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Chapter 1 

Introduction 

1.1 Background 

The advancement of technology has led to the explosive growth of digital material available 

to common man in all aspects of life including medicine. Nowadays, digital multimedia content 

are created with ease from a variety of sources, such as scalUlers, cameras, digital audio and 

video recorders and broadcast. The advent of internet revolutionized the distribution of 

information. The Web documents became more communicative over the years enriched with 

images, video, audio and music. Also, there is an increasing trend towards the digitization of 

medical imagery and the formation of adequate archives. Large-scale image databases collect 

various images like X-ray, computed tomography (CT), magnetic resonance imaging (MRI), 

ultrasound (US), nuclear medical imaging, endoscopy, microscopy, and scalUling laser 

ophtalmoscopy (SLO). It is well acknowledged that medical image databases are a key 

component in diagnosis and preventive medicine [1, 2). The resulting picture archiving and 

communication systems (PACS) are available across wards within a hospital setting and allow 

global access to shared resources. The wealth of information available freely on the web and on 

medical image databases posed a major problem for the end users: how to find the infonnation 

needed? 

The challenge of efficient search for multimedia content has been addressed by the 

development of more and more sophisticated search engines, with the help of advances in the 

areas of alUlotation, indexing and natural language processing. A search engine. is. mainly a 
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database and the tools to generate that database and search it. However, in most of the early 

systems search is text-centric, and thus dependent on the keywords used to index the multimedia 

content. Some examples of text-based web search engines are Google, Yahoo, Altavista and 

Lycos. As the digital material on the web became inherently rich in images, audio and video 

sequences, tools to browse and search such audio-visual media were needed. A straightforward 

way of using the existing tools for information retrieval to index and search these collections of 

audiovisual material is to first annotate the audio-visual media by keywords and then use the 

text-based Database-Management Systems (DBMS) to retrieve it. Of various audio-visual data, 

images are the most important way of expression. Several approaches were proposed to use 

keyword annotations to index and retrieve images [3, 4, 5, 6, 7]. Comprehensive surveys in 

information retrieval can be found in [8, 9, 10]. 

The advantage of textual indexing of image is that it can provide user with key word 

searching, catalogue browsing and even with query interface such as Structural Query Language 

(SQL). However, it apparently has some limitations. One is that it is time consuming. When the 

database is large, it is almost impossible to manually annotate all the images. The other is visual 

features of image are difficult to be described using words. The keywords annotation for an 

image is subjective to the user who does it and will be application context sensitive. Due to the 

rich content of images, different persons may perceive them differently and annotate them with 

different keywords. A possible solution is to automatically index the images in a domain 

independent fashion based on their content. Retrieving images based on their content is called 

Content-Based Image Retrieval (CBIR). CBIR is introduced as a complement to the traditional 

textual indexing approach. Due to its extensive potential applications, CBIR has attracted a 

great amount of attention in the last decade and a review of early systems is presented in [11, 

12]. Many research and commercial CBIR systems have been developed, including QBIC [13], 

MARS [14], Virage [15], Photobook [16], Visual SEEk [17], PicToSeek [18], and PicHunter 

[19]. 

Before the emergence of CBIR, medical images were also annotated with text, allowing the 

images to be accessed by text-based searching [20]. Thus, manual textual index entries are 

mandatory to retrieve medical images from digital archives, which are inefficient due to the 

following reasons [21]. 
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• Manual annotations require too much time and are expensive to implement. As the 

number of images in a database grows, the difficulty in finding desired images 

increases. Muller et. al. reported that the University Hospital of Geneva produced 

approximately 12,000 medical images per day [22]. It is not feasible to manually 

annotate all attributes of the image content for large number of images. 

• Manual annotations fail to deal with the discrepancy of sUbjective perception. 

Typically, a medical image usually contains several objects, which convey specific 

infonnation. Nevertheless, different interpretations for a pathological area can be made 

by different radiologists. To capture all knowledge, concepts, thoughts, and feelings for 

the content of any image is almost impossible. 

• The contents of medical images are difficult to be concretely described in words. For 

example, irregular organic shapes cannot easily be expressed in textual fonn, but people 

may expect to search for images with similar contents based on the examples they 

provide. 

These problems limit the feasibility of text-based search for medical image retrieval. In an 

attempt to overcome these difficulties, content-based retrieval has been proposed to 

automatically access images with minimal human intervention [20, 23]. CBIR has been 

proposed by the medical community for inclusion into picture archiving and communication 

systems (PACS) [24]. 

CBIR has attracted tremendous research interest of industrial and academic community. 

Realizing the importance of content-based retrieval of multimedia data, the Moving Picture 

Experts Group (MPEG) of the International Standard Organization (ISO) has finally approved a 

standard MPEG-7 in July 2001 [25}. MPEG-7 was tenned "Multimedia Content Description 

Standard," quite different to earlier MPEG standards. MPEG-7 allows the interoperability 

between the devices and applications attempting to solve parts of content-based retrieval 

problem. Currently the standard does not address the content-based medical image retrieval. 

1.2 Challenges in CBIR 

In this section, major challenges in CBIR such as patterns in applications, the sensory gap, 

and the semantic gap are discussed. 
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1.2.1 Patterns in Applications 

There are three broad categories of aims while using the CBIR system [11]. 

First category is search by association, in which the user arrives at a result by iterative 

refinement of the search based on the similarity of the specification by sketch [26] or by 

example images. Systems in this category typically are highly interactive. The result of the 

search can be manipulated interactively by relevance feedback [27, 28]. 

Another class of users aims the search for a specific image. The search may be for a precise 

copy of the image in mind. Target search may be for another image of the same object ofwruch 

the user has an image. In some cases, target is interactively specified as similar to a group of 

given examples. These systems are suited to search for stamps, art, industrial components, and 

catalogues in general [13, 19]. 

The third class of applications, category search, aims at retrieving an arbitrary image 

representative of a specific class. It may be the case that the user has an example and the search 

is for other elements of the same class. Categories may be derived from labels or may emerge 

from the database [29, 30]. 

These classifications do not describe the whole story. Studies reveal that the range of 

queries is wider than just retrieving images based on the presence or absence of objects of 

simple visual characteristics [31, 32]. 

1.2.2 Sensory Gap 

The sensory gap is the gap between the object in the real world and the information in a 

description derived from a recording of that scene. The sensory gap makes the description of 

objects an ill-posed problem. In visual search, explicit representation of the knowledge of the 

domain is important to alleviate the sensory gap. 

1.2.3 Semantic Gap 

The semantic gap is the lack of coincidence between the information that one can extract 

from the visual data and the interpretation that the same data have for a user in a given situation. 
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The most immediate means of semantic characterization entail annotation by keywords or 

captions. The pivotal point in content-based retrieval is that the user seeks semantic similarity, 

but the database can only provide similarity by data processing. 

1.3 Elements of CBIR 

A typical CBIR system is divided into off-line feature extraction and on/ine image 

retrieval. A conceptual framework for content-based image retrieval is illustrated in Figure 1.1. 

In offline feature extraction, the contents of the images in the database are extracted and 

described with a multi-dimensional feature vector called descriptor. The feature vectors of the 

image constitute a feature dataset stored in the database. In online image retrieval, the user can 

submit a query example to the retrieval system in search of desired images. The system 

represents this example with a feature vector. The distances (i.e., similarities) between the 

feature vectors of the query example and those of the media in the feature dataset are then 

computed and ranked. Retrieval is conducted by applying an indexing scheme to provide an 

efficient way of searching the image database. Finally, the system ranks the search results and 

then returns the results that are most similar to the query examples. If the user is not satisfied 
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with the search results, the user can provide relevance feedback to the retrieval system, which 

c0ntains a mechanism to learn the user's information needs. The following sections will 

describe each component of the system. 

1.3.1 Feature Extraction 

Representation of images needs to identify the most useful features for representing the 

contents of images and effective approaches for coding the attributes of the images. The 

methods for which can be divided into local color, local geometry, or the local texture. The 

image processing operations transpose the image data into another spatial data array. The 

purpose of image processing in image retrieval is to enhance aspects in the image data relevant 

to the query and to reduce the remaining aspects. The image is partitioned or segmented aiming 

at obtaining more selective features. 

1.3.1.1 Col or 

Color is an important visual attribute for both human vision and computer processing. The 

color has superior discriminating potentiality of a three-dimensional domain compared to the 

single dimensional domain of gray-level. 

1.3.1.2 Shape 

The local shape refers to all properties that capture conspicuous geometric details in the 

image. Object shape feature provides powerful clue to object identity and functionality, and can 

even be used for object recognition. Shape often carries semantic information and humans can 

recognize characteristic objects solely from their shapes. 

1.3.1.3 Texture 

Perceptual attributes of texture such as directionality, regularity, and coarseness are 

important. Also, a quantitative characterization of homogenous texture regions is used for image 

retrieval. 
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1.3.2 Dimension Reduction 

In an attempt to capture useful contents of an image and to facilitate effective querying of 

an image database, a CBIR system may extract a large number of features from the content of 

an image. Feature set of high dimensionality causes the "curse of dimension" problem in which 

the complexity and computational cost of the query increase exponentially with the number of 

dimensions [33]. The most widely-used technique for reduction of the dimensionality of a large 

feature set in image retrieval is principal component analysis (PCA). The goal of principal 

component analysis is to specify as much variance as possible with the smallest number of 

variables [34]. 

1.3.3 Similarity Measure 

Similarity is an interpretation of the image based on the difference with another image. 

Selection of similarity metrics has a direct impact on the performance of content-based image 

retrieval. The kind of feature vectors selected determines the kind of measurement that will be 

used to compare their similarity. 

1.3.4 Relevance Feedback 

The main idea of relevance feedback is for the retrieval system to understand the user's 

information needs. For a given query, the retrieval system returns initial results based on pre­

defined similarity metrics. Then, the user is required to identify the positive examples by 

labeling those that are relevant to the query. The system subsequently analyzes the user's 

feedback using a learning algoritlun and returns refined results. 

1.3.5 Storage and Indexing 

For large image sets, computational performance cannot be ignored as an issue. In addition 

to the number of images, the dimension of the image vector can also be considerable. 

Three classes of indexing methods are in use on large image databases: space partitioning, 

data partitioning, and distance-based techniques. In space-partitioning index techniques, the 

feature space is organized Hke a tree [35]. Data partitioning index techniques associate, with 
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each point in feature space, a region that represents the neighborhood of that feature vector. An 

R-tree is such a data partitioning structure to index hyper rectangular regions in M-dimensional 

space. The SS-tree [36] and its further improvement, the SR-tree [37], use the intersection of the 

minimum bounding hypersphere and minimum bounding hyperrectangle as the bounding region 

of a data element. Distance-based index structures are example-based space-partitioning 

techniques, very suited for query by example when feature space is metric. An example is M­

tree [38], a more robust and scalable indexing strategy that uses the triangle-inequality of metric 

spaces, but retains the data partitioning properties of spatial access methods such as the R-tree 

and the SS-tree. 

1.4 Objectives 

From the above described background information, it is clear that the image database can 

be indexed either using textual information or content information. The research work presented 

in this thesis focuses on the content-based indexing and retrieval of images. In content-based 

indexing, from among the many active research topics as detailed in Section 1.3., feature 

extraction and relevance feedback are the topics of interest for this work. The images can be 

broadly classified into general images and medical images, based on their application. This 

study addresses CBIR of both types. 

In general images, image content can be described using primitive features such as color, 

texture, shape or combination of them. Specifically, this research focuses on image indexing and 

retrieval using shape features. One main objective of this research is to develop promising shape 

descriptor(s) for image retrieval. The shape descriptor investigated and developed in this study 

can either be directly applied to particular applications such as trademark retrieval, object 

recognition etc. or be incorporated into any CBIR system to facilitate retrieval using combined 

image features. User interaction for improving the CBIR accuracy is important, and hence 

developing a novel scheme for relevance feedback is another major objective. Benchmarking 

the performance of the developed descriptor and relevance feedback scheme with state-of-the­

art shape descriptors also forms a part of the study. 

CBIR of medical images is strategically different from that of general images. Use of global 

image features such as col or, texture, shape etc will assist only in general classification of 

images, for example, of a particular anatomical region. But in content-based medical image 
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retrieval more interest lies in obtaining images similar to the query image based on the 

pathology of interest. So, image processing and feature selection should be fme tuned for a 

specific pathology. In this research, the focus is on the defonnity of spine called scoliosis, which 

is the lateral curvature of the spine. A major objective of the research is to identify and 

automatically extract features of a scoliosis image, and design a query scheme for CBIR of 

scoliosis spine images. 

To summarize, the main objectives of the research are: 

1. To develop a novel and more effective shape representation method. 

2. To develop a novel scheme for relevance feedback for CBIR. 

3. To develop a novel scheme for CBIR of spine radiographs with scoliosis. 

1.5 Contributions of the Thesis 

The contributions of the thesis are summarized as following. 

1.5.1 Development of a New Shape Descriptor 

A new shape descriptor called Improved Legendre Moment Descriptor (ILMD) based on 

orthogonal Legendre polynomial is proposed. Techniques for improvement of invariance to 

geometric transformations like translation, rotation, scaling and affine transformation is 

developed. Using Legendre polynomial a contour based shape descriptor, and with a 

combination of modified Legendre polynomial, a region based descriptor is developed. The 

MPEG-7 shape descriptors Angular Radial Transformation Descriptor (ARTD), Curvature Scale 

Space Descriptor (CSSD) and Zernike Moment Descriptor (ZMD) are implemented and the 

retrieval accuracy of the proposed descriptor is compared using MPEG-7 shape databases. The 

proposed shape descriptor is invariant to shape transformations and also robust to shape 

distortions and occlusions. Also, a scheme for CBIR is proposed and evaluated using k-means 

clustering. ILMD is better than both the contour shape descriptor and region shape descriptor 

proposed by MPEG-7. 

Published or accepted papers related to this part of work are: List of Publications 1.1, 1.4, 

2.2,2.6 
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1.5.2 Development of a Relevance Feedback Technique for CBIR 

This research evaluates and compares the shape descriptors: ILMD, ZMD and ARTD, and 

classifiers: support vector machine (SVM), least-square SVM (Ls-SVM), probabilistic neural 

network (PNN) and linear vector quantization (LVQ) network to choose an ideal descriptor -

classifier combination for relevance feedback. Statistical analysis using McNemar test is carried 

out to identify optimum shape descriptor - classifier combination for an efficient relevance 

feedback scheme. The SVM with RBF kernel using ILMD as pattern vector is found to provide 

an efficient CBIR system with relevance feedback. 

Published or accepted papers related to this part of work are: List of Publications 1.3 

1.5.3 Development of a Scheme for CBIR of Scoliosis Images 

This research proposes a novel scheme for CBIR of scoliosis images. An algorithm is 

proposed and evaluated for automatic determination of location and orientation of the spine in a 

digital radiograph using mathematical morphology. A rule based algorithm is developed to 

automatically measure the scoliosis from a given set of landmark points. The intra and inter 

observer reliability assessment of the proposed system is carried out using Kappa statistics and 

correlation coefficient. The proposed scheme of scoliosis measurement is found to be more 

reliable and repeatable. A feature descriptor for scoliosis image and query scheme is designed 

for CBIR of scoliosis images. A software system for CBIR of scoliosis images called 

"SpineSearch" is developed. 

Published or accepted papers related to this part of work are: List of Publications 1.2, 1.5, 

2.3,2.4,2.5. 

1.5.4 Development of a Fast Algorithm for Discrete Wavelet Transform 

In the initial part of the research, wavelet transform based techniques were studied. In the 

process, a novel Fast Fourier Transform (FFT) based algorithm was developed for fast discrete 

wavelet transform computation. By virtue of the Fourier-space operations, significant saving in 

computational complexity is achieved. The computational complexity analysis of the algorithm 

was carried out and compared with a state-of-the-art FFT-based Fast Wavelet Transform (FWT) 

algorithm. The proposed algorithm was found to be computationally attractive. 
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Published or accepted papers related to this part of work are: List of Publications 2.7. 

1.5.5 Development of an Algorithm for Fast Computation of Wavelet Packet 

Transform on Massively Parallel Processors (MPP) 

Wavelet packet (WP) transform based techniques were also studied, during initial part of 

the research. In the process, an extension to the Parallel Multiple Subsequence (PMS) structure 

for WP transform and an algorithm for its implementation on a massively parallel processors 

machine is proposed. Analytical comparison of the scalability and speedup of the PMS based 

algorithm and the popular filter bank tree algorithm was carried out in the Intel Paragon 

machine and the proposed algorithm was found to be better. 

Published or accepted papers related to this part of work are: List of Publications 2.1. 

1.6 Thesis Outline 

Chapter 1 describes the background, challenges, basic elements of a CBIR system, and 

objectives of this research. Contributions of this research work are also summarized. 

Chapter 2 presents an overview of the MPEG-7 standard and reviews the literature on 

CBIR. The first part focuses on visual information description. In the second part, an account of 

the previous research work that has been carried out in the field of shape descriptors for CBIR 

by peer researchers is presented. An overview of relevance feedback techniques is presented and 

major medical CBIR systems are briefly reviewed. 

Chapter 3 is exclusively devoted for scoliosis. Anatomy of the spine, measurement of 

scoliosis, curve classification schemes etc. are introduced. A brief review of the literature 

pertinent to spine localization and scoliosis measurement is presented. 

Chapter 4 provides a summary of the fundamental tools used in the thesis. A review of the 

classifiers used - support vector machine (SVM), least square - support vector machine (Ls­

SVM), probabilistic neural network (PNN), learning vector quantization network (LVQ), and k­

means clustering - is presented. A description of the similarity and performance measurement 

techniques is provided. Also, statistical analysis tools used, McNemar, correlation coefficient, 

and Kappa statistics, in the thesis is described. 
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In Chapter 5, a novel general shape descriptor called Improved Legendre Moment 

j~'escriptor (ILMD) has been proposed. A brief introduction to the theory and implementation of 

MPEG-7 shape descriptors Zemike Moment Descriptor (ZMD), Angular Radial Transformation 

Descriptor (ARTD) and Curvature Scale Space Descriptor (CSSD) are provided. Motivations 

for proposing ILMD are mentioned. Techniques for improving the invariance properties of the 

Legendre moments and the derivations of the descriptors are outlined. Then, a comparative 

study of retrieval performance of the ILMD, ARTD, ZMD and CSSD using MPEG-7 shape 

database is presented. CBIR using k-means clustering algorithm is proposed and its 

.:!xperimental validation is detailed. 

In Chapter 6, a novel scheme for relevance feedback for CBIR using SVM and ILMD has 

been proposed. A comparative study of the classification accuracy of SVM, LS-SVM, PNN and 

L VQ is reported for ILMD, ZMD and ARTD descriptors. Then statistical analysis results are 

detailed for selecting optimum classifier - descriptor combination. A relevance feedback 

technique is then reported. 

In Chapter 7, a novel scheme for CBIR of scoliosis images is presented. The chapter 

begins with the description of motivations for the proposal. An algorithm is developed for 

automatic determination of location and orientation of the spine. A rule based algorithm for 

measurement of scoliosis is developed, with minimal human intervention. Inter and intra 

observer reliability experiments and statistical analysis of the results are presented. Then, 

feature descriptor for indexing of scoliosis image is designed. The implementation details such 

as database schema and query formulation, and experimental results are outlined. Details of the 

developed software system 'SpineSearch' is also given. The chapter ends with discussion and 

concluding remarks on the developed system. 

A brief summary of the research work conducted and the important conclusions thereon are 

highlighted in Chapter 8. Suggestions for future research are also provided. 

This thesis includes two appendices which describe some allied works carried out by the 

author during the tenure of research. 

Appendix A proposes a novel fast algorithm for discrete wavelet transform (DWT) 

computation using FFT. Computational complexity analysis of the proposed algorithm and 

,mother FFf based algorithm is presented. 
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Appendix B proposes an extension to computational structure PMS, for fast WP transfonn 

and an algorithm for its implementation on MPPs. Analytical comparison of the scalability and 

speedup of the PMS based algorithm and popular filter bank tree algorithm in the Intel Paragon 

machine is reported. 
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Chapter 2 

Content-Based Image Retrieval- An Overview 

2.1 Introduction 

To facilitate effective search or filtering, multimedia content needs to be described 

efficiently. In the case of images, large interest in CBIR resulted in sheer increase in the 

published research work and the number of systems developed. Many features and descriptors 

were proposed by the industrial and academic research. A standardization of features becomes 

important to allow devices of different vendors to interoperate with each other. Acknowledging 

the industry demand and the availability of adequate technology, the MPEG of the ISO 

developed a standard called MPEG-7: the "Multimedia Content Description Interface", to allow 

interoperability between devices and applications attempting to solve parts of the CBIR 

problem. 

Section 2.2 presents an overview of the MPEG-7 focusing on the visual aspects. A review 

of important literature published for shape descriptors in the context of CBIR is presented in 

Section 2.3. Relevance feedback techniques employed for retrieval accuracy improvement of 

CBIR systems are reviewed in Section 2.4. In Section 2.5, a review ofliterature of the important 

CBIR systems for medical images is presented. The last section briefly reviews some of the 

commonly used similarity measures in CBIR systems. 

2.2 MPEG-7 Overview 

MPEG-7 [I, 2] is a standard for describing the multimedia content data. MPEG-7 tries to 

develop forms of audiovisual information representations that go beyond the simple wavefonn 
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or sample-based, compression-based (such as MPEG-I and MPEG-2) or even object-based 

(such as MPEG-4) representations . These forms support some degree of interpretation of the 

information meaning. which can be passed onto. or accessed by. a device or a computer code. 

MPEG-7 is not aimed at a specific application in panicular. It provides a rich set of standardized 

tools 10 describe multimedia content. allowing the development of a wide range of applications. 

Human users as well as automatic systems that process audiovisual information are within the 

scope of M PEG-7. 

MPEG-7 offers a comprehensive set ofaudiO\,'isual description tools (the mctadata elements 

and their structure and relationships that are defined by the standard as descriptors (Dl and 

Description Schemes (OS». It specifies a Description Definition Language (DOL) to efficiently 

index and search materials with associated MPEG-7 data. These searches will permit inquiries 

based on scenes. motion and visual content as well as text-based queries. Indexing and 

searching is possible for AV material that has MPEG-7 data associated with it. This material 

may include: still pictures. graphics. '30 models. audio. speech. video. and information about 

how these elements arc combined. 

2.2.1 Scope 

Figure 2.1 shows a highly abstract block diagram of a possible MPEG-7 processing chain. 

This chain includes feature extraction (analysis). the description itself, and the search engine 

(application) . To fully exploit the possibilities of MPEG-7 descriptions . automatic extraction of 

features will be extremely useful. It is also clear that automatic extraction is not always possible. 

however. The higher the level of abstraction. the more difficult automatic extraction is, and 

interactive extraction tools will be of good use. However useful they are. neither automatic nor 

semi-automatic feature extraction algorithms are inside the scope of the standard. The main 

[Ie:.cnptlOn 

ger~~~~_. 

Figure 2.1 Scope of MPEG-7 

[le:ulfjtlon 
t:onsurnptlon 
-------

of MPEG-7 



2.2 MPEG-7 Overview 

Detnt,"n, 
<s,uuA .... . 
• , ........... tJ.a) 

IRscrVtDnDtfinil im 
1.~~(' 

Figure 2.2 MPEG-7 main elements 

""­CU:Di:. _ .. ,,----""'-' 

17 

reason is that their standardization is not required to allow interoperability. while leavi ng space 

for induSlry competition. Another reason not to standardize analysis is to allow making good 

use of the expected improvements in these technical areas. To guarantee interoperabi lity . 

MPEG-7 specifies pan of the extraction process of some of the low-level features. Also the 

search engi nes. filter agents , or any other program that can make use of the description. are not 

spec ified within the scope of MPEG-7. 

Figure 2.2 shows the relationsh ip among the different MPEG-7 elemen ts introduced above. 

The DDL allows the definition of the MPEG-7 desc ription tools. both Desc riptors and 

Description Schemes, providing the means for structuring the Os into OSs. The description tools 

are instantiated as descriptions. The MPEG-7 descriptions can be either in a textual form. based 

on the extension of Extensible Markup Language (XML) (31 . suitable for editing. searching, 

filtering. and browsing. This format is nOI su itable for streaming and is sensitive to transmission 

errors. To overcome these shoncomings. MPEG-7 defines a second format: Binary format for 

MPEG-7 (BiM), This fonnat is suitable to streaming and compression. Moreover. MPEG-7 

defines coding and decoding tools for this format. For a given piece of AV content, both of its 

representations in XML and BiM format are equivalent and can be encoded and decoded 

loss lessly II I. 
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Figure 2.3 Overview of the MPEG-7 Multimedia DSs 

2.2.2 Multimedia Description Schemes 

MPEG-7 Multimedia Description Schemes (MDS) are metadata structures for describing 

and annotating AV content. MDS comprises the set of Description Tools (Descriptors and 

Description Schemes) dealing with generic as well as multimedia entities. Figure 2.3 provides 

an overview of the organization of MPEG-7 Multimedia DSs into the following areas: Basic 

Elements, Content Description, Content Management, Content Description, Content 

Organization, Navigation and Access, and User Interaction. The MPEG-7 DSs represent a set of 

description tools. For a particular application, these DSs can be used to describe multimedia 

content. A detailed overview of each of these functional areas is presented in the technical 

report by Martinez [2}. 

2.2.3 MPEG-7 Visual 

MPEG-7 Visual Description Tools included in the standard consist of basic structures and 

Descriptors that cover the following basic visual features: Color, Texture, Shape, Motion, 

Localization, and Face recognition. Each category consists of elementary and sophisticated 

Descriptors. 
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2.2.3.1 Shape Descriptors 

There are three shape Descriptors; Region Shape, Contour Shape, and Shape 3D. Two 

dimensional shape representation techniques can be classified into two categories: region-based 

and contour-based. Therefore, MPEG-7 has standardized two shape descriptors, namely Region 

Shape and Contour Shape, to describe 2D shapes. Both region-based and contour-based shape 

descriptors are intended for shape matching. They do not provide enough infonnation to 

reconstruct the shape nor to define its position in the image. 

The region-based descriptor is based on a 2D complex transform defined with polar 

coordinates on the unit disk, called Angular Radial Transfonnation (ART) [4]. The ART has 

separable basis functions along the angular and radial dimensions. Twelve angular and three 

radial basis functions are used. The descriptor represents the coefficients obtained by projection 

of the binary region onto the 35 ART basis functions. It is characterized by its small size, fast 

extraction time and matching. Thus this descriptor is suitable for tracking shapes in video data 

processing applications. 

The Shape Contour descriptor captures characteristics of a shape based on its contour. It 

relies on the curvature scale-space (CSS) [5] representation, which tries to capture perceptually 

meaningful features of the shape. This descriptor represents the high curvature points by their 

position and value of the curvature. 

It is common to represent 3D information as polygonal meshes. The MPEG-7 shape 3D 

descriptor provides an intrinsic shape description of 3D mesh models. It exploits some local 

attributes of 3D surfaces. The descriptor represents the 3D mesh shape spectrum, which is the 

histogram of the shape indexes [6J calculated over the entire mesh. 

2.2.3.2 Other Descriptors 

There are five Visual related Basic structures: the grid layout, time series, multiple view 

[7], the spatial 2D coordinates, and temporal interpolation. The seven color Descriptors are 

Color space, Color Quantization, Dominant Colors, Scalable Color, Color Layout, Color­

Structure, and Group of Frames/Group of Pictures (GoF/GoP) Color. There are three texture 

Descriptors: homogeneous texture, edge Histogram, and texture browsing. Camera Motion, 

Motion Trajectory, Parametric Motion, and Motion Activity are the four motion Descriptors: 
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The two descriptors for localization are Region locator and Spatiotemporallocator. The MPEG-

7 face descriptor is based on principal component analysis (PCA) [8,9]. 

2.3 Review of Shape Descriptors 

Shape is an important visual feature and it is one of the basic features used to describe 

image content. Shape representation generally looks for effective and perceptually important 

shape features based on shape boundary infonnation or boundary plus interior content. These 

various shape features are often evaluated by how accurately they allow one to retrieve similar 

shapes from a designated database. However, it is not sufficient to evaluate a representation 

technique only by the effectiveness of the features employed. In fact, MPEG-7 has set several 

principles to measure a shape descriptor, that is, good retrieval accuracy, compact features, 

general application, low computation complexity, robust retrieval perfonnance and hierarchical 

coarse to fine representation [1]. In CBIR, good retrieval accuracy requires a shape descriptor be 

able to find perceptually similar shapes - rotated, translated, scaled and affinely transfonned 

versions - from a database. The descriptor should also be able to find noise affected shapes, 

variously distorted shapes and defective shapes, which are tolerated by human beings when 

comparing shapes. 

Many shape representation and description techniques have been developed in the past. A 

number of new techniques have been proposed in recent years. A comprehensive review of 

shape representation and description techniques is presented in [10-13]. In this section, we 

briefly review important shape description techniques in the context of CBIR. Shape 

representation and description techniques can be generally classified into two classes of 

methods: contour-based methods and region-based methods. The classification is based on 

whether shape features are extracted from the contour only or are extracted from the whole 

shape region. 

2.3.1 Contour-Based Shape Descriptors 

Contour shape description techniques only exploit shape boundary information. The 

different methods are divided into structural approaches and global approaches. This sub-class 
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is based on whether the shape is represented by segments / sections (primitives) or represented 

as a whole. 

2.3.1.1 Structural Techniques 

Structural approaches break the shape boundary into segments, called primitives using a 

particular criterion. The final representation is usually a string or a graph (or tree), the similarity 

measure is done by string matching or graph matching. 

Many techniques exist utilizing Structural-based shape representation, such as chain code 

representation [14-16], polygon decomposition [17- 21], scale-space teclmiques [22, 23], 

smooth curve decomposition [24], shape invariants [25-28], and discrete segments [29]. They 

are not detailed here because of their lack of popularity. 

2.3.1.2 Global Techniques 

In global techniques, shape is represented as a whole. 

2.3.1.2.1 Shape Signature 

A Shape signature represents a shape by a one dimensional function derived from shape 

boundary points. Many shape signatures exist, they include centroidal profile, complex 

coordinates, centroid distance, tangent angle, cumulative angle, curvature, area and chord-length 

[30-32]. 

2.3.1.2.2 Directed Acyclic Graph 

A Directed Acyclic Graph (DAG) ordered tree is assigned to an object skeleton. The shape 

similarity measure is then based on the similarity of corresponding trees that is based on the 

matching algorithm for DAG ordered trees presented in [33]. 

2.3.1.2.3 Elastic Matching 

Bimbo and Pala have proposed the use of elastic matching for shape based image retrieval 

[34]. According to this approach, a deformed template is generated as the sum of the original 

template and a warping deformation. 



22 Chapter 2. Content-Based Image Retrieval - An Overview 

2.3.1.2.4 Stochastic Method 

Autoregressive (AR) modeling has been used for calculating shape descriptors [35 - 41]. 

Methods in this class are based on the stochastic modeling of a I-D function obtained from the 

shape. The disadvantage of the AR method is that in the case of complex boundaries, a small 

number of AR parameters are not sufficient for an adequate description. Hidden Markov Models 

(HMMs) are also being explored as one of the possible shape modeling and classification 

frameworks [42 - 45]. HMM provides a probabilistic framework for training and classification. 

Arica and Vural [43) applied a circular HMM topology with 8 states to model the shape. Cai 

and Liu [44) applied a Fourier descriptor based HMM topology to classify the shapes. Bicego 

and Murino (45) proposed a curvature descriptor based on HMM. Curvatures are treated as 

mixtures of Gaussian and consequently an ergodic HMM is developed. Their work provides 

comprehensive results for classification with deformation, noise and occlusion. A weighted 

likelihood discriminant for minimum error shape classification is proposed in [46]. This uses a 

HMM for shape curvature as its 2-D shape descriptor. 

2.3.1.2.5 Curvature Scale Space (CSS) 

Mokhtarian and Mackworth [47) proposed a scale space signature of the contour called 

Curvature Scale Space (CSS) [48-50). The CSS descriptor is used in the MPEG-7 standard [51) 

and represents a multi scale organization of the curvature zero-crossing points of a planar curve. 

