
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On solving Economic Dispatch, first a forward approach is carried out to
generate tables of costs. In the first step considering a power demand D the first two
units (considered in random) are scheduled to find the minimum cost. For the same,
some power (say P;) is assumed to one of the generating unit and the balance (D - P}
to one from the remaining set (2™ unit) as P,. This constitutes a table of discrete
valua and corresponding costs. From the table of values corresponding to each value
of pbwer minimum cost and the corresponding distribution among the two units can
be found. Then the next unit is considered. The power allotment to the third unit is
then made in the next step by allocating P; to it and allocating power D — P;
economically among the first two units (finding the allocation schedule PP,
corresponding to the minimum cost from the previous table). This generates the
second table of values. This is continued till the last unit, to get the cost distribution

“tables corresponding to different power allocation to the different generating units.
Then a backward search is carried out through the distributions to obtain the minimum
cost allocation to each of the units.

" This backward dynamic programming method has been successfully applied to
several systems. It gives an optimum solution for smaller systems. But as the number
of generating units and the constraints of the system increases, it becomes difficult to
generate and manage the larger number of entries in the discrete tables. Therefore
when number of units and scheduled power range increases Dynamic Programming
method fails. In other words, Dynamic Programming method suffers from the curse of
dimensionality. It leads to higher computational cost even when incorporating the
zoom feature (Liang and Glover [1992], Shoults et al. [1996]). The method leads to
Jocal optimal solutions when avoiding the problem of dimensionality.

2.3.3 Neural Networks

The ability of Neural Networks to realize some complex non linear functions
makes them attractive for system optimization including Economic Dispatch problem.
Hopfield Neural Networks have been successfully applied to the solution of Economic
Dispatch problem. Since the allocation of power to the different generators comes from
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a continuous space, Hopfield Neural Networks with continuous activation functions are
found suitable for dispatch problem. Energy function of the continuous Hopfield
Network is defined differently by different researchers.

Kasangaki et al. [1997] proposed Hopfield Neural Network solution for
handling Unit Commitment and Economic Dispatch. The problem variables are first
modeled as stochastic differential equations considering the constraints. Then Hopfield
Neural Network with augmented cost function as energy function find the optimum

values of these variables.

Su and Lin [2000] also proposed a Hopfield Neural Network as a solution
method for simple Economic Dispatch problem. They considered some of the security
constraints and used simple back propagation algorithm to obtain the optimum
solution. The energy function is formulated by combining the objective function with
the constraint function using appropriate weighting factors.

Yalcinoz and Cory [2001] developed Hopfield Neural Network solutions for
various types of Economic Dispatch problems. In this case also, the constraints are
handled by modification of the activation functions. Radial Basis Function networks
are used by Aravindhababu and Nayer [2002] to get an optimum allocation. Farooqui
et al. [2003] proposed an algorithm based on Hopfield Neural Networks considering
ramp rate constraints. Balakrishnan et al. [2003] considered the emission constraints
also in thermal dispatch. Later, Silva et al. [2004] introduced one efficient Hopfield
Neural Network solution with transmission system representation.

Senthilkumar and Palanisamy [2006] suggested a Dynamic Programming
based fast computation Hopfield Neural Network for solution of Economic Dispatch
problem. Swarup and Simi [2006] proposed the solution using continuous Hopfield
Neural Networks in which weighting factors are calculated using adaptive relations.
But the computational effort is high in these methods due to the large number of

iterations needed to obtain optimality.
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2.3.4 Genetic Algorithm

While applying GA for solution of Economic Dispatch, the encoding
commonly used is the binary encoding, representing the MW generation as the
corresponding binary string, The fitness function is the cost function considering the
ramp rate constraints, prohibited operating zones etc.

A variety of GA based algorithms are developed to get the economic schedule.
Walters and Sheble [1993] used this method for solving Economic Dispatch problem.
A hybrid form of Genetic Algorithm and Back propagation network is given by Ping
and Huanguang [2000]. Ongasakul and Tippayachai [2002] suggested a modified
Genetic Algorithm termed as Micro Genetic Algorithm for solution. He considered
different types of cost functions to prove the flexibility of the algorithm. Basker et al.
[2003] proposed a real coded algorithm, instead of binary coding. Won and Park
[2003] worked out an improved genetic algorithm solution and found to be better than
conventional | genetic algorithm due to the improved selection operator based on
Gaussian distribution chosen for generating a new population.

2.3.5 Evolutionary Programming

Evolutionary Programming (EP) method is capable of rendering a global or
near global optimum without gradient information. For generating units having non
convex cost function, Evolutionary Programming seems to be a good method.

In solution of Economic Dispatch, the initial parent is generated as the MW
distribution in proportion to the generation capacity of the different generating units.
The successive populations are generated from the parent using the different
distribution patterns. The fitness values of the off springs are mostly evaluated based
on the cost function or cost distribution. Then » fittest off springs are selected for
generating the next generation. The iterative procedure is continued till optimum
allocation is obtained after generating a number of populations.
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Yang et al. [1996] suggested a solution for Economic Dispatch problem using
a Gaussian distribution for generation of off springs. Later, an evolutionary
programming algorithm for a utility system having fuel restricted and fuel unrestricted
units has been suggested by Kumarappan and Mohan [2003]. They also considered the
transmission losses by executing the fast decoupled load flow for the system. Even
though it gives one optimum allocation schedule, the computation seems to be more

expensive and a lot of memory is required.

Sharkh et al. [2003] combined the approaches of Evolutionary Programming
with fuzzy logic and formulated an algorithm which considered the uncertainty in the
constraints.

Evolutionary Programming method is applied for Economic Dispatch problem
by Somasundaram and Kuppusamy [2005] incorporating the efficiency of conventional
lambda iteration method. In this, system lambda is taken as the decision variable and
power mismatch is taken as the fitness function. The method used two steps of
computation, one to find the optimum decision space and then the second finding the

optimum decision point.

Jayabarathi et al. [2005] explored evolutionary programming algorithms for
the solution of various kinds of Economic Dispatch problems such as considering
prohibited operating zones, ramp rate limits etc.. Classical Evolutionary Programming,
Fast Evolutionary Programming and Improved Fast Evolutionary Programming
methods are developed for the solution of the problem. Classical and Fast
Evolutionary Programming methods take more computation time and Improved Fast
Evolutionary Programming requires more complex computations.

Ravi et al. [2006] proposed a fast evolutionary programming technique for
handling heuristic load patterns. A modification of this method named as clonal
algorithm is applied by Panigrahi et al [2006). Coelho et al. {2007] gave an
Evolutionary Programming technique for solution of security constrained Economic
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Dispatch problem. The line flow and bus voltage constraints are taken into

consideration.

These methods seem to have the disadvantages of slow convergence due to a
large number or generations to be manipulated and also need a large number of
decision variables. It also suffers from indeterministic stopping criteria.

2.3.6 Particle Swarm Optimization

Particle Swarm Optimization (PSO) is one of the heuristic algorithms which
can be used to solve the non linear and non continuous optimization problems.
Therefore many researchers find it suitable for solution of Economic Dispatch
problem. The individuals called particles change their position based on its own
previous experience and the experience of the neighbouring particles.

Each individual or particle is represented as a string representing the power
 allocation to the different units. If there are N units to be dispatched then i* individual
' jlteplesemedas Py =[Py P,......., Py ]. The dimension of the population is n x N,
where n is the number of particles in the population. The evaluation of fitness function
' is the reciprocal of the cost function in order to obtain the minimization of the problem.
The fitness value of each individual f; is calculated and compared with that of the
remaining individuals in the population. The best value among these is stored as the
particle best vale. Also comparison is made with the best value already found in the
already generated populations and it is stored as the global best value of the
optimization function. A velocity parameter is updated based on the deviation of each
particle fitness value from the best value and the positions of the particles are updated.
This basic PSO method for Economic Dispatch is used with modifications in the
updating of the velocity parameters, the number of individuals and populations stored
and selection of individuals for the population.

Giang [2003] proposed the algorithm for solution through basic PSO method.
Selvakumar and Thaushikodi [2007] proposed a modified algorithm for solution of
Economic Dispatch problem. In this method, along with particle’s best position worst
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position is also stored. This gives more exploration of search space. Performance
evaluation proved it to be better than classical PSO method.

2.3.7 Taguchi method

Taguchi method involves the use of orthogonal arrays in estimating the
gradient of cost functions. The controlled variables are called factors. The method
involves an analysis that reveals which of the factors are most effective in reaching the
goals and the directions in which these factors are most effectively adjusted. This is
done by varying the factors in a disciplined manner and recording the corresponding
values of the objective function. When the factors reach the optimum, optimum

solution is obtained.

This method provides with a solution having reduced complexity for solving
the Economic Dispatch problem (Liu and Cai [2005]). A vector having N elements,
[a;, 3a2,..en... ax] which corresponds to the relative contribution of the generator to the
total power is taken as the factors to be optimized. The values of these factors are
iteratively computed using the method of orthogonal array. The algorithm is found to
provide better performance and lesser solution time than Evolutionary Programming
and Neural Networks. But the computational complexity is more due to the large
matrices to be handled and hence more difficult to incorporate additional system
constraints.

2.3.8 Direct search method

This is a search technique which achieves the global optimum point by
searching the solution space through exploration. Search technique seems to give
optimum result always since the entire solution space is considered without
elimination. Chen proposed an algorithm to apply this method for Economic Dispatch
problem (Chen [2005], [2007]). For improving the performance of the direct search
procedure, a novel strategy with multi level convergence is incorporated in search

method to minimize the number of iterations and achieve faster convergence.
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239 Tabu search

The search method provided by Tabu search is applied to Economic Dispatch
peoblem (Lin ef al. [2002]). It takes care to avoid trapping in the local minima points
by using an adaptive size for the tabu list. A number of searches are carried out inside
‘each. of the iterations of the algorithm and the best solution point is fixed. Also the
m individuals are ranked in descending order according to their fitness scored,
"by & sorting algorithm. This ensured the optimum solution to the constrained problem.
‘But the search space which is large for larger systems leads to take more computer
my and thus sometimes is difficult to get converged.

2.3.10 Decision trees

Inductive Inference system is used to build the decision tree by classifying the
samples to different learning sets (Sapulveda er al. [2000]). For generating the
me learning sets certain values of attributes are considered. The power
mabpn values of the units are used as attributes to define the learning set and the
refinement and intensifying is done by evaluating the objective function. Sapulveda et
ak {2003] suggested an objective function comprising of the power mismatch, total
feel cost and transmission line losses. The weighting factors associated with the terms
are adjusted through lambda iteration method. The algorithm seems to be suitable for
many systems considering transmission losses. But there exists a chance of trapping in
Jocal optimum points.

A similar technique termed as Partition Approach algorithm was proposed by
Lin and Gow [2007). The method gave optimum result in lesser time, but for obtaining
the same, a number of trials are to be executed out of which average has to be
calculated.

24 Automatic Generation Control

Automatic Generation Control which is the third loop in the generation control
scheme tries to achieve the balance of generation and load in each area and maintain
the system frequency and tie line flows at the scheduled values. Load frequency action
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is guided by the Area Control Error (ACE), which is a function of the system
frequency and the tie line interchange. AGC studies are generally carried out using

simulation models.
2.4.1 Automatic Generation Control — Models of Power system Network

AGC studies are widely done using simulation model proposed by Elgerd
[1982]. According to this approach, in each area, a group of generators are closely
coupled internally and swing in unison. Also, the generator turbines tend to have the
same response characteristics. Then each control area is represented by a single loop.
The turbine, generator and load parameters represent the equivalent values considering
all the generators in that area. The different control areas are connected by loss less tie
lines. The power flowing through the tie line appears as a load decrease / increase in
the other area, depending on the direction of flow. A change of power in one of the
areas is met by a change in generation of all interconnected areas followed by a change
in the tie line power. Correspondingly, the frequency change will occur in all the

interconnected areas.

In a practical network, the interconnected power system operate at a single
frequency and this common frequency (common to all areas) is determined by the net
generated power and connected load of all the areas. In such a system, the tie line
power of each area is computed as the difference of generated power and load power of
that area (Divya and Nagendra Rao [2005])

Advantages of such a system are enumerated as
(i) The system model is closer to practical power system network.

(ii) It does not require the calculation of tie line constant (which depends on

the nature and no: of lines of interconnection)

(iii) Model does not require a composite prime mover model representing the

entire area.
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2.4.2 AGC - Control strategies

The basic control strategy is, to set the reference point in each area of the
interconnected system. The change in the set point is guided by the variation in the
frequency resulting from the addition or removal of a load. The various control
strategies make the decision on the reference set point, by calculating the Area
Control Error (ACE).

Classical as well as modern control strategies are being used in AGC. Athay
[1987] gives a review of the early works done in this area. Also several soft
computing techniques have been applied for finding the control strategy for AGC.

Abdel Magid and Dawoud [1997] proposed the Generation control using Genetic
Algorithm. Neural Networks is used for the control solution by Zeynelgil et al.
[2002]. Fuzzy Logic controllers which take into account the uncertainty in the
instantaneous variations are developed (Demiroren and Yesil [2004]). Simulated
Annealing is used as the solution method in a multi area thermal generating system
(Ghosal [2004]). Imthias Ahamed et 2/.{2002] proposed a Reinforcement Learning
approach to a two area system. But the models used in all these assume different
frequencies for the two areas (model proposed by Elgerd).

Automatic Generation Control, considering the same frequency for all the areas
has not yet been developed by any of the stochastic techniques till now. Since in the
practical system, all the areas have a common frequency, it is worth to think in this
direction.

2.5 Reinforcement Learning and Applications

Reinforcement learning theory is a formal computational model of learning
through continuous interaction (Sufton and Barto [1998]). It forms a way of
programming agents by reward and punishment without needing to specify how the
task is to be achieved. It relies on a set of learning algorithms to trace out the pay offs
at each interaction and analyzing the same. In the standard Reinforcement Learning
framework, a learning agent which can be a natural or artificially simulated one
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repeatedly observes the state (present status in terms of a set of parameters or
observations) of its environment and performs an action from the many choices
possible. Performing an action changes the state or ‘a transition of state’ is said to
occur. Also, the agent obtains an immediate (numeric) pay off, based on the state and
the action performed. The agent must learn to maximize a long term sum of the

reward that it can receive.

One reason that Reinforcement Learning is popular is that it mimics the natural
behavior. It serves as a theoretical tool for studying the principles of agents learn ‘how
to act’, It has also been used by many researchers as an effective computational tool
for constructing autonomous systems for various fields of control. Since the learning
agent improves through experience, it has been found as a good tool for closed loop
control action which is the fundamental behavior of all the learning systems.
Reinforcement Learning can also be viewed as an approximation to Dynamic
Programming.

Si et al. [2004] have given a good detailed description of Approximate
Dynamic Programming. Description on neuro dynamic programming and linear
programming approaches for Adaptive Dynamic Programming are explained. Multi
objective control problems, Robust Reinforcement Leaning and Supervised actor
critic Reinforcement Learning concepts are also detailed. Along with the design
concepts, the book is having one separate section dedicated for the different
applications of these adaptive optimization concepts including missile control, heating
and ventilation control of buildings, power system control and stochastic optimal

power flow.

The applications where Reinforcement Leaming has been applied include
combinatorial search and optimization problems like game playing, industrial process
control and manufacturing, robotics, medical image processing, power system etc.
These practical applications have proved Reinforcement Learning as a useful and

efficient learning methodology. In the next section, a review of some of the
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applications where Reinforcement Learning has been successfully applied is
discussed.
2.5.1 Game playing

Artificial Intelligence (AI) has been providing several solutions to one of the
search problems in computer science: Game playing. It varies from single player to
oulti player games, These problems are formulated as optimization problems in AL
Many researchers applied Reinforcement Leaming algorithms for various classes of
game playing. Tesauro and Gammon [1994] applied the temporal difference algorithm
to Backgammon. Two types of learning algorithms were developed, one with little
knowledge of the board positions in the game and the other with more knowledge
about the board positions or the game environment (Tesauro and Gammon {1995]). In
these algorithms, no exploration strategy was used. It took more computation time but
guaranteed convergence and best reward position in finite time. Since it mimics the
buman play at top level, the algorithms were impressive among Al researchers.

Reinforcement Learning combined with function approximation provided by
Neural Network is a very effective tool while dealing with large state spaces. The
implementation of board game Othello by Nees and Wezel [2004] is a very good proof

for the same.
2.5.2 Robotics And Control

Since the emergence of Reinforcement Learning, it has been successively
applied by many researchers in the derivation of suitable control strategy for robot.
Mataric [1992] described robotic experiments which learned from Q learning.

Crites and Barto [1997] applied the Q learning strategy in an elevator control
task. The problem involved several elevators servicing the various floors. The
objective is to minimize the average squared wait time for passengers. This discounting
problem is effectively solved using Reinforcement Learning and take less computation
time than other methods. Handa and Ninimy [2001] proposed a robust controller,
through temporal difference learning method.
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Autonomous helicopter flight represents a challenging control problem with
complex and noisy dynamics. Andrew et al. [2004] described a successful application

of Reinforcement Learning to autonomous helicopter flight.

Kehris and Dranidis {2005] investigated the generation of an entry control
policy for an assembly plant using a Reinforcement Learning agent. The assembly
plant consists of ten workstations and produces three types of products. The objective
is to control and sequence the machines in an optimum manner, ensuring the correct
combination in production mix. The RL optimization gives a better allotment to the

various work stations.
2.5.3 Computer Networking

Effective network routing is a complex task in the interconnected system.
Along with other intelligent methods, Reinforcement Learning has also been used in
this area. Kelley [2005] proposed Q learning strategy for achieving an efficient and
fast routing strategy. Another traffic handling method is suggested by Sahad [2005].
He proposed an intelligent method which used the concept of fuzzy logic along with
Reinforcement Learning strategy.

2.5.4 Process management

A Job scheduling problem has been solved by Zhang [1995] .This gives a
general framework for applying the Reinforcement Learning strategy to delayed
reward situations. Q learning with exploration strategy is applied for achieving the

computationally effective solution.
2.5.5 Medical images

One widely used technique for medical diagnosis is ultra sound imaging. The
difficulty with the diagnosis is due to poor image contrast, noise and missing or diffuse
boundaries which makes difficult for segmentation. Reinforcement learning scheme is
effectively applied for transrectal ultra sound images by Sahba and Tizhoosh [2008]
very recently.
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2.6 Conclusion

A detailed review of the existing methodologies in the field of power system
scheduling has been carried out in this chapter. Several classical and heuristic
methodologies adopted for the solution of scheduling problems have been looked at.
Even though numerous solution methodologies exist, thinking of more efficient and
computationally faster stochastic strategy is still relevant. In the next chapter the

Reinforcement Learning problems and learning method are discussed.
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REINFORCEMENT LEARNING

3.1 Introduction

Reinforcement Leamning (RL) is the study of how animals and artificial
systems can learn to optimize their behavior in the face of rewards and punishments.
One way in which animals acquire complex behaviors is by learning to obtain rewards
and to avoid punishments. Learning of a baby to walk, a child acquiring the lesson of
riding bicycle, an animal learning to trap his food etc. are some examples. During this
learning process, the agent interacts with the environment. At each step of interaction,
on observing or feeling the current state, an action is taken by the learner. Depending
on the goodness of the action at the particular situation, it is tried in the next stage
when the same or similar situation arises (Bertsekas and Tsitsikilis [1996], Sutton and
Barto [1998], Sathyakeerthi and Ravindran [1996])).

The learning methodologies developed for such learning tasks originally
combine two disciplines: Dynamic Programming and Function Approximation {Moore
et al. [1996]). Dynamic Programming is a field of mathematics that has been
traditionally used to solve a variety of optimization problems. However Dynamic
Programming in its pure form is limited in size and complexity of the problems it can
address. Function Approximation methods like Neural Networks learn the system by
different sets of input — output pairs to train the network. In RL, the goal to be achieved
is known and the system learns how to achieve the goal by trial and error interactions

with the environment.

In the conventional Reinforcement Learning frame work, the agent does not
initially know what effects its actions have on the state of the environment and also
what the immediate reward he will get on selecting an action. It particularly does not

know what action is best to do. Rather it tries out the various actions at various states,
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gradually learns which one is the best at each state so as to maximize its long term
reward. The agent thus tries to acquire a control policy or a rule for choosing an action
according to the observed current state of the environment. One most natural way to
acquire the above mentioned control rule would be the agent to visit each and every
state in the environment and try out the various possible actions. At each state it
observes the effect of the actions in terms of rewards. From the observed rewards, best
action at each state or best policy is manipulated. However this is not at all practically
possible since planning ahead involves accurate enumeration of possible actions and
rewards at various states which is computationally very expensive. Also such planning
is very difficult since some actions may have stochastic effects, so that performing the

same action at two different situations may give different reward values.

One promising feature in such Reinforcement Learning problems is that there
are simple learning algorithms by means of which an agent can learn an optimal rule or
policy without the need for planning ahead. Also such learning requires only a minimal
amount of memory: an agent can learn if it can consider only the last action it took, the

state in which it took that action and present state reached (Sutton and Barto [1998]).

The concept of Reinforcement Learning problem and action selection is
explained with a simple N — arm bandit problem in the next section. A grid world
problem is taken to discuss the different parts of the RL problem. Then the multi stage
decision making tasks are explained. The various techniques of solution or learning are
described through mathematical formulations. The different action selection strategies
and one of the solution methods namely Q learning are discussed. The few applications

of RL based learning in the fields of power system are also briefly explained.
3.2 N - Arm bandit Problem

The N arm bandit is a game based on slot machines. The slot machine is
having a number of arms or levers. For playing the game, one has to pay a fixed fee.
The player will obtain a monetary reward by playing an arm of his choice. The
monetary reward may be greater or lesser than the fee he had paid. Also the reward

from each arm will be around a mean value with some value of variance. The aim of
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the player is to obtain maximum reward or pay, by playing the game. If the play on an
arm is considered as an action or decision, then the objective is to find the best action
from the action set (set of arms). Since the reward is around a mean value, the problem
is to find the action giving highest reward or the arm with highest mean value which

can be called as best arm.

To introduce the notations used in the thesis, action of choosing an arm is
denoted by “a”. The goodness of choosing an arm or quality of an arm is the mean
value of arm and is denoted by @(a). If the mean of all arms are known the best arm is
given by the equation,

a’ = argmax Q(a),,
where A= {1,2,.......... N} G.1
As mentioned earlier, the problem is that the @(a) values are unknown. One
simple and direct method is to play each arm a large number of times. Let the reward
received in playing an arm in k¥* trial is r*(a). Then an estimate of Q(a) after n trials
is obtained using the equation,

Sl

"(a) =

<

;r"(a)

lim 0" (@) = 0(@)

By law of large numbers,

(3.2)
Now the optimal action is obtained by equation (3.1). To make the notation
less cumbersome, the estimate of Q(a) will also be denoted by @™ (a).

The above method termed as Brute force is time consuming. As a preliminary
to understand an efficient algorithm for finding @ values (mean values corresponding

to each arm), a well known recursive method is now derived.

As explained earlier, average based on n observations is given by,

Ya, = argmazeeqs Q(a) = Qay) = Q(a)va €A
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. 17
" @ =5 @
k=1
(3.3)
Therefore,
1 nt1
T @ = —= ) (@
k=1
1 n
= == O @ + 1)
k=1
n = n+1
(= kz r*(@) + (@)
Then, using equation (3.3),
0™ @ = = {n0" @ + 1@}
=2 Q" (@) + 5 " (a)
=(1-) 0@+ ™ @
= 0" (@) + [ (a) - " (a)]
That is,
0™ @ = 0" @+ —= [™*'(@ - 0" (@]
(3.4)

The above equation tells that the new estimate based on n+I* observation,
r™"*1(a) is old estimate Q™(a) plus a small number times the error, (r"*(a) —

Q" (a)).
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There are results which say that under some technical conditions a decreasing

sequence {a,} can be used instead of % to get a recursive equation (Robbins and

Monro [1951]). That is,

Q™* (@) = Q" () + ap[r***(a) - Q™ ()]

The sequence a, is such that Y @, = o0; YL a2 < oo,

Different variants of the above equation are used throughout the thesis.

Now, an efficient method to find the best arm of the N- arm bandit problem can be
explained (Thathachar and Sastry {2003]).

Stepl :
Step2 :
Step3 :

Step 4 :

Step 5

Step 6 :
Step 7 :

Step 8 :

Initialize n=0, a = 0.1
Initialize Q°(a) = 0,Va € A
Select an action “a” using an action selection strategy"

Play the arm corresponding to action“a” and obtain the
reward r*(a)

Update the estimate of Q(a),

" (@) = Q" (@) +a{r(a) - Q™(a)}
n=ntl
If n < max_iteration, go to step 3

Stop.

To use the above algorithm, an efficient action selection strategy is required.
One method would be to take an action with uniform probability. In this way one will
play all the arms equal number of times. That is, throughout the learning the action

space is explored.

T Action selection strategy is defined in the next paragraph
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Instead of playing all the arms more number of times, it makes sense to play
the arms which may be the best arm. One such efficient algorithm for action selection
is e —greedy (Sutton and Barto [1998], Thathachar and Sastry [2003]). In this
algorithm, the greedy arm is played with a probability (1- ¢) and one of the other arms
with a probability e. Greedy arm (ag) corresponds to the arm with the best estimate of

Q value. That is,
a, = argmax Q"(a)
aEA

It may be noted that if e =1, the algorithm will select one of the actions with
uniform probability and if e =0, the greedy action will be selected. Initially, the
estimates Q™ (a) may not be true value. However as n = o, Q"*(a) - Q(a), and then
we may exploit the information contained in Q™(a). So in e greedy algorithm, initially

e is chosen close to 1 and as n increases e is gradually reduced.

Proper balancing of exploration and exploitation of the action space ultimately
reduces the number of trials needed to find out the best arm. For a variety of such
algorithms refer (Thathachar and Sastry [2003]). A more detailed discussion on the
parts of Reinforcement Learning problem is given in the following sections.

3.3 Parts of Reinforcement Learning problem

The earlier example discussed had only one state. In many practical situations,
the problem may be to find the best action for different states. In order to make the
characteristics of such general Reinforcement Learning problems clearer, and to
identify the different parts of a Reinforcement Learning problem, a shortest path
problem is considered in this section. Consider the grid world problem as given in
Fig3.1.
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1 2 3 4 5 6
7
13
19 22
G
25
31 36

Fig 3.1 Grid world problem

The grid considered is having 36 cells arranged in 6 rows and 6 columns. A
robot can be at any one of the possible cells at any instant. ‘G’ denotes the goal state to
which the robot aim to reach and the crossed cells denote cells with some sort of
obstacles. There is a cost associated with each cell transition while the cost of passing
through a cell with obstacle is much higher compared to other cells. Starting from any
initial position in the grid, robot can reach the goal cell by following different paths
and correspondingly cost incurred will also vary. The problem is to find an optimum
path to reach the goal starting from any one of the initial cell position. With respect to
this example, the parts of the Reinforcement Learning problem can now be defined.

