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Chapter 1

Introduction

Graph theory is rooted in the eighteenth century, beginning with

the work of Euler, who is known as the father of graph theory.

The origin of graph theory can be traced back to Euler’s work

on the Königsberg bridges problem. The problem was to find a

closed walk that crosses each of the seven bridges of Königsberg

exactly once. Leonard Euler gave a negative solution to this

problem in 1736 by using parity arguments that are essentially

graph theoretical; however the familiar graph that models the

problem (with four vertices for the land areas and seven edges

for bridges) did not appear till 1892. This led to the discov-

1



2 Chapter 1. Introduction

ery of Eulerian graphs. The study of cycles on polyhedra by

the Thomas P. Kirkman (1806 - 95) and William R. Hamil-

ton (1805-65) led to the concept of a Hamiltonian graph. The

concept of a tree, a connected graph without cycles, appeared

implicitly in the work of Gustav Kirchhoff (1824-87), who em-

ployed graph-theoretical ideas in the calculation of currents in

electrical networks or circuits. Later, Arthur Cayley (1821-95),

James J. Sylvester(1806-97), George Polya(1887-1985), and oth-

ers used ‘tree’ to enumerate chemical molecules.

The origin and development of graph theory is well recorded

in [14]. Graph theory is rapidly moving into the mainstream

of mathematics mainly because of its applications in diverse

fields which include biochemistry (genomics), electrical engineer-

ing (communications networks and coding theory), computer

science (algorithms and computations) and operations research

(scheduling). The powerful combinatorial methods found in

graph theory have also been used to prove significant and well-

known results in a variety of areas in mathematics itself. Vol-

umes have been written on the rich theory and the very many

applications of graphs such as [24], [34], [40], [41], [58] and [68].
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In the past decade, graph theory has gone through a re-

markable shift and a profound transformation. The change is in

large part due to the humongous amount of information that we

are confronted with. A main way to sort through massive data

sets is to build and examine the network formed by interrela-

tions. For example, Google’s successful web search algorithms

are based on the WWW graph [10], which contains all web pages

as vertices and hyperlinks as edges. Web graphs are examples

of large, dynamic, distributed graphs and shares many proper-

ties with several other complex graphs [57] found in a variety

of systems ranging from social organizations to biological sys-

tems. The ‘PageRank’ [16] is an exciting notion related to web

graphs. Of particular interest to mathematicians is the collab-

oration graph, which is based on the data from Mathematical

Reviews.

This thesis is a humble effort to enrich this powerful branch

by investigating some graph classes which arise as generaliza-

tions of the line graph. We also attempt to study the concept

of power domination in certain classes of graphs.
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When dealing with special graph classes, a main source is

the classical book by Golumbic [35]. Since then many interest-

ing new graph classes have been studied as discussed in detail

by Brandstädt et al. [15]. The introduction of the concept of

graph operators boosted the study of graph classes. In fact, the

intersection graphs form a sub-collection of the graph classes

obtained by using graph operators. The intersection graph is a

very general notion in which objects are assigned to the vertices

of a graph and two distinct vertices are adjacent if the corre-

sponding objects have a non empty intersection. A variety of

well studied graph classes such as the line graphs, the clique

graphs and the block graphs are special types of intersection

graphs.

‘Graph operator’ is a mapping from a set of graphs G into

itself. Krausz [46] introduced the concept of the line graph and

thus that of ‘graph operators’. The study of graph operators

gained increasing importance due to the study of its dynamics

as detailed by Prisner [59]. It is quiet interesting to study the

relationship between the parameters of G and those of graph

operators. It is also interesting to study what happens when
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these graph operators act on some special graph classes. The

notion of P3-intersection graph and its dynamics are studied in

[54] and [55].

A large part of graph theory involves the computation of

graphical invariants. The reason is that many applications in

different fields reduce to such computations. The computation

of at least some of the invariants are proved to be NP-complete in

general. Thus, even the computation of such invariants in partic-

ular classes of graphs are interesting. The domination problem

is one such. It turns out that a variety of optimization prob-

lems are graph domination problems in disguise. The concept

of ‘domination’ has attracted interest among many graph theo-

rists due to its wide applications in many real world situations.

The historical conception and the subsequent development of

this fertile area of domination theory from the chessboard prob-

lems is very well surveyed by Watkins in [67]. This concept is

gaining importance and a good number of research papers and

books are being written in this area [13], [23], [58], [70].



6 Chapter 1. Introduction

A lot many variations of the concept of domination is studied

recently. The ‘power domination’ problem is one such. A power

network contains a set of nodes and a set of edges connecting

the nodes. It also contains a set of generators, which supply

power, and a set of loads, where the power is directed to. In

order to monitor a power network we need to measure all the

state variables of the network by placing measurement devices.

A Phase Measurement Unit (PMU) is a measurement device

placed on a node that has the ability to measure the voltage of

the node and current phase of the edges connected to the node

and to give warnings of system-wide failures. The goal is to in-

stall the minimum number of PMUs such that the whole system

is monitored. This problem was modeled using the concepts of

graph theory by Haynes et al. in [37] and then it turned out to

be a variant of the famous problem of dominating sets in graphs.

To see the power domination problem and its graph theo-

retic formulation [1] in more detail consider a power network

G = (V,E). The resistance of the edges in the power network

is a property of the material with which it is made and hence

it can be assumed to be known. Our goal is to measure the



1.1. Basic definitions 7

voltages at all nodes and electrical currents at the edges. By

placing a PMU at a node v we can measure the voltage of v

and the electrical current on each edge incident to v. Next, by

using Ohm’s law we can compute the voltage of any node in the

neighbourhood of v. Now, assume that the voltage v and all of

its neighbours except w is known. By applying Ohm’s law we

can compute the current on the edges incident to v except the

edge vw. Next by using Kirchoff’s law we compute the current

on the edge vw. Finally, applying Ohm’s law on the edge vw

gives us the voltage of w.

1.1 Basic definitions

The basic notations, terminology and definitions are from [9],

[18], [35], [36] and [68] and the basic results are from [38], [42]

and [59].

Definition 1.1.1. A graph G = (V,E) consists of a col-

lection of points, V called its vertices and a set of unordered

pairs of distinct vertices, E called its edges. If |V | is finite, then

G is a finite graph. The unordered pair of vertices {u, v} ∈ E
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are called the end vertices of the edge e = uv. When u and v

are end vertices of an edge, then u and v are adjacent. If the

vertex v is an end vertex of an edge e, then e is incident to v.

Two edges which are incident with a common vertex are said to

be adjacent edges. The cardinality of V is called the order of

G and the cardinality of E is called the size of G. A graph is

the null graph, denoted by φ if it has no vertices and trivial

graph if it has no edges.

Definition 1.1.2. The degree of a vertex v, denoted by

deg(v) is the number of edges incident to v. A graph G is k-

regular if deg(v)= k for every vertex v ∈ V . A vertex of degree

zero is an isolated vertex and of degree one is a pendant

vertex. The edge incident on a pendant vertex is a pendant

edge. A vertex of degree n−1 is called a universal vertex. In

a graph G, the maximum degree of vertices is denoted by ∆(G)

and the minimum degree of vertices is denoted by δ(G).

Definition 1.1.3. A graph G = (V,E) is isomorphic to

a graph H = (V ′, E ′) if there exists a bijection from V to V ′

which preserves adjacency. If G is isomorphic to H, we write

G ∼= H.
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Definition 1.1.4. A graph H = (V ′, E ′) is called a sub-

graph of G if V ′ ⊆ V and E ′ ⊆ E. A subgraph H is a spanning

subgraph if V ′ = V. The graph H is called an induced sub-

graph of G if E ′ is the collection of all edges in G which has

both its end vertices in V ′. <V ′> denotes the induced subgraph

with vertex set V ′. A graph G is H-free if it does not contain

H as an induced subgraph.

Definition 1.1.5. Given a nonempty class C of graphs, a

graph G is said to be C-free , if none of the induced subgraphs

of G belong to C. Let G(C) denote the class of graphs which are

C-free. If H is a class of graphs, we say that F is a forbid-

den subgraph for H if no element of H has F as an induced

subgraph. If H = G(C), for some class C of graphs, we say that

H has a forbidden subgraph characterization. A class C of

graphs has the induced hereditary property if G ∈ C implies

that every induced subgraph of G also belongs to C.

Definition 1.1.6. A v0−vk walk in a graph G is a finite

list v0, e1, v1, e2, v2, ..., ek, vk of vertices and edges such that for

1 6 i 6 k, the edge ei has end vertices vi−1 and vi. In the v0−vk

walk, v0 is the origin, vk is the terminus and v1, v2, ..., vk−1 are
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its internal vertices . If the vertices v0, v1, ..., vk of the above

walk are distinct, then it is called a path. A path from a vertex

u to a vertex v is called a u−v path. A path on n vertices is

denoted by Pn. If the edges e1, e2, ..., ek of the walk are distinct,

it is called a trail. A graph G is Eulerian if it has a closed

trail containing all the edges. A nontrivial closed trail is called

a cycle if its origin and internal vertices are distinct. A cycle

with n vertices is denoted by Cn. The length of a walk, a path

or a cycle is its number of edges. A graph containing exactly

one cycle is called a unicyclic graph. A graph is acyclic if it

does not contain cycles. The girth of G, g(G) is the length of

a shortest cycle in G. An acyclic graph has infinite girth. The

circumference of G, c(G) is the length of any longest cycle in

G. A graph is hamiltonian if it has a spanning cycle.

Definition 1.1.7. A graph G is connected if for every

u, v ∈ V, there exists a u−v path. If G is not connected then

it is disconnected. The components of G are its maximal

connected subgraphs. A connected acyclic graph is called a tree.

A caterpillar is a tree in which a single path (called the spine)

is incident to every edge.
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Definition 1.1.8. The distance between two vertices u

and v of a connected graph G, denoted by d(u, v) or dG(u, v)

is the length of a shortest u−v path in G. The eccentricity

of a vertex u, e(u) =max{d(u, v)|v ∈ V (G)}. The radius r(G)

and the diameter d(G) are respectively the minimum and the

maximum of the vertex eccentricities.

Definition 1.1.9. A chord of a cycle C is an edge not in

C whose end points lie in C. A graph G is chordal if every

cycle of length at least four in G has a chord.

Definition 1.1.10. A complete graph is a graph in which

each pair of distinct vertices is joined by an edge and is denoted

by Kn. The graph obtained by deleting any edge of Kn is de-

noted by Kn−{e}. K3 is called a triangle and a paw is a

triangle with a pendant edge. A clique is a maximal complete

subgraph.

Definition 1.1.11. The set of all vertices adjacent to a ver-

tex v is called open neighborhood of v, denoted by N(v). The

closed neighborhood of v, N [v] = N(v)∪{v}. For a subset S

of V (G), the open neighborhood of S, N(S) = ∪v∈SN(v)−S.

The closed neighborhood of S, N [S] of a subset S is the set
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N [S] = N(S) ∪ S.

Definition 1.1.12. Let G be a graph. The complement

of G, denoted by Gc is the graph with vertex set same as that

of V and any two vertices are adjacent in Gc if they are not

adjacent in G. Kc
n is called totally disconnected. A graph G

is self complementary if G ∼= Gc.

Definition 1.1.13. A graph G is bipartite if the vertex

set can be partitioned into two non-empty sets U and U ′ such

that every edge of G has one end vertex in U and the other

in U ′. A bipartite graph in which each vertex of U is adjacent

to every vertex of U ′ is called a complete bipartite graph.

If |U | = m and |U ′| = n, then the complete bipartite graph is

denoted by Km,n. The complete bipartite graph K1,n is called a

n-star. The graph K1,3 is called a claw.

Definition 1.1.14. For a graph G, a subset V ′ of V (G) is

a k-vertex cut of G if the number of components in G−V ′ is

greater than that of G and |V ′| = k. The vertex connectivity

of G, κ(G) is the smallest number of vertices in G whose deletion

from G increases the number of components of G. A graph is

n-connected if κ(G) > n. A vertex v of G is a cut vertex of
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G if {v} is a vertex cut of G. If G has no cut vertices, then G

is a block. The edge connectivity of a graph G, κ′(G) is the

least number of edges whose deletion increases the number of

components of G or results a K1.

Definition 1.1.15. A graph is planar if there exists a

drawing of G in the plane in which no two edges intersects in a

point other than a vertex of G, where each edge is a simple arc

or a Jordan arc. Such a drawing is a planar embedding of G.

A plane graph is a particular drawing of a planar graph in the

plane with no crossings.

Definition 1.1.16. Let G be a plane graph and π be the

plane minus the edges and vertices of G. We say that for points

A and B of π, A ≡ B if and only if, there exists a Jordan arc from

A to B in π. The equivalence classes of the above equivalence

relation are called faces of G.

Definition 1.1.17. A graph is an outerplanar if it has

an embedding in the plane such that every vertex lies in the

unbounded face. An outerplane graph is a planar embedding

with every vertex on the unbounded face. A maximal outer-

planar graph is an outer planar graph that is not a spanning
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subgraph of any other outerplanar graph.

Definition 1.1.18. A subset I ⊆ V of vertices is inde-

pendent if no two vertices of I are adjacent. The maximum

cardinality of an independent set is called the independence

number and is denoted by α(G). A subset F ⊆ E of edges is

said to be an independent set of edges or a matching if no

two edges in F have a vertex in common. The maximum cardi-

nality of a matching set of edges is the matching number or

edge-independence number and is denoted by α′(G).

Definition 1.1.19. A subset S ⊆ V of vertices is a domi-

nating set if each vertex of G that is not in S is adjacent to at

least one vertex of S. If S is a dominating set then N [S] = V . A

dominating set of minimum cardinality in G is called a minimum

dominating set, and its cardinality, the domination number

of G, denoted by γ(G).

Definition 1.1.20. A subdivision of an edge e = uv of a

graph G is obtained by introducing a new vertex w in e, that is,

by replacing the edge e = uv of G by the path uwv of length two

so that the new vertex w is of degree two in the resulting graph.

A homeomorph or a subdivision of a graph G is a graph



1.1. Basic definitions 15

obtained from G by applying a finite number of subdivisions

of edges in succession. G itself is regarded as a subdivision of

G. Two graphs G and H are called homeomorphic if they

are both homeomorphs of the same graph. The graph obtained

from G by subdividing each edge of G exactly once is called the

subdivision of G and is denoted by S(G).