In this sense, the dimension of its feature vectors varies for different contours, thus a special 

matching algorithm is necessary to compare two CSS descriptors. A more detailed description 

of the technique is provided in Chapter 5. 

2.3.1.2.6 Fourier Descriptors 

One of the most widely used shape description methods is Fourier Descriptor (FD) [30, 36, 

52 - 65J. Conventional FD methods only deal with closed curve, however, Lin et al. and 

Mitchell et al. used FD to describe partial shapes [55, 58]. Arbter et al. introduced the affine­

invariant FD to take into consideration of affine shape description (52]. Rauber proposed a UNL 

FD (named after Universidade Nova de Lisboa, Portugal) which is able to describe disjointed or 

articulated contour shape [60]. The UNL FD is acquired by applying 2-D Fourier transform on 
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the UNL transformed shape image. Even though a feature selection process is followed, the 

dimension of the feature vector acquired this way is very high. Richard and Hemami introduced 

a complex distance measurement, called the true distance measurement, for measuring the 

similarity between two set of FDs [61]. Since the true distance measurement requires two 

Fourier transforms for each matching, it involves 15 times more computation than a normal 

distance measurement. Rui et al. [62] proposed a distance measurement to classify similarity 

transformed characters using Fourier transformed coefficients. This distance measurement is the 

weighting sum of the variance of magnitude ratios and the variance of phase difference between 

two sets of Fourier coefficients. The Fourier coefficients are derived from Fourier reconstructed 

shape boundary rather than from original boundary. This is not different from FD derived from 

a smoothed boundary. Eichmann et al. proposed the use of a short-time Fourier descriptor (SFD) 

for shape description [66], however, Zhang and Lu have found that SFD is outperformed by 

conventional FD methods in shape retrieval [67]. This is because SFD cannot capture global 

shape features although it can capture local shape features more accurately. Zhang and Lu [32, 

68] have found that for general shapes, the centroid distance function is the most desirable shape 

signature to derive FD. Kunttu and Lepisto proposed angular radius Fourier descriptor, which 

combines the boundary function with the directional angle of the boundary line [69]. 

2.3.1.2.7 Wavelet Descriptors 

Wavelet descriptors are used in shape recognition and retrieval due to their multi-resolution 

nature and ability to maintain local shape features [70-79]. In [70, 71] a one-dimensional (I-D) 

discrete periodized wavelet transformation (DPWT) is applied to the contour for boundary 

representation. Li and Kuo [80] proposed a simplified method for defining a unique start point 

of the contour. A generalized uniqueness wavelet descriptor based on the generalized 

uniqueness property inhering in the one-dimensional (I-D) DPWT is proposed in [81]. Alferez 

and Wang [82] have proposed geometric and illumination invariants that depend on the wavelet 

detail coefficients for object recognition. Tieng and Boles [83 - 87] have derived more than one 

affme invariant representation function by applying the dyadic WT to the contour of the shape. 

Also, Khalil and Bayoumi have derived a wavelet-based affine invariant function by using a 

dyadic wavelet transform [88-90]. In [91], Bala and Cetin proposed a computationally efficient 

method for computing Kha!il's detail-based invariant functions by utilizing the decimated 
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wavelet transfonn. In [92], a new wavelet representation fonnula for rotation invariant feature 

extraction is proposed. Using the radial symmetry property feature vectors are generated, that 

are shown to be rotation invariant. Ibrahim et. al. proposed a new wavelet-based affine invariant 

functions for shape representation using approximation coefficients [93]. 

2.3.1.2.8 Dynamic Programming 

Many dynamic programming (DP) based shape matching is reported in literature [94-99]. 

DP approaches are able to match the shapes part by part rather than point by point, and are 

robust to defonnation and occlusion. 

2.3.1.2.9 Visual Parts 

A shape descriptor for non-rigid shapes with single closed contour is reported by Latecki et. 

al. [100, 101]. This is based on the correspondence of the visual parts of object contour and was 

a candidate descriptor in the MPEG-7 experiments. 

2.3.1.2.10 Multiscale Fractal Dimension 

The multiscale fractal dimension [102, 103] of a shape is computed based on the Euclidean 

distance transfonn (EDT) of its pixels. The EDT of these pixels is also related to their geometric 

Voronoi diagram [104], where each pixel defines an influence zone (discrete Voronoi region) 

composed by its closest image pixels. A new method for computing multiscale fractal 

dimension using the image foresting transfonn (!FT) is proposed in [105]. The !FT provides the 

simultaneous computation of the EDT and the discrete Voronoi regions in time usually 

proportional to the number of pixels [106], being more efficient than the method proposed in 

[102]. 

2.3.1.2.11 Beam Angle Statistics (BAS) 

The BAS descriptor [107, 108J is based on the beams originated from a contour pixel. A 

beam is defined as the set of lines connecting a contour pixel to the rest of the pixels along the 

contour. At each contour pixel, the angle between a pair of lines is calculated, and the shape 

descriptor is defmed by using the third-order statistics of all the beam angles in a set of 
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neighborhoods. The similarity between two BAS moment functions is measured by an optimal 

correspondent subsequence (OCS) algorithm (108]. 

2.3.1.2.12 Tensor Scale Descriptor (TSD) 

TSD [109] is a shape descriptor based on the tensor scale concept [110-112] - a 

morphometric parameter yielding a unified representation of local structure thickness, 

orientation, and anisotropy. That is, at any image point, its tensor scale is represented by the 

largest ellipse centered at that point and within the same homogeneous region. TSD is obtained 

by extracting the tensor scale parameters for the original image and then computing the ellipse 

orientation histogram. TSDs are compared by using a correlation-based distance function. A 

new descriptor based on tensor scale is proposed in [113] exploiting tensor scale orientation, 

which includes spatial infonnation. 

2.3.1.2.13 Contour Saliences (CS) 

The CS [114] computation uses the Image Foresting Transfonn [115] to compute the 

salience values of contour pixels and to locate salience points along the contour by exploiting 

the relation between a contour and its internal and external skeletons [116]. The contour 

salience descriptor consists of the salience values of salient pixels and their location along the 

contour, and on a heuristic matching algorithm as distance function. The convex contour 

salience (CCS) is the first descriptor of this category [105, 117]. The CCS of a contour is 

defmed as the influence areas of its higher curvature convex points. 

2.3.1.2.14 Segment Saliences (SS) 

The segment salience descriptor [114] is a variation of the contour salience descriptor 

which incorporates two improvements: the salience values of contour segments, in the place of 

salience values of isolated points, and another matching algorithm that replaces the heuristic 

matching by an optimum approach. The salience values along the contour are computed and the 

contour is divided into a predefmed number of segments of the same size. The internal and 

external influence areas of each segment are computed by summing up the influence areas of 

their corresponding pixels. 
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2.3.1.2.15 Shape Context 

A shape descriptor, called the shape context [118], of a point p belonging to the contour of 

an object is a bivariate histogram in a log-polar coordinate system that gives the distribution of 

contour points in the surroundings of p. To compute the dissimilarity of two shapes from the 

point-wise dissimilarity matrix the Hungarian algorithm [119] is used. 

2.3.1.2.16 Distance Sets 

Distance Set [120] is a rich local des cri pt or of an image point, which is detennined by the 

spatial arrangement of image features around that point. A two-dimensional visual object is 

described by the set of (labeled) distance sets associated with the feature points of that object. 

Based on a dissimilarity measure between (labeled) distance sets and a dissimilarity measure 

between sets of (labeled) distance sets, the problem of shape matching is addressed. 

2.3.1.2.17 Curve Edit Distance 

The correspondence between curves is based on a notion of an alignment curve which treats 

both curves symmetrically [121]. A similarity metric is defined based on the alignment curve 

using two intrinsic properties of the curve, namely, length and curvature. The optimal 

correspondence is found by an efficient dynamic-programming method both for aligning pairs 

of curve segments and pairs of closed curves, and is effective in the presence of a variety of 

transformations of the curve. 

2.3.1.2.18 Generative Models 

Zhuowen Tu and Alan L. Yuille proposed an algorithm for shape matching and recognition 

based on a generative model on how one shape can be generated by the other [122]. This 

generative model allows for a class of transformations, such as affine and non-rigid 

transformations, and induces a similarity measure between shapes. 

2.3.1.2.19 Helmboltz's Equation 

M. Zuliani et. al. proposed a new physically motivated curve descriptor based on the 
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solution of Helmholtz's equation [123). The descriptor satisfies the six principles set by MPEG-

7. Moreover this descriptor generalizes straightforwardly to three dimensional surfaces. 

2.3.1.2.20 WARP 

Ilaria Bartolini et. al. proposed a novel Fourier-based approach, called WARP, for 

matching and retrieving similar shapes [124]. The unique characteristics of WARP are the 

exploitation of the phase of Fourier coefficients and the use of the Dynamic Time Warping 

(DTW) distance to compare shape descriptors. While phase information provides a more 

accurate description of object boundaries than using only the amplitude of F ourier coefficients, 

the DTW distance permits to accurately match images even in the presence of (limited) phase 

shiftings. 

2.3.1.2.21 Morphological Curvature Scale Space 

Andrei C. Jalba et. al. proposed a multiscale, morphological method for the purpose of 

shape-based object recognition [125]. A connected operator similar to the morphological hat­

transform is defined, and two scale-space representations are built, using the curvature function 

as the underlying one-dimensional signal. Each peak and valley of the curvature is extracted and 

described by its maximum and average heights and by its extent and represents an entry in the 

top or bottom hat-transform scale spaces. 

2.3.1.2.22 Poisson Based Shape Descriptor 

Lena Gorelick et. al. proposed a shape descriptor based on the Poisson equation [126]. The 

approach assigns, for every internal point of the silhouette, a value reflecting the mean time 

required for a random walk beginning at the point to hit the boundaries. This function can be 

computed by solving Poisson's equation, with the silhouette contours providing boundary 

conditions. 

2.3.1.2.23 Inner Distance 

The inner-distance is defined as the length of the shortest path between landmark points 

within the shape silhouette. It is articulation insensitive and more effective at capturing part 
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structures [127]. Three approaches are proposed for building shape descriptor using the iImer­

distance. The first method combines the inner-distance and multidimensional scaling to build 

articulation invariant signatures for articulated shapes. The second method uses the inner­

distance to build a new shape descriptor based on shape contexts. The third one extends the 

second one by considering the texture infonnation along shortest paths. 

2.3.2 Region-Based Shape Descriptors 

In region based techniques, all the pixels within a shape region are taken into account to 

obtain the shape representation, rather than only use boundary information as in contour base 

methods. Similar to contour based methods, region based shape methods can also be divided 

into structural methods and global, depending on whether they separate shapes into sub parts or 

not. 

2.3.2.1 Structural Techniques 

The convex hull of a region is used as a region shape descriptor. The extracting of the 

convex hull can use both boundary tracing method [25] and morphological methods [31, 128]. 

The polygonal approximation is particularly attractive to smooth a boundary prior to 

partitioning. 

Another important region-based shape descriptor is medial axis transform (MAT) proposed 

by Blum [129]. The medial axis is the locus of centers of maximal disks that fit within the 

shape. The skeleton can then be decomposed into segments and represented as a graph 

according to certain criteria. The medial axis obtained by Morse is computed from scale space 

[130]. 

2.3.2.2 Global Techniques 

2.3.2.2.1 Geometric Moment Invariants 

Ru published the first significant paper on the use of geometric moment invariants for 2D 

pattern recognition applications [131]. Using nonlinear combinations of the lower order 

moments, a set of moment invariants which has the desirable properties of being invariant under 
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translation, scaling and rotation, are derived. Since the values of the acquired moment invariants 

are usually very small, a normalization process, such as zscore normalization [132], is needed in 

the implementation. Geometric moment invariants have attracted wide attention [25, 128, 133-

136] and have been used in many applications [10, 137-139]. The main problem with geometric 

moments is that only a few invariants derived from lower order moments is not sufficient to 

accurately describe shape and higher order invariants are difficult to derive. 

2.3.2.2.2 Algebraic Moment Invariants 

Algebraic moment invariants have been introduced by Taubin and Cooper [140, 141]. The 

algebraic moment invariants are computed from the first m central moments and are given as 

the eigenvalues of predefined matrices whose elements are scaled factors of the central 

moments. Different from Hu's geometric moment invariants, the algebraic moment invariants 

can be constructed up to any arbitrary order and are invariant to affine transfonnations. 

Algebraic moment invariants tend to perform well as region-based descriptor and have poor 

performance as contour-based descriptor [142]. 

2.3.2.2.3 Differential Geometry Based Techniques 

Differential geometry based techniques are reported to recognize and locate partially 

occluded two-dimensional (2-D) objects [143]. For recognition of partially occluded three­

dimensional (3-D) objects, the principal curvatures, mean curvature and Gaussian curvature are 

used as the local descriptions of the surfaces [144]. Dutta Majumder et. al. addressed the 

problem of constructing a similarity measure between shapes of 3-D objects by defining a shape 

distance between 3-D objects on the basis of certain characteristic planes of the objects [145]. A 

new shape based technique for classification and registration is proposed in [146,147]. 

2.3.2.2.4 Generic Fourier Descriptor 

Generic Fourier Descriptor (GFD) is proposed by Zhang and Lu in [148]. The GFD is 

acquired by applying a 2-D Fourier transform on a polar-raster sampled shape image. With an 

enhanced process, GFD can achieve retrieval performance on perspectively transfonned shapes 
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as high as it achieves on similarity transformed shapes [149]. Recently a composite descriptor is 

derived from GFD of the shape region and the shape contour [150]. 

2.3.2.2.5 Grid Based Method 

The grid shape descriptor is proposed by Lu and Sajj anhar [151] and has been used in 

[152,153]. Basically, a grid of cells is overlaid on a shape and the grid is then scanned from left 

to right and top to bottom. The result is a bitmap. The cells covered by the shape are assigned 1 

and those not covered by the shape are assigned O. The shape can then be represented as a 

binary feature vector. The binary Hamming distance is used to measure the similarity between 

two shapes. Chakrabarti et. al. [152] improve grid descriptor by using an adaptive resolution 

representation. 

The advantages of the grid descriptor are its simplicity in representation, conformance to 

intuition, and also agreement with shape coding method in MPEG-4. The main problem with 

this method is the major-axis based rotation normalization. 

2.3.2.2.6 Shape Matrix 

Goshtasby proposed the use of a shape matrix which is derived from a circular raster 

sampling technique [154]. A polar raster of concentric circles and radial lines is overlaid in the 

center of the mass. The binary value of the shape is sampled at the intersections of the circles 

and radial lines. The shape matrix is formed so that the circles correspond to the matrix columns 

and the radial lines correspond to the matrix rows. Prior to the sampling, the shape is scale 

normalized using the maximum radius of the shape. The result matrix representation is invariant 

to translation, rotation, and scaling. Taza and Suen represent shape using a weighed shape 

matrix which gives more weight to peripheral samples [155]. 

2.3.2.2.7 Shape Vector 

Perui et. al. proposed a shape description based on the relative areas of the shape contained 

in concentric rings located in the shape center of the mass [156]. The area ratio descriptor 

ignores the shape distribution within the measured ring. As the result, it loses local information 

ofa shape. 
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2.3.2.2.8 Zernike Moment Descriptor 

Teague [135) has proposed the use of orthogonal moments to recover the image from 

moments based on the theory of orthogonal polynomials, and has introduced Zernike moments, 

which allow independent moment invariants to be constructed to an arbitrarily high order. The 

complex Zernike moments are derived from Zernike polynomials. Zernike moment descriptor 

has been widely used as a shape descriptor [157-159). It was major candidate as region-based 

descriptor in early MPEG-7 experiments [160]. A more detailed description of Zernike moment 

descriptor is presented in Chapter 5. 

2.3.2.2.9 Angular Radial Transformation (ART) 

The 2-D Angular Radial Transformation (ART) [4] is the MPEG-7 proposed region-based 

shape descriptor [51}. It belongs to the broad Zernike Moment family and provides a compact 

and efficient way to express pixel distribution within a 2-D object region. The set of orthogonal 

moment basis is defined on a unit disc in polar coordinates. As the ART and Zernike moments 

belong to the same family, they have similar transformation invariance properties. A more 

detailed description of ART descriptor is presented in Chapter 5. 

2.3.2.2.10 Polar Raster Sampling (PRS) Signature 

PRS [161] uses contour based method for region based shape representation and retrieval. 

A polar raster grid is overlaid over the shape image, and the number of shape pixels on each of 

the concentric circles and on each of the diameters of the polar sampling grid is computed. The 

number of pixels is a function of the radius and the angle. The PRS is translation, rotation and 

scaling invariant and computationally less expensive. 

2.4 Review of Relevance Feedback Techniques 

CBIR systems operate on features extracted automatically from the images, such as color, 

texture and shape. The retrieval accuracy is often affected due to the semantic gap in feature 

extraction. Furthermore, the perception of similarity is user and context subjective. Combining 

different features - col or, texture or shape - to form a coherent query representing the image 
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sought is a difficult task. In CBIR systems, image is represented using a high dimensional 

feature vector and uses feature dependent similarity measures, which are not simple to tune 

manually. 

These problems are addressed by relevance feedback (RF) techniques to allow the system 

to learn from the users' interaction with the retrieval results. Relevance feedback was introduced 

in the late 1960's for relevance document retrieval [162] and was found to be effective in text­

based information retrieval [163, 164]. In these systems, RF allows the user to interact with the 

retrieval results of a query by selecting terms from the documents he considers relevant or 

irrelevant to modify the original query. Therefore, the key issue in relevance feedback is how to 

learn from the user's feedback and use the positive and negative examples to refme the query or 

adjust the similarity measure. In general, relevance feedback process in CBIR is as following. 

For a given query, the CBIR system first retrieves a list of ranked images according to a 

predefined similarity metrics, often defined by the distance between query vector and feature 

vectors of images in a database. Then, the user selects a set of positive and/or negative examples 

from the retrieved images, and the system will refine the query and retrieve a new list of images. 

Hence, the key issue in relevance feedback approaches is how to incorporate positive and 

negative examples in query and/or the similarity refinement. 

Initially developed in document retrieval, relevance feedback was transformed and 

introduced into content-based multimedia retrieval, mainly CBIR, during early and mid 1990s 

[165-167]. RF has been an active research area in CBIR and many new techniques are proposed 

in the literature. A comprehensive review of RF techniques is presented in [168]. An overview 

of important techniques ofRF in CBIR is presented in this section. 

2.4.1 Classical Schemes 

The early relevant feedback schemes for CBIR have been mainly adopted from text 

document retrieval researches and can be classified into two approaches: query point movement 

(query refinement) and re-weighting (similarity measure refinement). Both have been built 

based upon the vector model in information retrieval theory [162, 169, 170]. 

The query point movement method essentially tries to improve the estimate of the "ideal 

query point" by moving it towards good example points and away from bad example points. 

The frequently used technique to iteratively improve this estimation is the Rocchio's formula 



2.4 Review of Relevance Feedback Techniques 33 

[l62].This is the teclmique implemented in MARS system [171]. Two factors, "component 

importance" and "inverse collection importance", were proposed for images in accordance to 

the factors "term frequency" and "inverse document frequency" in text retrieval. The vector 

space model was used for relevance feedback. They also used Gaussian normalization to put 

equal emphasis on each feature component, and then used the inverse of the standard deviation 

of each component for the images in the relevant feedback set as weights. They concluded that 

the approach adopted from text retrieval performed better than Gaussian normalization but the 

latter was more robust to unknown feature components. Another way of using the feedback to 

refine the similarity measure was proposed in [172]. where a set of similarity measures is pre­

defmed. and the system selected the similarity measure which minimized the sum of the 

differences between the ranks of the retrieved images and the ranks of the relevant images 

selected by the user. A simple algorithm based on the re-weighting method is described in the 

ImageRover system [173].This algorithm automatically selects appropriate Minkowski distance 

metrics that minimize the mean distance between the relevant images specified by the user. 

Another implementation of point movement strategy is using the Bayesian method, such as 

the work by Vasconcelos and Lippman [174] wherein Bayesian learning is used to incorporate 

user's feedback to update the probability distribution of all the images in the database. 

2.4.2 As an Optimization Problem 

Some researchers considered RF as a distance optimization problem whose solutions are 

the parameters that make it possible to find the ideal query, weight the features, and transform 

the feature space into a new one that corresponds better to the user. The MindReader retrieval 

system designed by Ishikawa et. al. [175] formulates a minimization problem on the parameter 

estimating process. Unlike traditional retrieval systems whose distance function can be 

represented by ellipses aligned with the coordinate axis, the MindReader system proposed a 

distance function that is not necessarily aligned with the coordinate axis. Therefore, it allows for 

correlations between attributes in addition to different weights on each component. A further 

improvement over the MindReader approach is given in [176], where, optimal query estimation 

and weighting functions are derived by a unified framework, based on the minimization of the 

total distances of the positive examples from the updated query. The weighted average and a 

whitening transform in the feature space were found to be the optimal solutions. Discriminant 
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Analysis-based methods either find a low-dimensional subspace of the feature space, such that 

the positive and negative samples are well separated after projection to this subspace [177] or 

defme a (1 +x)-class problem (biased discriminant analysis (BDA)) and find a subspace within 

which to discriminate the one positive class and the unknown number of negative samples 

classes [178]. More recently, the direct kernel biased discriminant analysis (DKBDA) was 

developed and reported to outperform the BDA in both linear space and the nonlinear kernel 

space [179]. 

2.4.3 As a Learning Problem 

Other researchers consider RF as a learning problem in which samples fed back by the user 

are used to train a model, which is then used for retrieval. Probabilistic Model-based methods 

use entropy to minimize the expected number of iterations [180,181]. A Bayesian framework is 

used in [180] to predict what target image users want, given the action they undertook. This is 

done via a probability distribution over possible image targets, rather than by refining a query. 

Furthermore, this model tries to minimize the number of feedback iterations by maximizing the 

information obtained from a user at each feedback iteration using an entropy-minimizing 

algorithm. Chiou-Ting Hsu et. al. proposed a generalized Bayesian framework for RF in CBIR 

[182]. The proposed feedback technique is based on the Bayesian learning method and 

incorporates a time-varying user model into the formulation. In [183], the authors used decision 

tree learning. They proposed an RF model which, for each retrieval iteration, learns a decision 

tree to uncover a common thread uniting all images marked as relevant. This tree is then used as 

a model for inferring which of the unseen images the user would most likely desire. Neural 

networks have been adopted in interactive image retrieval in view of their learning capability 

and generalization power [184-189]. Radial basis function (RBF) networks have been used to 

determine the nonlinear relationship between features so that a more accurate similarity 

comparison between images can be supported [184]. In [185], self-organizing maps (SOMs) are 

used to measure similarity between images. A separate SOM is trained for each feature vector 

type, then the system adapts to the user's preferences by returning him more images from those 

SOMs where his responses have been most densely mapped. An adaptive radial basis fimction 

network (ARBFN) has been proposed for interactive image retrieval [186]. A radial-basis 

function (RBF) network for implementing an adaptive metric which progressively models the 
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notion of image similarity through continual relevance feedback from users is proposed in 

[187]. A fuzzy radial basis function network (FRBFN) has been proposed to learn the users' 

fuzzy perceptions of visual contents using fuzzy relevance feedback [188,189]. It provides a 

natural way to model the user interpretation of image similarity. Peng-Yeng Yin et. al. proposed 

an image relevance reinforcement learning (IRRL) model for integrating existing RF teclmiques 

in a CBIR system [190]. Various integration schemes are presented and a long-term shared 

memory is used to exploit the retrieval experience from mUltiple users. 

2.4.4 As a Classification Problem 

More recently, some researchers have considered RF as a classification problem in which 

sample images provided by the user are employed to train a classifier, which is then used to 

classify the database into images that are relevant to the query and those that are not. In (191], 

the authors deVeloped a Bayesian model which supports image classes that assign a high 

membership probability to positive example images and penalizes classes that assign a high 

membership probability to negative example images. In [192], Meilhac et a1. consider that the 

image collection is made up of relevant images, among which the user chooses the positive 

examples, and non-relevant images, among which the user chooses the negative examples. They 

use a Bayesian model in which they try to estimate the distribution of relevant images and 

simultaneously minimize the probability of retrieving non-relevant images. Bayesian classifier 

has also been developed to perform retrieval based on the feedback samples. Positive examples 

are used to estimate a Gaussian distribution that represents the desired images for a given query, 

while the negative examples are used to modify the ranking of the retrieved candidates. In 

(193], Su et a1. present a Bayesian classifier in which the positive example is used to estimate 

the Gaussian distribution that represents the class of sought images, while the negative example 

is used to modify the ranking of the retrieved candidates. They use principal component analysis 

(PCA) to perform a dimension reduction and work in proper subspaces. The features can be 

selected by the boosting technique in which a strong classifier is obtained as a weighted sum of 

weak classifiers along the different feature dimensions [194]. Support Vector Machines (SVM) 

have also been widely used in RF. SVM-based methods (195] either estimate the density of 

positive instances [196] or regard RF as a classification problem with the positive and negative 

samples as training sets [197-203]. In [199], the authors combine the random subspace method 
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with SVM in order to improve the performance of the classifier. SVM active learning [200), 

which plays an important role in CBIR RF research, selects the samples near the SVM boundary 

and queries the user for labels. The points near the SVM boundary are regarded as the most 

informative images while the most-positive images are the farthest ones from the boundary on 

the positive side. Recently, SVM active learning is also combined with a multimodal concept­

dependent process for CBIR, Constrained Similarity Measure (CSM) [204]. CSM-based SVM 

[201] learns a boundary that separates all the images in the database into two clusters and the 

images inside the boundary are ranked by their Euclidean distances to the query image. Derived 

from one-class SVM [196], in [205] a Biased SVM (BSVM) is proposed, which can better 

model the relevance feedback problem and reduce the performance degradation caused by the 

imbalanced data set problem, i.e., the number of the positive feedback samples is much less than 

the number of the negative feedback samples. Tao et. al proposed an asymmetric bagging-based 

SVM (AB-SVM) to address the imbalanced data set problem. To address the over-fitting 

because the number of feature dimensions is much higher than the size of the training set, the 

random subspace method and SVM are combined for relevance feedback, which is named 

random subspace SVM (RS-SVM). Finally, by integrating AB-SVM and RS-SVM, an 

asymmetric bagging and random subspace SVM (ABRS-SVM) is proposed [206]. The small 

sample training problem is addressed by Kui Wu et. al by pseudo-labeling using a fuzzy rule by 

proposing fuzzy SVM [207]. Jing Li et. al. proposed a new machine learning technique, multi­

training SVM (MTSVM), which combines the merits of the co-training technique and a random 

sampling method in the feature space to address the over-fitting and small sample training 

problem [208]. 

2.4.5 General Techniques 

Ye Lu et. al. developed a relevance feedback framework to take advantage of the semantic 

contents of images in addition to low-level features by fonning a semantic network on top of the 

keyword association on the images [209]. Azadeh Kushki et. al. proposed method for interactive 

image retrieval using query feedback [210]. Query feedback learns the user query as well as the 

correspondence between high-level user concepts and their low-level machine representation by 

performing retrievals according to multiple queries supplied by the user during the course of a 
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retrieval session. Junwei Han et. al. reported a framework for effective image retrieval by 

memory learning [211). It forms a knowledge memory model to store the semantic information 

by simply accumulating user-provided interactions. A learning strategy is then applied to predict 

the semantic relationships among images according to the memorized knowledge. Wei Jiang et. 

0/. investigated online feature selection in the relevance feedback learning process to improve 

the retrieval performance of the region-based image retrieval system [212]. Kherfi et. aJ. 

presented a new RF framework based on a feature selection algoritlun that nicely combines the 

advantages of a probabilistic formulation with those of using both the positive examples and 

negative examples [213]. Through interaction with the user, the algoritlun learns the importance 

he assigns to image features, and then applies the results obtained to define similarity measures 

that correspond better to his judgment. In CBIR, it is crucial to effectively discover users' 

concept patterns through an acquired understanding of the subjective role played by humans in 

the retrieval process. Chen et. al. proposed mUltiple instance learning for RF to discover users 

concept patterns [214). Hoi et. al. proposed a unified framework for log-based relevance 

feedback that integrates the log of feedback data into the traditional relevance feedback schemes 

to learn effectively the correlation between low-level image features and high-level concepts 

[215]. In RF all positive feedbacks share a homogeneous concept while negative feedbacks do 

not. Dacheng Tao et. al. proposed a scheme for negative sample analysis in RF, in which 

positive samples are described by a single hypersurface and negative samples are split into a 

number of subsets, each one of which has a simple distribution [216]. An orthogonal 

complement component analysis technique is also proposed in [217] to address this issue. 

2.5 Review of Major CBIR Systems for Medical Images 

Although CBIR of general images has matured and a standard (MPEG-7) has been 

developed for coordination of research, content-based retrieval for medical images is still in its 

infancy. CBIR has been proposed for various medical applications. However, due to the nature 

of medical images, content-based retrieval for medical images is still faced with challenges. 

Tagare et. al. pointed out some of the unique challenges confronting retrieval engines with 

medical image collections [218]. Low resolution and strong noise are two common 

characteristics in most medical images [219]. With these characteristics, medical images cannot 

be precisely segmented and extracted for the visual content of their features. In addition, 
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medical images obtained from different scanning devices may display different features, though 

some approaches to image correction and normalization have been proposed [220]. Medical 

images are digitally represented in a multitude of fonnats based on their modality and the 

scanning device used [221]. Another characteristic of medical images is that many images are 

represented in gray level rather than color. Even with the change of intensity, monochrome may 

fail to clearly display the actual circumstance of lesion area. Furthennore, medical image 

interpretation is a complex and poorly understood process. 

Common systems for CBIR have only a rudimentary understanding of image content. Such 

systems make no distinction between important and unimportant features or between multiple 

objects in the image. The features used for automated indexing characterize the entire image 

rather than unique regions or objects. In contrast, queries of medical or diagnostic relevance 

include searching for organs, their relative locations, and other distinct features such as 

morphological appearances. Therefore, common CBIR-systems cannot guarantee a meaningful 

query completion when used within the medical context [222]. Therefore, the results are rather 

poor when common CBIR-systems are used to retrieve medical images [223,224]. For CBIR of 

medical images, specialized solutions must be developed depending on the image modality, 

anatomical region and pathology of interest. Often, human-in-the-Ioop (a physician-in-the-Ioop, 

more specifically) approach in which the human delineates the pathology bearing regions (PBR) 

and a set of anatomical landmarks of the image, at the time the image is entered into the 

database [225]. The content-based retrieval systems for medical images can be broadly 

classified into two: systems for general medical categorization of images and specialized 

systems for images of specific organ and modality. Although content-based image retrieval has 

frequently been proposed for use in medical image management, only a few content-based 

retrieval systems have been developed specifically for medical images. A detailed review of 

medical CBIR systems is given in [226, 227]. This section gives an overview of the currently 

available literature on content-based image retrieval in the medical domain. 

2.5.1 General Systems 

This section provides an overview of non-specialized, in terms of image type, CBIR 

systems in the medical field. 



2.5 Review of Major CBIR Systems for Medical Images 39 

1.5.1.1 KmED 

Knowledge based medical database (KmED) system utilizes semantic modeling focusing 

on object shapes and spatial relationship between them [228], A knowledge-based approach to 

retrieve medical images by feature and content with spatial and temporal constructs was 

developed by Chu et. al. [229]. Selected objects of interest in a medical image (e.g., x-ray, MR 

image) are segmented, and contours are generated from these objects. Features (e.g., shape, size, 

texture) and content (e.g., spatial relationships among objects) are extracted and stored in a 

feature and content database. A knowledge-based semantic image model is proposed that 

consists of four layers (raw data layer, feature and content layer, schema layer, and knowledge 

layer) to represent the various aspects of the characteristics of an image. The model provides a 

mechanism for accessing and processing spatial, evolutionary, and temporal queries. 

2.5.1.2 COBRA 

COBRA [230] (COntent-Based Retrieval Architecture) is an open architecture for PACS 

based on the widely used health care and technology standards. In addition to regular P ACS 

components, COBRA includes additional components to handle representation, storage, and 

content-based similarity retrievaL Within COBRA, an anatomy classification algorithm is 

introduced to automatically classify P ACS studies based on their anatomy. Such a classification 

allows the use of different segmentation and image-processing algorithms for different 

anatomies. COBRA uses primitive retrieval criteria such as color, texture, shape, and more 

complex criteria including object-based spatial relations and regions of interest. 

