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CHAPTER ONE 

WEIGHTED DISTRIBUTIONS 

1.1 Introduction 

The Concept of weighted distributions can be traced to the work of Fisher (1934) in 

connection with his studies on how methods of ascertainment can influence the fonn of 

distribution of recorded observations. Later it was introduced and formulated in general 

terms by Rao (1965) in connection with modeling statistical data where the usual practice 

of using standard distributions for the purpose was not found to be appropriate. In Rao' s 

paper, he identified various situations that can be modeled by weighted distributions. 

These situations refer to instances where the recorded observations cannot be considered 

as a random sample from the original distributions. This may occur due to non­

observability of some events or damage caused to the original observation resulting in a 

reduced value, or adoption of a sampling procedure which gives unequal chances to the 

units in the original. Rao's paper gave much attention on damage models, characterization 

of discrete distributions and sampling mechanism generating a wide variety of weighted 

distributions. 

A mathematical definition of the weighted distribution is as follows. Let (Q:5, P ) be a 

probability space, X: Q ~ H be a random variable (rv) where H = (a,b) be an interval 



on real line with a> 0 and be> a) can be finite or infinite. When the distribution function 

(df) F(t) of X is absolutely continuous with probability density function (pdf) f(t) and 

wet) be a non-negative weight function satisfying fJ", = E ( w(X») < 00, then the rv XII 

having pdf 

.("(t) = w(t)f(t) , a < t <b (1.1) 
fJ,,· 

is said to have weighted distribution, corresponding to the distribution of X. The 

definition in the discrete case is analogous. 

One of the basic problems when one use weighted distributions as a tool in the selection 

of suitable models for observed data is the choice of the weight function that fits the data. 

Depending upon the choice of weight function w(t) , we have different weighted models. 

For example, when the weight function depends on the lengths of units of interest 

(i.e. w(t) = t ), the resulting distribution is called length-biased. In this case, the pdf of a 

length-biased rv XL is defined as 

.r (t) = tf(t) ; a < t < b 
fJ 

(1.2) 

where fJ = E(X) < 00. The statistical interpretation of length-biased distributions was 

originally identified by Cox (1962) in the context of renewal theory. Length-biased 

sampling situations may occur in clinical trials, reliability theory, survival analysis and 

population studies, where a proper sampling frame is absent. In such situations, items are 

sampled at a rate proportional to their length, so that larger values of the quantity being 

measured are sampled with higher probabilities. Numerous works on various aspects of 

length-biased sampling are available in literature which include family size and sex ratio 

(Rao (1965), Neel and Schull (1966», wild life population and line transect sampling 

(Eberhardt (1968, 1978», analysis of family data (Fisher (1934), Haldane (1938», cell 

cycle analysis (Zelen (1974», efficacy of early screening for disease (Zelen (1971, 

1974», aerial survey and visibility bias (Cook and Martin (1974), Patil and Rao (1977, 

1978». For some recent pUblications related to length-biased sampling, we refer to 

Sankaran and Nair (1993), Sen and Khattree (1996), Oluyede (1999, 2000), Van Es. et al. 

(2000), Sunoj (2004) and Bar-Lev and Shouten (2004). 
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More generally, when the sampling mechanism selects units with probability proportional 

to some measure of the unit size, i.e., when wet) = t a
; a > 0, then the resulting distribution 

is called size-biased. This type of sampling is a generalization of length-biased sampling 

and majority of the literature is centered on this weight function. Denoting 

J1a = E (xa) < 00, distribution of the size-biased rv Xs of order a is specified by the pdf 

(1.3) 

Clearly, when a = 1, (1.3) reduces to the pdf of a length-biased rv. Size-biased 

distributions arise in life lenth studies (Bluementhal (1967), Scheaffer (1972), Gupta 

(1984)), etiological studies (Simon (1980)) and in the studies of wildlife population and 

human families (Patil and Rao (1977, 1978), Rao (1965, 1977, 1985) and Patil and Ord 

(1976)). The effect of size-biased sampling in cell kinetics problems and the distribution 

associated with cell populations have been studied by several authors including Takahasi 

(1968), Bartlett (1969) and Zelen (1974). 

However, there are many other weight functions being studied by different authors such 

as Haldane (1938), Rao (1965), Neel and Schull (1966), Cook and Martin (1974), Patil 

and Ord (1976), Gupta (1975), Kemp (1973) and Patil and Rao (1977). The important 

weight functions which are used in discrete and continuous set up are listed below. 

}i{t) = t 

}it t) = ( 1 - (l - flY ) ; 0 < f3 < 1 

w(t)=(t+l) 

wet) = t(t -l) ... (t - r + l);r > 0 

w(t)=~I;O<~<1 

}i(t) = exp(~t). 

These weight functions are also useful for modeling through the identities connecting the 

original and weighted random variables. Moreover, different assumptions on the 
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relationship between the original and weighted distributions can generate interesting and 

useful characterizations theorems. 

1.1.1 Some general results 

Patil and Rao (1978) have given some useful comparison between the mean values of X 

and X", based on the monotonic behavior of the weight functions. Mahfoud and Patil 

(1982) studied some properties of weighted distributions in comparison with those of 

original distribution. They also examined the relation connecting the parameters of 

weighted distributions to that of original distributions and characterized log normal, 

gamma and Poisson distributions based on it. Further, they investigated the effect of size­

biased sampling on the mixtures of specific distribution. Kochar and Gupta (1987) 

studied some properties of weighted distributions in comparison with that of the original 

distributions for the positive valued random variables. Later, lones (1990) discussed the 

relationships between moments of weighted and original distributions and examined some 

structural properties of weighted distributions and studied the weighted mixture 

distributions as mixtures of weighted distributions and vice versa. 

Apart from the properties related to the moments of original and weighted distributions, 

another well-studied property of weighted distributions is that of form invariance. Let a rv 

X follows a pdf f(t; B), where B is the parameter of the distribution, then f(t, B) is 

form invariant under the weight function w(t) = la , if Xs follows the pdf f(t; 1]), where 

1] is a new parameter depending on B and a. More specifically, under size-biased 

sampling of order a , the observed rv retains the same functional form as that of the 

original TV except the parameters. A major contribution of this property is due to Patil 

and Ord (1976) and they proved that under some mild regularity conditions, log 

exponential family is form-invariant under size-biased sampling. This is stated in the 

following theorem. 

Theorem 1.1 (Patil and Ord (1976)): Let the TV X have pdf /(t;B) and have size bias 

with weight function ta. Then a necessary and sufficient condition for 

/S(t;B,a) = /(t;1]), where 1] = 1](B,a), is that 
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lJ aCt) 
f(t;e) = -- = exp( elogt + A(t) - B(e»), 

m(e) 

'e 
wherea(t)=exp(A(t»), m(e)=exp(B(e») and E(logX)=m( ) =B(e). In this case, 

m(e) 

f\t; e,a) = f(t;e + a), This result holds under certain regularity conditions. 

The fonn invariance of certain discrete distributions under size-bias of factorial order is 

also studied by Patil and Ord. They also examined fonn invariance property for the 

distributions belonging to Power series family under length-biased sampling. Further, 

Patil and Ratnaparki (1986) studied this concept for mixtures of distributions. However, 

Sankaran and Nair (1993) focused attention to the study of fonn invariance for Pearson 

family and its discrete version, namely Ord's family. 

1.1.2 Characterizations 

Characterization problem usually identifies some umque property possessed by a 

distribution and it helps to obtain an exact model followed by the observations through 

the consideration of the physical characteristics that governs the pattern of the data. A 

plethora of work is being done in connection with the characterization of original and 

weighted distributions under different considerations such as the properties of moments, 

fonn invariance and reliability characteristics using different weight functions. The 

present section explains a brief review of characterizations associated with weighted 

distributions. 

The characterization of log nonnal distribution came out by Krumbein and Pettijohn 

(1938) with the fact that this distribution provides a good fit to the observed particle sizes. 

Gupta (1975) provided certain characterizations to some discrete distributions using the 

properties of length-biased distributions. Gupta (1976) characterized exponential 

distribution using the property that the mean of length-biased rv is twice as that of 

original rv. Mahfoud and Patil (1982) characterized log nonnal distribution using the 

equality of variances of the logarithms of original and weighted distributions under size­

biased sampling, They also characterized log nonnal, Poisson and gamma distributions 

using the relationships between parameters of the original distribution and those of the 
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weighted distributions. Kirmani and Ahsanullah (1987) considered the relationship 

between characteristic functions of the length-biased form and the original version to 

develop a characterization for the Inverse Gaussian distribution. Pakes and Khattree 

(1992) and Pakes et al. (1996, 2003) characterized various distributions under length­

biased sampling and using the property of infinite divisibility. Characterization results on 

invariant length-biased distribution of the Pearson family can be found in Sankaran and 

Nair (1993). Some other characterizations obtained by using rather different approaches 

appeared in Sen and Khattree (1996) and Lingappaiah (1988). Some characterizations of 

length-biased Inverse Gaussian distribution are studied by Gupta and Akman (1995). 

Recently, Bar-Lev and Schouten (2004) obtained a unified approach for characterizing 

exponential dispersion models which are invariant up to translations under various types 

of length-biased sampling. 

1.1.3 Characterizations based on reliability concepts 

Length-biased models are widely used in the context of reliability and survival analysis. 

Cox (1962) described the importance of length-biased distributions in the context of 

renewal theory. Suppose that a component operating in a system is replaced upon failure 

by another component possessing the same life distributions and the process is repeated. 

Then the sequence of component life lengths forms a renewal process. Let 

L(t) = U(t) + Vet) denotes the total life of the component, where U(t) and V(t) 

respectively denotes the age and remaining life of the component at any timet. Then the 

limiting pdf of L(t) follows a length-biased distribution. The equilibrium distribution of 

the backward and forward recurrence times in the limiting case is described by Cox 

(1962), Bluementhal (1967), Scheaffer (1972), Gupta (1984), Rao (1985) and Sen and 

Khattree (1995). Equilibrium distribution is a special case of weighted distributions and it 

is useful in reliability analysis. 

Gupta and Keating (1986) initially examined some structural relationships between 

original and length-biased rv in the context of reliability, they are useful for life length 

studies. Later, Kochar and Gupta (1987) and Jain et al. (1989) extended these 

relationships for general weight function 11!(t). Motivated by these results, Gupta and 

Kinnani (1990) studied extensively the various relationships between original and 
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weighted distributions in the context of reliability and life testing and surveyed the results 

available in literature useful in distribution theory and its applied problems. Gupta and 

Akman (1995) studied a mixture of Inverse Gaussian distribution and its length-biased 

version from a reliability point of view. As a continuation of results proved in Sankaran 

and N air (1993), Asadi (1998) characterized Pearson system of distributions using the 

relation between X and Xs and also studied it for the Ord's family. Navarro et al. 

(2001) also obtained some general characterizations of probability distributions and 

obtain some useful relationships between reliability concepts of original distribution and 

the associated weighted distribution. However, Oluyede and George (2002) and Oluyede 

(2002) derived some reliability inequalities for weighted distributions. Sunoj (2004) 

characterized certain probability distributions based on the concept of partial moments in 

the context of length-biased and equilibrium models. Recently, Bartoszewicz and 

Skolimowska (2004, 2006) represented weighted distributions by Lorenz curve and 

obtained some results concerning stochastic ordering for weighted distributions using 

reliability concepts. 

1.1.4 Bivariate weighted distributions 

The bivariate extension of weighted distribution is discussed in Mahfoud and Patil 

(1982). For a pair of non-negative random variables (XI'X2 ) with joint density function 

l(t"t2 ) and a non-negative weight function w(tl'tJ such thatE(w(X"X2 ))<oo, the 

random vector (Xl.' X 2.,) with density function 

(1.4) 

is said to have bivariate weighted distribution corresponding to (Xl' X 2 ) • The extension 

to p - variate case is straightforward. Mahfoud and Patil studied the nature of some 

weight functions and characterized some probability distributions based on it. Patil et al. 

(1987) studied different weight functions in the bivariate set up and their applications in 

different models. Jain and Nanda (1995) extended the idea of weighted distributions in 

multivariate case and presented some partial ordering in connection with the original and 

weighted distributions. Some properties of bivariate weighted distributions under 
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different weight functions are also studied by Arnold and Nagaraja (1991). However, 

Sunoj and Nair (1998, 1999) characterized some bivariate life distributions using 

weighted conditionals and weighted marginal respectively. In the view of the usefulness 

of form invariance property, Sunoj and Nair (2000) and Nair and Sunoj (2003) further 

examined this concept in the bivariate case and proved certain theorems which 

characterize family of distributions viz. Pearson and log exponential and studied some 

applications of it. Sunoj and Sankaran (2005) characterized certain bivariate distributions 

in the context of reliability modeling using different weight functions. However, the 

bivariate weighted distributions for discrete random variables are studied by Kocherlakota 

(1995) and Gupta and Tripathi (1996). 

1.1.5 Applications 

In addition to various applications mentioned in Section 1.1, the concept of weighted 

distributions has also been applied in variety of fields such as analysis of data relating to 

human populations and ecology (Patil and Rao (1977,1978)), biomedicine (Zelen (1974), 

Simon (1975)), demography (Sheps and Menken (1972)), Economics (Ord (1975)), 

forestry (Warren (1975)), reliability (Cox (1962), Scheaffer (1972)), small particle 

Physics and sedimentology (Herdan (1960)). For more applications and characterizations 

results related to weighted distributions one can see the references given in Sunoj (2000), 

Navarro et al. (2001) and Di Crescenzo and Longobardi (2006). 

Apart from these, some of the known and important distributions in statistics and applied 

probability may be expressed as weighted distributions. Truncated distributions, 

equilibrium-renewal distributions, distribution of order statistics, distribution in 

proportional hazards and proportional reversed hazard models (see Bartosezewicz and 

Skolimowska (2004) are some of the examples. Thus the theory of weighted distributions 

is appropriate whenever these distributions are applied. 

1.2 Some basic concepts useful in the present study 

In this section, we discuss some basic concepts and definitions which are useful in the 

present investigation. 
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1.2.1 Truncation 

The problem of truncation occurs mainly due to the sampling methods that we follow. 

Due to truncation, some events may be missed in the record, even though they occur in 

reality. Statistical problem of truncation arise when a standard statistical model is 

appropriate for analysis except the values of the rv falling below or above some values 

are not measured at all. For example, in a study of particle size, particles below the 

resolving power of the observational equipment will not be seen at all. Truncation is 

sometimes usefully regarded as a special case of selection. Depending up on the nature of 

the data that we have observed, there are mainly 3 types of truncation namely left, right 

and double (interval) truncations. 

More particularly, if the values below a certain lower limit L are not observed at all, the 

distribution is said to be truncated on the left. If the values are larger than an upper limit 

U are not observed, the distribution is said to be truncated on the right. If only values 

lying between Land U are observed, the distribution is said to be doubly (interval) 

truncated. For examples related to various types of above discussed truncations, one can 

refer Lawless (2003), International encyclopedia of Statistics (1968, page no.1 060-1 065), 

Efron and Pertosian (1999), Betensky and Martin (2003). 

1.2.2 Basic concepts in reliability theory 

The term reliability of a system/component is the probability that it will perform its 

intended functions for a specific period of time when operating under normal 

environmental conditions. In studies related to reliability, there are certain basic concepts 

which are extensively studied by different authors. They are explained below. 

1.2.2.1 Reliability function 

Consider a rv X represents the lifetime of a device/component then the reliability 

function (survival function) of X is denoted as R(t) and it is defined by 

R(t) = P(X > t) ; t > 0 

=l-F(t) (1.5) 

9 
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where F(t) is the df of the rv X. It gives the probability of failure free operation of the 

device at timet (~O). 

1.2.2.2 Failure rate (Hazard rate) 

Defining the right extremity of F(t) by 

b = inf{t: F(t) = I}, for t < b, 

the failure (hazard) rate of X is defined as 

!(t) d 
het) = - = --logR(t). 

R(t) dt 
(1.6) 

This function uniquely determines the df F(t) through a relation 

(1.7) 

In general case, for a rv X with support -00 < X < 00, Kotz and Shanbhag (1980) 

defined the failure rate as a Radom Nikodym derivative with respect to Lebesgue measure 

on{t: F(t) = I}, of hazard measure 

H(B) = J dF(x) , 
B 1- F(x) 

for every Borel set B of (-oo,b) . Further the distribution of X is uniquely determined 

by the relationship 

R(t) = I1 [1- H(u)]exp[-H c( -oo,b)] 
U<l 

where He is the continuous part of H . 

1.2.2.3 Mean Residual Function 

For a continuous rv with E(X) < 00, the mean residual function (MRLF) is defined as 

the Borel measurable function 

10 
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r(t)= E(X -IIX > t) (1.8) 

for all I such that R(t) > O. It measures the average residual life of a component when it 

has completed t units of time. If X is absolutely continuous, (1.8) can be expressed as 

1 :xc 

r(t) = -IR(x)dx. 
R(t) , 

Further, MRLF is related to failure rate and reliability function by the relations 

and 

h(t) = 1 + r'(t) 
r(t) 

reO) (I' dx 1 R(t)=-exp - -
r(t) 0 r(x) 

(1.9) 

(1.10) 

(1.11) 

for every I in (0, b) , where r'U) denotes the derivative of r(t) with respect to t and 

reO) = E(X). 

The concepts of failure rate and MRLF are extensively applied in modeling equipment 

behavior and in defining various criteria for aging, When the specification of the 

functional form of the failure rate is possible based on the physical characteristics of the 

process governing the failure of a system/device, the result that failure rate uniquely 

determines a distribution helps the identification the failure time model. 

Further, Gupta and Keating (1986) established some structural relationships between 

original and length-biased IV using reliability concepts. The major relationships are 

R' (t) = [ t + ;(t) lR(t) ( 1.12) 

hL(t)=[ t lh(t) 
t + r(t) 

(1.13) 

rL(I)=[ r(l) ]IX'[x+r(x)]exp(I' ~ldx 
t+r(t) r(x) r(u) 

{ { 

(1.14) 

11 
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where RL(t), hL(t) and rL(t) respectively denotes the reliability function, failure rate 

and MRLF corresponding to the length-biased models. Using the measures (1.12), (1.13) 

and (1.14), Gupta and Keating characterized Pareto n, exponential and beta distributions 

based on the ratio of the reliability functions and failure rates of original and length­

biased random variables. 

1.2.2.4 Vitality function 

The concept of vitality function is introduced by Kupka and Loo (1989) as a Borel 

measurable function on the real line as 

1 x 

met) =E(xlx > t)= -JxJ(x)dx. 
R(t) 

t 

(1.15) 

Clearly, vitality fimction (1.15) measures the expected life of a component, when it has 

survived t units of time. The vitality function is closely related to MRLF and it is clear 

from the definition (1.15) that 

met) = t + r(t) 

and 

rn' (t) = r(t)h(t) , 

where m'(t) is the derivative of met) , 

1.2.2.5 Reversed hazard rate 

For a non-negative rv X , the reversed hazard rate (RHR) is defined by 

A(t) = J(t) 
F(t) 

(1.16) 

( 1.17) 

where A(t)dt can be interpreted as an approximate probability of failure in (t - dt,t] 

given that the failure had occurred in [O,t]. Keilson and Sumita (1982) were among the 

first to define RHR and called it the dual failure function, The RHR uniquely determines 

F(t) through a relation 

12 
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F(t)~exp( -!:t(X)dx} tE(a,b). ( 1.18) 

Later, Block, Savits and Singh (1998) studied RHR, its properties and characterized a 

class of distributions having constant RHR in their interval of support. Shaked and 

Shanthikumar (1994) also proved several results related to RHR ordering. Now we 

restate the following definitions and theorems for the consideration of later chapters. 

Defmition 1.1 (Shaked and Shantikumar (1994)): Let X and Y be two random variables 

with absolutely continuous distribution functions Fx and Fy and reversed hazard rates 

A.x and Ay respectively such that 

( 1.19) 

rh 

then X is said to be smaller than Y in RHR order and it is denoted as X ~ Y . 

From the definition 1.1, it is easy to verify that (1.19) holds if and only if FAt) 
Fy(t) 

decreases in t. Based on the RHR ordering, Shaked and Shantikumar (1994) obtained the 

following result. 

Theorem 1.2 (Shaked and Shantikumar (1994)): If X and Y be two random variables 

~ ~ ~ 

such thatX~Y, then X~Y (X~Y if and only if P(X?u)~P(Y?u) for 

all U E (-00, (0)). 

Nanda and Shaked (2001) proved some useful results in stochastic ordering in the context 

of RHR. However, Nair et al. (2005) characterized certain models using the relation 

between RHR and conditional expectation. Nair and Asha (2004) gave a review of 

literature on RHR and developed certain identities connecting df, pdf and reliability 

function in terms of failure rate and RHR and characterized some well known families of 

distributions using these identities. They explained these concepts in discrete set up also. 