3.3.1 State space

The cell number can be taken as state of the robot at any time. The possible
state the robot can occupy at any instant is coming from the entire cell space. In
Reinforcement Learning Terminology, it is termed as state space. State space in
Reinforcement Learning problem is defined as the set of possible states the agent
(learner) can occupy at different instants of time. At any instant, the agent will be at
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any one of the state from the entire state space. The state of the robot at instant &£ can be
denoted as x; The entire state space is then taken as %, so that at any instant &, x;€ 7. In
order to reach the goal state ‘G’ from the initial state x,, the robot has to take a series of

actions or cell transitions, ay, a;,.. . awx.;.
3.3.2 Action space

At any instant %, the robot can take any of the action (cell transition) ay, from
the set of permissible actions in the action set or action space Ay. The permissible set
of actions at each instant k£ depends on the current state x; of the robot. If the Robot
stays in any of the cells in the first column, ‘move to Left’ is not possible. Similarly for
each cell in the grid world, there is a set of possible cell movements or state transitions.

The set of possible actions or cell transitions at current state x; is denoted as A, which
also depend on the current state x;. For example if x; =7, A, ={ right, up, down} and

ifxy =1, Ay, ={right, down}.
3.3.3 System model

Reinforcement Learning can be used to learn directly by interacting with the
system. If that is not possible a model is required. It need not be a mathematical model.
A simulation model would also be sufficient. In this simple example, 2 mathematical
model can be obtained.

On taking an action the robot proceeds to the next cell position which is a
function of the current state and action. In other words the state occupied by the robot
in k+1, X+l depends on x; and ag. That iS,

xeer = f (5, ay) (3.5)

For example, if x; = 7 and a; =down, then x;.,,=13 while when a; = up ,xp; = 1.
For this simple grid world, x;+; is easily obtained by observation. For problems with
larger state space, the state x;., can be found from the simulation model or studying the
environment in which robot moves. The aim of a robot in the grid is to reach the goal

state starting from its initial position or state at minimum cost. At each step it takes an
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action which is followed by state transition or movement in the grid. The actions which
make state transitions to reach the goal state at minimum cost points out the optimum
solution. Therefore the shortest path problem can be stated as finding the sequence of
actions ay, a,,...... , ay.; starting from any initial state such that the total cost for

reaching goal state G is minimum.
3.3.4 Policy

As explained in the previous section, whenever an action g, is taken in state x;,
state transition occurs governed by equation (3.5). Ultimate learning solution is to find
out a rule by which an action is chosen at any of the possible states. In other words a
good mapping from the state space i to action space <A is to be derived.

In Reinforcement Learning problems, any mapping from state space to action
space is termed as policy and denoted as p. Then p(x) denotes the action taken by the
robot on reaching state x. At any state x, since there are different possible paths to
reach the goal, they are treated as different policies: p;(x), pa(x),...etc. The optimum
policy at any state x is denoted as m*(x). Reinforcement Learning methods go through
iterative steps to evolve this optimal policy m*(x). In order to find out the optimum
policy, some modes of comparison among policies are to be formulated. For the same,
the reward function to be defined which give a quantitative measure of the goodness of
an action at a particular state.

3.3.5 Reinforcement function

Designing a reinforcement function is an important issue in Reinforcement
Learning. Reinforcement function should be able to catch the objective of the agent. In
some cases, it is straight forward; in some other cases it is not. For example, in the case
of N — arm bandit problem (which can be viewed as a Reinforcement Learning
problem with just one state), the reinforcement function is the return obtained while the
agent play an arm. In the case of the grid world problem, the objective is to find the
shortest path. In this case, it can be assumed that the system will incur a cost of one

unit when the agent moves from one cell to another normal cell and incur a cost of “B”
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units when it moves to a cell with obstacle. The value “B”" should be chosen depending

on how bad the obstacle is.

More formally, at stage k the agent perform an action ay at the state x;, and
move to a new state Xy, 4. The reinforcement function is denoted by g(xx, Ak, Xx+1)-
The reinforcement obtained in each step is also known as reward and is denoted by

1. The agent learns a sequence of action to minimize ¥, g(Xx, Gk, Xx+1)-

In the case of learning by animals, the reward is obtained from the
environment. However in the case of algorithms, the reinforcement function is to be
defined.

In this simple grid world, reinforcement function can be defined as,
9(xx, Ay, Xk 1) = 1,if x344 is anormal cell
= B, if xy,q is a cell with obstacles.

If cell with obstacle has to be avoided, choose B = 10,00,000. If the obstacle is
having very smaller effect then B can be chosen as 10.
To find the total cost, cumulate the costs or rewards on each transition. Now
k=(N-1)

the total cost for reaching the goal state can be taken as ¥, —y  g{(xXk, %k, Xk+1),
Xg being the initial state and N being the number of transitions to reach the goal state.

3.3.6 Value function

The issue is how the robot (in general, agent in Reinforcement Learning
problem) can choose ‘good’ decisions in order to reach the goal state, starting from an
initial state x, at minimum cost. Robot has to follow a good policy starting from the
initial state in order to reach the goal at minimum cost. One measure to evaluate the
goodness of a policy is the total expected discounted cost incurred while following a
policy over N stages. Value function for any policy x, V™ : y — #is defined to rate
the goodness of the different policies. V™(x) represents the total cost incurred by
starting in state x and following a policy = over N stages. Then,
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N-1

Vi(x) = Zykg(xk, Qs Xy 1) f xo=x
k=0

3.6)

Here v is the discount factor. The reason for incorporating a discount factor is

that, the real goodness of an action may not be reflected by its immediate reward.
Value of y is decided by the problem environment to account how much the future
rewards to be discounted to rate the goodness of the policy at the present state.
Discount factor can take a value between 0 and 1 based on the problem environment. A
value 1 indicates that all the future rewards are having equal importance as the
immediate reward. In this shortest path problem since all the costs are relevant to the

same extent, y is taken asl.

On formulating this objective function, a policy 7#; is said to be better than a
policy 7; when V™1(x) < V™(x),Vx € 7. The problem is to find an optimal policy
7° such that starting from an initial state x, the value function or expected total cost is
lower when following policy m* compared to any other policy # € /I That is, find
m* such that,

V™ (x) < V™(x),¥Yx € y, Vxell ,II being the set of policies.

The minimum cost or optimal cost thus obtained is also denoted as V* (x) and
is called optimal value function.

There are various methods to find #*. Here one method, Q- learning is
explained. Q learning is based on learning Q- values which is defined as:

N-1
Q" (x,a) = Zy" T Xg =X, Gg=a
k=0

(3.7
Q™(x, a)is the long term reinforcement when the robot start in state x, take an
action a and thereafter follow policy p.

From equations (3.6) and (3.7), Q" (x, 7(x)) = V™ (x),VYx € 1.
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Therefore corresponding to optimum policy, we have

Q™ (x,m*(x)) =V™ (x),Vx €
(3.8
Optimal Q value is denoted as Q*(x, a) or Q(x, a) and optimal value function
as V*(x) or V(x). Once an optimal Q value is obtained,

7 (x) = argming . 4 Q°(x,a)
(3.9)
Here, argming, 4 Q'(x,a) = a’,if Q*(x,a") < Q*(x,a),Va€EA.

Thus to obtain optimum policy, @*(x,a) is to be obtained. How the
Reinforcement Learning algorithm finds the optimum Q- value is explained in a more
general frame work in section 3.6.

It may be noted that optimal Q- values are denoted by Q*(x,a) or Q(x,a).
Estimate of the Q- values are denoted by 0™ (x, a) or Q"(x, a).

In this section, the various parts of Reinforcement Learning are explained and
the notations are introduced using a simple problem. But Reinforcement leaming is
capable of solving more general problems. In general, the environment will be non
deterministic. That is, taking an action in the same state under two different situations
may result in different final states and different values of reinforcement. In such cases
the learning becomes more important. In the next section, a general multi stage
decision making problem is considered and how it can be solved using Reinforcement

Learning is explained.
3.4 Multistage Decision Problem (MDP)

In the last sections, Reinforcement Leaming solutions for simple toy problems
were discussed. Reinforcement Learning can be applied to any problem which can be
modeled as Multi stage Decision Problem (MDP). These problems are concerned with

situations in which a sequence of decisions is to be made to minimize some cost. The
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reward received at each step of decision making may be stochastic. Reinforcement

Learning solution for such a general class of problems is explained below.

At any time step, the agent observes the current state of the environment, x & y
and executes an action a € <£ As a result, the system moves to the new system state y
with a transition probability pg, where

pEy =20 Vx,y e yandaecA

YyePSy) =] Vx e yandaeA

(3.10)

Also, an immediate cost is incurred depending on the action and state
transition. ie, payoff or reward ‘g’ is defined as a function g(x, a, y).

The agent’s task is to determine a policy for selecting actions at various states
of the environment such that the cumulative measure of payoffs received is optimum.
Such a policy is called an optimal policy. The number of time steps over which the
cumulative pay off is determined is called the horizon of MDP. There are two classes
of MDPs.

(i) Finite horizon problem in which the number of stages of decision is finite and
is known. The number of stages is usually denoted as N.

(ii) The infinite horizon problem in which the number of stages is indefinite

For a finite horizon problem with N stages like grid world problem discussed
before, value function V7 (x) is given by equation (3.6). To get 2 more insight of the
same, first consider a one stage problem (N = /). Then at instant £ = 0, from state x,
an action prescribed by policy x n(xg) is applied and state transition occurs to x;,
which is the terminal state. Then due to this state transition two types of reward are
received. The immediate pay off g(x,, 7(xg), x;) and reward G(x;) which is the terminal

reward received from state x;.
Then the value function,

V¥ (x¢) = E [g (xo, 7 (x4), x1) + ¥ G(x})], 0=y=1Iisthe discount factor.
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If N =2 or for a two stage problem, from x,, on taking action = {x;) reaches the
state x;; then an action a7x,;) taken leads to state x,. Then the state x, gives a reward
G(xy), for the policy 7. Now, the value function for the two stage problem with policy
T is,

Vi (x0)) =E [g (X0, ® (X0), X1 ) + Y G(x1) ]
=E [g (X0, 7 (X0), X1 ) + 7 (8 (X1, ®(x1), X2 ) +7 G(x2)) ]
= E [8 (%o, 7X0), X1 ) +7 8 (%1, 7(x1), X2 ) + ¥ G(x2) ]

Thus, In general for an N stage problem,

Vi (x0) = E [ ZXZN1 F g Crr, m0ee), xies1) + ¥V G(xy))

The discount factor 0 = y =1 allows the terminal rewards distant in time to be
discounted or weighted less than immediate pay offs.

The policy n* is also termed as a greedy policy since it gives the est action
and hence the best reward at one particular state. The minimum cost or optimal cost for
N stage problem corresponding to the greedy policy n* is called optimal value Vg (x).

To find Vy (x), recursive calculation is used.

Considering the case with ¥ = [ and assume a transition probability p2,, for

the expectation operator,
Vi@ =) pElgCun(),y) +160) Lvx € 2
yex
The optimal value function is,

Vi) =min ) pEPlgCon(),y) +160) ) vx € 1
yex

If 7 (x) is a fixed one for any state x, then
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V@)= min Y pglg(aay) +¥60) L vx € £
yex

The above equation implies that the optimal action and thus the optimal value
function is implied by the minimization of the two terms g(x, a, y) and G(y). The first
one is the immediate reward and the second term is the ‘cost to go’. If a k stage
problem is considered, the optimal value will be obtained only when the ‘cost to go’
from k-1* stage is also optimum. That is, V;(x) is obtained corresponding to
Vi1 (y).Thus, the optimal value function for #* stage,

VG = min > pglg0ua,) +1Via ()L vx € 7
yex

Therefore, the optimal value function for N stages can be calculated recursively
starting from V (x) = G(x), and searching the action space A, N times. Thus the
solution for a finite MDP is obtained.

Now the formulation can be extended to infinite horizon probiems. In these
problems, the number of stages is indefinite or very large in number. For obtaining a
solution according to the previous procedure, a value function is to be defined. Since
the number of stages is very large, there is no terminal cost. Then the value function
under policy =,

N
V@) = ImE[ ) r*g (th mGxd x| %o =x), Vx ez
k=0

(3.11)
Since the immediate cost g (., ., .)is considered as finite or bounded , V™(x) given by
equation (3.11) is defined if 0 < y < 1. Problems with y < | are called discounted
problems.

Next, the definition of value function can be extended to infinite horizon

problems considering the initial transition from x,to x;,,
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N
V”(X) = E[ ( g( Xp, T (xo)vxl) + yly—lpcoz yk—l g (xk! ”(xk) ’ xk+1))]
k=1

Xy =Xx], Vx ey

(3.12)

It can be again simplified as,

V7(x) = E[ g (%0, 7 (x0), %) + )’V"(x1)], Xo =X
Since the expectation operator is with respect to the transition probabilities,
Tl — m(x) n
Vi@ = ) e [9(n@.9) + VT O)]
yex

(3.13)

Equation (3.13) gives a set of linear equations which will give V™ (x), if the transition

probabilities pg(.x) are known.

Then, the optimal policy * can be defined to be the one for which

V™ (x) < V™ (x), Vx ey, Vrell
For an N stage problem, optimal value function is then defined as in Dynamic
Programming steps as,

V'@ = mip ) p% [9Gey)+ vV O)) Vx ez
Yex

(3.14)
starting from the initial state or initial condition Vg (x) = 0.
If the number of stages N—» o, it gives general infinite horizon problem. Then
putting the limit k—»a0, the optimum value of the value function,

VG = min ) p8 [9(xay)+ YV O vx g

yex
(3.15)
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If x and A are finite and if the transition probabilities are known, iterative
methods can be used to solve the unknowns. When the value function is obtained,

optimum policy can be retrieved as

7°() = argminges ). ply [9Cnay)+ yV'O)), vx ey
yex

(3.16)
Some methods for finding V*(x) are explained in the next section.

Now, Multi stage decision making problems are formulated mathematically.
Also the steps to reach an optimum policy or decision sequence in the various states to
get the optimum net reward or cost are described. In the next section the different

methods for reaching the optimum policy are explained.
3.5 Methods for solving MDP

- For solving Markov Decision Problems, classical solutions based on Bellman’s
optimality principle are widely used. Reinforcement Learning Based solutions are
developed keeping the basic principle of optimality itself. Value iteration and Policy
iteration are the two basic methods based on optimality.

3.5.1 Value iteration

Value iteration is an iterative method for obtaining the optimal value function
V'(x). First start with an initial guess of value F’(x), i = 1,2,....n. At each iteration of
the learning phase, an estimate of the value is obtained. The algorithm is obtained by
using V"’ instead of ¥ in the Bellman equation (3.15). Then, at n”* iteration of
learning the estimate V” is obtained from ¥*/ using

V") = gg,azxpsy (9 (xa)+7 V()]
yE.

@G.17)
For the infinite horizon problems, if finite and bounded values of pay off or ‘g’

function are available, then the sequence of value estimates V7, ¥7,....... will converge

to ¥’ When the optimal value ¥ is reached, the optimal policy =" is obtained as
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n*(x) = argminge, Zp;'y [gx,a, )+ Yy V()] Vxex
yeX

(3.18)
3.5.2 Policy iteration

Another iterative method to obtain optimal policy is policy iteration. In this a
policy is first evaluated and then improved. Policy evaluation consists of working out
the value of every state x under policy #. That is, expected long term reward starting
from the given initial state and following policy 7. Algorithm starts with an arbitrary
policy, say #, and improves it on each iteration or generates a sequence of policies 7,

A such a way that the policy, 7 is better than the previous policy #.

Each iteration involves two phases; a policy evaluation step and a policy
improvement step. In the policy evaluation step of the #” iteration, the value function
corresponding to policy #* is evaluated by solving the set of equations given by,

Ve (x) = Z p,"';("}[ glx, (), y) + 7 V"k(y)], vax ey

yex
3.19)
In the policy improvement phase, improved policy a**! is obtained as
ktl = argmm{ Z Py [g(x,a +yV® (y)] }. Yx ey
yexX
(3.20)

Implementing either policy or value iteration requires the agent to know the
expected reward and transition probabilities. In most applications, this may not be
available. If the agent does not know these, but it can learn interacting with the

environment, Reinforcement Learning based solutions are more promising.
3.6 Reinforcement Learning approach for solution

As seen in the previous section, value iteration and policy iteration can be
applied, when the state transition probabilities p5, are known. If it is unknown, just
like in practical stochastic situations, probabilities can be estimated using Monte Carlo
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simulation (Bertsekas and Tsitsikilis {1996]).Starting from some initial state, choice of
action is made based on some strategy; obtain the next state using the simulation
model. That is a sequence of samples of the form (x;, g, xi+;) is used to leam and

obtain the optimal policy.

Reinforcement Learning techniques provide one such method to obtain the
optimal policy, using training samples of the form (x;, ap xi+;). After training using
these samples sufficient number of times, the optimum value and optimum policy are

reached. In the next section Q — learning is discussed for a general multi stage problem.

3.6.1 Q learning

Q learning is a Reinforcement Learning algorithm that leamns the values of the
function Q(x, @) to find an optimal policy. The value of the function Q(x, a) indicate
how good is to perform action ‘e’ at the given state ‘x’. When Q-value without any
qualifier is used, it means the optimal Q- value. Q — value under a policy 7 is defined

as,

Q"(x,a) = Eyexpiy[9(x,a,y) + Yy VF(¥)].
(3.2
Comparing with equation (3.13),

Q"(x, a(x)) = V*(x), VxeX
(3.22)
Considering the optimal policy 7,

Q"'(x,n‘ (x)) = V™ (x) = V*(x),x X will be the optimum Q value for the state
action pair (x, n* (x)).
Now the optimal Q- value for a minimization problem is defined.
Q*(x,a) = m‘in Q* (x,a)
it implies that,

Q*(x,a) = Q" (x,a),Vxe X, VaeA
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Then, 7 (x) =argming, 4Q°(x,a)
(3.23)

From the definition of Q* and V",

Q" (x,a) = Zpgy[(g(x,a,y)+ YVl VxeX, VaeA
yeX

(3.24)

Since V*(x) is the minimum of Q* (x, @) over the action set A,

V'(x) = minQ* (x,a)

(3.25)

Using equations (3.24) and (3.25),
A= ) phlgnay)+y mng ®a)l, VxeX, Vaed
a
yeX

Thus, if the transition probabilities are known, the optimal Q values can be computed

iteratively.

Q"1 (x,a) = z p[g(x,ay)+y miﬂ Q" (y,a)],VvxeX,VaeA
T, a &

(3.26)
When the transition probabilities are unknown the Q learning method can be
employed by generating a sequence of samples. At each and every iteration of the
algorithm, from the current state x, it chooses an action g based on some strategy and
reaches the new state y and obtains reward g (x, a, y) which is used for updating the Q

value of the state — action pair as,

Q" (x,a) = Q"(x,a) + a[g(x,a,y) + ¥ min Q" (y,a) - Q*(x,a)]

(3.27)
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a € (0, 1) is the learning parameter and determines the extent of modification

of the Q value at each iteration of the learning phase.

When the learning parameter a is sufficiently small and if all possible (x, a)
combinations of state and action occur sufficiently often then the above iteration given
by equation (3.27) will result Q" converging to Q" (Bertsekas and Tsitsikilis [1996),
Sutton and Barto [1998]).

A complete and general algorithm for Q learning is described below:

For all states xey, and for all action a e A,
Initialize Q°(x, a) to zero
Repeat for each iteration or trial
Initialize or get the current state x,
Repeat for each stage
Select an action ‘a,’ using action selection strategy
Execute the action a; and obtain the next state x.;
Receive the immediate reward
Update Q" (x;, a)
Update xt0 Xy,
Until, the terminal stage is reached.

If the environment is a stable MDP with finite and bounded rewards, the
estimated Q values can be stored in a look up table. Each action is executed in each
state a number of times and finally the estimated Q values are found to converge to true
Q values. The discount factor v is taken a suitable value in the range (0, 1) and the
learning parameter a is also a value in the range (0, 1). For choosing an action from the
action set at each step, different exploration strategies are employed. In the next section

the action selection methods are explained.
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3.7 Action selection

If the true Q values are known, the optimal action is found by finding the
greedy action, having the minimum Q value. However, during the initial part of the
learning, true Q values are unknown. But there is a set of estimated Q values, Q"(x, a),
where »n is the iteration number. During the initial phase of learning Q"(x, a) will not
be close to Q"(x, a). But as the learning proceeds, Q" (x, a) approach to Q"(x, a). Hence,
while learning, initially the action space is to be explored and as the learning proceeds,
the information available in Q"(x, a) should be exploited. There are various methods
for striking a balance between exploration and exploitation (Thathachar and Sastry
[2003]). Two of them are discussed here:

3.7.1 € - greedy method

The action which has been found good or having highest estimated Q value is
termed as greedy action. But, there is a possibility that one among the remaining
actions being as good or even better than the greedy action.

In € - greedy strategy of action selection, the greedy action is selected with a
probability of (1- €) and one of the other actions in the action set in random is selected
with a probability of &. Value of ¢ decides the balancing between exploration and
exploitation. Value of € is normally chosen as close to 1 at the initial stages and then
reduced in steps as the learning proceeds. As it reaches the final stages of learning
greedy action will turn to be the best action and therefore € is reduced to a very small
value.

3.7.2 Pursuit Method

The € - greedy method discussed above provides a good method of action
selection, for providing better exploration in the initial phases of learning while
exploiting the goodness of greedy action during the later phases. However e -greedy
requires a gradual reduction of e. That is, a proper cooling schedule is to be designed
which gradually updates the value of e as the learning proceeds so that proper
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convergence and correctness of the result are assured. The length of learning phase
mainly depends on this cooling schedule and therefore it is one significant part of
e- greedy method. It is a difficult task to develop a good cooling schedule so as to

ensure minimum time for convergence.

Another stochastic policy followed for selection of action in the Reinforcement
Learning task is Pursuit algorithm. In this method along with maintaining estimates of
Q values as measure of goodness of actions, some preference is also associated with
actions. Each action ay at any state xy is having a probability py, (ax) of being chosen.
These probability values will be same for all actions and all states initially assuring
sufficient exploration of the action space. Then on performing an action ay at any state
x), during learning, the numerical reward is used to update the estimate of Q value
associated with the state — action pair, Along with that, based on the current estimates
of Q values, probability values associated with actions are also modified as.

pitl(ay) = pR(ax) + B[1—ply (ar)), whena, = a4
i Haw) = pi,(ax) — Bpix (ax). whenay # a4
(3.28)

where 0 < B <1 is a constant. Thus at each iteration » of the learning phase, algorithm
will slightly increase the probability of choosing the greedy action a, in state x; and
proportionally decrease the probability associated with all other possible actions.
Initially since all probabilities are made equal, sufficient exploration of action space is
assured. When the algorithm proceeds a number of iterations, with high probability
Q™(x, a) will approach to Q*(x, a) corresponding to all states. This is because, when
the parameter B is properly chosen, after sufficient number of iterations, the greedy
action in state x, with respect to 0" would be the same as greedy action in state x with
respect Q' which gives the optimal action. In other words, through the iterative
updating of probabilities by equation (3.28), probability of optimal action increases
successively. This in turn indicates an increase in probability of selecting the optimum
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action in the succeeding steps. If « and B are sufficiently small, pZ(m*(x)) would
converge with high probability to unity.
3.8 Reinforcement Learning with Function Approximation

The Reinforcement Learning described above involves the estimating of value
functions that indicate how good an action is, in a particular state. Q values of the
different state action pairs are stored as a look up table. Q value of a state action pair
Q (x, a) indicate how good action a is, at the particular state x. But such look up table
storage of Q values is having two major limitations:

(i) The state and action should have discretised values.

(ii) The number of state action pairs is to be finite.
In cases with very large number of state action pairs and with continuous state values,
the look up table approach cannot be directly used for Q learning.

For large state space or continuous state space, some kind of function

approximation is needed. In this case the approximating function is used to store the Q
values. That is, the state space Y is treated as continuous and the Q values are
represented using a parameterized class of functions, {Q(x,a,0):0€ ®%;Q:
xXAX R R} where ? is the parameter vector. When such a parameterized class
of function is used, learning the optimal Q values involves learning the optimum
parameter vector 8° such that Q(x,aq,8") is a good approximation of
Q* (x,a), x € yanda € A.

The main tasks in obtaining such a function approximator for Q* (x, @)are:
(i) selection of proper parameterized class of functions Q (x, a, 8) that suits the problem
and (ii) suitable algorithm to learn the optimal parameter vector 9* (Bertsekas and
Tsitsikilis [1996], Sutton and Barto [1998]).

There are many parameterized classes of functions that can be used as
approximating functions. Due to the ability to represent and learn non linear functions,
Neural Networks are used as function approximators (Haykin [2002]). Two of the most
popular Neural Networks used for function approximation task are Multi Layer
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Perceptrons (MLP) and Radial Basis Function (RBF) networks. These networks can be
used for approximating the continuous functions (Van Roy [1996], [2001]).

While used with Q learning task or getting the approximated parameterized
function for obtaining the optimal Q values, the network should capture the
characteristics of Q leaming. Since the action space is discretised and the optimal
action in a small neighbourhood varies very little, the function approximation for Q*
can be constructed through a set of local approximations. It is verified that Gaussian
RBF networks with the exponentially decaying nonlinearities provide nonlinear
mapping in an efficient manner (Haykin [2002]).Therefore RBF networks is a good
choice for using in approximating the Q values. In the next section, a description of

RBF network and the learning parameters are given.
3.8.1 Radial Basis Function Networks

Radial Basis Function networks are one class of function approximators that
can be used in Reinforcement Learning. In this case the output function is represented
as the sum of many local functions. A simple RBF network with » input nodes, m
hidden nodes and one output node is shown in Fig 3.2.

Fig 3.2 Radial Basis Function network
The output of the network is given as,

y= YEPW,0;(x),W,,i =1,....m, are the weights of the connections into the
linear output node and @;(x), i =1,.....m represent the m radial basis function
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networks. These m radial basis functions represent the m hidden nodes in the network
structure. Gaussian function is the commonly used function in RBF networks. The
output of a Gaussian RBF network with 7 hidden nodes is given by

m
~ T o)
y= ZWlexp( } 21(0}1)2 :
i=1

(3.29)
where ¢! = [¢f, e vei v €h i =1, ... m are called the centres of the RBF
network and 6,{ = 1, ... ... ....m are called their widths. Such an RBF network can be

described by the parameter vector ? = [c, o, W], where

c={ct i, c™}to={0t . couunuu.., 0™ }and

W = { W, e e Wi

Therefore, finding a good approximating function using such an RBF network is to
find an optimum parameter vector 8* = [c*,a*, W"].

In these networks, adjustinz the weight associated with a given basis function, W,

- — 2
which is the weight associated with @,(x) = exp(if'-z‘g—,’),i will effect the value of

the function only in a small region around the center of the i RBF, ¢! € R™. For any x

— Ty (xjmcp?

away from c?, 9;(x) = exp( 2y vill be close to zero. In a straight forward

solution of this optimum parameter vector 8°, the centers c* are placed on a uniform
grid and width ¢* are fixed as a function of grid spacing, based on the problem
environment. This reduces equation (3.29) to a linear one in W. Then the

approximating task is to find W* which can be done by the learning procedures.
3.9Advantages of Reinforcement Learning

While most of the optimization and soft computing techniques provide solution for
static optimization tasks, Dynamic Programming and Reinforcement Learning based
strategies can easily provide solution for dynamic optimization problems. This makes
Reinforcement Learning a good learning strategy suitable for real time control tasks
and many optimization problems. In case of RL based solution strategies, the

environment need not be a mathematically well defined one. It can acquire the
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knowledge or leamn in a model free environment. Acquiring the knowledge of rewards
or punishments to an action taken in the environment or state of the system, the
learning strategy improves the performance step by step. Through a simple learning
procedure with sufficient number of iterative steps, the agent can learn the best actions
at any situation or state of the system. Also the reward or return function need not be a
deterministic one, since at each action step the agent can accept the reward from a

dynamic environment.
3.10 Reinforcement Learning Application to Power system

In the field of Power system, only a few applications have been found till now.
Automatic Generation Control problem for a two area system is solved using
Reinforcement Learning strategy (Imthias et al. [2002]). The input state space is
constituted by the Area Control Error (ACE) and the action space is the different
discretised values in the reference input to the controller. Pursuit method of action
selection is used and through Q learning an efficient control policy is learned.