2.5.1.3 medGIFT 

The medGIFT [231,232] is based on the open source image retrieval system (GIFT - GNU 

Image Finding Tool) for the retrieval of medical images in the medical case database system 

Cashnage that is used in daily, clinical routine in the university hospitals of Geneva. The 

CasImage system, works on a variety of images from eT, MRI, and radiographs, to color photos 

and is integrated to PACS [227, 233]. The medGIFT retrieval system extracts global and 

regional color and texture features, including 166 colors in the HSV color space, and Gabor 
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filter responses in four directions each at three different scales. Combinations of textual labels 

and visual features are used for medical image retrieval. 

2.5.1.4 IIl1VI~ 

The IRMA (Image Retrieval in Medical Applications) system supports image database of 

varying image modalities [224, 234-237].This system is implemented as a platform for content­

based image retrieval in medical applications. To enable complex content understanding the 

IRMA concept is based on a conceptual and algorithmic separation of seven processing steps 

• categorization with respect to image modality, anatomic region, function system, and 

body orientation using global image features 

• registration in geometry and contrast for each likely category 

• feature extraction using local features 

• feature selection and combination with respect to category and query content 

• indexing resulting in a hierarchical multi-scale blob representation 

• identification of blobs by linking a-priori knowledge to image content 

• retrieval processed on the abstract blob-level 

2.5.2 Specialized Systems 

2.5.2.1 ~SSERT 

The ASSERT (Automatic Search and Selection Engine with Retrieval Tools) system uses a 

physician-in-the-Ioop approach for retrieving images of High-Resolution Computed 

Tomography (HRCT) of the lung [238-241]. This approach requires users to delineate the 

pathology-bearing regions and identify certain anatomical landmarks for each image. This 

system extracts 255 features of texture, shape, edges, and gray-scale properties in the pathology­

bearing regions. In this system, lobular feature sets (LFS) on HRCT images are translated into 

an index for archiving and retrieval. A multi-dimensional hash table for the LFS classes is 

constructed for the system. A decision tree algorithm is used to construct a minimum entropy 

partition of the feature space where the LFS classes reside. After translating a decision tree to a 

hash table, the system prunes the set of retrieved LFS classes and candidate images. 
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2.5.2.2 WebMIRS 

The WebMIRS (Web-based Medical Infonnation Retrieval System) will allow access to 

databases containing text and images and will allow database query by standard Structured 

Query Language (SQL), by image content, or by a combination of the two [242-249]. The Lister 

Hill National Center for Biomedical Communications, an R&D division of the U.S. National 

Library of Medicine, maintains a collection of 17,000 digitized spine X-rays from the Second 

National Health and Nutritional Examination Survey (NHANES II). The WebMIRS system is 

evaluated using this database, and the pathology of interest was anterior osteophyte. 

This system contains the Active Contour Segmentation (ACS) tool, which allows the users 

to create a template by marking points around the vertebra. If the segmentation of a template is 

accepted, the ACS tool will estimate the location of the next vertebra, place the template on the 

image, and then segment it. In data representation, a polygonal approximation process is applied 

for eliminating insignificant shape features and reducing the nwnber of data points. The data 

obtained in the polygonal approximation process represent the shape of vertebra. Then, the 

approximated curve of the vertebra is converted to tangent space for similarity measurement. 

Dynamic Progranuning (DP) in Partial Shape Matching (PSM) techniques are used for shape 

based retrieval [250]. 

A linear weight-updating approach for RF has been proposed for improving the retrieval 

accuracy of vertebra shapes [251]. 

2.5.2.3 I-Browse 

I-Browse project [252] was aimed at supporting intelligent retrieval and browsing of 

histological images, obtained along the gastrointestinal tract. With the help of knowledge bases 

and reasoning engines, high-level semantic attributes of images are obtained and textual 

annotation of images are automatically generated in this system. 

2.5.2.4 IGDS 

Image Guide IGDS [253] (Image Guided Decision Support) is a CBIR system in the 

domain of cytopathology images. In this system, a classification-based approach is perfonned to 

detect different types of blood cells based on the properties of cell nucleus. 
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2.5.2.5 VOI-FIRS 

VOI-FIRS (Volume Of Interest based Functional Image Retrieval System) is based on 

multidimensional feature extraction and retrieval [254]. It is volume of interest (VOI) based 

content-based retrieval of four-dimensional (three spatial and one temporal) dynamic positron­

emission Tomography (PET) images. By segmenting the images into VOIs consisting of 

functionally similar voxels (e.g., a tumor structure), multidimensional visual and functional 

features were extracted and used as region-hased query features. 

2.5.2.6 Other Work 

Korn et. al. described a system for fast and effective retrieval of tumor shapes in 

mammogram X-rays [255]. Other works for retrieval of digital manunogram images are 

reported in [256-258]. Ultrasound images of the breast are used in [259]. Recently, Issam EI­

Naqa et. al. proposed a similarity learning approach to CBIR of digital mammograms based on 

the cluster of micro calcifications [260]. Neural networks and support vector machines are used 

to predict the user's notion of similarity. A hierarchallearning approach is used, which consists 

of a cascade of a binary classifier and a regression module to optimize retrieval effectiveness 

and efficiency. 

Swett and Miller developed a rule-based expert system was developed to display chest 

radiographs from a library of images as illustrative examples for helping radiologists' diagnosis 

[261]. Kelly and Cannon proposed a retrieval method based on texture, and shape analysis was 

applied for search and retrieval of a database containing pulmonary computed tomography (CT) 

images [262]. Guimond and Subsol described an algorithm for retrieval of 3-D magnetic 

resonance images based on anatomical structure matching [263]. Liu and Dellaert developed a 

similarity metric based on Bayes decision theory for retrieval of neuroradiological CT images 

[264],. In [265] and [266J, a technique was developed that reduces high-dimensional data to a 

two-dimensional feature space in which images that are close to each other are selected for 

purposes of visualizing relationships in the data. Kawata et. al. developed a retrieval method 

using correlation coefficients in a database of pulmonary nodules represented by the joint 

histogram of the pattern CT density and 3-D curvature shape index [267]. Zhao et. al. used 

Gabor texture d~scriptor for retrieval of liver CT images [268]. A CBIR system for osteo-
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articular MRI application based on a semi-supervised learning method using mixture models is 

proposed by Najjar et. al. [269]. 

2.6 Similarity Measures 

In CBIR systems, image features are in general organized into n-dimensional feature 

vectors. Thus the query image and the database images can be compared by evaluating the 

distance between their corresponding feature vectors. Both metric and non-metric measures 

have been used in CBIR systems. Statistical distances such as the Mahalanobis distance have 

also been used [270]. 

Often different image features are indexed separately, thus similarity scores can be 

computed independently for each feature. Then the overall similarity score is obtained as a 

linear combination of these scores [271, 272]. The weights of this linear combination may be 

specified by the user or automatically adjusted by the system based on the feedback of the user 

[273]. 

Specific distances have been defined for specific features: e.g. for histograms commonly 

used measures are the histogram difference, histogram intersection [274, 275] or the quadratic 

distance [273, 276, 277]. The latter tries to account for the perceptual difference between any 

pair of bins in the histogram. The Hausdorff distance has been used to compare histograms as 

well as shapes in [278]. 

Many similarity measures are based on the Lp distance between two points in the n­

dimensional feature space. For two points x, y the Lp distance is defmed as 

n p l' 

L/x,y) = (L!x j -Yi! )'P, called Minkowski distance. For p = 2 we get the Euc1idean 
;=0 

distance and for p = 1 we get the Manhattan, city block, or taxicab distance. The L 1 and L2 

norms are analyzed in [272] and [279], and their perfonnances are compared. 

The retrieval perfonnance of a system depends on the agreement between the similarity 

measure used and human judgments of similarity, since the end consumer of CBIR results is a 

human. Therefore, several measures in accordance with the human perception have been 

developed in [280-288]. A good review of similarity measures for shape matching is presented 

in [289]. 
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Chapter 3 

Scoliosis - An Overview 

3.1 Introduction 

All spines have curves, but occasionally the spine twists and develops curves in the wrong 

direction - sideways. It is a condition known as scoliosis. Scoliosis occurs relatively frequently 

in the general population, and its frequency depends upon the magnitude of the curve being 

described. Scoliosis of greater than 25 degrees has been reported in about 3-5/1000 persons in 

the United States [1]. If scoliosis is neglected, the curves may progress dramatically, creating 

significant physical defonnity and even cardiopulmonary problems. Generally, scoliosis is 

treated by orthopedic surgeons with special training in spinal problems. Since a part of the work 

is to construct a system for measurement and analysis of scoliosis, a brief introduction to the 

pathology is presented here. Important literature related to spine localization and scoliosis 

measurement is reviewed in this chapter. 

3.2 Human Spine Anatomy 

The human spine consists of number of small bones (vertebrae) and joints (intervertebral 

disks) together to form a flexible spinal column. A normal adult spine contains 33 vertebrae, 

and 23 intervertebral disks. A vertebra is composed of a ventrally placed body and a dorsal arch. 

The dimensions of the vertebral body and disk gradually increase from cervical to lumbar spine. 

The vertebral body is responsible for carrying weight and protecting the spinal cord and the 
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nerve roots. They are attached firmly to each other by intervertebral disks. 

Classically the vertebral column is divided into several regions. Seven vertebrae starting 

from the top of the spine belong to tbe Cervical spine (CI-C7); twdve vertebrae after cervical 

spines are called the Thoracic spine (TI-TI2); five (or six) bottom ones belong to the Lumbar 

spine (L1-L5); five (fused) verteb",e fonn the Sacrum spine (SI-SS); and the last three belong 

to the Coccyx spine. A normal adult spine also has cervical, thoracic, lumbar and sacral curves 

along the vertebral column as we can see in Figure 3.1. 

The lumbar spine's shape has a lordotic curve. The lordotic shape is like a backward ne". If 
you think of the spine as having an "Sit -like shape, the lumbar region would be the bottom of the 

"S". The vertebrae in the lumbar spine area are the largest of the entire spine. 
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The vertebrae of thoracic spine connect to the ribs and form part of the back wall of the 

thorax (the ribcage area between the neck and the diaphragm). Very narrow and thin 

intervertebral discs present at this part of the spine allow only much less movement between 

these vertebrae than in the lumbar or cervical spine. The thoracic spine's curve is called kyphotic 

because of its shape, which is a regular "C" curve with the opening of the C in the front. 

The cervical spine starts just below the skull and ends just above the thoracic spine. 1be 

cervical spine has a lordotic curve (a backward C-shape) - just like the lumbar spine. The 

cervical spine is much more mobile than both of the other spinal regions. Two vertebrae in the 

cervical spine, the atlas and the axis, differ from the other vertebrae because they are designed. 

specifically for rotation. 

3.3 X-ray Imaging of Spine 

X-ray imaging' is a painless method of using radioactive materials to capture images of 

bone. During X-ray imaging, patient will be asked to hold certain still positions in a standing or 

lying posture, while pictures of spine are taken. 

The three axis of human spine is shown in Figure 3.2. They are coronal plane, sagittal plane 

and axial plane. In X-ray imaging. coaunon views taken are 

• Anteroposterior (AP) view: front-back view of spine (coronal plane) 

• Posteroanterior (PA) view: back-front view of spine (coronal plane) 

I ' 

\ 
11 

Figure 3.2 Different axis of human spine 
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• Lateral view: side-ta-side view of spine (sagittal plane) 

3.4 Scoliosis 

Scolios is is lateral curvature of the spine. The normal spine is straight in the coronal plane 

and has '5' shaped curvature in the sagi ttal plane. But in the case of scoliosis. the spine is 

curved in the coronal plane as shown in Figure 3.3. The following are a few typical physical 

features/symptoms of scoliosis: 

• Asymmetry in the shoulders. trunk . scapula. aod waistline - one shoulder or hip will be 

higher than the other 

• A prominent shoulder blade - onc is higher than the other and sticks OUI further 

• Symptoms are most noticeab le when bending over 

• Rib hump - which occurs when scoliosis causes the chest to twist and throws off the 

alignmenl of the shoulder blade; this causes a hump on the back at the ribs or near the 

waist when the patient bends 

• One arm hangs longer than the other because of a lil! in the torso 

Scol iosis is a com plicated deformity that is characterized by both lateral curvature and 

vertebral rotation. As the disease progresses. the vertebrae and spinous processes in the area of 

the major curve rOlate toward the concav ilY of the curve. On the concave side of Ihe curve. the 

ribs are close together. On the convex side. they are widely separated. Vertebral canal is 

narrower on the concave side. Phys iological changes include: I} Decrease in lung vital capac ity 

due to a compressed intrathoracic cavity on the convex side and 2) With left scoliosis. the hean 

is displaced down ..... ard; and in conjunction with intrapulmonary obstruction. this can resuh in 

Figure 3.3 A case of scoli os is 
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right cardiac hypertrophy. 

3.4.1 Diagnosis 

X-ray images are the most important evidence of scoliosis. For diagnosing scoliosis the 

following images will be taken: 

• Three-foot standing AP or PA 

• Three-foot standing lateral 

• Lateral bend (sideways view while bending forward at the waist) 

• Traction films - traction is when your spine is pulled and held in a particular position; 

these films are only occasionally taken 

3.5 Types of Scoliosis 

The scoliosis curves are broadly classified into two: structural or nonstructural. Structural 

curves are those in which lateral bending of the spine is asymmetric or the involved vertebrae 

are fixed in a rotated position or both. These are the curves the patient cannot correct by lateral 

bending. Nonstructural curves, in contrast, are those in which intrinsic changes in the spine or 

its supporting structures are absent. In these curves, lateral bending is symmetric and the 

involved vertebrae are not fixed in the rotated position. Generally a nonstructural curve requires 

no treatment or any treatment is directed toward its cause, which is not located in the spine 

itself. 

The structural scoliosis can be further classified into idiopathic, congenital, and paralytic 

[2]. When the scoliosis does not have a known cause, the condition is called idiopathic 

scoliosis. Idiopathic genetic scoliosis accounts for about 80 % of all cases of the disorder, and 

has a strong female predilection (7:1). It can be subclassified into infantile « 3 years), juvenile 

(between 4 and 1 0 years) and adolescent types (> 10 years), depending upon the age of onset. 

Idiopathic scoliosis in adolescents is called adolescent idiopathic scoliosis (AIS). Scoliosis can 

result from congenital vertebral anomalies. Discovery of these anomalies should prompt a 

workup for other associated cardiac, genitourinary or vertebral anomalies. Paralytic scoliosis is 

generally caused by neuromuscular diseases, neurafibramatosis or spinal cord tumors. Scoliosis 

also occurs due to trauma. 
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3.6 Basic Definitions 

Basic definitions of the standard terminology used in scoliosis measurement are given 

below. The defined terms are marked in an AP view scoliosis image in Figure 3.4. 

3.6.1 Central Sacral Line (CSL) 

eSL is called the spinal axis. It is the line passing through tbe centroid of the sacrum and 

perpendicular to the line joining the top points of iliac crests. In nonnal cases the pelvis is 

aligned parallel to the horizontal axis and eSL is a vertical line passing through the CCIltroid of 

sacrum. This eSL is called central sacral vertical line (CSVL). This is based on the assumption 

that the leg lengths are equal. 
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3.6.2 Pelvic Inclination 

The inclination of the line joining the top - mid points of the iliac crests to horizontal axis 

is called pelvic inclination. 

3.6.3 Apical Vertebra (AV) 

It is the center vertebra of each of the curve, also called curve apex. The curve apex could 

be a vertebra or a disk between the vertebrae, if two vertebrae are located in the curve center. By 

defmition, AV has the following properties: most horizontal vertebra with respect to the 

horizontal axis, rnaximally rotated vertebra, most wedged vertebra, and maximally displaced 

vertebra from CSL 

3.6.4 Apical Distance 

Apical distance is the perpendicular distance from centroid of AV to the CSL. 

3.6.5 End Vertebrae 

They are the vertebra in the upper and lower limit of the curve and with maximum endplate 

tilt angle. The vertebra at the upper limit of the curve is called upper end vertebra (UEV) and at 

the lower limit is lower end vertebra (LEV). They are also called superior end vertebra and 

inferior end vertebra. The disc above the UEV and below the LEV will have maximum parallel 

end plates. 

3.6.6 Spinal Balance (Coronal Balance) 

Spinal balance is the horizontal distance between sagittal C7 plumbline (a vertical line 

passing through the centroid of C7) and CSL. This is an indication of the amount of shoulder 

elevation due to scoliosis. 

3.6.7 Tilt Angle of a vertebra 

The angle made by the inferior end plate of a vertebra with the horizontal axis. 
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3.7 Radiographic Assessment of the Scoliosis 

3.7.1 Measurement of Curve 

The radiographic assessment of the scoliosis begins with erect anteroposterior (AP) and 

lateral views of the entire spine (occiput to sacrum). A lateral view of the lumbar spine is also 

taken to look for the presence of spondylolysis or spondylolisthesis (prevalence in the general 

popUlation is about 5 %). The scoliotic curve is then measured from the AP view. The Cobb 

method [3,4] is the most commonly used method (used by the Scoliosis Research Society) for 

scoliosis measurement [2]. The Cobb method has several advantages over other methods, 

including the fact that it is more consistent while measured by several different examiners. 

3.7.1.1 Cobb Method 

Cobb angle is the most important parameter in scoliosis diagnosis and is reported along 

with the location of the curve. This method consists of three steps: (1) locating the superior end 

vertebra (upper limit of curve), (2) locating the inferior end vertebra (lower limit of curve), and 

(3) drawing intersecting perpendiculars from the superior surface of the superior end vertebra 

and from the inferior surface of the inferior end vertebra as shown in Figure 3.5. The angle of 

deviation of these perpendiculars from a straight line is the angle of the curve. The end 

vertebrae of the curve are the ones that tilt the most into the concavity of the curve being 

measured. If the endplates cannot be easily seen, these lines can be drawn along the top or 

bottom or the pedicles. Generally, as one moves away from the apex of the curve being 

measured, the next intervertebral space inferior to the inferior end vertebra or superior to the 

superior end vertebra is wider on the concave side of the curve being measured. Within the 

curve being measured the intervertebral spaces are usually wider on convex side and narrower 

on the concave side. When significantly wedged, the vertebrae themselves rather than the 

intervertebral spaces may be wider on the convex side of the curve and narrower on the concave 

side. Appelgren and Willner modified the Cobb method by dividing the Cobb angle into two 

parts, as the sum of the angles between each end vertebra and the horizontal plane (5]. Usually, 

the original Cobb technique is used for measurements. 
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3.7.1.2 Other Techniques 
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Other similar measurement techniques are: I) Anterior Vertebral body technique; where 

scoliosis is measures in terms of the intersecting angle of the lines paralleling the anterior aspect 

of each of the vertebral bodies, 2) Posterior Vertebral body Technique; where the intersecting 

angle of the lines paralleling the posterior aspect of each of the vertebral bodies, 3) Cobb­

Posterior Vertebral Technique; where the intersecting angle of the lines drawn along the 

superior end plate of the superior vertebral body and along the posterior aspect of the inferior 

vertebral body is measured [6]. In Risser-Ferguson method, straight lines are drawn from the 

middle of the end vertebra to the middle of the vertebrae at the apex of the curve [7]. This 

method is not frequently used. A technique useful when evaluating minimal curvatures, which 

are often difficult to measure with the currently accepted methods, was introduced in 1978 by 

Adam Greenspan and is more accurate in measuring the deviation of each involved vertebra [8]. 

This technique, called the "scoliotic index," measures the deviation of each involved vertebra 
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from the vertical spinal line, as determined by a point at the cent er of the vertebra immediately 

above the upper end-vertebra of the curve, and the center of the vertebra immediately below the 

lower end-vertebra. 

The accuracy and precision of the Cobb method compared to other techniques in measuring 

coronal plane abnormalities have been well documented [9, 10]. 

3.7.2 Measurement of Vertebral Rotation 

The position of the pedicles on the x-ray image indicates the degree of vertebral rotation, 

which Nash and Moe divided into five grades as shown in Figure 3.6. If the pedicles are 

equidistant from the sides of the vertebral bodies, there is no vertebral rotation (grade 0). The 

grade then increase up to grade 4 rotation, which indicates that the pedicle is past the center of 

,-. ,-, ~~~F.I '.' .. ~L-JL-J~ 
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Figure 3.6 Nash and Moe method of determining vertebral rotation 

the vertebral body [2]. 

3.8 Classification Schemes 

In idiopathic scoliosis most of the characteristic features of the primary curve or curves are 

present at the onset of deformity and they rarely change. As the primary curve increases, one or 

two vertebrae may be added to it, but its apex, location and the direction of rotation of the 

included vertebrae remain unchanged. A curve classification scheme is useful in predicting the 

natural history based on the grouping and also in assignment of therapeutic strategies. 

Classification is usually taken as a factor in deciding the extent of spinal arthrodesis. Usually 

curves are identified in the medical community by their curve pattern type and are an integral 

part in scoliosis description. Many curve pattern classification schemes are in use today and new 

schemes are frequently proposed. Most important schemes are 

• Ponsetty and Friedman scheme [11] 
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• King et. al. classification [12] 

• Lenke et. al. classification [13] 

• Peking Union Medical College (PUMC) method [14] 

• SRS classification [15] 

The Ponsetty and Friedman scheme is used in this thesis and hence its brief review is 

provided here. 

3.8.1 Ponsetti and Friedman Scheme 

Ponsetti and Friedman found that spinal curves form five main patterns that behaved 

differently. Also, a sixth pattern was described by Moe. 

3.8.1.1 Single Major Lumbar Curve 

This was described as the most benign and least deforming of all curves. It can however 

cause marked distortion of the waistline. It usually contained five vertebrae, TII to L3, with 

apex at Ll or L2. 

3.8.1.2 Single Major Thoracolumbar Curve 

It usually included six to eight vertebrae, and extended from T6 or T7 to Ll or L2. Its apex 

was at TII or T12. Curves of this type produce more cosmetically objectionable deformities 

than thoracic or lumbar curves of the same magnitude, especially when the curves are long. 

3.8.1.3 Combined Thoracic and Lumbar Curve (Double Major Curve) 

In these patients, the two curves being present from the onset and essentially equal. The 

thoracic curve is usually to the right and includes five or six vertebrae from T5 or T6 to TI 0 or 

TII. Its apex is at T7 or T8. The lumbar curve is usually to the left and includes five or six 

vertebrae from TI 0 or TIl to L3 or L4. Its apex is at L2 or L2. Often a neutral or unrotated 

vertebra was common to the adjacent ends of the curves. The prognosis as to cosmetics is good. 

Deformity of the back and decrease in the vital capacity is less severe than in single thoracic 

curve. 
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3.8.1.4 Single Major Thoracic Curve 

Its onset is earlier than any other type of curve. It usually includes six vertebrae from T5 or 

T6 to T 11 or T 12 and has its apex at T8 or T9. Because of the thoracic location of this curve, 

marked rotation of the involved vertebrae is present. The curve produces prominence of the ribs 

on its convex sides and depression of the ribs on its concave side and elevation of one shoulder, 

resulting in an unpleasant deformity. 

3.8.1.5 Cervicothoracic Curve 

Although this type of curves never seemed to become large, the deformity is unsightly 

because of the elevated shoulder. The deformed thorax could be poorly disguised by clothing. 

The apex is usually at T3 with the curve extending from C7 or Tl to T4 or T5. 

3.8.1.6 Double Major Thoracic Curves 

This pattern was described by Moe. It consists of a short upper thoracic curve often 

extending from TI to T5 or T6 with considerable rotation of the vertebrae and other structural 

changes in combination with a lower thoracic curve extending from T6 to Tl2 or Ll. The upper 

curve is usually to the left and lower curve is usually to the right. The appearance of patients 

with this curve is usually better than with a single thoracic curve, but asymmetry in neckline is 

~Yident. 

3.9 Related Pathologies 

This section briefly introduces other pathologies related to scoliosis: kyphosis and lordosis. 

They are also deformities due to the curvature of spine. 

3.9.1 Kyphosis 

As introduced in Section 3.2 the thoracic spine has a curvature in the sagittal plane. Normal 

t~::)facic kyphosis is in the range of 200 to 500 [16]. But, if the curve in a person's thoracic spine 

is more than 50 degrees, it is considered abnormal and the spinal deformity is called kpyphosis. 
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Sometimes this defonnity is described as "round back posture" or "hunchback". The kyphosis is 

measured using Cobb technique in lateral x-rays of the spine. 

3.9.2 Lordosis 

The cervical spine (neck) and lumbar spine (lower back) have lordotic curves (like a 

backward "C") in sagittal plane. The direction of this curve is opposite to that of kyphosis. 

Hardacker suggests that the nonnal range of cervical10rdosis is 400 (+/-) 9.70 [17]. Lumbar 

lordosis ranges from 31 0 to 790 in nonnal situations depending from where you chose to 

measure it [18]. The lordosis is measured using Cobb technique in lateral x-rays of the spine. A 

value exceeding nonnallimits is a spinal defonnity called lordosis. 

3.10 Literature Review 

This section reviews important literature related to spme localization and scoliosis 

measurement of digitized spine x-ray images. 

3.10.1 Spine Localization 

Spine localization refers to estimation of location and position of spine in digitized x-ray 

images. The methods proposed can be divided into two categories: semi-automated and fully­

automated. Semi-automated techniques demands hwnan intervention at some point during 

segmentation, while fully-automated techniques do not involve human intervention. 

3.10.1.1 Semi-automated Techniques 

In the literature, some human assisted methods are reported for the segmentation of the 

vertebrae by using Active Contour Segmentation (ACS) technique [19]. A fundamental and 

comprehensive treatment of the whole field of active shape modeling (ASM), which has given 

technical direction to a nwnber of research efforts was provided by cootes et. al. [20]. A semi­

automated method has been proposed for the segmentation of lwnbar spine dual x-ray 

absorptiometry (DEXA) images [21]. The user manually identifies two "anchor points" for 

placing a template. The template then defonns by ASM, maintaining invariance of the anchor 
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points, which are placed at the top and bottom of a column of vertebrae. Another ASM based 

technique uses manually selected boundary points of the vertebra to form the shape model and 

gray-scale model created by sampling the gray-scale profile (or gray-scale difference profile) 

along normal to each of these points [22]. In a test set of 40 cervical spine images, for 16 of the 

cases, the results showed a mean point-to-point error of less than 1/10 inch. Strong sensitivity 

of convergence to initial template positioning was observed in some cases [23]. 

3.10.1.2 Fully-automated Techniques 

The fully automated methods proposed in the literature can be broadly classified into two 

groups. 1) based on landmark points like skull, shoulder etc to determine the characteristic 

curves assumed to lie in the spine region [24-26] and 2) a template matching based method for 

spine pose estimation [27, 28J. The first category includes a method proposed by Zamora et. al. 

which determines the approximate spine axis location, based on line integrals of image gray­

scale [29]. He reported an orientation error in his algorithm of less than 15 degrees, for 34 of the 

cases in a test set of 40 cervical spine images. Also, Dynamic programming methods are 

proposed for spine axis localization in the region of interest computed from basic landmark 

points [30]. The algorithm was tested in a test set of 48 images and the landmark points and 

spine axis could be successfully computed for 46 cases. In the template matching method, a 

customized implementation of the Generalized Hough Transform (GHT) is used for the object 

localization [27]. A template, which represents the shape of the object of interest (spine), is 

matched to a target image for different values of position, orientation, and scale. The output of 

GHT is the pose of the object within the image. For the cervical images, the GHT template 

represents the interior endplate of C2 and C3 through C6, and for the lumbar images, the 

template represents Ll through L5. 

Another solution to the problem of vertebrae segmentation in digitized x-ray images is a 

hierarchical approach that combines three different methodologies [25, 26]. The first module is 

a customized Generalized Hough Transform (GHT) algorithm that is used to find an estimate of 

vertebml pose within target images. The second module is a customized version of Active 

Shape Models (ASM) that is used to combine gray-level values and edge information in order to 

find vertebral boundaries. ASM is a technique that captures the variability of shape and local 

gray-level values from the training set of images and builds two models, one for shape (SM) and 
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for gray-level values (GLM). Segmentation with ASM is achieved by iteratively defonning the 

SM towards the boundaries of the objects of interest as guided by GLM. It requires GLM to be a 

good representative of the gray-level values of the images around the shapes of interest and the 

deformation of SM does not allow for local deformations of shape at key parts of the objects. 

The third module is a customized DM (Deformable Model) approach based on the minimization 

of external and internal energies, that allow the capture of fine details such as vertebral corners 

[26]. The local deformation shortcoming of ASM is addressed by building a number of DMs 

along the local shapes of interest, such as vertebral corners, and defonning them according to an 

energy minimization approach. Thus, the ASM module needs to be correctly initialized with the 

location and orientation of the spine for accurate segmentation. 

3.10.2 Scoliosis Measurement 

The scoliosis is evaluated by measuring the Cobb angle of the curve. Accuracy and 

reliability in Cobb angle measurement is an important issue. The poor reproducibility of Cobb 

angle measurement commonly raises uncertainty about the validity of identified changes or 

progression in curvature [9, 31]. A 5° increase in Cobb angle measurements between two 

follow-up visits can suggest a curvature progression, and this may lead to changes in the 

treatment plan [32]. There are manual and computer-assisted techniques in use for scoliosis 

measurement. A number of publications are available in the literature reporting the 

measurement error and inter and intra observer reliability. 

Manual measurement of the Cobb angle between involved vertebrae on spinal radiographs 

is done using simple protractors or other devices [33]. Numerous studies have focused on the 

error inherent in manual measurements of spinal alignment using plain film radiographs [9, 10, 

34-37J. Carman et. al [9] reported an average difference of 3.8° (95% of differences less than 

8.0°) in repeated measurements by 5 readers on 8 radiographs. They inferred from analysis of 

variance components that the overall standard deviation was 2.97°. Average intraobserver 

standard deviation (SD) has been reported as 3.5 ° and interobserver SD range from 2.8 ° to 7.2° 

[10, 38]. Cumulative errors ranging from 5 0 to 10 ° have been reported for successive 

measurements [39]. Oda et al reported that 5 surgeons, measuring 50 radiographs, had an 

average error of 9° (calculated as twice the standard deviation) and that the main error source 

was in identifying end vertebrae [40]. High levels of variability have also been reported' when 
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the end vertebrae of the curve are pre-selected. Morrissy et a/.(lO] reported an intra-subject 

variability of 2.8 0 and an inter-subject variability of 6.3 0 under conditions of pre-selection. 

These findings indicated that a change in a Cobb angle measurement of less than 100 cannot be 

interpreted with confidence as a real change [38]. Goldberg et al [41] showed interobserver 

variability of 2.5 0 and intraobserver reliability of 1.90 in a study by 4 evaluators of the primary 

curve identified in 30 radiographs. They also reported that the interclass correlation coefficient 

for the Cobb angle was 0.98. The interobserver standard deviation was 2.8 0 and the 

intraobserver standard deviation was 1.80 in a study by Yliko&ki and Tallroth [42] in 

consecutive measurements of Cobb angle of 30 untreated patients having a mean Cobb angle of 

24.40 by 2 readers using a specially designed angle-measuring instrument ("Plurimeter"). 

Computer-assisted methods have enabled the evaluation of spinal curves with greater 

accuracy and lower measurement error compared to manual techniques [43]. Shea et al. reports 

that for manual measurements the intraobserver error was 3.3 0 and for computer-assisted 

measurement 2.6 0 [43]. 

Nachiappan et al. [44] proposed a system in which the vertebral column is subdivided into a 

number of segments and the observer marks the lateral and medial intersecting points. The 

maximum angle is taken as the Cobb angle. Recently, Stokes et al. proposed a new system in 

which the user marks standard landmark points and the computer logic automatically measures 

the Cobb angle and classifies the curve [38, 45]. In that study of patients with larger 

(preoperative) scoliosis, the average sample standard deviations of the Cobb angle were 

(intraobserver) 2.00 for upper and lower curves, and (interobserver) 2.5 0 and 2.60 for upper and 

lower curves, respectively. 
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Chapter 4 

Basic Theory of Fundamental Tools 

4.1 Introduction 

This chapter provides a brief overview of the theory of fundamental tools used in this 

research. A brief review of the various classifiers used in the thesis is presented. A technique for 

multi-class support for binary classifiers is detailed next. Various perfonnance measurement 

schemes employed in this research and statistical tools used for analysis are outlined. 