Recently, Bartoszewicz and Skolimowska (2006) proved certain theorems based on the 

rnonotonic properties ofRHR. They are given below. 
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Theorem 1.3 (Bartoszewicz and Skolimowska (2006)): Let w(.) be a monotone left 

continuous function. 

a) If w(t) is increasing and l1{t)A(/) is decreasing, then X", is decreasing reversed 

hazard rate (DRHR). (A distribution F is said to be DRHR if logF is concave 

on(a,b) ). 

b) If l1{t) is decreasing and w(t)..t(t) is increasing, then X". is increasing reversed 

hazard rate (lRHR). 

c) If l1{t)h(t) is decreasing, then XIV is DRHR. 

1.2.2.6 Expected inactivity time (Mean waiting time) 

Another important rv closely associated with RHR is the expected inactivity time (ElT) or 

mean waiting time (MWT). Similar to MRLF in left truncated situation, the ElT in right 

truncated situation is defined as 

r(t)=E(t-xIX~t). (1.20) 

Similar to equation (1.9), the ElT for an item failed in an interval [O,!] as 

1 I 

r(t) = - fF(x)dx . 
F(t) 0 

(1.21 ) 

Assuming r(t) is differentiable, as in (1.10), ELT is related to RHR through the relation 

or 

A(t) = 1- r' (t) 
r(t) 

F( ) [ 
"'fl- r'(x) dx) t =exp - . 
( r(x) 

(1.22) 

(1.23) 

Chandra and Roy (2001) studied some properties of waiting time with respect to RHR. 

Finkelstein (2002) focused the importance of ElT (MWT) in defining RHR and studied 

its properties. Li and Lu (2003) established some stochastic comparisons on inactivity 

time and the residual life of a series and parallel system respectively and presented some 

applications based on these comparisons. Several preservation properties of stochastic 
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comparisons based on the MIT order under the reliability operations of convolution and 

mixture is studied by Kayid and Ahrnad (2004). Further, Nanda et al. (2003) studied 

some reliability properties of ElT and Nanda et al. (2006) proposed a stochastic order 

based on this function for a rv with support (lx' 00) where Ix may be -00 and studied its 

properties. 

1.2.2.7 Generalized failure rate 

For a continuous rv, X· which is doubly truncated at the points I} andt2 , then the 

generalized failure rate (GFR) defined by N avarro and Ruiz (1996) is defined as 

h(t t)= f(t,) 
, I' 2 F (t J - F (tJ ) 

(1.24) 

(1.25) 

Based on the definitions (1.24) and (1.25), Navarro and Ruiz proved that the GFR 

satisfies the following properties. 

1) D is not an open, not empty such that if (tl't2 )ED then t, <t2 and (tl't)ED or 

are continuous functions. 

almost every point t2 E [c, d] . 

4) The integrals 

'] 

IJ(tpt2 ) = fhJ(t,t2 )dl (1.26) 
a 

b 

12 (tl't2 ) = fh2(tl't)dt (1.27) 

are finite for all (tJ' (2) E D . 
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5) For all (t l ,l2) E D, depends only on t2 and 

depends only where 

Further, they characterized class of these functions using the following theorem. 

Theorem 1.4 (Navarro and Ruiz (1996»: Let hi; i = 1,2 be real functions with domain 

1 

D E ~+ • Then, there exists a cumulative distribution function F for which hI and h2 are 

its GFR if and only if hI and h2 satisfy the properties 1 to 5. 

Ruiz and Navarro (1996) obtained a necessary and sufficient condition that any function 

m : ~2 ~ 91 is the conditional expectation E (X It I < X < (2) of a rv X with continuous 

df and they related this function to order statistics. Navarro and Ruiz (2004) studied some 

characterizations using the relationships between GFR functions and the conditional 

moment function mu (tl' t2 ) = E (u(X) It I < X < t2 ) • Subsequently, they also obtained some 

characterizations based on RHR and EIT. Sankaran and Sunoj (2004) further studied 

some relationships between failure rate and the MRLF for doubly truncated random 

variables and proved certain characterizations for exponential, Pareto 11, beta distributions 

and some families of distributions. Further they explored some applications of these 

measures in the context oflength-biased models. 

1.2.3 Families of distributions 

A standard practice in modeling statistical data is either to derive an appropriate model 

based on the physical properties of the system or to choose a flexible family of 

distributions, and then find a member of the family that fits to the data. In latter case, it is 

necessary to identify the data generating process to explain why the empirical distribution 

appropriates the data. When using families of distribution as the starting point, often some 

general properties of the family will be of considerable use in identifying a suitable 
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member. It also helps to unify the results obtained in the case of individual distributions 

that are obtained in separate studies. Apart from these, there should be some simple 

criterion that distinguishes the members of the family so that it is easy to choose a 

member that fits the data. This shows the importance of families of distributions in 

modeling problems. So this section explains some important families of distributions that 

are used in the present study. 

1.2.3.1 Exponential family 

The exponential family of distributions includes all density functions and its pdf can be 

written in the form 

f(t) = exp[ Bt + C(t) + D(B)] (1.28) 

where C(.) and D(.) are arbitrary functions. This class was recognized nearly 

simultaneously by Darmois and Koopman. So it is often called Darmois-Koopman class. 

1.2.3.2 Log exponential family 

The distribution of a rv X belong to log exponential family if the pdf of X is of the form 

tBC(t) 
f( t) = -_. t > 0 B > 0 

A(B) , , 
(1.29) 

where C(t) is a non-negative function of t, which is differentiable and A(B) is a non-

'" 
negative function of B satisfying A(B) = fx&C(x)dx (see Patil and Ord (1976)). 

o 

1.2.3.3 Pearson family of distributions 

Pearson family of probability distributions was introduced by Karl Pearson in 1895. The 

df F(t) of a rv X belong to the Pearson family of distributions if the pdf f(t) satisfies a 

differential equation of the form 

17 
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(1.30) 

where J(t) is differentiable, bo' bl , b2 and d are real constants. The shape of the 

distribution depends on the values of the parameters. The fonn of this distribution 

depends on nature of the roots of the equation bo + bit + bi2 
= 0 and various types 

correspond to the roots of the quadratic equation in the denominator of (1.30). For various 

properties and applications of this family we refer to Nair and Sankaran (1991), Johnson 

et al. (1994), Ruiz and Navarro (1994), Asadi (1998) and Sankaran and Nair (2000). 

1.2.3.4 General class of distributions 

Consider a class of distributions whose pdf defined by Ruiz and Navarro (1994) is given 

by 

let) ji-t- g'(t) 
= 

J(t) get) 
(l.31) 

where ji is a constant, g(t) is a real function in (a, b) and it satisfies the first order 

differential equation 

Ruiz and Navarro proved certain theorems using the equivalence relation connecting 

(1.31) and the vitality function. Alternatively, we may view g(t) as given, and then J(t) 

is uniquely detennined by (1.31). By appropriately choosing get), one can obtain many 

of the important cases that have appeared in the literature and which includes Pearson 

family, beta, gamma and Maxwell distributions etc (see Gupta and Bradely (2003». 

1.2.3.5 Generalized Pearson family of distributions 

The Pearson family of distributions is widely used in reliability models as it contains 

many other important probability models such as exponential, gamma, Pareto 11, beta etc. 

But there are certain other distributions such as Inverse Gaussian, random walk 
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distribution etc. that do not belong to this family. Ord (1972) proposed another family 

called Generalized Pearson family of distributions and for this family, the pdf of X 

satisfies a differential equation 

(1.32) 

where a" hi; i = 0,1,2 are real constants. When a2 = 0, this family reduces to Pearson 

family (1.30). Like Pearson family of distributions, the generalized version can be 

classified into various types according to the nature of the roots of the quadratic function 

given in the denominator of(1.32) (see Sindu (2002». 

1.2.3.6 Burr system of distributions 

The BUIT system of distributions was constructed in 1941 by Irving W. BUIT. Since the 

corresponding density functions have a wide variety of shapes, this system is useful for 

approximating histograms, particularly when a simple mathematical structure for the 

fitted cumulative distribution function is required. A number of standard theoretical 

distributions are limiting forms of BUIT distributions. A rv X with df F(t) satisfying a 

differential equation 

dy = y(l- y)k(t) 
dt 

(1.33) 

where y = F(t) and k(t) must be positive for 0 ~ y ~ 1 (see BUIT (1942»). Different 

choices of k(t) generate various solutions for F(t). In the next section, we explain some 

basic concepts relating measures of uncertainty, 

1.2.4 Measures of uncertainty - preliminaries 

In this section, we examine some important measures of uncertainty which are useful in 

the present study. 
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1.2.4.1 Shannon's entropy 

The concept of entropy was extensively used in literature as a quantitative measure of 

uncertainty associated with random phenomena. In the context of equilibrium 

thermodynamics, physicists originally developed the notion of entropy which was later 

extended through the development of statistical mechanics and information theory. 

Shannon (1948) was the one who formally introduced entropy, known as Shannon's 

entropy or Shannon's information measure into information theory. For a rv X, having 

pdf f(t), the Shannon's entropy is defined as 

<Xl 

H = ~ ff(x) logf(x)dx. (1.34) 
o 

In the pioneering work of Shannon, the properties and virtue of H have been thoroughly 

investigated in the literature. This entropy finds applications in several areas such as 

communication theory, flow of electricity and visual communications from artist to 

viewers etc. 

1.2.4.2 Residual entropy 

For a continuous non-negative rv X representing lifetime of a component, Ebrahimi 

(1996) defines the residual entropy function as the Shannon's entropy associated with the 

rv (X ~ t) truncated at t> 0, namely 

H(t)= __ I_ff(X)10g(f(X)\"x; R(t»O. 
R(t) ( R(t) r (1.35) 

The residual entropy (1.35) measures the expected uncertainty contained in the 

conditional density of (X - t) given X> t about the predictability of remaining lifetime 

of the component. It is noticed that when t = 0, (1.35) reduces to Shannon's entropy 

defined over (0,00). For some properties and useful characterizations, on can refer 

Ebrahimi and Pellerey (1995), Nair and Rajesh (1998), Rajesh and Nair (1998), Sankaran 

and Gupta (1999) and Asadi and Ebrahimi(2000) and Belzunce et al. (2004). 
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1.2.4.3 Conditional measure of uncertainty 

For a non-negative rv X with pdf f(t) and reliability function R(t), Sankaran and 

Gupta (1999) defined a conditional measure of uncertainty as 

M(t) = -E(logf(X)IX > t) 

1 '" 
= -- If(x)logf(x)dx. 

R(t) I 

(1.36) 

M(t) measures the uncertainty contained in f(t) about the predictability of the total 

lifetime of a unit which has survived to aget. This measure can be represented as the sum 

of residual entropy and total failure rate as 

M (t) = H(t) -JogR(/) (1.37) 

t 

where -logR(/) = fh(x)dx IS the total failure rate. For some properties and 
o 

characterizations based on this measure, one could refer Sankaran and Gupta (1999), 

Rajesh (2001). 

1.2.4.4 Renyi's measure of entropy 

Entropies of higher order are defined by several authors and their properties are being 

examined. The works of Renyi (1961) and Kapur (1968) proceed in this direction. For a 

continuous rv X admitting an absolutely continuous distribution, Renyi defined the 

entropy of order 13 as 

1 00 

I R = log If(x)dx . 
(1- 13) 0 

(1.38) 

When 13 ~ 1, (1.38) reduces to Shannon's entropy. For the rv (X -t) truncated at t > 0, 

the Renyi' s entropy measure becomes 

I (I) "" 1 log f( f(X»)fJ dx. 
R (1- 13) ~l R(t) 

(1.39) 
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Further IR(t) reduces to the residual entropy (1.35) when f3 ~ 1. For some properties 

and characterization of this measure one can refer Song (200 I) and Abraham and 

Sankaran (2005). 

1.3 Present study 

The present work is organized into six chapters. In reliability and survival studies, the 

identification of probability models of lifetimes is of prime concern and it is often 

achieved through studying the characteristics of various measures such as failure rate, 

mean residual life function, vitality function, coefficient of variation etc. However, in 

recent years considerable attention has been paid to the problem of characterizing 

probability distributions of a rv based on conditional expectations of left and right 

truncated data. For details regarding conditional expectations one can refer Zoroa et al. 

(1990), Navarro and Ruiz (2004) and the references therein. Similarly, characterization 

problems using weighted distributions have been studied by different authors. Even if 

several research works were carried out on weighted distributions in the context of left 

truncated case, but a very little has been explored for the right (past lifetime) and interval 

(doubly) truncated random variables. Motivated by this, in the present study, we focus 

attention on studying the mathematical relationships between weighted and original 

random variables using various measures such as maintainability function, reversed repair 

rate, log odds rate, measures of uncertainty and discrimination and lower partial moments 

for the right and doubly truncated random variables and prove certain characterization 

theorems arising out of it. Most of the results that we have obtained in the present thesis 

based on the right truncation, are unique in nature compared to the existing results based 

on left truncation. However, some results show certain similarity in their functional 

fonns. 

In continuation of the present chapter, in Chapter 2, we discuss the weighted distributions 

in the context of repairable systems. Accordingly, characterization theorems are 

established in respect of exponential, Pareto 11, beta distributions and some important 

families of distributions based on the ratio of maintainability functions of original and 

length-biased distributions and conditional expectations. 
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In Chapter 3, we explain the significance of log odds ratio in reliability modeling and 

characterize certain families of distributions based on this concept. Further we examine 

the usefulness of this concept in the context of weighted models and extend the log odds 

rate to the bivariate case. 

Chapter 4 is devoted to the study of measures of uncertainty based on past life. All 

measures of uncertainty have much relevance in characterizing and classifying 

distributions based on the properties showed by them. Accordingly, Chapter 4 explores 

the concept of past entropy introduced by Oi Crescenzo and Longobardi (2002) and 

studies some of its properties. Further we obtained some characterizations of distributions 

based on the relationship between past entropy and other reliability measures and study 

this concept for weighted models. We also examine the properties and usefulness of 

some measures of discrimination in the context of weighted models. 

We extend the concept of past entropy and other uncertainty measures to doubly 

truncated random variables in Chapter 5. In this chapter, we introduce some new 

conditional measures uncertainty and obtained various useful results for some well known 

families/distributions in the context of interval truncated data. We also compare these 

measures for weighted models and proved certain characterization theorems arising out of 

it. 

Chapter 6 considers the right truncated rv into an economic point of view. In this chapter 

we discuss the concept of Lower Partial Moments (LPMs). LPMs are useful for the 

studies related to risks and poverty in Economics. Here also we present some 

characterizations of certain important distributions and families of distributions based on 

the r lh order LPM. The concept is considered in the context of weighted models and 

studied some of its particular cases. Finally, we explain the application of LPM for the 

studies related to poverty. 
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CHAPTER Two 

WEIGHTED DISTRIBUTIONS USEFUL IN 

REPAIRABLE SYSTEMS· 

2.1. Introduction 

In reliability theory, the tenn reliability of a system is the probability that it will perfonn 

its intended functions for a specified period of time when operating under nonnal 

environmental conditions. This definition is explained with reference to the failure 

behavior of the system and it plays an important role in modeling lifetime distributions. In 

a similar way, maintainability also plays a vital role in studying the effectiveness of a 

system. This is more useful to those situations where a repair is possible. Thus for the 

modeling problems related to repairable systems, maintainability is more practical than 

reliability. In this view, in the present chapter, we discuss some properties of weighted 

distributions in the context of repairable systems and provide some interesting results 

based on it. 

2.2. Maintainability function and Reversed repair rate 

The purpose of maintenance is to restore a deteriorating or failed system to its nonnal 

operating state. The maintainable and repairable system can be restored into service at 

1 Some of the results in this Chapter have been published as entitled "Some properties of weighted 
distributions in the context of repairable systems", Communication in Statistics - Theory and Methods, 
35(2),223-228 (see Sunoj and Maya (2006». Another paper has also been communicated. 



regular intervals of time or after each of its failure. Generally, maintainability of a system 

provides a measure of the reparability of a system when it fails or it is defined as the 

probability of repairing a failed component or system in a specified period of time. 

Mathematically, it is defined as follows. Let X be an absolutely continuous rv 

representing the repair time of a component/system, then the maintainability function (df) 

of X can be defined as 

F(t) = P(X ~ t) (2.1 ) 

and it gives the probability that required maintenance will be successfully completed in a 

given time period. The maintainability functions are used to predict the probability that a 

repair beginning at timeX = 0 will be accomplished in timeX = t (see Rao (1992)). 

Various probability distributions may be used to present an item's repair time data. Of 

these, the most frequently used repair time models include exponential, log normal, 

gamma, Poisson and uniform distributions. For example, if the components of a system 

that fail frequently have a relatively short repair times compared to those components that 

fail infrequently, then the repair times can be assumed to follow exponential distribution. 

On the other hand, if every component of the system has the same failure rate and the 

same repair time, the repair times can be assumed to follow uniform distributions. Once 

the repair time distributions are identified, the corresponding maintainability function can 

be easily obtained. An important measure closely associated with the maintainability 

function is the reversed repair rate, which is defined as the ratio of the pdf of repair time 

and the maintainability function and is given by 

A(t) = !(t) . 
F(t) 

(2.2) 

When X represents the repair time of a component, then the probability that it is repaired 

during the time (t -E,t) (where E is a small positive number) is approximately equal to 

GA(t). When X represents the lifetime, A(t) then termed as reversed hazard rate (RHR). 

In this context EA(t) is the approximate probability that a device survived time (t - G) 

given that it failed at t. 

From the definition (2.2), it is clear that 
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A(t) = dlogF(t) . 
dt 

(2.3) 

Integrating (2.3) over the limits t to b and assume that lim log F(t) = 0, then we obtain 
I-->b 

F(I)=exp( -!A(X)dX). (2.4) 

From (2.4) it is clear that the reversed repair rate uniquely determines the maintainability 

function. Let 

(2.5) 

be a conditional moment function. Differentiating (2.5) with respect to t and assume that 

lim w(t)f(t) = 0 and simplifying, we have 
I-+a 

d mll(t) 
A(t) = --=d,,---t -­

wet) - m",(t) 

Substituting (2.6) in (2.4), we get 

F(t) = exp(-f dml\'(~) J. 
1 w(x) - m,,(x) 

(2.6) 

(2.7) 

Thus (2.7) implies that any conditional moment of repair time also uniquely determines 

the maintainability function. 

2.3 Mathematical relationships between original and weighted random variables 

Let X be a non-negative rv which denote the repair time of a component/system 

possessing an absolutely continuous maintainability function F(t) and survival function 

R(t) = P(X > t) and assume that w(t) is positive and differentiable with 

lim w(t)F(t) = 0 , then the maintainability function of the rv X". using (1.1) is given by 
I-+a 
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F"(t) = P(X" ::; t) = ff'"(x)dx = m,,(t) F(t) 
a Jiw 

(2.8) 

and the corresponding reversed repair rate A Wet) becomes 

A" (t) 0= f"'(t) = w(t) A(t). 
F" (t) m",(t) 

(2.9) 

From (2.8) and (2.9), the following theorem is immediate. 

Theorem 2.1: a.) If w(t) is monotone increasing (decreasing), then .x,"(t) ~ (::;)A(t) , and 

(

SI S/ ) 

FH'(t)::; (~)F(t) X ::;(z)X", for all t. 

F lr( ) - ( ) 
11 t... m t. . . 

b) A (t) ~ A(t) ~ -- IS non Increasmg ~ -". - IS non Increasmg. 
F(t) Il

II
. 

Si st 

c) X ::;(~)Xw ~ Illr ~ (::;)mjt) 

Proof: Part (a) of the Theorem is clearly obtained from the definition of weighted 

distribution and from (2.8) and (2.9). The first part of (b) is obtained from Shaked and 

Shanthikumar (1994) (see Chapter 1) and the second part is obtained from (2.8). To prove 

(c), considerX~Xw' This impliesF(t)zF"'(t)~ F"'(t)::;1. From (2.8), we get 
F(t) 

The following theorems prove that the ratio of the maintainability functions or reversed 

repair rates of weighted and original rv determines the distribution. 

F"( ) 
Theorem 2.2: If aCt) 0= __ t ,then 

F(t) 

F(t) = exp -J a '(x) dx 
w(x) _() 

I -a x 
(2.10) 

Ilw 
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Proof: Given that aCt) = ~I'(t) , then from (2.8), we have aCt) = mll.(t). Now using the 
(t) 1'" 

relation (2.7) we get (2.10). 

Theorem 2.3: If wet) is differentiable and iJ(t) = A(t) ,then 
A"(t) 

F( ) 
( 

hJiJ '(x)w(x) + iJ(x)w'(x)d J 
t =exp - x . 

I (1-,B(x))w(x) 

Proof: We have 
- A(t) 
,B(t) = A"'(t) , then from (2.9) 

Now using (2.7) we obtain the fonn (2.11). 

(2.11 ) 

m",(t) = w(t),B(t). 

The major relationship between the original rv X and the size-biased rv Xs are obtained 

by using (1.3) in (2.8) and (2.9) and they are 

F S (t) = m
a 

(t) F(t) (2.12) 
Jla 

and 

t
a 

A
5
(t) = ma(t)A(t), (2.13) 

maintainability function and the reversed repair rate of the size-biased rv Xs' The 

corresponding maintainability function FI.(t) and the reversed repair rate AL(t) for the 

length-biased model (1.2) is given by 

(2.14) 

and 

(2.15) 

where I' = E(X) < 00 and met) = E(X IX s t), the right truncated mean of X . 