Definition 1.1.21. If e = uv is an edge of G, then the

contraction of e is the operation of replacing u and v by a

single vertex whose incident edges are the edges other than e

that were incident to u or v. A graph G is contractible to a

graph H or H is a contraction of G, if H can be obtained from

G by a sequence of edge contractions.

Definition 1.1.22. The join of two graphs G and H,

denoted by G ∨ H, is the graph with vertex set V (G) ∪ V (H)

and the edge set E(G)∪E(H)∪{gh|g ∈ V (G), h ∈ V (H)}. The

graph K1 ∨Cn−1 is called the wheel, Wn. The graph K1 ∨Pn−1

is called the fan, Fn.

Definition 1.1.23. Let G1 and G2 be two graphs of order

n1 and n2 respectively. The corona of G1 and G2, denoted by

G1 ◦ G2, is the graph obtained by taking one copy of G1 and
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n1 copies of G2, and then joining the ith vertex of G1 to every

vertex in the ith copy of G2.

Illustration:

Fig 1.1: C4 ◦K3

Definition 1.1.24. The Cartesian product of two graphs

G and H, denoted by G�H, is the graph with vertex set V (G)×

V (H). Two vertices (g, h) and (g′, h′) are adjacent in G�H

if they are equal in one coordinate and adjacent in the other.

The graph Pn�Pm is called the n×m grid graph. The graph

Pn × Cm is called a cylinder and the graph Cn × Cm is called

a torus.
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Illustration:

Fig 1.2: (i)4× 4-grid (ii)4× 4-cylinder (iii)4× 4-torus

Definition 1.1.25. The direct product of two graphs G

and H, denoted by G×H, is the graph with vertex set V (G)×

V (H). Two vertices (g, h) and (g′, h′) are adjacent in G×H if

they are adjacent in both coordinates.

Definition 1.1.26. Let G∗H be any of the graph products.

For any vertex g ∈ G, the subgraph of G ∗H induced by {g} ×

V (H) is called the H-fiber at g and denoted by gH. For any

vertex h ∈ H, the subgraph of G ∗H induced by V (G)× {h} is

called the G-fiber at h and denoted by Gh.

Definition 1.1.27. The intersection graph of a collec-

tion of objects is the graph whose vertex set is that collection

and any two vertices are adjacent if the corresponding objects
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intersect. The intersection graph of all the edges of G is the line

graph of G denoted by L(G). Thus, the line graph L(G) of a

graph G has as its vertices the edges of G and two vertices of

L(G) are adjacent if the corresponding edges of G are adjacent.

Illustration:

Fig 1.3: G and L(G)

Definition 1.1.28. For any graph G, the nth iterated

graph under the operator Φ is iteratively defined as Φ1(G) =

Φ(G) and Φn(G) = Φ(Φn−1(G)) for n > 1. A graph G is Φn-

complete if Φn(G) is a complete graph. If there is some integer N

such that Φn+1(G) = Φn(G) whenever n > N , then the sequence

{Φk(G)} is said to Φ-converge, and ΦN(G) is called the limit Φ

graph. If G is not convergent under Φ, then G is Φ-divergent .

A graph G is Φ-periodic if there is some natural number n with
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G = Φn(G). The smallest such number n is called the period

of G. A graph G is Φ-fixed if the period of G is one.

Illustration:

Fig 1.4: (i)K1,3 is L-convergent (ii) C4 is L-fixed

Fig 1.5: An example of L-divergent graph

Definition 1.1.29. [43] The triangular line graph , has

as its vertices the edges of G and two vertices are adjacent if

the corresponding edges belong to a common triangle of G. It
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is also known as anti-Gallai graph.

Illustration:

Fig 1.6: G and its triangular line graph

Definition 1.1.30. [20] Let H be a connected graph of

order n > 3. The H-line graph of G, denoted by LH(G) , is the

graph with the edges of G as its vertices. Two vertices of LH(G)

are adjacent if the corresponding edges in G are adjacent and lie

in a common copy of H. A graph G is an H-line graph if there

exists a graph G′ such that G ∼= LH(G′). If H ∼= K1,n, n > 3,

H-line graphs are called n-star-line graphs.
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Illustration:

Fig 1.7: G and LC4
(G)

Definition 1.1.31. The n-star-line index of a graph

G, ζn(G), is the smallest k such that Lk
K1,n

(G) is nonplanar. If

Lk
K1,n

(G) is planar for all k > 0, we define ζn(G) =∞.

Illustration:

Fig 1.8: ζ3(G) =∞
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Fig 1.9: ζ3(G) = 4

Definition 1.1.32. [7] The triangle graph, T (G) of a

graph G has as its vertices the triangles of G and two vertices

of T (G) are adjacent if the corresponding triangles in G have a

common edge. If G is triangle-free, then T (G) is the null graph.

A graph G is a triangle graph, if there exists a graph H such

that T (H) ∼= G. H is called an inverse triangle graph of G.

Illustration:

Fig 1.10: G and T (G)
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Definition 1.1.33. [31] The cycle graph, Cy(G) of a

graph G, has as its vertices the induced cycles of G and two ver-

tices of Cy(G) are adjacent if the corresponding induced cycles

have a common edge. If G is acyclic, then Cy(G) is the null

graph. A graph G is a cycle graph, if there exists a graph H

such that Cy(H) ∼= G. H is called an inverse cycle graph

of G. The n-th iterated cycle graph of G is defined recur-

sively by Cyn(G)=Cy(Cyn−1(G) for n > 2. A graph is said

to be cycle-vanishing if there exists a nonnegative integer n

such that Cyn(G) is the null graph. Otherwise G is said to be

cycle-persistent.

Illustration:

Fig 1.11: G and Cy(G)

Definition 1.1.34. [26] Let the graph G = (V,E) represent

an electric power system, where a vertex represents an electri-

cal node and an edge represents a transmission line joining two
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electrical nodes. For a subset S ⊆ V (G), the set monitored by

S , M(S) is defined recursively as follows:

1.Domination step: M(S)← S ∪N(S)

2.Propagation step: As long as there exists v ∈M(S) such that

N(v) ∩ (V (G)−M(S)) = {w} set M(S)←M(S) ∪ {w}.

In other words, first put into M(S) the vertices from the closed

neighborhood of S. Then, repeatedly add to M(S) vertices w

that have a neighbor v in M(S) such that all other neighbors

of v are already in M(S). If no such vertex w exists, the set

monitored by S has been constructed.

Illustration:

Fig 1.12: M(S) where S = {u, v}
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Definition 1.1.35. A set S is called a power dominating

set of G if M(S) = V (G) and the power domination number

of G, γp(G), is the minimum cardinality of a power dominating

set of G.

Illustration:

Fig 1.13: S = {u, v} is a power dominating set. γp(G) = 2 and
γ(G) = 3.

Definition 1.1.36. [65] For given positive integers m,n

such that m < n, [m,n] = {m,m+1, . . . , n−1, n}. The hexag-

onal honeycomb grid of dimension n > 1, n ∈ Z, HMn,

has vertex set V (HMn) = {(x, y, z) | x, y, z ∈ [−n + 1, n] and

1 6 x+y+z 6 2} and two vertices (x1, y1, z1) and (x2, y2, z2) are

adjacent if and only if |x1 − x2| + |y1 − y2| + |z1 − z2| = 1. For

every k ∈ [−n+1, n], the X-diagonal at k is denoted by Xk and

is defined as Xk = {(k, y, z) ∈ HMn | 1 − k 6 y + z 6 2 − k}.

A vertex v is said to cover a diagonal X, if v ∈ X. A set

T ⊆ V (G) is said to cover a diagonal X, if there exists an ele-
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ment t ∈ T which covers X.

Note: The Y -diagonals and Z-diagonals are defined sim-

ilarly.

Illustration:

Fig 1.14: X2 in HM3

Definition 1.1.37. [2] For any integer n, the triangu-

lar grid, Tn, is the graph whose vertices are ordered triples
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(i, j, k) of nonnegative integers summing to n, and two vertices

are joined by an edge if they agree in one co-ordinate and dif-

fer by one in the other two. For each integer c ∈ [0, n], Ic, the

I-diagonal at c is defined as the subgraph induced by the ver-

tices whose i-coordinate equals c. A diagonal at zero is called a

boundary of Tn. A vertex v covers a diagonal if it belongs

to that diagonal.

Note: The diagonals Jc and Kc are defined similarly.

Illustration:

Fig 1.15: I2 in T5

Definition 1.1.38. Let m and n be integers such that

m < n. A m×n rectangular triangular grid, RTm,n, has the

vertex set, V (RTm,n) = {(i, j, k) : i ∈ [−n,m], j ∈ [0,m], k ∈
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[0, n] and |i + j + k| = n}, with an edge connecting two triples

if they agree in one co-ordinate and differ by one in the other

two.

Illustration:

Fig 1.16: RT5,6

Definition 1.1.39. [56] For a graph G = (V,E), the My-

cielskian of G, µ(G) is the graph with vertex set V ∪ V ′ ∪ z,

where V ′ = {u′ : u ∈ V }, and edge set E∪{uv′ : uv ∈ E}∪{v′z :

v′ ∈ V ′}. The vertex u′ is called the twin of the vertex u (and

u the twin of u′) and the vertex z is called the root of µ(G).
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Illustration:

Fig 1.17: µ(C4)

Definition 1.1.40. [52] Let G be a graph with vertex set

V 0 = {v0
1, v

0
2, . . . , v

0
n} and edge set E0. Given an integer m > 1

the generalized m-Mycielskian of G denoted by µm(G), is the

graph with vertex set V 0∪V 1∪V 2∪ . . .∪V 0∪{z}, where V i =

{vi
j : v0

j ∈ V 0} is the ith distinct copy of V 0 for i = 1, 2, . . . m

and edge set E0∪
(

∪i=0
m−1{v

i
jv

i+1
j′ : v0

j v
0
j′ ∈ E0

)

∪{vm
j z : vm

j ∈ V m}.

Illustration:

Fig 1.18: µ3(C4)
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1.2 Basic theorems

Theorem 1.2.1. [33] A class of graphs C has a forbidden sub-

graph characterization if and only if C has the induced hereditary

property.

Theorem 1.2.2. [12] A graph G is a line graph if and only none

of the nine graphs of Fig: 1.19 is an induced subgraph of G.

Fig 1.19: The nine forbidden subgraphs for line graphs
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Theorem 1.2.3. [46] A simple graph G is a line graph of some

simple graph if and only if E(G) has a partition into cliques

using each vertex of G at most twice.

Theorem 1.2.4. [50] AntiGallai graphs do not admit a forbid-

den subgraph characterization.

Theorem 1.2.5. (Kuratowski’s Theorem) [47] A graph is

planar if and only if it has no subgraph homeomorphic to K5 or

K3,3.

Theorem 1.2.6. For any simple planar graph G, δ(G) 6 5.

Theorem 1.2.7. [36] A graph G is outerplanar if and only if it

has no subgraph homeomorphic to K4 or K2,3 except K4−e.

Theorem 1.2.8. [9] A graph is bipartite if and only if it con-

tains no odd cycles.

1.3 A survey of previous results

This section is a survey of results related to that of ours.
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The study of line graphs was initiated by Whitney [69] and

independently by Krausz [46] and Ore [58]. Since then it has

been extensively studied and subjected to generalizations such as

super-line graphs [6], triangular line graphs [43], H-line graphs[20]

etc. The triangular line graph is also known as the anti-Gallai

graph of G, antiGal(G) [50]. Some properties of antiGal(G)

are studied in [5] and [3].

The behaviour of the sequence {Lk
H(G)} when H = K3,

H = P4, P5 or K1,n, n > 3 and H = C4 are analyzed in [43], [28],

[20] and [21] respectively. Jarret [43] proved that, if H = C3,

then the sequence {Lk
H(G)} converges if and only if G has at

least one triangle and every convergent sequence converges to

mC3,m > 1. In [20], it is proved that if {Lk
H(G)} converges

to a connected limit graph, then H = Cn or H = Pn for some

n > 3. Chartrand et al. in [21] showed that if G contains no

subgraph isomorphic to K1 ∨ P4, P4�K2, K2,3, K4, then the se-

quence LC4
(G) converges to mC4,m > 1. In [17], it is shown

that the components of LKn
(G) are always Eulerian. A suffi-

cient condition for each component of LC4
(G) to be Eulerian is

obtained in [21]. In [32], Ghebleh et al. studied the planarity of
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iterated line graphs and introduced the notion of the line index

of a graph, ζ(G). They also characterized all graphs in terms

of the line index. The outerplanarity of iterated line graphs is

studied and the outerplanar line index is defined in [53].

The edges of G can be considered as cliques of order two.

This point of view admits another generalization of line graphs,

called triangle graphs ([7]). The cycle graph [31] can also be

considered as a generalization of the triangle graph. Cycle-

persistent and cycle-vanishing graphs are studied in [66].

The problem of finding a dominating set of minimum cardi-

nality is an important problem that has been extensively stud-

ied. Our focus is on a variation called the power dominating set

(PDS) problem. This type of domination is different from the

standard domination type problem, since the domination rules

can be iterated. In other words, the set M(S) is obtained from

S as follows. First put into M(S) the vertices from the closed

neighborhood of S. Then, repeatedly add to M(S) vertices w

that have a neighbor v in M(S) such that all other neighbors
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of v are already in M(S). If no such vertex w exists, the set

monitored by S has been constructed.

The problem of deciding if a graph G has a power dominat-

ing set of cardinality k has been shown to be NP-complete even

for bipartite graphs, chordal graphs [37] or even split graphs

[51]. On the other hand, the problem has efficient solutions on

trees [37], as well as on interval graphs [51] . Other efficient

algorithms have been presented for trees and more generally, for

graphs with bounded treewidth [45]. The following results from

[37], [27], [26], [11] are of interest to us.

Theorem 1.3.1. [37] For any graph G, 1 6 γp(G) 6 γ(G),

where γp(G) and γ(G) are the power domination number and

domination number of G respectively. Also, γp(G) = 1 for

G ∈ {Kn, Cn, Pn, K2,n}.

Theorem 1.3.2. [37] There is no forbidden subgraph charac-

terization of the graphs G for which γp(G) = γ(G).
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Theorem 1.3.3. [37] If G is a graph with maximum degree at

least three, then G contains a γp(G)-set in which every vertex

has degree at least three.