4.2 Classifiers 

Neural networks are frequently employed to classify patterns based on learning from 

examples. While different neural network paradigms employ different learning rules, all these 

paradigms detennine pattern statistics from a set of training samples and then classify new 

patterns on the basis of these statistics. 

4.2.1 Probabilistic Neural Network (PNN) 

The PNN was developed by Donald Specht following an approach developed in statistics, 

called Bayesian classifiers [1, 2, 3]. The PNN uses a supervised training set to develop 

distribution functions within a pattern layer. These functions, in the recall mode, are used to 

estimate the likelihood of an input feature vector being part of a learned category or class. The 

learned patterns can also be combined or weighted, with the a priori probability, also called. the 



78 Chapter 4. Basic Theory of Fundamental Tools 

21 

19 

22 
Out 

20 
Summation 

Norm 

In 

Figure 4.1 An example Probabilistic Neural Network 

18 
Pattern 

relative frequency, of each category to detenrune the most likely class for a given input vector. 

If the relative frequency of the categories is unknown, then all categories can be assumed to be 

equally likely and the determination of category is solely based on the closeness of the input 

feature vector to the distribution function of a class. 

An example of a probabilistic neural network is shown in Figure 4.1. This network has 

three layers. The network contains an input layer which has as many elements as there are 

separable parameters needed to describe the objects to be classified. It has a pattern layer, which 

organizes the training set such that each input vector is represented by an individual processing 

element. And finally, the network contains an output layer, called the summation layer, which 

has as many processing elements as there are classes to be recognized. Each element in this 

layer combines via processing elements within the pattern layer which relate to the same class 

and prepares that category for output. Sometimes a fourth layer is added to normalize the input 

vector, if the inputs are not already normalized before they enter the network. The input vector 

must be normalized to provide proper object separation in the pattern layer. 

4.2.2 Learning Vector Quantization (L VQ) Network 

Learning Vector Quantization (L VQ) network topology was originally suggested by Tuevo 

Kohonen in the mid 80's [4]. Topologically, this network contains an input layer, a single 

Kohonen layer and an output layer. An exaniple network is shown in Figure 4.2. The output 
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Figure 4.2 An example Learning Vector Quantization Network 

layer has as many processing elements as there are distinct categories, or classes. The Kohonen 

layer has a number of processing elements grouped for each of these classes. The number of 

processing elements per class depends upon the complexity of the input-output relationship. It is 

the Kohonen layer that learns and perfonns relational classifications with the aid of a training 

set. This network uses supervised learning rules. 

In the training mode, this supervised network uses the Kohonen layer such that the distance 

of a training vector to each processing element is computed and the nearest processing element 

is declared the winner. There is only one winner for the whole layer. The winner will enable 

only one output processing element to fire, announcing the class or category the input vector 

belonged to. If the winning element is in the expected class of the training vector, it is 

reinforced toward the training vector. If the winning element is not in the class of the training 

vector, the connection weights entering the processing element are moved away from the 

training vector. During the training process, individual processing elements assigned to a 

particular class migrate to the region associated with their specific class. 

During the recall mode, the distance of an input vector to each processing element is 

computed and again the nearest element is declared the winner. That in turn generates one 

output, signifying a particular class found by the network. 

4.2.3 Support Vector Machine (SVM) 

The support vector machine (SVM) is a classifier derived from statistical learning theory by 
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Vapnik [5, 6]. SVM have been introduced for solving pattern recognition and nonlinear function 

estimation problems. In this method one maps the data into a high dimensional input space in 

which one constructs an optimal separating hyperplane. While classical neural network 

techniques suffer from the existence of many local minima [7), SVM solutions are obtained 

from quadratic programming problems possessing a global solution. Being based on the 

structural risk minimization principle, the quality and complexity of the SVM solution does not 

depend directly on the dimensionality of the input space. SVM approach is considered a good 

classifier because of its high generalization perfonnance, even when the dimension of the input 

space is very high. Intuitively, given a set of points which belongs to either one of two classes, a 

linear SVM finds the hyperplane leaving the largest possible fraction of points of the same class 

on the same side, while maximizing the distance of either class from the hyperplane. According 

to [5], this hyperplane minimizes the risk of misclassifying examples of the test set. 

Let (XpYi)\ < i < N be a set of training examples, where Xi E Rd , is the jth input pattern and 

d being the dimension of the input space, and Yi the t h output pattern belongs to a class labeled 

by Y i E {- 1, I}. The aim is to define a hyperplane which divides the set of examples such that 

all the points with the same label are on the same side of the hyperplane. The general fonn of 

the linear classification function is 

g(x) = w.x+b (4.1) 

which corresponds to a separating hyperplane w.x + b = 0 . 

We can normalize g(x) to satisfy Ig(x)121 for all Xi, so that the distance from the closest 

point to the hyperplane is X~I' Among the separating hyperplanes, the one for which the 

distance to the closest point is maximal is called optimal separating hyperplane (OSH). Since 

the distance to the closest point is X~I' finding the OSH amounts to minimizing II~I and the 

obj ective function is: 

min~(w) = .!.11~12 = .!.(w.w) subject to 
2 2 
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Figure 4.3 SVM classification with a hyperplane that maXImIzes the separating 
margin between the two classes (indicated by data points marked by "x"s and "O"s). 
Support vectors are elements of the training set that lie on the boundary hyperplanes of 
the two classes. 
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i= 1, ... ,N (4.2) 

Figure 4.3 shows the OSH, margin and support vectors of an SVM classifier. 

If we denote by (at , ... , aN) the N non-negative Lagrange multipliers associated with 

constraints in Equation (4.2), we can uniquely construct the OSH by solving a constrained 

quadratic prograrruning problem. The solution w has an expansion w = I aiyixi in tenns of a 
i 

subset of training patterns, called support vectors, which lie on the margin. The classification 

function can thus be written as 

N 

f(x) =sgn(l:aiy;x; ·x+b) (4.3) 
;=1 

When the data is not linearly separable, on the one hand, SVM introduces slack variables 

and a penalty factor such that the objective function can be modified as 

1 N 
~(w, ) = -(w.w) + C(I~J 

2 t 

(4.4) 

The parameter C is chosen by the user, a larger C corresponding to assigning a higher penalty to 
errors. 

On the other hand, the input data can be mapped through some nonlinear mapping into a 

higher dimensional feature space in which OSH is constructed. Thus the dot product can be 
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represented by K(x, y) = (.p(x)· .p(y)) when the kernel satisfies the Mercer's condition [5]. 

Finally we obtain the classification function 

N 

f(x) = sgn(I a'iYiK(X;. x) + b) (4.5) 
j=1 

For the kernel function, K (., .) one typically has the following choices: 

1. Linear, 

K (x, Xi) = x/x (4.6) 

2. Polynomial, 

K (x, Xi) = (x/x + t) d (4.7) 

where t the intercept and d the degree of the pol ynomial. 

3 Radial basis function, 

K (x, Xi) = exp( -11 x - Xi 112 / (j 2); (4.8) 

where a 2 is the variance of the Gaussian kernel. 

4. Multilayer perceptron, 

K (x, x;) = tanh [u/x + 0]; (4.9) 

where K is the scale parameter and f) the bias. 

These kernel parameters need to be fine tuned for optimum perfonnance at the time of training. 

4.2.4 Least Squares Support Vector Machine (Ls-SVM) 

In least squares (LS) version of SVM's, one finds the solution by solving a linear system 

instead of quadratic programming [8}. This is due to the use of equality instead of inequality 

constraints in the problem fonnulation. 

The support vector method aims at constructing a classifier of the fonn Equation (4.5), 
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" which can be re-represented as f(x) = sgnCL w/P j (x) + b) = sgn(wT <p(x) + b), 
j~l 

<p = [<PI' <P2 , ••• , <Ph] T The classifier is constructed as follows. 

For the case of two classes, one assumes 

wT rp (x i) + b ~ 1, if Y i = + 1 (4.10) 

wT rp (x i) + b :S 1, if Y i = -1 (4.11) 

which is equivalent to 

wT[rp (x J + b] ~ 1,;= 1, ... , N (4.12) 

where rp(.) is a nonlinear function which maps the input space into a higher dimensional space. 

Ls-SVM classifiers are obtained as solution to the following optimization problem: 

. 1 T 1 -f 2 
mm JLS(w,b,e)=-w w+C-~ek 

2 2 k=I (4.13) 

"'.b.e 

subject to the equality constraints 

(4.14) 

In Equation (4.13), the first term is responsible to find a smooth solution, while the second one 

minimizes the training errors (C is the trade-off parameter between the terms). 

From this, the following Lagrangian can be formed: 

N 

L(w,b,e; a) = JLS - Lak {yk(WT 
\j1 (Xk) +b]-l + ek} 

k=l 

( 4.15) 

where a k are Lagrange multipliers, which can be either positive or negative due to the equality 
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constraints as follows from the Kulm-Tucker conditions [9]. The support values a k are 

proportional to the errors at the data points in the Ls-SVM case, while in the standard SVM case 

many support values are typically equal to zero. The kernel functions are same as that of SVM 

(Equation 4.6 to 4.9). 

4.2.5 k-Means Clustering 

k-means [10] is one of the simplest unsupervised learning algorithms that solve the well 

known clustering problem. The procedure follows a simple and easy way to classify a given 

data set through a certain number of clusters (assume k clusters) fixed a priori. The main idea is 

to define k centroids, one for each cluster. These centroids should be placed in a cunning way, 

because different location causes different result. So, the better choice is to place them as much 

as possible far away from each other. The next step is to take each point belonging to a given 

data set and associate it to the nearest centroid. When no point is pending, the first step is 

completed and an early groupage is done. At this point we need to re-calculate knew centroids 

as barycenters of the clusters resulting from the previous step. After we have these knew 

centroids, a new binding has to be done between the same data set points and the nearest new 

centroid. A loop has been generated. As a result of this loop we may notice that the k centroids 

change their location step by step until no more changes happen. In other words centroids do not 

move any more. 

Finally, this algorithm aims at minimizing an objective function, in this case a squared error 

function. The obj ective function 

k 11 2 

J = 2: I Ilx;j) -cjll (4.16) 
j=1 j=1 

where Ilx~j) -C j 112 is a chosen distance measure between a data point x;j) and the cluster 

centre C j' is an indicator of the distance of the n data points from their respective cluster 

centers. The algorithm is composed of the following steps [11]: 

(1) Choose k cluster centers to coincide with k randomly-chosen patterns or k randomly 

defmed points inside the hypervolume containing the pattern set. 
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(2) Assign each pattern to the closest cluster center. 

(3) Re-compute the cluster centers using the current cluster memberships. 

(4) If a convergence criterion is not met, go to step 2. Typical convergence criteria are: no 

(or minimal) reassignment of pattern to new cluster centers, or minimal decrease in 

squared error. 

Although it can be proved that the procedure will always terminate, the k-means algorithm 

does not necessarily find the most optimal configuration, corresponding to the global objective 

function minimum. The algorithm is also significantly sensitive to the initial randomly selected 

cluster centers. The k-means algorithm can be run multiple number of times to reduce this 

effect. 

4.3 Error-Correcting Output Coding (ECOC) 

SVM's are designed for binary classification. Multiclass support for SVM is provided in 

our implementation using ECOC technique. Error-correcting output coding (ECOC) proposed 

by Dietterich and Bakiri [12] is a method for combining binary classifiers to solve multi-class 

problems. Each class is given a unique binary string of length L called codewords. L binary 

functions are learned to produce L binary classifiers. Table 4.1 shows a set of lO-bit codewords 

assigned to five classes, with the columns /0, .... h representing the classifiers to be learned. 

All columns are distinct and each classifier learned is a disjunction of the classes. For example, 

Ji(z) = 1 if z is in class 1 or 5. 

ECOC is robust to changes in the size of the training dataset and to the assignment of 

codewords to classes. ECOC claims to have good error-correction capability, which is measured 

by the minimum Hamming distance d between any pair of codewords. Each codeword is able to 

Table 4.1 Error-correcting output codes for five-class problem with minimum Hamming 
distance of five. 

Class jO 11 12 j3 J4 j5 f6 17 j8 19 
1 1 1 1 1 1 1 1 1 1 1 
2 0 0 0 0 0 0 0 0 1 1 
3 0 0 0 0 1 1 1 1 0 0 
4 0 0 1 1 0 0 I 1 0 0 
5 0 1 0 1 0 1 0 1 0 1 
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correct at least d -1 single-bit errors. For example, the set of codewords in Table 4.1 has a 
2 

Hamming distance of five, allowing it to correct up to two 

single-bit errors. This error-correction capability is dependent on the fact that the errors 

committed by each bit of the output are uncorrelated. 

In order to have good error-correction capability, the codewordS should possess the 

following properties: 

• Row separation. Each codeword should be well separated from each other in terms of 

Hamming distance. 

• Column separation. Each bit in a columnJi should be uncorrelated with another column 

jj, wherej # i. There should be a large Hamming distance between different column, and 

also between a column and the complement of other columns. This ensures that the 

columns are neither identical nor complementary. 

Given K:S 7 classes, an exhaustive method can be used to select the optimal codewords. 

For larger K, a randomized hill-climbing algorithm is used. First, K random strings of 

COdewords with length L are generated. Next, the algorithm attempts to improve the minimum 

Hamming distance by searching for pairs of rows closest to each other and columns that are 

either too close or too far apart. The four codeword bits that the two rows and columns intersect 

are located and changed to improve their separation. 

4.4 Performance Measurements 

To evaluate different algorithms for image retrieval, an effective perfonnance measurement 

1S necessary. Different perfonnance measurements have been proposed [13, 14]. The 

performance measurements are usually based on statistics of the subjective tests. Different 

performance measurements often use different subjective tests, resulting in different definitions 

of retrieval accuracy. The different perfonnance measurements are discussed in this section. 

4.4.1 Recall and Precision Pair (RPP) 

RPP is the most widely used retrieval perfonnance measurement in literature. It is basically 

based on categorical matching. In this method, data set is converted to binary set according to 
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relevance or irrelevance to the query, based on subjective test. In the subjective test, each 

subject selects items relevant to the query from the dataset. Items selected for each query by 

more than the predefined number of subjects are considered relevant to the query; otherwise, 

they are treated as irrelevant. The precision and recall are then defined as 

p = ~ = number of relevant retrieved images 

nl number of retrieved images 

r number of relevant retrieved images 
R=-=-------=-------------=-----

n2 total number of relevant images in the database 
(4.17) 

Precision measures the retrieval accuracy while recall measures the ability of retrieving 

relevant items from the database. Precision and recall are inversely related, i.e., precision 

normally degenerates as recall increases. 

4.4.2 Average Normalized Modified Retrieval Rank (ANMRR) 

In order to be objective in comparisons, a quantitative measure called ANMRR was 

developed on the basis of the specification of a data set, a query set and the corresponding 

ground-truth data [15]. The ground-truth data is a set of visually similar images for a given 

query Image. 

Consider a query q with a ground-truth size of NG(q). The rank of the kili retrieved image 

for query q is defined as 

Rank*(k) = { Rank(k), if Rank(k) :s K(q) 
1.25K, ifRank(k) > K(q) 

where K, the tolerance of the system, is defined with respect to the ground truth size NG(q) as 

follows. 

K = 2 * NG(q); ifNG(q) >= 20 

K= 3 * NG(q); ifNG(q) >= 10 

K = 4 * NG(q); otherwise. 
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1 N~) 
The average rank (A VR) for query q, A VR( q) = L Rank· (k) and modified retrieval 

NG(q) k=l 

rank (MRR) isMRR(q) ::;; AVR(q) - 0.5 * [1 + NG(q)]. Normalizing with respect to NG(q) 

leads to normalized modified retrieval rank (NMRR) 

NMRR( ) = MRR( q) 
q 1.25*K-O.5*[I+NG(q)] 

( 4.18) 

NMRR(q) can take on values between 0 (indicating whole ground truth found) and 1 

(indicating none from ground truth found), irrespective of ground truth size. The average 

normalized modified retrieval rank (ANMRR) indicates the retrieval quality over all queries and 

is defined as 

ANMRR = _1_ fNMRR(q) 
NQ q=! 

where NQ is the total number of queries. 

4.5 Statistical Tools 

(4.19) 

Various statistical tools used for data analysis in this research are outlined in this section. 

4.5.1 The McNemar Test 

The McNemar test, first suggested for use in benchmark tests of speech recognition systems 

by Gillick and Cox [16], applies to an evaluation consisting of discrete items which are either 

correct or incorrect and are independent of one another. It is used to calculate the statistical 

significance of differences in classification accuracy for related samples. The McNemar test is 

useful for comparing the classification accuracy of various classifiers. 

The discrete items in an evaluation may be classified according to whether each of the two 

systems under consideration attained correct classification of the item. The resulting counts may 

be represented by a 2x2 error matrix as shown in Table 4.2. It can be noted from the table 

that f is the number of cases correctly classified by classifier 1 and wrongly classified 
I2 
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Table 4.2 2x2 error matrix to calculate the statistical significance of differences in 
classification accuracy based on McNemar test for related samples. 

Classifier 2 ..J... 

Allocation Correct Incorrect 

Correct III fl2 
Classifier 1-+ 

Incorrect f21 f22 

89 

(incorrect) by classifier 2, and f21 is the number of cases correctly classified by classifier 2 and 

wrongly classified (incorrect) by classifier 1 . 

The McNemar test score Z is given by: 

( 4.20) 

A positive value Z indicates classifier 1 is more accurate than classifier 2 and negative 

value of Z indicate classifier 2 is more accurate. A positive score of more than 1.96 indicates 

that first method is a better than the second one at 95% confidence level. 

4.5.2 Kappa Statistics 

To assess the accuracy of any measurement, it is usual to distinguish between the reliability 

of the data collected and their validity. Reliability is essentially the extent of agreement between 

repeated measurements and validity is the extent to which a method of measurement provides a 

true assessment of that which it purports to measure. When studying the variability of observer 

categorical ratings, an important component of possible lack of accuracy is observer 

disagreement. This is indicated by how observers classify individual subjects into the same 

category on the measurement scale. Kappa coefficient is one of the most common approaches in 

this regard [17]. 

Kappa statistics is an index which compares the agreement against that which might be 

expected by chance. Kappa can be thought of as chance-corrected proportional agreement, and 

possible values range from + 1 (perfect agreement) via 0 (no agreement above that expected by 
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T bl 43 K a e . appa statIstics corn mtatJon matrIX 
Measurement A 

Incorrect Correct Total 
I Incorrect fit fl2 P2t 

Measurement B I C 
f21 122 Pn orrect 

Total P Il P I2 T 
Note: 
fi I - number of cases in which measurement A and measurement B is incorrect; 
fi2 - number of cases in which measurement A is correct and measurement B is incorrect; 
121 - number of cases in which measurement A is incorrect and measurement B is correct; 
122 - number of cases in which measurement A and measurement B is correct; 

T= fil + fil + hi + h2; 
P21 = (fil + fil) I T; 
P22 = (hI + 122) IT; 
PII=(fiI+hl)/T; 
P I2 = (fi2 + 121) I T. 

chance) to -1 (complete disagreement). A Kappa statistics computation matrix IS shown in 

Table 4.3. 

LT Observed Agreement - Chance Agreement 
.l\..appa == 

1 - Chance Agreement 
(4.21) 

where Observed Agreement = (fi 1 +122) I T; 

Chance Agreement = (P21 * PIl ) + (P22 * P12); 

4.5.3 Correlation Coefficient 

Two variables are said to be "correlated" or "associated", if knowledge of scores for one of 

them helps to predict scores for the other. Capacity to predict is measured by a correlation 

coefficient that can indicate some amount of relationship, no relationship, or some amount of 

inverse relationship between the variables. 

Pearson's correlation coefficient, r, is the most commonly used measure of association. It 

summarizes the linear relationship between two variables having ranked categories. That is, the 

variables may be continuous, ordinal, interval or ratio. Its formula is as follows: 

r=~ t(Xi-X](yi-r) 
n 1 i=l Sf Sy 

(4.22) 
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In this equation, n is the sample size, X is the observed sample mean for variable x, Y is 

the observed sample mean for variable y, Sx is the standard deviation for variable x and S.V is the 

standard deviation for variable y. Xi and Yi represent the values of variables x and y for the i1h 

individual in the sample. The values for r generated by this equation will range from -1 to 1. A 

value of -1 indicates a perfect inverse correlation between the variables (that is, when the value 

for one variable is high, the value for the other variable is low). A value of 0 indicates no 

relationship between the variables. A value of 1 indicates perfect correlation between the 

variables. 
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Chapter 5 

Improved Legendre Moment Descriptor 

5.1 Introduction 

Various region-based and contour-based shape descriptors are proposed in the literature as 

described in Section 2.3. Among them, MPEG-7 proposed Angular Radial Transformation 

Descriptor (ARTD) as region-based shape descriptor and Curvature Scale Space Descriptor 

(CSSD) as contour-based shape descriptor [1]. The Zemike Moment Descriptor (ZMD) also has 

been a popular choice as region-based shape descriptor [2]. In this chapter novel region-based 

and contour-based shape descriptors with a generic name, Improved Legendre Moment 

Descriptor (ILMD), which is more accurate than MPEG-7 descriptors for shape description and 

retrieval is proposed. The implementation details of the ZMD, ARTD and CSSD are provided. 

The motivations for proposing a new shape descriptor based orthogonal Legendre polynomials 

are discussed. Theory, implementation details and transformation invariance properties of the 

proposed ILMD are discussed. Comparison of the retrieval accuracy of the state-of-the-art 

descriptors with ILMD using MPEG-7 region-shape database and contour-shape database is 

then detailed. A scheme for affine transformation invariance and experimental results are 

reported. Finally, a method for CBIR using k-means clustering of the shape descriptors is 

presented. 

5.2 MPEG-7 Shape Descriptors 

This section gives an introduction to the theory and implementation details ofMPEG-7 
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shape descriptors. They are implemented and used for perfonnance comparison with the 

proposed shape descriptor. 

5.2.1 Zemike Moment Descriptor (ZMD) 

Zernike moment descriptor was a major candidate as region-based descriptor in early 

MPEG-7 experiments [2]. Based on the theory of orthogonal polynomials, Teague proposed the 

use of orthogonal moments to recover the image from their moment representation and 

introduced Zernike moments [3]. This allowed independent moment invariants to be constructed 

to an arbitrarily high order. The complex Zemike moments are derived from Zernike 

polynomials: 

V1l m (x, y) = V;'/ll (p cos e, p sin B) = R 11 m(P ) exp(jm B) (5.1 ) 

where p is the length of vector from (x, y) to the shape centroid and e is the angle between 

vector p and x axis taken in counter-clockwise direction. 

The Zernike polynomials are a complete set of complex-valued functions orthogonal on the unit 

disc, i.e., (x2 + / ) :s 1. The radial polynomial Rn III (P) is defined as 

(n-m!)i2 (n-s)! 
Rnm(P)= L (-1)'. 11 11 p"-2s. 

s=O n + m n - m 
s!(----s)!( ·---s)! 

2 2 

(5.2) 

where n = 0, 1, 2,. . ',00 and m takes on positive and negative integer values subject to the 

conditions n - I m I = even, I m I :s n. 

The complex Zemike moments for a discrete image intensity function F(x, y) of order n 

with repetition m are defmed as: 

n+l~~ * 
Anm = -L."L."F(x,y)Vnm(x,y), 

1[ x y 
(5.3) 

where symbol * denotes the complex conjugate. Due to the constraint of n-Iml = even and m<n, 

there are nl2 repetition of moments in each order n. 
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Since Zemike basis functions take the unit disc as their domain, this disc must be specified 

before moments can be calculated. In our implementation, the distance from centroid to the 

farthest pixe1 of the image is taken as the radius of the disc [4]. This provides scale invariance. 

The translation invariance is achieved by using the centroid as the origin of the unit disc. The 

magnitudes of Zemike moment coefficients are then normalized by dividing them by the mass 

of the shape, further enhancing scale invariance. The rotation of the shape around the unit disc is 

expressed as a phase change. If () is the angle of rotation, AI~II is the Zemike moment of the 

rotated image and Anlll is the Zemike moment of the original image, then 

(5.4) 

Hence magnitude of ZMD provides rotational invariance. The precision of shape representation 

depends upon the number of moments truncated from the expansion. For efficient retrieval, the 

first 35 moments of order 1 ... 10 are used as ZMD. The similarity between two shapes indexed 

with Zemike moments descriptors is determined by the city block distance between the two 

Zemike moments vectors. The block diagram of the whole process of computing ZMD is shown 

in Figure 5.1. 

I Bmary ~~ \Tr.utSlationH Bas~ . r -IZemik.e HNOnttallied! 
Image ~~. Norm. " Calculation r. Moments ZMD . 

'-------' 

Figure 5.1 Block diagram of computing ZMD 

5.2.2 Angular Radial Transformation Descriptor (ART D) 

The 2-D Angular Radial Transformation (ART) [5] belongs to the broad Zemike Moment 

family and provides a compact and efficient way to express pixel distribution within a 2-D 

object region. The set of orthogonal moment basis is defined on a unit disc in polar coordinates 

(p, fJ). 

From each shape, a set of ART coefficients Fnm is extracted, using the following formula. 
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2!r 1 
j JV* (p,8)/(p,8)p dp dB 
o 0 nm 

(5.5) 

where f (p, ()) is an image intensity function in polar coordinates and Vnm (p, fJ) is the ART 

basis function of order nand m. The basis functions are separable along the angular and radial 

directions, and are defined as follows: 

v (p,e) = _1 exp(jme)R (p), 
1111/ 2Jr 11 

(5.6) 

1 n= 0 
where R (p) = { , n # 0 

11 2 cos(7r 11 fJ), 

The radial direction m, is an integer subject to the constraints: 11 - Irnl is even and Iml :'S 11. The 2-

D ART basis functions, v,un(P, fJ), are complex functions. 

Since ART basis function takes the unit disc as their domain, all shapes are normalized into 

a unit disc of fixed radius of 128 pixe1s. As the ART and Zemike moments belong to the same 

family, they have similar transformation invariance properties. The ART descriptor is defined as 

a set of normalized magnitudes of complex ART coefficients, which guarantee rotation 

invariance. For scale normalization ART coefficients are divided by the magnitude of the ART 

coefficient of order n = 0, rn = 0, which is not used as a descriptor element. The first 35 

moments coefficients of order n = 10 and m = 10 are used as the ART shape descriptor. The 

descriptor extraction process is similar to that of ZMD except that all image pixels are mapped 

to a unit disc of radius 128. The similarity measure used is city block distance. 

5.2.3 Curvature Scale Space Descriptor (CSSD) 

Scale space method has been shown to be very useful in shape analysis since Asada and 

Brady used it to derive a primal sketch from a shape [6]. Its use for shape retrieval as a contour­

based shape descriptor has been proposed by Mokhtarian et a/ [7]. To improve the 

representation accuracy, an enhanced CSSD was proposed by Abbasi et al [8]. 

To create a CSS description of a contour shape, N equidistant points are selected on the 

contour, starting from an arbitrary point on the contour and following the contour clockwise. 

The -!-coordinates and y-coordinates of the selected N points are grouped together into two 
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series X and Y respectively. The contour is then gradually smoothed by the repetitive application 

of a low-pass filter with the kernel (0.25, 0.5, 0.25) to X and Y coordinates of the selected N 

contour points. As a result of the smoothing, the contour evolves and its concave parts gradually 

flatten-out, until the contour becomes convex. A so-called CSS image can be associated with the 

contour evolution process. The horizontal coordinates of the CSS image correspond to the 

indices of the contour points selected to represent the contour (1, ... , N), and vertical coordinates 

of the CSS image correspond to the amount of filtering applied, defined as the number of passes 

of the filter. Each horizontal line in the CSS image corresponds to the smoothed contour 

resulting from k passes of the filter. For each smoothed contour, the zero-crossings of its 

curvature Junction are computed. Curvature zero-crossing points separate concave and convex 

parts of the contour. Each zero-crossing is marked on the horizontal line corresponding to the 

smoothed contour and at the location corresponding to the position of this zero-crossing along 

the contour. The CSS image has characteristic peaks. The coordinate values of the prominent 

peaks (x _ css, y _ css) in the CSS image are extracted. The peaks are ordered based on decreasing 

values y _ css, transformed using a nonlinear transformation and quantized. In addition, the 

eccentricity and circularity of the contour are also calculated, quantized and stored. 

Figure 5.2 shows the shape evolution during filtering (left) and the corresponding CSS 

image (right). The contour curvature zero crossings (A, B, ... , H) and the corresponding points 

on the CSS image are marked. 

The CSSD descriptor consists of the eccentricity and circularity values of the original and 

filtered contour, the index indicating the number of peaks in the CSS image, the height of the 

Figure 5.2 Example of contour evolution and corresponding CSS [1] 
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highest peak and the x and y positions on the remaining peaks. 

CSS descriptor is translation invariant. Scale invariance is achieved by normalizing all the 

shapes into fixed number of boundary points. In our implementation, number of boundary 

points is 128 points. Since rotation of shape causes circular shifting of CSS peaks, the rotation 

invariance is achieved by circular shifting the highest peak (primary peak) to the origin of the 

CSS map. The similarity between two shapes is then measured by the summation of the peak 

differences between all the matched peaks and the peak values of all the unmatched peaks [7J. 

5.3 Motivations of Proposing ILMD 

This section details how the idea of the proposed descriptor is formulated. It is believed that 

human beings discriminate shapes mainly by their contour features. The majority of real world 

objects have clear contours which are readily available. Thus object contour is an important 

parameter in describing a shape. The powerfulness of CSSD owes to its ability to capture key 

local features such as the locations and the degrees of convexity (or concavity) of curve 

segments on the shape boundary. But, CSSD has matching difficulties and it only captures the 

local shape features. The global features which are also important to shape representation are 

missed out from the representation. As such, global features such as eccentricity, circularity and 

number of CSS peaks should be combined to form more practical descriptors. There may be no 

CSS descriptors for smooth convex shapes such as polygon composed of straight lines. All these 

factors affect the retrieval result. 

The contour-based shape descriptors are usually suitable for describing contour shape 

without sophisticated boundary. Region-based shape descriptors can be applied to more general 

applications and are more robust in describing shape with sophisticated boundary compared 

with contour-based shape descriptors, because they exploit more shape information to derive 

shape features. Dengsheng Zhang and Guojun Lu conducted a study in which accuracy of 

region-based descriptor ZMD was evaluated against contour-based descriptors using a contour 

shape database [9]. The study concludes that ZMD has better contour description ability than 

CSSD. This is due to the fact that the entire contour pixels of a shape contribute to the ZMD 

where as few locations of the contour with a convexity account for CSSD. Thus ZMD can be 

used as a region and contour based descriptor. The ARTD also belongs to the Zernike moment 

family and hence has similar properties. 
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Figure 5.3 Image Reconstruction of letter 'E' using Legendre moments and 
Zernike moments [10]. 
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Mukundan et. al. reports that Legendre moments based on orthogonal Legendre polynomial 

have better image representation capability than Zernike moments [10]. The reconstruction error 

using Legendre moments was less than that using Zernike moments of the same order. Figure 

5.3 demonstrates the error in reconstruction of an image using Legendre moments and Zernike 

moments of various orders. Thus Legendre moments better represent an image with fewer 

coefficients in comparison with Zernike moments. Liao and Pawlak in [11] and Hakim El Fadili 

et. al. in [12] also reports the use of Legendre moments for image representation. Legendre 

moments were used in several pattern recognition applications [13 - 18]. These results were the 

motivation for exploring the Legendre moments for use as a shape descriptor. But, Legendre 

moments were not popular as a shape descriptor for CBIR. The lack of popUlarity of Legendre 

moments as a shape descriptor' is due to its lack of inherent invariance to geometric 

transformations. Hence, this research investigated on improving invariance of the Legendre 

moments and shape descriptors based on Legendre polynomials. 

5.4 Legendre Moments 

A brief discussion on the theory of Legendre moments is presented in this section. 