28 



Theorem 2.4: Let r(t) = E(t - x IX ~ t). If X is increasing reversed repair rate (IRRR) 

and r(t) is non-decreasing, then the length-biased rv XL is also increasing reversed 
t 

repair rate. 

Proof: X is IRRR implies A(t,) ~ A(t2 ) for all tl ~ t2 . 

i.e., 

Next we prove a theorem characterizing Pareto II, exponential and beta distributions 

using the functional relationship connecting the ratio of the maintainability functions of 

original and length-biased TV. 

Theorem 2.5: Let hm F(t) = 0, then the ratio 
(-'>a 

FL(t) 
--= I-t(1 + Ct)A(t) 
F(t) 

holds for all t> 0, if and only if X has Pareto 11 distribution with 

F(t) = 1- (l + ptrq
; t > 0, p, q > 0 

for C > 0, exponential distribution with 

for C = 0, or beta distribution with 

F(t)=I-(1-Rt)d; O<t<*, d>O,R>O 

forC < O. 

29 

(2.16) 

(2.17) 

(2.18) 

(2.19) 



Proof: When X is specified by Pareto 11 distribution (2.17), then from (2.14), we have 

FL(t) 1 [ 1 I ) 
--=- t--fF(x)dx . 
F(t) jJ F(t) a 

For the Pareto II distribution we obtain 

_1_ f F(x)dx = _t_ _ I + t(l + ptP,(t) 
F(t) il F(t) p(q-I) pq(q-l) 

and therefore 

I ( 1 t ) - t--fF(x)dx =1-t(l+pt)A(t). 
jJ F(t) a 

Now (2.20) is ofthe form (2.16). 

Conversely assume that (2.16) holds, then using (2.14), we get 

t - _1_ fF(x)dx = jJ - jJt(1 + Ct) f(t) 
F(t) a F(r) 

or 

I 

(t - jJ)F(t) = f F(x)dx - jJt(l + Ct)f(t) . 
a 

Differentiating (2.21) with respect to t, we get 

let) = _ (1 + 2jJC) 

f(t) jJ(1 + Ct) 

(2.20) 

(2.21 ) 

(2.22) 

Integrating (2.22) with respect to t, we obtain (2.17) for c> 0, (2.18) for C = 0 and 

(2.19) for C < 0 respectively. 

Next we prove some characterization theorems that provide the relationships between the 

ratios of the maintainability function of certain important families of distributions under 

length-biased sampling. 
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Theorem 2.6: Assume thatlim(g(t)J(t») = 0, then the ratio of the relationship 
'-+u 

FL(t) =1-k(t)A(t) 
F(t) 

(2.23) 

where k(t) = get) holds for all t ~ 0 if and only if the pdf J(t) belongs to general family 
p 

of distributions (1.31). 

Proof: From (1.31), we have 

d 
- (J(t)g(t») = (p- t)J(t) . 
dt 

Integrating (2.24) over the limits a to t and dividing each term by F(t) gives 

g(t)A(t) :c= p- met) . 

Now using (2.14), we obtain (2.23). 

Conversely when (2.23) holds, then using (2.14), we get 

or 

met) = 1- k(t)A(t) 
p 

_1_ JxJ(x)dx = p_ pk(t) J(t) . 
F(t) a F(t) 

(2.24) 

(2.25) 

(2.26) 

Assuming limif(t) = 0, and multiplying both sides of (2.26) by F(t) and on 
I->a 

differentiation we get (1.31). 

Corollary 2.1: When get) = bo + bIt + b2t2 , a quadratic form, then (1.31) becomes Pearson 

system of distributions and the relation (2.23) reduces to 

b. 
where k; = ---.L for i = 0,1, 2 . 

p 

(2.27) 
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Theorem 2.7: Let lim(bo+btt+b/)f(t)=O then the pdf f(t)of a rv X belongs to 
t-->a 

generalized Pearson family of distribution (1.32) if and only if it satisfies the relationship 

(2.28) 

Proof: From (1.32), we have 

(2.29) 

Integrating (2.29) over the limits a to t and assuming the boundary condition, we get 

(2.28), with c, = b, ; i=0,1,2, d = (a" +bl
) , d

2 
= az provided 

/-L( a l + 2bJ 0 /-L( a l + 2bz ) /-L( a l + 2bJ 

Conversely assuming (2.28) for all t, from (2.14) we get 

or 

Multiplying both sides of (2.30) by F(t) and on differentiation and applying 

limtif(t) = 0 for i = 1,2, we get 
t->a 

which reduces to the generalized Pearson family (1.32). 
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2.4 Conditional moments for some families of distributions 

In this section we prove some characterizations of the Pearson and Generalized Pearson 

families of distributions based on the conditional moments and also examined its 

relationships in the context of weighted models. 

Let X be a rv with df F(t) . Assume that the regularity condition 

lim(lo + IJ + lltl)t" f(t) = 0 for r = 0,1,2, ... where ( is any ai or bi for i = 0,1,2, in 
t .... a 

(1.32) holds, and let fit' (t) = £(X' IX::; t) denote the r th order conditional moment of X , 

then we have the following theorems. 

Theorem 2.8: Under the regularity condition, the pdf of a rv X belongs to generalized 

Pearson family (1.32) if and only if its r th order conditional moments satisfies a 

recurrence relation of the form 

(2.31 ) 

where bir ; i = 0,1,2 and a jr; j = 0,1, are real constants and az "* 0 . 

Proof: Multiplying both sides of (1.32) by (-2 and on integrating over the limits a to t, 

we obtain 

t t 

(bo + bit + bzt
Z

)t'-2 f(t) - (r -1)bl + ao) fx r
-

2 f(x)dx - (rb2 + a l ) fxr-'f(x)dx 
a a 

t t 

-bo{r - 2) Jx r
-

3 f(x)dx-az Jx r f(x)dx = 0. (2.32) 
a a 

Dividing equation (2.32) by F(t) , we get (2.31) with J. = 0 1 and b -=!l , " 
a! 

i::: 0,1,2. 

Conversely assume that (2.31) holds for all t, then we have 
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_1_ IJx''(x)dx = (b -tb t + b t2)(-2 f(t) _ (rb2r + aIr) IJxr-lf(X)dx 
F(t) a • Or Ir 2r F(t) F(t) a 

_ (r -1)blr + aoJ 'Jxr-z f(x)dx _ (r - 2)bOr Jxr-3 (x)dx. (2.33) 
F(t) a F(t) a • 

Multiply both sides of (2.33) by F(t) and on differentiation usmg the regularity 

condition, yields, 

Dividing each tenn of(3.14) by (-2, we get 

which is the generalized Pearson family (1.32). Table 2.1 provides some of the important 

members of the family (1.32) and the parameters involved in Theorem 2.8. 

Table 2.1: Values of bo"b",b1"aU' and a" based on Theorem 2.8 

Members and Distribution bOr blr b2r aOr aIr 

Inverse Gaussian 

( A r (A( t - )' J -2/-i 3J12 __ exp _ J1 . 0 0 -J./ 
2m3 2J12t ' A A 

t,A,J1>O 

Maxwell 

4( ~r t' exp( -At'); 
-1 -1 

0 - 0 - 0 
2,1 A 

t,A > 0 

Rayleigh 

2At exp( _,1(2); 0 
-1 

0 
-1 

0 - -
2,1 2,1 

t,A>O 
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We now prove a characterization theorem for Pearson family of distributions. 

Theorem 2.9: If lim(bo+b1t+b/)t'f(t)=0, then the rv X with df F(t) In (a,b) 
I-M 

belongs to Pearson family of distributions (1.30) if and only if its r th order conditional 

moments satisfies a recurrence relation 

provided (r + 1 )b2 -1) 7:- 0, where cl'; i = 0,1,2 and dOr are real constants. 

Proof: Suppose the df F(t) of X belongs to Pearson family (1.30). Multiplying both 

sides of (1.30) by (-I and on integrating over the limits a to t and on using the boundary 

condition, we get 

I r 

(bo + b/ +b2t
2 )(-lf(t) - (r -l)bo fxr-2f(x)dx - (rbl -d) fxr-1f(x)dx 

a a 

I 

-(r+l)b2 -1) fxrf(x)dx. (2.36) 
a 

Dividing each term of (2.36) by F(t) and using the definition of conditional moments, 

we obtain (2.35) with c = ( bi 
) ; i = 0,1,2 and do = ( d ) provided 

Ir (r+l)b2-1 r (r+l)b
2
-I 

(r+l)b2 -1)7:-0. 

Conversely assume (2.35), then 

-I-'fxrf(x)dx=(c +c t+c t2V-If(t)_(rClr+dor)'fxr-lf(x)dx 
F(t) a Or lr 2r F(t) F(t) a 

_ (r -1)cOr fx r-2 f(x)dx . 
F(t) a 

(2.37) 

MUltiply both sides of (2.37) by F(t) and on differentiation, we get 
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Simplifying (2.38), we obtain the Pearson family (1.30) with d = dOr and 
(r + l)c1r -1) 

hj = ( Jr ) ; i = 0, I, 2 . 
(r+l)c2r -1 

c. 

Corollary 2.2: When a2 = 0, the differential equation (1.32) becomes that of Pearson 

family of distributions. In this case the Theorem 2.8 reduces to Theorem 2.9. 

Table 2.2 provides some members of the Pearson family of distributions and the values of 

the constants involved in Theorem 2.9. 

Table 2.2: Values of cOr,clr,c2r and dor based on Theorem 2.9 

Members and Distribution COr Clr C2r dOr 

Gamma 

mP -I (p -I) rP exp( -ml)tP
-

1 
; 0 - 0 

m m 

t> O,m,p > 0 

Pareto I 1 
0 0 -- 0 

ckCr(c+'); I ~ k, k,c > 0 (r-c) 

Normal 

_1_ exp-- lIZC -,u r 
fhrrj rj 

_0'2 0 0 J1 

-00 < t, J1 < 00,0' > 0 

Beta 
-R 1 ( r 0 0 

d I_~ . O<I<R d>l (d +r) (d +r) 
R R' , 

Exponential 

Aexp(-Al); I,A >0 0 
-I 
-
A 

0 0 

Motivated by the relevance of form-invariance in characterizing families of distributions 

and usefulness of the same in modeling various families of distributions, Sankaran and 
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Nair (1993) derived the conditions under which the Pearson and Ord families are fonn­

invariant with respect to length-biased sampling. Later, Asadi (1998) further extended it 

to the size-biased sampling of order a. Further, Sindu (2002) proved that a generalized 

Pearson family (1.32) satisfies the fonn-invariant property under size-biased sampling if 

and only if ba = O. In the size biased case, the differential equation for Xs becomes 

(2.39) 

where Po = (abl + ao)' PI = (ab2 + a,), P2 = a2 and qj = bj for i = 1,2 . 

Therefore an analogous statement for Theorem 2.8 in the context of size-biased models 

which are form-invariant is immediate, which is stated as follows. 

Theorem 2.10: Assume ~~(Po + pl + P2t2 )tr f(t) = 0, then the pdf of a rv X belongs to 

generalized Pearson family (2.39) under w(t) = t a if and only if it satisfies the recurrence 

relation 

(2.40) 

where qira; i = 1,2, Pjra; j = 0,1 are constants, and 

(2.41 ) 

where qjra; i = 1,2 and POra are real constants provided (r + 1- a)q2 + PI) * 0 . 

Proof: Case 1: when Pz "* 0 

Multiplying both sides of (2.39) by X,,-2 and on integrating over the limits a to t, we 

obtain 

t 

(q/ + q/ )t,,-2 fS (t) - (u -1)ql + Po) jxU
-
2 fS (x)dx 

a 

I I 

-(uq2 + PI) jx"-I fS (x)dx - P2 J x" fS (x)dx = 0 . (2.42) 
a a 
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Dividing equation (2.42) by F(t) and using the definition of fS (t) , we get 

Changing u to (r-a) in (2.43) and on simplification we obtain the required result with 

q 
and q jra = -); j = 1,2 provided 

P2 

Case II: when P2 = 0 

In this case equation (2.43) becomes 

Changing u to (r + 1-a) in (2.44) and on simplification yields (2.41). 

Conversely assume the relation (2.40) holds true, then by usmg the definition of 

conditional expectation, we get 

, I I 

Jx
r 
f(x)dx = (q'ra +q2rat)t

r
-'.,i,(t) - POra Jxr-2 f(x)dx- POra Jx"-'f(x)dx. 

a a a 

(2.45) 

Assume lim xr f(x) = 0 and on differentiation (2.45) with respect to t implies 
x-->a 

Multiplying both sides of (2.46) by ((q'ra + q2rat)af(t))~ and on simplification, we 
/-la 

obtain 

(2.47) 

38 



where Po=Pora-(r-a-l)qlra, P1 =Plra-(r-a)q2ra' P2=1 and q;=q;ra; i=I,2. 

From (2.47) we get the pdf of Xs belongs to generalized Pearson family (2.39). The 

proof Case II is similar. 

Corollary 2.3: When P2 = 0, (2.39) reduces to the form-invariant Pearson family of 

distribution and in this case the differential equation becomes 

fS'(t) (t+dl) 

fS(t) =- (klt+kl2) 
(2.48) 

where d1 = Po and k; = -qi ; i = 1,2, and the corresponding recurrence relation of the 
PI PI 

r th order conditional moments for the model given in (2.48) becomes 

(2.49) 

. h k k. . d d (dl -(r-a)kl) ( ) 
WIt jra =( I ); z=I,2 an Ira =( )' (r-a+l)k2-1 :;to. 

(r-a+1)k2 -1 (r-a+1)k2 -1 

The Table 2.3 and Table 2.4 provide some members of the generalized Pearson family 

and the parameters involved in Theorem 2.10. 

Table 2.3: Values of POra , Plra , qlra and q2ra based on Theorem 2.10 when P2 :;t 0 

Members and Distribution POra Plra qlra q2ra 

Inverse Gaussian 

( A r (,1(1 - )') -(2r - 3)f.l2 -2f.l2 __ exp _ f.l . _f.l2 0 
2m3 2f.l2t' A A 

t, A., f.l > 0 

Maxwell 

4( : r I' exp( -AI'); 
-er + 1) 

0 
-1 

0 -

2A. 2A. 

t,A>O 

Rayleigh -r -1 
2A.t exp ( - Al2 ); t, A > 0 

- 0 - 0 
2,1 2A 
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Table 2.4: Values of POra' Plra , qlra and q2ra based on Theorem 2.10 when P2 = 0 

Members and Distribution POra qlra q2ra 

Gamma 
(l-r - p) -1 

0 p -
rn ( ) p-I . 0 0 IF exp -mt t ,t > ,rn, P > rn rn 

Pareto I 1 
0 0 --

eke t-«+I); t ~ k , k, c > 0 (r-c) 

Beta 
-rR -R I 

dl_~ ·O<t<Rd>l ( r R R' , 
(d +r) (d +r) (d +r) 

Exponential 

A exp( - At); t, A > 0 
r 1 

- - 0 
A A 

We now prove a characterization theorem that provide the relationships between reversed 

repair rate and right truncated moments of the original and weighted rv for the 

generalized Pearson system of distributions. 

Theorem 2.11: Let X be a non-negative, non-degenerate rv with density function f(t) 

and suppose that wet) = ta. Then the pdf of X is a member of generalized Pearson 

system of distributions of the fonn (1.32) with ba = 0 and lime bIt + b/2 )f(t) = 0 if and 
t~a 

only if 

(2.50) 

where ms(t) = E(XsIXs ~t),m:(t)=E(X:IXs ~t), K,kl and k2 are real constants such 

that Kkl = k2 provided (al + (a + 2)b2 );t: 0 and (al + 2b2 );t: o. 

Proof: Let the pdf of X be a member of generalized Pearson system (1.32) with ba = O. 

Then by using (2.39) and integrating between the limits a to t, we have 

(2.51) 
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Again from (1.32) and integrating between the limits a tot, we get 

(2.52) 

. . (a\+(a+2)bJ (a,,+(a+l)b\) 
From (2.51) and (2.52), we obtam (2.50) with K = ( )' Jla = ( ) , 

a\+2b2 a\+(a+2)b2 

and such that 

Conversely assume (2.50) holds, then using (2.13) we get 

la (j4(X)dx + JLF(I) + k, ! x' f(x)dx J 

~ K (jxa"f(X)dx + JLoma (I)F(I) + k, Ixa" f(x)dx J. (2.53) 

By twice differentiating both sides of (2.53) with respect to t and simplifying and using 

the condition Kkl = kz we obtain the fonn (1.32). 

Theorem 2.12: The pdf of a rv X is a member of Pears on family (1.30) with ba = 0 and 

lim(b/+bf)f(t) =0 ifandonlyif 
t--+a 

A,S(t) =K(ms(t)+Jla] 
A(t) m(t) + Jl 

(2.54) 

where K is a real constant provided (1- (a + 2)b2 ) "* 0 and (1- 2bz) "* O. 

Proof: The proof is similar to that of the Theorem 2.11. 

2.5 Finite mixture models 

Finite mixtures of distributions have provided a mathematical based approach to the 

statistical modeling of a wide variety of random phenomena. Because of their usefulness 

41 



as an extremely flexible method of modeling, finite mixture models have continued to 

receive interesting attention over the years. There is variety of fields such as biology, 

genetics, medicine, astronomy, psychiatry, economics, engineering, and marketing etc. in 

which finite mixture models have been successfully applied. A simplest form of the finite 

mixture model is defined as 

f(t) = PJ;(t) +(1- p)fJt) (2.55) 

where J;(x); i = 1,2 are component densities of the mixture and p (where 0 ~ p ~ 1) is 

called the mixing proportion or weight. For more details on finite mixture models, we 

refer to Mc Lachlan and Peel (2001). Then the corresponding maintainability and 

reversed hazard rate functions for the model (2.55) is given by 

F(t) = pF; (t) + (1- p)F; (t) (2.56) 

A(t) = PA, (t) + (1- p)~ (t) . (2.57) 

Under length-biased sampling, equations (2.55), (2.56) and (2.57) becomes 

IL (t) = pf/, (t) + (1- p )1/ (t) (2.58) 

(2.59) 

(2.60) 

where fL(t) = tJ;(t) FL(t) = mi(t)F',(t) AL(t) = tAy(t) . i = 1 2 respectively. 
J; , t 't - ( ) , , 

Ili Ili rn, t 

Now we prove a characterization theorem for exponential, Lomax or beta densities. 

Theorem 2.13: The following relationships 

FL(t) 
a) -- = I-t(1 + Ct)A(t) 

F(t) 

t(1 + Ct)( X(t) + A2(t»)+ 2CtA-(t) 
b) A- L (t) ::::: -------'-----~---

(t(1 + Ct)A-(t) -1) 
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provided t(1 + Ct)A.(t) -I:;t: 0 is satisfied for all t E (a,b) if and only if the component 

densities are 

Jet) = q,p(1 + pt) ('I "I, t > O,q"p > 0; i = 1,2; (2.63) 

j(t)=A.iexp(-A./), a, >O,t>O; i=I,2; (2.64) 

1 
j(t)=d,R(I-Rt)J,-I, O<t< R,d"R>O, i=I,2; (2.65) 

according as C > 0, C = 0 or C < 0 . 

Proof: To prove (a), from the model (2.65), we have 

m(t)==: I [l-t(1+Rt)A.(t)], i=I,2. 
, R(d; + 1) , 

Using (2.66), the relation (2.59) becomes 

FL(t) 
--= p(l-t(1 + Rt)~(t)) + (1- p)(I-t(l + Rt)~(t)), 
F(t) 

which is the form (2.61). The proofs of other two models are similar. 

(2.66) 

To prove the converse part, assume that (2.61) holds. Using (2.57) and the definition of 

right truncated moment, we have 

p jxJ;(x)dx+ (l-p) jXj;(x)dx=l-t(l+Ct)(p~(t)+(l-p)~(t)). (2.67) 
}lIE; (t) a }l2E; (t) a 

Equating coefficients of p and constants in (2.67), we get 

1 I 1 I 

-- fxJ;(x)dx- Jxj~(x)dx==:-t(l+Ct)(~(t)-IS(t)) (2.68) 
}lIE; (t) a }l2 F; (t) a 

and 

1 I 

-- Jxj; (x)dx = I-t(1 + Ct)~(t). 
}l2 F2 (t) a 

Substituting (2.69) in (2.68), and on simplification we obtain 

43 

(2.69) 



I fxJ;(x)dx=l-t(1+Ct)J;(t). 
111F; (t) 0 F; (t) 

(2.70) 

Multiply both sides of (2.70) by F; (t) and on differentiation using the assumption 

limif(t) = 0, we get 
t-->a 

.t;·(t) = -1(1+2CPI) 

J; (t) 111 (1 + Ct) 
(2.71) 

Proceeding similar lines, from (2.69), we obtain 

h.'(t) = -l(l+2Cpz) 

het) 112 (1 +Ct) 
(2.72) 

Integrating (2.71) and (2.72) with respect to t and on simplification, we get (2.63), (2.64) 

and (2.65) respectively according as C > 0, C = 0 and C < 0 . 