Theorem 1.3.4. [27] If G is the grid graph Pn�Pm where m >

n > 1, then

γp(G) =
⌈

n+1
4

⌉

, if n ≡ 4 (mod 8).

γp(G) =
⌈

n
4

⌉

, otherwise.

Theorem 1.3.5. [26] Let n be even and C be a connected com-

ponent of Pm × Pn. If m is odd or m > n, then γp(C) =
⌈

n
4

⌉

.

Theorem 1.3.6. [26] Let m 6 n be odd and C be the compo-

nent of Pm × Pn containing the vertex (0, 0). Then,

γp(C) = max{
⌈

n
4

⌉

,
⌈

m+n
6

⌉

}.

Theorem 1.3.7. [11] The power domination number for the

cylinder G = Pn�Cm is

γp(G) 6 min{
⌈

m+1
4

⌉

,
⌈

n+1
2

⌉

}, if n ≡ 4 (mod 8).

γp(G) 6 min{
⌈

m
4

⌉

,
⌈

n+1
2

⌉

}, otherwise.
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Theorem 1.3.8. [11] The power domination number for the

torus G = Cn�Cm, n 6 m is

γp(G) 6
⌈

n
2

⌉

if n ≡ 0 (mod 4).

γp(G) 6
⌈

n+1
2

⌉

, otherwise.

More generally, upper bounds for γp(G) for an arbitrary

graph G were given by Zhao and Kang [72]. They proved that

if G is an outerplanar graph with diameter two or a 2-connected

outerplanar graph with diameter three, then γp(G) = 1. An

upper bound is obtained in [71] as follows:

Theorem 1.3.9. [71] Let T be the family of graphs obtained

from connected graphs H by adding two new vertices v
′

and v
′′

to each vertex v of H and new edges vv
′

and vv
′′

, while v
′

v
′′

may

be added or not. If G is a connected graph of order n > 3, then

γp(G) 6 n
3

with equality if and only if G ∈ T ∪ {K3,3}.

The hexagonal honeycomb grids were studied by Stojmen-

ovic in [64],[65] and they offer a model for multiprocessor inter-

connection networks with similar properties to those of mesh-

connected computer networks, which are also referred to as grid

graphs. The network cost, defined as the product of degree
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and diameter, is better for honeycomb grids than for the square

grids, which makes it a suitable choice for interconnection net-

works. Some interesting works on hexagonal honeycomb grids

are in [44] and [48] where they are referred to as benzenoid hy-

drocarbons.

Triangular grids have attracted great attention due to its

wide applications in interconnection networks. The vertex band-

width and the edge bandwidth of the triangular grid is obtained

in [39] and [2], respectively. Evidence for grid cells in human

memory network is discussed by Doeller et al. in [25] in which

the authors have observed that the brain uses triangles instead

of square grid lines to locate objects.

Mycielski introduced an interesting graph transformation which

transforms a graph G into a graph µ(G), which we now call the

Mycielskian of G [56]. He used this fascinating construction to

create triangle-free graphs with large chromatic numbers. Ear-

lier, the studies on Mycielskians was mainly focused on its chro-

matic number and its variations like circular chromatic number,
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fractional chromatic number etc. [19], [49]. Later, various other

parameters like hamiltonicity, diameter, domination etc were in-

vestigated in [30] and [52]. Recently, the edge-connectivity and

vertex connectivity of µ(G) has been studied by Balakrishnan et

al. in [8].

1.4 Summary of the thesis

This thesis entitled ‘Studies on some generalizations of line graph

and the power domination problem in graphs’ is centered around

the graph operators- LH(G) and Cy(G) and the corresponding

graph classes- H-line graphs and cycle graphs. We also study the

power domination problem in hexagonal and triangular grids,

Mycielskian of graphs and graph products.

This thesis is divided into five chapters including an intro-

ductory chapter which contains the literature on graph operators

and the power domination problem. It also include some basic

definitions and terminology used in this thesis.
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In the second chapter H-line graphs and iterated star line

graphs are studied in detail. The main results in this chapter

are:

⋆ H-line graphs admit a forbidden subgraph characteriza-

tion if and only if H = K1,2.

⋆ A graph G is a star-line graph, LK1,n
(G′), n > 3 if and

only if E(G) has a partition into cliques of order at least

n using each vertex of G at most twice.

⋆ Characterizations of graphs in terms of ζ3(G), ζ4(G) and

ζn(G), n > 5.

The third chapter is the study of another graph operator, the

cycle graph, Cy(G). Following are some of the results obtained.

z For any graph G, Cy(G) is a tree if and only if G is out-

erplanar and all its cycles lie in the same block.

z The girth of a cycle graph is three.

z Let G be a chordal graph. Then, Cy(G) is chordal if and

only if G does not contain K5−e as an induced subgraph.
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z For any two integers a > 1, b > 1, there are graphs G,

such that γ(G) = a and γ(Cy(G)) = b, where γ(G) is the

domination number of G. Similar results for radius and

diameter are also obtained.

z The cycle graph of G�K2 is isomorphic to L(G) if and

only if G is a forest.

The fourth chapter deals with the power domination problem

in hexagonal and triangular grids. The main results are:

⊲⊳ If G =HMn, then γP (G) =
⌈

2n
3

⌉

.

⊲⊳ If G = Tn, then γp(G) =
⌈

n+1
4

⌉

.

⊲⊳ If G =RTm,n, then γp(G) =
⌈

m+1
4

⌉

.

The power domination problem in more classes of graphs

such as Mycielskians, direct product, Cartesian product etc. are

discussed in the fifth chapter. The main results are listed below.

⊕ If G has a minimum power dominating set in which ev-

ery vertex has a neighbor of outdegree one in S1, then

γp(µ(G)) 6 γp(G).
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⊕ Let G be a connected graph with γp(µ(G)) 6 γp(G) and

γp(µ(G)) 6= 1. Then γp(µ(G)) = γp(G).

⊕ If G is a connected graph, then

γp(µ(G)) ∈ {1, γG, γp(G) + 1}.

⊕ For every n > 1, there are graphs with γp(G) = n and

γp(µ(G)) = 1.

⊕ For an even integer n, γp(µm(Pn)) = 1.

⊕ For an integer m > 2 and an odd integer n,

γp(µm(Pn)) 6 m
2

+ 1, if m is even.

γp(µm(Pn)) 6 m+1
2

, if m is odd.

⊕ γp(Km ×Kn) = 2, for m + n > 5.

⊕ Let m > 3, n > 4 and G = Km × Cn. Then

γp(G) = 2k, if n = 4k

γp(G) = 2k + 1, if n = 4k + 1

γp(G) = 2k + 2, if n = 4k + 2 or n = 4k + 3.

⊕ Let n be an even integer and G = Cm × Pn. Then

γp(G) = 2
⌈

n
3

⌉

, if m is even.

γp(G) =
⌈

n
3

⌉

, if m is odd.
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Some of the results in this thesis are included in [29], [60], [61],

[62], [63]. The thesis is concluded with some suggestions for

further study and a bibliography.
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Chapter 2

H-line graphs

This chapter deals with the graph operator LH(G) and the cor-

responding graph class, H-line graphs. We show that H-line

graphs admit a forbidden subgraph characterization only when

H = K1,2. We also obtain a Krausz type characterization for

star-line graphs. The notion of line index of a graph, ζ(G) is

generalized to ζn(G), n-star-line-index of a graph G. We also

characterize graphs in terms of ζ3(G), ζ4(G) and ζn(G), n > 5.

Some results of this chapter are included in the following papers.
1. Seema Varghese, A. Vijayakumar, On H-line graphs (Submitted).
2. Seema Varghese, A. Vijayakumar, On the planarity of iterated star-line
graphs (Submitted).

45
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2.1 Non-existence of forbidden sub-

graph characterization

Let H is a connected graph of order at least three. It is clear

that LH(G) is a spanning subgraph of L(G).

Lemma 2.1.1. If H is a graph with the edge-independence num-

ber, α′(H) > 1, then Kn, n > 2 is not an H-line graph.

Proof. Suppose that α′(H) > 1 and e1, e2 are any two inde-

pendent edges in H. Since LH(G) has an edge if and only if G

contains a copy of H, the edges e1, e2 will be independent in G

also. Clearly, the vertices corresponding to e1 and e2 are not

adjacent in LH(G).

Lemma 2.1.2. Every Kn is an induced subgraph of LH(G) for

some graph G.

Proof. The graph G can be constructed as follows. With

each pair of adjacent edges {vvi, vvj} of K1,n construct a copy

of H. In the newly constructed graph G, the edges {vvi, vvj}

are adjacent and there is a copy of H containing both these
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Fig 2.1: K4 is an induced subgraph of LC4
(G)

edges where i and j are integers such that 1 6 i, j 6 n. Hence

{vv1, vv2, . . . vvn} will induce a Kn in LH(G).

Note: The case when H = C4 is illustrated in Fig: 2.1.

Thus, it is clear from Lemma 2.1.2 that H-line graphs do not

have induced hereditary property and hence, by Theorem 1.2.1

they lack forbidden subgraph characterization, if α′(H) > 1. If

α′(H) = 1, then H is either K1,n, n > 2 or K3. LK1,2
(G), which
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is the line graph of G, admits a forbidden subgraph characteri-

zation (Theorem 1.2.2) but LK3
(G) does not admit a forbidden

subgraph characterization (Theorem 1.2.4). Now, we shall show

that LK1,n
(G), n > 3 does not have the induced hereditary prop-

erty.

Lemma 2.1.3. If G is a H-line graph, then every edge of G lies

in a copy of L(H).

Proof. Let G = LH(G′). If there is an edge in G, then there

will be a copy of H in G′. Then the edges in H ⊆ G′ will induce

a copy of L(H) in G.

Lemma 2.1.4. The graph Cm,m > 4 is not a LK1,n
(G), n > 3,

for any G.

Proof. If Cm,m > 4 were a LK1,n
(G), n > 3, then by

Lemma 2.1.3, every edge of Cm would lie in a copy of L(K1,n) ∼= Kn,

n > 3.

Lemma 2.1.5. For m > 4, every Cm is an induced subgraph of

LK1,n
(G), n > 3, for some graph G.
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Fig 2.2: C4 is an induced subgraph of LK1,4
(G)

Proof. Let G = Cm ◦Kc
n−2. Then LK1,n

(G) will contain Cm

as an induced subgraph.

Note: The case when m = 4 and n = 4 is illustrated in Fig: 2.2.

Theorem 2.1.6. H-line graphs admit a forbidden subgraph char-

acterization if and only if H = K1,2.

Proof. The necessary part follows from Theorem 1.2.2. The

sufficiency part follows from Theorem 1.2.4 and Lemmas 2.1.1

to 2.1.5.
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2.2 Krausz-type characterization for

star-line graphs

Analogous to the Theorem 1.2.3, the Krausz characterization of

line graphs, we have the following theorem for star-line graphs.

Theorem 2.2.1. A graph G is a star-line graph, LK1,n
(G′), n >

2 if and only if E(G) has a partition into cliques of order at least

n using each vertex of G at most twice.

Proof. When n = 2, the theorem reduces to the Krausz char-

acterization of line graphs. Suppose, G ∼= LK1,n
(G′), for some

n > 3. Let v ∈ G′ be such that deg(v) > n. The edges inci-

dent to v will form a clique Cv of order at least n in G. Then,

E = {Cv|v ∈ G′ and deg(v) > n} will form a clique cover of the

edges of G in which every vertex of G is in at most two members

of E .

Conversely, suppose that G has an edge clique partition E

satisfying the condition of the theorem. Consider the intersec-

tion graph I(E). Corresponding to every vertex of G, which
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belong to exactly one clique C of E , draw a pendant vertex to

the vertex corresponding to C in I(E) and for every isolated

vertex of G, draw an isolated edge. Let the newly constructed

graph be G′. Now we shall show that LK1,n
(G′) ∼= G. Define

φ : V (G) −→ V (LK1,n
(G′)) as follows: If v ∈ V (G) is such that

v ∈ Ci ∩ Cj, then Ci and Cj are adjacent in I(E) and define

φ(v) to be the edge in G′ joining Ci and Cj. If v ∈ Ci only,

then there will be a pendant vertex in G′ corresponding to v

and define φ(v) to be the pendant edge attached to Ci. If v is

an isolated vertex in G, define φ(v) to be the isolated edge in G′

corresponding to v. It is clear that φ is a well-defined bijection.

Let u and v be adjacent vertices in G. Then u and v belong to a

clique Ci of the partition. Since every clique of the partition is

of order at least n, there are vertices w1, w2 . . . wn−2 in Ci. The

construction of G′ is such that edges corresponding to these ver-

tices u, v, w1, w2 . . . wn−2 will have a common vertex forming a

K1,n in G′. Thus the edges corresponding to u and v are adja-

cent and lie in a common copy of K1,n in G′ and hence u and v

are adjacent in LK1,n
(G′). Therefore, φ is an isomorphism.

Corollary 2.2.2. LK1,n
(G′), n > 3 is a line graph in which

every edge lies in a Kn.
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2.3 3-star-line-index of a graph

In this section, we characterize graphs in terms of ζ3(G).

Lemma 2.3.1. If G′ is a subgraph of G, then ζn(G) 6 ζn(G′).

Proof. Let ζn(G′) = k. Then, Lk
K1,n

(G′) is nonplanar and so

is Lk
K1,n

(G), since G′ is subgraph of G.

Lemma 2.3.2. If G is a graph with ∆(G) > 4, then ζ3(G) 6 3.

Proof. If ∆(G) > 4, then G contains K1,4 as a subgraph and

L3
K1,3

(K1,4) (Fig: 2.3) is a 6-regular graph and hence is nonplanar

by Theorem 1.2.6. Therefore, ζ3(K1,4) 6 3 and by Lemma 2.3.1,

ζ3(G) 6 3.

Fig 2.3: L3
K1,3

(K1,4)
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Lemma 2.3.3. For any graph G, ζ3(G) ∈ {0, 1, 2, 3, 4,∞}.

Also, ζ3(G) = ∞ if and only if ∆(G) 6 3 and no two vertices

in G of degree three are adjacent .

Proof. If ∆(G) > 4, by Lemma 2.3.2, we have ζ3(G) 6 3.

If ∆(G) 6 2, then G does not contain K1,3 as a subgraph and

hence LK1,3
(G) is totally disconnected. Therefore ζ3(G) = ∞.