Moments with an orthogonal basis can be used to attain a zero value of redundancy measure in a 

set of moment functions, so that they correspond to independent characteristics of the image 

[16]. The image intensity distribution can also be analytically reconstructed from its orthogonal 

moments. The Legendre polynomials are defined along rectangular image coordinate axes 

inside a unit circle. Moments with the Legendre polynomial as kernel functions were first 

introduced by Teague [3]. A detailed overview of Legendre moments is presented in [19]. 
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The plh order Legendre polynomial is defined as fo llows. 

I d ' p (x)= ----(x1 - 1)', 
, 2 P p!dx P 

XE [- 1,1] 

(5 .9) 

The values of ap j can be expressed as : 

a . = (_I) (P- j 1l2 (p + j)! • and (p - J) is even 
" 2'«p- j)/2)!«p+ j)/2)!j! 

Another expression fo r Pp(:C) is as follows 

~ I ~ , (2p-2k)! _" . 
P,(x) =-2.,. (-1) x ' - .(p-k) IS e,en 

2' "0 k! (p - k)! ( p - 2k)! 
(5 .10) 

The Legcndre polynomials ronn a complete onhogonal set inside the unit rectangle, and hence 

x 
Figure 5.4 Plot of Legendre polynomial function values 
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1 2 
[Pp (x) Pq (x) dx = 0 

_\ 2p+l pq 
(5.11) 

The plots of the functions Pp(x), p = 0,1, ... ,6 is given in Figure 5.4. The kernel of Legendre 

moments are products of Legendre polynomials defmed along rectangular image coordinate 

axes. The Legendre moments of order (p+q) for an image functionfix, y) are defined as 

Lpq = (2P+l~(2q+l) ffpp(x)~(Y)f(x,y) dx dy 
-1-\ 

(5.12) 

In order to evaluate the Legendre moments, the image coordinate space has to be 

necessarily scaled so that their representative magnitudes are less than 1. For a digital image 

F(i,j) with dimension along the x and y axis M and N respectively, discrete version of Legendre 

moments can be written as 

(5.13) 

where Xi and Yj denote the normalized pixel coordinates in the range [-1 1], given by 

2i - M + 1 2j - N + 1 
Xi == M -1 ; Yi = N -1 

The inverse moment transform which follows from orthogonality of Legendre polynomials 

can be similarly expressed as 

.. ~ ~ 2; - M + 1 2j - N + 1 
F(l,)) = ~~A.I1II!Pm( M -I )Pn ( N -1 ), i = a, ... , M -I,j = a, ... N -1 (5.14) 

The reconstruction of an image from a set of moments from order ° to order llmax uses the 

truncated form of the series in Equation (5.14), to get a polynomial approximation of F(i,j). 
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T hI 51 L' fL a e . 1St 0 egen re moments up to or er d d 6 

Legendre moment of order p + q 
Number of moments Total number of 

Order in each order moments up to order 6 

0 1..00 1 
1 1..0 I ALO 2 
2 1..02 All A20 3 
3 1..0.3 A12 A2.1 1..3.0 4 28 
4 AoA An A2.2 A3.1. A4.0 5 
5 Ao.5 AL4 An A3.2 1..4 l. As 0 6 
6 1..0.6. A 1.5. A2.4 A3.3. 1..4.2. AU ~.o 7 

The Legendre moment coefficients of a given order representing an image are referred in 

this thesis as Legendre Moment Descriptor (LMD). As an example, the first 28 Legendre 

moments of up to order 6 are given in Table 5.1. 

5.5 Development of ILMD 

According to MPEG-7 specification a shape descriptor should be invariant to geometric 

transformations like translation, rotation and scaling. The LMD does not have these properties. 

The following procedure is developed to improve invariance to transformations. ILMD is used 

as a generic name to refer the proposed descriptor. 

5.5.1 Translation 

The object shape need not be always centered to the image. The translation invariance is 

achieved by selecting the centroid of the shape as the center of the Legendre polynomial basis 

function. This is achieved by defining a 'bounding box' to contain only the shape, with shape 

centroid as 'hounding box' center. Figure 5.5 demonstrates various translated shapes and the 

new region for computing Legendre moments ('bounding box'), The image dimensions are 

shown in gray rectangle and 'bounding box' is shown in red rectangle. Table 5.2 lists the flrst 

10 coefficients (truncated to decimal point precision 2) of LMD and translation invariant ILMD 

of the three shapes shown in Figure 5.5. The last column shows the city block distance between 

moment coefficients of images with that of case' l' for both the descriptors. It can be seen that 

the coefficients of the three shapes for ILMD are identical showing the translational invariance. 
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Figure 5.5 Various translated shapes and their proposed regIOn of Legendre 
moment computation. 

T bl - 2 F' 10 Le d a e :'). lrst ~gen re moments 0 Images s own In Igure f' h . F' .:l 

* .... d..) 

d..) .9 u 
<ri 0.. 

~ '" - c '" '" c ~ 

~ - 0 - '" 0 '" ",. 5 «:j ·c .,...: .,...: .,...: .,...: .,...: .,...: .-< .,...: U u '" <ri ~ d..) 

0 

1 
I 0.91 -0.04 0.01 0.05 0.00 0.05 0.03 -0.01 0.00 -0.05 0.00 
II 0.91 -0.04 0.01 0.05 0.00 0.05 0.03 -0.01 0.00 -0.05 0.00 

2 
I 0.93 -0.01 0.01 0.09 0.00 0.04 0.04 -0.01 0.00 -0.05 0.11 
H 0.91 -0.04 0.01 0.05 0.00 0.05 0.03 -0.01 0.00 -0.05 0.00 

3 
I 0.94 -0.04 0.03 0.05 0.02 0.07 0.02 -0.02 0.04 -0.03 0.17 
11 0.91 -0.04 0.01 0.05 0.00 0.05 0.03 -0.01 0.00 -0.05 0.00 

* Descnptor 1- LMD; 11- ILMD 

5.5.2 Rotation 

lO3 

As Legendre moment coefficients are defined in the unit rectangle, they are not invariant to 

rotation. Rotation invariance can be achieved by aligning the major axis of the shape parallel to 

the x-axis. After aligning the major axis, the Legendre moment is computed in the region of 

'bounding box' as specified in Section 5.5.1. A shape flipped or rotated to any degree can be 

finally assigned to one of the four cases after major axis alignment as shown in Figure 5.6 ((2) -

(5)). As the basis set is defined in the interval [-1 I], the rectangular region can be divided into 

four quadrants. An image portion, irrespective of the quadrant in which it is present due to 

rotation, will have identical LMD with a possible sign change after major axis alignment, as 

each quadrant can be assumed to be defined over the basis set [0 1] or [0 -1]. This is due to the 
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.0289 -1 -.0278 

<J ~_1~1 
- .0687 1 .0600 

(1) 
.0287 -1 -.0278 .0673 -1 -.0601 

(3 ~.:~:, () ~(3-.:m 
(2) ) 

(4) (5) 

Figure 5.6 An example demonstrating four possible cases of major axis alignment 

symmetry property of Legendre polynomial function with respect to origin. 

The Legendre moment of order (p + q) for an M x N image can be represented as 

where A:q represent the Legendre moment of quadrant n = 1 ... .4. 

These coefficients can be computed as follows: 

,I _(2p+l)(2q+l)(MI2)-1 (NI')-l 2' M+l 2' N+l 
/l, ~ ~ P( /- )xP( )- )xF(i,') 

1"'- (M-I)(N-l) ~ ~ PM-I q N-l } 

,12 _ (2 P + l)(2q + 1) (M 11H 

pq - (M -l)(N -I) t; 

(5.15) 
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(2 1)(2 1) M-I (NI2)-1 2' M 1 2' N 1 
A~=: p+ q+ L L).;o Pp( l~_; )x~( J~_I+ )xF(i,j) 

(M -1)(N -1) i;M!2 

(5.16) 

Figure 5.6 (1) shows a shape whose major axis is originally aligned parallel to the x-axis. Figure 

5.6 «(2) - (5» show the original shapes with various degree of rotation and the resulting shape 

after major axis alignment. The 'bounding box' and quadrants are shown in red color. The 

Legendre moments of order p = 1 and q = 1 for each quadrant is marked on the corner. It can be 

noted that, a portion of shape irrespective of the quadrant in which it is present has similar LM 

coefficient, excepting a sign change. 

Although theoretically coefficients should be exactly same, the slight variation observed in 

practice is due to the mapping error introduced due to image rotation at the time of generation of 

candidate shapes and major axis alignment. The proposed rotation invariant descriptor IS 

computed by taking the sum of the absolute value of each quadrant as shown below. 

(5.17) 

T b 53 F' 10 L a le Irst egen re moments 0 Images s own ID Igure . d h OF" 56 

* .... 11) 

11) 
0 u - :=: N 0 ,.., 0 ,:::: en 0. J ~ 0 ::: N 0 ~ N .... ~ ~ .c::: u ~ ~ ~ ~ ~ ~ ~ ~ -u '" en :a 11) 

0 

1 
I 0.08 0.04 0.01 -0.02 0.00 -0.02 -0.03 -0.01 0.00 -0.05 0.00 
II 0.10 0.15 0.l5 0.03 0.18 0.03 0.10 0.13 0.11 0.11 0.00 

2 
I 0.48 -0.01 0.01 -0.52 -0.12 -0.57 0.01 -0.02 0.01 -0.02 1.71 
II 0.10 0.15 0.15 0.03 0.18 0.03 0.10 0.13 0.11 0.11 0.00 

3 
I 0.04 -0.01 0.00 -0.05 0.00 -0.06 0.02 0.00 0.03 0.00 0.31 
II 0.10 0.15 0.15 0.03 0.18 0.03 0.10 0.l3 0.10 0.11 0.01 

4 
I 0.04 0.00 0.01 -0.06 0.00 -0.05 0.00 -0.03 0.00 -0.02 0.23 
II 0.10 0.15 0.15 0.03 0.18 0.03 0.10 0.13 0.10 0.11 0.01 

5 
I 0.50 0.01 0.01 -0.57 0.11 -0.51 -0.02 -0.01 -0.02 -0.02 1.66 
II 0.10 0.15 0.15 0.03 0.18 0.03 0.10 0.13 0.10 0.11 0.01 

* Descnptor 1- LMD; II - ILMD 



106 Chapter 5. Improved Legendre Moment Descriptor 

Table 5.3 lists the first 10 coefficients of Legendre moments (Descriptor I) and rotation 

invariant ILMD (Descriptor 11) of shapes shown in Figure 5.6. The last column shows the 

corresponding city block distance between coefficients of each descriptor with respect to case 1. 

It can be noted that rotation invariance improved descriptor for the rotated shapes is closely 

matching in comparison with LMD. 

5.5.2.1 Maj or Axis Algorithm 

Usual major axis determination algorithms are applicable for contour shapes. Here an 

algorithm applicable to both contour and region shape is developed. Normally, the major axis is 

found by traversing all the points on the shape boundary and determining the line joining the 

two boundary points with the farthest distance. However, for region shape, boundary 

information is not known a priori. So, the major axis for a shape is computed by searching the 

outer border point pairs on the shape boundary in a number of directions. The algorithm 

involves three major steps. (i) finding the bounding box of the shape; (ii) finding the pair of 

boundary points in the range of 0 to 179 degree (with respect to x-axis); (iii) finding the two 

points of the farthest apart in the found boundary points. 

The bounding box is determined by computing the left and top most shape point and width 

and breadth of the object in the image. Then the image is cropped to an enclosing rectangle to 

contain only the shape. The pair of boundary points is determined by traversing the line passing 

through the centroid of the shape at various orientations. The search limits are bonding box 

borders. The first shape point which comes across on the line is the starting point and last shape 

point is the end point. A list of pairs of boundary point is maintained by scanning the shape for 

various orientations. A scan in the range of 0 to 179 degree incrementing by 1 degree will cover 

the entire object shape. Now, the distance between start and end points of each boundary pair is 

computed. The major axis orientation will correspond to orientation of the boundary pairs which 

are farthest apart. This information is used to align the major axis of the shape parallel to the x­

axis. 

5.5.3 Scaling 

Images normally appear in various scales and it is important for the shape descriptor to be 
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invariant to scaling, for efficient image retrieval. Other invariance properties should be 

maintained while providing scale invariance. A new scheme is proposed and an already existing 

scheme is evaluated for scale invariance to Legendre moments. 

5.5.3.1 Method I 

It is not necessary that the image dimension to be proportionally changed as per scale 

change of the object shape it contains. The basis function for Legendre polynomial is defined in 

the unit range [-1 1] in both dimensions. So, using the 'bounding box' of the object shape, 

instead of entire image area, for Legendre moment computation will provide scale invariance. 

The zeroth order moment corresponds to the mass of the image. Further improvement in scale 

invariance can be achieved by normalizing each Legendre moment coefficient with the zeroth 

order moment. The developed descriptor combining the previously defined invariance 

properties (Equation (5.17» is denoted as ILMDI and is defined as 

(5.18) 

5.5.3.2 Method 11 

Chee-Way Chong et. al. proposed a set of scale invariants of Legendre moments, which is 

shown to be better than invariants generated using corresponding geometric moments [20). 

Here, the descriptors remain unchanged for elongated, contracted and reflected non-symmetrical 

as well as symmetrical images. The scale invariants proposed in [20] is given below. 

Assuming that the original object is scaled non-uniformly with different factors, a and b, 

along x and y-axes, respectively, the scale Legendre moments can be defined by modifying 

Equation (5.12) as follows: 

(2 + 1)(2 + 1) I I 
Lpq = P 4 q J Jpp (ax)Pq (ay)f(x,y) dx dy, 

-1-1 

(a*b)E(R-{O}) (5.19) 

The scaled Legendre polynomials along x-axis can be expressed as a series of decreasing 

powers of x as foHows: 
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P ( ) B p P B p-2 p-2 B p-4 p-4 B k k 
p ax = ppa x + p(p_2)a x + p(p_4)a x + ... + pka x (5.20) 

where B = (_I)(p-k):2 _1_ (p + k)! 
pk 2 P ((p-k)/2)!((p+k)/2)!k! 

The relation between the original and scaled Legendre polynomials is then fOImed by 

rearranging Equation (5.20) as shown below: 

p P 

I 0 pkPk (ax) = a P 
IOpkPk (x); (p - k) is even (5.21) 

k~O k=O 

where 0 pp = 1 and 

iJ-2 - B 0 o = '" (p-r)k p(p-r). 
pk ~ . ' 

r=O Bkk 

p - r is even (5.22) 

p = (p - k) z. 2 

By employing Equations (5.21) and (5.22), the scaled Legendre polynomials along y-direction 

can then be deduced as follows: 

q q 

I OqdPd (by) = b q 
LOqdPd (y); (q -cl) is even (5.23) 

d=O d=O 

Equations (5.21) and (5.23) fonn the kernel of the scale invariants of Legendre moments. The 

invariants are denoted as If pq • They are expressed as a series of (p + q)th, (p + q _2yh, (p + q -

4yh, etc. orders of original or scaled Legendre moments as follows: 

'.vhere C = (2p + 1)(2q + 1) 
pg (M - 1)( N - 1) 

(5.24) 
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Using the following relations: 

1. If' 00 = abLoo ' 

2. p+ I b" p C pO 0 L 
If' pO = a L...k=O C pk kO' 

kO 

3. 
C = ab q+l "q ~o L If' Oq L...d=O C qd Od' 

Od 

the scale factor a and b contained in Equation (5.24) can be cancelled out. The normalized scale 

invariants of Legendre moments, (J) pq' are subsequently derived as follows: 

p, q and'; = 0, 1,2.,3, .... (5.25) 

The descriptors derived in (5.25) are denoted as aspect ratio invariants. They are applicable to 

images with uniform as well as non-uniform scaling. Combining translation and rotation 

invariance properties to the scale invariance can be done by aligning the major axis of the shape 

to the x-axis and taking Legendre basis function domain as the shape's 'bounding box'. Thus, 

using Equation (5.1 7), the new invariant descriptor denoted as ILMD2 could be expressed as 

(5.26) 

wherep, q and r; = 0,1,2,3, .... 

The process of deriving ILMDI and ILMD2 are summarized in a flowchart shown in 
Figure 5.7. 

5.5.4 Comparison of LMD, ILMDl and ILMD2 

The retrieval effectiveness of the LMD and newly developed descriptors ILMDI and 
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ILMDl 

Scale normalize using 
Eq. (5.18) 
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Align major axis 
parallel to the x-axis 

Compute the 
'bounding box' for 
basis calculation 

Compute the Legendre 
moments using Eq. 

(5.17) 

( STOP 

ILMD2 

Scale normalize using 
Eq. (5.26) 

Figure 5.7 Flowchart of development ofILMDl and ILMD2 

ILMD2 are tested on the region-based shape database MPEG-7 CE-2 whole. This database is 

chosen for the selection of a better descriptor, as it contains a large number of images with small 

to large shape variations. MPEG-7 region shape whole database CE-2 consists of 3621 shapes 

of mainly trademarks. 651 shapes from 31 classes of shapes are selected as queries. Each class 

has 21 members generated through scaling, rotation and perspective transformation. The 

performance evaluation is carried out using recall and precision pair (RPP) method outlined in 

Section 4.4.1. In all cases Legendre moments of order up to p + q = 6 are chosen as des cri pt or 

coefficients. The primary aim of this experiment is to choose the best descriptor under similar 

test conditions. Tuning for the optimum number of coefficients and similarity measure is 

deferred until the best descriptor is selected. Figure 5.8 shows precision - recall plot of the 

LMD, ILMDl and ILMD2 using MPEG-7 CE-2 whole database. 
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Figur~ 5.8 Average precision+recall of 651 rClrievals using LMD. ILMDI and 
ILMI)2 on MPEG-7 reg ion shape whole database CE-2. 

It is observed that LMD has the lowest performance due to its lack of invariance to 

transformations like translation, rotation and scaling. The pcrfonnancc of ILMDI is found to be 

better than that of ILMD2. Inferi or perfonnance of ILMD2 is due (0 its lack of discriminative 

ability. Figure 5.9 shows some images from MPEG-7 CE-2 database scaled at 40% of actual 

size. First three shapes are the same but wilh different scales. Last Iwo shapes are of different 

category from the first set. Table 5.4 lists their ILMDl and ILMD2 descriptors up to order 6 

truncated to decimal point prec ision 2. The last row lists the c ity block distance of each shape 

with the first shape. For ILMD2. distance of the sca led shapes {shapes (2) and (3)) is less in 

comparison with that of ILMD1 . But. distance of dissimilar shapes (shapes (4 ) and (5)) is less 

1 2 3 4 5 

Figure 5.9 Some exampks of MPEG-7 region shafX' wh ole database CE-2 
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Table 5.4 ILMDl and ILMD2 descriptors up to order 6 for shapes shown in Figure 5.9 

Case 1 Case 2 Case 3 Case 4 Case 5 

- C"l - C"l - C"l - C"l - C"l 
Moment Order ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ 

j ~ ;S ~ j ~ ~ ;S ~ ~ 
.....l .....l .....l .....l .....l .....l .....l .....l ....... ....... ...... ...... ....... ....... ...... ...... ...... ....... 

A 0 1 0.34 0.14 0.32 0.08 0.30 0.08 0.32 0.15 0.31 0.15 
AI0 0.32 0.12 0.28 0.07 0.34 0.08 0.30 0.12 0.29 0.11 

A 02 0.58 0.06 0.59 0.03 0.61 0.03 0.52 0.06 0.51 0.06 
All 0.10 0.30 0.14 0.18 0.13 0.20 0.27 0.30 0.38 0.30 
A. 20 0.60 0.02 0.61 0.02 0.62 0.03 0.65 0.02 0.65 0.02 

A 03 0.54 0.06 0.58 0.03 0.59 0.04 0.42 0.06 0.42 0.06 
A 12 0.16 0.13 0.19 0.07 0.21 0.08 0.43 0.14 0.46 0.14 

A 21 0.44 0.07 0.46 0.07 0.47 0.08 0.04 0.07 0.06 0.08 
A 30 0.27 0.03 0.28 0.03 0.27 0.03 0.46 0.03 0.47 0.03 

A 04 0.38 0.05 0.41 0.03 0.38 0.03 0.37 0.05 0.44 0.05 
A 13 0.59 0.13 0.61 0.08 0.59 0.09 0.88 0.13 1.01 0.13 
A22 0.65 0.03 0.59 0.02 0.64 0.02 1.37 0.02 1.34 0.03 
A 31 0.47 0.10 0.42 0.08 0.41 0.08 0.33 0.10 0.38 0.10 
A40 0.20 0.02 0.16 0.02 0.16 0.02 0.12 0.02 0.10 0.02 

A 05 0.08 0.05 0.11 0.03 0.10 0.03 0.38 0.05 0.38 0.05 
A 14 0.31 0.10 0.21 0.06 0.29 0.07 0.22 0.11 0.29 0.11 
A 23 0.71 0.02 0.80 0.03 0.76 0.03 0.40 0.02 0.30 0.02 

A 32 0.37 0.03 0.44 0.03 0.42 0.03 0.56 0.03 0.57 0.04 
A 4 J 0.41 0.07 0.49 0.07 0.45 0.07 0.38 0.07 0.34 0.07 
A 50 0.11 0.02 0.14 0.02 0.15 0.02 0.19 0.02 0.20 0.02 
A 06 0.27 0.04 0.30 0.02 0.38 0.02 0.07 0.05 0.08 0.05 
A J 5 1.43 0.11 1.42 0.07 1.36 0.07 0.83 0.11 0.85 0.11 
A 24 0.23 0.01 0.28 0.01 0.29 0.01 1.84 0.01 1.81 0.01 
A 33 0.34 0.02 0.47 0.03 0.44 0.04 1.08 0.02 0.93 0.03 
A 42 1.63 0.03 1.62 0.03 1.69 0.03 1.35 0.02 1.36 0.02 
A 5 J 0.56 0.08 0.40 0.07 0.49 0.08 0.10 0.08 0.09 0.08 
A 60 0.69 0.02 0.65 0.02 0.74 0.02 0.24 0.02 0.23 0.02 

Distance 0.00 0.00 1.25 0.60 1.12 0.55 7.88 0.06 8.05 0.09 

than the distance to the similar shapes. For ILMD1, scaled shapes are closer than the dissimilar 

shapes. This accounts for the inferior retrieval performance of the ILMD2. It has less 

discriminative ability between shapes. Moreover, ILMD2 is computationally intensive than 

ILMD 1. So, ILMD 1 is selected as the optimum descriptor among the three candidate 

descriptors. 
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Table 5.5 Retrieval performance of ILMDl with different orders on MPEG-7 CE-2 

Order No. Recall (%) 
of Mean 

p+q 
coefs. 

10 20 30 40 50 60 70 80 90 100 

1 to 3 9 97.6 86.4 74.1 71.4 62.4 56.1 45.8 32.9 26.3 14.3 56.73 
1 to 4 14 98.6 90.5 81.2 77.8 73.2 67.9 56.2 45.5 41.6 24.7 65.72 
1 to 5 20 98.8 91.5 84.8 81.9 76.1 72.7 64.0 52.6 45.9 28.9 69.72 
1 to 6 27 99.1 92.7 85.4 82.0 79.5 74.2 70.0 58.9 52.2 32.6 72.66 
1 to 7 35 99.0 92.2 84.6 82.9 78.7 73.0 66.2 56.7 50.6 29.3 71.32 
1 to 8 44 98.8 92.1 84.7 82.1 79.5 74.7 68.0 57.2 51.4 32.3 72.08 
1 to 9 54 98.7 92.0 84.7 82.2 79.5 74.9 67.3 56.3 51.0 29.2 71.58 

5.5.5 Selection of Optimum Parameters 

According to MPEG-7, it is not necessary that image could be reconstructed from its shape 

descriptor. The number of moment coefficients used is an important parameter in deciding the 

retrieval accuracy and compactness of the descriptor. For ILMD 1, the zeroth order moment will 

be unity after scale normalization, so it is not used in the descriptor. To select the optimum 

number of moments to be used, retrieval accuracy experiments are conducted using ILMDl and 

MPEG-7 CE-2 database with starting order 1 and ending order in the range from 3 to 9. Table 

5.5 lists the precision for various recall rates using different order of ILMDl. The last column 

shows the overall performance for a given order. As we trade off retrieval precision with 

number of coefficients, ILMD 1 with order 1 to 6 is found to be best suitable. It is also compact 

with only 27 numbers of coefficients in the descriptor. 

Another parameter to be fixed is the similarity measure. Both Euclidean distance and city 

block distance can be used to define the distance between the feature vectors. To decide best 

similarity measure, retrieval is conducted using both distance measures and compared. Figure 

5.10 illustrates the retrieval accuracy of ILMD 1 with order 1 to 6 using Euclidean and city block 

distance measure on MPEG-7 CE-2 database. It can be noted that the performance of city block 

distance measure is slightly superior to Euc1idean distance. Hence, city block distance measure 

is adopted as the similarity measure for ILMDl. 

To conclude, ILMD 1 with coefficients in the order 1 to 6 is found to be a suitable candidate 

as a shape descriptor. The optimum similarity measure is city block distance. 
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Figure 5. 10 Retrieval accuracy of ILMDI using Euclidean and City block distance 
measures on MPEG·7 CE·2 database 

5.5.6 Modifica tions to ILMD 

To characterize the descriptor as contou r-based or region-based descriptOf, the properties of 

Legendre polynomials is analyzed. Kuijlaars and Martinez.-Finkelshtein reported that Legendre 

polynomials have asymptotic zero distribution [21]. The number of zeros of the orthogonal 

polynomials play a vital part in describing high-spatial-frequency components of the image. It 

can be noted from the plol of Legendre polynomials (Figure 5.4) that Lhe edge region of (-1, 1] 

distributes more zeros than the central region of [- I, 1]. Thus, the following conjecture comes 

into being: if a target image covers two edge areas for Legendre polynomiaJs in [- 1, 1). it would 

have better image representation quality than any other case. In the case of ILMD as Legendre 

basis function region is restricted to the 'bounding box' of the shape. object contour appear in 

the edge region of the Legendre polynomial. Thus, outer region of shape. i.e. contour. are better 

represented than the inner region. This is the requirement for a contour·based shape descriptor 

and hence ILMD I should have better contour description capability. Thus, the newly proposed 

descriptor ILMDI is a contoll r·based descriptor. 

80 Fu et. 01. proposed a modification to the Legendre polynomial to distribute more zeroes 

in the centra l region fo r efficient representation of 'small images' [22]. The actual object region 
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in the 'small image' is small in comparison with the lotal image dimension. In ori ginal Legendre 

polynomial, since zeroes are located in the edge region actual object points are weakly covered . 

In the modified Legendre polynomial, since more zeroes are in the central region. object region 

in 'small images' are strongly covered. The mod ification to lhe Legendre polynomial is as 

follows. The domain of the Legendre polynomial is expanded to lhe set or all real numbers with 

a period of 2: 

V,(2m+x)=Pp(x). (5 .27) 

where XE l~ I I! m e Z,Z means lhe set of all integers and Pp(x) is the Legendre polynomial. 

After translating the expanded Legendre polynomials by a random real x. (assume x. > 0). 

polynomials are defined in lhe mnge H I]. The modified Legendre polynomials with 

tmnslation x. can be expressed as fo llows: 

V" (x) = ( Pp(x - x.). 
p Pp(x+2-x.). 

x~-l+x. 

x<-l+xo 
(5.28) 

where XE [- I 1]. This modified Legendre polynomials with random translation x, E [-I I] 

have the same onhogonal ity propeny as the original Legendre polynomials. Figure 5. 11 shows 

0.5 

- 1 ~~~~~~--~--~~~~~~~~~~ 

~ ~ 46 ~ ~ 0 ~ m4 M M 1 
r 

Figure 5.11 Plot of modified Legendre polynomial runction values 
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Figure 5.12 Reconstructed images at various orders using Legendre moments 
and modified Legendre moments for (a) a small image (b) a larger image [22] 

the modified Legendre polynomials of 0_61h orders with a translation x. = 1. It can be noted that 

the two edge intervals of [-1 1] with the maximal zero distribution for Legendre polynomials are 

combined into the central region of [-I I] for the new Legendre polynomials. The Legendre 

moments for an image F(i,;) of order p + q with the new polynomial can be defined as follows 

mA = (2p+l)(2q+l)~~V'·(x. ) V"( ) F(i .) 
'" (M-l)(N - l) L-L- p , • Yj .} 

,-0 j-G 

(5.29) 

In [22] the image reconstruction error using Legendre moments and modified Legendre 

moments are compared. The image reconstructed. at various orders using original Legendre 

polynomial and modified Legendre polynomial for two example images is shown in Figure 

5.12. The sum of absolute difference (SAD) error for each order is given along with. Figure 5.12 

(a) is small image of capital letter 'E' of size 32x32 and (b) is of size 64x64. The image 

representation capability of modified Legendre moments is better, specifically for small images 

(Figure 5.12 (a». 
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5.5.6.1 As a Shape Descriptor 

A region-based descriptor should be able to describe the interior content of the shape also. 

So, an efficient region-based descriptor should have more distribution of zeroes in the central 

region. The modified Legendre polynomials have this property and hence is a suitable candidate 

as a region-based shape descriptor. But as in the case of Legendre moments, modified Legendre 

moments do not have invariance to geometric transformations. 

The modified Legendre polynomial has same properties such as orthogonality, symmetry 

with respect to origin etc. as in the case of original Legendre polynomials. So, the technique 

adopted in computation of ILMDl could be applied here also to improve invariance to 

transformations. From Equation (5.17), a new equation for modified Legendre moments for 

invariance improvement can be written as 

(5.30) 

where mA.;q is the modified Legendre moment for the quadrant n = 1,2, .. .4. After scale 

normalization the new improved Legendre moment descriptor can be represented as 

(5.31) 

It is to be noted that, in ILMD3 more importance is assigned to the interior content of the shape 

rather than contour properties. 

We know that the contour information is equally important as the interior content of the 

shape for efficient description of a region shape. We have seen that properties of ILMDl are 

suitable for contour description and ILMD3 for interior content of a region shape. So, 

combination of ILMDl and ILMD3 would produce a superior region-based descriptor, which 

describes the contour and interior properties of a region shape well. This combined descriptor is 

denoted as ILMD4. Using Equation (5.18) and (5.31) we can represent ILDM4 with order p + q 

as foHows: 
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Table 5.6 Retrieval performance ofILMD4 with different orders on MPEG-7 CE-2 

Order No. 

P+q of 
10 coefs. 

1 to 3 18 98.5 
1 to 4 28 99.0 
1 to 5 40 99.1 
1 to 6 54 99.0 
1 to 7 70 99.1 
1 to 8 88 99.0 
1 to 9 108 99.2 

Recall (%) 

20 30 40 50 60 70 80 90 

91.7 86.6 81.5 76.5 68.0 54.7 52.9 38.9 
94.8 88.1 86.6 83.6 77.8 66.2 65.4 54.0 
95.4 91.0 89.2 87.5 83.0 73.0 67.6 61.0 
95.5 92.5 91.0 89.1 86.3 79.9 73.1 67.5 
95.4 92.2 91.0 88.2 85.1 77.6 72.8 65.0 
95.3 92.4 91.0 88.4 84.9 78.9 72.1 66.6 
95.4 92.2 91.1 88.1 84.1 76.0 72.1 65.1 

ILMD4 = ~ ---.!Q.. ~ -...Jl.!... _"1_0 ~ 
[

A' A' A' A" ~ " A" ] 
A' 'A' '''., A' , A" , A" ,.'" A" 

00 00 00 00 00 00 

100 
Mean 

23.2 67.25 
31.6 74.71 
33.5 78.03 
39.2 81.31 
38.4 80.48 
38.9 80.75 
37.3 80.06 

(5.32) 

To determine the optimum number of coefficients required as a region-based shape 

descriptor experiments were conducted to test the retrieval effectives at various orders (order of 

ILMD1 and ILMD3) on MPEG-7 CE-2 database. Table 5.6 lists the precision for various recall 

rates using different orders of moments. ILMD4 with orders 1 to 6 is found to have optimum 

performance as we trade off performance against the number of coefficients. Thus, newly 

proposed region-based shape descriptor is ILMD4 with orders 1 to 6 having 54 coefficients. 