Application of Adaptive Design for handling the damping problems in large
power system is addressed by Venayagamoorthy et al. [2002]. They proposed an
efficient heuristic controller for turbo generators in an integrated power system using
Adpative Dyanamic Programming. Feed forward neural networks are used to
implement the Adaptive Critic Design based adaptive controllers for turbo generators
which is adaptive to even larger disturbances in the integrated power system. The
adaptation starts with an optimal arbitrarily chosen control by the action network and
the critic network guides towards the optimal action. The technique of using critic
network avoids the need of leaming process of the control network. The critic network
learns to approximate the ‘cost to go’ or strategic ability function and uses the output
of the action network as one of its inputs directly or indirectly.

The optimal bidding for Genco in a deregulated power market is an involved
task. Gajjar et al. [2003] have formulated the problem in the framework of Markov

decision process. The cumulative profit over the span is the objective function
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optimized. The temporal difference technique and actor-critic learning algorithm are
employed.

Vlachogiannis and Nikos [2004] solved the optimal load flow problem using
Reinforcement Learning. The RL method formulates the constrained load flow
problem as a multistage decision problem. More specifically, the model-free learning
algorithm through Q leaming learns by experience how to adjust a closed-loop control
rule, mapping states (load flow solutions) to control actions (offline control settings) by
means of reward values. Rewards are chosen to express how well control actions cause

satisfaction of operating constraints.

Power system stability problem is solved through RL by Erest and Glavic
[2004] .They proposed the method of finding the control variables in a power system
[2005]. Two Reinforcement Learning modes are considered: the online mode in which
the interaction occurs with the real power system and the offline mode in which the
interaction occurs with a simulation model of the real power system. They developed
algorithm for learning control policy and showed how the methodology can be applied
to control some devices aimed to damp electrical power oscillations. The control
problem is formalized as a discrete-time optimal control problem and the information

acquired from interaction with the system as a set of samples.

In the deregulated power system, pricing mechanism is one important part.
Auction pricing is one method used for the same. A Reinforcement Learning model to
assess the power to be used in the auction pricing is developed by Nanduri and Das
[2007].

Lu et al. [2008] have also employed the adaptive design concepts in
implementing a power system stability controller for a large scale power system having
non linear disturbances. The actor and critic parts are realized using Multi layer
perceptrons and using the reinforcement or cost function as the feed back signal to the
controller, learning is carried out. The proposed controller is found to be efficient in

handling large scale real power system examples.
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3.11 Conclusion

In this chapter, an introduction and discussion on the Reinforcement Learning
frame work has been carried out. The mathematical description of the optimum policy
and the leamning strategies to reach the optimum policy has been explained. The
different action selection strategies are also discussed. Also the various recent
applications of Reinforcement Learning have been discussed. In the field of power
system a few applications have been developed using Reinforcement Learning
methodology. Active power scheduling problem has not been solved till now through
this efficient learning method. Therefore, the development of solution for active power
scheduling is proposed in the following chapters.
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REINFORCEMENT LEARNING APPROACHES
FOR SOLUTION OF
UNIT COMMITMENT PROBLEM

4.1 Introduction

Unit Commitment Problem (UCP) in power system refers to the problem of
determining the on/ off status of generating units that minimize the operating cost
during a given time horizon. Formulation of exact mathematical model for the same is
difficult in practical situations. Cost associated with the different generating units is
also different and random. Most often it is difficult to obtain a precise cost function for
solving UCP. Also availability of the different generating units is different during each
time slot due to the numerous operating constraints.

The time period considered for this short term scheduling task varies from 24
hours to one week. Due to the large number of ON /OFF combinations possible, even
for small number of generating units and short period of time, UCP is a complex
optimization problem. Unit Commitment has been formulated as a non linear, large —
scale, mixed integer combinational optimization problem (Wood and Wollenberg
[2002)).

From the review of the existing strategies, mainly two points can be concluded:

(i) Conventional methods like Lagrange Relaxation, Dynamic Programming etc.
find limitation for higher order problems.

(i) Stochastic methods like Genetic Algorithm, Evolutionary Programming etc.

have limited computational efficiency when a large number of units involved.
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Since Reinforcement Leaming has been found to be a good tool for many of
the optimization problems, it appeared to be very much promising to solve this

scheduling problem using Reinforcement Learning.

In this chapter, a stochastic solution strategy based on Reinforcement Learning
is proposed. The class of algorithms is termed as RL_UCP. Two varieties of
exploration methods are used: ¢ greedy and pursuit method. The power generation
constraints of the units, minimum up time and minimum down time are also considered
in the formulation of RL solution. A number of case studies are made to illustrate the
reliability and flexibility of the algorithms.

In the next section, a mathematical formulation of the Unit Commitment
Problem is given. For developing a Reinforcement Learning solution to Unit
Commitment problem, it is formulated as a multi stage decision making task. The
Reinforcement solution to simple Unit Commitment problem is reviewed (RL_UCP1).
An efficient solution using pursuit method without considering minimum up time and
minimum down time constraints is suggested (RL._UCP2). Then the minimum up time
and down time constraints are incorporated and a third algorithm (RL_UCP3) is
developed to solve the same. To make the solution more efficient one, an algorithm

with state aggregation strategy is developed (RL_UCP4).
4.2 Problem Formulation

Unit Commitment Problem is to decide which of the available units has to be
turned on for the next period of time. The decision is subject to the minimization of
fuel cost and to the various system and unit constraints. At the system level, the
forecasted load demand should be satisfied by the units in service. In an interconnected
system, the load demand should also include the interchange power required due to the
contractual obligation between the different connected areas. Spinning reserve is the
other system requirement to be satisfied while selecting the generating units. In
addition, individual units are likely to have status restrictions during any given time

period. The problem becomes more complicated when minimum up time and down
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time requirements are considered, since they couple commitment decisions of

successive hours.

The main objective of this optimization task is to minimize the total operating
cost over the scheduled time horizon, while satisfying the different operational
constraints. The operating cost includes start up cost, shut down cost, running cost,
maintenance cost etc. The UCP can be formulated as:

Minimize Operational cost

Subject to

Generation constraints

Reserve copstraints

Unit capacity limits

Minimum Up time constraints
Minimum Down time constraints
Ramp rate constraints

vV V V V V V V¥V

Unit status restrictions

4.2.1 Objective

As explained above, the objective of UCP is the minimization of total
operating cost over the complete scheduling horizon. The major component of the
operating cost for thermal units is the fuel cost. This is represented by an input / output
characteristics which is normally approximated as polynomial curve (quadratic or
higher order) or as a piecewise linear curve. For quadratic cost, the cost function is of

the form
Ci(Pix) = a; + bPiy + ciPh where a;, by and ¢; are cost coef ficients,
P;, — Power generated by i unit during hour &

If a unit is down for a time slot, it can be brought back to operation by incurring an
extra cost, which is due to the fuel wastage, additional feed water and energy needed
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for heating. Accordingly, the total fuel cost Fr which is the objective function of UCP
is:
T N

Fr = Z Z[Ci Pyt + STy () (1 — 34 1)]
k=11=1

where T is the time period (number of hours) considered, Ci(P; ;) is the cost of
generating power P; during k* hour by i* unit, ST, is the start up cost of the i unit, uy
is the status of the /* unit during #* hour and u, ., is the status of the i* unit during the

previous hour.

4.2.2. The constraints

The variety of constraints to UCP can be broadly classified as System constraints and
Unit constraints
System Constraints:
» Load demand constraint. The generated power from all the committed
or on line units must satisfy the load balance equation
TaPowe =l 1<k<T,
where /, is the load demand at hour £.
Unit Constraints:

» Generation capacity constraints: Each generating unit is having the
minimum and maximum capacity limit due to the different operational
restriction on the associated boiler and other accessories

Poin < Pk S Pmax, 0<i<N-1,1<k<T

»  Minimum up time and down time constraint: Minimum up time is the
number of hours unit i must be ON before it can be turned OFF.
Similarly, minimum down time restrict it to turn ON, when it is
DOWN. If #,; ; represents the number of hours i unit has been shut
down, f,,, the number of hours i/* unit has been on line, U, the
minimum up time and D; the minimum down time corresponding to i
unit, then these constraints can be expressed as:

torri = Dy toni = Uy, 0<i<N-1
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> Ramp rate limits: The ramp rate limits restrict the amount of change of
generation of a unit between two successive hours.
P — Pre-1y S UR
Pix-1y— Pix < DRy
where UR; and DR, are the ramp up and ramp down
rates of unit i .
> Unit status restrictions: Some of the units will be given the status of
‘Must Run’ or ¢ Not available’ due to the restrictions on the
availability of fuel, maintenance schedule etc.

4.3 Mathematical model of the problem

The mathematical description of the problem considered can be summarized as:

Minimize the objective function,
T N
Fr= Z Z[Q Padugx + STy (ug ) (1 — 1y 1))
k=1i=1
4.1)
subject to the constraints,
N
Zpikulk =l 1<k<T
i=1
4.2)
Puin) € Pix < Pmaxqy 0<isN-1,1Zk<T
(4.3)
toprt 2 Dy; toni 2 U, O0Zi<N-1
4.4)

In order to formulate a Reinforcement Learning approach, in the next section
UCP is formulated as a multi stage decision task.
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4.4 Unit Commitment as a Multi Stage decision making task

Consider a Power system having NV generating units intended to meet the load
profile forecasted for T hours, (7, !, L..............I.;). The Unit Commitment Problem
is to find which all units are to be committed in each of the slots of time. Objective is
to select units so as to minimize the cost of generation, at the same time meeting the
load demand and satisfying the constraints. That is to find a decision or commitment
schedule ay, a, a,,...............ar;., Where a; is a vector representing the status of the N
generating units during ¥ hour.

ay =[ad,at, e, a1
ai = 0 indicates the OFF status of i* unit during &* time slot while a;' = I indicates
the ON status.

For finding the schedule of T hour load forecast, it can be modeled as a T
stage problem. While defining an MDP or Reinforcement Learning problem, state,
action, transition function and reward function are to be identified with respect to the
scheduling problem.

In the case of Unit Commitment Problem, the state of the system at any time
slot (hour) k can represent the status of each of the N units. That is, the state x; can be
represented as a tuple (k,py) where p, is a string of integers,
[p2. % e e e o . DI 1], DL being the integer representing the status of i** unit. When
the minimum up time and down time constraints are neglected the ON / OFF status of
each unit can be used to represent pi. Then the integer p} will be binary; ON status
represented by ‘I’ and OFF status by ‘0’. Consideration of the minimum up time and
minimum down time constraints force to include the number of time units each unit has
been ON /OFF in the state representation. Then the variable pf can take positive or
negative value ranging from -D; to +U;.

The part of the state space at time slot or stage & can be denoted by

2 ={(k[ ook, .pF™Y])} and the entire state space can be defined as

X=X YV .24
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Next is to identify the actions or decisions at each stage of the multi stage
problem. In case of UCP, the action or decision on each unit is either to commit or not
the particular unit during that particular hour or time slot. Therefore action set at each
stage k can be defined as o4 = {[af a}, ..., a2 ],afk =00r1}. When
certain generating units are committed during particular hour &, ie, a' =/ for certain
values of i, then the load demand or power to be generated by these committed uanits is
to be decided. This is done through an Economic Dispatch solution.

The next part to be defined in this MDP is the transition function. Transition
function defines the transition from the current state to the next state on applying an
action. That is, from the current state x; , taking an action a, it reaches the next state
Xi+1. Since the action is to make the units ON /OFF, the next state x;,, is decided by the
present state x, and action a;. Transition function f (x» a4y depends on the state
representation.

Last part to be defined is the reinforcement function. It should reflect the
objectives of the Unit Commitment Problem. Unit Commitment Problem can have
multiple objectives like minimization of cost, minimizing emissions from the thermal
plants etc. Here, the minimization of total cost of production is taken as the objective
of the problem. The total reward for the T stages should be the total cost of production.
Therefore, the reinforcement function at &* stage is defined as the cost of production of
the required amount of generation during the #* period.

That is,

90k, ag, Xga1) = TIGHC(P U + STy () (1 = 2yx-9)),
Here, P, is the power generation by i unit during #* time slot and u; , is the status of

i unit during &* time slot.

In short, Unit Commitment Problem is now formulated as a Multi Stage
decision making problem, which passes through T stages. At each stage &, from one of
the states x, = (k, px) an action or allocation a4, is chosen depending on some

exploration strategy. Then a state transition occurs to x;.; based on the transition
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function. Each state transition results in a reward corresponding to power allocation to
the committed units. Then the problem reduces to finding the optimum action a, at
each state x; and corresponding to each time slot &.

In the next sections a class of Reinforcement Learning solutions is proposed.
In all these algorithms the action space and the reinforcement function are the same.
The definition of state space, transition function and the update strategy are different.

4.5 Reinforcement Learning Approach to Unit Commitment

Problem

Having formulated as a Multistage Decision Problem, implementable solutions
are developed using Reinforcement Learning approach. First a review of the basic
algorithm is given. Neglecting the minimum up time and minimum down time
constraints and using exploration through e — greedy strategy, solution is presented
(RL_UCP1). Then employing pursuit method for action selection, algorithm for
solution is proposed (RL_UCP2).

Next, Minimum up time and down time constraints are incorporated which
needs the state of the system (status of the units) to be represented as integer instead of
binary representation in the previous solutions. To handle the large state space, an
indexing method is proposed while developing solution (RL_UCP3). A more efficient
solution is then proposed using state aggregation strategy. In the next sections, the
solution methods and algorithms are presented in detail.

4.6 ¢ - greedy algorithm for Unit Commitment Problem
neglecting minimum up time and minimum down time

(RL_UCP1)

In the previous section, a 7 hour allocation problem is modeled as a 7T stage
problem. In this section, an algorithm based on Reinforcement Learning and using
g- greedy exploration strategy is presented. For the same, different parts of
Reinforcement Learning solution are first defined precisely.

When the minimum up time and minimum down time are neglected, the state
of the system at any hour % can be represented by the ON /OFF status of the units.
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Hence, state can be represented by the tuple, x, = (k, py ), where py =
[p2, PR, e . DR Y] and pj =1 if the i* unit is ON, p; = 0 if the ** unit is
OFF.

The part of the state space at time slot or stage k can be denoted by

2= (6] Pph D)), P = 007 1)
The state space can be defined as,

2=V qVe wiipy

Action or decision at any stage of the problem is the decision of making ON /
OFF of a unit. Therefore the action set at stage k is represented by,

A= {[ada} af ™) af = 0071},

The transition function defines the change of state from x, to x;.,. In this case,
the next state (in RL terminology) is just the status of units after the present action or
decision. Therefore the transition function f(x;, a)) is defined as,

Xpe] = Qg
Lastly, the reward is the cost of allocating the committed units with power P;;

i = 0,...N-1 and status of the unit u; ,=1. Thus the reward function,
N-1

(X, Ay, Xx41) = Z[Q(Pt Wk + STy (Ui )(1 — ujg-1)]
i=0

(4.5)

For easiness of representation, the binary string in the state as well as action

can be represented by the equivalent decimal value. The state at any stage can be
represented as a tuple (%, d) where k represents the stage or time slot and 4 represents
the decimal equivalent of the binary string representing the status. For example (2, 4)
represent the state (2, [0100]) which indicate the status 0100 during 2™ hour for a four

unit system. Or in other words it indicates only unit 1 is ON during 2* hour.

Now a straight forward solution using Q learning is suggested for solving this
MDP. Estimated Q values of each state — action pairs are stored in a look up table as

Q (xi a3), x; having the information on the time slot and present status of the different

87



Chapter 4

units. At each step of the learning phase, the algorithm updates the Q value of the
corresponding state — action pair. The algorithm (RL_UCP1) for the learning phase is
described below:

The initial status of the different generating units is read from the unit data.
Then the different possible states and actions possible are identified. Q value

corresponding to different state — action pairs are initialized to zero.

The generating units are having their minimum and maximum generation
limits. At each slot of time, the unit combinations or actions should be in such a way as
to satisfy the load requirement. Therefore, using the forecasted load profile and the
unit generation constraints, the set of feasible actions A, is identified for each stage &
of the multi stage decision problem. Using the e- greedy strategy one of the actions a;
from the permissible action set Ay is selected. Depending on the action selected, state
transition occurs to next stage k+1/ as x;.; = a;. The reward of state transition or action
is calculated using the power allocation to each unit P;; through dispatch algorithm and
using the equation (4.5).

The cost function can be non convex in nature and can be represented either in
piece wise quadratic form or higher order polynomial form. While finding the dispatch
among the committed units, for simplicity, linear cost function is taken. This method
gives only tolerable error. After that, cost of generation is obtained using the given cost
functions. In this approach of solution a defined mathematical cost function is not at all
necessary. The net cost of generation is taken as the reward g (x; a5 x+y). Using the
reward, estimated Q value of the corresponding state — action pair is updated at each of
the stages until the last stage using the equation:

Qn+1(xk' ak) = Qn(xk‘ ak) +a [g(xk' Ay, xk+1) +7y mina'&ﬂux Q" (xk+1ﬂ a’) -

Q" (X, ax)]
(4.6)

here, a is the step size of learning and y is the discount factor.
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During the last stage (k = ), since there is no more future stages the second
term in the update equation will turn to be zero, the updating is carried out as

Q™ (xp a) = Q" (. ax) + @ [ 9(xs ey Xpes1) — Q™ (X )]
4.7

This constitutes one episode. In each episode the algorithm passes through all
the T stages. Then the algorithm is executed again from the initial state x,. These
episodes are repeated a large number of times. If a is sufficiently small and if all
possible (x;, a;) combinations of state and action occur sufficiently often then the
above iteration will result in Q* converging to Q" (Bertsekas and Tsitsikilis [1996],
Sutton and Barto [1998]).

In the initial phases of learning the estimated Q values, Q™(xy,a,) may not be
closer to the optimum value @*(xy,ay). As the learning proceeds, the estimated Q
values turn to be better. When the estimated Q values approach to optimum, change in
the value in two successive iterations will be negligibly small. In other words,

Q™1 (xy, ay) will be the same as Q™ (x, ay).

In order to apply the proposed Reinforcement Learning algorithms, first
suitable values of the learning parameters are to be selected. Value of £ balances the
rate of exploration and exploitation. A small fixed value result in premature
convergence, while a large fixed value may make the system oscillatory. For balancing
exploration and exploitation, a reasonable value between 0 and 1 is taken for the

learning parameter ¢ initially and is decreased by a small factor successively.

In the learning procedure, a block of consecutive iterations are examined for
modification in the estimated Q values. If the change is negligibly small in all these
iterations, the estimated Q values are regarded as optimum corresponding to a
particular state — action pair. The iteration number thus obtained can be taken as
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maximum number of iterations in the learning algorithm. The learning steps are
described as RL_UCP1.
Algorithm for Unit Commitment solution using &- greedy (RL_UCPI)

Read the unit data

Read the initial status x,

Read the forecast for the next T hours

Identify the feasible states and actions

Initialize Q(x, a) =0 Yx €y Va €A

Initialize k =0

Initialize € = 0.5, a =0.1 and y=1

For n = 0to max _iteration

Begin
For (k=0t0 T-1)
Do
Choose an action using € - greedy algorithm
Find the next state x;.;
Calculate the reward using equation (4.5 )
If(k < T-1) Update the Q" to @' using equation (4.6)
Else update Q" to O"*' using equation (4.7)
End do
Update the value of €
End

Save Q values.
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4.7 Pursuit algorithm for Unit Commitment without considering

minimum up time and minimum down time (RL_UCP2)

As explained before, in case of pursuit algorithm, actions are selected based on
a probability distribution functionpy, (). This probability distribution function is
updated as the algorithm proceeds.

In the solution of Unit Commitment problem, initially the probability

associated with each action a in the action set A, corresponding to x_ are initialized
with equal values as
P, (a0 =1/m
n - Total number of permissible actions in state X,
As in the previous algorithm, Q values of all state — action pairs are initialized

to zero. Then at each iteration step, an action a is selected based on the probability

distribution. On Performing action a X state transition occurs as X, =0

The cost incurred in each step of learning is calculated as the sum of cost of
producing power Ik with the generating units given by the binary string ‘s’ in a, and the

cost associated with ‘s’ as given in the equation (4.5). Q values are then updated using
the equation (4.6). At each of the iteration of learning, the greedy action as
a; = argmin 2y Q ( xx, a) is found. Then the corresponding probabilities of actions

in the action set are also updated as :
P2 ay) = p2 (@) + B[1-p3 (a)) | whenay, = q,

P2t (ay) = pR(ax) — B[p2 (ar) | whena, # a,

(4.8)
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The algorithm proceeds through several iterations when ultimately the
probability of best action in each hour is increased sufficiently which indicate
convergence of the algorithm. As in the previous solution, learning steps can be
stopped when the change of Q values in a set of successive iterations are tolerably
small, which gives the maximum number of iterations required for the learning
procedure. The entire algorithm is given in RL _UCP2:

Algorithm for Unit Commitment using Pursuit method (RL_UCP2)

Read the Unit data and Load data for T hours

Find out set of possible states () and actions(A)

Read the learning parameters

Read the initial status of units x
0
Initialise Q (x,a) =0, YxEyand Va €A
Identify the feasible action set in each hour k as A,
Initialize p,‘,’k {ap) to I/nk n, the number of actions in A,

For n = 0 to max_iteration

Begin
Fork=0toT-1
Do
Choose action akbased on the current
probability distribution pxk( )
Find the next state X
Calculate g (xk, a x.. )
Update Q" to Q"H using equation (4. 6) and (4.7)
Update probability p3, (ay) to pE* (ay) using
equation (4.8)
End do
End.

Save Q values.
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Since the exploration is based on probability distribution and the probability is
updated each and every time an action is selected, the speed of reaching the optimum is
improved by this strategy. In the simulation section the performance of this algorithm
is compared with the € - greedy method using several standard systems.

4.8 Policy Retrieval

Once the learning phase is completed, the schedule of the generating units
corresponding to the given load profile can be retrieved. During the learning phase Q
values of the state — action pairs will be modified and will approach to optimum. Once
the optimum Q values are reached, the best action will be the greedy action at each
stage k.

ay = argminakgk {Q(xx.ap) Lk = 0O,...T—1. (4.9)
Algorithmic steps for finding the optimum schedule [ ag, a3, .. <« vov e, @721 ]
are detailed below:
Policy Retrieval steps:
Read the Q values

Get the initial status of the units, xy
Fork=01tT-1)
Do
Find the greedy action a,_ using equation (4.9)
Find the next state, x.; = a;
End do.

For the above two algorithms, the unit and system constraints are considered
except the minimum up time and minimum down time. Now, to incorporate the
minimum up time and minimum down time, algorithms are extended in the next

sections.
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4.9 Reinforcement Learning algorithm for UCP, considering

minimum up time and minimum down time (RL_UCP3)

In case of Unit Commitment Problem, one important constraint comes from
the minimum up time and minimum down time limitation of the units. Therefore the
‘state’ of the system should essentially indicate the number of hours the unit has been
UP or DOWN. Then only the decision to turn on or turn off will be valid. Therefore the

state representation used in the previous sections cannot be used further.

For resolving this issue, the state representation is modified. Status of each unit
is represented by a positive or negative number indicating the number of hours it has
been ON or OFF. Thus, at each stage or hour, system state will be of the form,
xx = (k, p ) where pr =[ pR.PE .. DF"2]. Each pj has positive or negative
value corresponding to the number of hours the unit has been UP or DOWN. For
example, if the state of a four generating unit system during 2™ hour is given as
%, =(2, [-2, 1, 2,-1]), it gives the information that first and fourth units have
been DOWN for two hours and one hour respectively and second and third units have
been UP for one hour and two hours respectively.

In principle, for a T stage problem p}‘ can take any value between -T to +T. That is,

n={& [phoh o PE DDk €{~-T.-T+1,-T+2,....+T}.

For such a choice state space will be huge. It may be mentioned here that x, is the state
of the system as viewed by the learning agent and it need not contain all the
information regarding the system. Or in other words, only sufficient information need
to be included in the state. For example, in the previous formulations it does not matter
how many hours the unit was on, what matters to the learner is whether the unit is ON

or OFF. Hence in that case p} € {0,1).

Here, when considering the minimum up time and down time, it is immaterial

whether the unit has been ON for U; hours or U; + L hours (where U; is the minimum
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up time). Therefore, if a unit is ON for more than U; hours p}, is taken as U;. Similar is

the case with D;. Hence, pf( € {-Dy—-D;+1,...... y U

Thus the sub space corresponding to stage k,

4 ={k[Phob ¥ |k €(-Dy D +1, ... U
The number of elements in {—D;,-D; + 1, ... ...... ,UidisD; + U,

Therefore, the number of elementsin y =T (Do + Up) (Dy + Uy) ... (Dy-q +
Un-1).

For a six generating unit system with minimum up time and down time of 5
hours for each of the units, the number of states in the state space will be 10° x T which
is a large number. Therefore storing Q- values for all the possible state action pairs is a
cumbersome task. To resolve the same a novel method is proposed in the next section.
Regarding the action space, as in the previous solution, each action represents the ON/
OFF status of the units. For an N generating unit system due to the different
combinations of ON — OFF status, there will be 2™ actions possible. At each stage
depending on the generation constraints enforced by the generating units and the load
demand to be met there exists a permissible set of actions,

A={[af.a}t, oer,aft]af =00r1}

For making the new algorithm simpler, an action is selected based on € -
greedy exploration strategy. Each action selection is accompanied by a state transition.
In this case, it should account the number of hours one unit has been UP or DOWN.
Therefore, the transition function is to transform the  state
= (k[ oRpk PR Y]) to xear=(k+1,[ PRirDbsss o PRF1]) and s
defined as:
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pho.=pb+1,  if plpositive,al =1
piy = =1,  if pi positive,al =0
pita =ph—1,  ifpinegtive,al =0
pt.i = 41,  if plnegative,al =1
Plesr = Uy, if ok > U
Pk+1 = Dy if ok < D;
(4.10

Since each action corresponds to a particular unit combination of generating
units to be on-line, the cost of generation or reward will be the function g (xi ax, Xx+s)
as given in equation(4.5).

Q learning described previously is used for solution of this MDP. Q values of
each state — action pairs are to be stored to find the good action at a particular state. In
this Unit Commitment Problem, when the minimum up time and down time constraints
are taker., the possible states come from a very large state space. Straight forward
method of storing the Q (x,, a,) values is using a look up table. But all the states in this
huge state space are not relevant. Therefore a novel method of storing Q values is
suggested.

Q values of only those states which are encountered at least once in the course
of learning are stored. Since the learning process allows sufficient large number of
iterations, this seems to be a valid direction. The states are represented by an index
number (ind _x;), which is an integer and initialized at the first time of encountering
the state. For example the tuple, (5, (2,(-2,1,1,2 ])) denote the state (2, [-2,1,1,2]) with
an index number 5°.