If ∆(G) = 3 and G does not have two adjacent vertices of de-

gree three, then L2
K1,3

(G) will be totally disconnected and hence

ζ3(G) =∞. If G has two adjacent vertices of degree three, then

L2
K1,3

(G) will have K4 as a subgraph and L2
K1,3

(K4) is a 6-regular

graph (Fig: 1.9) which is non-planar. Hence ζ3(G) = 4.

Lemma 2.3.4. For any graph G, LK1,3
(G) is planar if and only

if G satisfies the following:

(i) ∆(G) 6 4.

(ii) G does not contain any one of the graphs H1 or H2 in Fig 2.4

as a subgraph.

(iii) G does not contain any subgraph homeomorphic to K3,3 in

which degree of every vertex in G is at least three.

Note: An edge with a single end vertex shows the degree of
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Fig 2.4: H1 and H2

that vertex. In Fig 2.4, the degree is three.

Proof. If ∆(G) > 5, then LK1,3
(G) contains K5 as a subgraph

and hence it is nonplanar by Theorem 1.2.5. Also, if G has any

one of the graphs H1 or H2 as a subgraph, then LK1,3
(G) will

contain any one of the graphs H ′

1 or H ′

2 in Fig 2.5 as a subgraph.

Both graphs H ′

1 or H ′

2 are non planar by Theorem 1.2.5 and

hence LK1,3
(G) is nonplanar.

Fig 2.5: H ′

1 and H ′

2
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For the necessity of condition (iii) we prove the following,

Claim 2.3.1. If G has a subgraph homeomorphic to G′ in

which degree of every vertex in G is at least three , then LK1,3
(G)

has a subgraph homeomorphic to LK1,3
(G′).

Let u1u2 be an edge of G′ and u be the vertex in LK1,3
(G′)

corresponding to the edge u1u2. Suppose that the edge u1u2 is

subdivided by the vertex u3 whose degree in G is at least three

as in Fig 2.6. Then the edges u3u1, u3u2, u3v1, u3v2 . . . u3vn−2

Fig 2.6: The edge u1u2 subdivided

will form a clique Cu in LK1,3
(G). Now, the vertices which were

adjacent to u in LK1,3
(G′) will be adjacent to the vertices corre-

sponding to u3u1 and u3u2 in LK1,3
(G). Thus, corresponding to

every edge of LK1,3
(G′), we get a path in LK1,3

(G) and hence it
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contains a subgraph homeomorphic to LK1,3
(G′).

Hence, if G has a subgraph homeomorphic to K3,3 in which

degree of every vertex in G is at least three, then LK1,3
(G) has a

subgraph homeomorphic to LK1,3
(K3,3) ( Fig 2.7) which is non-

planar.

Fig 2.7: K3,3 and LK1,3
(K3,3)

Conversely, suppose that LK1,3
(G) is nonplanar. Then, it

contains a subgraph homeomorphic to K5 or K3,3.

Case 1. LK1,3
(G) contains K5 or a subgraph homeomorphic

to K5.
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If LK1,3
(G) contains K5, then there are five mutually inci-

dent edges in G and ∆(G) > 5, which is a contradiction. If

LK1,3
(G) has a copy of K5 with one edge subdivided once or

twice, then it contains either a copy of Ga or a copy of Gb in

Fig 2.8 as an induced subgraph. If LK1,3
(G) has a copy of K5

Fig 2.8: Ga, Gb and Gc

with one edge subdivided more than twice then it contains a

copy of Gc as an induced subgraph. If LK1,3
(G) has a copy of

K5 with more than one edge subdivided, then it has a copy of

K1,3 as an induced subgraph. All the graphs Ga, Gb, Gc, K1,3 are

forbidden subgraphs for line graphs by Theorem 1.2.2 and hence

are forbidden for star-line graphs also by Corollary 2.2.2. Hence,

LK1,3
(G) cannot have any subgraph homeomorphic to K5 other

than K5.

Case 2. LK1,3
(G) contains K3,3 or a homeomorphic copy of

K3,3 as a subgraph.
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In this case, LK1,3
(G) contains K1,3 as an induced subgraph

which is forbidden for star-line graphs. Also, any edge in LK1,3
(G)

will lie in a triangle and any two cliques in the edge-clique par-

tition of LK1,3
(G) can have at most one common vertex. These

conditions will force LK1,3
(G) to have a copy of K5 or a homeo-

morphic copy of K3,3 in which degree of every vertex in G is at

least three. But, then ∆(G) will be greater than four.

Lemma 2.3.5. For any graph G, ζ3(G) = 1 if and only if G

is planar and contains any one of the graphs K1,5, H1 or H2 in

Fig 2.4 as a subgraph.

Proof. Follows from Lemma 2.3.4.

Lemma 2.3.6. For any graph G, ζ3(G) = 2 if and only if

LK1,3
(G) is planar and G contains any one of the graphs in

Fig 2.9 as a subgraph.

Proof. By Lemma 2.3.5, ζ3(G) = 2 if and only if LK1,3
(G) is

planar and has any one of the graphs K1,5, H1 or H2 in Fig: 2.4

as a subgraph. As in the proof of Lemma 2.3.4, it follows that

this is possible if and only if G has any one of the graphs in

Fig 2.9 as a subgraph.
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Fig 2.9:

Lemma 2.3.7. For any graph G, ζ3(G) = 4 if and only if

∆(G) 6 3, G is planar and has two adjacent vertices of de-

gree three and does not have any one of the graphs in Fig 2.10

as a subgraph.

Proof. If ∆(G) > 4, we have by Lemma 2.3.2 that ζ3(G) 6 3.

Also, ζ3(G) of the graphs (1) and (2) in Fig 2.10 is two and that

of the graph (3) in Fig 2.10 is three. Hence, if G contains any

of these graphs as subgraphs, then by Lemma 2.3.1, ζ3(G) 6 3.

Now, if ∆(G) 6 3 and G does not have two adjacent vertices
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Fig 2.10:

of degree three, then L2
K1,3

(G) will be totally disconnected and

ζ3(G) =∞.

We thus have,

Theorem 2.3.8. Let G be any graph. Then,

(1) ζ3(G) = ∞, if and only if ∆(G) 6 3 and G does not

contain two adjacent vertices of degree three.

(2) ζ3(G) = 0, if and only if G is non-planar.

(3) ζ3(G) = 1, if and only if G is planar and contains any one

of the graphs K1,5, H1 or H2 in Fig 2.4 as a subgraph.

(4) ζ3(G) = 2, if and only if LK1,3
(G) is planar and G contains

any one of the graphs in Fig 2.9 as a subgraph.
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(5) ζ3(G) = 4, if and only if ∆(G) 6 3, G is planar and has

two adjacent vertices of degree three and does not contain

any one of the graphs in Fig 2.10 as a subgraph.

(6) ζ3(G) = 3, otherwise. �

2.4 4-star-line-index of a graph

In this section, we characterize all graphs in terms of ζ4(G). We

first state two lemmas which can be proved as in the previous

section and use it to compute the value of ζ4(G).

Lemma 2.4.1. Let G be any graph. Then LK1,4
(G) is planar if

and only if G satisfies the following:

(i) ∆(G) 6 4.

(ii) G does not contain any one of the graphs H3 or H4 in Fig

2.11 as a subgraph.

(iii) G does not contain any subgraph homeomorphic to K3,3 in

which degree of every vertex in G is at least four .

Lemma 2.4.2. For any graph G, ζ4(G) = 2 if and only if

LK1,4
(G) is planar and G has any one of the graphs in Fig 2.12

as a subgraph.
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Fig 2.11: H3 or H4

Fig 2.12:

Lemma 2.4.3. Let G be any graph. Then, ζ4(G) = {0, 1, 2,∞}.

Proof. For any graph G, ζ4(G) = 3 if and only if L2
K1,4

(G)

contains any one of the graphs K1,5, H3 or H4 as a subgraph.

Also, if L2
K1,4

(G) contains any of these graphs, then G has any
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one of the graphs in Fig 2.12 as a subgraph, which implies that

L2
K1,4

(G) is nonplanar and ζ4(G) = 2.

We summarize these results as follows.

Theorem 2.4.4. Let G be any graph. Then,

(1) ζ4(G) = 0, if and only if G is non-planar.

(2) ζ4(G) = 1, if and only if G is planar and contains any one

of the graphs K1,5, H3 or H4 in Fig 2.11 as a subgraph.

(3) ζ4(G) = 2, if and only if LK1,4
(G) is planar and G contains

any one of the graphs in Fig 2.12 as a subgraph.

(4) ζ4(G) =∞, otherwise. �

2.5 n-star-line-index of a graph

Theorem 2.5.1. For n > 5 and for any graph G, ζn(G) ∈

{0, 1,∞}. Also,

(1) ζn(G) = 0, if and only if G is non-planar.
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(2) ζn(G) =∞, if and only if G is planar and ∆(G) 6 4.

(3) ζn(G) = 1, otherwise.

Proof. LK1,n
(G), n > 5 will have an edge if and only if ∆(G) >

5 and in that case the edges incident on the vertex with maxi-

mum degree will induce a K5 in LK1,n
(G) which makes it non-

planar. Hence, ζn(G) = 1. If G is nonplanar, then ζn(G) = 0. If

G is planar and ∆(G) 6 4, then LK1,n
(G), n > 5 is an edgeless

graph and hence ζn(G) =∞.



Chapter 3

Cycle graphs

This chapter deals with the graph operator Cy(G) and cycle

graphs, the corresponding graph class. We prove that Cy(G) is

a tree if and only if G is outerplanar and all cycles lie in a single

block. We obtain the girth of a cycle graph. We also obtain the

condition for a cycle graph to be chordal. We also investigate

the relationship between the parameters− domination number,

radius and diameter of a graph and its cycle graph.

Some results of this chapter are included in the following paper.
1. Seema Varghese, A. Vijayakumar, On cycle graphs (Submitted).

65
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3.1 Cycle graph of outerplanar graphs

The cycle graph of a connected graph need not be connected as

in Fig: 3.1. But, for the cycle graphs to be connected we have

the following condition.

Fig 3.1: Disconnected Cy(G)

Lemma 3.1.1. For any graph G, Cy(G) is connected if and only

if all its cycles lie in the same block.

Proof. Suppose that all the cycles of G lie in the same block.

Let u and v be any two vertices of Cy(G) and Cu be the com-

ponent of Cy(G) containing u. Let Bu denote the subgraph of

G containing all the cycles corresponding to the vertices of Cu.

Let Cv be the cycle in G corresponding to v. Since all the cycles

lie in the same block, Bu and Cv share a common edge and v

is adjacent to a vertex of Cu which implies that v ∈ Cu. The
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converse is clear.

Lemma 3.1.2. For any graph G, Cy(G) is acyclic if and only

if G is outerplanar.

Proof. We shall prove by induction on the order n of G that

if G is outerplanar, then Cy(G) is acyclic. If n = 3, then the

only outerplanar graph is K3 whose cycle graph is K1. If n = 4,

then the only outerplanar graphs are C4 and K4− e whose cycle

graphs are K1 and K2, respectively. Hence, the result is true

for n = 3 and n = 4. Assume that the result is true for all

outerplanar graphs with less than n vertices and let G be an

outerplanar graph with n vertices. If all the vertices of G are of

degree two, then G is a cycle and the result is true. Otherwise, it

is possible to label the outercycle of G as v1v2v3 . . . vn, such that

〈v1v2 . . . vi〉 is a cycle and the degree of the vertices v2, . . . , vi−1

is two. Then, the induction hypothesis holds good for the graph

G′ = 〈v1, vi, vi+1 . . . vn〉 and Cy(G′) is acyclic. Also, Cy(G) can

be obtained from Cy(G′) by attaching a pendant vertex and

hence Cy(G) is also acyclic.

Conversely, suppose that G is non-outerplanar. Then G con-
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tains a subgraph homeomorphic to K4 or K2,3 except K4−e and

then Cy(G) contains cycles.

We thus obtain a necessary and sufficient condition for Cy(G)

to be a tree.

Theorem 3.1.3. For any graph G, Cy(G) is a tree if and only

if G is outerplanar and all its cycles lie in the same block. �

Theorem 3.1.4. Every tree is a cycle graph of an outerplanar

graph.

Proof. Let T be a tree with n vertices. Let ni denote the

number of vertices with degree i. Then we can construct a graph

H of order N such that Cy(H) ∼= T as follows. Let the vertices

of T be labeled as v1, v2, ..., vn and dj be the degree of vj. Let

Cvj
be the induced cycle in H corresponding to vj. For vertices

of degree one or two in T , take Cvj
to be a triangle. For all other

vertices of degree exceeding two, take Cvj
to be a cycle of length

dvj
. If vj is adjacent to vk, make the cycles Cvj

and Cvk
edge

intersecting. The graph H thus obtained will have Cy(H) ∼= T

and is outerplanar by Theorem 3.1.3.
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Note:

Since T has n vertices, H has n induced cycles. Since an edge e

common to three cycles will give rise to a K3 in Cy(H) which is

a tree, every edge of H can be in at most two cycles. Therefore,

there should be ni induced cycles of length i, for i = 3, 4 . . . ∆.

Each edge of T corresponds to a shared edge in H and hence,

N = [3(n1 + n2 + n3) + 4n4 + 5n5 + . . . + ∆n∆]−2(n−1). This

construction is illustrated in Fig: 3.2.

Fig 3.2: Cy(H) = T

However, an inverse cycle graph of a tree need not be unique

as illustrated in Fig: 3.3.
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Fig 3.3: Non-isomorphic graphs with isomorphic Cy(G).

In what follows, we denote by H, the graph constructed in

the proof of Theorem 3.1.4.

Theorem 3.1.5. Let T be any tree and G be a graph such that

Cy(G) ∼= T . Then G is contractible to H by the contraction of

edges which do not lie in a triangle.

Proof. Corresponding to any tree T of order n, by the con-

struction in the proof of Theorem 3.1.4 there exists a graph H

such that Cy(H) ∼= T . Also, any induced cycle Ci of H with

length greater than three have no unshared edges. Let G be

a graph such that Cy(G) ∼= T . Then G has n induced cycles

C1, C2, ...., Cn. All the unshared edges of G, which do not lie in a
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triangle can be contracted without affecting its cycle structure.

Hence G is contractible to H.