5.6 Experimental Setup and Results 

In order to evaluate the retrieval effectiveness of the proposed descriptors two sets of 

experiments are conducted. First the contour representation accuracy of the descriptors are 

evaluated and then the region representation accuracy. The perfonnance measure used is recall 

precision pair (RPP). Also, a quantitative evaluation of the performance is reported using 

ANMRR outlined in Section 4.4.2. 

5.6.1 Comparison of Contour Representation Accuracy 

The contour representation accuracy of the ILMD1 is compared with ZMD, ARTD and 

CSSD. Although, ILMD1, ZMD and ARTD describe the entire region they can also be used to 

represent the contour alone. The CSSD is a strict contour descriptor. The M?EG-7 contour 
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shape database CE-1 was used for the experiments. Two pixel wide contours of the shapes in 

the database is extracted and used for all the descriptors to test their accuracy for contour shape. 

5.6.1.1 Test Database 

The CE-1 database consists of shapes acquired from real world objects. It takes into 

consideration the common shape distortions in nature and the inaccurate nature of shape 

boundaries from segmented shapes. It is designed to test contour shape descriptor's behavior 

under different shape distortions. The database consists of three parts, Set A, Set B and Set C. 

Set A has two subsets, Set Al and Set A2. 

Set Al is for testing of scale invariance. It consists of 420 shapes of 70 classes. Each class 

has 6 similar member shapes. All the 420 shapes in the database are used as queries to test the 

retrieval accuracy. 

Set A2 is for testing of rotation invariance. It consists of 420 shapes of 70 classes. Each 

class has 6 similar member shapes. All the 420 shapes in the database are used as queries to test 

the retrieval accuracy. 

Set B is for testing of similarity-based retrieval or for testing shape descriptors' robustness 

to various arbitrary shape distortions including rotation, scaling, arbitrary skew and stretching, 

defection, indentation and other variations. It has 1400 shapes which have been classified to 70 

classes. Each class in Set B has 20 similar member shapes. All the 1400 shapes in the database 

are used as queries to test the retrieval accuracy. 

Set C is for testing shape descriptors' robustness to non-rigid object distortions. Set C 

consists of 200 affine transformed bream fishes and 1100 marine fishes which are unclassified. 

The 200 bream fishes are used as queries. 

5.6.1.2 Retrieval Results and Analysis 

In the plot of average precision for various recall rates for Set Al shown in Figure 5.13, 

ILMDl is observed to be better than other descriptors. Performance of ZMD and ARTD are 

comparable although ARTD is slightly better. CSSD has the least performance. In the First 12 

retrieved results shown in Figure 5.14, ILMDI and ARTD retrieves all the 6 butterflies while 

ZMD misses 2 and CSSD misses 4 cases. In each example results, the top left shape is the query 
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Fi gun.: 5. 13 Average prccision·recall of 420 rclrievals using ILMDl, ZMD. ARTD and 
CSS, ) on Sel A 1 of M PEG· 7 contour shape database CE· ] 

Fi gure 5.14 Ret rieval results o f qu ery image 'butterfl y- l ' on CE- I Set A I of C F.-I using (a ) 
I I.MDI (o)7.MD (c ) ARTD (d) CSSD. 

shapt'. The retrieved shapes are ranked in descendi ng order of similarity 10 the query shape. and 

are arranged in left to right and top to bottom order. 
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Figure 5.15 Average precision-recall of 420 retne ... als using ILMDI. ZMD, ARTD and 
CSSD on Set A:! of MPEG-7 contour shape database CE·1 

fi gurt' 5,16 Retrieval results of query image ' fl y- I ' on CE-l Set A2 of CE-I using (nj 
II.Mlll (b) ZMD (c) ARTD (d) CSSD 

[n Fi g.ure 5. 15. Ihe RPI' plol for SI.:t Al. ART/) shows su perlur pt' rfOfllHllll'C whi le 

paformallrl' of zr ... m i~ co rnparabk. The pcrf(lrmance of Il.MDI is slightly inferior to ZMD 

antJ CSSD ha~ lhe lema perfOmlanCl'. Tilt' sup .... rior pCrf\lrrnanCc of ARTD and ZMD i~ due 10 

lht.!ir inhert:nl ill Vitriann.: lu rOlali(ln. ror ILMDI. some mapping error is inlroduced du .... 10 

fOla1ion for major axis alignment. Slill. for maximum recall rate ILMDI is only atlolH 3% low!.:f 

lhan 7.:".1]). In lhe first 12 rClriC\'l'd results shown in Figure 5.16. [LM01. ZMJ) ,1Ilct ARTD 
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Fi gure 5. 17 Average precision ·reca ll of 1400 retrie ..... al s using ILMDI. ZMD. ARTD 
and CSS D on Set U of MPEG-7 contour shape database CE- J 

Figure 5 .1 8 Retrieval resullS of qut:ry image 'fork- I ' on CE- l Sel B lI ~ ;n g ta) 
ILMD I (h) ZMD (c) ARTD (d) CSSD 

retrieved all the 6 Jly shapes matching to the query image wh ilt: CSSD mi~!,Cf.1 I. It can be noted 

Ihm <l ln ong. the. fir$ t 12 s<l mplcs. ILMDI retrieved 3 beet le shape!' whic h .. m~ d oser to the query 

t1y shape. Thus [I.MD I retri eves more perceptua ll y sim ilar shapes tha n mhe r descriptors. 
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Figure 5. 19 Average precision-recall of 2()() rerrievals using lLMDI 
and CSSD on Set C of MPEG· 7 contour shape database CE- I 
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Figure 5.20 Retrieval resu lts of query image 'bream.()' 0 11 CE· I S~t C uSIn g (a) 
ILMD I (b) ZMD (c) ARTD (d) CSSD 
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Figure 5.17. precision· n.:call plol for Set [3. ind icates that I LMD 1 ha~ hctter precision than 

Olh!..'r dcscri plors. The n:lri!..'val 'l(CllTaCY of ART() is oetter than ZMO (I nd CSS!) ha~ the least 

pafflflllilJll:1..' or all. In the sampk qll!..' ry rr • .:sul! shown in HgUfC- 5.1 S. ILM D I retriL'\'cd 15 fo rk 

shnp!..'s al1lllll~ 20 ill the lOp 20 retrieval:; whik ARTD ]\'tricv!..'d l.l, ZMD II and CSS]) .:' . 
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Table 5.7 ANMRR results of various descriptors on MPEG-7 contour database CE-l

Database Descriptor ANMRR
ILMDl 0.1130

CE-I Set Al
ZMD 0.1359
ARTD 0.1241
CSSD 0.1420

ILMDl 0.0154

CE-I Set A2
ZMD 0.0103

ARTD 0.0041
CSSD 0.0210

ILMDI 0.7051

CE-I Set B
ZMD 0.7936

ARTD 0.7736
CSSD 0.8472

ILMDl 0.2049

CE-I Set C
ZMD 0.2182
ARTD 0.2166
CSSD 0.2324

In the RPP plots of Set C shown in Figure 5.19, the precision of ILMDl, ZMD and ARTD

are comparable up to recall rate of 80%. For higher recall rates ILMD shows better performance

than ARTD and ARID shows better performance than ZMD. The CSSD has the lowest

retrieval accuracy. As there are 200 similar shapes to the query shape, the first 20 retrievals

shown in Figure 5.20 for all the descriptors are correctly matching.

The ANMRR values for each database is computed and listed in Table 5.7 for all the

candidate descriptors. The lower the ANMRR value, the better the descriptor. They also indicate

superior performance of ILMD1 supporting the RPP results.

The size of ILMDI is 27 while that of ZMD and ARTD is 35. The dimension of CSSD

varies with shape. Thus, ILMD is more compact. The overall performance ofILMDI as contour

shape descriptor is found to be better than ZMD, ARID and CSSD. The newly proposed

descriptor ILMD I is found to be a better contour based descriptor.

5.6.2 Comparison of Region Representation Accuracy

The retrieval accuracy of the newly developed region descriptor ILMD4 is compared with

standard region based descriptors ZMD and ARTD using a region shape database. The MPEG-7
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proposed region shape database CE-2 is used for the experiments. Also, Set B of CE-l is used 

for evaluation. 

5.6.2.1 Test Database 

The CE-2 database has been organized by MPEG-7 into six datasets: Set AI, A2, A3, A4, 

B and the whole database. CE-2 is designed to test region shape descriptor's behavior under 

different shape variations. The database contains trademark images. 

CE-2 Set Al consists of 2881 shapes from the whole database; it is for test of scale 

invariance. 100 shapes in Set Al are organized into 20 groups (5 similar shapes in each group). 

All the 100 shapes from the 20 groups are used as queries to test the retrieval. 

CE-2 Set A2 consists of 2921 shapes from the whole database; it is for test of rotation 

invariance. 140 shapes in Set A2 are organized into 20 groups (7 similar shapes in each group). 

In our experiment, all the 140 shapes from the 20 groups are used as queries to test the retrieval. 

CE-2 Set A3 consists of 3101 shapes from the whole database; it is for test of rotation/scale 

invariance. 330 shapes in Set A3 are organized into 30 groups (11 similar shapes in each group). 

All the 330 shapes from the 30 groups are used as queries to test the retrieval. 

CE-2 Set A4 consists of 3101 from the whole database; it is for test of robustness to 

perspective transfonn. 330 shapes in Set A4 are organized into 30 groups (11 similar shapes in 

each group). All the 330 shapes from the 30 groups are used as queries to test the retrieval. 

CE-2 Set B consists of 2811 shapes from the whole database, it is for subjective test. 682 

shapes in Set B are manually sorted out into 10 classes by MPEG-7. The number of similar 

shapes in each class is respectively 68, 248, 22, 28, 17,22,45, 145,45,42. All the 682 shapes 

from 10 classes are used as queries to test the retrieval. 

The CB-2 whole database consists of 3621 shapes, 651 shapes of the 3621 shapes are 

organized into 31 groups (21 similar shapes in each group). For the 21 similar shapes in each 

group, there are 10 perspective transfonned shapes, 5 rotated shapes and 5 scaled shapes. The 

31 groups of shapes reflect overall shape operations, and they test the overall robustness of a 

shape descriptor. The whole database is 17-29% larger in size than the individual sets. All the 

651 shapes are used as queries to test the retrieval accuracy. 

To test the retrieval accuracy of the descriptors in the presence of occlusion a new database 

was constructed using shapes from CE-1 Set B. The database consists of 10 -classes with 5 
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shapes in each class. Ench member of lhe class has undergone mild to severe occlus ion. All the 

50 shapes were used as queries to test lhe retrieval accuracy. 

Details of CE·! Set B database was given in the previous section. Even though. this 

database is intended for testing contour description accuracy. the emire image region (nol just 

contour) can be used to test the accuracy of region based descriptors also. AU the 1400 shapes in 

the database are used as queries to test the retrieva l accuracy. 

5.6.2.2 Retrieval Results {J nd Analysis 

In the plOI of average precision for various recall rates for CE-2 Set A I shown in Figure 

5.21, ILMD4 has the highest overall precision and accuracy of ARTO is belter than that of 

ZMD. For low recall rates the performance of the three dcscriptors are comparable. Figure 5.22 

shows first 12 rctrieva ls of a sample query shape. Out of 5 similar shapes. I is miss ing for 

ILMD4 and 2 forZMD and ARTD. 

Precision - recall plot Figure 5.23 for CE-2 SCt A2 shows overall high performance for all 

the descriptors. Performance of ZMD and ARTD are comparable and is slightl y better than (by 

about 3% for 100% recall) ILMD4. This is due to inherent rotation invariance of ZMD and 

ARTD. In the fi rst 12 retrieval resullS shown in Figure 5.24. all 7 members of the query class 

arc retrieved by the three descriptors . 
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Figure 5.21 Average precision-recall of 100 retrievals using ILMD4 . ZMD, and 
ARTD on Set A I of MPEG-7 region shape database CE-2 
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Figure 5.23 Average precision·recall of 140 retri evals using ILMD4. ZMD. and 
ARTD on Set A2 of MPEG·7 region shape database CE·2 

Figure 5.24 Retrieval results of query image '271' 011 CE-2 Set A2 using la) 
ILMD-l lb) ZMD (c) ARTD 
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Figure 5.25. RPP plot of CE·2 Set A~ . shows overall high pt: rformancc for all the 

desc riptors. Performance of ZMD Hnd ARTD arc com parable and is slightl y better tha n (by 
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Figure 5.25 Average precision-recall of 330 relrievals using LLM04. ZMD, and 
ARTD on Set A3 ofMPEG-7 region shape database CE-2 

•• •• , 
Figure 5.26 Retrieval results of query image "484' on C F.·2 Set A3 using (a) 
ILMD4 (b) ZMD (c) ARTD 

about 2% for 100% recall) than ILMD4. Minor degradation in performance for ILMD4 is due 10 

the rc-sampling error introduced in major axis alignment. I,n the first 20 example retrieval 

results shown in Figure 5.26, all 11 members of the query class a re retrieved by the three 

descriptors. 

In precision - recall plot Figure 5.27 fo r CE-2 Set A4 , ILMD4 has the highest overall 

precision and the accuracy or ARTD is betler lhan that or ZMD. Sel A4 is ror perspective 

tran sJormcd images and for some highl y skewed images in which the major axis may be 

different with respect to the original shape. This affects overa ll accuracy or ILM 04. This issue 

is addressed in the next sect ion. Top 20 retrieval result s ror a query shape an.' shown in 
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Figure 5.27 Average precision-recall of 330 retrievals using ILMD4. ZMD. and 
ARTO on Set A4 of MPEG-7 region shape database CE-2 
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Figure 5.28. ILM04 retrieved all the 11. while ZMD and ARTD retrieved 9 si milar shapes. The 

simIlar images appear at a c loser di stance for ILMD4 than for ot her descriplOrs. 

Figure 5.29. RPP plot of CE·2 Set B. shows comparatively belief accuracy for ILMD4 than 

ZMD and ARTD. The perfonnance of ARTD is beller than that of ZMD. The comparative low 

retrieval performance on Set R fo r all lhe descriptors is due to the fact that the grouping within 

the set i ~ too rough. Top 30 example retrieval results are shown in Figun: 5.30 for a query 

shape. It can be noted that for 11 .MD~ more matching shapes appear closer 10 the query image. 

In Fi gure 5.3 1 for CE-2 whole database. ILMD-l hilS th e highest ove rall precision and the 

aCCllriH':y of ARTD is better than that (If ZMD. In Figurt' 5.32. lOp 30 retrieval rl'sults. all th~ 
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Figure 5.29 Average precision-recall of 682 retrievals using ILMD4, ZMD. and 
ART!) on Set B of MPEG-7 region shape database CE-2 

Figure 5.30 Retri eval results of query image '394' on CF.-2 Set R using (3) 

ILMD4 (bl ZMD (cl ARTD 

simi lar images arc retri eved by ILMD4 and ARTO while some are missing for ZMD. The 

distance at which the mmching image appears varies for the descnplors. and fo r ILMD4 they are 

closer. This database also contains some perspective transfonned images and hence limitations 

to lLM04 as specified for Sel A4 exist. which wi ll be addressed in the next section . 

Some example classes of the occlusion database is shown in Figure 5.33. The RPP ptot for 

occlusion dat.l.base shown in Figure 5.34 indicates comparable performance of ILMD4 and 

ARTD although performance of ILMD4 is sli ghtly better. The performance of ZMD is slightly 

inferior to ARTD. In the example lOp 12 retrieval results shown in Figure 5.35, i[ can be noted 

that simi lar image appears closer 10 query ima!,!c for ILMJ)4 and ARTD than for 7.MD. 
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Figure 5.34 Average precision-recall of 50 relrievais using ILMD4. ZMl), and 
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ILMD4 shows better precision than other descnplors in RPP plot of CF.- l Set B using entire 

shape region. as plotted in Figure 5.36. Perfonnance of ARTD is better than ZMO. The first 30 

retrieval rcsuhs for an example query shape is shown in Figure 5.37. ILMD4 retrieves all the 20 

caltle shapes. while ZMD retrieved 8 and ARTD 13. ILMD4 retrieved shape-s of horses. which 

are similar to cattle. as additional images in the first 30 retrieval results. 

It can be noted that images retrie ved in addition to those belonging to (he query class are 

perceplUally more simila r 10 the qu ery image ror II.MD4 than ror olher descriplors. The 

ANMRR values or retrieval for these sets or database are computed and listed in Table 5.8. The 

ANMRR results also agree with the RPP results. 
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Figure 5.36 Average precision-recall of 1400 retrievals using lLMD4, ZMD, 
and ARTD on Set B of MPEG-7 shape database CE- l as region shape 

Figure 5.37 Retrie val results of query image 'caule- 1' on Set B of MPEG-7 
shape database CE-Ias regi on shape using (a) ILMD4 (b) ZMI) (c) ARTD 

\)3 

The dimension of ILMD4 is 54 and that of ZMD and ARTD are 35. But the retrieval 

performance of ILMD4 is significantl y helter than other descriptors. Hence. ILM 1)4 is a suitable 

region based descriptor. 

5.7 Enhancement to ILMD for Afline Transformations 

Affine or perspective transformed shapes are seen common in nature. The major axi s of th e 

shape ma y change due to high degree of ske,w. As the ILMD computation relies on the major 

axis of 11 shape. thi s will contribute to degradation in retrie val performance. To addn;ss thi s 

prohlem. a prcprocl!ss in g step is proposed. The shape is normali zed through compacti ng 
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Table 5.8 ANMRR r f d esu ts 0 variOUS escrlptors on MPEG-7 region database 
Database Descriptor ANMRR 

ILMD4 0.l612 
CE-2 Al ZMD 0.2060 

ARTD 0.l833 
ILMD4 0.0091 

CE-2 A2 ZMD 0.0045 
ARTD 0.0033 
ILMD4 0.0061 

CE-2 A3 ZMD 0.0015 
ARTD 0.0011 
ILMD4 0.6482 

CE-2A4 ZMD 0.7531 
ARTD 0.7136 
ILMD4 0.8134 

CE-2B ZMD 0.8691 
ARTD 0.8508 
ILMD4 0.6194 

CE-2 whole ZMD 0.7598 
ARTD 0.7413 
ILMD4 0.3585 

Occlusion ZMD 0.3625 
ARTD 0.3620 
ILMD4 0.7844 

CE-1 B ZMD 0.8614 
ARTD 0.8160 

prior to ILMD computation. This is applicable to both ILMD 1 and ILMD4. Leu proposed an 

algorithm for shape nonnalization in [23]. The shape nonnalization process is summarized here. 

Letj{u, v) be the affme transfonned image andj{x, y) the standard nonnalized image. The 

affine relationship betweenfiu, v) andj{x, y) are as follows. 

(5.33) 

where [u v r is the affine transfonned position corresponding to point [x y r ' and A is the 

·affine coefficient matrix. 
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In Equation (5.33), scaling, rotation and skewness are related with ail and translation is 

related with bi}' The affine relationship which is based on regular moments is defined as 

follows. 

I , , 
m 20 m ll mlO m 20 m l1 mlO 

A AT = I , , 
m 11 m 02 mOl m ll m02 mal (5.34) 

1 
, I 1 m lO mal mlO mal 

where m {Xl is the pq -order regular moment of the compact imagej(x, y) and m~ the pq -order 

regular moment of the affme transformed imagej(u, v). For the purpose of image normalization 

we need to know the mapping from point [u v r to point [x yr. The aim is to construct the 

compact image I(x', y') from the affine transformed imagej(u, v). 

The goal of the compact algorithm is to adjust an image through a sequence of two linear 

transformations, so that the covariance matrix of the compacted image becomes a scaled 

identical matrix. So the compact image by the algorithm is invariant to translation, scaling and 

skewness. The covariance matrix C of an image can be computed as follows. 

I " 1 m l1 - mJO mOl 

, ,2 
m 20 - mal 

(5.35) 

Let E be a matrix whose rows are formed from the eigenvectors of C, ordered so that the last 

row is the eigenvector corresponding to the smallest eigenvalue. Eigenvectors and eigenvalues 

of E are needed to adjust the covariance matrix to a scaled identical matrix. The matrix C can be 

uncorrelated by multiplying with the matrix E. 

(5.36) 



136 Chapter 5. Improved Legendre Moment Descriptor 

where A, and A2 are the two eigenvalues of the matrix C and 

(5.37) 

where e Lt and e iy are corresponding eigenvectors of eigenvalues Ai' 

Multiplying by scaling matrix S, the covariance matrix of C becomes scaled identity matrix. 

(5.38) 

where c is a scaling constant and 

c 0 

JX: s= (5.39) 

o _c_ 

Fz 

Combining above two equations, 

(5.40) 

Now we can get the compact image from the affme transfonned image by the Equations (5.34) 

and (5.40). 

(5.41) 

Two examples for image nonnalization through compacting is given in Figure 5.38. It can 

be noted that affine transfonned shape is transformed to nonnal shape after compacting. The 

enhanced descriptor ILMDl is denoted as EILMDl and ILMD4 as EILMD4. 
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Figure 5.38 Two examples of image normalization through compacting 

5.7.1 Retrieval Experiment and Results 

The improvement in retrieval accuracy due to the affine transformation invariance of the 

descriptors EILMD I and EILMD4 is experimentally evaluated. Database sets containing affme 

transformed shapes are chosen as the test set. EILM DI is evaluated using CE~ l Set C and 

EILMD4 using CE-2 Set A4 and CE-2 whole database. 

Figure 5.39 demonstrates the average precision-recall of 200 retrievals using ILMD I and 

EILMDI on Set C of MPEG-7 contour shape database CE-l. The performance of ILMDI is 

belief than ZMD. ARTD and CSSD as detailed earlier. It can be noted that compaction 

improves the performance of the II ,MDI . First 30 retricvals of an example query result for 

':r:::~~~ 
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Figure 5.39 Average precision-recall of 200 rctricvals using ILMDI and 
EII.MD I on Set C of MPEG-7 contour shape database CE- [ 
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Figure 5.40 Retneva l results of query image 'bream- J24' on CE- I Set C using 
(aIILMDI (b) EILMDI. 
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Figure 5.41 Avemge precision-recall of 330 retrievals using ILMD4 and 
ELLMD4 on Set A4 of MPEG-7 region shape dalabase CE-2. 

ILMDI Rnd EILMDl is provided in Figure 5.40. For ILMDI. there are 3 wrong cases in the 

fi rs t :W rclrievals, while fo r ELlMDI all retri eved cases are from the query class. 

Average precision-recall of 330 relrievals using ILM D4 and EILMD4 on Set A4 of M PEG· 

7 region shape database CE-2 is ploued in Figure 5.41. First 20 rClrievals of an example query 

result for ILMD4 and EILMD4 is provided in Figure 5.42. The average precision for various 

reca ll rales of 651 relrievals using ILMD4 and EILMD4 on MPEG-7 whole region shape 

database CE-2 is shown in Fi gure 5.43. f-ITSt 30 relrieva ls of an example query result for ILMD4 

and EILMD4 is provided in Figure 5.44. The retrieval results show that fo r EILMD4 membe r 

images of thc query class arc retri eved correctl y at a shor1er distance than for ILMD4. It can be 

noted that the ovcra ll prl'cis ion of EII.MD.:J is better than ILM » 4 in ooth case. ... The 
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Figure 5.42 Retrieval results of query imagt: ' 1970' on CE-2 Set A4 
using (a) ILMD .... (b) EILM O-l 
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Figure 5.4~ Average precision-recall of 65 1 rctricval s using ILM D4 and 
EILMD4 on MPEG-7 whole region shape database CE-2 
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perfonnance of ILMD4 is observed to be better than ZMD and ARTD. Thus, EILMD4 has 

better retrieval accuracy than other descriptors as region based descriptor. 

It can be noted from Figure 5.38 that affine transfonnation changes the major axis of a 

shape. The major axis is restored to its original direction (i.e., to the major axis of the non affine 

transfonned shape), by compacting. A change in major axis causes the shape to be aligned 

differently while rotation normalization is done during computation ofILMD. Correction of this 

deficiency is the reason for remarkable improvement in retrieval accuracy of enhanced ILMD. 

5.8 Clustering Technique for CBIR 

The similarity measure is usually carried out by computing the distance, for e.g. city block, 

between the query image descriptor and descriptors of the images in the database. The accuracy 

of a clustering technique in grouping similar images using the shape descriptor as feature vector 

is investigated in this section. k-means is a popular statistical technique for clustering pattern 

vectors. It is based on unsupervised learning. k-means clustering technique is used for image 

retrieval. The details of k-means clustering technique were outlined in Section 4.2.5. 

The k-means clustering algorithm is implemented as follows. 

1. The number of clusters is chosen a priori based on the number of classes in the database 

2. Each image in the database is assigned to a cluster with which it exhibits maximum 

similarity. 

3. New cluster centers are computed as the centroids of the clusters. 

4. Steps 2 and 3 are repeated until there are no changes in the cluster centers. 

5.8.1 Experimental Setup and Results 

The clustering accuracy was evaluated using two sets of experiments. First set is using the 

contour database CE-1 Set B. As already explained, it contains 1400 images with 70 classes, 

each class containing 20 members. The descriptors used were ILMDl, ZMD and ARTD. The 

CSSD was not used, as the descriptor dimension changes with the shape. 

The second set of experiment was using region database CE-2 Set Al. It contains 20 classes 

with 5 shapes in each class and a total of 2881 trademark images. The candidate descriptors 
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In the first set as all the images are query images, 70 clusters are created. As the second set 

contains images other than the query images (not belonging to the 20 classes), an additional 

cluster is created totaling 21. Once images are clustered, retrieval is conducted by fetching 

images belonging to the cluster of the query image. The accuracy of retrieval is evaluated by 

computing the percentage of ground truth images belonging to the same cluster as that of the 

query image. Results are reported as the histogram of the accuracy of query image 

classification. 

Figure 5.45 shows the histogram of accuracy of various query classes using various 

descriptors. ILMD in the Figure 5.45 stands for ILMDI for the contour database and ILMD4 for 

the region database. Figure 5.45 (a) - (c) shows the accuracy of ILMDl, ZMD and ARTD for 

contour shape database. It can be noted that ILMD 1 has overall better accuracy than ZMD and 

ARTD. ARTD has slightly better perfonnance than ZMD. For example, ILMDl has 16 classes 

with approximate 100% retrieval accuracy, while ZMD has 12 and ARTD has 14. Figure 5.45 

(d) - (f) shows the accuracy of ILMD4, ZMD and ARTD for region shape database. Here also, 

ILMD4 has overall better accuracy than ZMD and ARTD. And ARTD has slightly better 

perfonnance than ZMD. For example, the number of classes with approximate 100% retrieval 

accuracy is 8 for ILMD4 and 5 for ZMD and 6 for ARTD. Overall, ILMD is a better descriptor. 

5.9 Conclusions 

In this chapter, a novel shape descriptor called improved Legendre moment descriptor 

(lLMD) for general shape description and retrieval has been presented. Techniques were 

developed for translation, rotation and scale invariance of the Legendre moment descriptor. The 

new ly developed invariance improved descriptor based on Legendre polynomials, denoted as 

ILMD 1, was proposed as contour-based descriptor. For better representation of the interior 

content of the shape, modified Legendre polynomials was used. Original Legendre polynomials 

and modified Legendre polynomials based descriptor was combined to form the region-based 

descriptor, denoted as ILMD4. MPEG-7 shape descriptors ARTD, CSSD and ZMD were 

implemented and compared with the perfonnance of the proposed descriptor. The retrieval 

effectiveness of ILMDl was evaluated using MPEG-7 contour shape database CE-l and found 

to be better than ZMD, ARTD and CSSD. The retrieval effectiveness of ILMD4 was evaluated 

using MPEG-7 region shape database CE-2 and found to be better than ZMD and ARTD. For 
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providing ILMD invariance to affine transfonnations, a preprocessing step to nonnalize the 

image through compacting was proposed. Experimental studies showed improvement in 

retrieval accuracy. A scheme for CBIR using k-means clustering was developed and ILMD was 

found to perfonn better than other descriptors. To summarize, ILMD is a better shape descriptor 

than the MPEG-7 shape descriptors. 
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Chapter 6 

Development of a Relevance Feedback Technique 

for CBIR 

6.1 Introduction 

A novel shape descriptor called improved Legendre moment descriptor (ILMD) has been 

developed in the previous chapter. The retrieval accuracy of ILMD was compared with MPEG-

7 shape descriptors such as ARTD, ZMD and CSSD using MPEG-7 contour and region shape 

database. It was found that ILMD has superior performance as a shape descriptor. Techniques 

for further improvement of the retrieval accuracy using relevance feedback are discussed in this 

chapter. In the relevance feedback scheme, the user selects a set of positive and/or negative 

examples to a query image and the system refines the query based on these user feedbacks and 

retrieves a new set of images. Relevance feedback technique was reviewed in Section 2.4. 

Classifying images automatically and accurately is important for both effective image 

organization and retrieval. Achieving high image classification accuracy is quite challenging 

because semantically related images may not be linearly separable in the feature space. So, the 

accuracy of applications like object recognition relies on 1) feature set chosen to represent the 

object and 2) the ability of the classifier to separate feature sets of multiple classes. Object shape 

features provide a powerful clue to object identity and functionality and can be used for object 

recognition [1]. So, shape descriptors such as ILMD, ZMD and ARTD are used as feature 

descriptors. CSSD is not used as it has variable number pf coefficients for various shapes. The 
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similarity evaluation based purely on distance measure between feature descriptors of the 

images is often not sufficient to cater to the broader user needs of a general purpose CBIR 

system. The query aim and thus the notion of 'similarity' may differ from user to user for the 

same query image, and hence the capability to incorporate user feedback to further fine tune and 

influence the result set will be of much value to the CBIR system. The relevance feedback can 

be treated as a classification problem in which sample images provided by the user are 

employed to train a classifier, which then classifies the database into images that are similar and 

dissimilar to the query image. Such a relevance feedback system demands a general and 

.:.ccurate classification of the images in a database using very few training samples and a system 

is proposed keeping this in mind. The classification accuracy of statistical and neural network 

based classifiers such as Support Vector Machine (SVM) [2], Least-Square Support Vector 

Machine (Ls - SVM) [3], Probabilistic Neural Network (PNN) [4], Learning Vector 

Quantization (LVQ) network [5] are investigated in this chapter. 

The Support Vector Machine (SVM) approach is considered as a good candidate for 

relevance feedback because of its high generalization perfonnance, even when the dimension of 

input space is very high. For several pattern classification applications, SVMs have already been 

shown to provide better generalization perfonnance than traditional techniques, such as neural 

networks [6, 7]. In least squares (LS) version of SVM's, one finds the solution by solving a 

linear system instead of quadratic programming. This is due to the use of equality instead of 

inequality constraints in the problem fonnulation. The PNN and L VQ are also supervised neural 

network that is widely used in the area of pattern recognition, nonlinear mapping, and 

estimation of the probability of class membership and likelihood ratios [8]. Details of these 

classifiers were outlined in Section 4.2. 

Among the various descriptors and classifiers, the best descriptor - classifier combination 

need to be selected. For that, classification accuracy of neural network based classifiers with 

shape descriptors as feature vector at various training set size is computed. Statistical analysis is 

carried out to choose the combination of ideal classifier and shape descriptor which gives 

maximum perfonnance. A relevance feedback scheme using this descriptor - classifier 

combination is then developed. 
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6.2 Selection of Optimum Shape Descriptor and Classifier 

An ideal shape descriptor should have features of similar shapes clustered and dissimilar 

shapes separable in pattern vector space. Also, an ideal classifier should be able to classify 

patterns of similar shapes to same class. An optimum descriptor-classifier combination is the 

one which has maximum classification accuracy with a few numbers of training samples. 

Experiments are conducted to identify the best classifier - shape descriptor combination for 

various training set size, both for contour and region shape database. 

SVM and Ls-SVM are binary classifiers. The multi-class support is achieved using a 

combination of binary classifiers based on Error Correcting Output Coding (ECOC) [9] 

approach. Details of ECOC approach were provided in Section 4.3. 

6.3 Experimental Setup and Results 

For the contour shape description, candidate shape descriptors are ILMDI, ZMD and 

ARTD, detailed in Chapter 5. The database used for evaluation of classification accuracy is 

MPEG-7 CE-l Set B. It has 70 classes with 20 members in each class. Thus, based on the 

ground truth, shapes are to be assigned to one of the 70 classes by the classifier. 