Similarly, the actions in the action space can also be represented by an integer,
which is the decimal equivalent of the binary string representing the status of the
different units. The index value of action 0011 is ‘3°. Using these indices for the state
and action strings, the Q values of the different state action pairs can be stored very
easily. Q (5, 3) indicate the Q value corresponding to the state (2, [-2, 1, 1, 2]), which

is having index value 5 and action [0 0 1 1].
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The possible number of states nstates is initialized depending on the number of
units N and the minimum down time and minimum up time of the units, since it
depends on number of combinations possible with N units as well as the given values
of minimum up time and down time. Since some of the states will not be visited at all,
the value of nstates is initialized to 70% of the total number states. The number of
actions ‘naction’ is initialized to 2" -1. Then the permissible action set corresponding
to each hour based on the load demand at that particular hour are identified. The
algorithm during the leaming phase proceeds as follows.

At each hour £, the state x; depending on the previous state and action is found
as explained previously. The state x, is added to the set of states y; if not already
present and find the index of the state x;. From the permissible action set, one of the
actions is chosen based on e-greedy method. Then the next state x;.; can be found
corresponding to stage k+1. On taking action a; the state of the system proceeds from
X, t0 x4+, as given in (4.10). The reward, g (), a;, x;+,) is given by equation (4.5).

The Q value corresponding to the particular hour ‘k’, action ‘a,” (decimal
value of the binary string) and index no (ind_xk) is then updated using the equation:

Q" (ind_xy, a,) = Q"(ind_xy, a) + a [ g(xy, Ay, Xps1)

+y min Q"(ind_xx41,a") — Q" (ind_xy,ay)]
a'€Ays,y

(4.11)
If the stage is the last one (k = T), corresponding to the last hour to be
scheduled, there is no more succeeding stages and the updating equation reduces as,

Q" (ind_xy, ay) = Q"(ind_xy, ar) + a [ g(xy, Ap, Xx41) — Q™ (ind_xy, ar))
(4.12)
At each episode of the learning phase, the algorithm passes through all the ‘T’
stages. As the algorithm completes several iterations, the estimated Q values will reach
nearer to the optimum values and then the optimum schedule or allocation can be
easily retrieved for each stage k as, ay = argming, ¢4, (Q(ind_xy, ay))

The entire algorithm is illustrated as RL, UCP3.
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Algorithm for Unit Commitment using state indexing (RL_UCP3)

Read Unit Data
Read the initial status of the units, x,
Read the Load forecast for next T hours
Initialize ‘nstates’ (number of states ) and ‘nactions’ (number of actions)
Initialize O° find x, ay] =0, 0 <ind_x,<= nstates,0 < a,<= nactions
Find the set of permissible actions corresponding to each hour k .
Initialize € = 0.5 and a =0.1
For n=1 to max _iteration
Begin

Read the initial status of the units x,

Add the state x to set yy

Fork=0to T-1

Do

Find the feasible set of actions A, corresponding to state x;

considering up and down times.
Choose an action using e- greedy strategy from
the feasible set of actions
Find the next state x+,
If xy., is present in y,.; Get the index ind_xy.,
Else Add x;.; in ., and obtain index ind_ x4,
Calculate cost as g(xy, ap Xp+)
If (k!=T-1) Update Q value using equation (4.11)
Else Update Q value using equation (4.12)
ind_x, = ind_Xy+;.
End do
Update the value of €
End

Save Q values.
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This algorithm can accommodate the minimum up time and down time
constraints easily, when the number of generating units is small. Up to 5 hours of
minimum up time and minimum down time the algorithm is found to work efficiently.
But when the minimum up time and minimum down time increase beyond 5 hours and
the number of generating units is beyond six, the number of states visited increases.
Then the number of Q values stored and updated becomes enormously larger. This
demands more computer memory. In order to solve this issue and make an efficient
solution, in the next section a state aggregation method is discussed which needs much
less computer memory than the above formulated algorithm.

4.10 Reinforcement Learning algorithm for UCP, through State
Aggregation (R1,_UCP4)

While looking into the Unit Commitment Problem with minimum up time and
minimum down time constraints, the state space become very huge. The huge state
space is difficult to handle in a straight forward manner when the minimum up time /
minimum down time increases or the number of generating unit increases. Storing of Q
value corresponding to each state — action pair becomes computationally expensive.
Some method is to be thought of to reduce the number of Q values to be handled. In
the perspective of Unit Commitment problem one can group the different states having
the same characteristics so that the goodness of the different groups is stored instead of
goodness of the different states corresponding to an action. The grouping of states can
be done based on the number of hours a unit has been UP or DOWN.

(i) A machine which has been already UP for duration equal to or greater than the

minimum up time can be considered as to occupy a state ‘can be shut down’.

(i) A unit which is already UP but not have covered minimum up time can be

considered as to represent a state ‘cannot be shut down’.
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(iif) An already offline unit which has been DOWN for number of hours equal to or
more than its minimum down time can be represented as a state ‘can be

committed’.

(iv) A unit which has been DOWN but has not covered the minimum down time so
that cannot be committed in the next immediate slot of time can be represented

as a state ‘cannot be committed’.

Thus, at any slot of time, each of the generating unit will be in any of the
above mentioned four representative states. If these four conditions are denoted as
decimal integers (0, 1, 2, 3), regardless of the UP time and DOWN time of a generating
unit, the state is represented by one of this integer value. By aggregating the numerous
states visited in the previous algorithm to a limited number of states, number of Q
values to be stored and updated in the look up table is greatly reduced.

With the decimal numbers 0,1,2,3 representing the aggregated states of a unit,
for an N generating unit system the state x; is represented as a string of integers having
length N and with each integer having any of these four values. Then the state can be
represented as a number with base value 4. For an N generating unit problem, there
will be 4" -1 possible states, regardless of minimum up time and down time of the
different units. (In the previous algorithm RL_UCP3, the number of states increases
with increase in the minimum up time and / or down time). This reduction in the
number of states drastically reduces the size of look up table for storing the Q values.
Now an algorithm is formulated making use of state aggregation technique for
handling the up/ down constraints of the units.

The number of states, nstates is initialized to 4™-1 and the number of actions
naction to 2N-1 for an N generating unit system, At any stage k of MDP, the state of the
system is represented as a string of integers as in the previous algorithm, integer value

representing the number of hours the unit has been up or down.
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In order to store the Q values, the state x; is mapped into set of aggregate
states. Each aggregate state,

agxy = {(k, [ag_pR, agp}, ....agpf~*]), agpk € {0,1,23}.

From any state x; an action is selected using one of the exploration strategies.
On selecting an action g, the status of the units will change as, x;.; = f (x;, a3) given by
equation (4.10). From the above explained categorization of states, ag_p% can be
found corresponding to any x = (k, [ P2, P}, ... . PY 1 as:

p} positive and pf, > U, agpl=0

p} positive and p} < U, ag_ph=1;

D}, negative and p} < Dy, ag_pk=2;
pl negative and pk > ~D, ag_pl =3.

The reward function for the state transition is found using the cost evaluations
of the different generating units using equation (4.5). For each of the states x; and x4,
the corresponding aggregate state representation is found as ag_x; and ag x4, . Each
action in the action space is represented as the decimal equivalent of the binary string.
At each state k, estimated Q value corresponding to the state — action pair (ag_x;, ay) is
updated using the equation,

Q™ (ag_xr,ax) = QM(ag_xy ay) + a [ g(xk, By, Xice1)

+y min Q"(ag.xys+1,a’) — Q" (ag_xy, ax)]
a'€Apsq

(4.13)

During the last hour, omitting the term to account future pay —off Q value is
updated using the equation,
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Q"*(ag_x yax) = QM(ag_xy, ax) + a [ g(xy, ay, Xpaq)

- Q" (ag_xy, ax)]
4.14)

After a number of iterations, learning converges and the optimum schedule or
allocation for each state x; can be easily retrieved after finding the corresponding

aggregate state as,

ay = argming, " {Q(ag_xy,ax) Lk = 0,....T -1,

The entire algorithm using state aggregation method is given below:
Algorithm for Unit Commitment through state aggregation (RL_UCP4)

Read Unit Data
Read the Load forecast for next T hours.
Initialize nstates (number of states ) and nactions (number of actions)
Initialize ¢ [ag x;, a,] =0, Vag x, Ya,
Find the set of permissible actions corresponding to each hour k
Initialize the learning parameters
For n=1to max _ episcde
Begin

Read the initial status of the units x,

Fork=01to T-1

Do

Find aggregate state ag_x; corresponding to x;

Find the feasible set of actions 4, corresponding to state x;
considering up and down times.
Choose an action using & greedy strategy from the feasible set
of actions
Condd...
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Find the next state xi;
Find the corresponding aggregate state ag_ xy+; Of Xx4;
Calculate the reward g (xx, ,ap Xps1)
If (ki=T-1) Update Q value using equation (4.13)
Else Update Q value using equation (4.14)

End do

Update the value of &
End
Save Q values.

The optimal schedule [ag,ay,.....ar_4] is obtained using policy retrieval
steps similar to the algorithm given in section 4.8.
4.11 Performance Evaluation

Solution to Unit Commitment Problem has now been proposed by various
Reinforcement Learning approaches. Now, one can validate and test the efficacy of the
proposed methods by choosing standard test cases. The high level programming code
for the algorithms is written in C language in Linux environment. The execution times
correspond to Pentium IV, 2.9 GHz, 512 MB RAM personal computer.

In order to compare the £ greedy and pursuit solutions (RL_UCP1 and
RL UCP2) a four generating unit system and an eight generating unit system are
considered. The generation limits, incremental and start up cost of the units are
specified. Performance of the two algorithms is compared in terms of number of
iterations required in the learning phase and the computation time required for getting
the commitment schedule.

In order to validate and compare the last two algorithms (RL UCP3 and
RL_UCP4), four generating unit system with different minimum up time and down
time are considered. The schedule obtained is validated and the performance
comparison is made in terms of execution time of the entire algorithm, including the

learning and policy retrieval. In order to prove the scalability of the algorithms, an
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eight generating unit system with given minimum up time and down time limits is also

taken for case study.

For comparing with the recently developed stochastic strategies a ten
generating unit system with different minimum up time and down time limits are taken
for case study. The schedule obtained and the computation time is compared with two
hybrid methodologies: Simulated Annealing with Local Search (SA LS) and Lagrange
Relaxation with Genetic Algorithm (LRGA).

In order to apply the proposed Reinforcement Learning algorithms, first
suitable values of the learning parameters are to be selected. Value of £ balances the
rate of exploration and exploitation. For balancing exploration and exploitation, a value
of 0.5 is taken for the learning parameter e initially. In every (max_iteraion/10)

iterations, € is reduced by 0.04 so that in the final phases, € will be 0.1.

Discount parameter y accounts for the discount to be made in the present state
in order to account of future reinforcements and since in tﬁis problem, the cost of
future stages has the same implication as the cost of the current stage, value of y is
taken as 1. The step size of learning is given by the parameter a and it affects the rate
of modification of the estimate of Q value at each iteration step. By trial and error a is
taken as 0.1 in order to achieve sufficiently good convergence of the learning system.

The RL parameters used in the problem are also tabulated in Table 4.1.

Table 4.1 - RL Parameters

£ 0.5
a 0.1
Y |

Now the different sample systems and load profile are considered, for

evaluating the performance of the algorithms,
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Case I — A four generating unit system

Consider a simple power system with four thermal units (Wood and
Wollenberg [2002]). For testing the efficacy of the first two algorithms and to compare
them, minimum up and down times are neglected. Load profile for duration of 8 hours

is considered and is given in Table 4.2

Table 4.2 — Load profile for eight hours

Hour 0 1 2 3 4 5 6 7

LoadMW) 450 530 600 540 400 280 290 500

The cost characteristics of the different units are taken to follow a linear
incremental cost curve. That is, cost of generating a power P, by the i* unit is given as,

Ci(P)=NL +IC,*P,
where NL, represents the No Load cost of i unit and IC; is the Incremental cost of the
same unit. The values P, and P,,, represent the minimum and maximum values of

power generation possible for each of the units. The different unit characteristics and
the generation limits are given in Table 4.3.

Table 4.3 — Generating Unit Characteristics

Unit Pmin(MW) | Pmax(MW) | Incremental | No Load Startup
cost Cost Cost
1 75 300 17.46 684.74 1100
2 60 250 18 585.62 400
3 25 80 20.88 213 350
4 20 60 23.8 252 0.02
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When the learning is carried out using the first two algorithms, learning is first

carried to find the maximum number of iterations required for the learning procedure.

In the learning procedure, 100 consecutive iterations are examined for
modification in the estimated Q values. If the change is negligibly small in all these
100 iterations, the estimated Q values are regarded as optimum corresponding to a
particular state — action pair. The iteration number thus obtained is approximated to
nearest multiple of 100 is taken as ‘maximum iteration (max_iteration)’ and used in
next trials. Different successive executions of the algorithm with max iteration

provided with almost the same results with tolerable variation.

RL_UCP! indicated the convergence after 5000 iterations. While using
RL_UCP2 the optimum is reached in 2000 iterations. The schedule obtained is given in
Table 4.4 which is same as given in Wood and Wollenberg [2002].

Table 4.4 — Commitment schedule obtained

Hour 0 1 2 3 4 5 6 7

State 0011 0011 1011 0011 0011 0001 0001 0011

The computation time taken by RI,_UCP 1 was 15.62 sec while that taken by
RL_UCP2 was only 9.45sec. From this, it can be inferred that, the pursuit method

is faster.

Case II - Eight generating unit system

Now an eight generating unit system is considered and a load profile of 24
hours is taken into account in order to prove the scalability of the algorithms. The load
profile is given in Table 4.5
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Table 4.5 — Load profile for 24 hours

Hour 0 1 2 3 4 5 6 7
LoadMW) 450 530 600 540 400 280 290 500

Hour 8 9 10 11 12 13 14 15
LoadMW) 450 530 600 540 400 280 290 500

Hour 16 17 18 19 20 21 22 23
LoadMW) 450 530 600 540 400 280 290 500

The cost characteristics are assumed to be linear as in previous case. The generation
limit and the cost characteristics are given in Table 4.6

Table 4.6 — Gen. Unit characteristics for Eight generator system

Incremental | No. Load | Startup

Unit Pmin | Pmax Cost Cost Cost
MW) | (MW) Rs. Rs. Rs.

1 75 300 17.46 684.74 1100

2 75 300 17.46 684.74 1100
3 60 250 18 585.62 400
4 60 250 18 585.62 400
5 25 80 20.88 213 350
6 25 80 20.88 213 350
7 20 60 23.8 252 0.02
8 20 60 23.8 252 0.02

The optimal cost obtained for 24 hour period is Rs. 219,596/- and the solution
obtained is given in Table 4.7. The status of the different units is expressed by the
decimal equivalent of the binary string. For example during the first hour, the
scheduled status is ‘3°, which indicate 0000 0011.
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Table 4.7 Commitment schedule for 24 hours

Hour | O 1 2 3 4 3

Status | 3 3 11311 3 3 2 2 6 6 6 | 134 6

Hour | 12 { 13 { 14 | 15 {16 | 17 [ 18 | 19 [ 20 } 21 § 22 | 23

Status | 6 2 2 6 6 6 [ 70| 6 6 2 2 6

Comparison of two algorithms RL _UCPl and RL UCP2 are given in
Table 4.8. The number of iterations as well as computation time is again found to be

less for the pursuit method when compared with e- greedy method.

Table 4.8- Comparison of algorithms RI, UCP1 and RL,_UCP2

RL_UCP1 RL_UCP2
4Unit system No: of 5000 2000
iterations
Time(sec.) 15.62 9.45
8 Unit No: of 10° 5x10°
system iterations
Time(sec.) 34 17

Scalabillity of the proposed algorithms are now proved for simple Unit Commitment
Problem.

Case III (Four unit system with minimum up time and minimum down time

considered)

In order to validate the algorithms RL,_UCP3 and RL_UCP4, first consider the
four generator system (Wood and Wollenberg [2002]) with the given minimum up time
and minimum down time. The unit characteristics and load profile are the same as
given Table 4.2 and 4.3. The different units require different number of hours as
minimum up time and minimum down time. The minimum up time, min. down time

and the initial status of the units are given in Table 4.9.
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Table 4.9 — Minimum up time and minimum down time, initial status

v Min.Down Initial Status
Unit Up ime(Hr.) time(Hr.)
1 4 2 2
2 5 3 1
3 5 4 -4
4 1 1 -1

The initial status -1 indicate that the particular unit has been DOWN for 1 hour
and the initial status 1 represent that the unit has been UP for 1 hour.

The learning of the system is carried out using RL UCP3 and RL,_UCP4. A
number of states are visited and after 10’ iterations, the Q values approach optimum.
RL_UCP3 enumerates and stores all the visited states. The goodness of each state
action pair is stored as Q value. On employing state aggregation in RL_UCP4, the
number of entries in the stored look up table is reduced prominently. This is reflected
by the lesser computation time. The optimum schedule obtained is tabulated in
Table 4.10 which is consistent with that given through Dyramic Programming (Wood
and Wollenberg [2002])

Table 4.10 — Optimum schedule obtained

Hour 1 2 3 4 5 6 7 8

Status 0110 0110 OI111 0110 0110 0110 0110 0110

In RL._UCP3, since the number of states and hence the number of Q values
manipulated are more, the execution time is more. In case of RL_UCP4, the number of
states is drastically reduced due to the aggregation of states and hence the schedule is
obtained in much lesser time. Time of execution of the algorithms RL_UCP3 and
RL_UCP4 are tabulated for comparison in Table 4.11
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Table 4.11 —Comparison of RI,_UCP3 and RL_UCP4

Execution
Algorithm Time (Sec.)
RL_UCP3 9.68
RL_UCP4 3.89

From the comparison of execution time, it can be seen that state aggregation

has improved the performance very much.

Case IV — Ten generating unit system

In order to prove the flexibility of RL_UCP4 and to compare with other
methods, next a ten generating unit with different initial status given is considered
(Cheng et al.[2000]).

In this case minimum up time and minimum down time are also different for
different units. Minimum up time of certain units is 8 hours, which is difficult to be
handled by RL_UCP3. The cost functions are given in quadratic cost form, C(P) =
a+ bP + cP?% wherea,band c are cost coefficients and P the power
generated. The values of the cost coefficients a, b and ¢ for the different generating
units are given in Table 4.12. For a load profile of eight hours given in Table 4.13, the
algorithm gave an optimum result in 2 x 10° iterations. The obtained commitment
schedule is given in Table 4.14
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Table 4.12 — Generating Unit characteristics of 10 generator system

Cost coefficients Start Min.

P min | P max clcl:;t Min.Up | Down Initial

Unit | MW) ;| (MW) a b c Rs) | (hrs) (hrs.) | status
1 150 | 455 | 1000 | 16.19 | 0.00048 | 4500 8 8 8
2 150 | 455 | 970 | 17.26 | 0.00031 | 4000 8 8 8
3 20 130 | 700 | 16.6 | 0.00211 | 550 5 5 -5
4 20 130 | 700 | 16.6 0.002 360 5 5 -5
5 25 160 | 450 | 19.7 | 0.00031 | 300 6 6 -6
6 20 85 370 | 2226 | 0.0072 | 340 3 3 -3
7 25 85 480 | 27.74 | 0.00079 | 520 3 3 -3
8 10 55 660 | 25.92 | 0.00413 | 60 1 1 -1
9 10 55 665 | 27.37 ] 0.00222 | 60 1 1 -1
10 10 55 670 | 27.79 0.00173 60 1 1 -1

Table 4.13 ~ Load profile for 24 hour

Hour P e (MW) Hour P peea (MW)
1 700 13 1400
2 750 14 1300
3 850 15 1200
4 950 16 1050
5 1000 17 1000
6 1100 18 1100
7 1150 19 1200
8 1200 20 1400
9 1300 21 1300
10 1400 22 1100

11 1450 23 900
12 1500 24 800
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Table 4.14 - Unit Comnmitment schedule

10

1

Hr Load(MW)

700

750

850

950

1000 1

5

1100 1

6

1150 1

.

1200 1

8

1300 1

9

1400 1

10

1450 1

11

1500 1

12

1400 1

13

1300 1

14

1200 1

15

1050 !

16

1000 1

17

1100 1

18

1200 1

19

1400 1

20

1300 1

1100

21

1

22

900

23

800

24
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By executing RL_UCP4 for the above characteristics, the commitment
schedule is obtained in 268 sec. The obtained schedule is given in Table 4.14. The cost
obtained and the computation time are compared with that obtained through hybrid
methods using Lagrange Relaxation and Genetic Algortihm (LRGA) proposed by
Cheng et al. [2000] and Simulated Annealing and Local search (SA LS) suggested by

Purushothama and Lawrence Jenkins.[2003]. Comparison of the cost and time are

given 4.15.
Table 4.15 — Comparison of cost and time
Execution
Algorithm Cost(Rs.) Time(sec.)
LRGA 564800 518
SALS 535258 393
RL_UCP4 545280 268

A graphical representation of Table 4.15 is given in 4.1

600 -

518 sec

8

8

H LRGA
mSALS

g

= RL_UCP4

Exec. Time(Sec.)
w
8

g

10 gen system

Fig 4.1 Comparison of execution time (sec.) of RL approach

with other methods
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The comparison revealed that the proposed method gave comparable cost with
other methods and takes less computation time. Quick decision making is
advantageous in a practical power system scheduling since the economy of power
generation directly rely on the same. When a practical system is considered the cost is
not at all constant and it changes from time to time. Reinforcement Leamning provides

with a solution for handling the same.
4,12 Conclusion

Unit commitment has now been formulated as a multi stage decision making
task and then Reinforcement Learning based solution strategies are developed for
solving the same. First the minimum up time and minimum down time limitations are
neglected and the scheduling policy is arrived using € greedy and pursuit methods for
action selection. Then the minimum up time and minimum down time of the generating
units are considered to find the optimum commitment schedule. An index based
approach has been formulated to reduce the size of the search space in RL_UCP3 and
state aggregation method is implemented to make the solution more efficient and
reduce computation time in RL,_UCP4. All the four algorithms have been verified for
different systems with given load profile. The results seem to be good with respect to

the computation time when compared with some of the recent methods.

Getting a profitable schedule based on the instantaneous cost is a much needed
task. This indeed necessitates algorithms which provide the optimum schedule at
minimum time as far as possible. In a practical power system, at the load dispatch
centre time to time decision making is a serious task since the impact on the economy
is very serious. A quick decision making is necessitated at each change of the
stochastic data. As the Reinforcement Learning method proves to be faster and more
efficient in handling system data compared to other strategies, it is much suitable for

practical systems.
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CHAPTER B

REINFORCEMENT LEARNING APPROACHES
FOR SOLUTION TO
EcONOMIC DISPATCH

5.1 Introduction

In the previous chapter, Unit Commitment Problem has been solved using
Reinforcement Learning approach. Next loop in power scheduling is Economic
Dispatch. Economic Dispatch problem is challenging because of the large varieties of
cost functions. Cost function in some cases may be non convex, discontinuous. In

some other cases it is not well defined and may be stochastic.

Classical methods fail to handle the non convexity of the cost data. The soft
computing methods efficiently handle the non convex cost functions. But most of them
fail to handle the stochastic nature of the cost. In this thesis, an efficient approach using
Reinforcement Learning to solve Economic Dispatch problem is presented. This
approach can handle any kind of cost data, including stochastic cost. Moreover, once
the Q values are learnt, the schedule for any load value can be retrieved
instantaneously.

In the next section, mathematical formulation of the problem is given. Q
learning method is adopted to develop the different Reinforcement Learning
approaches in the succeeding sections. The class of algorithms is denoted as RL_ED.
For simplicity, transmission losses are neglected while formulating the algorithms in
the first stage.

Finding the comrect combination of power values makes the problem a
combinatorial optimization task. In the first step of solution, the power combination or
optimum dispatch is obtained for each load demand independently. In this case, every

load dispatch is considered as a separate problem as in methods like Genetic
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Algorithm. The solution based on an adaptive decision making strategy (Thathachar
and Sastry [2003]) is proposed, termed as Learning Automata algorithm (RL_ED1). In
this case, the optimum dispatch is obtained by trying a sequence of possible power
combinations or actions. The action selection is done in a more scientific manner. At
each step of trying an action, value of a performance index associated with that action
is updated. Performance index stores the goodness of an action for further

consideration in the next steps.

When the number of generating umits increases, the number of possible
combinations of power allocation will increase beyond a manageable limit. Finding the
allocation independently for each load demand from the huge action space is a difficult
task. This motivates the formulation of Economic Dispatch as a multi stage decision
making task.

In the second stage of solution, Reinforcement Leaming solutions are
developed for this multi stage decision making problem. Learning is ciried out uéing
Q- learning. Two types of action selection strategies, € - greedy and pursuit method are
used to develop the solution steps as RL._ED2 and RI._ED?3 respectively.

The transmission losses occurring in a system are not considered in the
previous two approaches of solution. As the third step of putting forward a solution
suitable for practical power system, the transmission losses are also considered. This
extended algorithm is given as RL,_EDA4.

In order to make the solution more efficient in handling the continuous nature
of input at each stage of the problem, a function approximation approach is also
suggested as the fourth step of solution. Radial Basis Function networks are used as the
function approximating network and the learning is carried out through Reinforcement
Learning. The algorithm is described as RL._EDS.

The performances of the developed algorithms are evaluated using several
IEEE standard test systems. To assess the efficacy of the proposed methods,
comparison is also made with some of the latest solution methods including Simulated
Annealing and Partition Approach Algorithm.
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5.2 Problem Description

Economy of operation, in particular, is more significant in the case of thermal
stations, as the variable costs are much higher compared to the other type of generators.
The cost of fuel is the major portion of the variable cost and the purpose of optimal
operation is to reduce the cost of fuel used. A number of constraints also have to be
considered while trying to minimize the operating cost. These include generation limits
of the units, prohibited operating zones, ramp rate limits, valve point loading etc.

5.2.1 Generation limits

Each generating unit is having its minimum and maximum generation limit

specified as
Pmin(iy < Pi < Pmax(i)
Poin @) : Min. Power generation of i** unit
Prax @) : Max. Power generation of i** unit

But the assumption of adjusting the unit generation output instantaneously over this
entire range is not valid at all situations. Some of the practical systems will be having
prohibited operating zones and ramp rate limits which also force constraint to limit

their operation in the entire range of possible generation.
5.2.2 Prohibited Operating Zones

A thermal generating unit may have prohibited operating zone(s) due to the
physical limitations of power plant components (e.g. vibrations in a shaft bearing are
amplified in a certain operating region). As a result, in practice, the whole of the unit’s
operating range is not always available for load allocation. For a prohibited zone, the
unit can only operate above or below the zone. For example, a 500 MW generator, with

a minimum generation limit {£,,;,) of 100 MW and a maximum generation limit (2,,,,)
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of 500 MW, may have a prohibited operating zone, say, between 250 MW and 350
MW. This prohibited zone results in two disjoint convex regions -the region between
100 MW and 250 MW (i.e. [100 MW, 250 MW]) and the region between 350 MW and
500 MW (i.e. [350 MW, 500 MW]). These two disjoint regions form a non-convex set.

Fig. 5.1 shows the input-output performance curve for a typical thermal unit.
Several cases available in the literature discuss the effects of the prohibited zone in the
Economic Dispatch problem. In practice, the shape of the input-output curve in the
neighborhood of the prohibited zone is difficult to determine by actual performance
testing or operating records. In actual operation, the best economy is achieved by
avoiding operation in these areas. As such, heuristic algorithms are developed to adjust

the generation output of a unit in order to avoid unit operation in the prohibited zones.