Let T be any tree and G be a graph contractible to H. Since

H is a contraction of G, all the induced cycles of H are in-

duced cycles of G which preserves edge intersections also. Hence,

Cy(G) ⊇ T . However, the converse of the Theorem 3.1.5 need

be not true as illustrated in the following example (Fig: 3.4).

Fig 3.4: Cy(G) contains T

3.2 The girth of a cycle graph

We first note that if a graph G has a cycle, then it has an induced

cycle. In the following, we assume that Cy(G) has at least one

cycle.

Theorem 3.2.1. The girth of a cycle graph is three.
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Proof. Suppose that g(Cy(G)) = n > 4 and Cn = 〈v1, v2, ..., vn〉

is an induced cycle of length n. Let Cvi
be the induced cycle in

G corresponding to vi. Then,

Claim 3.2.1. Cvi
and Cvj

can have at most one common

edge.

Suppose that Cvi
and Cvj

have more than one common edge.

Then, the unshared edges of Cvi
and Cvj

will form another in-

duced cycle Cvij
. Now Cvi

, Cvj
and Cvij

are three mutually edge

intersecting induced cycles which will form a triangle in Cy(G).

Claim 3.2.2. An edge in G can be common to at most two

induced cycles.

An edge common to three induced cycles will form a triangle

in Cy(G).

Claim 3.2.3. Cvi
can have common vertices only with Cvi−1

and Cvi+1

Suppose that a vertex x is common to Cvi
and Cvi+k

, k > 1

and let i and i + k be the smallest indices for which this holds
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Fig 3.5: Cvi
and Cvi+k

sharing a common vertex x.

(Fig: 3.5). Let uiwi, ui+1wi+1, ui+2wi+2 . . . , ui+kwi+k be the

edges shared by (Cvi
, Cvi+1

), (Cvi+1
, Cvi+2

), (Cvi+2
, Cvi+3

),. . . ,

(Cvi+k
, Cvi+k+1

), respectively. Let p
C
→ q denote the path from p

to q along the cycle C. Then x
Cvi→ ui

Cvi+1

→ ui+1

Cvi+2

→ ui+3 . . .

ui+k−1

Cvi+k
→ ui+k

Cvi+k
→ x will form an inner induced cycle C ′.

Now, C ′, Cvi
, Cvi+1

will form a triangle in Cy(G).

It follows that the induced cycles Cv1
, Cv2

, Cv3
. . . Cvn

in G are

as shown in Fig: 3.6 and u1

Cv2→ u2

Cv3→ u3 . . . un−1
Cvn→ un

Cv1→ u1

will form an inner induced cycle C ′′ which intersects with Cvi



74 Chapter 3. Cycle graphs

Fig 3.6: The induced cycles in G corresponding to an induced
cycle Cy(G).

and Cvi+1
forming a triangle in Cy(G).

Corollary 3.2.2. Cn, n > 4 are not cycle graphs.

Remark 3.2.1. Wheels graphs Wn are cycle graphs, since

Cy(Wn) = Wn. But, the outer cycle of a wheel which is its

induced subgraph is not a cycle graph if n > 4. Therefore, cycle

graphs do not have the induced hereditary property and hence

cannot have a forbidden subgraph characterization.

Corollary 3.2.3. For any graph G, Cy(G) is bipartite if
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and only if G is outerplanar.

Proof. We know that a graph is bipartite if and only if it

contains no odd cycles. Also, by Theorem 3.2.1, girth of Cy(G)

is three. Thus, Cy(G) is odd cycle free if and only if it is acyclic.

But, by Lemma 3.1.2, this happens if and only if G is outerpla-

nar.

3.3 Chordal cycle graphs

In this section, we derive the condition for a cycle graph to be

chordal.

Theorem 3.3.1. For any graph G, then Cy(G) is chordal if and

only if G does not contain a wheel,Wn, n > 4 or any subgraph

that can be contracted to a wheel, Wn, n > 4.

Proof. The sufficiency part follows since Cy(W4) ∼= W4 (Fig: 3.7)

is not a chordal graph. Now, suppose that Cy(G) is not chordal.

Then it contains a cycle C of length n > 4 and G has n induced

cycles C1, C2, ...., Cn such that C1 shares a common edge with
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Fig 3.7: Cy(W4) ∼= W4

C2 and Cn; Cn shares a common edge with Cn−1 and C1; Ci

shares a common edge with Ci−1 and Ci+1, for i = 2, 3, ..n. We

consider two cases:

Case 1. All Ci’s have a common vertex.

In this case, let the common vertex be v. This will give rise

to a wheel, Wn with n > 4 in G.

Case 2. All Ci’s do not have a common vertex.

In this case, G will contain a subgraph shown in Fig: 3.6.

It is clear that this subgraph can be contracted to a wheel, Wn

with n > 4.
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3.4 Domination number, radius and

diameter

In this section, we show that the difference between the domi-

nation number of G and Cy(G) can be arbitrary. Similar results

for radius and diameter of Cy(G) are also proved.

Theorem 3.4.1. For any two integers a > 1, b > 1, there are

graphs G, such that γ(G) = a and γ(Cy(G)) = b, where γ(G) is

the domination number of G.

Proof.

Case 1. a = 1 and b = 1.

Take G to be W5. Then γ(W5) = 1 = a. Also, W5 is cycle

fixed. Hence, γ(Cy(G)) = 1 = b.

Case 2. a = 1 and b > 1.

Take W5 and P3(b−1) : v1 v2 .... v3(b−1). Make all the vertices

of P3(b−1) adjacent to the center vertex of W5. Also, make one

end vertex of P3(b−1) adjacent to any one of the outer vertices of
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Fig 3.8: a = 1 and b > 1

W5 (Fig: 3.8). Then γ(G) = 1 = a and γ(Cy(G)) = b.

Case 3. a > 1.

Fig 3.9: a > 1

Attach a path P3(a−1) : w1w2....w3(a−1) to the graph con-

structed in Case 2 (Fig: 3.9). Then, γ(G) = a and γ(Cy(G)) = b.
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Theorem 3.4.2. For any two integers a > 1, b > 0, there are

graphs G, such that r(G) = a and r(Cy(G)) = b, where r(G) is

the radius of G.

Proof.

Case 1. a = 1 and b = 0.

Take G to be K3. Then r(G) = r(K3) = 1 = a and

r(Cy(G)) = r(K1) = 0 = b.

Case 2. a = 1 and b > 0.

Fig 3.10: a = 1 and b > 0

Take G to be K1 ∨ P2b+1 where v is any vertex (Fig: 3.10).

Then G will contain 2b induced cycles each of which is edge

intersecting with at most two others. Therefore, Cy(G) ∼= P2b.

Now, G has a universal vertex v. Hence, r(G) = 1 = a and

r(Cy(G)) = r(P2b) = b.
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Case 3. a > 1 and b = 0.

Take G to be C2a. Then r(G) = r(C2a) = a and r(Cy(G)) =

r(K1) = 0 = b.

Case 4. a > 1 and b > 0.

Fig 3.11: a > 1 and b > 0

G can be constructed as follows. Consider the path P2b:v1v2.....v2b.

Take K1 ∨ P2b. Draw a cycle of length 2a with vv1 as one

edge (Fig: 3.11). Then Cy(G) ∼= P2b. Also r(G) = a and

r(Cy(G)) = r(P2b) = b.

Theorem 3.4.3. For any two integers a > 1, b > 0, there are

graphs G, such that d(G) = a and d(Cy(G)) = b, where d(G) is

the diameter of G .
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Proof.

Case 1. b = 0.

Fig 3.12: a > 1 and b > 0

Take G as C2a : u1u2...uavava−1...v1 (Fig: 3.12). Now, d(G) =

d(C2a) = a and d(Cy(G)) = d(K1) = 0.

Case 2. b = 1, 2, 3.....2a− 3.

Fig 3.13: b 6 2a− 3

For b = 1, 2, 3.....2a − 3, construct Gb from the graph G in

Case 1, by adding the edges v1u2 , u2v2 , v2u3 , u3v3 ,...., va−1ua

successively (Fig: 3.13). At each step we get a graph Gb such

that Cy(Gb) is isomorphic to Pb+1 whose diameter is b. Also,
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note that throughout the construction the distance between u1

and va is a. Therefore, d(Gb) = a.

Case 3. b = 2a− 2.

Fig 3.14: b = 2a− 2

Add a new vertex w1 to the graph G2a−3 constructed in Case

2 and make it adjacent to u1 and v1 (Fig: 3.14). This graph will

have 2a − 1 induced cycles and Cy(G) ∼= P2a−1. Therefore,

d(Cy(G)) = d(P2a−1) = 2a− 2 = b. Also, the distance between

u1 and va is a and distance between w1 and va is also equal to a.

All the other vertices have lesser eccentricity. Hence, d(G) = a.

Case 4. b > 2a− 2.

Let m = b−(2a−2). To the graph constructed in Case 3 add

m vertices w2, w3, ..., wm+1. Make all these vertices adjacent to

v1. Also make wi adjacent to wi−1 for i = 2, 3, ...,m+ 1(Fig: 3.15).

This will produce a graph with b + 1 induced cycles. Therefore
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Fig 3.15: b > 2a− 2

Cy(G) ∼= Pb+1 and d(Cy(G)) = d(Pb+1) = b. Also, all the ver-

tices wi have eccentricity a. Therefore, d(Cy(G)) = a.

The Case a = 1 in the above theorem is as follows.

Remark 3.4.1. Let G be a graph such that d(G) = 1, then

d(Cy(G)) 6 3.

Proof. Let d(G) = 1. Then G is a complete graph. In a

complete graph all induced cycles are triangles which can occur

in three ways.

Case 1:

Two triangles have a common edge. Then, the corresponding
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vertices in the cycle graph are adjacent. Hence, the distance

between them is one.

Case 2:

Two triangles have a common vertex. If one vertex is common

to two triangles T1 and T2, then there exists another triangle

T3 which is adjacent to both. Therefore, in the cycle graph the

distance between T1 and T2 is two.

Case 3:

Two triangles are disjoint . If no vertex is common to two tri-

angles T1 and T2 then there exists two other triangles T3 and T4

such that T1 is edge intersecting with T3; T3 is edge intersecting

with T4 and T4 is edge intersecting with T2. Therefore, distance

between T1 and T2 in the cycle graph is three.

Therefore, the maximum distance between any two vertices

in the cycle graph of a complete graph is three.

Remark 3.4.2. The diameter of Cy(K3), Cy(K4) , Cy(K5) and

Cy(K6) is zero, one, two and three respectively.



3.5. Solution of a graph equation 85

3.5 Solution of a graph equation

Problems of the following type which lead to some graph equa-

tions have been studied by various authors as detailed in [59].

In this section we attempt such a problem on cycle graphs.

Problem: Let G1 and G2 be graphs, ∗ a binary graph oper-

ation and Φ a graph operator. What conditions can be imposed

on G1 and G2 such that Φ(G1 ∗G2) is isomorphic to some graph

resulting from graph operations on G1 and G2?

Theorem 3.5.1. Cy(G�K2) ∼= L(G) if and only if G is a forest.

Proof. Let G be a forest. Then, all the induced cycles of

G�K2 are 4-cycles. Also, there is a one-to-one correspondence

between the edges of G and the induced cycles in G�K2. When-

ever two edges are adjacent in G, the corresponding 4-cycles

in G�K2 are edge intersecting. Therefore, the cycle graph of

G�K2 is isomorphic to L(G).



86 Chapter 3. Cycle graphs

Conversely, let the cycle graph of G�K2 be isomorphic to

L(G). If possible let G be not a forest. Then G contain some

cycle. G�K2 has a 4-cycle corresponding to each edge of G.

The induced cycles of G will be induced cycles of G�K2 also.

Therefore, the number of induced cycles of G�K2 is greater than

the number of edges of G, which is a contradiction.



Chapter 4

Power domination in grid

graphs

In this chapter we focus on the power domination problem which

is a variant of the domination problem. We obtain the power

domination number of hexagonal honeycomb grid graph and tri-

angular grid graph.

Some results of this chapter are included in the following paper.
1. D. Ferrero, Seema Varghese, A. Vijayakumar, Power domination in hon-
eycomb networks, Journal of Discrete Mathematical Sciences and Cryptog-
raphy, (to appear).
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4.1 Hexagonal grids

It is clear from Definition 1.1.36 that HM1 is one simple hexagon.

Then, the hexagonal honeycomb grid of dimension two, HM2,

is obtained by adding six hexagons to the boundary edges of

HM1. In general, the hexagonal honeycomb grid of dimension

n, HMn, is obtained by adding a layer of hexagons around the

boundary of HMn−1. The number of layers of hexagons between

HM1 and the border of HMn is called its dimension n. Fig: 1.14

shows the labeled version of the graph HM3. Note that HMn

is a bipartite graph. We denote by V1 and V2 its partite sets

where V1 = {(x, y, z) | x, y, z ∈ [−n + 1, n] and x + y + z = 1}

and V2 = {(x, y, z) | x, y, z ∈ [−n + 1, n] and x + y + z = 2}.

Also, note that there are 2n X-diagonals, Y -diagonals and Z-

diagonals each in HMn. The order of HMn is 6n2.

In order to determine the power domination number of a

hexagonal honeycomb grid we use the following version of power

domination introduced in [27].
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Definition 4.1.1. For a graph G and a set T ⊆ V (G), the

closure of T in G is denoted by CG(T ) is recursively defined as

follows: Start with CG(T ) = T . As long as exactly one of the

neighbors of some element of CG(T ) is not in CG(T ), add that

neighbor to CG(T ).

Definition 4.1.2. For a graph G and a set T ⊆ V (G),

the star closure of T in G is denoted by C∗

G(T ) is recursively

defined as follows: Start with C∗

G(T ) = T . As long as exactly

one of the neighbors of some vertex of G is not in C∗

G(T ), add

that neighbor to C∗

G(T ).

If the graph G is clear from the context, we simply write

C(T ) and C∗(T ) rather than CG(T ) and C∗

G(T ). Note that

M(S) = C(N [S]). In particular, if S ∈ V is power dominat-

ing set of G, then C(N [S]) = V . Further, if S power dominates

G and if T is obtained from S by adding all but one neigh-

bor of every vertex in S then C(T ) = V . Fig: 4.1 shows a

set T = {(−1, 1, 1), (0, 0, 1)} in HM3 and the corresponding set

C∗(T ) = T ∪ {(0, 1, 0)}.
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Fig 4.1: C∗(T ) for HM3

Lemma 4.1.1. If G =HMn, then γP (G) 6
⌈

2n
3

⌉

.