To prove (b), taking logarithm on both sides of (2.61) and differentiating with respect to t 

obtain the required form (2.62). 

Conversely assume (2.62) holds. Now using the definition of AI.(t) and (2.61), we have 

Also from the definition of A L(t), and using (2.73), we have 

(1- t(1 + Ct)A(t)) = _ met) . 
11 

Differentiating (2.2) with respect to t, we get 

f'(t) = F(t) (A'(t) + A Z (t) ). 

Substituting (2.74) and (2.75) in (2.62), we obtain 

(2Cf t + l)f(t) = -p(l + Ct)f'(t). 

(2.73) 

(2.74) 

(2.75) 

(2.76) 

Simplifying (2.76), we get (2.63), (2.64) and (2.65) according to the values of C. This 

completes the proof of the theorem. 
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CHAPTER THREE 

LOG ODDS RATE2 

3.1 Introduction 

The failure ratelhazard rate is one of the fundamental elements of reliability theory and 

therefore in many practical situations it has been considered as a useful measure in 

modeling statistical data to derive appropriate model. Based on the physical properties of 

the component, the monotone behavior of the failure pattern is also an effective method to 

identify the underlying model. 

Recently, with the need of high reliability of the components, non-monotone hazard or 

failure rates has also been played an important role in the study of engineering reliability 

and biological survival analysis. The important distributions such as lognormal, BUIT, 

Inverse Gaussian and truncated normal are appropriate in such situations. The use of odds 

ratio and proportional odds is becoming more common in the field of reliability or 

survival analysis when the data exhibits non-proportional hazards (see Kirmani and Gupta 

(2001 )). However, there are certain other situations in which the survival data indicate a 

2 Some of the results in this Chapter have been published entitled "Characterizations of distributions using 
log odds rate", Statistics, 41(5), 443-451, see Sunoj, Sankaran and Maya (2007). 



non-monotone failure rate, and then the modeling by either proportional hazard or 

proportional odds may be inappropriate for the description of the situation of failure. 

Accordingly, it has been identified recently that log odds rate (LOR) is a useful measure 

to model statistical data that shows a non-monotone failure rate (see Wang et al. (2003)). 

A fonnal definition of LOR is as follows. Let X be a random variable representing the 

lifetime of a component/system, F(t) is the cumulative distribution function (cdf) and 

R(t) = 1-F(t) is the reliability function, then the log odds function is 

LO(t) :::: In F(t) = In F(t) -In R(t). 
R(t) 

(3.1 ) 

Wang et al. (2003) have shown that the distributions that are non-monotone in terms of 

failure rate are monotone in terms of LOR in logt or log(logt) . They established some 

bounds on reliability based on increasing LOR and characterized logistic distribution in 

tenns of constant LOR. 

In view of the usefulness of LOR for modeling statistical data that exhibits non-monotone 

failure rate, the present chapter focuses attention to examine the relationships between 

LOR and various reliability measures such as hazard rate and reversed hazard rate in the 

context of repairable systems. Some families of distributions are characterized and 

discuss the properties and applications of log odds ratio in weighted models. Further we 

extend this concept to the bivariate set up and study its properties. 

3.2 Properties and characterizations 

In this section, we discuss some properties of LOR and characterize some families of 

distributions viz. general family of distributions, Burr, Pearson and log exponential 

models. 

From the definition oflog odds function (3.1), 

or equivalently, 

F(t) = exp (LO(t)) 
R(t) 
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exp(LO(t)) 
F(t) = . 

1 + exp ( L O( t) ) 
(3.2) 

Thus the log odds function detennines the distribution uniquely through the relation (3.2). 

Then log odds rate 

!f(t) = La' (t) = f(t) . 
F(t)R(t) 

(3.3) 

As mentioned in the prevIOus chapter, reliability and maintainability are important 

measures to study the effectiveness of systems/components. The major difference 

between these two measures is that reliability is the probability that a component has 

survived (or does not failure) in a particular time, whereas maintainability is the 

probability that required maintenance will be successfully completed in a given time 

period. Let Y denotes the repair time of a component and Ay(t) be the corresponding 

reversed repair rate. When X and Y are independent and identically distributed (LLd.) 

random variables, using the definitions of hazard and reversed repair rate, the LOR (3.3) 

becomes 

!f(t) = A(t) + het) . (3.4) 

Therefore !f(t) reduces to the sum of reversed repair rate and failure rate. One important 

property (3.4) posses is that even if the survival data shows a non-monotone failure rate, 

the log odds rate might be monotone. For various properties of !f(t) , one could refer to 

Wang et al. (2003). 

Consider a random variable X with the support of (a,b) with an absolutely continuous 

cdf F(t), the system of distributions, introduced by Burr (1942), is given by 

f(t) = F(t)(l- F(t) )k(t) (3.5) 

where k(t) is some convenient function, which must be non-negative in 0 ~ F(t) ~ 1 and 

the range of X . The solution to this differential equation, for given k(t) is obtained as 

F(t) = (1 + exp( -K(t)) r 
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r 

where K(t) = fk(u)du with limK(t) =-00 and limK(t) =00. Therefore k(t) uniquely 
t~a r~b 

a 

determine the df. From (3.5), we have 

i.e. 

dF(t) (_1_ + _1_J :::: k(t)dt 
F(t) R(t) 

A(t) + h(t) = k(t) . 

Equations (3.4) and (3.6) together implies that 

lfI(t) = k(t) . 

(3.6) 

Hence for Burr family of distributions, k(t) directly gives the log odds rate and vice 

versa. 

We now prove a characterization theorem for Pearson family of distributions using the 

relation connecting LOR and the conditional expectations. 

Theorem 3.1: Let X be a rv having an absolutely continuous df F(t) with the support of 

(a,b), a subset of the real line. Assume thatE(X) <00, m(t)::::E(XIX>t) and 

m(t):::: E(X IX ~ t) denotes the conditional expectations of X. Then the relationship 

(3.7) 

holds for all t E (a,b) if and only if the pdfof X satisfies the equation (1.30). 

Proof: The family of distributions (1.30) is characterized by the identity 

m(t)::::Ji+{co +cJ+c/)h(t) (3.8) 

where J.l:::: E(X) (see Nair and Sankaran (1991)). One can also establish that for the 

family (1.30), 

(3.9) 

(see Navarro and Ruiz (2004) and Nair et al. (2005)). 
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From (3.8) and (3.9), we get 

which yields (3.7). 

Conversely, assume that (3.7) holds, multiplying (3.7) by F(t)R(t) and on simplification 

we get, 

b ( 

F(t) JxJ(x)dx = R(t) JxJ(x)dx+(co +c1t +czt
2 )J(t). (3.10) 

a 

Differentiating (3.10) with respect to t, and simplifying we obtain the result (1.30). This 

completes the proof. 

Examples: Here we consider some of the important members of the Pearson family and 

their respective fonns (3.7). 

I. Nonnal: f(l) ~ .;i;" exp{ -H ':: )l-«o < 1< 00, -00 < I' < 00, ,,> o. 

Comparing with equation (1.30), we have Co = (J'2,CI =0 andc2 =0. Then equation (3.7) 

becomes 

met) = met) + (J'2!f(t) . 

1 
2. Beta: J(t) = ta-l(l_t)b-J; 0 < t < 1, a,b> O. 

B(a,b) 

Hereco = 0, Cl = 1 and c
2 

= -1 ,equation (3.7) yields 
(a+b) (a+b) 

t(l- t) 
met) = m(t) + !f(t) . 

(a+b) 

mP 

3. Gamma: J(t)=--tp-lexp(-mt); O<t<oo, m,p>O. 
l(p) 
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In this case, Co = 0, Cl = ~ and C2 = 0. Then (3.7) becomes 
m . 

_ t 
met) = met) + -1fI(t). 

m 

Theorem 3.2: The df F(t) of a rv X belong to the general family of distributions (1.31) 

if and only if it satisfies the relationship 

met) = met) + g(t)lfI(t) . (3.11 ) 

Proof: For the general family of distributions (1.31), we have 

met) = f.1 + g(t)h(t) (3.12) 

(see Ruiz and Navarro (1994». 

Similarly from (2.25), the right truncated moment function of the family (1.31), 

met) = f.1- g(t)A.-(t) . (3.13) 

Now (3.12) and (3.13) together implies (3.11). The proof of the converse part is similar to 

that of the Theorem 3.1. 

Next we prove a characterization theorem using 1fI(t) for the one parameter log 

exponential family. Let mc(t)=E(XC'(X)]X>t) and iiic(t)=E(XC'(X)]X<t) 
C(X) C(X) 

andE(XC1(X») < et). 

C(X) 

Theorem 3.3: Assume that lim C(t)t{J+1 = 0. Then the distribution of X belongs to one 
t4a 
(4b 

parameter log exponential family (1.29) if and only if 
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Proof: For the family (1.29), we have 

-C(t)tB
+

1 1 b 
R(t) - JC'(X)XB+1dx 

A(0)(0+1) A(0)(0+1) t 

or 

mc(t) = -th(t) -(0 + 1). (3.15) 

Similarly, one can obtain the df of the log exponential family (1.29) as 

F( ) C(t)t
8

+
1 

1 bfC'( ) 8+1dx 

t = A(O)(O+ 1) - A(O)(O+ 1) r x x 

or 

mc(t) =t,,1(t)-(O+1} . (3.16) 

Combining (3.15) and (3.16), we obtain the required form (3.14). The converse part is 

straightforward. 

3.3 Weighted models 

In this section we examine the application of LOR in the context of weighted models. 

Denoting RI< (t) = P(X", > t), the survival function of the weighted rv X"., then the log 

odds function denoted by LO ..... (t) is given by 

LO"·(t) = In (F" (t)J = In FW(t) -In R"(t). 
RW(t) 

(3.17) 

But it can be obtained directly from the relations (1.1) and (2.8), as 

RW(t) = m,,(t) R(t) (3.18) 
J.i w 

where m.,(t)=E(w(X)lx>t), is the conditional mean of w(X). From (2.8), (3.1), 

(3.17) and (3.18), the log odds function becomes 
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LO" (t) = LO(t) + In(mll (t)J . 
m1,(t) 

The corresponding weighted log odds rate is given by 

1fH'(t) = LO"'(t) = ~ LOI'(t) = ,ill(t) + h"'(t) 
dt 

where A"(t) and h"(t) are the reversed hazard rate and hazard rate of the rv Xw 

respectively. Using (1.1), (2.8), (3.3) and (3.18), we obtain 

[ "'(t) lV(t) 11 
Wet) =' = rh' (t) 

If FI\(t)R"(t) m\l'(t)m,,(t) If . 
(3.19) 

In view of the form-invariance property for families (1.29) and (l.30), the analogous 

statements for Theorems 3.l and 3.3 in the context of weighted models are immediate, 

which are stated as follows. 

Theorem 3.4: Let ~ be a size-biased rv associated to X with wCt) = ta, a > O. Then the 

pdf of X is a member of the Pearson system of distributions (2.48) with Co = 0 and 

lime clt + c2t2) J(t) = 0 if and only if 
t-+a 

(3.20) 

Proof: Under the weight function wet) = t a and Co = 0, the Pearson system of 

distributions is characterized by the relationship, 

(3.21 ) 

and 

(3.22) 
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_ k1-d1 where f.1a - 1- 2k ' I - 2k2 * O. Using (3.21) and (3.22), we obtain the relationship 
2 

(3.20). 

Conversely, assume that (3.20) holds. Then multiplying (3.20) by R S (t)F s (t), we get 

b t J 

F S (t) JXfs (x)dx = RS (t) hI's (x) ch- - hrs (x)dx +(v[t + v2t 2 )fs (t) (3.23) 
a a 

Differentiating (3.23) with respect to t and on simplification, we obtain 

which on further simplification, yields (2.48) with 

i = 1,2 provided (1 + 2v2 ) * O. 

Theorem 3.5: Assume that tim C(t)t8+
1 = 0 ,with wet) = ta, a > 0, the relationship 

I-'>b 

if and only if the pdf of Xs belongs to the one parameter log exponential family (1.29), 

mS(t)=E(XsC'(Xs)IX <tJ 
g C(Xs) s 

and 

tB+aC(t) A(e +a) 
Proof: When w(t) = ta 

, (1.29) becomes fS (t) = . Since f.1a = , the rest 
A(B+a) A(e) 

of the proof is similar to the proof of the Theorem 3.3. 

3.4 Bivariate case 

In this section, we extend the concept of log odds function and log odds rate to higher 

dimensions. We confine our study to the bivariate setup. The extensions to higher 
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dimensions are direct. Let X = (XI' Xl) be a bivariate random vector in the support of 

R; = {(t" t l ) 10 < tj < oo}; i = 1,2 with an absolutely continuous distribution function 

denote the marginal distribution function and survival function of Xi. Let J; (tj) be the 

density function of Xi. Then we propose the bivariate log-odds function by 

(3.24) 

which gives 

(3.25) 

The corresponding LOR is defined as a vector 

(3.26) 

where 

- aLO(t"t2 ) • • _ 2 
Ij/.(t"tz)- ,1-1,. 

I at. 
I 

(3.27) 

Using the bivariate vector failure rate due to 10hnson and Kotz (1975) and bivariate 

reversed hazard rate due to Roy(2002), (3.27) becomes 

(3.28) 

a a 
where Ai (t" (2) = at. In F(l" t2 ) and hi (t" t2 ) = - at. In R(tp tz); i = 1,2, 

I I 

are the i Ih 

components of the reversed hazard rates and failure rates respectively. 

Examples: Here we consider some bivariate densities having simple vector valued log 

odds rate. 

1. Bivariate normal: 

(3.29) 
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Taking logarithm on both sides of (3 .29) and differentiating with respect to t j , we obtain 

(1- p2 )0-
2
0- of = (po-.t . - 0- .t.)f, i -::;:. J' = 1,2 . 

I .J ot. I ) .I I 

I 

(3.30) 

Now integrating (3.30) twice between the limits ti to hi and tj to hj , i -::;:. j = 1,2, we get 

(3.31 ) 

between the limits ai to t; and a j to t j , i -::;:. j = 1,2, we obtain 

(3.32) 

Example 2: Bivariate exponential 

The joint density function of the exponential conditional due to Amold and Strauss 

(1988) is 

(3.33) 

Now proceeding in the similar manner as above, the identity connecting the vector valued 

log odds rate and the conditional moments for (3.33) becomes 

Theorem 3.6: The relationship 

(3.34) 

holds for all t[, t2 , if and only if X[ and X 2 are independent. 
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Proof: Suppose (3.34) holds, then 

which is equivalent to 

On simplification, we obtain 

or 

F(t"t2) = ~(tl) }~(t2) 
R(t,,t2) R\(tl ) R2(t2) 

which proves the result. The converse part is straightforward. 

Remark: Theorem 3.6 can be useful to test the independence among the variables. This 

might be helpful in reliability analysis to study the dependence structure between the 

components of a system. 
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CHAPTER FOUR 

SOME MEASURES OF UNCERTAINTY IN PAST LIFETIME· 

4.1 Introduction 

It is well known that the knowledge and use of various methods for infonnation coding 

and transmission play a vital role in understanding and modeling many aspects of 

biological system features. As explained in the first Chapter, Shannon's entropy plays an 

important role in the context of information theory. Since Shannon's entropy is not 

sufficient enough for the study of the remaining life of system that have survived for 

some units of time, Ebrahimi and Pellerey (1995) proposed a new measure of uncertainty 

called residual entropy, a measure that plays a vital role in left truncated data sets. 

However, Di Crescenzo and Longobardi (2002) showed that in many realistic situations, 

uncertainty is not necessarily related to the future but can also be refer to the past. For 

instance, if at time t, a system that is observed only at certain pre assigned inspection 

times is found to be down, then the uncertainty of the system life relies on the past, i. e., 

on which instant in (0,1) it has failed. Based on this idea, Di Crescenzo and Longobardi 

(2002) introduced the past entropy over (0, t). They showed the necessity of past entropy 

using an example and discussed its relationship with residual entropy and studied the 

monotonic behaviors of it. Let the TV X denote the lifetime of a component/system or of 

living organism, then past entropy of X at time t is defined as 

• Some of the results in this Chapter have been communicated to two International Journals. 



R(t) = - f f(x) (lOg f(X»)dX . 
o F(t) F(t) 

(4.1 ) 

Note that (4.1) can be rewritten as 

1 I 

H(t)=I-- f(logA(x))f(x)dx. 
F(t) 0 

(4.2) 

Recently, Nanda and Paul (2006) proved some ordering properties based on past entropy 

and some sufficient conditions for these orders to hold. They also introduced a non 

parametric class based on past entropy and studied its properties and examined it under 

the discrete setup. However, Di Crescenzo and Longobardi (2006) introduced the notion 

of weighted residual and past entropies and studied its properties and monotone behavior 

of it. In view of the usefulness of measure of uncertainty (4.1) in past time, in the present 

chapter, we further explore the same and also define a new conditional measure and study 

its properties. In Section 4.4, we study Renyi's entropy for the past lifetime and proved 

some theorems arising out of it. Further, in Section 4.5, we extend these concepts in the 

context of weighted models and also study some ordering and aging properties based on 

these measures. In the final two sections, we discuss some measures of discrimination 

proposed by Di Crescenzo and Longobardi (2004) and Asadi et al. (2005) and study its 

applications in the context of weighted models. 

4.2 Properties 

Differentiating (4.1) with respect to t, we get 

R '(t) = A(t)[ 1-R(t) -logA(t) J. (4.3) 

Nanda and Paul (2006) proved that if X has absolutely continuous distribution function 
- -

F(t) and an increasing past entropy H(t) , then H(t) uniquely detenninesF(t). 

Next we prove a characterization theorem for the power distribution using the functional 

relationships between reversed hazard rate and past entropy. 

Theorem 4.1: Let X be a non-negative rv admitting an absolutely continuous df such 

that E(X) < 00 and let H(t) be defined as in (4.1). The relationship 
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H(t) = k -log A(t); 0 < k < I (4.4) 

where k is a constant, holds for all t > 0 if and only if X follows power distribution 

with df 

F(t)=(LJ, O<t<b, b,c>O. (4.5) 

Proof: Suppose the relation (4.4) holds. Differentiating (4.4) with respect to t implies 

that 

H'(t)=- A'(t). 
A(t) 

From (4.6) and (4.3) we get 

A'(t)+A2 (t)(I-k)=O. 

Divide each term of (4.7) by A 2 (t) , we get 

Putting u(t) = _1_, (4.8) becomes 
A(t) 

du 
--=(k-l). 

dt 

(4.6) 

(4.7) 

(4.8) 

(4.9) 

Solving the differential equation (4.9), we obtain u(t) = At + B, where A = (1- k) . This 

implies A(t) = ( 1 )' now from the uniqueness property of reversed hazard rate, we 
At+B 

obtain the required result (4.5). 

Conversely when (4.5) holds, substituting (4.5) in (4.2) and on direct calculation, we 

obtain (4.4) with k = (c-I) . 
c 

The following Theorems characterize the exponential distribution and exponential family 

of distributions using the possible relationships between RHR, ElT and the past entropy. 
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Theorem 4.2: For the rv X considered in Theorem 4.1, with lim F(t) = 0, the relation 
1---+0 

H(t) + log A(t) = -cr(t), (4.10) 

where C (>0) is a constant holds for all t ~ 0 if and only if X follows exponential 

distribution with distribution function (2.18). 

Proof: Suppose the relation (4.10) holds, then differentiating (4.1 0) with respect to t 

-, X(t) , 
H (t)+- = -Ci (t). 

A(t) 
(4.11 ) 

Using (4.3), (1.22) and (4.1 0), we obtain 

( 4.12) 

Now solving (4.12) following the similar steps as that of the Theorem 4.1, we obtain 

A(t) = C exp( -Ct) . Using the uniqueness property of A(t), we get the required model 
l-exp(-Ct) 

(2.18). Substitution of (2.18) in (4.2) and by direct calculation we obtain the converse part 

of the theorem with C = A. 

Theorem 4.3: Let limloga(t)f(t) =0, limF(t)=O, mp(t)=E(p(X)IX<S;t) and 
1---+0 1---+0 

E (P( X) ) < Cl) , then the past entropy of a non-negative rv satisfies a relation of the fonn 

H(t) + log A(t) = p(t) - mp(t) + Br(t), (4.13) 

where pet) is any function of t holds for all t ~ 0 if and only if the pdf of X belongs to 

exponential family (1.28). 

Proof: Assume that (4.13) holds. On differentiating (4.13) with respect to t, we obtain 

-, X(t) , . . 
H (t) + - = p (t)-m? (t) +Br (t). 