Input
(Rs./hr) /

W

P, P Output (MW)

(P,.", P,;" are bounds of a prohibited zone)

Fig.5.1 Typical input-output curve of a thermal unit.
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5.2.3 Valve point effects

The unit input-output curve establishes the relationship between the energy
input to the driving system and the net energy output from the electric generator. The
input to thermal equipment is generally measured in Btu’s per hour and the output is

measured in megawatts.

Input
MBtu/h)

Output(MW)
Fig.5.2 Thermal unit-input versus output with valve point effect

Fig. 5.2 shows a thermal unit input-output curve showing the valve point
effects. The ripples in the input-output curve are the result of sharp increase in losses
due to wire drawing effects, which occur as each steam admission valve starts to open,
producing a rippling effect. As each steam valve opens, instantaneous output also
increases sharply and then it settles. Smooth quadratic function approximations are
used for solution in classical Economic Dispatch methods. Heuristic methods can avoid

this approximation and provide better solution.
5.2.4 Multiple fuel options

Some of the thermal plants may take different types of fuels at different
regions of power output, for efficient operation. In such cases the fuel cost function
will not be following the same relation with the power output for the entire range of
operation. It is better to represent the cost functions as piecewise polynomial functions
corresponding to the different regions of operation.
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5.2.5 Transmission Losses

Since the power stations are usually spread out geographically, transmission
network losses must be taken into account to achieve true economic dispatch. Network
loss is a function of power injection at each node. To calculate network losses, two
methods are in use. One is the load flow computation method and the other is the B
coefficients method. The latter is commonly used by the power utility industry.

Considering the operating characteristics and constraints of the thermal
generating units, Economic Dispatch can be modeled as a constrained optimization

problem.
5.3. Mathematical formulation

Consider a power system having N generating units. Let P, be the power
demand to be satisfied with these N units at any slot of time and let P, be the total

transmission loss in the system.

The objective function of Economic Dispatch problem Cr is equal to the total
cost for supplying the load power Pp. The problem is to minimize Cr subject to the
constraints that the total generated power and the load demand equals and the power
constraints on all units are being met. Mathematically the objective function which is
the total cost of generation (Cr ) can be expressed as

Cr = CPY+Co(P)+Cs(PY+.....C\(Py)

2w G.1)

where C; denotes the cost function corresponding to i* unit and P; the
electrical power generated by that particular unit.

The fuel cost function can be expressed in a variety of forms including quadratic
cost functions, piecewise quadratic cost functions, higher order polynomials, tabular

form etc.
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®
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Quadratic cost functions:
In this representation, the fuel cost of each unit is expressed as a quadratic
expression,
G(P) = a;+ biP, + ¢/P}
Including the effect of valve point, the quadraric cost function is added
with a recurring sinusoidal term:
Ci(P) = ag+ by P+ ciPE + e sin (fy Pmin(py — PO)
Where a, b,, ¢, e; and f; are the cost coefficients correponding to i*
generating unit.
Higher order Polynomials:
One of the commonly used model is the third order polynomial form as
given by:
C,(P;)= a;+ b; P, + ¢,P? + d;P}
Where a, b, ¢; and d; are the cost coefficients correponding to
generating unit.
Piecewise Quadratic functions:
For making the cost functions accurate, piecewise quadratic functions are
also used. In this, Cost is represented by different quadratic cost functions
in the different regions as,
CP)  =aiy +biyPi* ciyP? (Ppwy SP12Pyy)
=aig thgP1+ P (P SPi2Pg)
=ay) thiyPi + ciyP’  (Pigy SP12Pucy)
Tabular form:
When a mathematical expression is difficult to be arrived, from the
experimental knowledge, the cost of a generating unit can be expressed in
tabular form.
Stochastic cost data
In the case of practical systems, the known details of the cost function may
not be deterministic or may fit to any of the mathematical formulations

exactly. Cost of generation of any power P may be a random variable.
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The constraints for this optimization problem comes from the various aspects
of generating unit characteristcs, transmission system effects, power demand etc. Since
the generated power should meet the load demand and the transmission losses in the

system, the most basic constratint is the power balance constraint expressed as,

P~ Py, =P =0 (5.2)
Where Pp : Total load power demand
P : Power generated by i”* generating unit
P : Loss in the transmission system

Loss in the transmission system can be calculated by executing power flow algorithms
or can be approximated by the B — Matrix loss formula. Due to simplicity, B-
CoefTicient formulation is widely used by the power utility industry. The B — Matrix
Loss formula is given (Wood and Wollenberg [2002]) as

=N

F 4
[

(= N
P, = P By Py + ZBloPl + Bgo

i=1

-
Py

=
]

where B is the ii* element of the loss coefficient square matrix; By, is the i* element of

the loss coefficient vector and By is the loss coefficient constant.

The generation limit constraints are given as,

Pringy € Pt £ Praxq (5.3
Prin : Min. Power generation of i** unit
Prmax(p : Max. Power generation of i** unit

Ramp rate limits are specified by the limits on the incremental rate of generation as,

P;,—P,(,_l) =UR,- andP,(,.U—P,-,=DR,
(5.4)

UR, and DR, are up ramp and down ramp limits of the i** unit, which

are in the units of MW/ hr. In practice, DR, is greater than UR,.
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In the next sections, some faster and efficient solution strategies to handle this
allocation problem are proposed.

5.4 Learning Automata solution for Economic Dispatch

In Economic Dispatch problem, the Learner (Dispatcher) has to get the
optimum generation of the /N generating units so as to meet the power demand Pp. In
order to develop a simple solution strategy, the transmission losses are neglected for

the time being.

In this solution, optimum schedule is obtained for a single load demand in one
learning procedure. This approach is similar to Genetic Algorithm, Simulated
Annealing etc. The systematic approach suggested through Learning Automata seems
to be better than Genetic Algorithm and Simulated Annealing. The solution procedure
motivates the steps into Reinforcement Learning solution to Economic Dispatch.

Input to the decision making system is the amount of active power demand to
be satisfied with the set of committed units. The different actions (decisions) possible
can be treated as a set of vectors, where each action vector gives the loading of the
different units (or in other words power combinations). This approach is similar to N

arm bandit problem discussed previously.

The set of permissible actions (action set ) is determined by taking into
consideration the load demand and minimum and maximum limits of generation that
can be met by each unit. A suitable discretization value for power increments is taken
to generate the different power combinations or actions. For small values of discrete

step, number of possible actions will increase.

Any action a; is represented by a vector, [ Py, Py, ...Px; ], where Py, Py, ... Py
are the power allocation to the N units corresponding to action a; such that,

Ef’:lplk:PD and

Py € {PrinGi) Pmin® + Sa» Pmin(i) + 250, e - o Praxn}

Here, S, is the discrete action step chosen.
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Now the algorithm can be formulated to solve this leaming automata problem.
ie, to find the best action or optimum dispatch. The learning automata system learns
through continuous taking up of actions and updating of the corresponding
performance index. The values of the performance index associated with all the actions
in the action set are first initialized with zero. One of the actions, a, € A is selected by
the learning algorithm using any of the exploration strategies. In this case & greedy
selection strategy is used.

On applying the action a; from the action set, the environment (the generating
units) gives back a numerical value or reward equal to the cost of generation of power

with the dispatch corresponding to ay, Cost(ay).

N
Cost (ay) = Z Ci(Pix)
i=1

This numerical value can be used to update the performance index
corresponding to action a;, say Qfa; ) as given by the equatior:

0" (ar) =@ (ay +a [Cost(ay Q' (ay), (3.5)
where a is the learning parameter

The learning parameter influences the convergence and correctness of the
optimum values of the performance index. A large value of o will make the algorithm
oscillatory. A very small value will slow down the convergence. By trial and error
method, « is chosen as 0.1. The action selection and updating of performance index
are repeated for sufficient number of times so that the values of the performance index
will converge (change in the value become negligibly small) and afterwards the action
with optimum (minimum) value of performance index will be chosen with highest
probability. Therefore, once the learning system is converged, the optimum allocation

(action) is found as:
a* = argming,_, Q( ai ), which is the greedy action itself.

The complete algorithm is given as RL,_ED1.
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Algorithm for Economic Dispatch using Learning Automata (RL_EDI)

Read the generating unit data

Initializee = 0.5and a. = 0.1

Identify the demand to be met

Choose a suitable discretization step

Identify the max. no: of permissible actions 'm’
Generate the possible actions, ag....Qp.;
Initialize Q°(ay) =0 , O<k<m-1

For ( n=0 to max_iteration)
Begin

Select an action a, using € greedy algorithm,
using the current values of performance index
Calculate cost (ay)
Update Q" (ay) to 0" (a)) using eqn (5.5 )
End

Find the greedy action from the updated values of Q (ay), 0<k<m-1

The Learning Automata method provides a very simple method of solving
Economic Dispatch problem. When the number of generators increases, the action
space becomes huge. This makes the computation difficult for finding the optimum

dispatch even for a single load demand.

To handle the problem efficiently the Economic Dispatch is now formulated as
a multi stage decision task. The states at each stage of the problem are discretised in
terms of the demand to be met at each stage. Reinforcement Learning based solution
strategies are proposed to find the best actions at each stage corresponding to the
different states. Therefore as the next step, in the proposed method, Economic Dispatch
is formulated as a multi stage decision making task.
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5.5 Economic Dispatch as a multi stage decision problem

To view Economic Dispatch as a Multi stage decision making problem, the
various stages of the problem are to be identified. Consider a system with N generating
units committed for dispatch. Then Economic Dispatch problem involves deciding the

amount of power to be dispatched by Gy, G), G, vevvenvee . Gy

In this formulation the amount of power to be dispatched by G; is denoted as
action a; Action q, in Reinforcement Learning terminology corresponds to a power
allocation P, MW to generating unit G,. P, is numerically same as a,. Therefore, the
action set A, consists of the different values of power dispatch possible to G;. That is,

A= { Miny, ... ... ..., Max, }, Min, being the minimum value of power that
can be allotted to G, and Max, being the maximum power that can be allotted to G,.
Values of Min; and Max, depend on the minimum and maximum values of power
generation possible with & unit and also maximum and minimum power that can be
allotted among the remaining N - & units available. Therefore, action set A, is a
dynamically varying one depending on the power already allotted to the previously

considered units.

The quantization step (in MW power) is chosen based on the accuracy needed.
But a very small value is not necessitated due to the setting of the reference point
setting in a plant. Therefore an optimum value is chosen based on the accuracy needed
and the setting of the units. Also as number of generating units and hence the range of
possible demand increases, the number of states in the state space increases. State
space is also discretized to have definite number of states. For defining the same, an
optimum value of step size is to be chosen so as to get the required accuracy keeping

the number of states manageable.

Now the problem can be stated as follows: Initially there are N units and Pp
MW of power to be dispatched. The initial state is denoted as stagey. In stage, a
decision is made on how much power is to be dispatched by G,. This action is denoted

as ay and corresponds to P;,MW allocation to Gy.
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On making this decision, stage 1 is reached. Also (Pp — ag) MW of power
remains to be allocated to the remaining N-1 units (G, , G, ..Gy,). In stage,, a
decision a; is made on how much power is to be dispatched to ;. Similarly at stage %,
a decision is made on how much power is to be dispatched by G. Thus, the stage N-1
is reached where the amount of power to be dispatched by Gy G, .........Gy.; are
already decided as (ay, a; . ay) which give directly the power allocations (P,
Py PR

From the power balance constraint (with P, = 0), it follows that,
Py+P;+Ps+.........Py, = Pp which directly implies that

Py = Pp~ (Po+P+Pyt............. Py
Therefore, in stagey.,, there is no choice but to allocate power Py, or take action ay.;.

Each state at any stage; (k varies from 0 to N-1) can be defined as a tuple (k
Dy) where k is the number indicating the stage number and D; , the power to be
distributed among the remaining & - X units.

That is, with k = 0, the state information is denoted as (0, Dg) where D, is the
load demand Pp for Economic Dispatch among the N generating units. The RL
algorithm selects one among the permissible set of actions (between max. and min.
power limits corresponding to one of the unit) and allocates to the particular machine
considered so that it reaches the next stage (¢ = 1) with the remaining power after
allocation, and N-1 units for generation. Transition from (0, Dy on performing an
action gy €4 results in the next state reached as (I, D,).

Dl =Do—ao

Or in general, in stage k, from state x, on performing an action g, reaches state x;,. ie,

state transition is from (k, D;) to (k+1, Dy.y), where

Dye1 =Dy - a4 (5.6)

127



Chapter 5

This proceeds until the last stage. Therefore, state transition can be denoted as,

Xe+1 = f(xkﬁ ak)‘
‘f* being the function of state transition defined by equation (5.6).

Thus, Economic Dispatch algorithm can be treated as one of finding an optimum
mapping from the state space y to action space (possible discrete power allocation
values) A. The associative nature of the problem arises from the fact that each action
denotes distribution of power to one unit so that the power to be distributed among the
remaining units reduces by that much amount. Design of Economic Dispatch
algorithm is finding or learning a good or optimal policy (allocation schedule) which is
the optimum allocation at each stage. Such allocation can be treated as elements of an
optimum policy *. For finding the net cost of generation, cumulate the costs at each
of the N stages of the problem. These costs can be treated as reward of performance of
an action in the perspective of Reinforcement Learning. The net cost of generation on
following a policy 7 can be treated as a measure of goodness of that policy. Q learning
technique is employed to cumulate costs and thus find out the optimum policy.

5.6 RL Algorithm for Economic Dispatch using &- greedy
strategy

In the previous section, Economic Dispatch is formulated as a multi stage
decision making problem. To find the best policy or best action corresponding to each
state, Reinforcement Leaming strategy is used. Solution consists of two phases:
learning phase and policy retrieval phase.

To carry out the learning task, one issue is regarding how to select an action
from the action space. The two commonly used action selection methods are € - greedy
and pursuit. In this section, € greedy strategy of exploring action space is used and the
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developed solution is termed as RL_ED?2. Pursuit action selection is used to develop
the learning algorithm in the next section (RL_ED3).

For solving this multi stage problem using Reinforcement Learning, first step
is fixing of state space i and action space A precisely. The different units can be

considered arbitrarily as corresponding to the different stages.

Fixing of state space 7y primarily depends on number of generating units
available on line and the possible values of power demand (which in turn directly
depends on min. and max. values of power generation possible with each unit). Since
there are N stages for solution of the problem, the state space is also divided into ¥
subspaces. Thus, if there are N units to be dispatched,

The dispatch problem should go through N (no: generating units) stages for
making allocation to each of the N generating units. At any stage (stagey), the part of
state space to be considered (i) consists of the different tuples having the stage
number as k and power values varying from Dpiug t0 Duagy Dwing being the
minimum power possible to be met and D,..q) the maximum power possible at &¥*
stage (with NV - k units).

That is, x = {(k Duingp), - v- oo (k, Dpax))}
where D,,;,s =Minimum power possible with N - k units
=Tk " Princy
Dppaxpy = maximum power possible with N - k units
=ik Prax (i)
At each step, the Economic Dispatch algorithm will select an action from the
permissible set of discretised values and forward the system to one among the next

permissible states.
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The action set A consists of different values of MW power that can be allotted
to ¥ unit. The action set A, depends on the demand value D, at the current state x; and
also on the minimum and maximum power generation possible with remaining N - &
units. Therefore action set <A, is dynamic in nature in the sense that it depends on the
power already allotted up to that stage and also the minimum and maximum generation
possible with the remaining N-k units. If D, is the power to be allotted, minimum value

and maximum value of action a, are defined as
Miny = max [(Dy- %izk+1 Pmaz @))» Prin ]
Mazy = min [(Dy- ZZX+1 Prain ) Prax]
(5.7
The number of elements in these sets ¢ and <4 depends on the minimum and

maximum limits and also the sampling step.

For updating the Q value associated with the different state — action pairs, one
should cumulate the cost at different stages of allocation in a proper way, by taking
into account the associative nature of the problem. In Economic Dispatch problem, the
reward function (g} can be chosen as the cost function itself. That is, Reward received
or cost incurred on taking an action a, or allocating a power Py at & stage is the cost
of generation of the power Py. In the Reinforcement Learning terminology, the

immediate reward,

i = g Xk, g, Xg41) = C(Py)
(5.8
Since the aim is to minimize the cost of generation estimated Q values of state-

action pair are modified at each step of learning as,

Qn+1(xkl ak) = Qn(xkl ak) + a [g(xkl ax, xk+1) + mina'&ﬂk+1 Qn (xk-l"ll a) -

Q™ (xg, ax)]
(5.9

Here, a is the learning parameter and ¥ is the discount factor.
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When the system comes to the last stage of decision making, there is no need
of accounting the future effects and then the estimate of Q value is updated using the

equation,

Q™M (x, ax) = Q" (xp ) + @ [ g (X, A Xi41) — Q™ (xp )]
(5.10)

For finding an optimum policy, a learning algorithm is designed which will go
through each of the N stages at each step of learning. As the learning steps are carried
out sufficient number of times, estimated Q values of state-action pairs will approach
to optimum so that we can easily retrieve the optimum policy (allocation) 7'(x)
corresponding to any state x.

The learning procedure can now be summarized. At each iteration of learning
phase the algorithm will take the system initial condition (ie, for X = 0) which is the
power demand, as one random value within permissible limits. Then an action is
performed which will allocate power to one of the units and then pass to the next stage
(k = I) with the remaining power. This proceeds until all the N-/ units are allotted
power. At each state transition step, the estimated Q value of the state — action pair is
updated using equation (5.9).

As the learning reaches the last stage, since there is no choice of action, the
remaining power to be allotted will be the power corresponding to the action (ay.; =
Dy.;). Then the Q value is updated using equation (5.10). The transition process is
repeated a number of times (iterations) with random values of initial demand and each
time the dispatch process goes through all the N-/ stages. Value of ¢ is taken closer to
0.5 in the initial phases of learning and is reduced in every max_iteration/10 iterations
by 0.04.

The entire algorithm of Learning is given as RL_ED2:
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Algorithm for Economic Dispatch using € greedy (RL_ED2)
Get Unit parameters
Initialize the learning parameters
For all the stages Identify possible state vectors, z,
Evaluate minimum and maximum demands permissible at each stage
Initialize OP(x, a) to zero
Initialize £= 0.5
For (n = 0 to max_iteration)
Begin
Pp = rand (Dminy, Dmaxy), Dy= Pp
For k=0to N-2
Do
State tuple x, = (k, Dy)
Identify the action space A using egn. (5.7)
Select an action a, from action set A,
using & greedy method.
Apply action a, and allot power to k" unit,
Diy=Dy-ay
Calculate the reward function g(xx, Ay, Xx+1)
using eqn.(5.8)
Update Q" to Q"' using eqn. (5.9)
End do
o D N-1
Calculate the reward using eqn. (5.8)
Update Q' to Q"' using eqn. (5.10)
Update learning parametere.
End
Save Q values.
The performance of the algorithm is evaluated for several standard test

systems.
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5.7 Pursuit algorithm for Economic Dispatch (RI._ED3)

As explained before, in case of pursuit algorithm, for any given state x;, an
action is selected based on the probability distribution function p,, (). In the case of

Economic Dispatch, initially the probability associated with each action a, in the action

set oA, corresponding to x, are initialized with equal values as

1
pxk(ak) - E
where 1, is total number of permissible actions at stage k. As in the
previous algorithm, initialize the ) values of all state ~ action pairs to zero. That is,
[

Qka)=0VicyandVa€A  0<=k<=N-

Then at each iteration step, an action a is selected based on the probability
distribution. On performing action a, it reaches the next stage with Dy.,=D; - @, The
cost incurred in each step of learning is calculated as the sum of cost of producing
power P (P, = ai) with the ¥* generating unit. Q values are then updated using the
equation (5.9). At each of the iteration of learning, we find the greedy action as a, =
argming 4, (Qfxi,a )). Then accordingly the probabilities of actions in the action
set are also updated as,

P2 ax) = PR (ax) + B[1 - B (ax) | whenay = q,
PR (ax) = P2, (ax) — Blp%(ax) L whenay # a4

(5.11)

The algorithm proceeds through several iterations when ultimately the probability of
best action in each hour is increased sufficiently which indicate convergence of the
algorithm. First the learning is carried out to find the maximum number of iterations
required, checking the updating of Q values in 100 successive iterations. The entire
algorithm is given as RL._ED3.
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Algorithm for Economic Dispatch using Pursuit method (RL_ED3)

Get Unit parameters
Initialize learning parameters
For all the stages Identify possible state vectors,
Evaluate minimum and maximum demands permissible
Initialize Q (xa,)=0
Initialize py, (ay) = 1/ny. ny maximum number of actions possible in "41:
For (n=0 to max_iteration)
Begin
Pp = rand (Dminy, Dmax,), D, = Pp
For k=0toN-2
Do
State tuple x, = (k, Dy
Iaentify the action space A, using eqn. (5.7)
Select an action ayusing py, ()

Apply action ay and find the next state, Dy.; = Dy - ax

Calculate the reward function g(xy, Ay, Xx+1)
using eqn.(35.8)
Update Q" to Q"' using eqn. (5.9)
Update probability p3, (ax) to p3;* (ax)
using eqn.(5.11)
End do

=D

An.q N-1

Calculate the reward using eqn (5.8)
Update Q" to Q"' using eqn (5.10)
Update probability p}, (ay) to ptt(ay) using eqn. (5.11)
Update learning parameter ¢
End.

Save Q values.
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This exploration strategy updates the probability of selecting an action at each
stage. As the leamning proceeds the greedy action will turn to be having higher
probability of selection compared to others. This leads to easy convergence compared
to € - greedy strategy.

5.8 Policy retrieval

As the learning proceeds and updating of Q values of state — action pairs are
done sufficiently large number of times, Q" will be almost equal to Q°. Then the
optimum Q values are used to obtain the optimum dispatch. For any value of power
demand Pp, initialize Dy = Pp. Then the state of the system is (0, D). Find the greedy
action at this stage as a, which is the best allocation for " generating unit (Py). The
learning system reaches the next state as (I, D;) where D, = Dy — a,, find the greedy
action corresponding to stage, as a;. This proceeds up to (N-1)* stage. Then a set of
actions (allocations) ag, a,, a;......... ay.; is obtained which is the optimum schedule P,
Py..... Py, of generation corresponding to power Pp. The algorithm for getting the
schedule from the learnt system follows:

Policy retrieval algorithm:

Initialize Pp, = Total power to be dispatched

Dy =Pp
For (k=0 to N-1)
Do
State tuple x,. = (k, Dy)
Find greedy action a; = argmin, (Q(xya))
Scheduled Power P, = a,
Dy =Dy~ Py
End do

Thus, on executing the learning algorithm and then retrieving the schedule by
finding the greedy action corresponding to the input power to each stage of the
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multi stage decision making task, optimum schedule is obtained for any value of load
demand.

Till now, the transmission losses in the system are neglected. Now the
Reinforcement Learning approach is extended in order to accommodate the

transmission losses occurring in the system.
5.9 RL algorithm considering Transmission Losses

The loss in a transmission network can be estimated by executing power flow
algorithm or can be approximated using B — Matrix Loss formula. In order to find the
schedule accounting the transmission losses, one of the previous algorithms can be
used to carry out the learning steps. For stmplicity of introducing the extended method
- greedy strategy is employed for learning the system, generating random values of
initial demand. Once the learning phase is completed, the policy retrieval steps provide
us with the optimum schedule for any load value. In order to incorporate the
transmission losses, the learning is carried out first and policy retrieval is done

successively for different values of load values, accounting the losses.

First learn the Q value for the different state action pairs. Schedule for the
required load demand is retrieved by policy retrieval phase. For the schedule obtained,
transmission losses are calculated by either finding the power flows or using B matrix
loss formula. The input demand is then modified by adding the calculated loss MW.
The learning algorithm proceeds to find the dispatch for the new demand value, giving
out the new schedule of generation. This new power allocation will certainly give a

new value of transmission loss, which is again used for updating the demand.

The iterative procedure is continued until the loss calculation converges
(indicated by the change in loss in two successive iterations coming within tolerable
limits). By following these steps iteratively for different load values ranging from
Dhmin @) 10 Draxy, €conomic allocation schedule for the entire range of possible demand

(with the given generating units) is obtained. Algorithm incorporating transmission
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loss to find the schedule for all the possible values of load demand is presented in
RL_EDA4.

Algorithm for Economic Dispatch considering transmission losses (RL_ED4)
Get unit parameters including B- coefficient matrix of the system
Learn the Q values using RL_ED2
Calculate the range of load values possible Dyix gy 10 Dyax 1y
Initial load Pp = Dypin
Do
Initialize Py,,, and Prev_loss to zero
Initialize final loss tolerance to a small value u
Initialize change in loss (?) to zero
Do
Prev_loss = Py,
Find the allocation corresponding to Pp, using the policy
retrieval
Find the loss using B coefficients as Py,
Update Pp=Pp + Py
Compute change in loss ? = Py, - prev_loss
while (? > w)
Increment the load Pp, with suitable discrete step value.
While (Pp <= Dpu )

The discrete step for load MW is taken as 10 MW so as to manage the number
of states at each stage of the problem. Value of p is taken as IMW so that transmission
loss, less than that can be neglected compared to the load power. Once the learning
phase is completed, the economic allocation for all the possible load values can be
obtained instantaneously. The main attraction of these algorithms comes from the fact
that the learning is carried out only once and need not be repeated for each load

demand as in other stochastic methods.
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The learning algorithms discussed in the previous sections have one limitation.
The input to each stage £ of the multi stage problem is the amount of power to be
dispatched among remaining N - k units. This input power is discretized in order to get
definite number of states at each stage of the problem. If the discretization step is
chosen to be a larger value, accuracy of the result will suffer while a smaller value
needs longer computation time. In order to make the algorithm more efficient
accounting the continuous value of input at each stage, a function approximation

strategy is proposed in the next section

5.10 Neural Network based solution using Reinforcement

Learning

The previous algorithms using Reinforcement Leaming is based on finding a
policy or mapping from finite set of states to finite set of actions. Learning is carried
out as a multistage process, taking an action froni the available action set when the
learning system is in any of the possible states in the state space. Initially, the state of
the system is represented by a tuple (0, Pp), Pp being the power to be allocated among
the N generating units. The learning proceeds by allocating certain amount of power to
one of the units and proceeding to successive stages until all the units are allocated. At
each step of learning, Q value corresponding to state —action pair is modified according
to the reward (cost of generation) of the action. Finally the Q values approach to
optimum and using the look up table of Q values, the optimum policy is retrieved as a
mapping of generating unit to power allocation corresponding to an input load value.

One limitation of this algorithm is that the state and action spaces are
discretised with certain value of step size. This may give some inaccurate result when
the discretization step is to be made large in the case of larger ranges of demand
values. Therefore one issue to be resolved is to somehow incorporate continuous nature
for the power input values at each of the stages in the multi stage solution process so

that solution is more efficient. One method that can be introduced is to use some form
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of function approximation strategy in the learning process. In the next sections the

method of solution using function approximation strategy is presented.
5.10.1 Q learning through Function Approximation

When a continuous state space is considered, the state variable can take any
value in the continuous state space. Function approximation provides with a strategy in
which quantization of state space is not necessary. When Q learning technique is used,
Q values with respect to continuous state space are to be stored somehow. One
important fact is, in such cases Q values cannot be stored in a look up table, since the
values of state variable being of contimuous nature, One solution is to construct a
function which will approximate the Q values at different cases based on some
parameters. That is, continuous state is denoted as x and represent Q values using a
parameterized class of functions Qfx, a,8), where 8 is the parameter vector. With the
parameterized function to approximate Q value, Q — learning or learning optimum Q
values is to learn the optimum parameter vector 8* so that Q (x, a, 8°) is a good
approximation of Q*(x,a), V'x€ 7, and VaeA (Sutton and Barto [1998), Imthias et
al.[2006]).