Proof. We consider the three possibilities and give a power

dominating set S of order
⌈

2n
3

⌉

for each case.

(i) n = 3k:

S = {∪k
i=1 (0, 3i, 2− 3i)} ∪ {∪k

i=1 (0, 3i− 2, 3− 3i)}.
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In this case, |S| = 2k. Also,
⌈

2n
3

⌉

=
⌈

2(3k)
3

⌉

= 2k.

(ii) n = 3k + 1:

S = {∪k+1
i=1 (0, 3i− 2, 4− 3i)} ∪ {∪k

i=1 (0, 3i− 1, 2− 3i)}.

Here, |S| = 2k + 1. Also,
⌈

2n
3

⌉

=
⌈

2(3k+1)
3

⌉

= 2k + 1.

(iii) n = 3k + 2

S = {∪k+1
i=1 (0, 3i− 1, 3− 3i)} ∪ {∪k+1

i=1 (0, 3i− 3, 4− 3i)}.

In this case , |S| = 2k+2. Also,
⌈

2n
3

⌉

=
⌈

2(3k+2)
3

⌉

= 2k+2.

In each case, all the vertices are monitored either by direct dom-

ination or by propagation. Thus, M(S) = V (G) and hence S is

a power dominating set.

An illustration of a power dominating set for HM3 is given

in Fig: 4.2.

Lemma 4.1.2. Let G =HMn. If T ⊆ V1 and |T | < 2n, then

C∗(T ) covers at most |T | diagonals.

Proof. Let G′ be the graph with vertex set V (G′) = V (G)

where uv ∈ E(G′) if and only if dG(u, v) = 2. For disjoint sub-

sets U1, U2 ⊆ V1, if no vertex of C∗

G(U1) is adjacent in G′ to any
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Fig 4.2: The set {(0, 3,−1), (0, 1, 0)} is a power dominating set
for HM3.

vertex of C∗

G(U2), then C∗

G(U1∪U2) = C∗

G(U1)∪C∗

G(U2). We may

therefore assume that C∗

G(T ) is connected in G′. Now, we shall

prove the statement by induction on |T |. If |T | = 1, the result

clearly holds. Now, let us consider T ⊆ V1 with |T | > 1. We can

assume C∗

G(T ) is connected in G′. Also, since the number of X,

Y or Z-diagonals in HMn is exactly 2n, we can assume |T | < 2n.
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By inductive hypothesis, the result holds for all T ′ ⊂ T . In par-

ticular, it holds for a maximal proper subset T ′ ⊂ T such that

C∗

G(T ′) is connected in G′. Since C∗

G(T ) is connected, some ver-

tex of C∗

G(T ′) is adjacent in G′ to some vertex of C∗

G(T\T ′). By

maximality of T ′, C∗

G(T\T ′) is connected. Since the inductive

hypothesis also applies to T\T ′, we have the following:

(1)The number of diagonals covered by C∗

G(T ′) 6 |T ′|.

(2) The number of diagonals covered by C∗

G(T\T ′) 6 |T\T ′|.

Therefore, from (1) and (2) we conclude that the number of

diagonals covered by C∗

G(T ) = C∗

G(T ′) ∪ C∗

G(T\T ′) is at most

|T ′|+ |T\T ′| = |T |.

Lemma 4.1.3. If G =HMn, then γP (G) >
⌈

2n
3

⌉

.

Proof. Let G =HMn and let S ⊆ V (G) be a power dominat-

ing set of G. Let T be obtained from S by adding the neighbors

of every vertex in S that is T = N [S]. Since S is a power

dominating set of G, then CG(T ) = V (G). Notice that in a

bipartite graph H with partite sets H1 and H2, CH(W ) ∩H1 ⊆

CH((W ∩H1) ∪H2) ∩H1 = C∗

H(W ∩H1), for any W ⊆ V (H).

Thus we have, CG(T )∩V1 ⊆ CG((T ∩V1)∪V2)∩V1 = C∗

G(T ∩V1)

and therefore C∗

G(T ∩ V1) covers all diagonals. Hence it follows
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from Lemma 4.1.2 that |T ∩ V1| > 2n which implies |T | > 2n.

For any v ∈ G, we have deg(v) 6 3 and so |T | 6 3 |S|. Thus we

have, 3 |S| > |T | > 2n and |S| > 2n
3

.

Theorem 4.1.4. If G =HMn, then γP (G) =
⌈

2n
3

⌉

.

Proof. Follows from Lemmas 4.1.1, 4.1.2 and 4.1.3.

4.2 Triangular grids

In this section we compute the power domination number of the

triangular grid graph Tn. It is clear from Definition 1.1.37 that

T1 is a triangle. Then, T2 is obtained from T1 by adjoining three

edge intersecting triangles to its bottom boundary. In general,

the graph Tn, n > 2 is obtained by adjoining 2n + 1 edge inter-

secting triangles to the bottom boundary of Tn−1. The number

of layers of triangles in Tn (Fig: 1.15) is called its dimension n.

The order of Tn is (n+1)(n+2)
2

.

Lemma 4.2.1. If G = Tn, then γp(G) 6
⌈

n+1
4

⌉

.

Proof. Consider the set S defined as follows.
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(i) If n = 1:

S = {(0, 1, 0)}.

(ii) If n = 2:

S = {(0, 1, 1)}.

(iii) If n = 3:

S = {(1, 1, 1)}.

In each of the above cases, |S| = 1 and
⌈

n+1
4

⌉

= 1.

(iv) If n = 4k:

S = {∪k
i=1 (n− (4i− 2), 1, 4i− 3) ∪ (0, 1, n− 1)}.

In this case, |S| = k + 1 and
⌈

n+1
4

⌉

=
⌈

4k+1
4

⌉

= k + 1.

(v) If n = 4k + 1:

S = {∪k
i=1 (n− (4i− 2), 1, 4i− 3) ∪ (0, 1, n− 1)}.

Here, |S| = k + 1 and
⌈

n+1
4

⌉

=
⌈

4k+2
4

⌉

= k + 1.

(vi) If n = 4k + 2:

S = {∪k
i=1 (n− (4i− 2), 1, 4i− 3) ∪ (0, 1, n− 1)}.

Here, |S| = k + 1 and
⌈

n+1
4

⌉

=
⌈

4k+3
4

⌉

= k + 1.

(vii) If n = 4k + 3:

S = {∪k
i=1 (n− (4i− 2), 1, 4i− 3) ∪ (1, 1, n− 2)}.

Here, |S| = k + 1 and
⌈

n+1
4

⌉

=
⌈

4k+4
4

⌉

= k + 1.
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In each case, all the vertices are monitored either by direct dom-

ination or by propagation. Thus M(S) = V (G) and hence S is

a power dominating set of cardinality
⌈

n+1
4

⌉

(Fig 4.3).

Fig 4.3: The set {(3, 1, 1), (0, 1, 4)} is a power dominating set in
T5.

Lemma 4.2.2. Let G = Tn. If S ⊆ G and |S| < n+1
4

, then

M(S) covers at most 4 |S| diagonals, where |S| is the cardinality

of S.

Proof. Let G′ be the graph with V (G′) = V (G) and uv ∈

E(G′) if and only if dG(u, v) = 2 and u and v do not cover a

common diagonal or dG(u, v) = 2 and u and v cover a common

boundary. It is clear that, for disjoint subsets S1, S2 ⊆ G, if no

vertex of N(S1) is adjacent in G′ to any vertex of N(S2), then
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M(S1 ∪ S2) = M(S1)∪M(S2). We may, therefore, assume that

M(S) is connected in G′. If |S| = 1, then it is clear that M(S)

can cover at most three diagonals. Let S ⊆ G with M(S) con-

nected in G′ and |S| < n+1
4

. Assume the result for all S ′ ⊂ S.

Consider a maximal proper subset S ′ ⊂ S such that M(S ′) is

connected in G′. Now, since M(S) is connected in G′, some

vertex of M(S ′) is adjacent in G′ to some vertex of M(S\S ′).

By maximality of S ′, M(S\S ′) is connected. Since the inductive

hypothesis also applies to S\S ′, we have the following:

(1) The number of diagonals covered by M(S ′) 6 4 |S ′|.

(2) The number of diagonals covered by M(S\S ′) 6 4 |S\S ′|.

Therefore, from (1) and (2) we conclude that the number of

diagonals covered by M(S) = M(S ′) ∪ M(S\S ′) is at most

4 |S ′|+ 4 |S\S ′| = 4 |S|.

Lemma 4.2.3. If G = Tn, then γp(G) >
⌈

n+1
4

⌉

.

Proof. By Lemma 4.2.2, if S ⊆ G is such that |S| < n+1
4

,

then M(S) covers at most n diagonals. But there are n + 1

diagonals in Tn and hence γp(G) >
⌈

n+1
4

⌉

.

Theorem 4.2.4. If G = Tn, then γp(G) =
⌈

n+1
4

⌉

.
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Proof. Follows from Lemmas 4.2.1, 4.2.2 and 4.2.3.

Now, we extend the Theorem 4.2.4 to rectangular triangular

grid (Definition 1.1.38).

Theorem 4.2.5. If G =RTm,n, then γp(G) =
⌈

m+1
4

⌉

.

Fig 4.4: The set {(3, 1, 1), (0, 1, 4), } is a power dominating set
in RT5,6

Proof. Note that, in order to power dominate the whole

graph, we need to power dominate either all the I-diagonals,

all the J-diagonals or all the K-diagonals. In G =RTm,n, the

number of I-diagonals, J-diagonals and K-diagonals are m+n+

1,m+1 and n+1 respectively. Since the number of J-diagonals

is the least, it is desirable to power dominate all the J-diagonals,

for which we need at least
⌈

m+1
4

⌉

vertices (Fig 4.4). The proof

follows as in Lemma 4.2.2.



Chapter 5

Power domination in some

classes of graphs

The power domination problem in some classes of graphs such

as Mycielskians, direct products, Cartesian product etc. are

discussed in this chapter.

Some results of this chapter are included in the following papers.
1. Seema Varghese, A. Vijayakumar, Power domination in triangular grids
and Mycielskian of graphs (Submitted).
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5.1 Mycielskian of graphs

In this section we shall investigate the power domination num-

ber of the Mycielskian of a graph. It is proved in [30] that,

γ(µ(G)) = γ(G) + 1. But, we only have that, γp(µ(G)) 6

γp(G) + 1. The upper bound is attained for G ∼= Cn; n > 4.

We shall obtain a sufficient condition which improves the bound

for γp(µ(G)), using the following concepts introduced in [51].

Let H be an induced subgraph of G. The out-degree of

v ∈ H is the number of vertices in G\H adjacent to v and the

edge vw connecting a vertex v ∈ H and w /∈ H is called an out-

going edge. A set S0 ⊆ V (G) is referred to as the kernel. The

set of vertices which are directly dominated by S0 form the first

generation descendants or 1-descendants, denoted by S1

and the subgraph induced by S0∪S1 is called the derived ker-

nel of first generation. The ith generation descendants

or i-descendants, Si are those vertices which are monitored by

propagation from Si−1.
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Theorem 5.1.1. If G has a minimum power dominating set in

which every vertex has a neighbor of outdegree one in S1, then

γp(µ(G)) 6 γp(G).

Fig 5.1: An illustration of the proof

Proof. Let γp(G) = n and S0 = {v01, v02, . . . v0n} be a min-

imum power dominating set of G with {v11, v12, . . . v1n} as the

corresponding neighbors of out-degree one in S1 (Fig 5.1). We

shall prove that S0 is a power dominating set for µ(G) also.
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The set N [S0] = S1 ∪ S ′

1 is monitored by S0. Each vertex of

{v11, v12, . . . v1n} has a single unmonitored neighbor which is in

S ′

0 and hence S ′

0 is monitored by propagation. Any vertex of

S ′

0 has only one unmonitored neighbor, z, the root of µ(G) and

thus it is monitored by propagation from S ′

0. For each vertex

v2k of S2, there exists predecessor v1k in S1 from which it is

monitored by propagation. This vertex v1k in S1 has exactly

one out-neighbor v2k which is in S2. The twin vertex v′

1k has

all its neighbors monitored except v2k and hence it is monitored

by propagation from v′

1k. Now, v′

2k is the only one unmonitored

neighbor of v1k in µ(G) and thus it is also monitored by propa-

gation from v1k. By repetition of this process, we can monitor

all the vertices of S2 ∪ S ′

2. Similarly, by propagation, all the

vertices of Sl and S ′

l are monitored for any l > 2. Hence, S0 is

a power dominating set for µ(G) also.

Theorem 5.1.2. Let V (µ(G)) = V ∪ V ′ ∪ {z} and S ′

0 ⊆ V ′. If

S ′

0 is a power dominating set of µ(G), then the set of its twin

vertices S0 ⊆ V is also a power dominating set of µ(G).

Proof. Let v ∈ V and v′ ∈ V ′ be twin vertices in µ(G).

Then, Nµ(G)(v
′) = NG(v)∪{z}. Hence all the vertices monitored
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by v′ is also monitored by v except possibly the root vertex z.

Thus, all the vertices monitored by S ′

0 ⊆ V ′ is also monitored

by S0 ⊆ V except possibly the root vertex z, which can be

monitored by propagation.

Theorem 5.1.3. Let G be a connected graph with γp(µ(G)) 6

γp(G) and γp(µ(G)) 6= 1. Then γp(µ(G)) = γp(G).

Proof. There are four possibilities for a power dominating

set S of µ(G).

(1) S ⊆ V , (2) S ⊆ V ∪ {z}, (3) S ⊆ V ′, (4) S ⊆ V ∪ V ′.

If S ⊆ V , with |S| < γp(G) is a power dominating set for µ(G),

then clearly it is a power dominating set for G also, which is

a contradiction. If S ⊆ V ∪ {z} with |S ∪ {z}| < γp(G), then

M(S) ⊂ G and the vertices of G\M(S) should be power domi-

nated by propagation from z through the twin vertices. Hence,

no vertex of G\M(S) can be adjacent to any vertex of M(S)

which means that G is disconnected. If S ⊆ V ′, then by The-

orem 5.1.2, its twin set in V will form a power dominating set

for µ(G). The set (S ∩ V ) ∪ {z} will dominate all the vertices

dominated by the set S ∩ V ′. Hence the possibility S ⊆ V ∪ V ′

can be replaced by the case S ⊆ V ∪ {z}.
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Corollary 5.1.4. If G is a connected graph, then

γp(µ(G)) ∈ {1, γG, γp(G) + 1}.