A{t) 
(4.14) 

From the definition of mp{t), we have 
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Using (4.3), (1.22), (4.15) and (4.13) we get (4.14) as 

Dividing each term by 12(t) and putting u(t) = 2, (4.16) becomes 
l(t) 

du ( ') -+ B+P(t) u(t)+l =0. 
dt 

(4.15) 

( 4.16) 

(4.17) 

exp(P(t) +Bt) 
Solving the differential equation (4.17), we get let) = t • Now from the 

Jexp( P(x) + ex)dx 
o 

uniqueness property of let) we obtain (1.28). 

Conversely, substitution of (1.28) in (4.1) and on simplification, we get 

H(t) = -Brn(t) - E( C(X)lx ~ t)- D(e) -logF(t). (4.18) 

Add and subtract log/(t) in (4.18) yields (4.13) with pet) = c(t). 

Our next results provide characterization theorems for the Pareto I distribution and log 

exponential family of distributions using a functional relationship between the past 

entropy and geometric vitality function in past time denoted by 

log C(t) = E(log X IX ~ t) . 

Theorem 4.4: Let X be a non-negative rv in the support [k,oo), k > 0, admitting an 

absolutely continuous df such that E(log X) < 00 and log C(t) = E (log X IX::; t). Then 

the relationship 

if (t) + log l(t) ~ Clog ( G~t) ), (4.19) 

where C > 1 is a constant holds for all t ~ 0 if and only if X follows Pareto I distribution 

with cdf 
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F(t)=1-(~J; t>k, k,c>O. (4.20) 

Proof: Assuming (4.19) and differentiating with respect to t , we have 

-, X(t) d ( -) c H (t)+- = C- 10gG(t) --. 
A(t) dt t 

(4.21 ) 

Substituting (4.3), (4.19) and ~(log G(t») = A(t)(log t-log G(t») , and on simplification, 
dt 

(4.21) implies 

(4.22) 

Now following the similar steps as that of the Theorem 4.2, the solution of the differential 

equation (4.22) is X( t) ~ ( C - I) ). From the uniqueness property of ,\( t), we 
tk k -C+l _ t- C+1 

obtain (4.20). 

To prove the converse part, assume (4.20). From a direct calculation we obtain 

- -

H(t) = log F(t) -logck C + (c + 1) log G(t). (4.23) 

Add and subtract log.f(t) in (4.23) and on simplification, we get (4.19). 

Theorem 4.5: For the TV considered in Theorem 4.1, let limlogQ(t).f(t) =0, 
1->0 

logmQ(t) = E(logQ(X)IX ~ t) and E(logQ(X») < CIJ, a relation of the form 

(4.24) 

where Q(t) is any function of t, holds for all t ~ 0 if and only if the pdf of X belongs to 

log exponential family with probability density function (1.29). 

Proof: Assuming (4.24) for all t ~ 0, using the similar steps as that of Theorem (4.4), we 

have the proof. 
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4.3 Conditional measure of uncertainty for past lifetime 

In continuation of the measure of uncertainty of residual lifetime (1.35) proposed by 

Ebrahimi and Pellerey (1995), Sankaran and Nair (1999) introduced a conditional 

measure of uncertainty (1.36) which is defined in Chapter 1. Analogous to M(t) defined 

in (1.36), for a non-negative rv X , we define a conditional measure of uncertainty for the 

past life as 

M(t) = E( -logf(X)IX ~t) 

1 I 

= - -=- ff(x) log f(x)dx. 
F(t) 0 

(4.25) 

Clearly M (t) gives the measure of uncertainty of the past lifetime of a unit. Using (4.25) 

and (4.1), M(t) can be directly related to H(t) and A(t) through the following 

relationships 

- -

M(t) = H(t) -logF(t) ( 4.26) 

and 

A(t) = ii 'et) - M 'et) . (4.27) 

We now give a characterization theorem for the exponential distribution using the 

conditional measure of uncertainty for the past life defined by (4.25) and the right 

truncated conditional moment met) . 

Theorem 4.6: For a rv X considered in Theorem 4.1 with limif(t) = 0 and M(t) as 
1-40 

defined in (4.25). A relation of the form 

- I 
M(t)--m(t) =k 

!1 
(4.28) 

where k is a constant, is satisfied for all t ~ 0 if and only if X have an exponential 

distribution with distribution function (2.18). 

Proof: Assume that the relation (4.28) holds, then by substituting (4.26) and the 

definition of met) , we get 
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1 l 1 ( 
-- ff(x)logf(x)dx--- fxf(x)dx = k. 

F(t) 0 JlF(t) 0 

(4.29) 

Multiply both sides of (4.29) by F(t) and on differentiation with respect to t using the 

condition, we obtain f (t) = c exp ( - ~). App\ ying the boundary conditions, we have 

C= JI. 

Conversely, when X is specified by exponential distribution (2.18), from direct 

calculation of if (t) using (4.25), we obtain (4.28) with k = -log A . 

In the following theorems we prove certain characterizations to some well-known 

distributions viz power and Pareto I and families of distributions such as exponential and 
- -

log exponential using the functional form of M(t) and 10gG(t). 

Theorem 4.7: Let X be a non-negative rv having an absolutely continuous df with 

E(log X) < 00 and log G(t) is defined as in Theorem 4.4. Then a relationship 

- -

M(t)+(c-l)logG(t) =k, (4.30) 

where k is a constant, holds for all t 2:: 0 if and only if X follows power distribution 

(4.5). 

Proof: suppose that the relation (4.30) holds. Using (4.26) and the definition of log G(t) 

we get 

-1 IJ (C-l)lJ 
- log f(x)f(x)dx + -- log xf(x)dx = k . 
F(t) 0 F(t) 0 

(4.31) 

Now proceeding the similar steps as that of the Theorem 4.6, the remaining part of the 

theorem can be proved. A direct substitution of (4.5) in (4.26) gives the converse part of 

the theorem. 

Theorem 4.8: For a rv X defined in Theorem 4.7 with a support [k, oc», k > 0 , a relation 

of the form 
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- -
M(t)-(c-l)logG(t)=K, (4.32) 

where K is a constant and c > 1, is satisfied for all t > 0 if and only if X follows a 

Pareto I distribution (4.20). 

4.4 Renyi's entropy for past lifetime 

As pointed out in Chapter I, Renyi's entropy measure for the residual life also being a 

measure of uncertainty of component. Based on the past life of a system, Asadi et.al 

(200S) defined the Renyi entropy for the past lifetime XiX::; t as 

7 (t) = 1 10 'ffli (x) dx 
R (1- jJ) g 0 Ffi (t) . 

(4.33) 

As a measure of uncertainty, I R(t) can be used to describe the physical characteristics of 

the failure mechanism and so characterization theorems using this concept helps one to 

determine the lifetime distribution through the knowledge of the form of the Renyi 

entropy for the past life IR (t) . Now (4.33) can be rewritten as 

(1-p)1, (I) = IOg(j!' (x)dx ) - Plog F(I) . (4.34) 

The following Theorem characterizes power distribution using the functional relationship 

between Renyi' s past entropy and the reversed hazard rate. 

Theorem 4.9: For a rv X defined in Theorem 4.1 with Renyi entropy for past life I R (t) 

is defined in (4.34), then a relationship 

IR(t) = K -logl(t), (4.3S) 

where K is a constant holds if and only if X follows a power distribution with cdf (4.S). 

Proof: Assume that (4.35) holds. Using (4.33) and on simplification, (4.3S) implies 

'ff!\x) ()(I-fll log -' -p-dx = Kl -log l(t) , where Kl = K(1- jJ). 
o F (t) 
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i.e. 

or 

I 

IffP(X)dX=K" -(,1(t)YP-1
) 

o FP (t) 

SfP (x)dx = K*fll-I(t)F(t) , where K* = exp(K
1

) • (4.36) 
o 

Differentiating (4.36) using the assumption limfP(t) = 0 with respect to t, we get 
1-->0 

(4.37) 

Divide each term of (4.37) by fP-2(t)F2(t) and on simplification using 

. / (t) 2 • 
A (t) = ---A (t), we obtam 

F(t) 

• 2 • fJ d (l-K fJ):1 (t)-K ( -l)-:1(t)=O. 
dt 

(4.38) 

Solving the differential equation (4.38), we obtain the required result. The converse part 

is obtained by direct calculation. 

4.5 Weighted models 

In this section, we study the usefulness of these uncertainty measures viz past entropy 

(4.1), conditional measure of uncertainty for the past life (4.25) and the Renyi's entropy 

for the past life (4.33) in the context of weighted distributions. The mathematical 

relationships between the weighted and original variables for (4.1), (4.25) and (4.33) are 

given by 

fjll(t) = 1-[F(t)m.,(t)r jW(X)f(X)lOg(W~):1(X)JdX' (4.39) 
o m,,(x) 

Nf"(t) = -[ F(t)m~ (t) r j w(x)f(x) 10g( W~X)f(X;)dx (4.40) 
o E w(X) 
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and 

I'l Ct) = 1 10g[E(wf?(X)f(fJ-1) (X)IX < t)] 
R (l-{J)[m\l(t)y"F(fJ-1l(t) I-' - , 

C 4.41) 

where fj .... (t),M ... (t) and 1;'(t) respectively denote the past entropy, conditional measure 

of uncertainty for the past life and Renyi's entropy for the past life for the weighted rv 

x ..... 

Remark 4.1: When the weight function wet) = tU , the model reduces to size-biased 

model. 

The following theorem characterizes the exponential and log exponential families of 

distributions using the weighted conditional measure for past life and the weighted fonn 

of 10gG(t). 

Theorem 4.10: Let X", be a weighted rv with weight function w(t) and 

log G\I(t) = E(log XII IX", ~ t) . Assume limlog V(t)f(t) = 0, then a relationship 
t~O 

M'I(t) = 10gU(B) -B 10gG"(t) - E(log V(X"JIX" ~ t), (4.42) 

where U and V are any functions of B and xI<' respectively, satisfies if and only if the pdf 

of X belongs to one parameter log exponential family (1.29). 

Proof: For the one-parameter log exponential family (1.29), we have 

f" (I) ~ w(1)1~ C(I) ) ~ ,0:' (I) , where C' (I) ~ w(t)C(I) and A' (1/) ~ A( I/)E ( w(X») . 
A(B)E w(X) A (B) 

Now proceeding the similar steps as that of the Theorem 4.3, we obtain the result. 

Theorem 4.11: For a rv considered in Theorem 4.10 and assume that limB(t)f(t) = O. A 
I~O 

relation of the fonn 

M"(t)+Om"'Ct) = -ACB) - E( B(X,.)IX", ~ t), (4.43) 
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where A and B are any functions of 0 and xI<" is satisfied for all t 20 if and only if the 

pdf of X belongs to one parameter exponential family (1.28). 

Proof: For the weighted rv XII" f""(t) = exp( Ot + C·(t) + D*(O)), belongs to the 

exponential family with C* (t) = (log w(t)) + C(t) and D* (0) = D( 8) -log E ( w(X») . Rest 

of the proof is similar to that of Theorem 4.3. 

4.6 Some new classes of distributions 

Recently Di Crescenzo and Longobardi (2002) observed that even if the Shannon's 

entropy of two components with lifetimes X and Y are same, the expected uncertainty 

contained in the conditional density of X given X::; t (i.e., past entropy of X) is 

different from that contained in the conditional density of Y given Y ~ t (i.e., past entropy 

of Y). Motivated from this, Nanda and Paul (2006) defined the following ordering based 

on past entropy. 

Definition 4.1 (Nanda and Paul (2006»): Let X and Y be two random variables denoting 

the lifetimes of two components. Then X is said to be greater than Y in past entropy 

PE _ _ 

order (written asX 2 Y) if H x(t) ~ Hy(t) for all t > o. 

Definition 4.2 (Nanda and Paul (2006»: A rv X is said to have increasing (decreasing) 

uncertainty of life (or increasing (decreasing) past entropy) if H(t) is increasing 

(decreasing) in t 20. 

Theorem 4.12: Let X", be a weighted rv with the weight function wet) if (a) ;~~;) IS 

decreasing and (b) X is DRHR, then Xw has increasing past entropy (IPE). 

Proof: Using (2.9), and from the conditions (a) and (b) implies AW(t) is DRHR. Now 

using Theorem 3.1 in Nanda and Paul (2006) (i.e., If X is DRHR then X E IPE .), we get 

Xw is IPE. Nanda and Paul (2006) have shown with an example that IPE property does 
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not imply DRHR property. Using this argument the converse of the Theorem 3.1 does not 

hold. 

Theorem 4.12 can be illustrated by the following example. 

Example 4.1: Let X be a non-negative rv following a power distribution with df (4.5) 

and weight function lV(t) =: t . Then this rv satisfies the conditions given in Theorem 4.14 

and hence the past entropy of its weighted version is increasing. Figure 4.1 shows that the 

increasing nature of past entropy of weighted version of power distribution for c =: 2 and 

t E (O, IOO). 

4 

3 

2 
/ 

I 

20 40 60 80 10C 
-1 

-2 

-3 

Figure 4.1: Plot of jj ··(t) against tE(O,100) when ",t) =t and c= 2 

Theorem 4.13: (i) If ",t ) is increasing and "'t).«t) is decreasing then X w is IPE. 

(ii) If ",t)h(t) is decreasing then X w is IPE. 

Proof: Using the theorems given in Bartoszewicz and Skolimowska (2006) (see Chapter 

I) and Nanda and Paul (2006, Theorem 3.1), we can prove (i) and (ii) . 

Example 4.2: Consider a rv having exponential distribution with weight function 

lV(t) = t . X satisfies the conditions of the Theorem 4.15 (i) and hence the past entropy of 

its length-biased rv is increasing. 

PE PE 

Theorem 4.14: If ",t) ,;; (,,)E( ",X») ,;; (,,)E( ",X)I X ,;; t), then X ,, ( ';; )X w' 

Proof: Assume that 

",I) ';; E (",X») ,;; E( ",X) IX ,;; t) , (4.44) 
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holds. Then we have 

w(t) < 1 
E(w(X)iXst ) -

(4.45) 

E( w(X)iX s t) 
--'-------'-------'-- > 1 

E( l1'(X)) -
(4.46) 

and 

w(t) < I 
E(w(X)) - . 

(4.47) 

Multiplying (4.45), (4.46) and (4.47) by A(t),F(t) and J(t) respectively and using (2.9), 

(2.8) and (1.1), we get 

A"'(t) s A(t) 

F" (t) 2 F(t) 

and 

J"(t) s J(t). 

- -

Substituting (4.48), (4.49) and (4.50) in (4.1) we get H"(t) 2H(t). 

The following result is direct from the definitions 4.1 and 4.2. 

RflR PE 

Result 4.1: If X 2 Xw and X 2 Xw then 

(i) X is IPE implies X", is IPE. 

(ii) X", is DPE implies X is DPE. 

(4.48) 

(4.49) 

(4.50) 

In connection with the ordering based on past entropy, we define the following order 

based on the conditional measure of uncertainty. 

Definition 4.3: Let X and Y be two random variables denoting the lifetimes of two 

components, then X is said to be greater than Y in conditional measure of uncertainty 

CMUL _ _ 

life order (written as X 2 Y) if M x (t) s My (t) for all t > O. 
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Definition 4.4: A df F(t) is said to have increasing (decreasing) conditional measure of 

uncertainty li fe if M (t) is increasing (decreasing) in t ~ 0 . 

Theorem 4.15: (1) If F(!) is ICMUL, then X has IPE. The converse is not true always. 

Proof: The first part IS direct from (4.26) and to prove the converse consider the 

following example 

Example 4.3: Let X be a non-negative rv having df 

F(t) = 

t 2 

-;O:::;t<l 
2 

t 2 + 2 
--;1:::;t<2. 

6 
l;t ~ 2 

- -

For this distribution, the past entropy H(t) and M(t) are given by 

log ( ~ ) + ~ ; 0 :::; t :::; 1 

-

H(t) = ( t2 + 2 J (t2 -1 J (t2 J I log -- + -- log3- -- logt+-;1:::;t:::;2 
6 t 2 + 2 t 2 + 2 2 

1 2 1 
-log 3 - -log 2 + -' t ~ 2 
2 3 2' 

and 

1 
- -log t; 0 :::; t :::; 1 
2 

M(t)= ( t2 I J (t2 J 1 -- log3- -- logt+-;1~t:::;2. 
t 2 + 2 t 2 + 2 2 

1 2 1 
-log 3 - -log 2 + -' t ~ 2 
2 3 2' 

For this distribution, H(t) is increasing in t (see Nanda and Paul (2006», but M (t) is 

not increasing in t E [0, I] as shown in figure 4.2. 
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Figure 4.2: Plot of M (I) against I E [0, I] 

CMUL CMUL 

Theorem 4.16: If w(1)S(;')E(w(X)):S(;')E(w(X)IXSI), tbenX ;, ( S )Xw • 

Proof: Proofjs similar to that of Theorem 4.16. 

Similarly we can define the following order based on Renyi's entropy. 

Definition 4.5: A df F(.) is said to be increasing (decreasing) Renyi's past entropy if 

IR(/) is increasing (decreasing) for all t:?: O. 

Theorem 4.17: If f(t} is increasing (decreasing) in t . then 

7,(I)S(;,)-log'\(I) forall p. (4.51) 

Proof: When J(I) is increasing, then J(x) S J(I) for all x S I. Using (4.34), we have 

- ' J"·"(I) J(x) 
/ (I) S (1 - P)·' log f dx for all x < t. (4.52) 
, ,F"· ')(I) F(I)' -

On simplification, (4.52) implies (4.51). In a similar manner when J(I) is decreasing, 

then the inequality is reversed. 

Theorem 4.18: When J(I) and w(1) are increasing (decreasing), then 

- -
/ , (I) S (;')/ , . (I) 
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(- - ) (A) IJ(f(x))'J Proof: Assume that (l-jJ) IR(t)-IR (t) =log - , where A= pdx and 
"B 0 (F(t)) 

When w(t) and f(t) are increasing then f"'(t) ~ f(t) , which implies 

(4.53) 

From (4.53) we get 

log( A) ~ 109( FI1'(t) JP = jJIOg( F"'(t) J. 
B F(t) F(t) 

(4.54) 

But when w(t) is increasing (decreasing), then F"'(t) ~ (~)F(t) (Sunoj and Maya 

(
F\V(t)J (2006)). Therefore from (4.54), we get jJlog -- ~ jJlogl = o. This 
F(t) 

implies that 

The following tables give the measures of uncertainty for various distributions. 

Table: 4.1 H(t) for various distributions 

Distribution pdf H(t) 

Exponential .1.exp(-.1.t) ; 1 1 ( l J (AteXP(-lt) J 
- og l-exp(-.1.t) - l-exp(-.1.t) 

t,.1.>O 

Pareto I ckcr(c+l) . (~)-IO ( ek' H (e+ I)er J , 
c g l-(;r l-(;r 

t ~k,k,c >0 

73 



Pareto II pqP (t + qr(p+l) ; 
(~)-IO ( pq' H (a+l) ) 

p g 1-(Qy 1-(cy I+q I+e 

t > O,q,p >0 (10 g q - ( IZq) a 10 g( t + q) ) 

Beta dR-d (R - t)(d-I); 
C -d ) (dK') ( c -I ; d -log 1-(Lrd - 1-(R~)-C 

0< t < R,d > 0 (log R -( R~I r d 
log(R - t) ) 

et(e-I) 

(e~1 )-lOg(~) 
~- , 

Power bC 

o 5, t 5, b, b, e > 0 

Table: 4.2 M(t) and (1- /3)lR (/3, t) for various distributions 

Pdf M(t) (1- /3)1 R (/3, t) 

Aexp(-At) ; I-log A - ( At exp( -At) J (P -I) log A -Iogp + ( 1- exp( -Apt) 1 
(1- exp( -At)i' 

t,A > 0 l-exp(-At) 

( e ; 1 ) _ log ( ekc ) log ( e/1 k{1-/l) )-log( (e+ 1)/3 -I) 

ckcr(c+') ; 

t~ k,k,e > 0 +( (c + I)!~)' }Og( ~) [1-(')"""-' J + log 1 /1 
I-C-) t (1-(~r) 

(P+I)-IO ( 'l-( (a+I)) 
10g(p/1 q(HJ») -Iog(l-(p + 1)/3) 

pqP(t+qr(p+l) ; g pq 1-( e t 
p I+c 

[ 1-C!)",·,,-' J t>O,q,p>O 
(Iogq - (/:qY log(t + q)) 

+ log q /1 
(I-C:qY) 

C -d) -Iog( dK' l-( d: I, 1 log( d/1 R(I-fJ»)+ log(d -1)/3 + 1) 

dR-d (R - t)(d-I) ; 
d 1-(----) R-/ 

[ I - ( , riP'" -"·'1 J 0< t < R,d > 0 
(log R -C~yd 10g(R - t) ) 

+ log R r 

(1- (lird)P 

ct(e-I) 
-- , 

(e-l ) bC -e- -loge + e 10gb -(e -1) logt /310ge -log[(e -1)/3 + 1] + (1- /3)logt 

o 5, t 5, b, b, e > 0 
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4.7 Measures of discrimination 

In this section, we discuss some measures of discrimination proposed by Di Crescenzo 

and Longobardi (2004) and Asadi et a1. (200S). Further we derive the bounds and 

inequalities for the comparison of weighted distributions and their unweighted 

counterparts using these measures. 