Therefore for making this learning through parameterized function possible,
first a suitable architecture or class of functions Qx, a,6) that is well suited for our
learning problem is to be decided. Secondly formulate a learning algorithm to get
optimum value of the parameter vector €° which will give optimum Q
value, Q*(x, a, ).

In the literature, a variety of parameterized functions are found which can be
used for function approximation. Recently Neural Networks are being popularly used
for function approximation due to their extensive learning capability even with non
linear functions (Haykin [2002]).

Now, it is required to develop an algorithm to solve Economic Dispatch
problem using Reinforcement Learning and making use of a function approximating

network so that continuous nature of input variable can be accounted at each stage.
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Then the algorithm will ultimately give a policy which is a mapping from the
continuous state space to discrete action space. For the same, as told earlier, the
Q values are represented using a parameterized class of functions Q (x, a, 8 , where &
is the parameter vector. The class of functions used is the Radial Basis Function
network, a category of Neural Network well suited for function approximation. The
outputs of this network represent the Q — values.

When Neural Networks are used, mostly supervised learning is employed to
train the network or adjust the weight vector elements. In such a case, a set of training
samples are needed which can be used to adjust the weight vector values. In the case
of Q learning, if supervised learning is employed one should be previously occupied
with a set of N training samples of the form,

{(xx, ax): Q(xx,ax) k =1, ........., N, xx € 7,05 € A} in order to leam the
optimal weight values. Then the leaming will turn to be a gradient descent method
such that {Q(xy, ax) — Q" (xx, ax)} is minimizcd. But in this case, such method is
impractical, since the exact values for Q*(xy, ax) is not known for any (x, ay) pair.
Thus supervised mode of learning cannot be used to get the optimal weight vector of
RBF network which is going to be used as a function approximating network in the
Q learning method. A set of values of the form{(xy, ay, Xx+1), 9(Xx, A, Xx+1)}, where
x; is the current state, a; is the current action , x;., is the succeeding state of applying
action a, and g(xy, @y, Xx+1) is the reward corresponding to the particular transition of
state, are available. Now this information or set of examples can be used in some way
to learn the neural network for optimum weight adjustment. For the same,
Reinforcement Learning is used effectively so that optimum value of the parameter
vector 8° is obtained resulting in optimum Q values. For exploring the action space,

just like in the previous algorithm € - greedy method is employed for action selection.

In our problem of Economic Dispatch, demand at each stage can be considered
as continuous. That is input power D, to each of the stage is a continuous quantity and
the action at each stage (allocation to one particular unit) ; is discrete. The objective is

to get a policy, which is a mapping from the continuous demand space to discrete
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power allocation space. Learning optimal @ values involve leamning the optimal
parameter vector 8* such that Q(D, a,8") is a good approximation of @*(D, a). Radial

Basis Function (RBF) neural network is used to store the same.
5.10.2 Architecture of RBF Network

In this section, a novel architecture of the RBF network is proposed to store the
Q — values in the context of Economic Dispatch. Q — values of each stage is stored in
one RBF network. Thus for an N unit power system (N stage decision making
problem), there are N RBF networks. RBF network of all stages consist of an input
layer, hidden layer and an output layer. The input layer is made up of a single node for
connecting the input variable to the network. The hidden layer consists of m; hidden
nodes. This layer applies a non linear transformation from the input space to the m
dimensional hidden space, R™. The output layer consists of ; linear nodes which
combine the outputs of hidden nodes (Haykin [2002]).

The architecture of the RBF network for the first stage is given in Fig 5.3

Fig 5.3 RBF network for Stage 1.
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The input to this RBF network is D,, the total power to be supplied by
generators Gy, Gj ........ Gy and output of the RBF network after learning is

Q*(Dy,a1), Q* (D1, a3), o eve o v . Q*(Dy, a7?), where ai, a?, ... ajt are the

different actions possible at stage 1.

Similarly, the input to the RBF network of k”* stage is the power to be allocated
to generators Gy, Grsfeeercreererevrennans ,-Gx, which is denoted as the state of the system
Dk. A.lSO,

Dy = Dy-1 — aj—1
The output of this network is Q(Dy, a} ), Q(Dy, @3), .. ce vee e, Q( Dy, a1 ¥)

where #, is the number of actions or power allocations possible at #* stage. The i*

output of the RBF network at * stage is given by the expression:
{ j=mk BT
Yk = ZIT Wy, [111714, (D) (5.12)

where Wy, is n, x m; matrix of reals, and Wy, [i]){1), ... ..., Wy, [i][my] are the

weights of the i output unit; and { ¢, - ' —> K, j = I,......my} is a set of m, radial
basis functions which constitute the 1, hidden units at #* stage.

One can use the Gaussian function as the RBF. Then the output of j** RBF (ie,
7 hidden unit) at ¥* stage is given by,
¢, (D) = exp ((Dy — )?/20%) (5-13)
where ck] is the centre of j* RBF at ¥ stage and o; is the width of the RBF at
K" stage.
Substituting ¢] (Dy) from equation (5.13) to equation (5.12) we get,

J=my

Qi i 6) = ¥h = )" Wo, [llexp (D4 ~ ¢ Y/20})
Jj=1

(5.14)
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where i = /,...n, The RBF network at ¥”* stage described above is thus completely

specified by the parameter vector

8= [Ck, ak,WQk]

where
Ck = [Chy € o or eve e e G %)
N [ Y i
Wo, = (Wolilli)i=1,ucoompj=1,.... , My}

Thus, finding a good approximation of the Q value using the RBF network

involves finding the optimum parameter vector 8°* = [c¢*,a*, W"].
5.10.3 Learning Algorithm for Economic Dispatch (RL_EDS)

From the previous section it is concluded that finding the optimum parameter
vector, 8* = [c*, 0%, W"*] is the task to be resolved in finding the good approximation
of the Q value function. Next is, how to find the optimal parameters ¢*,0* and W*.

In the RBF network described above, adjusting the weights associated with a
given basis function, say j* basis function at & stage , will affect the value of the

output only in a small region around the centre of j* RBF, c,{ . (For a value of input
Dy €%, away from cl, exp (Dx — ¢)2/20%) will be almost zero. This feature of
RBF network structure which indicates that each hidden layer neuron can be viewed as
approximating the target function over a small region around its centre makes it
possible to place the centres on a uniform grid spacing in order to get a better
interpolation of the input.

In the case of Economic Dispatch problem, first fix the number of hidden units
based on the generation limit constraints. The input to this #* RBF network is the
fraction of the power demand D; yet to be distnbuted among the remaining N -k
units. Therefore, number of hidden units in each RBF network basically depends upon
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the maximum and minimum possible demand at that particular stage. i.e., for & stage,
it depends on the values of D,,i»s) and Dz

For the first stage or first RBF network, the input will be equal to the power
demand Pp. i.e., D; = Pp.

Minimum and maximum ranges of power demand possible are calculated as
discussed previously. The number of uniformly distributed centres (hidden nodes) m; at
this stage is decided by the range of Dyynr) 10 Dpmaxqyy. Similarly for K stage, the number
of hidden nodes is decided by Dyna) and Dy

Once the number of hidden nodes is fixed, find the distance between centres of
Gaussian functions as,

8t = ( Dnax@y = Dmingy) / (1)
my — Number of RBF centres at * stage.

Then the optimal values for the m, centres of the #* RBF network (c) are

chosen uniformly distributed between D, and D, as
{ Diingpr Dimingg + 8k » veovvvcrcverrnrorensiseoreesiranes Daxy /

Next is to find the optimum values for the width of the RBF networks at the
different stages. Since the centres of the Gaussian functions form a uniform grid, width
of the Gaussian function (¢ ) is taken as a suitable multiple of the distance between the
centres. This multiplication factor decides the percentage overlapping between the
successive functions. Thus width of the Gaussian distribution functions is calculated
as:

o = spread factor * distance between centres, where spread factor is the
multiplication factor chosen to provide sufficient overlapping between successive
Gaussian functions. The spread factor can be chosen in the range 0.5 - 1 based on the
complexity of the problem.

Since the values for ¢; and oy are fixed, the task of leaming now reduced to
finding the optimum value for the third element in the optimum parameterised vector
6* or W&k. In other words, problem reduces to learning the Neural Network for the

optimum values of the weight matrix Wy, [i}j],i = 1, ..., 15, j = 1, eee cce oov., 1.
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As mentioned earlier one can use of Q — leamning strategy for getting the
optimum values for the parameter Wg, .

The network has to learn for the optimal values of the weight elements
Wo, [i1[j] such that y,' would be a good approximation of Q*(Dy, af). If the Q* values
are known for each stage corresponding to a large number of state action pairs, the
learning of the network is an easier task since one can go for supervised learning of the
weight matrix Wp,. But the Q values in the initial stage are unknown and therefore
one cannot proceed in this direction. Q learning strategy is made use of to make the
network learn for the optimum values of weight matrix.

In the standard Q learning method, updating of Q value at each iteration ‘n” is
given by the equation:

Q™ (i, ai) = Q™ (xi, @) + a[( 9k, s Xkaa) +
Y Mingea,, @™ (x**1,a') - Q™ (xx,ax)]

(5.15)

In the problem of Economic Dispatch, the next state or input to the next stage

is easily found out as,

Dyy1, = Dy, — ab ,where af is the power allocation denoted by the action

performed at &* stage. That is, on selecting an action al from the action space %,
input to the next RBF network is modified as the remaining power yet to be allocated.

In this context, for learning the weight vector elements, Q learning method is
formulated for modification of the weights. In the network, if the current state is Dy
and the action is a}, the updating has to be localized to the output node,

yi = Q(Dy, ab) or in other words the weight values connected to yf need
only be modified while keeping the remaining weight values unchanged.

Since y¢ = EjI7*Wo, [iI[]9;(Dx), to change yi, Wo, [l j=
| S ,my, need to be modified. Therefore updating equations for Economic

Dispatch problem for each of the N-7 stages are summarised as,
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WEHG] = W[+ aWE U], =1y
(5.16)

WP =wa b,  j=1 e omeandl=1, .. my L # i

(5.17)
AW, [i][f] is given by the Q learning algorithm as:

AWEIIL] = a( 9Dk, e Disr) + YMingres,,, Qhar (Drs,2)

= Q" (D)) (Dx)

The reward, g(Dy , @y, Dy+1) is the cost of generation of power corresponding
to action ay. For the last stage (¢ = N - I) since there is no choice of action but to
allocate the power Dy, itself, i.e, action ay; = Dy, Therefore update equation is

expressed as:
W] = WELD) + AWE L], =1, ey

where, AWl /] = a[cost (ax) — Q" (Dk,ax) 19, (Dx)
(5.18)

The weight values are updated iteratively during the learning phase. At the end
of learning, Q values will be approaching to optimum. The selection of Gaussian
distribution function as the functions defining the hidden nodes, make the updating a
localized task which in turn improves the computational efficiency.

Once the learning is completed and the weight vector elements are converged,
the allocation schedule is obtained by just retrieving the action element at each stage
which corresponds to minimum Q values (greedy action). Thus the entire algorithm for
finding the optimum allocation schedule is having two phases as in previous cases:

learning phase and policy retrieval phase. Learning phase is given as RL_EDS.
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Function Approximation algorithm for Economic Dispatch (RL_EDS5)

Read the parameters of the RL algorithm
Read the Generating unit details
Read the demanded load power to be dispatched Pp
Fix suitable number of hidden nodes for each RBF network
Initialize input to the first RBF network D, = Pp,
For each of the N stages
Do
Find the different centres of the RBF network
Find the set of actions at each stage
( number of output nodes for each network)
Initialize all the weight vector elements as zero
End do
For iteration =1 to max_iteration
Begin
For k=010 N-2
Do
Select an action a)' from the action set Ay, using e - greedy strategy
and check the feasibility of action
For a feasible action ay, Find the cost of generation Cost (a;)
Update the weight vector elements using eqn. (5.16)
Update the input parameter Dy; = Dy - af
Enddo
an.1 = DN-I
Find the cost of generation Cost (ay.;)
Update the weight vector elements connected to yy.,
using eqn. (5.18)
End.
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Once the learning is completed, the allocation schedule corresponding to any
load value can be found by the policy retrieval phase as explained before, by finding
the greedy action at each stage.

5.11 Performance of the Algorithms

The proposed Economic Dispatch algorithms are assessed using  different
standard test cases. RL based Economic Dispatch can be applied for finding the
schedule for generating units when the cost of generation is provided in any of the
different forms like variable cost table, cost coefficient, non convex cost functions and
actual cost data from a plant. This becomes useful when the cost of power varies in
every block of time since the availability of power is practically a dynamic one.

Algorithms are coded in C language and compiled and executed in GNU
Linux environment. Performance evaluation is done with Pentium IV, 2.9 GHz, 512

MB RAM personal computer.

In order to validate the proposed algorithms and make a comparison among
them, first a three generator system with cost data given in a tabular form is considered
(Wood and Wollenberg [2002]). The first three algorithms are executed to find the

dispatch and a comparison of execution time is made.

Then IEEE 30 bus system with six generating units is taken in order to prove
the efficacy of the proposed approaches. The suitability of the proposed algorithms for
a system having generating units with piecewise cost functions is studied by
considering a 10 generator system. In the case of Reinforcement Learning algorithms,
there is no need of getting exact cost functions. It is evident from the execution results
for the stochastic cost details.

The last two algorithms are validated and compared with the other recent
methods like simulated annealing and partition approach algorithm by considering a
standard test case, IEEE 6 bus system with three generators. The flexibility of the
proposed approach is investigated for system with 20 generating unit having given cost
functions.
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In order to apply Reinforcement Learning algorithms, first the learning
parameters are to be fixed based on the problem environment. The learning parameter £
accounts for rate of exploration and exploitation needed. Since it indicates a
probability, it can take any positive value less than 1. A small fixed value may result in
premature convergence of the learning algorithm while a large fixed value may make
the system oscillatory. Therefore in these RL based algorithms, a value of 0.5 is
assumed initially providing sufficient exploration of the search space and is decreased

by a small factor successively.

Discount parameter y accounts for the discount to be made in the present state
for accounting of future reinforcements and since in the case of Economic Dispatch
problem, the cost of future stages has the same implication as the cost of the current
stage, value of y is taken as 1.

The step size of learning is given by the parameter a and it affects the rate of
modification of the estimate of Q-value at each iteration step. By trial and error a is
taken as 0.1 for achieving sufficiently good convergence of the learning system. The
RL parameters used in the dispatch problem are also tabulated in Table 5.1

Table 5.1 - RL Parameters

£ 0.5
a 0.1
4 1

Case I— Three Generator system

First a simple example with three generating units (Wood and Wollenberg
[2002]) is considered for validating and explaining the RL approach of solution. The

transmission losses are neglected in this case. The cost details are given in tabular
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form, which can be obtained from experience in case of a practical system. The unit
characteristics are given in Table 5.2, where C; stands for the cost of generating P MW

by i unit.

TableS.2 — Cost Table for three generator system

POMW) C, C G
0 100000 | 100000 | 100000
25 100000 { 100000 | 100000
50 810 750 806
75 1355 | 1155 | 1108.5
100 1460 | 1360 | 1411
125 17725 | 1655 | 11704.5
150 2085 | 1950 | 1998
175 2427.5 | 100000 | 2358
200 2760 | 100000 | 100000
225 100000 | 100000 | 100000

The three geperating umits are having the minimum and maximum power
_ generation possible as (50,200), (50,150) and (50,175). The discretization step for state
space and action space, S, and S, are taken as 25 MW for simplicity and fast

computation.
Therefore, Dmingy, = 150 Dmaxgy = 525
Dming,= 100 Dmaxg)=325
and  Dming =50 Dmaxp) =175

The Learning Automata solution (RL_ED1) was run for a demand of 300 MW.

After 1000 iterations the leamning process converged (performance index values remain
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unchanged). At this point the minimum value of performance index (@, ) is found out

as Rs. 4168 /- and the corresponding action a, corresponds to the optimum allocation

schedule.

In order to understand the performance of RL algorithms (RL_ED2 and
RL _ED3), the different components of the multi stage decision process are to be
identified. The state tuples is of the form (k, Dy, D; being the power to be dispatched
at ¥* stage.

Then, State space ¥ = y,U z, Uz, where

X = {(0,150), (0,175), (0,200), ... ... ... ....(0,525)}
= {(1,100),(0,125), (0,150), ... ... ... .....(0,325)}
and 7, = {(2,50),(2,75),(2,100), ... ... ........(0,175)}

Now identify the action space, which is a dynamic one since it depends on the
value of power D; to be dispatched. The minimum and maximum values of actions are

found out as

Ming= (Do ~Dpmax()) OF Ppingy Whichever is greater

Maxy = (D — Dping1)) OF Pogxy Whichever is smaller

Min;= (D; —Dpaxg)) OF Ppiney whichever is greater

Max; = (D; — Dy OF Ppyeqy whichever is smaller

Min;= Py Max;= Ppupy
For the purpose of explaining the algorithm, let the random value generated for the
demand is 300 MW. Then the action space at stage, is

Ao = {50, 75,..........,200}

One of these actions is selected and it passes to the next stage k¥ =1. Then the
action space A, is identified and action selection continued which brings out the
remaining power as the allocation for the last machine. Each time cost corresponding

to the power allotted is found out using the cost table given and Q value of the

151



Chapter 5

corresponding state action pair is updated. Allocation to each unit is then found out as
the action which gives the minimum Q value corresponding to state comprising the
particular stage number (unit) and the power to be allotted. That is, argmin,(Q(x, a)
gives the allocation for #* unit for the power demanded D;. Similarly the action
(allocation) corresponding to each of the units (k = 0 to N-1) is found, calculating D, at

each stage of allocation.

The three algorithms RI,_EDI1, RL ED2 and RL_ED3 are executed. The
allocation schedule obtained is obtained as (50,100,150) and the cost of generation is
Rs. 4168/-. The execution time for both the leaming and retrieval algorithms is 2.034,
2.567sec. and 1.754sec. respectively. Once the leaming is completed, using policy
retrieval phase, power schedule for any value of possible input demand values can be

retrieved.

The three algorithms are run for various the values of power demand
Drin@y<=Pp<=Dpasgy i€, 150<=Pp<=525. Part of the simulation result is tabulated in
Table 5.3 which is consistent with results given in (Wood and Wollenberg [2002]).

Table 5.3 — Allocation schedule for three generator system

D(MW) | PI(MW) | P2(MW) | P3(MW) | Cost(Rs.)
250 50 50 150 3558
275 50 150 75 3868.5
300 50 100 150 4168
325 50 125 150 4463
350 50 150 150 4758
375 100 125 150 5113
400 100 150 150 5408
425 125 150 150 | 57205
450 150 150 150 6033
475 175 150 150 | 63755
500 200 150 150 6708
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For comparing the efficacy of the two algorithms, Simulation time for the three

algorithms are compared in Table 5.4

Table 5.4 Comparison execution time for RL_ED1, RL_ED2and RI_ED3

RL_EDI! | RL_ED2 | RL_ED3
No: of iterations 10000 100000 50000
Computation
time(sec.) 2.034 2.567 1.754

A graphical layout of the comparison is given in Fig 5.4.

30
| 2.567 sec
25 1

]' 2.034 sec
2 - 1.754 sec

®RL_ED1
®RL_ED2
®RL_ED3

Execution time
=T

g(sec.L

o
|
|

Fig 5.4 Comparison of execution time of RL approaches
(RL_ED1,RL_ED2 & RL_ED3)

On comparing the computation time of the algorithms, Learning Automata

method gives lesser time compared to € -greedy solution. € -greedy provides a simple

solution method compared to pursuit method. Pursuit strategy is faster compared to

other two methods. Since execution time is less, all the three algorithms seem to be
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suitable for such smaller systems. But on analyzing the algorithmic steps, it is found
that for larger systems, Learning Automata is not preferable due to the large action
space to be handled which increases the memory requirement. The other two
algorithms are suitable for larger systems due to the multi stage formulation in the
solution procedure.
Case II - IEEE 30 bus system

To prove the flexibility for larger systems and to make comparison, the
proposed algorithms are now tested for IEEE 30 bus system consisting of six
generators (Somasundaram and Kuppusamy [2005]), without considering the
transmission losses. The system cost data is given in quadratic cost coefTicient form as
given in Table 5.5. ie, for any power P, cost of generation is given out by the equation

C(P) = Ca + Cb*P +Cc*P’ , where Ca, Cb and Cc are the cost coefficients.
Also the maximum and minimum generations possible for each of the 6 generators are

specified.
Table 8.5 - Cost coefficients for IEEE 30 bus system

Ca Cb Cc Pmin(MW) | Pmax(MW)
561 | 7.92 {0.001562 150 600
310 { 7.85 | 0.00194 100 400
78 1 7.978 | 0.00482 50 200
102 | 5.27 | 0.00269 100 500
51 9.9 | 0.00172 40 350
178 | 8.26 | 0.00963 100 280

The maximum generation possible with these 6 generators turns out to be 2330
MW while minimum generation is 540 MW. Since the number of action vectors
increases to a very large value Learning Automata method is not preferable when the
number of generators is increased. The RL algorithms (RI_ED1, RL _ED2, RL _ED3
and RL,_EDS5) are now applied to get the economic allocation for the six units.
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The discretization step for action and state space are taken as 10 MW as
balance between the accuracy and size of the state and action spaces. At each step of
iteration, action is selected according to the exploration method. The Q values of state-
action pairs are updated for which cost of generation is calculated by evaluating the
quadratic equation.

Even after two hours of execution, optimum schedule is not obtained for
RL_ED]. This is because of the large number of combinations available in the action
space.

In RL_ED2, after 5x10° iterations the Q values approach optimum while
RL_ED3 converged in 2x10’ iterations. The optimum dispatch is found out by tracing
out the greedy action which give out minimum Q value cormresponding to a particular
state D, as k vary from 0 to N-1. The optimum schedule for the different values of
power demand is obtained using the policy retrieval phase. Schedule for the entire load
values ranging from 540 MW to 2330 MW is obtained. The entire schedule is obtained
in 23.87sec. using RI, ED2 and in 15.63 sec. with RL_ED3 which proves the
suitability of the algorithms

In order to apply Neural Network approach for solution, first the number of
centres in the RBF network and the spread factor of the Gaussian distribution function
are to be decided. The number of centres decide the number of interconnections and
hence the size of the weight matrix. In Economic Dispatch problem, the number of
centres is decided by the range of demand input to each stage of the multi stage
decision task. Demand range in the last stages is much smaller compared to the initial
stages. Therefore for increasing the computational efficiency, more number of centres
is selected at the initial stages compared to later ones. Here the number of centres is
taken as 30, 30, 20, 20, 16 and 16. By trial and error spread factor of 0.7 is selected.
The solution procedure RL_EDS is executed for learning the network. The six RBF
networks are made to adjust the weights and the learning converged in 5 x 10 ¢

iterations with 14.89sec.
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The number of iterations required is more in the function approximation
method. But since the number of weight values to be adjusted is less than the number
of Q values, execution time is decreased.

The algorithms are executed in several trials and the cost and allocation
schedule obtained are almost the same with negligible error in the different trials and
with RI,_ED2, RL_ED3 and RL_EDS5.

A part of the allocation schedule corresponding to various values of power
demand in steps of 100MW is tabulated in Table 5.6.

Table 5.6 - Allocation schedule for IEEE 30 bus system

D(MW} | P{(MW) | P,(MW) | P{(MW) | P(MW) | Ps(MW) | P{(MW) | Cost(Rs.)
600 150 100 50 160 40 100 | 5951.611
700 150 100 50 260 40 100 | 6591.591
800 150 100 50 360 40 100 | 7285.371
900 150 100 50 460 40 100 | 8032.951
1000 160 150 50 500 40 100 | 8847.839
1100 210 190 60 500 40 100 | 9698.202
1200 260 220 80 500 40 100 10563.33
1300 310 260 90 500 40 100 11443.07
1400 350 300 110 500 40 100 12337.4
1500 400 340 120 500 40 100 13246.5
1600 440 380 140 500 40 100 14170.28
1700 500 400 160 500 40 100 15109.32
1800 580 400 180 500 40 100 16070.22
1900 600 400 200 500 100 100 17070.12
2000 600 400 200 500 180 120 18108.22
2100 600 400 200 500 270 130 19175.55
2200 600 400 200 500 350 150 20272
2300 600 400 200 500 350 250 21483.2
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Caselll — 10 Generator system with piece wise quadratic cost functions

To verify the algorithms for non convex cost functions and compare with one

of the recent techniques, 10 generator system having piecewise quadratic cost functions
(Won and Park [2003]) is considered. The different generators are having two or three
different operating regions. If the Cost function is C, and the space interval is divided

into three divisions, then it is represented as follows:

G(P)

The data (a;, b, ¢;, Pmiw Pmay) Of generators are given in Table 5.7

2
=ayy thiyPi+ cipP’  (Pmingy SP; 2Py

= aiq) +biPi+ cigPi (Pigy SPi2Pig)

= a thigPi+ agP’ (Pig) SPi2 Prug)

Table 5.7 Generator data for 10 generator system

Gen Pois(MW) | Py (MW) a b c

1 100 196 26.97 -0.3975 0.002176
1 196 250 21.13 -0.3059 0.001861
2 50 114 1.865 -0.03988 0.001138
2 114 157 13.65 0.198 0.00162

2 157 230 118.4 -1.269 0.004194
3 200 332 39.79 0.3116 0.001457
3 332 388 -2.876 0.03389 0.000804
3 388 500 -59.14 0.4864 1.18E-05
4 99 138 1.983 0.03114 0.001049
4 138 200 52.85 -0.6348 0.002758
4 200 265 266.8 -2.338 0.005935

Contd....
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Table 5.7 Contd...
5 190 338 13.92 -0.08733 0.001066
5 338 407 99.76 -0.5206 0.001597
5 407 490 53.99 0.4462 0.00015
6 85 138 1.983 0.03114 0.001049
6 138 200 52.85 -0.6348 0.002758
6 200 265 266.8 -2.338 0.005935
7 200 331 18.93 -0.1325 0.001107
7 331 391 43.77 -0.2267 0.001165
7 391 500 43.35 0.3559 0.000245
8 99 138 1.983° -0.03114 0.001049
8 138 200 52.85 -0.6348 0.002758
8 200 265 266.8 22.338 0.005935
9 130 213 14.23 -0.01817 0.000612
9 213 370 88.53 -0.5675 0.001554
10 362 407 46.71 -0.2024 0.001137
10 407 490 61.13 0.5084 4.16E-05
10 407 490 61.13 0.5084 4.16E-05

The system is made to learn using the algorithms given in RL_ED2, RL_ED3
and RL_EDS and the Q values approach optimum in 107, 5§ x 10° and 1.5 x 10’
iterations respectively. The same values of learning parameters are taken as in previous

cases. The discretization step for state and action spaces is taken as 10MW.
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Allocation schedule corresponding to values of power demand ranging from
1400 MW to 3000 MW obtained are given in Table 5.8. The times of execution are
42.87sec., 38.69 sec. and 34.95 sec. respectively. The cost and allocation schedule

obtained are comparable with that of improved genetic algorithm (Won and Park

[2003)).
Table 5.8 — Part of Schedule — 10 generator system
Demand
MW) P, Py Py | Pa} Ps | P¢ | Py | Ps | Py | Pip ] Cost(Rs.)
1400 100 | 170} 200|190 [ 190 | 1501 50 1200 50 | 100 903.30
1500 100 [ 190 |1 200 ] 210 | 210 | 150) 90 | 200] 50 | 100} 948.3638
1600 100 | 200 { 200 {220 | 230 | 150 | 150 } 200 | 50 | 100 | 996.4249
1700 100 | 2101200 }1240]240 1150210200} 50 | 100 | 1047.349
1800 100 } 220 | 200 | 260 | 270 | 150 | 250 | 200 ] 50 | 100} 1101.472
1900 100 | 220 | 200 | 310 | 320} 150 1 2501200 ] 50 | 100} 1164.422
2000 100 1220|200 | 3601370 | 150 | 250 1 2001 50 {100 | 1237.691
2100 110 1 220 |1 200 | 400 | 420 | 150 [ 250 [ 200 | 50 | 100} 1321.016
2200 120 | 220 | 210 | 430 } 450 § 150 | 250 | 220} 50 | 100 | 1411.387
2300 140 | 220 | 230 | 450 | 470 | 150 | 250 1 240 | 50 { 100 1507.16
2400 150 12201250 480 [ 490 | 150 | 250 [ 260 | 50 [ 100 | 1608.295
2500 170 ] 220 } 280 | 500 } 500 } 150 | 250 | 280 | 50 | 100 | 1715.796
2600 190 | 220 { 310 1 500 | 500 | 150 1 250 | 3201 50 } 110 | 1833.078
2700 210 | 2201 350 | 500 { 500 | 150 [ 250 § 350 f 50 | 120 | 1960.531
2800 230 12201 380 | 500 | 500 } 150 | 250 | 380 | 60 | 130 | 2097.839
2900 250 | 220 | 410 | 500 | 500 | 160 § 250 | 400§ 70 | 140 | 2244.236
3000 250 | 220 | 440 1 500 | 500 | 170 { 250 | 440 | 80 | 150 | 2399.784

159



Chapter 5

Case 1V ( IEEE 6 bus system Considering Transmission losses)

Next is to validate the solution approaches taking into account the transmission
network losses occurring in the system. For testing the efficacy of solutions RL_ED4
and RL_EDS, considering the transmission losses, a three generating unit system with
given loss coefficients is considered. While executing RL._EDS5 the same procedure of
updating of demand is carried out with the schedule obtained at each time from the
Neural Network. Standard IEEE 6 bus system which is having three generating units
and eight lines (Lin and Gow [2007]) is taken for case study. The fuel cost curve of the
units is represented by a third order polynomial function:

Ci(Pi) =aq; + bipl + Clpiz + dlpia

The associated fuel cost coefficients and B-matrix parameters are given in
Table 5.9.