Theorem 5.1.5. If G has a universal vertex then γp(µ(G)) = 1.

Proof. Let u0 be the universal vertex of G and N(u0) =

{u1, u2 . . . un}. Let [N(u0)]
′ = {u′

1, u
′

2 . . . u′

n} be the set of cor-

responding twin vertices and z be the root in µ(G). Then, in

µ(G), N [u0] = {u0, u1, u2 . . . un, u
′

1, u
′

2 . . . u′

n}. Thus, all the ver-

tices of µ(G) except u′

0 and z are monitored by u0. The vertex

z is monitored by propagation from u′

1 and u′

0 is monitored by

propagation from u1. Hence, {u0} is a power dominating set for

µ(G) and γp(µ(G)) = 1.

It follows that the power domination number of the My-

cielskian of the complete graph, the wheel, the n-fan and the

n-star is equal to one. If Pn is the path 〈v1v2 . . . vn〉, then v2 is

a power dominating set for µ(Pn). Hence, γp(µ(Pn)) = 1 and

so the condition of Theorem 5.1.5 is not necessary. In the fol-

lowing theorem, we show that the difference between γp(G) and

γp(µ(G)) can be arbitrarily large.

Theorem 5.1.6. For every n > 1, there are graphs with γp(G) =
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n and γp(µ(G)) = 1.

Fig 5.2: µ(Caterpillar)

Proof. For n > 1, let G be the caterpillar obtained by attach-

ing pendant vertices {u1, u2 . . . u3n} to each vertex {v1, v2, . . . v3n}

of a path P3n. Clearly, S0 = {v2, v5, . . . v3n−1} is a power dom-

inating set for G and any S ⊆ V (G), with |S| < n is not a

power dominating set. Hence γp(G) = n. Now, we shall show

that {z} will form a power dominating set for µ(G). Let the

vertices of µ(G) be labeled as in Fig 5.2. S1, S2 be the set

of 1st and 2nd generation descendants respectively. S ′

0, S
′

1, S
′

2
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be the sets of corresponding twin vertices. All the vertices of

N [z] = S ′

0 ∪ S ′

1 ∪ S ′

2 ∪ {z} are monitored by the vertex z. The

vertices of S2 are of degree one in G and hence their twin ver-

tices in S ′

2 are of degree two in µ(G). All of them have the

root vertex z as a neighbor which is already monitored. Thus

all their neighbors in S1, which are precisely the vertices of S1

with degree greater than one in G, are monitored by propaga-

tion from S ′

2. Now, the vertices of S1 which are left unmonitored

are the pendant neighbors of each vertex of S0 in G. Since there

is exactly one pendant vertex attached to a vertex of S0, each

vertex of S ′

0 has exactly one unmonitored neighbor in S1 and

hence they are monitored by propagation from S ′

0. Next, the

pendant vertices attached to each vertex of S0 are of degree two

in µ(G) and they have exactly one unmonitored neighbor which

is in S0. Thus each vertex of S0 is monitored by propagation

from S1. Finally, the vertices in S2 are pendant vertices in G

which are of degree two in µ(G) and are monitored either by

propagation from S1 or from S ′

1.

Remark 5.1.1. There exists family of graphs satisfying the fol-

lowing.

(1) γp(µ(G)) = γp(G).
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(2) γp(µ(G)) < γp(G).

(3) γp(µ(G)) > γp(G).

γp(µ(Pn)) = γp(Pn) = 1. The graphs constructed in Theorem

5.1.6 will satisfy (2) and the family of cycles,Cn, n > 4, will

satisfy (3).

5.2 Generalized Mycielskian of paths

In this section we show that the power domination number of

generalized Mycielskian of even path is one and hence they form

a suitable structure for electrical networks. We also obtain an

upper bound for the power domination number of generalized

Mycielskian of odd path.

Theorem 5.2.1. For an even integer n, γp(µm(Pn)) = 1.

Proof. All vertices in the m-th twin set are monitored di-

rectly by z and all other vertices are monitored by propagation.

Hence, the root vertex z in µm(Pn) form a power dominating set

(Fig:5.3).
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Fig 5.3: The root vertex z is a power dominating set in µ4(P6)

Theorem 5.2.2. For an integer m > 2 and an odd integer n,

γp(µm(Pn)) 6 m
2

+ 1, if m is even.

γp(µm(Pn)) 6 m+1
2

, if m is odd.

Fig 5.4: {v2, v
3
2, v

4
2} is a power dominating set in µ5(P5)

Proof. Let V (µm(Pn)) = V ∪V 1∪V 2∪ . . .∪V m∪{z}, where

V = {v1, v2 . . . vn}, V i = {vi
1, v

i
2 . . . vi

n} for i ∈ {1, 2, . . . m}. We

consider the different possibilities for m and a set S is defined

for each case as follows.
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(1) m = 2:

S = {v2, v
1
2}

(2) m = 3:

S = {v1
2, v

2
2}

(3) m = 4k:

S = {v2} ∪ {v
2
2, v

6
2, v

10
2 , . . . v4k−2

2 } ∪ {v3
2, v

7
2, v

11
2 , . . . v4k−1

2 }

(4) m = 4k + 1:

S = {v2} ∪ {v
3
2, v

7
2, v

11
2 , . . . v4k−1

2 } ∪ {v4
2, v

8
2, v

12
2 , . . . v4k

2 }

(4) m = 4k + 2:

S = {v2}∪{v
1
2}∪{v

4
2, v

8
2, v

12
2 , . . . v4k

2 }∪{v
5
2, v

9
2, v

13
2 , . . . v4k+1

2 }

(4) m = 4k + 3:

S = {v1
2, v

5
2, v

9
2, . . . v

4k+1
2 } ∪ {v2

2, v
6
2, v

10
2 , . . . v4k+2

2 }

In each case, all the vertices are monitored either by direct dom-

ination or by propagation. Thus, M(S) = V (µ(G)) and hence S

is a power dominating set of required cardinality (Fig 5.4).

Remark 5.2.1. There are cases in which the upper bound in

the Theorem 5.2.2 is attained. For instance, γp(µ2(P3)) = 2. It

is clear that a single vertex cannot power dominate the whole

graph in this case.(Fig 5.5.)
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Fig 5.5: {v2, v
1
2} is a power dominating set in µ2(P3)

5.3 The direct product

Theorem 5.3.1. γp(Km ×Kn) = 2, for m + n > 5.

Proof. It is clear that if m + n < 5, then γp(Km ×Kn) = 1.

Km×Kn is a (m−1)(n−1) regular graph. Hence, a single vertex

can power dominate (m−1)(n−1) vertices. There are m+n−2

vertices which are not monitored after the domination step. At

this stage, any dominated vertex is either non-adjacent to all

these m+n− 2 vertices or is adjacent to m+n− 4 of these ver-

tices. This means that propagation step is possible if and only if

m+n = 5 in which case the power domination number is one. In

all other cases any single vertex cannot monitor the whole graph.

Let {(vij)|i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}} be the

vertex set of Km× Kn. We shall show that {v11, vmn} will form



5.3. The direct product 111

a power dominating set. The vertex v11 will dominate the set

{vij/2 6 i 6 m, 2 6 j 6 n} and the vertex vmn will dominate

the set {vij/1 6 i 6 m−1, 1 6 j 6 n−1}. At this stage, v1n and

vm1 are the only unmonitored vertices. These vertices will be

monitored by propagation from v(m−1)1 and v2n respectively.

Theorem 5.3.2. Let m > 3, n > 4 and G = Km × Cn. Then

γp(G) = 2k, if n = 4k

γp(G) = 2k + 1, if n = 4k + 1

γp(G) = 2k + 2, if n = 4k + 2 or n = 4k + 3.

Proof. Let {(vij)|i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}} be

the vertex set of Km×Cn. Consider the set S defined as follows:

(i) If n = 4k :

S = ∪k
i=1{v1(4i−3)} ∪ ∪

k
i=1{v1(4i−2)}.

(ii) If n = 4k + 1 :

S = ∪k
i=1{v1(4i−3)} ∪ ∪

k
i=1{v1(4i−2)} ∪ {v1(4i−1)}.

(iii) If n = 4k + 2 :

S = ∪k
i=1{v1(4i−3)} ∪ ∪

k
i=1{v1(4i−2)} ∪ {v1(4i−1)} ∪ {v1(4i)}.
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(iv) If n = 4k + 3 :

S = ∪k+1
i=1 {v1(4i−3)} ∪ ∪

k+1
i=1 {v1(4i−2)}.

In each case, all the vertices are monitored either by direct dom-

ination or by propagation. Thus, M(S) = V (G) and hence S is

a power dominating set of required cardinality. An illustration

Fig 5.6: The set {v11, v12} is a power dominating set in K4×C4

is given in Fig: 5.6.

Now, we shall prove that these are lower bounds in each case.

We have the following,

Claim:

Let p2 : Km × Cn → Cn be the natural projection onto Cn . If

n > 3 and S is a power dominating set of Km × Cn, then for
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every subpath P ⊂ Cn of length three, p2(S) ∩ P contains at

least two vertices.

Proof of Claim: Suppose there exists a path P = x1x2x3x4 such

that |p2(S) ∩ P | < 2. If p2(S) ∩ P = {x1}, during domination

process no vertices of Kx3

m is monitored. Moreover any neighbor

of a vertex of Kx3

m has at least two neighbors which are not mon-

itored after domination. Hence no vertex of Kx3

m is monitored

after propagation step, which is a contradiction. Argument for

the case p2(S) ∩ P = φ} is analogous.

Now, when n = 4k there are 4k vertices in Cn out of which

2k should belong to S and hence |S| > 2k. If n = 4k + 1, then

2k vertices are required to dominate 4k, Km fibers and since

there are 4k + 1, Km fibers one more vertex is needed. Hence

|S| > 2k + 1. Similarly, when n = 4k + 2 or n = 4k + 3, 2k

vertices are needed to dominate 4k, Km fibers and another two

more vertices are needed to dominate the remaining two or three

Km fibers as the case may be. This implies |S| > 2k + 2.

Theorem 5.3.3. Let n be an even integer and G = Cm × Pn.

Then,
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γp(G) = 2
⌈

n
3

⌉

, if m is even.

γp(G) =
⌈

n
3

⌉

, if m is odd.

Proof. Let {(vij)|i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}} be

the vertex set of Cm × Pn.

Case 1: m is even.

Cm×Pn is then a disconnected graph with two isomorphic com-

ponents. Let G′ be the component of G containing the vertex

v12 and consider the set S defined as follows:

(i) If n = 3k:

S = {v12, v18, . . . v1(3k−4), v25, . . . v2(3k−1)}.

(ii) If n = 3k + 1:

S = {v12, v18, . . . v1(3k−1), v25, . . . v2(3k−4), v3(3k+1)}.

(iii) If n = 3k + 2:

S = {v12, v18, . . . v1(3k−4), v25, . . . v2(3k−1), v3(3k+2)}.

In each case, all the vertices are monitored either by direct dom-

ination or by propagation. Thus, M(S) = V (G′) and hence S

is a power dominating set of G′. Also, |S| =
⌈

n
3

⌉

and thus

γp(G
′) 6

⌈

n
3

⌉

. An illustration is given in Fig: 5.7.
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Fig 5.7: The set {v12, v25} is a power dominating set in G′

Now, we shall prove that it is a lower bound as well. Any vertex

vij can cover at most three Cm fibers and further propagation

is not possible. But there are n, Cm fibers which means that at

least
⌈

n
3

⌉

are needed to monitor all the vertices. Thus, we have

γp(G
′) >

⌈

n
3

⌉

and γp(G) = 2
⌈

n
3

⌉

.

Case 2: m is odd.

Cm × Pn is then a connected graph. Consider the set S defined

as follows:

(i) If n = 3k:

S = {v12, v18, . . . v1(3k−4), v25, . . . v2(3k−1)}.

(ii) If n = 3k + 1:

S = {v12, v18, . . . v1(3k−1), v25, . . . v2(3k−4), v3(3k+1)}.
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(iii) If n = 3k + 2

S = {v12, v18, . . . v1(3k−4), v25, . . . v2(3k−1), v3(3k+2)}.

In each case, all the vertices are monitored either by direct dom-

ination or by propagation. Thus, M(S) = V (G) and hence S is

a power dominating set of G with cardinality
⌈

n
3

⌉

. An illustra-

tion is given in Fig: 5.8.

Fig 5.8: The set {v12, v25} is a power dominating set in C5 × P6

Now, we shall prove that it is a lower bound as well. Any

vertex vij can cover at most three Cm fibers and further propa-

gation is not possible. But there are n, Cm fibers which means

that at least
⌈

n
3

⌉

are needed to monitor all the vertices.



5.4. The Cartesian product 117

Theorem 5.3.4. If G and H are graphs with two universal ver-

tices each, then γp(G×H) 6 2.

Proof. Let V (G) = {u1, u2 . . . um} with d(u1) = d(u2) =

m − 1 and V (H) = {v1, v2 . . . vn} with d(v1) = d(v2) = n − 1.

Let {uivj/1 6 i 6 m and 1 6 j 6 n} be the vertex set of G×H.

Consider the set S = {u1v1, u2v2}. N(u1v1) = {uivj/2 6 i 6 m

and 2 6 j 6 n} and N(u2v2) = {uivj/i 6= 2 and j 6= 2}. Hence

S is a power dominating set for G×H and γp(G×H) 6 2.

5.4 The Cartesian product

In this section, we identify the Cartesian product of some classes

of graphs with small power domination number. We compute

the power domination number of the classes of graphs Km�Pn,

Km�Cn, Km�Wn, Km�Fn.

Theorem 5.4.1. γp(Km�Pn) = 1

Proof. Let {(vij)|i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}}

be the vertex set of Km�Pn (Fig 5.9). The vertex v11 will di-
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Fig 5.9: The vertex v11 is a power dominating set in K4�P6

rectly monitor Kv11

m and also the vertex v12. Now, each vertex

of Kv11

m has all its neighbors monitored except its neighbor in

Kv12

m . Thus, Kv12

m is monitored by propagation. Similar argu-

ments show that the whole graph is monitored by the single

vertex v11.