Let X and Y be two non-negative random variables admitting absolutely continuous 

distribution functions F(t) and G(t) respectively, then Kullback and Leibler (1951) 

extensively studied the concept of directed divergence which gives the discriminations 

between two populations and it is defined as 

I(X,Y)=I(F,G)= jf(x)logf(x) dx 
o g(x) 

(4.S5) 

where f(t) and get) are the corresponding pdistribution functions of X and Y 

respectively. Motivated by this, Ebrahimi and Kirmani (1996) modified (4.SS) useful to 

measure the discrimination between two residual lifetime distributions and is given by 

I (t) = OOSf(x) 10 (f(X)R(t) J dx . t > 0, 
X.Y t R(t) g g(x)S(t) , 

(4.56) 

where R(t)=I-F(t) and S(t)=l-G(t). Ix.y(t) measures the relative entropy of 

(X - t IX> t) and (Y - t IY > t) and it is useful for comparing the residual lifetimes of two 

items, which have both survived up to time t. Along the similar lines of the measure 

(4.56), Di Crescenzo and Longobardi (2004) defined the information distance between 

the past lives (XIX~t) and (YIY-:;t) as 

IXy(t)= jf(X)IOg(f(X)F(t)JdX; t >0. 
, 0 F(t) g(x) G(t) 

(4.S7) 

Given that at time t, two items have been found to be failing, I X,y (t) measures the 

discrepancy between their past lives. Similarly, Renyi divergence between the residual 

distributions proposed by Asadi et a1. (200S) is given by 
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1 '" fP (x) (L-P) (x) 
I (13 t) = log f g dx . 
X,Y' (13 -1) I RP(t)S(L-P)(t) 

(4.58) 

In a similar way, Asadi et al. proposed the Renyi discrimination for the past lives implied 

by F and G as 

I (fJ,t) = 1 log If(f(X))P (g(x) t P 
dx. 

X,Y (13-1) o (F(t))P(G(t)tP (4.59) 

In view of the wide applicability of the discrimination measures (4.57) and (4.59) in past 

lifetime, in the present section, we investigate its relationships between original and 

weighted random variables and prove certain results. 

Now for the random variables X and Xl>" the measure (4.57) is defined as 

I (- Iff(x) I (f(X} .. F(t))d 
x,x". t) - 0 F(t) og fW(x)F"'(t) x. (4.60) 

The measure (4.60) gives the measure of discrepancy between original and weighted TV 

and it directly related to past entropy H(t) through a relation 

I (t)=_lff(X)IOg(fW(X))dx_H(t). 
x,x.. 0 F(t) F'(t) 

(4.61 ) 

Using (1.1) and (2.8) in (4.60), we obtain 

Ix,x" (t) = log[ E( w(X) IX ::; t) ] - E(log w(X) IX::; t). (4.62) 

For a size-biased model, (4.62) reduces to the form 

Ix,x, (t) = log m'" (t) - a (log G(t)) (4.63) 

to the discrimination measure between the original and length-biased model. 
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Theorem 4.19: If I X,x" (t) is independent of t if and only if the weight function takes the 

( )
e~l 

fonn vv{t) = F(t) ; B > o. 

Proof: Suppose that I X.x" (t) is independent of t. 

i.e. I X,x" (t) = K , (4.64) 

where K is independent of t. Using (4.60) and differentiating (4.64) with respect to t, 

we get 

A(t)[IOg( A(t) ]-k]+A"·(t)-A(t)=O. 
AII'(t) 

Divide each tenn of(4.65) by A(t) yields 

[
10 A(t) _k]+A

H

(t)_l=O. 
g A"'(t) A(t) 

Substitute u(t) = A(t) and on differentiating (4.66), we get 
A" (t) 

u'(t) (1-_1_]-0 
u(t) u(t) 

(4.65) 

(4.66) 

(4.67) 

which implies that either u'(t) = 0 or u(t) = 1. But as X and Xw are not equal u(t) * 1. 

So u' (t) = O. Hence we have u' (t) = 0, which implies that there exists a non~negative 

constant B such that AW(t) =BA(t). Now using (2.9) we get vv{t)=(F(t))e~l;B>O. 

Conversely assuming w(t) = (F(t) t~1 and using (2.8), we obtain 

(4.68) 

From (4.68) and (4.60) we get that for t > 0 7 ,,(t) = B -I-log B , which is independent 
X,x 

of t. 

77 



Corollary 4.1: When F(t) = t , then Theorem 4.19 characterizes power distribution with 

df(4.5). 

The discrimination measure (4.59) proposed by Asadi et al. (2005) for the random 

variables X and Xl>' is defined as 

1- (/3) = 1 I IS(f(x))fJ (f" (x) t P 
d 

x x,t og [_ x 
, " (/3 - I) 0 (F (t) l ( P' (t)) P 

(4.69) 

Using (1.1) and (2.8), (4.69) becomes 

(4.70) 

For the size-biased model, (4.70) becomes 

(4.71) 

Remark 4.2: When p = 0, then (4.71) reduces to the measure (4.60). 

Theorem 4.20: The Renyi divergence measure for the past life 1 x x (P,t) is independent 
, 1\" 

of t if and only if the weight function is tt-{t) = (F(t) )0-1; e > o. 

Proof: The proof of this theorem is similar to that of Theorem 4.19. 

Corollary 4.2: When F(t) = t , then Theorem 4.20 characterizes power distribution with 

df (4.5). 

4.8 Inequalities for measures of discrimination 

In this section, we present some results including inequalities and compansons of 

discrimination measures for weighted and unweighted or parent distributions. Under 

some mild constraints, bounds for these measures are also presented here. 
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Theorem 4.21: If the weight function l1-(t) is increasing (decreasing) in t > 0, then 

(a) I (t) 2 (S;)IOg( A(t) J 
X,X". A"(t) 

(b) Ix x (fJ, t) 2 (S;) fJ 10g( A(t) J, fJ:;t: 1. 
, " (fJ -1) A" (t) 

Proof: Suppose w(t) is increasing, then from (l.1) we get f(t) is decreasing 
f\l(t) 

which implies 

f(t) S; f(x) for all x S; t . 
f"'(t) f\l(x) 

Now from (4.60) we have 

tfl(x) 10 ( f(x)F(t) JdX 2 tff(x) 10 ( f(t)· F(t) Jdx 
o F(t) g f"(x) F" (t) 0 F(t) g f"(t) F"(t) 

which implies that 

- ( A(t) J Ix x (t) 2 log ~,- for all x S; t . 
. " A" (t) 

When wet) is decreasing then the inequality is reversed. 

Proof of (b) is similar to that of (a). 

(4.72) 

RHR(RHRJ 
Theorem 4.22: When (i) wet) is decreasing (increasing) and (ii) X S; 2 X"" then 

Ix x (t) is increasing (decreasing) for all t > o. 
) \\' 

Proof: From the definition (4.60) 

I (t) = IOg( F" (t) J + Iff(x) log ( f(x) JdX. 
x,x, F(t) 0 F(t) f"(X) 

(4.73) 
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The first tenn of (4.73) is increasing using Theorem 2 (see Sunoj and Maya (2006)) and 

(Sl(x) 10g( f(x) JdX = log.u - _1_ (Sf'(X) log w(x)dx . 
o F(t) f" (x) H F(t) 0 

(4.74) 

Now the second tenn of (4.74) is given by 

I I 1 I w' (x) 
-- Jf(x)logw(x)dx=-log(w(t))+- J--F(x)dx. 

F(t) 0 F(t) 0 w(x) 
(4.75) 

Differentiating (4.75) with respect to t and on simplification we get 

!!..- (_ j f(x) log w(x) dxJ = _ A(t) [J w' (x) F(x)dx 2:: 0 . 
dt 0 F(t) F(t) 0 w(x) 

(4.76) 

Thus (4.73) is the sum of two increasing functions. It implies that Ix x (t) also 
• I\' 

increasing. Using the similar steps as above, the inequality in the reverse direction can be 

proved. 

E(w(x)IX~t) 
Theorem 4.23: When wet) is increasing (decreasing) and IS Increasmg 

w(t) 

(decreasing), then Ix x (t) is increasing (decreasing) for allt > O. 
, :1' 

Proof: When w(t) is increasing, from Theorem 4.21, 

- ( A(t) J I (t) 2:: log -- . 
x .x.., A H' ( t ) 

Now using (2.9) and the condition given in theorem, we get log ( A(t) J Increases, 
A"'(t) 

which imply the required result. Similarly one can prove the inequality in the reverse 

direction. 

80 



CHAPTER FIVE 

MEASURES OF UNCERTAINTY FOR DOUBLY TRUNCATED 

RANDOM VARIABLES· 

5.1 Introduction 

In the previous chapter, we have discussed some measures of uncertainty for the right 

truncated random variables and characterized certain models arising out of them. But in 

reliability/survival analysis there may be situations in which the data is doubly truncated. 

As pointed out in chapter 1, a doubly truncated failure time arises if an individual is 

potentially observed only if its failure time falls within a certain interval, unique to that 

individual. In such type of truncation, the individual whose event time lies within a 

certain time interval are only observed. Thus an individual whose event time is not in this 

interval is not observed and therefore the infonnation on this subject outside the interval 

is not available to the investigator (see Ruiz and Navarro (1996), Efron and Petrosian 

(1999), Betensky and Martin (2003), Navarro and Ruiz (1996, 2004), Sankaran and Sunoj 

(2004) and Bairamov and Gebizlioglu (2005». Such types of truncation happen in 

lifetime studies also. Therefore the properties related to these type of datasets are 

important both in reliability and survival analysis. In addition, the measures of uncertainty 

and reliability are closely related. All measures of uncertainty have much relevance in 

characterizing and classifying life distributions according to the behavior of them . 

• Some of the results in this Chapter have been communicated to an International Journal. 



Accordingly in the present chapter, we focus on characterizing some probability models 

based on different measures of uncertainty and conditional expectations of doubly 

truncated random variables. Because of the wide applicability of conditional expectations 

for interval truncated data in survival studies and reliability life testing, in the present 

chapter, we study the different uncertainty measures considered in the previous chapter to 

the doubly truncated case and examine its relationships. We also extend these studies in 

weighted models. Many of the results that we have obtained in the present chapter are 

generalizations of some of the existing results. 

5.2 Definitions and properties 

5.2.1 Geometric vitality function 

Kupka and Loo (1989) studied the vitality function extensively in connection with their 

studies on ageing process. It provides a useful tool in modeling lifetime data. Recently, 

Nair and Rajesh (2000) defined a conditional geometric vitality function and it has been 

found a useful tool in modeling and analysis of lifetime data. For a non-negative rv X 

representing the lifetime of a component with an absolutely continuous df F(t) and 

E(log X) < <XJ , then the geometric vitality function of a left truncated rv is 

10gG(t) = E(logXIX >t)). (5.1 ) 

In reliability theory, (5.1) gives the geometric mean of the lifetimes of components, which 

has survived t units of time. Nair and Rajesh studied this measure in detail and 

characterize some probability distributions based on it. Using (5.1), a straightforward 

generalization of geometric vitality function for a doubly truncated rv (X It I ~ X ~ t2 ), 

1 '2 

= ( ) J(logx)f(x)dx 
F(tJ-F{tI) " 

(5.2) 
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log G(tl' t2) gives the geometric mean life of a rv truncated at two points tl and t2 . It is 

clear that when t2 ~ 00 (5.2) reduces to (5.1). The following properties are immediate 

from the definition (5.2), 

(1) lim 10gG(tI,tJ = E(logX), and 
t\--+O 
t2~::t) 

Navarro and Ruiz (1996), (2.1) is related to hi(tl' t2 ); i = 1,2 as 

and 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

Table 5.1 provides the relationships between geometric vitality function log G(tl' t2 ) and 

GFR functions hi = hi (tl' t2 ); i = 1,2 of certain probability distributions. 
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Table 5.1: Relationships between geometric vitality function and GFR functions 

Distribution 
RCt) log G(t] , t2) 

Exponential exp( -At); t > 0, 1 
-[h]logt] -h210gt2 +A(tl'tJ] 

A->O A-

I 
Beta (1- Rt)d ; 0 < t < -, I R -[0- Rt] )h] logt] -(1- Rt2 )h210gt2 + A(tl't2 ) - R] 

Rd 
d >O,R >0 

Pareto 11 (l + ptrq 
; t > 0, 1 

~[(1 + pt])h]logt] - (I + pt2)h210gt2 + A(tl't2) + p] 
p >O,q >0 pq 

Power 1-(t/bY; 05,t5,b, 1 
-[t2hllogt2 -t]h,logt, - 1] 

b> O,e > 0 e 

Pareto I (k/t)";t>k, 1 
-[tlh]logtl -t2 h2 10gt2 - 1] 

k > O,e > 0 e 

Theorem 5.1: If hi(tl' t2 ); i = 1,2 satisfy the properties given in Navarro and Ruiz (1996), 

then the geometric vitality function (S.2) determine distribution uniquely. 

Proof: The proof follows from (5.S), (S.6) and Theorem 4.1 of Navarro and Ruiz (1996) 

(see Chapter 1). 

5.2.2 Measure of uncertainty 

Combining the residual entropy (1.35) defined by Ebrahimi and Pellerey (199S) and the 

past entropy (4.1) defined by Di Crescenzo and Longobardi (2002), we introduce a new 

measure of uncertainty which generalize (1.35) and (4.1) to the doubly truncated random 

variables. Defining a rv (X It I 5, X 5, t2 ) which represents the life of a unit between t] and 

t2 ' a measure of uncertainty for the doubly truncated rv is given by 
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Clearly, limH(t"tz)=H(tz) and limH(t"t2)=H(tl)' 
(140 '2 4 C1) 

Equation (5.7) can be written as 

(5.8) 

1 C2 

H(t"tJ = 1- ( ) ff(x) (logl1(x) )dx 
F(tJ-F(t,) Cl 

1 
- ( ) [F(t2 ) log F(t2 ) - F(tl) log F(t,)] + log( F(t2) - F(tl)) ' 

F(t2 )-F(tl) 

(5.9) 

where (5.8) and (5.9) are the expressions of H(tl' tz) in terms of hazard rate h(t) and 

reversed hazard rate l1(t) , respectively. 

Now using (4.1), (1.35) and (5.7), the Shannon entropy (1.34) can be decomposed as 

H = F(t,)H(t,) + (R(t ,) - R(tz) )H(t" t2 ) + R(t2 )H(t2) - [F(tl ) log F(tl) 

+( R(t,) - R(t2 ) )log (R(t ,) - R(tJ) + R(t2 ) log R(tJ ] . (5.10) 

The identity (5.10) can be interpreted in the following way. The uncertainty about the 

failure of an item can be decomposed into 4 parts: (i) the uncertainty about the failure 

time in (O,t l ) given that the item has failed before t l , (ii) the uncertainty about the failure 

time in the interval (tp t2 ) given that the item has failed after tl but before t2 , (iii) the 

uncertainty about the failure time in (t2' +00) given that it has failed after t2 and (iv) the 

uncertainty of the item that has failed before t) or in between tl and t2 or after t2 . 

On partially differentiating H (t1,t2) with respect to tl and t2 , we get 
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a at H(tl' 12) = h, (t" t2 ) [log ~ (t" t2 ) + H(t" t2 ) - 1] 
, 

(5.11) 

and 

When H(t"t2) is increasing in t, and in t2 ,then, (5.11) and (5.12) together implies 

(5.13) 

Thus when the uncertainty measure is increasing, then it lies between (I-log h, (t" t 2) ) 

and (1-logh2 (t"t2 »). We can also write the bounds (5.13) as 

Table 5.2 provides the relationships between the measure of uncertainty H(t, ,t2 ), the 

conditional expectation m(t"t2)=E(xit, <X<t2 ) and GFR functions hi =hi(t"t2 ); 

i = 1,2 for various distributions. 

Table 5.2: Relationships between H(t"t2 ) , the conditional expectation and GFR 

functions for various distributions 

Distribution 
R(t) H(t, ,t2) 

Exponential exp( -At) ; t > 0, Am(t1,t2 )-At2 -logh2 (tl,t2) or 

..1,>0 Am(t" t2 ) - Atl -log hi (tl, t2) 

1 
Beta (1- Rt)d ; 0 < t < - , 

-(d-I)E[log(I-RX)II, <X <1,J-IOg[ /d d] R 

d >O,R >0 
(1 - Rt,) - (1- Rt2 ) 

Pareto 11 (1 + ptrq 
; t > 0, 

(q + I)E[log(1 + pX)It, < X < I, J -IOg[ _ pq _ ] 
p >O,q >0 (1 + pt,) q - (l + ptJ q 

Power 1-(t/br; O~t5:b, 
I + log G(I, ,1,) +I,h, log(t, I b) - I,h, log(t, I b) -IOg[ C ] 

b>O,c >0 (t2 I by -(t, I by 

Pareto I (k/tY;t>k, 
I + log G(I, ,I,)+t,h, log(k I I,) -I,h, log(k 11,)-IOg[ C ] 

k >O,c >0 (kltlY -(klt2Y 
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5.2.3 Conditional measure of uncertainty 

As an extension of the definition (4.25) given in the previous chapter, we define the 

conditional measure of uncertainty for the doubly truncated rv as 

(5.14) 

relation 

(5.15) 

Differentiating (5.15) with respect to t, and t2 respectively provide the relationships with 

GFR functions, which are given by 

and 

The various relationships between the conditional measure of uncertainty M (tp t2 ) for 

doubly truncated random variables and GFR functions hi =hi(tpt2 ); i=1,2 for some 

probability models are given in Table 5.3. 

Table5.3: Relationships between M (t" t2 ) and GFR functions 

Distribution 
R(t) M(tpt2) 

Exponential exp( -At); t > 0, 
Am(t"t2 ) -logA 

,1.>0 

1 
Beta (1- Rt)d ; ° < t < -, 

-log Rd - (d + l)E [log(1- RX) It, < X < t2 ] R 

d >O,R >0 
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Pareto II (1 + ptrq 
; t > 0, 

(q + I)E[log(I + pX)ltl < X < tlJ -logpq 
p >O,q >0 

Power l-(t/br; O~t~b, 
(C-I) --;;- [1+tlhj logt j -tl~ logt2 +logc-elogb] 

b > O,e > 0 

Pareto I (kit)"; t>k, (C:l }tjhllogtl -t2h1 logt2 +I-Ioge-clogk] 
k > O,e > 0 

Weibull exp(-t P );t > 0, 
-logp -(p -1) log G(tp t2 ) + E[ XP It] < X < t2 ] 

p>O 

Rayleigh exp( _t 2 );t > 0 -log 2 -log G(tl' t2 ) + E [ X21tl < X < tJ 

5.3 Characterizations 

In this section we prove certain characterization theorems for some life distributions and 

certain family of distributions using GFR functions, geometric vitality function (5.2) and 

conditional Shannon's measure of uncertainties (5.7) and (5.14). 

The following theorem gIves a characterization to a family of distributions such as 

exponential, Pareto II and beta using a possible relation connecting the geometric vitality 

function and the GFR functions. 

Theorem 5.2: Let X be a rv with support (0,00) admitting an absolutely continuous 

distribution function F(t) with respect to Lebesgue measure. Then a relation of the form 

(5.16) 

where k > 0 and C are constants holds for all (t l ,t2 ) E D if and only if X follows 

exponential distribution for C = 0 , Pareto 1I distribution for C > 0 and Beta distribution 

for C < 0 with distribution functions (2.18), (2.17) and (2.19) respectively. 
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Proof: Assume that the relation (5.16) holds. From the definitions of A(tl't2 ),hj (tl'tz); 

i = 1, 2 and log G(tl' t2 ) , (5.16) becomes 

~ 1 
Jf(x)logxdx = k[{1 +Ct()f(t()logt( -{1 +Ct2 )f(t2 )logt2 

" 

(5.17) 

Differentiating (5.17) with respect to tj; i = 1,2 and on simplification, we obtain 

f '(t) = _ (k + C) -'----"-, for (t(, t2 ) E D 
f(t j ) (1 +Ct2 ) 

or 

~ log f(t) = _ (k + C) . 
dt (1+Ct) 

(5.18) 

From (5.18.), it follows that X follows exponential, Pareto II and Beta distributions 

according as C = O,C > 0 andC < O. 

The converse part is obtained from Table 5.1. 

Theorem 5.3 gives a characterization to the exponential distribution using the functional 

relation connecting the conditional measure of uncertainty and the conditional moment 

function m(t(, t 2 ) • 

Theorem 5.3: For a non-negative rv X , a relation of the fOIm 

(5.19) 

where k > 0 is a constant, holds for all (t( ,t2 ) E D if and only if X follows exponential 

distribution with distribution function (2.18). 

Proof: Assume (5.19) holds. From (5.14), we can write 

~ ~ 

- ff(x)(logf(x»)d.x-,u-' Jxf(x)dx=k(R(t()-R(tJ). (5.20) 
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Differentiating (S. 20) with respect to ti ; i = 1, 2 gives 

(S.21) 

or f(t) = K exp( _jJ-1t) , which provides the result. 