Table 5.9 Generator data and Loss Coefficients of IEEE 6 bus system

160

Generator data
Unit No 1 2 3
a; 112 -632 147.144
b 5.102 13.01 4.28997
¢ -2.64E-03 | -3.06E-02 | 3.08E-04
d, 3.33E-06 | 3.33E-05 | -1.77E-07
P (MW) 100 100 200
P (MW) 500 500 1000
B Coefficients
1 7.50E-05 | 5.00E-06 | 7.50E-06
2 5.00E-06 1.50E-05 1.00E-05
3 7.50E-06 1.00E-05 | 4.50E-05
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The learning is first carried out using RL._ED2. Then RL._ED4 is executed to
find out the dispatch for all the possible load values ranging from 500MW to
1900MW. For getting accurate schedule, the discretization step taken is ZMW. The
remaining power of the demanded value (< 2MW), which is negligibly small compared
to the total demand is randomly assigned to one of the units without exceeding
maximum limit. Number of iterations required is 9 x 10* and the time of execution is

14.87 sec for getting schedule for all the load values.

In order to apply the function approximation strategy using Radial Basis
function networks (RL_EDS5), Number of RBF centers is taken as 80, 60 and 40 and
the action step is taken as low as 2MW for accounting the losses more effectively.
RL_EDS is executed to learn the Q values. The schedule is obtained for all the load
values in suitable steps. The learning algorithm converged in 2 x 10° iterations and the
total time taken is only 12.98 sec.

The obtained schedule and costs are tabulated in Table 5.10.

Table 5.10 Schedule and cost obtained for IEEE 6 bus system

Po(MW) | Pu(MW) | P(MW) | Ps(MW) [ Cost | Loss(MW)
500 100 100 306 2383 6
600 100 100 409 2800 9
700 261 100 373 3246 14
800 298 100 420 3696 18
900 330 100 495 4140 25
1000 338 100 591 4737 29
1100 341 100 691 5200 32
1200 344 100 800 5679 44
Contd...
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Table 5.10 Contd....

1300
1400
1500
1600
1700
1800

1900

414
446
453
461
469
455

487

100
156
229
300
302
321

492

835
851
874
899
992
991

996

6002
6474
6896
7438
7772
8320

8801

49

53

56

59

67

75

Case V — IEEE 30 bus system with transmission system parameters

In the previous case, the transmission network loss is represented through B
coefficients. For validating the algorithm while considering the entire transmission
system representation, consider IEEE 30 bus system with entire transmission system

parameters. The transmission line parameters are given in Table 5.11.

Table 5.11 Line data—IEEE 30-bus system

Branch

no. From To R (pu) X(u) § Y72(pw)

1 2 1 0.0192 0.0575 0.0264

2 l 3 0.0452 0.1852 0.0204

3 2 4 0.057 0.1737 0.0184

4 3 4 0.0132 0.0379 0.0042

5 2 5 0.0472 0.1983 0.0209

6 2 6 0.0581 0.1763 0.0187

7 4 6 0.0119 0.0414 0.0045
Contd...
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Table 5.11 Contd...

8 5 7 0.046 0.116 0.0102
9 6 7 0.0267 0.082 0.0085
10 6 8 0.012 0.042 0.0045
13 9 11 0 0.208 0
14 9 10 0 0.11 0
16 12 13 0 0.14 0
17 12 14 0.1231 0.2559 0
18 12 15 0.0662 0.1304 0
19 12 16 0.0945 0.1987 0
20 14 15 0.221 0.1997 0
21 16 17 0.0824 0.1932 0
22 15 18 0.107 0.2185 0
23 18 19 0.0639 0.1292 0
24 19 20 0.034 0.068 0
25 10 20 0.036 0.209 0
26 10 17 0.0324 0.0845 0
27 10 21 0.0348 0.0749 0
28 10 22 0.0727 0.1499 0
29 21 22 0.0116 0.0236 0
30 15 23 0.1 0.202 0
31 22 24 0.115 0.179 0
32 23 24 0.132 0.27 0
33 24 25 0.1885 0.3292 0
34 25 26 0.2544 0.38 0
35 25 27 0.1093 0.2087 0
38 27 30 0.3202 0.6027 0
39 29 30 0.2399 0.4533 0
40 8 28 0.0636 0.2 0.0214
41 6 28 0.0169 0.0599 0.0065
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The six generators are located at buses: 1, 2, 5, 8, 11 and 13, and the cost
coefficients are the same as given in Table 5.5. A total load of 283 MW is connected to
the different buses as given in the Table 5.12.

Table 5.12 Load data—IEEE 30-bus system

Qo
Busno. | Pp(MW) | MW)
1 0 0
2 21.7 12.7
3 24 1.2
4 7.6 1.6
5 94.2 19
6 0 0
7 22.8 10.9
9 0 0
10 5.8 2
11 0 0
12 11.2 7.5
14 6.2 1.6
15 8.2 2.5
16 3.5 1.8
17 9 5.8
18 3.2 0.9
Contd...

164



Reinforcement Learning Approaches for Sofution to Economic Dispatch

Table 5.12 Contd...

19 32 1.6
20 22 0.7
21 17.5 11.2
22 0 0
23 3.2 1.6
24 8.7 6.7
25 0 0
26 3.5 23
27 0 0
28 0 0
29 24 0.9
30 10.6 1.9

In this case, transmission losses are calculated by executing fast decoupled
power flow solution. In this case since the connected load is given as 283MW, we fix
the initial demand as the 283MW. First, the learning algorithm takes the total demand
Pp = 283 MW. After sufficient number of iterations, the Q values approach optimum.
Then by policy retrieval phase, an economic schedule is obtained. The power flow
algorithm is executed to get the transmission losses in the system. The loss MW is used
to update the initial demand to the solution algorithm and new schedule is obtained.
The updating is continued until the iterative algorithm is converged, giving tolerable
value of updating for the loss in two successive iterations. The results are given in
Table 5.13.
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Table 5.13 Economic Schedule for IEEE 6 bus system

Pp(MW)

Pgl(MW)

Pup(MW)

Pu(MW)

Cost(Rs.)

Loss(MW)

283

45

100

142

1576

4

Case VI — Three unit system with stochastic data

Economic Dispatch is its flexibility for the different cost functions. In practical
situation cost of generation for the same MW power may not be the same constant
always. It exhibits randomness due to various factors. To prove that the proposed
algorithms efficiently handle the randomness in cost values, next consider the cost
given in terms of mean and variance. The cost values are given in Table 5.14 for a
three generating unit system. C, indicates the cost of generating power P MW by i*

unit.
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One important point to be comsidered while formulating the algorithm for

Table 5.14 Cost details with given variance of three generator system

P(MW) o C; G
- Mean | variance | Mean | variance | Mean | variance |
0 100000 100000 100000
25 100000 100000 100000
50 810 60 750 100 806 60
75 1355 80 1155 100 1108.5 80
100 1460 100 1360 80 1411 100
125 1772.5 100 1655 100 11704.5 100
150 2085 100 1950 80 1998 80
175 2427.5 80 100000 2358 80
200 2760 60 100000 100000
225 100000 100000 100000
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The three solution steps (RL_EDI, RL,_ED2, RL, ED3 and RL_EDS) are
executed to get the schedule for all the possible load values in steps of 25 MW. In case
of RL_EDS, for simplicity the same number of RBF centers is taken in all the three

networks. 12 centers are taken for this case. Spread factor of 0.7 is chosen by trial and

error to get reduced computation time and sufficient accuracy for the result. The entire

schedule is obtained in 2.03 sec., 2.70 sec., 2.05sec. and 1.82 sec respectively. The

obtained allocation values are given in Table 5.15.

Table 5.15 Schedule obtained for stochastic data

DMW) | PI(MW) | P2(MW) | P3(MW) | Cost(Rs.)
150 50 50 50 2353
175 50 50 75 2674
200 50 100 50 2989
225 50 100 75 3326
250 50 50 150 3592
275 50 150 75 3902
300 50 100 150 4150
325 50 125 150 4466
350 50 150 150 4742
375 100 125 150 5109
400 100 150 150 5394
425 125 150 150 5735
450 150 150 150 6067
475 175 150 150 6431
500 200 150 150 6745
525 50 50 125 13241
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Case VII — 20 Generator system

For validating the efficacy of Reinforcement Learning based algorithms for
large systems, next a 20 generator system is considered. The cost function is given in

quadratic form. The unit details are given in Table 5.16.

Table 5.16— Generator Details of 20 generator system

Unit C. G C Prn(MW) | Poux(MW)
1 1000 18.19 | 0.00068 150 600
2 970 19.26 | 0.00071 50 200
3 600 19.8 0.0065 50 200
4 700 19.1 0.005 50 200
5 420 18.1 0.00738 50 160
6 360 19.26 | 0.00612 20 100
7 490 17.14 | 0.0079 25 125
8 660 18.92 | 0.00813 50 150
9 765 18.97 | 0.00522 50 200
10 770 18.92 | 0.00573 30 150
11 800 16.69 | 0.0048 100 300
12 970 16.76 | 0.0031 150 500
13 %00 17.36 | 0.0085 40 160
14 700 18.7 | 0.00511 20 130
15 450 18.7 | 0.00398 25 185
16 370 1426 | 0.0712 20 80
17 480 19.14 | 0.0089 30 85
18 680 18.92 | 0.00713 30 120
19 700 18.47 | 0.00622 40 120

20 850 19.79 { 0.00773 30 100
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The transmission loss is calculated using B coefficient matrix. Algorithm
RL_ED4 is executed to give the schedule for the range of load from 1000MW to
3000MW. The execution time taken is 45.87sec. Part of the schedule and the loss are
tabulated in Table 5.17.

Table 5.17 Schedule for 20 generator system

DMW) | 2000 2500 3000
P, 421 498 530
P, 140 159 167
P; 105 120 140
P, 94 118 135
P 81 92 97
P, 51 74 87
P, 89 115 141
Py 81 106 162
P, 84 103 155
Py 70 98 108
Py 236 290 358
Py, 89 120 136
Py 82 119 124
Py 90 115 147
Pis 23 30 70
P, 64 87 111
Py 72 100 106
Py 45 54 75

Loss 39 64 81
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5.12 Evaluation of Algorithms

The different Reinforcement Learning algorithms have been tested for their
efficacy and performance. The computation time of the different RL algorithms for the

different test cases are tabulated for comparison in Table 5.18.
Table 5.18 Comparison of Computation times of different RL algorithms

(Time in sec.)

RL_EDI1

RL_ED2

RL_ED3

RL_ED4

RL_ED5

Three gen system with

given cost table,
neglecting

transmission loss

2.034

2.567

1.754

1.465

IEEE 30 bus system
with 6 generators,
neglecting

transmtssion losses

Not
giving
optimum

result

23.87

15.63

14.89

10 generator system
with
quadratic

piecewise
cost

coefficients

42.87

38.69

34.95

IEEE 6 bus system
with 3

considering

generators,

transmission losses

9.87

6.98

3 generator system
with stochastic cost

data

2.03

2.70

2.05

1.82
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In order to highlight the efficacy and computational speed of the developed
algorithms, the results of RL__ED4 and RL._EDS5 are compared with other recently
developed algorithms.

For comparing with other recent techniques, IEEE 6 bus system (Case IV) with
a load power of 1200MW is considered. That is, the initial demand to the system is
1200MW and the corresponding schedule is obtained. The optimal cost is obtained as
Rs.5679.2 and the power loss calculated is 44MW. The time taken by our proposed
algorithm is only 9.87 sec and 6.98sec. for RL ED4 and RL_EDS. The obtained
schedule is tabulated and a comparison is made with other stochastic techniques (Wong
et al.[1993] and Lin et al.[2007]) in Table 5.19. The dispatch schedule obtained is

comparable. Transmission loss in all the case is nearly 43MW.

For getting the schedule for 10 different load values RL_ED4 took only 10.56
sec, while RL_EDS5 was executed in 7.12sec. For other methods, the time needed is
nearly 10 times the time for single load value. This directly highlights the efficiency of
Reinforcement Learning approach for giving schedule for any forecasted load profile
instantaneously.

Table 5.19 Comparison with SA and PAA

Method | PAA SA | RL_ED4 | RL_ED5
P,(MW) | 3622 | 342.8 344 343
P, (MW) 100 100 100 100
P,MW) | 7814 | 8014 800 800
Cost(Rs.) | 5671.06 | 5682.32 | 56792 | 5676

Loss(MW) | 43.68 | 43.8 44 43

Time (sec) | 16.82 | 27253 | 9.87 6.98
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A graphical comparison is also given in Fig 5.5

30 p— e 2725 . = . ————
25
g 220 mSA
=0 m PAA
e
X ‘% ® RL_ED4
10 mRL_EDS
514
0 =

Fig 5.5 Comparison of execution time with other methods

The above comparison directly depicts the improved performance of
Reinforcement Learning based solutions over other recent methods. This faster
scheduling provided by Reinforcement Learning in effect helps to improve the

economy of generation.
5.13 Conclusion

Even though many techniques are applied for the solution of Economic
Dispatch problem, Reinforcement Learning provides a good methodology due to its
faster computing speed and simplicity. Once the learning phase is completed, schedule
for any load demand can be obtained instantaneously. Also it can effectively handle
the stochastic cost functions associated with practical thermal units. The developed
algorithms are applied on different test systems. In all these cases satisfactory
performance is obtained. The result when compared with other stochastic techniques is
found to be better. As a further step in this direction algorithm incorporating additional
constraints such as ramp rate limits, valve point effects etc. existing in power systems
can be developed.
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CHAPTER 6

REINFORCEMENT LEARNING
APPLIED TO AGC WITH
COMMON SYSTEM FREQUENCY

6.1 Introduction

Automatic Generation Control (AGC) constitutes the on line dispatch part of
generation control. Electrical energy is generated by the generators at the generating
stations, transformed into suitable voltage level by the transformers and dispatched
through various buses to the loads which consume the electric power. In an
interconnected system, the overall power system is divided into several grids or pools,
each comprising several subsystems. Through Tie lines the system is connected to the
neighbouring systems belonging to the same grid (pool). The active power demand in
the system is met by the combined generation of all the generating sources in the
system. Considering the economic perspective of power generation, the forecasted load
demand is distributed among the generating units in the system in the most economic
manner by the pre dispatch control. It consists of Unit commitment and Economic

Dispatch at each control area.

Once the pre dispatch or pre scheduling is over, the generating units will be
entitled to generate the allotted power, (fraction of the forecasted load demand) for the
specified duration of time. Instantaneous addition and removal of load in the system
will be reflected by a change in the system frequency. Considerable drop in frequency
result in high magnetizing currents in induction motors and transformers and decline
their performance. Control of system frequency ensures constant speed for the
frequency dependent load such as induction and synchronous motors and thus their
efficient operation. Thus for satisfactory operation of a system, frequency should be
maintained constant. The frequency of the system is dependent on active power
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balance. A change in active power demand at one point is reflected by a change in
frequency. Since there is more than one generator supplying power to the system the

demand is allocated to the different generators.

In case of interconnected system with two or more independently controlled
areas, in addition to the control of frequency, generation within each area is to be
controlled so as to maintain scheduled power interchange. When the entire
interconnected system is operating on a common system frequency, instantaneous load
variations in any of the control area will affect the common system frequency. This
makes the task more difficult to solve as the load is not predictable always. Also the

generation capacities and the means by which generation can be changed are limited.

Even though primary control action is served by the speed governor associated
with the generating units, supplementary control is needed to reallocate the generation
so as to bring the frequency to exact scheduled value. Supplementary control can be
done manually By setting the reference point so as to increase or decrease the
generation. Automatic functioning of this supervisory or supplementary control action
is referred to as Automatic Generation Control. Automatic Generation Control problem

is discussed in the next section.

Reinforcement Leaming approach for solving the AGC problem for an
interconnected system (Imthias e al. [2002]) is extended in the next sections with an

approach of common system frequency.
6.2 Automatic Generation Control problem

In a large interconnected power system with several pools having many
number of generators, manual regulation is not feasible and therefore automatic

generation and voltage regulation is essential.

Once a generating unit is tripped or a block of load is added to the system, the
power mismatch is initially compensated by the extraction of kinetic energy from
system inertial storage which causes a decline in system frequency. As the frequency

decreases, power taken by loads decreases. Equilibrium for large systems is often
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obtained when the frequency sensitive reduction of loads balances the output power of
the tripped unit or that delivered to the added block of load at the resulting new
frequency. If this effect halts the frequency decline, happens in less than 2 seconds.

If the frequency mismatch due to the addition of load AP, is large enough to
cause the frequency to deviate beyond the governor dead band of the generating units
(generally in the range of 30-35mHz.), their output will be increased by the governor
action. For such mismatches, equilibrium is obtained when the reduction in the power
taken by the loads plus the increased generation due to governor action compensates
for the mismatch. Such equilibrium is often obtained within 10-12 seconds. Typical
speed droop are in the range of 5% and therefore at the expense of some frequency

deviation, generation adjustment is carried out by governors.
On attaining the new equilibrium state after variation in the load APy,
AP =D Af
Af = AP, /D,
where Af is the change in frequency and D is the damping constant.

Lumped parameter model of the generation system is commonly used for the
analysis of AGC systems (Elgerd [1982]). In such representation, the aggregate
frequency sensitivity of all loads is represented by a damping constant. The
perturbation model of a lumped parameter system is given in Fig 6.1.

1/ Ms

Fig 6.1 Perturbation model
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In this model, M represents the aggregated inertia constant and D is the
damping constant. If there is no additional frequency control, the change in the
mechanical power output P, is zero. Hence, the system response to load change AP; is

determined by the inertia constant and damping constant.

Each generating unit is equipped with a speed governor mechanism, which
provides the function of primary frequency control. But for compensating the offset
deviation and bringing back to the original scheduled frequency, a manual or automatic
(through AGC) follow up and corresponding control are required.

Fig 6.2 represents the equivalent model including the governor and turbine.

AP, \ 1 1 3
1+s7g E 1+sD

Fig 6.2 Equivalent model of Governor and Turbine

In this, R represents the speed regulation provided by the governor. It is usually
expressed as R = Af/ AP,,.

After addition of load AP, and attaining steady state,
DAf+ (1 /R) Af = AP,
A = AP, / ( D+I/R).

=APL/B
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Thus the frequency of the area depends on the constant B or (D + I/R) value.
Thus with the govemor primary control alone, the frequency will be settled to a lower
value compared to original system frequency. From the equivalent representation, it is
evident that, the relationship between the frequency and power output can be varied by
changing the load reference set point (APc). Bringing back the system frequency to the
original value requires supplementary control. This can be done manually by
increasing or decreasing the reference set point through some potentiometer
arrangement. Since the system load is a continuously varying one, automatic changing
of reference power setting is more preferable. Automatic Generation Control provides

the automatic follow up and adjusting of power generation accordingly.

In an interconnected power system, according to contractual agreement
between the different control areas, certain amount of power termed as Tie line power
(P;) will be flowing through the interconnecting transmission lines. When a load is
added in any part of the interconnected system, the frequency of the entire system will
change causing a change in the tie line flow. In other words, by addition of a load in
one area along with a frequency error, a tie line flow error will occur. Then the
supplementary control should act in such a way as to bring the tie line flow error also
to zero, in addition to bringing back the system frequency to original value.

The objectives of Generation Control can be summarized (Athay [1987]) as:

(i) Matching the total system generation to total system load
(ii) Regulating the frequency error to zero
(ii1) Regulating the tie line flow error to zero
(iv) Distributing the area generation among the area generating resources so that
the operating costs are minimized.
The first objective is met through the primary governor control and the last one
is met through Economic Dispatch procedure. The second and third objectives are met

through Automatic generation control associated with the system.
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6.3 Automatic Generation Control — Models of Power system

Network

AGC studies are carried out using simulation model proposed by Elgerd
[1982). In this approach, in each area, a group of generators are closely coupled
internally and swing in unison. Also, the generator turbines tend to have the same
response characteristics, ie, coherent. Then each control area is represented by a single
AGC loop. The turbine, generator and load parameters represent the equivalent values

considering all the generators in that area.

In an interconnected system, the different control areas are connected by loss
less tie line. The power flowing through the tie line, tie line power flow appears as a

load decrease/ increase in each area, depending on the direction of flow. A block

diagram model is given in Fig 6.3.
m APy, Af
- X,
Pary *Lx/ o on x ’*;} a
&Py
1h ut —-82)
APy :
t af
X
P = /;\ Gm Gn T 1 4:1‘4

i

Fig 6.3 Two Area system model with two different frequencies

A change of power in one of the areas is met by a change in generation of all

interconnected areas followed by a change in tie line power. Correspondingly the
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frequency change will occur in all the interconnected areas. Conventional LFC of a
multi area system is based on tie line bias control, where each area tends to reduce the

Area Control Error (ACE) to zero. The control error for each area consists
ACE; =X AP;, +B, Af,

4f; is the change in frequency of i** area and B; represents the area frequency response
characteristics. P, or tie line power is computed as the product of tie line constant and

the angular difference between the two areas considered.

The limitation of the above model is that the different areas are assumed to be
operating at different frequencies and tie line power is computed based on the
frequency difference. But this is not true as far as practical power system network is
considered. In a practical network, the interconnected power system operate at a single
frequency and this common frequency (common to all areas) is determined by the net
generated power and connected load of all the areas ( Divya and Nagendra Rao
[2005]). A model of such a system having two areas is given in Fig 6.4.

Py

Prea

Fig 6.4 Two Area model with common system frequency
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In such a system, the tie line power of each area is computed as the difference
of generated power and load power of that area. P, = Pgep —Proys. Accordingly the
different areas will be associated with different values of P, based on the

instantaneous values of power generated and consumed (Elgerd [1982]).

The control action is based on the parameter Area Control Error (ACE) which is

calculated as

ACE; = P, + B, * Af, where Af = flactual) — f(scheduled) provided f denote the
common frequency of the system which is determined by the total generated power and
connected load of the entire system.

Advantages of such a system can be enumerated as
(i) The system model is closer to practical power system network.

(ii) It does not require the calculation of tie line constant ( which depends on the

nature and no: of lines of interconnection)

A Reinforcement solution to the AGC problem has already been developed by
Imthias et al. [2002], using the first model described. In this thesis, the common
frequency model is taken and the Reinforcement Learning solution is suggested for the
same. In order to develop the solution strategy, AGC is viewed as a multi stage

decision process in the following section.
6.4 AGC as a Multistage Decision Process

The function of AGC is to change the reference power setting so as to bring
the frequency back to the original one. In a practical system, Automatic Generation
Controller monitors the system frequency at different discrete instants of time and
issues the control signal. With this view point AGC can be treated as a Multi stage

Decision Process.

At each instant of time (every AGC cycle), system can take one of the possible
system states which is described through a set of variables. The system variable

normally considered include system frequency, change in frequency at two successive
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time slots, ACE value etc. The controller observes the current state of the system
through the set of variables. Then a decision or action is taken which corresponds to a
change in the reference power setting. Accordingly the generator power will change
which is reflected through a change in the system variables or state transition occurs.
This state transition will not be always deterministic, since the load is a continuously
varying quantity.

In the proposed formulation ACE is taken as the state variable describing the
system state completely. The value of ACE will be averaged over the decision making
period and this average value is the state of the system x, at any discrete instant k. The
set of possible states or possible values of ACE is taken as finite or having certain
quantized values. Therefore the state space y in the AGC problem is the quantized
values of ACE.

Next is the action space. Action or decision in AGC solution is the command

to increase or decrease the reference power setting. Therefore the various discrete

values of AP constitute the action space A.

Next is the reinforcement function. The immediate reward or reinforcement of
any state transition is represented by g(xy, ax, xi+;). In this case, since the aim is to bring
the error in ACE to a tolerable limit (approaching to zero discrete level), the g function
can be taken as binary. Whenever the resulting state is good (tolerable error), g(xx

ayx+ ) =0. Otherwise g(x,ayxp ) =1.

On applying an action g, to the system, the system moves to a new system
state. The action selection is based on the current probability distribution, p,, (ax). The
new state is indicated by the new frequency and the corresponding quantizéd ACE
value. Since the load applied to the system is undergoing instantaneous variations, the
next state or resulting state of an action at one current state is stochastic. Using the
simulation model of the turbine generator system, the next state x;., can be observed

for the action a, taken at the current system state.
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AGC algorithm is to decide what action or change in the reference power
setting is to be taken for a current system state or ACE value so as to bring back the
frequency error and tie line flow error to zero. AGC can be modeled as a mapping or
policy from the state space y to action space A. To rate the goodness of policy, value
function is to be defined. A policy w, can be treated as better than another policy m,, if
it leads to one desirable state faster. In this Reinforcement Solution approach, Q

learning strategy is employed as the method of achieving the optimum policy.
6.5. Proposed system and control strategy

A Reinforcement Learning control scheme for AGC is proposed with a
common frequency for the interconnected areas. The concept of common system

frequency for a two area system is proposed by Divya and Nagendra Rao [2005].