For the region shape description, candidate shape descriptors are ILMD4, ZMD and ARTD. 

The database used for evaluation of classification accuracy is MPEG-7 CE-2 whole database. It 

has 31 classes with 21 members in each class. Thus, based on the ground truth, shapes are to be 

assigned to one of the 31 classes by the classifier. 

6.3.1 Comparison of Classification Accuracy 

Experiments were conducted using the candidate descriptors for all classifiers at various 

training set size on contour and region shape database. A suitable percentage of the images from 

each class was used for training. Testing was initially done using the training set and validation 

was done using the rest of the members in each class. The aim of the experiment was to 

determine a suitable combination of a classifier and shape descriptor, which gives better 

classification results. 

Firstly, experiment was conducted ~o choose an appropriate kernel function for optinrum 
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Table 6.1 Classification accuracy of SVM and Ls-SVM for various kernel functions using CEI-B 
database 

Classification Accuracy (%) 
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classification perfonnance of the SVM and Ls-SVM classifiers using the candidate shape 

descriptors. The classification accuracy using RBF, linear and polynomial kernel functions were 

evaluated. Details of the kernel functions were given in Section 4.2. The accuracy was measured 

for 5 different training sizes for each class in the database, starting at 10% and incrementing up 

to 50% of the class size as the training size. The remaining data set was used as the test set for 

validation. The results are presented as classification accuracy; the ratio of the number of cases 

correctly classified to the test set size expressed as a percentage, for different training sizes. 

Table 6.1 lists the average classification accuracy for contour shape database and Table 6.2 for 

region shape database. The RBF kernel function was found to have better perfonnance for both 

SVM and Ls-SVM. So, for further studies with SVM and Ls-SVM, RBF kernel function is 

used. 

Experiments were conducted for PNN and LVQ classifiers also. To validate the accuracy of 

classifiers in classifying patterns used for training, the entire test patterns were used for training 

:~ nd testing. Classification accuracy of 100% was obtained for all cases as expected. For 

validation purpose, the training set size was increased from 10% to 50% for each class in the 
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Table 6,2 Classification accuracy of SVM and Ls-SVM for various kernel functions using CE2 
whole database 

Classification Accuracy (%) 
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database. The patterns in each class other than training set are used as the test patterns. The 

classification accuracy of various classifiers for a given training set size for the candidate 

descriptors were computed. The results for SVM and Ls-SVM are given for RBF kernel 

function. 

Table 6.3 consolidates the average classification accuracy using contour shape database for 
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T bl 64 Cl °fi r 'fi a e ° aSSl lcatioD accuracy 0 vanous c aSSl lers USlD~ CE2 hid t b woe a a ase 
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40 90 87 76 80 83 84 73 68 85 88 70 75 
50 92 92 78 83 88 88 68 77 88 92 70 78 

all the classifiers. For ILMDl, SVM has overall better performance. The performance ofPNN is 

comparable to SVM, but latter is slightly superior. Performance of L VQ and Ls-SVM are not 

satisfactory. For ZMD and ARTD, PNN has overall better performance. Performance of SVM is 

comparable to PNN, but PNN has better performance for lower training set size. Here also, 

accuracy of LVQ and Ls-SVM are comparatively low. Comparing the best performing classifier 

of each descriptor, SVM with ILMDl has overall higher classification accuracy. 

Table 6.4 consolidates the average classification accuracy using region shape database. For 

ILMD4, SVM has overall better classification accuracy than PNN, LVQ and Ls-SVM. Even 

though, PNN has comparable performance at high training set size, performance of SVM for 

low training set size is superior. Performance ofLVQ and Ls-SVM are comparatively low. For 

ZMD and ARTD, performance of SVM and PNN are comparable, while PNN is slightly better. 

L VQ and Ls-SVM have low performance for both the descriptors. Comparing the best classifier 

for the three descriptors, ILMD4 with SVM shows better performance. This is more evident at 

low training set sizes. 

6.3.2 Statistical Analysis 

The comparison of classification performance was also undertaken in a statistically rigorous 

fashion. Here, the statistical significance of differences in the accuracy of classifications derived 

using different methods was assessed using McNemar test, without correction for continuity, for 

related samples. This is a nonparametric test that may be applied to confusion matrices that are 

2 x 2 in dimension [10]. Details of the McNemar Test were outlined in Section 4.5.1. This test is 
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based upon the standardized nonnal test statistic. The McNemar test result, Z - score is 

calculated as 

(6.1) 

where f12 andhl represent the off-diagonal entries of the error matrix. 

The McNemar test was conducted to choose best descriptor for a given classifier, best classifier 

for a given descriptor and best descriptor - classifier combination. To choose best descriptor for 

a given classifier, for example, the error matrix was fonned for one descriptor against another 

with an entry for each test case at a particular training size. The final confusion matrix for any 

two descriptors was fonned with entries 112 detailing how many cases first descriptor could 

classify correctly and the second descriptor wrongly andhl denoting for how many cases first 

descriptor was wrong and second descriptor correct. This test is done for all the three 

descriptors, one against another at different training sizes for all the four classifiers. The error 

matrix is similarly fonned for test cases also. A positive score indicates that first method is a 

better than the second one and score more than 1.96 shows results at 95% confidence level. 

Table 6.5 Z - scores of one descriptor against another for various classifiers using CEI-B 
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10 5.79 0.30 5.28 0.68 0 0.69 2.12 0.59 0.71 5.31 3.22 2.08 

20 5.33 -2.01 7.30 0.71 0.29 0.27 3.80 2.66 0.79 3.20 1.33 l.40 

30 5.39 -1.30 6.87 0.70 0.76 0 5.31 3.85 1.41 3.18 2.76 0.26 

40 12.54 3.80 8.74 0.72 1.32 -0.26 3.89 1.26 2.19 3.23 2.78 0.31 

50 10.43 4.25 6.35 0.29 0.25 0 4.25 0.29 3.79 3.20 3.26 0 
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Table 6.6 Z-scores of one classifier against another for various descriptors using CEI-B 

Training set size C%) 10 20 30 40 50 

svm vspnn 0 0 0.34 0.28 1.37 

svm vs lvq 17.21 16.82 16.59 14.68 18.42 

svm vs Ls-SVM 20.20 17.31 16.21 15.82 14.69 
ILMDl 

pnn vs Ivq 17.24 16.79 16.25 14.37 16.80 

pnn vs Ls-SVM 20.12 17.37 15.76 15.32 13.09 

Ivq vs Ls-SVM 3.21 0.35 -0.29 0.71 -3.81 

svm vspnn -4.23 -2.03 -1.32 -.1.37 -0.69 

svm vs Ivq 17.74 18.82 18.81 24.09 25.70 

svm vs Ls-SVM 17.32 17.89 18.37 16.29 15.79 
ZMD 

pnn vs Ivq 22.10 21.00 21.20 25.56 26.81 

pnn vs Ls-SVM 21.62 19.69 19.71 17.78 16.82 

Ivq vs Ls-SVM -0.29 -0.76 -0.36 -7.80 -9.69 

svm vspnn -3.17 -0.79 -0.81 -0.37 -0.73 

svm vs lvq 9.21 13.15 12.57 15.83 19.28 

svm vs Ls-SVM 18.24 18.31 17.29 14.69 11.81 
ARTD 

pnn vs Ivq 17.82 14.31 13.65 16.34 20.23 

pnn vs Ls-SVM 21.31 19.38 18.47 15.36 18.40 

Ivq vs Ls-SVM 3.85 5.33 4.82 -0.79 -7.36 

It is to be noted that McNemar test was conducted on the individual classification result of each 

query image in the database, not on the classification accuracy results. 

Table 6.5 lists the Z scores of McNemar test conducted to choose best descriptor for a given 

classifier using contour shape database. It can be noted that ILMDl against ZMD and ARTD 

gives positive values in most of the cases for all the four classifiers. This indicates that ILMD 1 

is better than other descriptors. For PNN classifier, Z-scores ofILMDI against ZMD and ARTD 

are small positive values. This shows that, their performance is comparable but ILMD1 is 

slightly superior. For SVM, Z-scores of ILMDI are greater than 1.96 (95% confidence level) 

indicating superior performance. Also, ARTD against ZMD gives positive values for most of 

the cases indicating that overall performance of ARTD is better than ZMD. In order to 

determine the best classifier for a given descriptor using contour shape database, 
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T bl 67 Z-a e scores 0 fd . t 'ft b' f escnplor-c aSSI ler corn ma Ion usm2 eEl B -
Descriptor- Training set size %) 
classifier 10 20 30 40 50 
ILMD1 

with SVM 
Vs 0.72 0.78 1.31 1.28 2.04 

ZMDwith 
PNN 

ILMD1 
with SVM 

Vs 0 0.29 1.30 2.01 2.07 
ARTD with 

PNN 
ARTDwith 

PNN 
Vs 0.69 0.27 0 -0.26 0 

ZMDwith 
PNN 

McNemar test was conducted. Table 6.6 lists the Z scores of all the three descriptors with entries 

for one classifier against another for contour shape database. For ILMDl, SVM shows better 

perfonnance than other classifiers as the Z-scores are positive values. The perfonnance of SVM 

and PNN are comparable, but SVM is slightly superior to PNN. Comparing LVQ and Ls-SVM, 

LVQ has better perfonnance. For ZMD and ARTD, PNN is the best classifier as perfonnance of 

PNN is marginally better than SVM. For ZMD, Ls-SVM is a better classifier then LVQ. LVQ 

shows better perfonnance than Ls-SVM for ARTD at low training set sizes. 

To identify the best descriptor - classifier combination, perfonnance of SVM classifier for 

ILMDl and PNN classifier for ZMD and ARTD using contour shape database need to be 

compared. The Z-scores of these combinations are given in Table 6.7. The positive values 

indicate that ILMDl with SVM classifier is better than ARTD and ZMD with PNN. Also, the 

overall perfonnance of ARTD with PNN is slightly better than ZMD with PNN. 

McNemar test was conducted using the classification results for the region shape database 

also. The McNemar test results to choose best descriptor for a given classifier using region 

shape database CE2 are listed in Table 6.8. For LVQ, ILMD4 against ZMD and ARID gives 

positive values indicating that ILMD4 has better perfonnance. ARTD against ZMD gives 

negative values showing that ZMD is a better descriptor. For PNN, ILMD4 against ZMD gives 

positive values and against ARTD low negative values. Thus ILMD4 has better classification. 
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Table 6.8 Z - scores of one descriptor against another for various classifiers using CE2 whole 
database 
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10 2.02 2.09 0 2.07 0 2.14 4.28 3.27 0.81 4.22 3.18 0.66 

20 3.21 3.89 -0.28 0.76 -0.30 1.21 4.83 3.32 1.30 3.81 2.73 0.70 

30 1.33 3.30 -1.35 0.39 -0.26 0.63 5.87 2.71 3.26 3.79 2.10 1.24 

40 1.28 3.26 -1.27 1.40 -0.29 2.10 6.30 2.76 3.81 3.61 2.79 0.71 

50 5.33 4.15 0.73 2.15 0 2.01 3.17 2.73 0.29 2.05 2.17 0 

results tha!1 ZMD, but comparatively slightly inferior to ARTD using PNN classifier. Also, 

ARTD is better than ZMD. In the case of Ls-SVM classifier, ILMD4 is better than ZMD and 

ARTD, and ARTD is better than ZMD. ILMD4 against ZMD and ARTD gives positive values 

for SVM classifier, indicating its higher accuracy. Also, ARTD is slightly superior to ZMD for 

SVM classifier. In order to detennine the best classifier for the three descriptors using region 

shape database, McNemar test was conducted by comparing the results of one classifier 

against another for each descriptor. Table 6.9 lists the Z score of all the three descriptors with 

entries for one classifier against another for region shape database. For ILMD4, SVM gives 

positive Z-scores against other classifiers showing its superior classification accuracy. Most of 

the values are above 1.96, indicating the superiority of SVM. PNN is better than LVQ and Ls­

SVM. LVQ shows better classification results at lower training set size than Ls-SVM. In the 

case of ZMD, except for training set size 10% and 50%, PNN is found to be slightly superior to 

SVM. Positive Z-scores indicate that PNN is better than other classifiers. SVM is better than 

L VQ and Ls-SVM. LVQ is better than Ls-SVM except at high training set size. PNN shows 

better classification accuracy than all other classifiers for ARTD. SVM is better than LVQ 

and Ls-SVM. Also, LVQ is better than Ls-SVM except for training set size of 40% and 50% 
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Table 6.9 Z - scores of one classifier against another for various descriptors using CE2 
whole database 

Training set size (%) 10 20 30 40 50 

Svm vs pnn 2.09 2.02 2.11 1.38 0 

Svm vs lvq 2.70 2.71 4.85 7.32 7.27 

svm vs Ls-SVM 8.32 6.85 5.82 5.33 4.86 
ILMD4 

pnn vs Ivq 0.31 0.32 2.74 5.85 7.33 

pnn vs Ls-SVM 6.35 4.90 3.89 3.81 4.86 

lvq vs Ls-SVM 8.83 4.22 0.75 -2.04 -2.71 

Svm vs pnn 0 -0.28 -0.76 -0.25 0 

Svm vs lvq 0.29 2.03 2.73 5.36 10.44 

svm vs Ls-SVM 8.33 7.84 7.78 7.87 5.81 
ZMD 

pnn vs Ivq 0.26 2.73 3.81 5.86 10.38 

pnn vs Ls-SVM 8.40 8.33 8.87 8.33 5.89 

Ivq vs Ls-SVM 7.80 5.75 5.24 2.73 -4.84 

Svm vs pnn -0.71 -0.75 -0.32 -1.23 -2.08 

Svm vs lvq 1.36 3.77 5.88 7.71 9.32 

svm vs Ls-SVM 8.39 7.37 6.33 5.37 5.27 
ARTD 

pnn vs lvq 2.76 4.88 6.31 9.28 11.27 

pnn vs Ls-SVM 9.26 8.30 6.90 6.88 7.31 

Ivq vs Ls-SVM 6.82 3.84 0.30 -2.75 -4.18 

for ARTD. 
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To identify the best descriptor - classifier combination, performance of SVM classifier for 

ILMD4, and PNN classifier for ZMD and ARTD using region shape database need to be 

compared. The Z-scores of these combinations are given in Table 6.1 O. ILMD4 with SVM gives 

positive Z-score against other descriptor-classifier combinations indicating that it is the best 

combination. Also, ARTD with PNN is better than ZMD with PNN. 

The results obtained in the statistical analysis using McNemar test agrees with the result 

obtained using classification accuracy statements for both contour shape and region shape 

database. 
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Table 6.10 Z-scores of descriptor.classifier combination using eE2 whole database 

Descriptor· Training set size %) 
classifier 10 20 30 40 50 
ILMD4 

with SVM 
Vs 4.21 3.23 2.76 3.28 2.08 

ZMDwith 
PNN 

ILMD4 
with SVM 

Vs 2.12 1.32 1.45 0.74 0 
ARTD with 

PNN 
ARTDwith 

PNN 
Vs 2.14 1.21 0.63 2.10 2.01 

ZMD with 
PNN 

6.4 Retrieval Using Relevance Feedback 

6.4.1 Method 

From the experimental results obtained in the previous section, it can be seen that ILMD 

(ILMDI for contour shape database and ILMD4 for region shape database) with SVM classifier 

(RBF kernel function) gives optimum classification results. So, it is selected for relevance 

feedback implementation. During the process of relevance feedback, user marks a set of images 

as relevant or irrelevant (positive and negative samples). The SVM classifier is used as a binary 

classifier to separate the images in the database as relevant class or irrelevant class. Training 

images can be selected from the top few images retrieved using a standard technique such as 

city block distance measure, outlined in Chapter 5. The classification of images is done 

according to the distance from each image to the separating hyperplane. By sorting images 

based on their distance to the hyperplane, the retrieval results can be improved. The steps for 

relevance feedback are described below. 

Mark relevant and irrelevant images, from the top few images retrieved using city block 

distance measure. The SVM classifier is then trained by using a set of training examples 

(xj,yJ
1 

< j < N' wherex j E Rd , is the i lb input pattern and d being the dimension of the input 
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space, and Yi the i th output pattern belongs to a class labeled by Yi E {- 1, 1}. The classification 

function of SVM (Equation (4.5» is given as 

N 

f(x) = sgn(L aiYiK(xp x) + b) (6.2) 
i=\ 

where K(,) is the kernel function, a i the Lagrange multipliers and b a constant. 

Now the images in the database are classified into two classes: those belonging to the query 

class and those not belonging to the query class. In the first learning iteration, the images 

marked as relevant or irrelevant are close to the query and lie on the separating margin. These 

are support vectors and contribute more to classification accuracy. Samples far away from 

hyperplane do not contribute to classification accuracy. The advantage of using an initial 

retrieval result in selecting relevant and irrelevant samples is that support vectors can be 

identified. From the results of first iteration, more samples can be marked as relevant or 

irrelevant to further refine the classifier. As SVM has the power to learn with few training 

samples, satisfactory results can be obtained with low training set size. 

For sorting the images based on similarity to a query image using SVM classifier, the sgnO 

in the classification function (Equation (6.2)) is ignored to get the similarity distance to the 

query as shown below. 

N 

f(x) = (L aiyjK(xi , x) + b) (6.3) 
;=1 

j(x) is computed for all the images in the database. Now sort the images based on the increasing 

value ofj(x) to get the new query result. Thus, query result can be displayed in decreasing order 

of similarity. 

6.4.2 Experimental Setup and Results 

ILMDl with SVM was tested using contour database CEl- B and ILMD4 with SVM using 

region database CE-2 whole. All the images in the database are used as test pattern to the 

classifier. The images are classified into query class or otherwise. 
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Figure 6. 1 Query results of a shape for lLMDl with SVM classifier with relevance 
feedback using CEI-B database.(a) retrieval result using city block distance. (b) Feed 
back samples (i) relevant (ii) irrelevant, (c) Images from query class correctly 
classified 
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Figure 6.2 Query results of a shape for ILMD4 with SVM classifier with relevance 
feedback using CE2 whole database.(a) retrieval result using city block distance, (b) 
Feed back samples (i) relevant (ii) irrelevant, (c) Images from query class correctly 
classified (d) Images from query class misclassified 

The results of a query shape fo r single training iteration using contour shape database is 

shown in Figure 6.1. First 20 retrieval results using distance measure are shown in Figure 6.1 

(a). Top - left image is the query image. In the top 20 images,S images are dissimilar to the 

query image. For relevance feedback, 4 samples each are selected as relevant and irrelevant 

from the lOp 20 query results for training the SVM classifier as shown in Figure 6.1 (b) . All the 

20 similar images in the query class were correctly classified. Figure 6.1 (c) shows the correctly 

classified images in the query class. The results for a query shape for single training iteration 

using region shape database is shown in Figure 6.2. First 25 retrieval results using distance 
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measure are shown in Figure 6.2 (a). In the top 25 images, 2 images are missing from the query 

class. For relevance feedback, 3 samples each are selected as relevant and irrelevant from the 

top 25 query results for training the SVM classifier as shown in Figure 6.2 (b). Out of 21 similar 

images in the query class, 20 images were correctly classified and 1 image was misclassified. 

Figure 6.2 (c) shows the correctly classified images in the query class and Figure 6.2 (d) 

misclassified image in the query class. The result can be improved by increasing the training set 

size and number of iterations. 

Retrieval accuracy is related to the relevant images selected for each query class. This may 

vary and is user subjective. Hence, a consolidated score of improvement in retrieval accuracy 

cannot be provided. 

6.5 Conclusions 

A new relevance feedback technique to improve the retrieval accuracy in CBlR using shape 

descriptors was developed in this chapter. The classifiers considered were SVM, Ls-SVM, PNN 

and LVQ. ILMD (ILMDl for contour shape and ILMD4 for region shape), ZMD and ARTD 

were the shape descriptors used as feature vectors to classifiers. Experiments were conducted to 

select the best kernel function for SVM and Ls-SVM and RBF was found to give optimum 

perfonnance for both classifiers. The best descriptor - classifier combination, for contour and 

region shape database, were determined by comparison of classification accuracy and statistical 

analysis using McNemar test for various training set size. Experimental studies conducted have 

shown that ILMDl with SVM (for contour shape database) and ILMD4 with SVM (for region 

shape database) give maximum classification perfonnance. A new relevance feedback technique 

was developed by training an SVM classifier with ILMD features using relevant and irrelevant 

samples to improve the retrieval accuracy of a CBlR system. 
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Chapter 7 

Content-Based Retrieval of Scoliosis Images 

7.1 Introduction 

In this chapter, a novel algorithm for the CBIR of spine images with scoliosis, which 

retrieves images which are clinically similar to a query image, based on automatically derived 

features is proposed. Scoliosis is an abnormality due to the lateral curvature of the spine, the 

magnitude of which is measured using Cobb Technique [I]. Details of the pathology scoliosis 

and Cobb technique were outlined in Chapter 3. Initially, the motivations for proposing a 

technique for CBIR of scoliosis images are discussed. A new algoritlun developed for automatic 

estimation of position and orientation of the spine is outlined. A rule based algorithm developed 

for strategic vertebrae selection and Cobb angle measurement is then presented. A set of 

automatically derived features necessary for indexing the scoliosis image for CBIR was 

formulated and is described in the next section. The software system 'SpineSearch' designed 

based on the developed algorithm is detailed next. Then, a discussion on the applications of the 

developed technique and concluding remarks are outlined. 

7.2 Motivations for proposing CBIR of scoliosis Images 

Nowadays, in hospitals lOO's of x-ray images are generated per day [2]. Due to the 

difficulty in storage and tracking of these films, x-rays are either digitized using a high 

resolution x-ray scanner or digitally generated using direct digital radiography. With the advent 
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of picture archiving and communication systems (P ACS), digital images are stored in them for 

efficient search and retrieval. In P ACS, images are usually stored in Digital Imaging and 

Communications in Medicine (DICOM) [3] format. Image retrieval with PACS and Electronic 

Medical Records (EMR) systems is based on textual descriptions. 

Modern communication standards use non-image data (textual) for standardized description 

of information such as technical parameters related to the imaging modality, patient 

information, body region examined, study, etc. rn order to provide comprehensive, detailed 

coverage for multi-specialty biomedical imaging, the College of American Pathologists (CAP), 

secretariat of the Systematized Nomenclature of Human and Veterinary Medicine (SNOMED), 

have entered into partnership with the DICOM Standards Committee and other professional 

organizations to develop a nomenclature for diagnostic imaging applications [4]. The SNOMED 

DrCOM microglossary was developed to provide context-dependent value sets for DrCOM 

coded-entry data elements, and semantic content specifications for reports and other structures 

composed of multiple data elements [5]. Although, the capability of storing explicitly-labeled 

coded descriptors in DICOM images and reports, improves the potential for selective retrieval 

of images and related information, the controlled tenninology within the DICOM tables has 

been found to be insufficiently detailed for order entry systems [6, 7]. 

Information such as filenames, keywords and patient identification numbers are typically 

stored in the DrCOM header and are used to retrieve images. Correct retrieval from such 

systems typically requires exact keywords. Doctors, however, may use different keywords to 

describe the same image because of the difficulty in interpreting some images and the lack of a 

unified lexicon. So, queries based on such information are proven to contain a fairly high rate of 

errors. For example, for the field anatomical region, error rates of 16% have been reported [7]. 

Clinical decision support techniques such as case-based reasoning [8] or evidence-based 

medicine [9] demands an even stronger need to retrieve images that can be valuable for 

supporting certain diagnoses and for planning therapeutic strategies. Therefore, there is a need 

for adding CBIR capability in the PACS systems in order to provide image indexing and 

retrieval based on content [10]. CBIR, based on visual features, not only allow the retrieval of 

cases of patients having similar diagnoses but also retrieve cases with visual similarity but 

different diagnoses. 

Indexing of scoliosis images requires reliable measurement of the curve. The poor 
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reproducibility of Cobb angle measurement commonly raises uncertainty about the validity of 

identified changes or progression in curvature [11]. The scoliosis measurement is carried out 

either manually using a protractor or using a computer assisted technique. Even in computer 

assisted techniques, there will be an error in Cobb measurement due to the manual selection of 

end vertebrae levels. The average intraobserver standard deviation (SD) has been reported as 

3.5 0 and interobserver SD range from 2.8 0 to 7.2 0 (12 - 16]. Regarding the type of 

radiographs, a recent study conducted by Wills et al. [17] demonstrates that both digitally and 

traditionally acquired scoliosis radiographs have similar error rates. 

For scoliosis images, textual annotations have several limitations. Variability exists in the 

selection of strategic vertebrae, measurement of Cobb angle and in the assignment of curve type 

in a classification scheme. For the Cobb angle measurement, the definition of end vertebrae 

introduces the main source of error [18]. Moreover, since many classification schemes are in use 

today, ambiguity is present in selecting a classification scheme. Thus, manual annotation of 

scoliosis images will vary from surgeon to surgeon. A perfect image search engine should make 

use of the textual descriptions (such as the DICOM header) as well as the features derived from 

the content of the image to form a hybrid CBIR system. 

In the literature, no techniques have been so far reported for CBIR of scoliosis images. The 

user subjectivity in scoliosis measurement can be eliminated by using an automated method for 

strategic vertebra selection and Cobb angle computation. Selecting image features as descriptors 

instead of a classification scheme eliminates the ambiguity in selecting a classification scheme. 

Keeping this in mind, a technique for efficient indexing and retrieval of scoliosis images is 

developed for CBIR. 

73 Automatic Estimation of Position and Orientation of Spine 

In this section, a method to automatically detennine the location and orientation of spine in 

a digital radiograph is developed. A detailed review of literature related to spine localization 

was presented in Section 3.10.1. The state-of-the-art technique for vertebrae segmentation is 

based on the Deformation Model using active shape modeling (ASM) [19, 20]. The knowledge 

of position and orientation of spine are important for the success of the template matching based 

method. So, a method is developed for spine localization based on mathematical morphology 

making use of the vertebral morphometry. It computes the orientation of the spine and a point 
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on the right end plate of the vertebral faces. 

7.3.1 Methods 

The gray-scale characteristics of the vertebrae are complex. The spine exhibits visually 

recognizable ridge characteristics, usually extending throughout the length of the spine, but 

particularly visible in the region of the lower vertebrae. Figure 7.1(a) shows the original gray­

scale profile of a cervical spinal column. The gray-scale profile of the vertebra, marlced in 

Figure 7.1(a) wing a rectangle, is demonstrated by the surface characteristic plot in Figure 

7.l(b). The gray-scale image is represented as a topographic model ofa terrain where the pixe! 

value represents the height at the pixei coordinates. The surface is rendered using the t~view 

direction. The ridge point cluster on the posterior boundary of the vertebra is encircled in Figure 

7. I (b). The boundary of a vertebra is usuaJly marked using six standard morphometric points as 

shown in Figure 7.I(e). These six points have the semantic relevance as follows: 

• Points I and 4 marks the upper and lower posterior corners of the vertebra, respectively; 

• Points 3 and 6 marks the upper and lower anterior corners of the vertebra, respectively; 

• Points 2 and 5 marks the median along the upper and lower vertebra edge in the sagittal 

view, respectively. 

The curvature of a curve that fit into the midpoints of the top and bottom (points 2 and 5) of 

each vertebral body for all the vertebrae of the same type (for e.g. cervical), can be taken as the 

curvature of the spine in that region [21]. These midpoints do not have any prominent associated 
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Figun: 7.1 Ca) Original gray·scaIe image of a cervical spinal column. (b) Surface 
characteristic plot of the vertebra. (c) Six standard morpbometric points marked on tbe 
histogram equalized image of the vertebra body. 
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visual characteristics, either in gray-scale or in shape. So, they are very poor candidates for 

detection until the spine anatomy is already known after a finer- grained segmentation. 

However, the gray-scale ridge points appear near the right edges of the vertebral faces. Hence a 

line joining these must be conjectured to give a reasonable approximation to the spine location 

and orientation. These ridge points have bright gray-scale values and can be visualized as being 

on the local higher regions in elevation space of the spine area. Considering these facts, a 

method based on mathematical morphology was introduced to detect these points as local 

maxima. 

The detection of ridge point clusters in the outer boundary of the vertebrae is carried out 

using mathematical morphological operation [22]. A gray-scale image is defined as a 3-D set 

and two imagesfand b can be represented as follows. 

f= {(x,y,z)lz~g(x,y)},b= {(x,y,z)lz ~ h(x,y)} (7.1) 

where g(x, y) and hex, y) are the gray-scale of the pixel at location (x,y) offand b respectively. 

In mathematical morphology, the image b that is used for processing image f is called a 

structuring element (SE). For a flat SE (a binary), the erosion is simplified to find the minimum 

gray level and the dilation to find the maximum during the process, in the neighborhood defined 

by the SE. 

The dilation of f by b can be represented as 

f ffi b = {(x, y, z) I z ~ max [g(x-xl> y-Yl) + hex), y,)], V .d,}',} (7.2) 

and erosion of f by b as 

(7.3) 

where (x ± XI), (y ± YI) € D(and XI> YI € Db; Dfand Db are the domains off and b, respectively. 

A 2-Dimensional flat SE, b, which is 'disc' shaped in the Euclidean metric and centered at the 

origin is constructed as follows. 

b(x,y) = { (x,y) E Z2 : JX2 + y2 ::; (r+O.5) (7.4) 
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where r is the radius of the disc, chosen as 20. 

For each of the test image, a margin area is used on all four image sides (left, right, top, and 

bottom) and pixels that were outside this margin limit were not processed. This was done to 

avoid the frequent problems encountered by the presence of very bright pixels due to light 

leakage near the edges of the images. As a pre-processing step, histogram equalization is 

performed on the image for enhancing the contrast between the vertebrae and the surrounding 

regions. The contrast-enhanced image is morphologically opened with the SE. The opening 

operation includes two procedures; erosion followed by dilation. 

fob = ( J0b ) (:f) b (7.5) 

The Top-Hat transformation [22) is then performed by subtracting the opened image from the 

original image to detect objects having the size of the SE and high gray-scale profile. 

h=f-(fob) (7.6) 

All the 8-connected structures that are lighter than their surroundings and connected to the 

image border are then removed by an erosion operation. This operation removes some of the 

non-spine edges in the image. Any grain (i.e., connected component) with area less than 100 in 

the neighborhood defined by a 'cross' shaped flat SE (Equation (7.7)) are removed to eliminate 

isolated clutters in the image. 

(7.7) 

The resultant image is a coarsely segmented one with ridges on the vertebral faces enhanced. 

The ridge point clusters located in each vertebra face need to be connected together to mark the 

outer boundary of the spine. The Radon Transfonn [23] of the segmented image is computed for 

locating the strongest line in the image. The projection of the image matrix onto x-axis in the 

range of 0-1 00 degree is found. A projection of a 2-Dimensional function at a particular angle is 

the line integral in that direction. The Radon transfonn of the image functionflx, y) parallel to 

the i axis can be computed as follows: 
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Figure 7.2 (a) The Geometry of the Radon Transform. (b) The Radon Transform of a test 
image using 100 projections 

•• 
R,(x') = IJ(x'cos9- y'sin9.x'sin9+ y'cos9) dy' (7 .8) 

[
X'] [ cos9 Sine][x] where = . 
y' - sine coso y 

The geometry of the Radon transform is shown in Figure 7.2(a) and the Radon coefficient 

values computed for various angles in a test image is shown in Figure 7.2{b). The locations of 

strong peaks in the Radon transform matrix correspond to the high line integral values in the 

image. As the segmented image has the ridge point clusters boosted, a line joining these points 

will correspond to the strongest peak in the Radon transform matrix. From the orientation (8) 

and coordinate location on the x ' axis (xp) of the largest absolute value of radon coefficient, 

corresponding y ' coordinate (yp) can be determined. Now, we know a point (.lp• yp) in the 

posterior boundary and the orientation of the spine. A line drawn passing through (.lp, yp) and 

perpendicular to (J, marks the posterior boundary of the spine in the original x-ray image. The 

coarse level segmentation convergence is said to be achieved, if the error in computed 

orientation and location of the posterior boundary with respect to the ground truth information is 

within tolerable limits. 