Theorem 5.4.2. γp(Km�Cn) = 2, for m > 2, n > 4

Fig 5.10: The set {v11, v22} is a power dominating set in K4�C6
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Proof. Let {(vij)|i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}} be

the vertex set of Km�Cn, where any Km-fiber induces a com-

plete subgraph and any Cn-fiber induces a cycle (Fig 5.10). The

graph Km�Cn is a m + 1 regular graph, where any vertex can

dominate m + 2 vertices. Further propagation step is not possi-

ble since every vertex has at least two unmonitored neighbors.

By arguments similar to that of Theorem 5.4.1, it can be shown

that any two vertices of the form {vij, v(i+1)(j+1)} will monitor

the whole graph.

Remark 5.4.1. When m 6 2 and n = 3 , γp(Km�Cn) = 1.

Theorem 5.4.3. γp(Km�Wn) = 3, for m > 4, n > 4, where

Wn is a wheel on n vertices.

Proof. Let {(vij)|i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}} be

the vertex set of Km�Wn, where any Km-fiber induces a Km and

any Wn-fiber induces a Wn(Fig 5.11). Any vertex of Kv11

m can

dominate m+n− 1 vertices and further propagation is not pos-

sible since every monitored vertex has at least two unmonitored

neighbors. Similarly, any vertex which do not belong to Kv11

m

can dominate m+1 vertices and further propagation is not pos-

sible. Hence, any single vertex cannot monitor the whole graph.
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Fig 5.11: The set {v11, v22, v33} is a power dominating set in
K4�W6

We shall now show that the set {v11, v22, v33} is a power domi-

nating set for the graph Km�Wn and hence γp(Km�Wn) 6 3.

The vertex v11 will dominate Kv11

m and v11Wn and further propa-

gation is impossible. The vertex v22 will dominate Kv22

m and the

vertices v21, v23 and v2n without any possibility for further prop-

agation. Now, the vertex v33 dominates Kv33

m and the vertices

v31, v32and v34. At this stage, each vertex of Kv33

m has exactly one

unmonitored neighbor which is in Kv44

m and hence Kv44

m is moni-

tored by propagation from Kv33

m . By repeated propagations, we

see that the whole graph is monitored.
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Now it remains to show that any choice of two vertices will

not suffice. Let {vij, vkl} be any two arbitrary vertices {vij, vkl}.

Consider the case when i = k = 1, i.e the set {v1j, v1l}. The ver-

tex v1j dominates K
v1j
m , the vertices v1(j−1) and v1(j+1) whereas

the vertex v1l dominates Kv1l
m , the vertices v1(l−1) and v1(l+1).

Further propagation is not possible since all the dominated ver-

tices has at least two unmonitored neighbors. Hence, {v1j, v1l}

can dominate at most two Km fibers, but there are n > 4, Km

fibers. Arguments for other cases are analogous.

Theorem 5.4.4. γp(Km�Fn) = 2, for m > 3, n > 3, where Fn

is a fan on n vertices.

Fig 5.12: {v11, v22} power dominates K4�F6

Proof. Let {(vij)|i ∈ {1, 2, . . . ,m} and j ∈ {1, 2, . . . , n}}

be the vertex set of Km�Fn, where any Km-fiber induces a Km



122 Chapter 5. Power domination in some classes of graphs

and any Fn-fiber induces a Fn(Fig 5.12). Any vertex of Kv11

m can

dominate m+n− 1 vertices and further propagation is not pos-

sible since every monitored vertex has at least two unmonitored

neighbors. Similarly, any vertex which do not belong to Kv11

m

can dominate m+1 vertices and further propagation is not pos-

sible. Hence, any single vertex cannot monitor the whole graph.

We shall now show that the set {v11, v22} is a power dom-

inating set for the graph Km�Fn and hence γp(Km�Fn) = 2.

The vertex v11 will dominate Kv11

m and v11Fn and further prop-

agation is impossible. The vertex v22 will dominate Kv22

m and

the vertices v21 and v23. At this stage, each vertex of Kv22

m has

exactly one unmonitored neighbor which is in Kv33

m and hence

Kv33

m is monitored by propagation from Kv22

m . By repeated prop-

agations, we see that the whole graph is monitored.

Remark 5.4.2. When m = 2 or n = 2 , γp(Km�Fn) = 1.



Conclusion

We conclude the thesis by giving some suggestions for further

study.

The outerplanarity [53] of iterated star-line graphs can be

investigated. It would also be interesting to study the the 〈t〉-

property [4] in the class of H-line graphs. The behaviour of

LH(G) when G is a Cartesian product, direct product etc. can

be studied in detail. Also, one can attempt to study the re-

lationship between the graph parameters like radius, diameter,

domination number of G and LH(G) for particular choices of H.

123
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The characterization of cycle graphs is still an open problem.

Although, it seems difficult to get a complete characterization,

one may try to get a characterization for cycle graphs which be-

long to some particular classes. In this thesis, we have obtained

the condition for cycle graph to be connected. Hence, the re-

lationship between κ(G) and κ(Cy(G)) in the class of graphs

where Cy(G) is connected can be studied in detail.

The power domination problem is a very vibrant area to-

day. Since the problem is NP-hard for general graphs, a result

for some particular classes is significant. Characterization of

graphs with γp(G) = 1 and that of graphs with γp(G) = γ(G)

is particularly interesting. Also, characterization of graphs with

γP (µ(G)) = 1, γP (µ(G)) = γp(G), γP (µ(G)) = γp(G) + 1 may

be attempted. The generalized Mycielskian of cycles form a

network like structure. Hence, its power domination number

and network parameters-degree, diameter, cost can be obtained

and compared with other networks. The relationship between

the power domination number and the zero forcing number dis-

cussed in [22] can be studied in detail.



List of symbols

c(G) - Circumference of G

Cn - Cycle of length n

Cy(G) - Cycle graph of G

deg(v) - Degree of v

d(G) - Diameter of G

d(u, v) or dG(u, v) - Distance between u and v in G

E or E(G) - Edge set of G

e(u) - Eccentricity of u

g(G) - Girth of G

Gc - Complement of G
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126 List of symbols

G ∼= H - G is isomorphic to H

G�H - Cartesian product of G and H

G×H - Direct product of G and H

G ∨H - Join of G and H

G ◦H - Corona of G and H

LH(G) - H-line graph of G

HMn - Hexagonal honeycomb grid of dimension n

Km,n - Complete bipartite graph where m and

n are the cardinalities of the partitions

Kn - Complete graph on n vertices

L(G) - Line graph of G

m or m(G) - Number of edges of G

N [v] - Closed neighborhood of v

N(v) - Open neighborhood of v

nG - n disjoint copies of G

n or n(G) - Number of vertices of G



List of symbols 127

Pn - Path on n vertices

r(G) - Radius of G

RTm,n - Rectangular Triangular grid of dimension (m,n)

Tn - Triangular grid of dimension n

⌈x⌉ - Smallest integer > x

⌊x⌋ - Greatest integer 6 x

V or V (G) - Vertex set of G

<V > - Graph induced by V

α(G) - Independence number of G

α′(G) - Edge independence number or

Matching number of G

γ(G) - Domination number of G

γp(G) - Power domination number of G

∆(G) - Maximum degree of vertices in G

κ(G) - Vertex connectivity of G

κ′(G) - Edge connectivity of G

δ(G) - Minimum degree of vertices in G



128 List of symbols

µ(G) - Mycielskian of G

µm(G) - Generalized m-Mycielskian of G

Φn(G) - nth iterated graph of G under Φ

ζ(G) - Line index of G

ζn(G) - n-star line index of G
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[48] S. Klavžar, P. Žigert, I. Gutman, An algorithm for the

calculation the hyper-Weiner index of benzenoid hydrocar-

bons, Comput. Chem. 24 (2000), 229-233.

[49] M. Larsen, J. Propp, D. Ullman, The fractional chromatic

number of Mycielski’s graphs, J. Graph Theory 19 (1995),

411-416.

[50] V. B. Le, Gallai and anti-Gallai graphs, Discrete Math. 159

(1996), 179-189.



136 Bibliography

[51] C. S. Liao and D. T. Lee, Power domination problems in

graphs, Lecture Notes in Comput. Sci. 3595 (2005), 818-

828.

[52] W. Lin, J. Wu, P.C.B. Lam, G. Gu, Several parameters of

generalized Mycielskians, Discrete Appl. Math. 154 (2006),

1173-1182.

[53] H. Lin, W. Yang, H. Zhanga, J. Shua, Outerplanarity of

line graphs and iterated line graphs, Applied Mathematics

Letters 24 (2011), 1214-1217.

[54] Manju. K. Menon, Studies on Some Graph Operators and

Related Topics, Ph.D Thesis, Cochin University of Science

and Technology, India, (2009).

[55] Manju. K. Menon, A. Vijayakumar, Dynamics of P3-

intersection graph, JCMCC 73 (2010), 127-134.

[56] J. Mycielski, Sur le coloriage des graphes, Colloq. Math. 3

(1955), 161-162.

[57] M. E. J. Newman, The Structure and Function of Complex

Networks, SIAM Rev. 45 (2003), 167-256.



Bibliography 137

[58] O. Ore, Theory of Graphs, Amer. Math. Soc. Colloq. Publ.,

Amer. Math. Soc., Providence, RI, 38 (1962).

[59] E. Prisner, Graph Dynamics, Longman (1995).

[60] Seema Varghese, A.Vijayakumar, On H-line graphs, (Sub-

mitted).

[61] Seema Varghese, A.Vijayakumar, On the planarity of iter-

ated star-line graphs, (Submitted).

[62] Seema Varghese, A.Vijayakumar, Power domination in tri-

angular grids and Mycielskian of graphs, (Submitted).

[63] Seema Varghese, A.Vijayakumar, On cycle graphs, (Sub-

mitted).

[64] I. Stoijmenovic. Honeycomb networks, Proc. Math. Foun-

dations of Comput. Sci. MFCS’95 on Lecture Notes in Com-

put. Sci. 969 (1995), 267-276.

[65] I. Stoijmenovic. Honeycomb networks: topological proper-

ties and communication algorithms, IEEE Transactions on

Parallel and Ditributed Systems 8 (10) (1997), 1036-1042.



138 Bibliography

[66] E. L. Tan, Classification of graphs according to their cycle

graphs, Mathematical Methods Proceedings, Chiang Mai

University, Thailand (1988).

[67] J. J. Watkins, Across the Board: The Mathematics of

Chessboard Problems, Princeton University Press, (2004).

[68] D.B. West, Introduction to Graph Theory, PHI (2003).

[69] H. Whitney, Congruent graphs and the connectivity of

graphs, Amer. J. Math. 54 (1932), 150-168.

[70] A. M. Yaglom, I. M. Yaglom, Challenging Mathemati-

cal Problems with Elementary Solutions, in: Combinato-

rial Analysis and Probability Theory, Vol.1, San Francisco,

Holden Day, (1964).

[71] M. Zhao, L. Kang , G. J. Chang, Power domination in

graphs, Discrete Math. 306(2006), 1812-1816.

[72] M. Zhao, L. Kang, Power domination in planar graphs with

small diameter, Journal of Shanghai University (English

Edition), 11(3) (2007), 218-222.



Index

u−v path, 10

adjacent

edges, 8

vertices, 8

anti-Gallai graph, 32

antigallai graph, 20

bipartite graph, 12, 31

block, 13, 66

boundary, 27

Cartesian product, 16, 117

caterpillar, 10, 105

chord, 11

chordal, 11

circumference, 10

claw, 12

clique, 11

closed neighborhood

of a set, 11

of a vertex, 11

complement, 12

complete

bipartite graph, 12

graph, 11

component, 10

contractible, 15

contraction, 15

converge, 18

corona, 15

cover, 27

cover a diagonal, 25

cut vertex, 12

cycle, 10

cycle graph, 23, 33, 65
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inverse , 23

iterated, 23

cycle-persistent, 23

cycle-vanishing, 23

cylinder, 16

degree, 8

diagonal, 25, 27, 88, 96

diameter, 11

direct product, 17, 110

distance, 11

divergent, 18

dominating set, 14

domination number, 14

eccentricity, 11

edge connectivity, 13

end vertex, 8

Φ-fixed, 19

face, 13

fan, 15

fiber, 17

forbidden subgraph, 9

characterization, 9, 30, 46

girth, 10, 71

graph, 7

C-free, 9

acyclic, 10

chordal, 11, 75

connected, 10

disconnected, 10

Eulerian, 10

finite, 7

H-free, 9

maximal outerplanar, 13

null, 8

outerplanar, 67

outerplane, 13

planar, 31

plane, 13

trivial, 8

unicyclic, 10

grid, 16
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hexagonal honeycomb, 25,

36, 88

triangular, 37, 94

H-line graph, 20, 32, 45, 49

hamiltonian, 10

homeomorph, 14, 31

incident, 8

independence number, 14

edge, 14, 46

independent

edge set, 14

vertex set , 14

induced hereditary, 9, 30

internal vertex, 10

intersection graph, 17

isolated vertex, 8

isomorphic, 8

iterated graph operator, 18

join, 15

k-vertex cut, 12

k-regular, 8

length, 10

line graph, 18, 30, 31, 50

line index, 33

matching, 14

matching number, 14

monitored set, 24

Mycielskian, 28, 37, 100

generalized, 29

n-connected, 12

n-star-line index, 21, 52

open neighborhood

of a set, 11

of a vertex, 11

order, 8

origin, 9

outerplanar, 13, 31

path, 10

paw, 11



142 Index

pendant

edge, 8

vertex, 8

period, 19

periodic, 18

planar, 13

planar embedding, 13

power dominating set, 25, 90,

93

power domination number, 25,

87

radius, 11

rectangular triangular grid, 27

root, 28

self complementary, 12

size, 8

spine, 10

star, 12

star-line graph, 20, 50

subdivision of a graph, 14

subdivision of an edge, 14

subgraph, 9

induced, 9

spanning, 9

super-line graph, 32

terminus, 9

torus, 16

totally disconnected, 12

trail, 10

tree, 10, 68

triangle, 11

triangle graph, 22

inverse, 22

triangular grid, 26

triangular line graph, 19, 32

twin, 28

universal vertex, 8

vertex connectivity, 12

walk, 9

wheel, 15, 75
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