The converse part is obtained from Table S.3. 

The following two theorems identify Pareto I and Power distributions using the functional 

relation connecting conditional measure of uncertainty and geometric vitality function. 

Theorem 5.4: For a non-negative random variable X in the support [k,oo) , k > 0, 

admitting an absolutely continuous df, then a relation of the form 

(S.22) 

where K > 0 and e are constants, e> 0, holds for k < tl < t2 with F(t) < F(t2) if and 

only if X follows a Pareto I with df (4.20). 

Proof: Assuming (S.22), then by using (S.14), and (S.2), (S.22) we have 

(S.23) 

or 

~ ~ 

- jf(x) (logf(x) )dx -(e + 1) jf(x) logxdx = K (R(t) - R(t2»)' (S.24) 

Differentiating (S.24) with respect to t
i

; i = 1,2 and simplifying we get f(t) = Kt-(C+I) , 

which corresponds to Pareto type I with K = ek c 
• The converse part can be easily verified 

by direct calculation and it is obtained from Tables S.l and S.3 

Theorem 5.5: For a non-negative random variable X having an absolutely continuous df 

F(t) then a relation 

(S.2S) 
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is satisfied for 0 < tt < t2 < b with F(lt) < F(t2 ) and c > 1 if and only if X follows Power 

distribution with distribution function (4.5). 

Proof: The proof is similar to that of Theorem 5.4. 

The following theorem characterizes log exponential family using the functional relation 

connecting the conditional measure of uncertainty and geometric vitality function. 

Theorem 5.6: The distribution of X belongs to one-parameter log exponential family 

(1.29) if and only if 

(5.26) 

Proof: Assume (5.26) holds. From the definition (5.14), we get 

-1 12 e '2 

( ) ff(x)(logf(x))dx=logA(e)- ( ) ff(x)logxdx 
RUt) - R(t2 ) " R(tt) - R(t2) " 

1 '2 

+ ( ) ff(x)(logC(x))ix. (5.27) 
R(tt) - R(t2 ) " 

Multiplying both sides of (5.27) by (R(tt) - R(t2)), we obtain 

'2 12 '2 

- ff(x)(logf(x) )dx = log A(e) (R(tt) - R(t2 ))- e ff(x) logxdx + ff(x) (log C(x))ix . 

(5.28) 

Differentiating (5.28) with respect to t;; i = 1, 2 and simplifying, we get (1.29). 

Conversely assume (1.29), by direct calculation and using the definition of log me (tt, (2) , 

we obtain (5.26). 
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The next theorem characterizes exponential family using the possible relation connecting 

M(t"tJ and m(tpt2). 

Theorem 5.7: The df of a non-negative rv X belongs to one parameter exponential 

family (1.28) if and only if the relation 

(5.29) 

Proof: The proof is similar to that of the Theorem 5.6. 

The next result characterizes generalized Pearson family of distributions usmg the 

relation connecting the r th order conditional moment functions and the GFR functions. 

For a doubly truncated rv (Xlt, < X < t2 ), the conditional moment function of order r is 

given by 

(5.30) 

Theorem 5.8: The df of a rv X belongs to generalized Pearson family of distributions 

(1.32) if and only if its r lh order conditional moments satisfies a recurrence relation ofthe 

form 

b (ao + (r -l)b,) (a l + rb2 ) 
where b. = -' . i = 0 1 2 a = , air = provided az :;t: 0 

l1" , '" Or 
~ ~ ~ 

and 

(5.31) 
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and az = O. 

Proof: Case I: When az * 0, using (5.30), (1.24) and (1.25), (5.31) becomes 

12 

fxr f{x)dx = (bOr + blrt2 + b2rt; )t;'-2f(t2) - (bOr + blJI + bZrtlZ )t;-Z f{tl) 

~ ~ ~ 

-aOr Jxr-z f{x)dx - air Jxr-If{x)dx- borer - 2) fx r-3 f(x)dx. (5.32) 

Differentiating (5.32) with respect to t,; i = 1,2 and simplifying, we get 

let) (Aa+Alt+AztZ) 
= 

f(t) (Bo+B/+Bzt Z
)' 

(5.33) 

From (5.33) it follows that the distribution of X belongs to generalized Pearson family 

with Aa =(aOr -(r-l)blr ), AI =(alr -rb2r ), Az =1 and B, =bir ; i=0,1,2. 

Similarly we can prove the case az = 0 as that of the case az * 0 . 

Conversely assume (1.32). Multiplying both sides of it by x r
-

Z and on integrating over 

the limits tl to t2 we get 

12 

(bo +b/2 +bzt;)t;f{tz)-{bo +b1tl +bztI2)tjZf{tj)-({r-l)bl +ao) fxr-zf(x)dx 
I, 

1 12 12 

-(rb
Z 
+a

l
) f x ,.-jf{x)dx-bo(r-2) f x ,.-3f{x)dx-az Ix" f(x)dx=O. (5.34) 

a 

Multiplying both sides of (5.34) by (R(tl)-R(tz)t and using (5.30), we obtain the 

required form. Substitute az = 0 in (5.34) and following the similar steps we get (5.31) 

for az = o. 
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Remarks 5.1: 1) Whent) = 0, Theorem 5.8 reduces to the Theorem 2.8 given in Chapter 

2. 

2) When a2 = 0, this theorem reduces to that for the Pearson family of 

distributions (1.30). 

5.4 Weighted models 

Now we study the application of these uncertainty measures in the context of weighted 

distributions. We examine the functional relationships of the GFR functions and the 

uncertainty measures in the context of weighted distributions and prove some useful 

characterizations arising out of it. For the weighted rv X w ' the functional relationship 

connecting the GFR functions are 

and 

(5.36) 

h h w ( ) - /" (tJ .. -1 2 d ( ) D were . t) , t2 - ( ) , 1 -, an t) , t2 E . 
I F"'(t

1
) _ Fl1'(t)) 

Remark 5.2: When w(t) = t , (5.35) and (5.36) reduces to the forms given in Sankaran 

and Sunoj (2004). 

Next few theorems prove the relationship connecting the ratio of the distribution 

functions of weighted and original models and the GFR functions. 

F(t) . 
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Proof: Differentiating a(tl' t2 ) with respect to tl and t2 respectively, we obtain 

(5.37) 

and 

(5.38) 

(see Navarro et al. (2001) and Sunoj and Maya (2006). From (5.37) and (5.38), we get 

h;Ctl't2); i=1,2 as 

(5.39) 

a 
- aCt t) a I' 2 

(5.40) 

Now (5.39), (5.40) and the Theorem 4.1 in Navarro and Ruiz (1996) (see Chapter 1), 

implies the required result. 

Theorem 5.10: Under length-biased sampling, for a non-negative TV X with pdf J(t) 

and df F(t), the ratio 

where (FL (t2) - FL (t l )) is the df corresponding to the length-biased model, holds for all 

(tl'tJ E D, if and only if X follows Pareto 11 (2.17), exponential (2.18) and beta (2.19) 

according as C > 0, C = 0 and C < 0 . 

Proof: From (5.35), under the weight function wet) = t , we have 
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Comparing (5.41) and (5.42), we have 

On differentiating (5.43) with respect to tj; i = 1,2, we get 

f '(tj ) = (l + 2j.1C) 

f(t j ) j.1(1 + Ctj ) 

(5.42) 

(5.44) 

Integrating (5.44), we obtain the densities of Pareto 11, exponential and beta distributions 

according as C > 0, C = ° and C < 0 . 

Conversely, substituting (2.17) in the definition of conditional moment function m(tl' t2 ) 

and division by j.1, yields the required form for the Pareto II distribution. The case is 

similar to that of exponential and beta distributions. 

Theorem 5.11: The ratio of the relation 

FL (t
2

) - FL (t
1

) _. • 
-~-------'--'-C..-1-g (t2 )hz(tl't2 )+g (tl)h1(t1,t2 ) , (5.45) 

F(tz) - F(t1) 

where g' (tJ = g(t,.); i = 1,2, holds for all (tl't z) E D for the family (1.31). 
j.1 

Proof: Integrating (2.24) over the limits tl to t2 and by dividing (F(tz) - F(t1») , we get 

(5.46) 

Equations (5.42) and (5.46) together imply the required result. The converse part is 

obtained by direct calculation. 

Corollary 5.1: When g(t) = bo + bl + b2t2 in Theorem 5.11, reduces to that of Pearson 

family of distributions (1.30). 
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Theorem 5.12: Let XIV be a weighted rv associated to X and wet) = t , then the ratio of 

the relationship 

(5.47) 

where K ~ j.lc( IJ), a constant and n; (t" I,) ~ E[ X :i:; il, < X < I,] holds for all 

(t" t2 ) E D for the class of distributions (Sankaran and Gupta (2005)) defined by 

_{a(t)(C(B))eXP(-C(B)t);a <t <b 
f(t,B) - . 

0; otherwise 
(5.48) 

Proof: Assuming (5.47) and using (5.42), we have 

1xf(x)dx = K[( R(t,) - R(t2)) + tJ(t,) - t2f(t2) - 'Ix a '(x) f(X)dX] (5.49) 
') ') a(x) 

differentiating (5.49) with respect to ti ; i = 1,2 and on simplification, we get (5.48). 

Substitution of (5.49) in (5.42) and on simplification, yields the converse part of the 

theorem. 

In view of the form-invariance property for the generalized Pearson family of 

distributions (1.32), the analogous statement for Theorem (5.8) in the context of size­

biased model is immediate. This is stated in the following theorem. 

Theorem 5.13: The df of a non-negative rv X belongs to generalized Pearson family 

(1.32) under size-biased sampling, if and only if its r th order conditional moments 

satisfies a recurrence relation of the form 

q. [po+(r-(a+I))ql] (p,+(r-a)q2). 
where qir = -' ; i = 1,2, POr ::::: and PII' = , prOVIded 

P2 P2 P2 

97 



and 

where q = qi . 
ir ((r+l-a)q2+pJ' 

(r+l-a)q2 + Pt)*O and P2 =0. 

i = 1,2 and 
(Po +(r-a)qt) 

POr = (r+l-a)q2 + Pt)' 

Proof: The proof is similar to that of the Theorem 5.8. 

provided 

Remarks 5.3: 1) Whent
t 
= 0, Theorem 5.13 reduces to the Theorem 2.9 given in the 

second Chapter. 

2) When P2 = 0 , this Theorem 5.13 reduces to that of the Pearson family of distributions 

(2.48). 

Now we consider the geometric vitality function for the weighted models. The geometric 

vitality function corresponding to weighted model is denoted as log C" (tl'tJ and it is 

given by 

(5.51) 

(5.51) can be written as 

(5.52) 

Corollary 5.2: When wet) = t, (5.52) reduces to the geometric vitality function of a 

length-biased model and it is denoted as log G L (tt' t2 ). Substituting this and applying 

integration by parts, we obtain 
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Theorem 5.14: For a non-negative rv X, the relation 

holds for all (tl' t2 ) E D if and only if X follows an exponential distribution (2.18). 

Proof: Suppose that the relation (5.54) holds, then by definition, 

Multiply both sides of(5.55) by (R(tt)-R(tJ) and on differentiation with respect to ti ; 

i = 1, 2, yields the required result. Converse part can be proved by direct calculation. The 

measure of uncertainty for the weighted model is denoted as H"(tl ,t2 ) and it is defined 

by 

and the corresponding conditional measure of uncertainty is 

(5.57) 
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CHAPTER SIX 

LOWER PARTIAL MOMENTS· 

6.1 Introduction 

Various measurements of risk have been considered as important tools for decision 

making problems where some risk exist. If we consider an individual investors risk 

perception in a financial decision making context, there are different modes of 

information presentation are available. In a recent survey, it is found that corporate 

managers mostly concerned about downside risk which is a measure of distance between 

a risky situation and the corresponding risk free situation. There are several classes of 

downside risks of interest in finance. They generally involve the tail of the relevant 

distribution of returns below some specific target return. Bawa (1975) introduced lower 

partial moment (LPM) as a measure of downside risk in financial economics. Consider an 

individual with a given portfolio that generates a random return X and the individual 

have a target return t. Then the risk associated when X falls short of t leads to the 

natural definition of downside risk, an uncertainty associated with the shortfalls below the 

target return. This uncertainty is measured using LPM, and in the case of continuous 

distribution, for a positive integer, the r lh order LPM of X is defined as 

1,.(t)=E[(X-trJ;r=0,1,2, ... , t>O (6.1) 

where 

(X -tf ={(t-X); X <t 
0; Xc. t 

• Some of the results in this Chapter have been communicated to an International Journal. 



When the pdf associated with X is f(t) and t is the target rate of returns, then (6.1) can 

be written as 
, 

Ir{t) = J(t - xl' f{x)dx. (6.2) 
a 

Some of the most frequently used risk measures are special cases of LPMs. For example, 
• 

when the weighing coefficient r = 0, the probability of loss equals the 0 th order LPM 

10 et) and for r = 1, it is the expected loss I1 (t) . Here the target value t is considered as a 

threshold point separating gains and losses. A survey of literature in this area is available 

in Bawa (1975), Price et al. (1982), Harlow (1991), Eftekhari (1998) and Lien and Tse 

(2001). 

However, when X represents the lifetime/repair time of a component/system, Ir et) can 

be related with various reliability measures viz. reversed hazard rate, reversed mean 

residual life (expected inactivity time) etc. Further, LPMs can also be used for model 

identification in the same way as the truncated moments are employed. 

6.2 Properties 

By virtue offhe relationship (6.2), we have 

I 

Ir(t)=r J(t-xl'-1F{x)dx. 
a 

Differentiating (6.2) with respect to t, successively we get 

and 

~I et) = r IJ{t - xy-I f{x)dx, 
dt r 

a 

d2 I 

-2 [ et) = r{r -1) J(t - xy-2 f{x)dx . 
dt r 

a 

Proceeding similarly r times, we obtain 

d' I 

-[ et) = r!F{t), where F(t) = Jf{x)dx dtr r 
a 
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or 

l(r) (t) 
F(t) = _r_,_, 

r. 
(6.4) 

where l~r)(t) is the r th derivative of lr(t) with respect to t. Thus from (6.4), l,(t) 

determines the dfuniquely. 

Theorem 6.1: Let X be a non-negative rv having an absolutely continuous df F(t) such 

that limif(t) =0 and Ir(t) be defined as in (6.1). Then the ratio of consecutive lower 
(-->a 

partial moments, is of the form 

Ir(t) =Ct 
lr-l (t) , 

(6.5) 

where 0 < C < 1 is a constant characterizes power distribution with df (4.5). 

Proof: Suppose that the relation (6.5) holds, by using (6.2), we have 

{ { 

f(t -xy f(x)dx = Ct J(t - xy-l f(x)dx . (6.6) 
a a 

Use t = (t - x + x) in (6.6) and on simplification, we get 

t t 

(1- C) f(t -xy f(x)dx = C Jx(t - xy-I f(x)dx . (6.7) 
a a 

Differentiating (6.7) r times and using (6.4), we obtain 

(1- C)F(t) = Cif(t) (6.8) 

or 

(6.9) 

From the uniqueness property of A(t) , (6.9) corresponds to the power distribution with df 

(4.5). 
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Conversely assuming (4.5) and by substituting for J(t) in (6.2) and on simplification we 

get (6.5) and it is obtained from Table 6.4. 

Theorem 6.2: For a rv X considered in Theorem 6.1, and for any r > 0, the r th order 

LPM satisfies a relation of the form 

(6.10) 

where C> 0 for all t > 0 if and only if X follows exponential distribution with df (2.18). 

Proof: Assume that the relation (6.10) holds, using (6.2), we get 

t t 

jCt-xy J(x)dx+C j(t-xy-1J(x)dx=(. (6.11) 
a a 

Differentiating (6.l1) r times with respect to t and using (6.4), we get 

----'J'-----('---'-t)_= r 
I-F(t) C 

(6.12) 

From the uniqueness property of hazard rate, (6.l2) corresponds to the exponential 

distribution. The converse part is obtained by direct calculation and it is given in Table 

6.4. 

Theorem 6.3: For a rv X considered in Theorem 6.1, a relation connecting the r th order 

LPM 

(6.13) 

where C> 0 is a constant is satisfied for all t > 0 if and only if X follows uniform 

distribution with pdf 

1 
J(t) = ; a<t<b. 

(b-a) 
(6.14) 

Proof: Assume (6.13) holds, using the similar steps as in Theorem 6.2, we get (6.14). The 

converse part is directly obtained from Table 6.4. 
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Theorem 6.4: For a non-negative rv X with an absolutely continuous df with 

limif(t) =0, a relation of the form 
t .... a 

(6.15) 

where C; > 0; i = 1,2 are constants holds for all t> 0 if and only if X follows 

generalized Pareto distribution with df 

1 

F(t) = I-(-q-J~ +1; t > O,p > -l,q > O. 
pt+q 

(6.16) 

Proof: The 'if part ofthe theorem can be obtained from Table 6.4. To prove the 'only if 

part, assume (6.15) holds. Using (6.2) and on simplification, we obtain 

I I 

f(t -x)' f(x)dx+ r(Cl+ C2 ) f(t -xy-I f(x)dx = (1 + C1)t" . (6.17) 
a a 

Putting t = (t - x + x) in (6.17) and on simplification, we get 

I I 

(1 + Cl) f(t - xy f(x)dx + f( C1x + Cz)(t - xy-I f(x)dx = (1 + Cl )t r 
• (6.18) 

a a 

Differentiating (6.18) r times with respect to t using (6.4), and on further simplification 

which implies that 

/(/) _ r(l + Cl) 

I-F(t) (C1t+C2 ) 

Now from the uniqueness property of hazard rate, (6.20) yields the required result. 

6.3 Recurrence relationships 

(6.19) 

(6.20) 

In this section, we identify some of the recurrence relationships between various LPM's 

for certain important families of distributions. 
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I 

Theorem 6.5: Assume 19(r-l)(t) = J(t _xy-l f(x)g(x)dx, then the pdf of a random 
a 

variable X belongs to general family of distributions (1.31) if and only if its r th order 

LPM satisfies a recurrence relation of the form 

K(t - a)r + rlg (r-l) (t) = (Jl- t)lr (t) + Ir+l (t), (6.21) 

where K is a constant such that K = - f(a)g(a). 

Proof: Assume that the relation (6.21) holds. By using (6.2) and on simplification, (6.21) 

becomes 

I I I 

K(t - ay + r J(t - x)' f(x)g(x)dx = Jl J(t - x)'f(x)dx - Jx(t - xy f(x)dx. (6.22) 
a Q a 

Differentiating (6.22) (r + 1) times using (6.4) and on simplification, we get (1.31). 

Conversely assuming (1.31) and multiplying both sides of (1.31) by (t - x)' and on 

integration using the assumption given in the theorem, we get (6.21). 

Table 6.1 provides some of the important members of the family (1.31) and identifies 

each of its recurrence relationships using (6.21). 

Corollary 6.1: When g(t)=bo +b1t+bi2 withb2 ;t:-~, (1.31) reduces to the Pearson 
2 

family (1.30). Substitute for get) in (6.21) and on integration we get the recurrence 

relation for Pearson family given by 

(6.23) 
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Table 6.1: Recurrence relationships connecting some members of general family 

Distribution t(t) get) fr+l(t) 

Beta 
1 t(a-l) (1- t)(b-I) ; 

B(a,b) t(I-t) [r + a + b r I [( (2r + a + b)t - r - Jl( a + b) ) 

0<t<1, a>O, b>O (a +b) Ir (t) + rt(l- t)lr-1 (t)] 

m P 
\ exp( -mt)t(P-I) ; 
JP 

rmtlr_1 (t) + (t - rm - Jl)f,. (t) Gamma mt 
t>O, m>O, p>O 

1 ('-")' exp- -~ . 
J2~~ ~' 

Normal -oo<t<OO,a>O, ~2 r~zlr_1 (t) + (t - Jl)lr(t) 

-00 < j1 < 00 

4l-"'Jr-'''(' exp ( - ~', ): A2 [ A") 2tlr(t)-1[ A.2(r+3)-2t 2]/r_I(t) 
- 1+-

Maxwell 2 (2 

t>O,A.>O r 
+-)..2tl,._z(t) 

2 

Theorem 6.6: Assume limif(t) = 0, then the distribution of a rv X belongs to 
I~a 

generalized Pearson family of distributions (1.32) if and only ifits r th order LPM satisfies 

a recurrence relation of the form 

fret) = C(t - ay-Z + [(Cl + 2ci) + rdJlr_1 (t) 

-[er -l)(dl + 2di) + (co + c/ + Ci2 
)]l,.-2(t) + (r - 2)(do + dlt + dl2 )f"_3 (t) 

provided az ;t. 0 , and when az = 0, 

a. 
C.=~ 

I az 
and i = 0,1,2 are real constants 

I,. (t) = [r(dl + 2dzt) + (co + c1t)]/"_1 (t) - (r -l)(do + d/ + df )/,.-z (t) - C(t - ay-I 

(6.24) 
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Where 
a 

c. = I • 

I (at +(r+1)b2 )' 
i = 0,1, 

b. 
d. = ) . 
) (a, + (r + 1)bJ ' 

j =1,2 and 

Proof: When a2 :;:' 0: Assume that the distribution of X belongs to the generalized 

Pearson family, multiply both sides of (1.32) by (t - xr-2 and on integration over the 

limits a to t we get (6.24). 