Each of the two areas A and B is having two inputs, one the load disturbance
in the area and the other reference power setting. Tie line flow is governed by the
unbalance in the load power and the generation in the particular area. The controllers
attached to area give out the decisions on the reference setting in each AGC decision
time. Considering an integration time of 0.05 sec, 40 values of frequency and the P,
are given to the pre processor.The preprocessor generates the corresponding discrete
value of ACE and give it to the Reinforcement Learming Controller (RLC 1 and
RLC 2). A block diagram of AGC control strategy used in the simulation is given in
Fig 6.5

\irpu
frequency, P
>| Pre Processor RLC1 Post Processor [—— Aral
Puua
l PL'
frequency : P
Pre Processor RLC2 Post Pro i Area 2
Pup

Fig 6.5 Simulation scheme for AGC

182



Reinforcement Learning Applied to AGC With Common System Frequency

During the learning phase, the RL controller takes an action based on one of
the exploration strategies. In this simulation, pursuit method is used for choosing an
action from the available action space. On selecting an action, the post processor
associated with the area generates the reference control signal. Each action is
accompanied by a corresponding state transition and the resulting immediate reward.
The Q leaning algorithm then updates the Q value corresponding to the state — action

pair as:

Q™ (x, ax) = Q™ (xpo ax) + @ [ g(oxy, Ay Xpe4q) +

mingeq, . Q" (xk+1,a) — Q™(xy k)]
6.1)

The new system state is represented by the new value of state variable or ACE.
The learning is proceeded on updating of the Q values at each and every AGC decision
time. At the same time, the probability of the different actions in the action space
corresponding to the system state is updates according to the equation:

PR (ay) = P (a) + B[1- pR(ay)] whenay = a,

P2 (ay) = p2 (ax) — B[ pE (an)] whenay # a,
(6.2)
Once learning is completed, the policy or optimum action at each of the system

state is stored in a look up table by considering the greedy action.

6.6 Algorithm for AGC

In the context of Reinforcement Learning problem, state space, action space
and reinforcement function are to be defined. The state of the system should capture
the information on the current status of the system described by the different state
variables. For the AGC problem since ACE is the signal based on which control action
can be taken A ACE (change in ACE signal between two discrete instants) is taken as
the state variable. The range of values for this variable depends on the maximum
values of ACE (on both sides) for which AGC control should respond.
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Since AGC is to tackle the small load disturbances in the system, its action is
to correct the ACE in a small limited range. A small value is chosen for L, which is the
maximum value for which the AGC should act. As the purpose is to maintain ACE
within a very small value g, ACE values whose values are less than gcp are
considered as zero discrete level. The range of ACE values between g,z and L, are
divided into finite number of levels, M,. Then M, = L,/ 2g,cr and the different
discrete levels are uniformly distributed in the range. The finite quantized values are
taken as the midpoint of each interval. All the values greater than L, are aggregated to
the maximum level. Similarly the negative values in the range -& ¢z and L, are also
discretised to M, levels. Thus each value of ACE falls in one of the (2M, + 1) level. At
instant k5, xy € ¥, ¥ ={ My (2€4ce), o .--264cE 0, 2 E4cBveevonnn M, (gic8)}.

The action or control action of AGC is to change the generation set point, AP.
The discrete value of AP implies the generation change by a discrete amount. Since the
range of generation change that can be made in the generators are limited and ‘can be
fixed as —Upyx and +Uynx. The minimum change in the reference setting can be fixed
as AP, and then the action set is defined as,

The total number of actions in the action space Mp = Uyyx/ Prin

Since the main objective of AGC is to maintain the ACE value at desirable
limit, the immediate reinforcement function gfxpxy+;,a) = 0 whenever xy; = 0
(desirable level) and otherwise g = -/. The algorithm proceeds as follows.

Q values of different state action pairs are initialized to zero. Also the
probability of each action will be initialized to 1/ (2M,+1), giving the same chance for

every action in the action space during the initial iteration of learning.

At each of the leaming step, state x; of the system is observed by the current
value of Area Control Error. Taking a sampling time of 0.05 sec for the ACE signal, 40
observed values are averaged to find the current state of the system. Then an action

ayeA is selected based on the current probability distribution. On applying an action
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or applying the change in the reference power setting, the generated power will change

which will make a change in system frequency.

Using the simulation model, the new value of frequency and ACE are
calculated which represents the next state. On accounting the status of the next state as
*desirable’ or not, immediate reward g(x;x1+; @y can be manipulated. Then in the Q
learning procedure, Q values are updated using equation (6.1). On taking any action,
based on the present Q values, the probability of state —action pairs are also updated
according to equation (6.2). As the learning proceeds the probability of optimum action
will be increased successively at the same time the remaining actions will get the
probability diminished. Thus after sufficient number of iterations, the action selection
will be converged to the optimum one. The learning algorithm is summarized below:

Learning Algorithm

Initialize Q values (x, a) =0 for every x€) and ae A.
Initialize probability of choosing an action a at state x, p, (a) =1/ M,+1
Repeat
Start the system at some quiescent state, x = x;
Do
Choose an action a; based on
the current probability distribution.
Apply action a, to the system and find the next state x;.,
(by integrating ACE over one AGC decision time)
Find the discrete level of the state to get X;.,.
Calculate the g(x;, ap, x1+})
Update Q" to Q"'
Find the greedy action with respect to 0"
Update the probability values
End Do
End

185



Chapter 6

6.7 Simulation results

The performance of the AGC algorithm for the two area system with common
frequency is evaluated through the simulation experiments. Simulation consists of two
phases: Learning and Testing. During the learning phase, random load disturbances are
given and the Q values are leamnt to approach the optimum. During the testing phase,
the learnt policy is used to control the power system.

In the two area model considered, each area is represented by an equivalent
thermal unit, shown in Fig 6.4. The governor is represented by effective droop
characteristics with //R and a single time constant 7, is considered. Also the turbine
unit is represented by single equivalent time constant 7,. Power system dynamic is
represented by X, / (1+sT,), where X, = 1/D and I, = M /D. D represents the load
frequency characteristics and M represents the combined inertia of the system.

The values of the combined system parameters used are given in Table 6.1

Table 6.1 Generator system parameters

Tg 0.08s
T, 0.3s

T, 20s

R 2.4Hz/pu
K, 120 Hz/pu
Ti2 0.545

The two independent RL based AGC controllers used in the two areas. The

parameters used for learning of these RL AGC controllers are listed in Table 6.2

186



Reinforcement Learning Applied to AGC With Common System Frequency

Table 6,2 Learning Parameters for AGC

€ACE

La

B
AGC time

Sampling time
No: of states

No: of actions

0.002

0.02

0.0025

0.9

0.01

0.01

2.0 sec

0.05 sec

11

11

The system derives the policies for the two RL controllers after running the

system with different random loads at random intervals of time. The controller is

trained successfully after suitable large number of iterations and the policy then
derived will be an optimum one. The action corresponding to each state will then be

the best action possible.

Using the learnt policy, the system is simulated for different load values to the

two areas. The simulation results corresponding to a load of 0.02pu applied at t = Ssec.

to areal is given in Fig 6.6
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Fig 6.6 Load Disturbance

Load of 0.02pu remains connected in the system from 5sec. onwards. On
addition of this load, frequency of the system drops. The controller begins to act and
the reference setting is increased in discrete intervals so as nullify the frequency error.
Fig 6.7 gives the variation of the base point setting when using an RL controller.
Variation in ACE values with RL controller at the discrete instants is plotted in Fig 6.8.
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Fig 6.7 P, obtained using RL controller
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Fig 6.8 Variation of ACE of Areal
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The controller makes use of the look up table of optimum Q values to get the best
action corresponding to each value of Area Control Emor. Correspondingly the
reference power setting is changed and frequency error begins to decrease in
successive discrete steps. Variation of frequency with an RL controller is shown in Fig
6.9. From the observation, it is evident that RL controller picks up the variation in ACE
very quickly and settles the Area control error to zero in 30 sec. Also the reference

power setting is changed in steps so that there is no oscillation in the power setting.

Freq. varnation of Areal
00002 & L | | ] | |

'?req.d;.lt' -
o P
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§ -0.o008 | -
g
-0.0008 F =
-0.001 -
_00012 ) I ] ) | L i L [ L 3

0 10 20 30 40 50 €60 70 80 90 100

Time(sec.)
Fig 6.9 Variation of system frequency

In order to compare the performance of RL controller, an integral controller is
used for the same system and performance is evaluated for the same load disturbance.

Variation of frequency with the integral controller is given in Fig 6.10.
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Fig 6.10 Variation of system frequency with Integral controller

Comparing the frequency variations in Fig 6.9 and 6.10, it is clear that the RL
controller makes the frequency settled exactly to zero in 30 sec., while with integral
controller the frequency does not settle even in 100sec. Variation of frequency with

much lesser oscillations ensure good performance for frequency sensitive loads.
6.8 Conclusion

Choosing the power system as a common frequency operated one gives more
chance of implementation at practical level. Since AGC is a supervisory control action
to handle stochastic load, apart from all modern control methods, RL is the best choice
due to the separate time scales considered for the system. Also the flexibility it offers is

more so as to include the AGC objectives.
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UNIT COMMITMENT AND
ECONOMIC DISPATCH OF
NEYVELI THERMAL POWER STATION

7.1 Introduction

Reinforcement solutions to the economic scheduling problems: Unit
Commitment and Economic Dispatch, applied for several standard test cases were
discussed in the previous chapters. Performance of the algorithms has found to be
satisfactory. Since there is only one learning procedure, schedule for any load demand

can be obtained instantaneously. So it is assumed to be suitable for practical systems.

One of the practical systems is now taken to study the suitability and evaluate
the performance of the developed algorithms. Due to the lack of availability of data to
compute the cost details, case study is confined to only one of the thermal stations in
the Southern grid.

Neyveli Thermal Power Stations are South Asia's first and only lignite fired
Thermal Power Stations and also the first pit-head power stations in India. Today
Neyveli Lignite Corporation Power Stations are generating about 2490 MW of Power.
NLC's Power Stations are maintaining very high level Plant Load Factor (PLF) when
compared to the National average. There are two Power stations NTPS I and NTPS II.

7.2 Neyveli Thermal Power Station 1

NTPS I station is having a total of 10 generating units with different capacities
giving a total of 600MW power. The Power station was first started in 1962 by Indo-
Soviet collaboration. The plant was commissioned with one unit of 50 MW in May
1962, Presently this power station consists of six units of 50 MW each and three units
of 100 MW each. The last unit of this power station was synchronized in
Feburary1970. This Thermal Power Station-I continuously achieved over 70% load
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factor from 1982-83 to 1991-92 against the National Average of around 50%. It is the
first large thermal power station in South India and is a lignite based station. The
power generated from the Thermal Power Station is fed to the grid of Tamil Nadu

Electricity Board in order to meet the base load in the country.
7.3 Neyveli Thermal Power Station II

Thermal power station - II has been a major source of power to all southern states
of India. The 1470MW capacity power station consists of 7 units of 210MW each. The
power station was constructed in two stages of 630MW and 840MW.The first 210MW
unit was synchronized in March 1986 and the last unit in June 1993. 1t is the largest
lignite fired thermal power station in Asia. It is having software based burner
management system and is equipped with distributed digital control system (DDC) and
data acquisition system (DAS) for control and instrumentation. The power generated
from Second Thermal Power Station is shared by the Southern States viz., Tamil Nadu,
Kerala, Karnataka, Andhra Pradesh and Union Territory of Pondicherry.

7.4 Scheduling of Generating units at NTPS 11

Due to the variation in the efficiency of boiler attached to the different units,
all the units having even the same capacity are not capable of generating up to its
maximum limit. The range of available power generation is different for the different
units. Since the NTPS II is generating power for export purpose, economic scheduling
of these units is important. As the plant works in a more sophisticated environment,
computational scheduling methods are easy to be incorporated. Economic scheduling
of the units at the two stations has been done by various methods like Neural networks,

Fuzzy Dynamic Programming (Senthilkumar et al. [2008]), Evolutionary Programming
based Tabu search (Rajan and Mohan {2004]) etc.

The Reinforcement Learning based algorithms are used for solving the two
parts of scheduling problem in NTPS II (7 unit system)

The cost characteristics of the generating units are expressed in quadratic cost
coefficient form, a,-(P,’) + by(Py) +c;. The startup costs of the units are calculated based
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on the number of hours the unit has been down and the start up cost coefficients. The

start up cost of i unit during time period ¢ is calculated using the equation:

Sy =8c;[1-dy e TP'P)] + ¢, where

Sei - cold start up cost

d, e, - start up cost co efficient for unit i.

torg - Number of hours i unit has been shut down
D; - Minimum Shut down time of i* unit

The unit characteristics of the seven generating units of NTPS II are given in Table 7.1

Table 7.1 — Generating Unit Characteristics of NTPS II

Unit | Prin | Poax | & b; 3 S¢; & & Min. Min.Down
W) | W) Up time(tr)
time(Hr.)
1 15 [ 60 | 750 |70 | 0.255 | 4250 | 29.5 | 10 3 3
2 [ 20| 80 {1250 |75 | 0.198 | 5050 | 29.5 | 10 3 3
3 [ 30 | 100 {2000 [ 70 | 0.198 | 5700 | 28.5 | 10 3 3
4 |25 | 1201600 |70 ( 0.191 | 4700 | 325 | 9.0 3 3
5 |50 [150]1450 | 75| 0.106 | 5650 | 32 | 9.0 5 5
6 | 50 | 150 | 4950 | 65 | 0.0675 | 14100 | 3705 | 405 5 5
7 | 75 | 2004100 |60} 0.074 [ 11350 | 32 } 5.5 6 6

A load profile or 24 hr. duration is considered and the schedule is obtained through
Reinforcement Learning algorithms. Load profile is given in Table 7.2
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Table 7.2 - Load Profile

Hour | 2 3 4 5 6 7 8 9 10 11 12

Load 840 757 775 773 1770 778 757 718 770 764 598 595

Hour 13 14 15 16 17 18 19 20 21 22 23 24

Load 545 538 535 466 449 439 466 463 460 434 530 3840

For practical implementation both Unit Commitment and Economic Dispatch
are to be carried out. In the literature there are solutions which consider the problems
separately and also as together., Fuzzy Dynamic Programming (FDP) solution
(Senthilkumar et g/. [2008]) and Evolutionary Programming based Tabu search method
(Rajan and Mohan. [2004]) give the Unit Commitment and Economic schedule of the
generating units. For comparing the performance of the proposed methods the two
problems are solved. The proposed RL approach find an optimum Unit Commitment

schedule and then economic generation levels are obtained.

Reinforcement Learning based algorithm RL UCP4 is used to obtain the
commitment schedule. Optimum schedule is obtained in 11.67 sec with 80000
iterations. The commitment schedule obtained is given in Table 7.3.
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Table 7.3 - Commitment Schedule of NTPS I

Hour UnitI | Unitd { UnitII | UnitIV { UnitV | Unit VI | Unit VII
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After obtaining a commitment schedule, The Economic Dispatch algorithm
(RL_ED?2) was run to obtain the economic allocation among the generating units. The

obtained allocation is given in Table 7.4. The allocation algorithm took only 36.87sec.
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for finding the schedule for the entire period of time. Thus, the entire time taken by the
Reinforcement Learning based algorithms is only 48.34 sec.

Table 7.4 — Economic Schedule

Hr Load P, P, P, P, Ps Ps P,
MW) | MW) | (MW) | MW) | MW) | (MW) | (MW) | (MW)
1 840 60 80 100 101 149 150 200
2 757 60 60 100 81 106 150 200
3 775 60 60 100 85 120 150 200
4 773 60 0 100 113 150 150 200
5 770 60 0 100 110 150 150 200
6 778 60 0 100 118 150 150 200
7 757 60 0 100 100 147 150 200
8 778 60 0 100 118 150 150 200
9 770 60 0 100 110 150 150 200
10 | 764 60 0 100 104 150 150 200
11 ] 598 60 0 99 97 142 0 200
12 1 595 60 0 100 96 139 0 200
13 | 545 0 0 100 99 146 0 200
14 | 538 0 0 99 97 142 0 200
15 ) 535 0 0 100 96 139 0 200
16 | 466 0 0 0 116 150 0 200
17 | 449 0 0 0 101 148 0 200
18 | 439 0 0 0 97 142 0 200
19 | 466 0 0 0 116 150 0 200
20 | 463 0 0 0 116 150 0 200
21 | 460 0 0 0 110 150 0 200
22 | 434 0 0 0 95 139 0 200
23 1 530 60 0 0 120 150 0 200
24 | 840 60 80 100 101 149 150 200
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The algorithms are implemented in C language and the CPU times are taken

for a Pentium 1V 2.4GHZ, 512 MB RAM personal computer. The time for getting the

schedule for 24 hours load pattern is compared with other methods in Table 7.5

Table 7.5 Comparison of Execution time for NTPS II

Execution
Method Cost )
Time (sec)
EP_TS 80818 65
FDP 85050 158
RL 81049 48.34

The graphical layout of the comparison is given in Fig 7.1
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Fig 7.1 Comparison of execution time (sec) for NTPS 11
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Comparisons with the recent methodologies reveal that Reinforcement
Learning based methods provide appropriate results with lesser computation time. This
makes it a suitable methodology for power scheduling problems.

In order to prove the efficiency of the proposed algorithms, we also consider
one more load profile obtained from a load curve. The load curve of 24 hour duration

is shown in Fig 7.2.
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Fig 7.2 Load curve

The Load at different slots of time varies between 300MW and 840MW. The
load data is tabulated in Table 7.6

Table 7.6 Load Profile for NTPS 1I

Hour 1 2 3 4 5 6 7 8 9 10 11 12

Load 500 300 300 450 500 600 350 400 800 850 500 595

Hour 13 14 15 16 17 18 19 20 21 22 23 24

Load 545 538 450 500 600 400 550 300 550 800 700 840

As the load demand varies across each time interval, the generation schedule to

be changed accordingly. The Reinforcement Learning algorithms are executed to get

200




Unit Commitment and Economic Dispatch of Neyveli Thermal Power Station

the optimum schedule for each slot of time. The obtained schedule gives a total cost of

Rs. 48764/- for 24 hour. Economic schedule obtained is given in Table 7.7

Table 7.7 Economic Schedule for NTPS I1

Hour | Load P, P, P, P, Py P P,

MW) | MW) | MW) | MW) | MW) | MW) | MW) | MW)
1 500 0 0 100 90 110 0 200
2 300 0 0 0 30 70 0 200
3 300 0 0 0 30 70 0 200
4 450 0 0 50 100 100 0 200
5 500 0 0 100 90 110 0 200
6 600 60 0 100 96 144 0 200
7 350 30 0 40 30 50 0 200
8 400 30 0 40 80 50 0 200
9 800 60 0 100 110 150 150 200
10 850 60 0 100 104 150 150 200
11 500 60 0 99 97 142 0 200
12 595 60 0 100 96 139 0 200
13 545 0 100 99 146 0 200
14 538 0 99 97 142 0 200
I5 450 0 60 66 124 0 200
16 | 500 0 100 90 110 0 200
17 600 40 0 100 110 150 0 200
18 400 0 40 40 120 0 200
19 550 0 80 120 150 0 200
20 300 0 30 30 50 0 190
21 550 0 30 50 120 150 200
22 800 60 80 40 120 150 150 200
23 700 60 40 40 120 110 150 200
24 840 60 80 100 101 149 150 200
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7.5 Conclusion

In this chapter the previously developed scheduling algorithms based on
Reinforcement Learning strategy were applied to a practical power system. NTPS II
seven unit system is scheduled using the Unit commitment and Economic Dispatch
algorithms. When compared with some of the recent strategies, the newly proposed
methodologies seem to be very much promising on comparing the computational
speed. The method proved to be a suitable and efficient one for actual power system
scheduling task. It also proves the ability of Reinforcement Learning techniques to
handle practical problems of power stations.
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CONCLUSION AND SCOPE FOR FURTHER WORK

8.1 Introduction

One of the main objectives when controlling power generation systems, to
make the best use of available resources of generation to satisfy the instantaneous
variations in the load demand without violating any of the constraints existing in the
system. The various constraints arise in a power system from the operational
limitations of the generating units and their accessories. Active power generated in a
power system is controlled in three time based loops: Unit Commitment, Economic
Dispatch and Automatic Generation Control. Unit Commitment and Economic
Dispatch loops schedule the generating resources to meet the forecasted load demand.
Automatic Generation Control provides the on line control by continuously monitoring
the load variations and adjusting the generation accordingly. This also ensures efficient
constant frequency operation.

Review of various existing methods for the scheduling problems in power
system is carried out. All these methods are proved to be efficient only for
deterministic data. The promising features of Reinforcement Leaming in the solution
of general multi stage decision making problems are investigated. The main objective
of the work is to solve the scheduling problems in the power generation using
Reinforcement Learning strategy.

8.2 Summary and Major Findings

The review on the existing solution strategies led to the scope of developing
efficient scheduling methods in the field of power generation. Reinforcement Learning
is a good solution strategy and has been used for solution in many optimization tasks.
Number of application of Reinforcement Learning in the field of power system has
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been a few even now. In this thesis, efficient Reinforcement Learning solutions are

proposed for solution of the three scheduling problems in the power generation sector.
8.2.1 Unit Commitment Problem

In order to develop a Reinforcement Learning based solution strategy, UCP is
formulated as a Multistage Decision Problem (MDP). The number of stages in the
problem corresponds to the number of hours to be scheduled. Q learning strategy is
employed to achieve the optimum scheduling of the units at each time slot.

For introducing the new approach of solution minimum up time and down time
constraints are neglected in the initial stages. Then the state of the system at any time
slot is represented by a binary string indicating the ON/OFF status of the different
generating units. Action set in this Reinforcement Learning task consists of actions of
making the units ON /OFF. Q- learning is employed to get the optimum scheduling at
the different time slots. e greedy strategy of exploration is used in the first solution,
termed as RL_UCPI1. Pursuit strategy of exploration is then tried in the second
solution, termed as R1_UCP2. Comparison of these two solution approaches indicate
that pursuit algorithm is faster compared to e — greedy.

In the next step of solution, minimum up time and down time constraints are
incorporated. Then the problem becomes more complex and the state information
includes the number of hours the units have been ON /OFF. To handle the large state
space a straight forward strategy is suggested in RL_UCP3. In this case an indexing
method is used to manage the large number of states. This method also finds difficulty
in handling problems with units having large number of hours as minimum up /down
times. An improved method of solution is suggested through state aggregation
(RL_UCP4). In this case the number of Q values to be handled is enormously reduced
and hence the time of execution is decreased. Also the method proved to be efficient
for systems with large number of units having different values of minimum up time

and down time.
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The developed algorithms are validated with different test cases. Also
comparison is made with hybrid methods: Lagrange Relaxation with Genetic algorithm
and Simulated Annealing with Local search. The time of execution of Reinforcement
Learning algorithm is found to be lesser and the schedule and costs are comparable.

8.2.2. Economic Dispatch Problem

As the second stage of the work, Economic Dispatch problem is solved using
Reinforcement Learning approach. Initially the transmission losses are neglected to get
the optimum schedule of generation. First a Learning automata algorithm is suggested
as RL_EDI. In this case the different possible power combinations are tried through a
scientific approach. The goodness of the different actions are stored using performance
indices and based on the same an action is selected. This novel strategy is found to be
simple and fast but is found to be insufficient to handle large number or generating
units.

In order to develop a solution strategy to handle larger problems, Economic
Dispatch is formulated as a multi stage decision making process and Reinforcement
Learning solutions are proposed. Here at each stage, allocation is made to one of the
generating units. Then the action set at each stage comprises the different power
allocations possible to the particular unit concerned.

Using Q leaming strategy, the system leamns for the best action at each state at
the different stages. For selecting an action from the action space, taking into account
the leamt Q values, € - greedy and pursuit methods are employed and the
corresponding algorithms are RL_ED2 and RL_ED3.

The transmission loss in the system is also considered while finding the
economic allocation schedule and the algorithm for the same is developed as RL_ED4.
In order to make the solution more efficient by handling continuous state space at each
stage, a function approximation approach is proposed as RL_EDS. The Radial Basis
Function networks employed in the solution leamns the weights of the network through

Reinforcement Learning scheme.
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The different RL algorithms are tested with IEEE standard systems and
systems having non convex and stochastic cost functions. On evaluating the
performance of the algorithms, one main attraction is that with a single learning
sequence, policy or allocation for any load value can be easily obtained. Reinforcement
Learning algorithms can efficiently handle stochastic cost functions also. Also
Reinforcement Learning algorithms are found to take lesser computation time
compared to other stochastic solution methods like Simulated Annealing, partition
Approach Algorithm.

8.2.3 Automatic Generation Control

The third problem in the active power scheduling is the on line dispatch or
meeting the instantaneous variation in the load through AGC. Extending
Reinforcement Leamning solution to AGC is the next step solved. An interconnected
system with two control areas is taken for developing RL controller schemes. The
frequency of the two areas is taken as the same. Leaming of the RL controller in both
areas is done by random perturbations. After learning, the policy is available in the
form of look up tables. Using the leamt policy, the performance of the system for a
given load disturbance is evaluated. The performance of system with RL controller is
compared to that of integral controller.

In order to ascertain the suitability and efficiency of the Reinforcement
Learning algorithms for practical systems, the NTPS II system is taken for case study.
The performance of the algorithm is compared with that of two recent methods: Fuzzy
Dynamic Programming and Evolutiorary Programming with Tabu search. Results
proved that RL based algorithm took lesser computing time compared to other
methods.

8.3 Major Research Contributions

Reinforcement Learning solutions are developed for the scheduling problems
in the power generation sector. The performance of the algorithms is found to be good
compared to other recent methods. In summary, main contributions of this thesis are,
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» Reinforcement Learning approach to Unit commitment problem has
been proposed.

> Economic Dispatch problem is solved through Reinforcement
Leamning technique.

» Reinforcement Learning solution to AGC has been extended with a
common frequency model for interconnected systems

» The suitability of Reinforcement solution to schedule the thermal
generation in NTPS II system is investigated

Proposed solution provides a scope for getting more profit as the economic
schedule is obtained instantaneously. Since Reinforcement Learning method can take
the stochastic cost data obtained time to time from a plant, it gives an implementable
method. This work can be taken as s step towards applying Reinforcement Learning
towards the scheduling problems in the power industry.

8.4 Limitations and Scope for further work

In this work, only thermal stations are considered for the scheduling problems.
It does not consider the hydro and nuclear sources. Along with the short term
scheduling task, long term scheduling is also to be solved efficiently for any practical
power system. A large number of social and economical factors impose restrictions on
this scheduling process. This scheduling process is also to be solved through such
efficient and fast optimization methods.

In this thesis simulation model is employed to learn the system. The learning
system is capable to take time to time data from an actual system.

As a further step, all the generating sources in the power system can be
incorporated in the solution task, which will give efficient and fast scheduling
mechanism which in turn will increase the economic profit in the power generation
sector. Also actual data from a power industry can be incorporated by making use of

online learning of the system.
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