Conversely assume (6.24), by using (6.2) and substituting for C; and d;; i = 0,1,2 we 

obtain 

r r 

C(t-ay-2 - j(bt +2b2x)(t-xr-2f(x)dx- j(ao +a,x+a2x
2 )(t-xy-2f(x)dx 

a a 

I 

+(r - 2) j(bo + b,x + b2x 2 )(t - xy-3 f(x)dx. (6.25) 
a 

Differentiating (6.25) r times and using (6.4) we get (1.32). 

Case II: Whenaz = 0: By putting az = 0 in (1.32) and then following similar steps to that 

of case I, we get the required result. 

Some members of the generalized Pearson family and their corresponding values of the 

constants involved in the theorem 6.6 are given in Tables 6.2 and 6.3. 

Table 6.2: Some members of generalized Pearson family and the values of the 

constants involved in the Theorem 6.6 (when a2 :;:. 0 ) 

Members and Distribution Co Cl C2 do d l d2 

Inverse Gaussian ( ~ r ex (- A(t- Il )'} _j..J2 3j..J2 
0 0 

_2j..J2 

2m3 p 2j..J2t 1 A A 

t,A,j..J >0 

107 



Maxwell 

( 2'f 4 --; t2 exp(-At 2
); 

-1 
-

A 
0 1 0 

-1 
-

2..1, 
0 

t,A >0 

Rayleigh 

2Atexp( -At 2 
); 

-1 -1 
- 0 1 0 - 0 
2..1, 2..1, 

t,A >0 

Table 6.3: Some members of generalized Pearson family and the values of the 

constants involved in the Theorem 6.6 (whena2 = 0) 

Members and Distribution Co Cl do d1 d2 

Gamma 

mP (1- p) -1 rP exp( -mt)tP
-

1 
; 1 0 - 0 

m m 

t > O,m,p >0 

Pareto I 

ckc t-(c+l) . (c + 1) 1 
0 -- 0 0 , 

(c -r) (r-c) 
t > k, c,k >0 

Nonnal 

1 e-IIJ' --exp-1I2 - , 
J2/rer er 

-)1 1 _0'2 0 0 

-00 < t,)1 < 00, a> 0 

Beta 
(d -1) -R 1 ( r 0 0 

d 1-~ 'O<t<R d>1 (d +r) (d +r) (d +r) 
R R' , 

Exponential 

Aexp(-At); t,A>O 0 1 0 
1 

-

A 
0 
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Theorem 6.7: The distribution of X belongs to exponential family with pdf (1.28) if and 

only if its r th order LPMs satisfy the recurrence relation 

(6.26) 

where D' (B) is the derivative of De B) with respect to B. 

Proof: From the definition of LPMs 

I 

'r(t) = J(t-xYexp(Bx+C(x)+D(B»)dx. (6.27) 
o 

Differentiating (6.27) with respect to B, we get (6.26). 

Conversely assume (6.26), then by using (6.2) and on simplification, we get 

d I 

dB 'r{t) = J(t -x)' (x+ D'(B) )fex)dx. 
o 

(6.28) 

Differentiating (6.28) (r + 1) times with respect to t and on simplification we get (1.28). 

A list of various distributions with its pdf and the corresponding recurrence relationships 

using LPM are given in Table 6.4. 

In the next section, we examine the various properties of LPM's in the context of 

weighted distributions. 

6.4 Weighted models 

In this case, the r th order LPM corresponding to the weighted distribution at a point t is 

denoted as t;' (t) and it is defined as 

I;"(t)=E(eX",-tr)'; r=0,1,2, ... , t>O. (6.29) 

By using (1.1), (6.29) can be written as 
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1 I 

I," (t) = - f(t - x)' w(x)f(x)dx. 
Plo' a 

(6.30) 

Now we find the relations connecting LPMs of some specific models 

6.4.1 Length-biased models 

The r th order LPM corresponding to the length-biased model (1.2) is denoted as I: (t) and 

it is given by 

1 I 

I:(t)=- f(t-xrxf(x)dx. 
Po 

(6.31) 

Substituting x = (t - (t - x) ) , (6.31) becomes 

1 
I,L (t) = - (tlr (t) -/"+1 (t)) . 

P 
(6.32) 

The following theorem characterizes power distribution using the relation connecting the 

r th order LPMs of original and length-biased models. 

Theorem 6.8: Let X be a non-negative TV with an absolutely continuous df F(t) and 

lr(t) is defined as in (6.1). Assume limif(t) = 0, then the ratio of the r th order LPMs of 
I->a 

original and length-biased model satisfies a relation of the form 

IrL (t) = Cl 
Ir(t) 

(6.33) 

where C > 0 is a constant is satisfied for all t > 0 if and only if X follows power 

distribution with distribution function (4.5). 

Proof: Suppose that the relation (6.33) holds. Using (6.32) and (6.2) and on 

simplification, we get 

(6.34) 
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Differentiating (6.37) (r + 1) times and on simplification using (6.4), we obtain 

(1 -C-l) 
A( I) = --'--:(;--C---~--'-)--'-t (6.35) 

Now using the uniqueness property of reversed hazard rate, (6.35) implies the required 

result. 

The converse part is obtained from Table 6.4. 

Theorem 6.9: For a rv X defined in Theorem 6.8, and Hm tf(t) = 0, then the r th order 
t-4n 

LPMs of original and length-biased model satisfies a relation of the form 

(6.36) 

where Cj (> 0); i = 1,2 are constants, holds for all t > 0 if and only if X follows 

generalized Pareto distribution with distribution function (6.16). 

Proof: Assuming (6.36), from (6.2) and (6.31), we have 

I t 

Cl f(t - xy+1 f(x)dx + f(c)x + C2 )(1 - xy f(x)dx = C/+ I (6.37) 
a 

where C, - ( c, - :J, di fferentiating (6.37) (r + 1) times with respect to t and on 

simplification usmg (6.4), we get f(t) = Cl (r + 1) , which is the hazard rate of 
1-F(t) (C)I+C2 ) 

generalized Pareto distribution. From the umqueness property of hazard rate, the 

remaining part of the theorem can be proved. 
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Conversely assume that X is specified by generalized Pareto distribution. Substituting 

(6.16) in (6.32) and using (6.2) and on simplification, we get (6.36) with Cl = (p + 1) 
q(l- pr) 

and C
2 

= (r+1) . 
(1- pr) 

The following table provides LPM of some of the distributions in original and length 

biased case. 

Table 6.4: II' (t) and I,~ (t) of certain probability distributions 

Distribution J(t) II' (t) I: (t) 

Aexp(-lt) ; 

Exponential 1 >O,t >0 
t r - ~I (t) 1 1'-1 

(r + 1 + At)lr (t) - 1(+1 

cke t-{c+I). t > k , , 
_c-[(t-kY _ rt /1'-1 (t)] Pareto I k,c>O 

(c -1) [tqt) - Ct - kYr+l) ] 
(c - r) c k(c-r-I) 

Power 
~t(C-I). t > 0 
be ' , 

rt I ) (c+1)t Ir(t) 
function -( -) r-I(t 

b,c >0 r+c b(r+c+ 1) 

Rd (I - Rt)d-I; 
d [r r ] Rd(d+1) (r+l+Rdt) I (t)-tr+l] Beta -- t --(I-R/)I_ (I) 

t >O,R,d >0 
(d + r) Rd r 1 (d +r+ 1) Rd I' 

Pareto 11 
pq(l+ ptrq1

; 

-q-[t' -~(l+ Pt)/r-l(t)] pq(q -I) (r + 1 + pqt) I (I) -I'·' 1 
t >O,p,q >0 

(q-r) pq (q -r-l) pq I' 

1 

Uniform 
(b-a) , (t-ay+1 2[t+(r+l)a] ( y+1 

t-a 

a <t <b 
(b- a)(r + 1) (b2 

- a 2 )(r + l)(r + 2) 

I., (I f' 1 [ (p + 1) [I () 1'+1] (r + 1)1 (t) + 1 t r 
Generalized [1+ p(1-r)] (p ) qP (p+ I) -_. t t -t + r 

(pt +q) q(1-pr) r (l-pr) 
Pareto t > 0, p > -1, q > 0 

-r(pt + q)lr - t (t) 1 
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6.4.2 Equilibrium Models 

The equilibrium distribution arises naturally in renewal theory (see Cox (1962)). It is the 

distribution of the backward or forward recurrence time in the limiting case. A formal 

definition of the equilibrium distribution is as follows. Let X be a rv admitting an 

absolutely continuous distribution function F(t) with respect to Lebesgue measure in the 

support of the set of non-negative real numbers. Associated with X , a rv X E is defined 

with pdf 

(6.38) 

The form of the equilibrium distribution (6.38) can also be obtained as a particular case of 

weighted distribution (1.1) with weight function w(t) = R(t) . Then the r th order LPM 
f(t) 

corresponding to the equilibrium model is denoted as l,E (t) and it is defined as 

l:-(t) = 1 (tr+1_1 (t))· t>O. 
I Jl(r + 1) r+I' 

(6.39) 

Theorem 6.10: Let X be a non-negative rv with an absolute continuous df F(t), then a 

relationship lr(t) = I; (t) is satisfied for all t > 0 if and only if X follows an exponential 

distribution (2.18). 

Proof: Assume Ir(t) =I;(t) , by using (6.38) and (6.2) we get 

I ((+1 - J(t - x)'+1 f(X)dx) = J(t -xY f(x)dx . 
Jl(r+l) 0 0 

(6.40) 

Differentiating (6.40) (r + 1) times with respect to t and on simplification using (6.4) we 

obtain 

-----=f'----('---'-t)_ = 1 
I-F(t) Jl 

(6.45) 
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From the uniqueness property of hazard rate, (6.41) corresponds to exponential 

distribution. The converse part is obtained from Table 6.5. 

Theorem 6.11: For a non-negative rv X having an absolute continuous df F(t) and 

assume lim ff(t) = 0, then the r th order LPM of original and equilibrium model satisfies a 
(-->0 

relation of the form 

I; (t) + Btl,. (t) = At'+l (6.42) 

where A> 0 and B > 0 are constants, holds for all t > 0 if and only if X follows power 

distribution with df (4.5). 

Proof: Assume that (6.42) holds. Using (6.39), (6.2) and on simplification, we get 

( 1 _A]t(r+lJ _( 1 -B]J(t-xY+lf(X)dX+B fx(t-xYf(x)dx=O. 
,u(r+l) p(r+l) a a 

(6.43) 

Differentiating (6.43) (r + 2) times with respect to t and using (6.4) and the regularity 

condition, we obtain 

f'(t) B2 
--=-
f(t) t 

(6.44) 

where B, ~ (;B -(r + 2) ). Integrating (6.44) with respect to t, yields the required 

result. Converse part of the theorem is obtained from Table 6.5. 

Theorem 6.12: For a non-negative rv X defined in Theorem 6.11, the r th order LPM of 

original and equilibrium model satisfies a relation of the fonn 

(At + B)lr (t) -I; (t) = Ar(r+l) (6.45) 

where A, B (~O) are constants holds for all t > 0 if and only if X follows generalized 

Pareto distribution with distribution function (6.16). 

Proof: Assume the relation (6.45) holds, from (6.2) and (6.39), we obtain 
( , 

Al j(t-xy+lf(x)dx+ J(Ax+B)(t-xr f(x)dx = Alr+1 (6.46) 
a a 
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where AI :::: (A + 1 J. Assume limif(t) = 0 and differentiating (6.46) (r + 1) times 
,u(r + 1) HO 

with respect to t and using (6.4), we get 

J(t) _ AI(r+l) 

I-F(t) (At+B) 
(6.47) 

From the uniqueness property of hazard rate, (6.47) provides (6.16). 

converse part is obtained from Table 6.5. 

The proof of 

The r th order LPMs of some probability distributions of original and equilibrium models 

are listed in Table 6.5. 

Table 6.5: II' (t) and IrE (t) of certain probability distributions 

Distribution J(t) II' (t) I;(t) 

Exponential 
Aexp(-At) ; 

t' -~l (t) t' -~l (t) 
A>O,t>O A ,.-1 A ,-I 

J£.=..!L[t'+l_ C (t-k)'+l 
ekCr(C+l) ; t > k, 

-C-[(t-kY - rt I,-t(t)] 
kc(r+l) (c-r-l) 

Pareto I 
e,k >0 

_ (r:1)t II' (t)] (e - r) e 

Power ~t(C-I). 
rt I () (C+1)[ ~_ tl,(t) ] 

function bC ' -( -) 1'-1 t 
t > 0; b,c > 0 

r+c be (r+l) (r+e+1) 

Beta 
Rd(1- Rt)d-l; 

_d_[t' -~(1-Rt)l_ (t)] (d + 1) [Rtr+! + (1 + Rt)l, (t)] 
t >0, R,d > 0 (d+r) Rd 1'1 (d+r+I) 

Pareto II pq(l + ptrq
-

I
; 

_q_[tr -~(l+ PI)lr_l(l)] (q-I) [(1+pt)lr(t)-pt,+I] 
t >O,p,q >0 (q-r) pq (q-r-l) 

1 
(t-ay+ 1 2 [ ,., (t-a)"'] Uniform (b-a) , (b+a)(r+l) t - (b-a)(r+2) 

(b- a)(r+ 1) 
a <t <b 

'., (1 f' 1 [ +1t' Generalized qP (p+l) -- [1+p(1-r)] (p ) 1 [(pt + q)lr (t) - pt'+1 ] (p/+q) 
Pareto t>O,a>-l,b>O -r(pt + q )11'-1 (t)] 

q(1- pr) 
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6.5 Applications 

One of the main applications of LPM is that it can be used to find some poverty indices in 

the income analysis. Poverty measures are generally a kind of inequality measure that 

confines attention to a specified bottom slice of the income distribution, i.e. they only 

care for poor people. In measuring the indices of poverty, the most widely used statistic is 

the proportion of population that falls below the poverty line. The measures of poverty 

ignore most of the income distribution and often give substantial weight to an individual 

being or just below the poverty line whereas no weight is given to those slightly above the 

poverty line. These measurements involve two problems, the identification of the poor 

and the aggregation of information about the poor (see Sen (1976». Most studies focus on 

income distribution as an indicator to identify the poor. 

In the present context, suppose X represents the income of a community of individuals 

and define a minimum income requirement, the poverty line t, such that all individuals i 

who earn income Xi < t are said to be poor and the TV (X - tf takes the value (t - x) and 

zero for those individuals whose income below or above poverty line respectively. Thus 

in income analysis, it is a useful measure for studying some poverty measures. Here the 

zero order LPM la(t) gives the proportion of poor people and their income distribution is 

given as 

(6.48) 

(see Belzuence et al. (1995»), and l~ (t) measures the proportion of total income earned 

by income units having income less than or equal to t. In income studies, an index, which 

measures how poor the poor are, is the income gap ratio a(t), where the income gap of 

an individual is (t - x). Another measure useful in income analysis is fi(t), the average 

income below the poverty line and they are defined as 

a(t) = It (t) 
tla (t) 

fi(t) = t _ It (t) . 
10 (I) 

116 

(6.49) 

(6.50) 



From (6.49) and (6.50), it is clear that 

J1(I) =t{l-a(t»). (6.51) 

Using the above relationships, the following theorems are immediate. 

Theorem 6.13: Let X be a non-negative rv representing the income of a community of 

individuals and have an absolute continuous df F(t), then the average income below 

poverty line satisfies a relation of the form 

J1(I) = J1[l-t(1 + Ct)Il,(t)] (6.52) 

where C is a constant and A(t) = f(t) ,if and only if X follows Pareto 11, exponential 
F(t) 

and beta distributions with distribution functions (2.17), (2.18) and (2.19) respectively 

according as C > 0, C = 0 and C < 0 . 

Proof: Assume that the relation (6.52) holds. Using (6.50), (6.2) and on simplification, 

we get 

1 

J~((x)dx = J1 [F(t) -t(1 + Ct)f(t)] (6.53) 
o 

On differentiating (6.53) with respect to t using the assumption that lim if(t) = 0, we 
1-->0 

obtain 

/ (t) (l + 2pC) 
=--'--------

f(t) p(1 + Ct) 
(6.54) 

Integrating (6.54) with respect to t yields the distributions Pareto 1I, exponential and beta 

according to C > 0, C = 0 and C < 0 respectively. 

The converse part is obtained by direct calculation. 

Remark 6.1: Even if the three distributions in Theorem 6.15 satisfy the relation (6.52), 

the inequality p(t) ~ t holds for only Pareto II and exponential distributions. For beta 

distribution, the inequality fails as it is not useful for modeling poverty data. 
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Corollary 6.2: The income gap ratio for the poor people satisfies the relationship 

a(t) = 1- JI (l-t(1 + kt)l(t)) 
t 

(6.55) 

for all t > 0 if and only if X follows Pareto n, exponential and Beta distributions 

respectively according as k > 0, k = 0 and k < 0 . 

Theorem 6.14: For a rv X defined in Theorem 6.13 and if limg(t)f(t) = 0 , then the 
1-->0 

income gap ratio aCt) satisfies a relation of the fonn 

I 
aCt) = 1- - (JI- g(t)l(t)) 

t 

for all t > 0 if and only if the distribution belongs to the general family (1.31). 

(6.56) 

Proof: Assume the relation (6.56) holds, then using (6.49) and (6.2) and on simplification 

we get 

1 

J(t - x)f(x)dx = tF(t) - JlF(t) + g(t)f(t). (6.57) 
o 

Differentiating (6.57) with respect to t and on simplification, we obtain the required 

result. 

To prove the converse, assuming (1.31), and integrating (2.24) using the assumption and 

on simplification, we get 

f(t)g(t) = (JI-t)lo(t) +ll(t). (6.58) 

Dividing each tenn of (6.58) by tlo(t) , we get (6.56). 

Corollary 6.3: For the family given in (1.31) the average income below poverty line is 

JI(t) = JI- g(t)l(t) . 

Remark 6.2: Based on the properties of poverty measures, it has been known for some 

time that a close fonnal ties between risk and inequality exists. The income inequality 
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arises in situations where not all people in a society earn the same income in a given 

period. Similarly, a distribution of returns is called risky if there are events where 

portfolio values are different. Besides, the resemblance of poverty and downside risk is 

also striking as both have their focus on the lower part of the distribution, concentrating 

on income of the poor and the bad outcomes respectively. The poverty line t in income 

studies divides the poor from the non poor corresponds to the critical line t that divides 

critical events with portfolio values less than or equal to t from the uncritical events with 

portfolio values greater than t. Thus the result that we obtained in poverty studies is also 

useful in downside risk studies where X represents the random return of a portfolio. 

6.6 Bivariate lower partial moments 

An extension to the univariate lower partial moment is quite straightforward. Let 

4=(X(,X2 ) be a bivariate random vector in the support of (al'b()x(a2 ,b2 ), bi >aj ; 

i = 1,2, where (a j , bJ is an interval in the real line with an absolutely continuous 

distribution function F(t( ,t2 ) with respect to Lebesgue measure. AssumeE( X;Xn < 00. 

Then the (r, s) th lower partial moment of 4 about L = (t(, t2 ) is 

11 /2 

= J J (tl - Xl r (t2 - X2 Y f(xl' X2 )dx(dx2 (6.59) 

where /(X( < tl' X 2 < t 2 ) is an indicator function in the bivariate setup. Further, 

l"s(tl'tz ) uniquely determines the distribution function through the relation 

1 d'+s 
F(t t)=---I (t t) 

i' Z " d 'd s ',S I' 2 • r.s. t) t2 
(6.60) 

Table 6.6 provides the mathematical relationships among the LPM's of the bivariate 

weighted distribution for some important weight functions. 
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Table 6.6: Weighted BLPM for various weight functions 

w(t1'12) Lower partial moment 

I1 I;:~ (II' (2) = tJr.s (l1' t2) -1'+1.5 (II' t2) 

12 I;:~ (tl, (2) = tir.s (l1' t2) -1,.5+1 (tl , t2) 

1/2 I,"; (tp t2) = /'+1 5+1 (II' t2) - t2/'+1 s (tl' t2) - tJ, 5+1 (tp ( 2) + tit), s (11, t2) , . , . . 

tl + t2 I;:: (tl' 12) = (tl + t2 )/',5 (tl' t2) -lr+I,5 (tl' t2) -I,.,HI (tl' t2) 

6.7 Future study 

The present study gave emphasis on characterizing continuous probability distributions 

and its weighted versions in univariate set up. Therefore a possible work in this direction 

is to study the properties of weighted distributions for truncated random variables in 

discrete set up. The problem of extending the measures into higher dimensions as well as 

its weighted versions is yet to be examined. As the present study focused attention to 

length-biased models, the problem of studying the properties of weighted models with 

various other weight functions and their functional relationships is yet to be examined. 

These works are proposed to be undertaken in the future study. 
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