In some cases, where the image contains metallic objects like ornaments, orthodontic 

treatment accessories .etc, failure of segmentation convergence occur. This is because of the 
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higher gray-scale value of these objects than the spine ridge points. In such cases, the proposed 

method will fail as the Radon Transfonn joins the metallic object points instead of spine ridges 

due to its high gray scale value. This can be corrected by another pass, in which the metallic 

object is detected and removed from the Top-Hat segmented image. The removal of the external 

objects can be done by using H-maxima transfonnation [24], which suppresses all maxima in a 

given image whose height is lower than a given a threshold value. The regional maxima are 

connected components of pixe1s with an intensity value above a specified threshold and whose 

external pixe1s have a lower intensity. The threshold is fixed as the 90% of the maximum gray­

scale value of the coarsely segmented image. As the metallic object has higher gray-scale value, 

it will be identified as the regional maxima, and is subtracted from the coarsely segmented 

image before Radon transfonn computation. The H-maxima transform is computed in a 2-

( Start ") 

" * :-. 
;rGrayscale 7 

/ Image 

Remove Regional 
Maximum Object 

Does " .. "no Segmentation ~Q 
Converge?.-/ V 

yes 

( Stop 

Figure 7.3 The flowchart of the spine localization process 
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Dimensional eight - connected neighborhood. The foreign object removed and ridge points 

boosted coarsely segmented image is subjected to Radon Transfonn computation as already 

explained. A flow chart representation of the complete process is given in Figure 7.3. 

7.3.2 Experimental Setup and Results 

The developed algorithm is tested on an ensemble of 100 images chosen from the archive 

maintained by National Library of Medicine (NLM) as part of the second National Health and 

Nutrition Examination Survey (NHANES 11) [25). The digitized x-ray images were originally 

generated from cervical radiographs using a Lumisys laser scanner at a resolution of 146 dpi. 

The candidate images having various image size and spine orientations are randomly chosen 

from the database. The lateral view cervical spine images had pixel depth of 8-bits. The seven 

vertebrae present in a cervical image are usually referred to as Cl to C7. 

For each image in the test set we used the expert-collected (x, y) coordinate (provided by 

NLM) of the posterior bottom point (point 4 in Figure 7.l(b» for C2 and C6 (or C5) vertebra. 

The slope of the straight line fit to the spine joining these points gives the spine orientation for 

each image in the test set. The orientation of the line joining the points 4 or points 5 (middle 

point of bottom face of vertebra body) of each vertebrae will be the same as they are parallel. As 

our computed location points are on the posterior boundary, we chose to connect point 4 of each 

vertebra as the ground truth (which is on the posterior boundary) so that the location accuracy 

also can be evaluated. The error in orientation was calculated by taking the absolute difference 

of the spine orientation computed using the proposed algorithm and that obtained as the ground 

truth for each of the image in the test set. From the literature it is observed that a tolerance up to 

15 degree is pennissible in orientation estimation [26]. The absolute error using the developed 

algorithm was found to be within the tolerable limit for all the 100 images in the test set. For 8 

cases, the algorithm had to undergo a second pass after removal of the metallic objects present 

Table 7.1 Computed spine orientation accuracy 

Serial Number Orientation Error range (degrees) % of images in the range 
1 0-3 57 
2 3-6 25 
3 6-9 12 
4 9 - 12 3 
5 12-15 3 
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Figure 7.4 (a) Cervical spine 
mathematical morphology. (c) 
orientation 
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(b) (0) 

Image. (b) Intennediate result of Segmentation using 
A marker drawn using computed spine location and 

Figure 7.5 (a) Cervical spine image containing a metallic object. (b) Intermediate result of 
segmentation using mathematical morphology. (c) Image after removal of the metallic object 
using H-Maxima Transfoml. (d) A marker drawn using computed spine location and 
orientation. 

in them. Table 7.1 tabulates the percentage of the number of images that fall in different ranges 
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of the orientation error. It is seen from the table that for more than 80 percent of the cases the 

error is less than 6 degrees. The average orientation error for 100 cases was found to be 4.6 

degrees. 

A point computed on the posterior boundary of the vertebra identifies the location of the 

vertebra. The accuracy of the location of the point identified can be calculated by computing the 

perpendicular distance from the point to the straight line approximated (by joining point 4) from 

the ground truth data using analytical geometry. The maximum deviation was found to be ±5.2 

mm. The computed location point of C2 and C6 is joined to draw a marker on the posterior 

boundary of the spine for display purpose. Figure 7.4 demonstrates the images at various stages 

of the algorithm and shows a marker drawn for the computed spine location. Figure 7.5 shows 

the case of an image in which a foreign object is present. 

7.3.3 Discussion 

In ASM based vertebrae segmentation algorithms, a template of the spine is placed at 

different orientations and locations for maximum matching before applying deformation model 

to fit to the spine. The developed algorithm is useful as an initialization step for template 

positioning in ASM based vertebrae segmentation algorithms to save computational overhead. 

The developed algorithm is based on the vertebra morphometry. The location of the posterior 

boundary of the spine and its orientation information can also be used to define a region of 

interest (RO!) containing the spine. The image could be rotated as per the orientation of the 

spine, so that spine will align parallel to the vertical axis. The width of the ROI should be 

chosen, based on the resolution of the image, in such a way to include the entire vertebra body 

in the box. For the 146 dpi images, a width of250 pixels (from posterior to anterior boundary) is 

found to contain the spinal column, even in cases of spines with large curvature. The length of 

the ROI can be taken as the length of the image itself. 

7.4 Measurement and Retrieval of Scoliosis Images 

This section details the acquisition of land mark points for curve digitization, rule based 

algorithm proposed for automatic selection of strategic vertebrae and measurement of the 
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vari ous parameters of a scoliosis image. Also. feature descripl or for scoli osis images is 

fo rmulated and a query structure for CBIR is designed. 

7.4.1 Acquisition of Land Mark Points 

For the measurement of scoliosis, end plate lilt angles of the in volved vertebrae need to be: 

computed. Thi s can be done from the corner poi nts (points I. ). 4 and 6) shown in Figure 7. 1 

(cl, of a vertebra. As the spine in the case of scoliosis has large unpredictable curvatu re and the 

vertebrae show significant shape vari ations (oft en wedged) from image to image, template 

matc hing based automatic ve rtebra segmental ion method cannOI be applied 10 extract corner 

points of the vertebra. Moreover, accuracy of the points selected is an important factor in Cobb 

anglc measu rement, which cannot be ensured by automated methods as x-ray images are highly 

smeared. So. the landmark. poi nts are manu all y selected by the user. The approximate center of 

the sacrum. the top of the iliac crests and the rour corner points of the vertebrae (or that of 

pedicles) are the land mark points of interest. The points marked on the iliac c rests will aid in 

defi ning the inter crista I line to draw the central sacral Iinc (CSL). The landmark points of the 

image were selected using a mouse pointi ng device on an image displayed on a computer 

sc reen. The landmark points marked on an example image are shown in Figure 7.6. 

The superior - inferior (S - I) tilt angle is defi ned as the average of the superior and inferior 

Figure 7.6 An example scoliosis imag~ with landmark points marked . 
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end plate tilt angle of a vertebra with respect to the horizontal axis, and average tilt of the left 

and right end plate tilt angle is the left - right (L - R) tilt angle of the vertebra with respect to the 

vertical axis. Given two end points of an end plate, the tilt angle of an end plate is computed as 

the arc tangent of the ratio of the difference in y-coordinates to x-coordinates. The sign 

convention followed for processing is such that the tilt to the right with respect to its 

corresponding geometrical axis is taken as positive and otherwise negative. A disc space tilt is 

the absolute difference of the average S - I tilt angle of the vertebra just above and below the 

disc. 

7.4.2 Rule Based Algorithm for Strategic Vertebra Selection 

For measuring different parameters of scoliosis curve, identification of strategic vertebrae is 

important. The manual selection of strategic vertebra is the major source of error in scoliosis 

measurement, even in computer assisted methods [18]. A rule based algorithm is developed for 

the automatic selection of strategic vertebrae of a scoliosis image. The algorithm is based on the 

following observations. 

• A plot of the left, right, superior and inferior end plate tilt angle of the vertebrae will 

give rise to a biphasic curve (Figure 7.7 (a) - (d)). So, average left -right end plate tilt 

angle (with respect to vertical axis of the image) and superior - inferior end plate tilt 

angle (with respect to the horizontal axis of the image) will also give rise to a biphasic 

curve denoted as L - R curve (Figure 7.8 (a)) and S - I curve (Figure 7.8 (b)) 

respectively. A biphasic curve is a curve with positive and negative part. 

• The zero crossing vertebra (ZCV) - a vertebra where a sign change over takes place, of 

the above curves corresponds to the apical vertebra (AV) (Figure 7.8 (a) and (b)). 

• The immediate neighboring crest (maximum) and trough (minimum) of the AV in the L 

- R or S - I curve will correspond to the upper end vertebra (UEV) and lower end 

vertebra (LEV) of the curve respectively (Figure 7.8 (a) and (b)). 

• A plot of the distance to central sacral line (CSL) of the mid point of each vertebra will 

give rise to a biphasic curve and AV will correspond to the maximum distances in each 

phase (Figure 7.8 (c)). 

• A plot of the disc space tilt angle of the vertebrae will give rise to a biphasic curve and 

its zero crossing vertebra corresponds to the end vertebrae (EV) (Figure 7.8 (d)). 
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Figure 7.7 (a) Left (b) Right (c) Superior (d) Inferior end plate tilt angle plot of each 
vertebra of the image shown in Figure 7.6 

• Absolute sum of the tilt angle of the end vertebrae is the Cobb angle. 

Let us take an example image shown in Figure 7.6 and validate our hypothesis. Figure 7.8 

(a) - (d) shows the L-R curve, S-I curve, distance to the eSL and disc space slope of the 

vertebrae levels from L4 to C7 respectively of a typical scoliosis image. The ground truth 

infonnation (as ploued by an expert spine surgeon) about this image is that the spine has two 

major curves - a lumbar curve with apical vertebra at level L2 and end vertebrae T12 & LA. and 

a thoracic curve with apical vertebra as T8-T9 disc and end vertebrae TS & TIl . From Figure 

7.8 h ean be noted that the vertebrae of interest deri ved from observations. matches with that of 

the ground truth. Our rules for identifying the vertebrae of interest is defmed based on the S-I 

curve (Figure 7.8 (b» and disc space tilt angle curve (Figure 7.8 (d». The algorithm for 
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Figure 7.8 (a) Average left - righl (L - R) end plale lilt angle plot (b) superior · inferior (5 
- I) end plate tilt angle plot. (c) Plot of the distance to the eSL of each vertebra (d) Plot of 
the Disc slope of each vertebra of the image shown in Figure 7.6. 

determining the apical vertebra (AV), lower end vertebra (LE V), upper end vertebra (UEV) and 

other parameters are ou L1ined below. 

7.4.2.1 Apical Vertebra 

The apica l vertebra is the apex. of a curve. A scolios is patient can have one or more curves 

in the spine. The candidale venebra levels for apical vertebra in the S - I plot is zero crossing 

vertebra (ZCV) level, one level below zev or the di sc between these two levels. Based on the 

relative value of the 5 - I tilt angle of ZCV and ZCV - I level vertebra and two pre-specified 
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thresholds (experimentally fixed) the apical vertebra level is selected. There will be an apical 

vertebra corresponding to each ZCV. The pseudo code of the algorithm is given below. 

Step 1: Compute the level of the Zero Crossing Vertebra (ZCV), denoted as Zv, from the 
average Superior-Inferior (S-I) end plate angle plot of the spinal column. 

Step 2: Assign values. 

AZ = average (S - I) angle of Zv 

AL = average (S - J) angle of Zv - 1 

Dzl = absolute difference of AZ and AL 

AtM = lower limit of apical threshold angle in degrees taken as 3 degrees 

Ath2 = upper limit of apical threshold angle in degrees taken as 5 degrees 

Step 3: Let Av be the apical vertebra to be computed. 

If «AL < AZ) and (AL < Ath2) and (AZ > Ath2» 

Av= Zv-l 

Else if (DzJ < Athl) or (AZ > AtM and AL > AtM» 

Av = disc between Zv and (Zv - I) 

Else 

Av=Zv 

End 

Step 4: Search the spinal column from Av+ J onwards for the next ZCV. If found, continue to 

Step 3 until all ZCV are processed. 

7.4.2.2 Upper End Vertebra 

Corresponding to each apical vertebra (AV) of a curve, there will be an upper end vertebra 

(UEV) and lower end vertebra (LEV). First, let us select the upper end vertebra of all curves 

present in an image. The search for UEV is performed in the range of one level above the AV of 

a curve to one level below of AV of the immediately above curve. For the top most curve, 

uppermost visible vertebra is the search limit. The candidate levels for UEV are the level with 

maximum average tilt angle in the S -I curve and / or a vertebra level whose disc above is 

parallel (zero crossing disc in the disc space slope plot). The UEV is selected based on the S - I 
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tilt angles and disc space slope of the candidate vertebra and two pre-specified disc space slope 

thresholds (experimentally computed). The pseudo code of the algorithm is given below. 

Step 1: For i = 1 to n, the total number of curves 

Av is the apical vertebra levels previously computed. 

Step 2: Assign variables. 

Start level, Slvl = Av(i) + 1 

End level, Ulvl = Av(i+ 1) - 1 

Ifi==n 

Ulvl = upper most level in spinal column 

Step 3: Find the level, Tv1, with maximum average S-I tilt angle in the range Slvl to Ulvl. 

Step 4: The lower and upper disc slope threshold (Dthl and Dth2) are set to 1.5 and 3.5 

degrees. 

Search for vertebral level, denoted as Tv2, in the range slvl to ulvl, whose disc above is 

a zero crossing disc in the disc space plot or the one with slope less than Dtlll. 

Step 5: Let UEVbe the Upper End Vertebra level to be computed. 

UEVCi) = 0; 

If (Tv1 == Tv2) 

UEV(i) = Tv1 

Else 

DsIJ = Absolute disc slope of Tv1 

Dsl2 = Absolute disc slope of Tv2 

If abs (Tvl - Tv2 == 1) 

If (Tv2 < Tvl) 

If (DsIJ < Dth2) 

UEVU) = Tvl; 

Else 

UEVU) = Tv2; 

End 
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Else 

UEV(i) = Tvl; 

End 

Else If abs (Tvl - Tv2 == 2) 

If (Tv] > Tv2) 

Else 

End 

Else 

End 

If (Dsll < Dth2) 

UEV(i) = Tv]; 

Else 

UEV(i) = Tv2; 

End 

UEVU) = Tv2; 

UEV(z) = Tv]; 

Step 6: Continue to Step 1 until all n curves are processed 

7.4.2.3 Lower End Vertebra 

The search for LEV of curves is carried from top to bottom in the range one level below the 

apical vertebra to one level above the apical vertebra of the immediately lower curve. The rules 

are similar to that of UEV. For the lowermost curve the search starts from the first visible 

vertebra. The disc space slope is computed as the absolute difference in S - I tilt angle of the 

candidate vertebra and that of the vertebra immediately below. 

7.4.3 Measurement 

Parameters of interest to a scoliosis image are Cobb angle, apical distance, spinal balance, 

anci pelvic inclination. The definitions of these parameters were given in Section 3.6. Once 

strategic vertebrae are identified these parameters can be automatically computed. 
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The Central Sacral Line (CSL) is the line passing through the center of the sacrum and 

perpendicular to the line joining the tangents of the iliac crests [27]. This is based on the 

assumption that the leg lengths are equal and the lateral edge of the radiograph was used to 

define the vertical axis. Let us formulate the equation of the CSL which can be later used for 

computing the distance of the cent er of each vertebra to the CSL. 

Let (XI. YI) be the top-mid of the left iliac crest and (X2' Y2) the corresponding point of the 

right iliac crest. Figure 3.4 details the standard terminology. The center of sacrum is represented 

by (X3, Y3). So, CSL will be the line passing through (X3, Y3) and perpendicular to the line joining 

(x" YI) and (X2' Y2). 

Let mp be the slope of the line joining (XI. YI) and (X2, Y2), 

y -y 
m = 2 I 

P (7.9) 
x2 -XI 

Any point (x, y) on the line perpendicular to (7.9) and passing through (X3, Y3) is defined as 

Y- Y3 -1 
(7.10) 

Equation (7.10) can be rearranged as 

X + mp *Y - m~3 - X3 = 0 (7.11) 

The apical distance is calculated as the perpendicular distance of the centroid (intersecting 

of the lines connecting the superior lateral corners of the vertebral body to the contralateral 

inferior lateral corners) of the apical vertebra (AV) to the CSL [27].The center of the AV, (X4, 

Y4), is taken as the average of the corner points of the AV. The distance of (-'"4, Y4) to CSL is 

defined as 

(7.12) 
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Spinal balance (or coronal balance) is the horizontal distance between the sagittal C7 

plumbline dropped vertically from C7 centroid to the central sacral line [27], which is computed 

in a similar way. The number of pixels is converted to distance in cm based on the resolution of 

the image. The pelvic inclination is the measure of angle made by the line joining the top of the 

iliac crests to the horizontal axis [27]. The Cobb angle of a curve can be calculated as the 

absolute sum of the tilt angle of the inferior end plate of lower end vertebra and superior end 

plate of the upper end vertebra. 

7.4.4 A New Classification Scheme 

A classification scheme is important to detennine the prognosis and treatment of scoliosis. 

Important scoliosis classification schemes using AP view images are Ponsetty and Friedman 

scheme [28] and King et. al. scheme [29]. The new classification scheme is based on Ponsetty 

and Friedman scheme and details of which was outlined in Section 3.8.1. Adolescent idiopathic 

scoliosis is classified into five different curve types based on the convexity, location and curve 

magnitude [28]. But, the spinal balance is also found to be an important factor in assigning 

therapeutic strategy. To include all other curve types like infantile, juvenile, non idiopathic 

curves etc and to consider spinal balance, two additional curve types are defined. The newly 

assigned different curve types are 

• Type I: 

• Type 11: 

• Type Ill: 

• Type IV: 

• Type V: 

• Type VI: 

• Type VII: 

Single Right Thoracic; 

Right Thoraco-Lumbar, 

Left Lumbar, 

Double Major with Right Thoracic, 

Double Thoracic, 

Others, triple curves, and cervicothoracic curves (with low de­

compensation; < 2.5 cm), 

All Others (with moderate or high de-compensation; > 2.5 cm). 

Curve classification is implemented using a set of rules based on parameters such as curve 

convexity (left or right), number of curves, location of curve (lumbar, thoracic etc) and curve 

magnitude. 
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7.4.5 Feature Descriptor and Distance Measure 

The feature descriptor designed to represent the scoliosis image for CBIR is described here. 

The set of features considered important for a scoliosis image are the curve type, number of 

curves, convexity of curve, Cobb angle, spinal balance, AV levels, apical distances, levels of 

UEV and LEV, average Superior - Inferior end plate tilt angle ofTl, average Superior - Inferior 

end plate tilt angle of L4 and pelvic inclination. In a large database, reducing the result set 

according to clinical interest of a query image is necessary. This filtering can be achieved by 

using either curve type or number of curves feature, depending on whether the user is interested 

in the sorted images based on a classification scheme or not. The number of entries for the 

features Cobb angle, AV levels, apical distances and levels ofUEV and LEV will correspond to 

the number of curves in an image. There will be a total of 12 features for a single curve and 17 

features for a double curve. 

The Euclidean distance is used as the distance measure to compute distance between the 

query image and images in the database. The Euclidean distance is defined as 

(7.13) 

where fi is feature vector of query image and h that of images in the database, i is the number of 

elements of the feature vector. 

7.4.6 Query Design 

The most frequent query paradigm for CBIR is Query-By-Example, in which the user 

supplies a query image and the system returns images in the database that are similar to the 

query image based on visual characteristics. For scoliosis images clinically, images similar to a 

query image are those images that have similar treatment strategy. The similarity (or 

dissimilarity) is quantified as the distance of the feature descriptor of the query image to that of 

the images in the database. The indexing process automatically extracts a set of features (feature 

descriptor) from each stored image in the database and stores in a table of a relational database. 

Two types of query schemes are designed for the CBIR of scoliosis images. First scheme is 

for retrieving images of a specific curve type in a sorted order. All records matching the curve 
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type are initially fetched and then ordered according to the convexity of curves and number of 

curves. The results are further ordered based on the Euclidean distance of the other 14 features 

(for a double curve) of query image with that of database images. This method is intended for 

users who are particular in using a classification scheme, even though this method has the 

limitation of ambiguity in selecting a classification scheme. The second scheme is for retrieving 

images matching the number of curves instead of curve type. The initial filtering is based on the 

number of curves feature and ordered by the convexity of the curve. Further ordering is done 

based on the Euclidean distance of the other 14 features. This method eliminates the variability 

due to the ambiguity in selecting a classification scheme. 

The database schema consists of a single table with the following attributes. For the case of 

images with double curve, the table attributes are 

Field Name ilru! Comments 

mPID INTEGER - unique patient identifier (primary key) 

m_Type SMALLINT - curve type 

m NoCurves SMALLINT - Number of curves 

m convl NUMBER(1) - convexity of first curve (left or right) 

m Avl FLOAT - level of A V of first curve 

m Av2 FLOAT - level of A V of second curve 

m Ad1 FLOAT - apical distance of first curve 

m Ad2 FLOAT - apical distance of second curve 

m Levl SMALLINT - level of LEV of first curve 

m Lev2 SMALLINT - level of LEV of second curve 

m Uev1 SMALLINT - level of UEV of first curve 

III Uev2 SMALLINT - level of LEV of second curve 

m Cobb1 FLOAT - Cobb angle of first curve 

m Cobb2 FLOAT - Cobb angle of second curve 

m Simbalance FLOAT - spinal imbalance 

m Tltilt FLOAT - tilt ofT1 vertebra 

m L4tilt FLOAT - tilt of L4 vertebra 

m_Apelvis FLOAT - Pelvic inclination 

m_Image BLOB - Image file 
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The SQL syntax for both the query schemes is given below. 

The query using a classification scheme for the table 'apview' is given as, 

SELECT * FROM apview Tl, 

(SELECT * FROM apview WHERE m_PID = 306) T2 

WHERE Tl.m_Type = T2.m_Type 

ORDER BY abs(T2.m_curl - T1.m_curl), 

abs(T2.m_NoCurves - T1.m_NoCurves), 

SQRT(POWER(abs(T2.m_cobbl - Tl.m_cobbl),2) + 

POWER(abs(T2.m_cobb2 - T1.m_cobb2),2)+ 

POWER(abs(T2.m _simbalance - T I.m _ simbalance),2) + 

POWER(abs(T2.m_adl - T l.m_ad I), 2) + 

POWER(abs(T2.m_ad2 - T1.m_ad2), 2) + 

POWER(abs(T2.m_apelvis - T1.m_apeJvis), 2) + 

POWER(abs(T2.m_tltilt - T1.m_tltilt) , 2) + 

POWER(abs(T2.mJ4tilt - T1.m_14tilt), 2) + 

POWER(abs(T2.m_avl - T1.m_avl), 2) + 

POWER(abs(T2.m_av2 - T1.m_av2), 2) + 

POWER(abs(T2.m_levl - T1.m_levl), 2) + 

POWER(abs(T2.mJev2 - T1.mJev2), 2) + 

POWER(abs(T2.m_uevl - T1.m_uevl), 2) + 

POWER(abs(T2.m_uev2 - T1.m_uev2), 2»; 

The query without using a classification scheme is given as, 

SELECT * FROM apview Tl, 

(SELECT * FROM apview WHERE m_PID =: 306) T2 

WHERE Tl.m NoCurves = T2.m NoCurves - -

ORDER BY abs(T2.m_curl - T1.m_curl), 

SQRT(POWER(abs(T2.m_cobbl - T1.m_cobbl),2) + 

POWER(abs(T2.m_cobb2 - T1.m_cobb2),2)+ 
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POWER(abs(T2.m_simbalance - Tl.m_simbalance),2) + 

POWER(abs(T2.m_adl - Tl.m_adl), 2) + 

POWER(abs(T2.m_ad2 - Tl.m_ad2), 2) + 

POWER(abs(T2.m_apelvis - Tl.m_apelvis), 2) + 

POWER(abs(T2.m_tltilt - Tl.m_tltilt), 2) + 

POWER(abs(T2.mJ4tilt - Tl.m_14tilt), 2) + 

POWER(abs(T2.m_av1 - Tl.m_av1), 2) + 

POWER(abs(T2.m_av2 - Tl.m_av2), 2) + 

POWER(abs(T2.m_1ev1 - Tl.mJev1), 2) + 

POWER(abs(T2.m_lev2 - Tl.m_1ev2), 2) + 

POWER(abs(T2.m_uevl - Tl.m_uevl), 2) + 

POWER(abs(T2.m_uev2 - Tl.m_uev2), 2)); 

The query plan generated for the second query is given below. 

SQL OPTIMIZER OUTPUT: 
S.ELECT COMMAND. 
PROJECT [337] ( 
I SORT [336] IN TEMP2( 
I I PROJECT [295] ( 
I I I JOIN [2][NESTED_LOOP-JOIN]( 
I I I I PROJECT [255] ( 
I I I I I PROJECT [341] ( 
I I I I I I dharma.apview. [342]( 
I I I I I I I INDEX SCAN OF ( 
I I I I I I I I sys_001_000001006, 
I I I I I 1 I I I (apview.myid) = (306) 
I I I I I I I ) 

I I ! I I ) 
I I ! I , apview.myid 
I I ! I , apview.m_type 
I I ! I ,apvlew.m_nocurves 
. I I I ,apview.m_cur1 

I I I , apview.m_avl 
I I I I I , apview.m_av2 

I I I , apview.m_adl 
I I I ,apview.m_ad2 

i ! I I I , apview.m_Ievl 
I I I ,apview.m_Iev2 
: I I , apview.m_uev1 
, I I , apview.m_uev2 
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I I I I I ,apview.m_cobbl 
I I I I I ,apview.m_cobb2 
I I I I I ,apview.m_simbalance 
I I I ! I ,apview.m_tltilt 
I I I I I ,apview.m_14tilt 
I I I I I ,apview.m_apelvis 
I I I I I ) 
I I I I ,PEXPR 1 
I I I I ,PEXPR2 
I I I I , PEXPR3 
I I I I ,PEXPR4 
I I I I ,PEXPR5 
I I I I ,PEXPR6 
I I I ! ,PEXPR 7 
I I I I ,PEXPR8 
I I ! I ,PEXPR9 
j I I I ,PEXPR 10 
I I I I ,PEXPRll 
I I I I , PEXPR 12 
I I I I ,PEXPR13 
I I I I ,PEXPR14 
I I I I ,PEXPR 15 
I I I I ,PEXPR16 
I I I I ,PEXPR 17 
I I I I ,PEXPR 18 
I I I I ,PEXPR18 
I I \ I ) 
I I I , 
I I I I (PEXPR3) = (PEXPR22) 
I I I , 
I I I I PROJECT [235] ( 
I I I I I dharma.tl. [0]( 
I I I I I [ TABLE SCAN 
I I I ! I ) 
I I I I ,apview.m.J)id 
I I ! I ,apview.m_type 
I I I I ,apview.m_nocurves 
I I I I ,apview.m_curl 
I I I \ ,apview.m_av1 
I I I I ,apview.m_av2 
I I I I ,apview.m_ad1 
I I I I ,apview.m_ad2 
I I I I ,apview.m_levl 
\ I I I ,apview.m_lev2 
I I I I ,apview.m_uevl 
I I I I ,apview.m_uev2 
I I I I ,apview.m_cobbl 
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I I ! I ,apview.m _ cobb2 
I I I I ,apview.m _ simbalance 
I I I I ,apview.m_tltilt 
I I I I ,apview.m_14tilt 
I I I I , apview.m_apelvis 
I I I I , apview.rowid 
1 I I I ) 
I I I ) 
I I ,PEXPR20 
I I ,PEXPR21 
[ I , PEXPR22 

I , PEXPR23 
I I , PEXPR24 
I I ,PEXPR25 
I I ,PEXPR26 
I I ,PEXPR27 
I I ,PEXPR28 
I I ,PEXPR29 
I I , PEXPR30 
I I , PEXPR31 
I I ,PEXPR32 
I [ ,PEXPR33 
I I , PEXPR34 
I j , PEXPR35 
I I , PEXPR36 
I I , PEXPR37 
I I ,PEXPRl 
I I ,PEXPR2 
I I ,PEXPR3 
I I ,PEXPR4 
I I ,PEXPR5 
I I ,PEXPR6 
I I ,PEXPR7 
I I ,PEXPR8 
I I ,PEXPR9 
[ [ ,PEXPRIO 
I I ,PEXPRll 
I I ,PEXPR12 
[ I ,PEXPR13 
I I ,PEXPR14 
I I ,PEXPR15 
I I ,PEXPR16 
I I ,PEXPR17 
I I ,PEXPR18 
! [ ,PEXPR38 
I [ ,PEXPR19 
: ! ,abs ((PEXPR4) - (PEXPR23» 
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I I , sqrt «««««««power (abs «PEXPR13) - (PEXPR32)),2)) + (power (abs «PEXPR14) -
(PEXPR33)),2))) + (power (abs «PEXPR15) - (PEXPR34)),2))) + (power (abs «PEXPR7)­
(PEXPR26)),2))) + (power (abs «PEXPR8) - (PEXPR27)),2))) + (power (abs «PEXPR18)­
(PEXPR37)),2))) + (power (abs «PEXPR16) - (PEXPR35)),2))) + (power (abs «PEXPR17)­
(PEXPR36)),2))) + (power (abs «PEXPR5) - (PEXPR24)),2))) + (power (abs «PEXPR6) -
(PEXPR25)),2))) + (power (abs «PEXPR9) - (PEXPR28)),2))) + (power (abs «PEXPRI0)­
(PEXPR29)),2))) + (power (abs «PEXPRl1) - (PEXPR30»,2))) + (power (abs «PEXPR12)­
(PEXPR31)),2))) 
I I ) 
I SORT BY ( 
I I , PEXPR39 
I I , PEXPR40 
I ), 
I ,PEXPRl 
I ,PEXPR2 
I ,PEXPR3 
I ,PEXPR4 
I ,PEXPR5 
I ,PEXPR6 
I ,PEXPR7 
I ,PEXPR8 
I ,PEXPR9 
I ,PEXPRlO 
I ,PEXPRl1 
I ,PEXPRI2 
I ,PEXPRI3 
I ,PEXPR14 
I ,PEXPR15 
I , PEXPR16 
I , PEXPR17 
I , PEXPR18 
I ,PEXPR19 
I ,PEXPR20 
I ,PEXPR21 
I ,PEXPR22 
I , PEXPR23 
I ,PEXPR24 
I , PEXPR25 
I ,PEXPR26 
I , PEXPR27 
I , PEXPR28 
I ,PEXPR29 
I ,PEXPR30 
I ,PEXPR31 
I , PEXPR32 
! , PEXPR33 
I , PEXPR34 
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, PEXPR35 
, PEXPR36 
, PEXPR37 
, PEXPR38 
, PEXPR39 

I , PEXPR40 
I ) 
, PEXPRl 
, PEXPR2 
,PEXPR3 
,PEXPR4 
,PEXPR5 
,PEXPR6 
,PEXPR7 
,PEXPR8 
,PEXPR9 
, PEXPRI0 
, PEXPRll 
, PEXPR12 
, PEXPR13 
, PEXPR14 
, PEXPR15 
, PEXPR16 
,PEXPR17 
, PEXPR18 
, PEXPR19 
, PEXPR20 
, PEXPR21 
, PEXPR22 
, PEXPR23 
,PEXPR24 
,PEXPR25 
,PEXPR26 
, PEXPR27 
, PEXPR28 
, PEXPR29 
, PEXPR30 
, PEXPR31 
,PEXPR32 
,PEXPR33 
,PEXPR34 
, PEXPR35 
) PEXPR36 
) 
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The query plan for the first query is similar, except for the filter predicate. It can be noted that 

the designed query is optimized for performance as the join between 'apview' table and its 

derived table is Nested - Loop Join. 

7.4.7 Experimental Setup 

The experiment is carried out using 20 standing idiopathic A-P scoliosis images (including 

both DrCOM and TIFF format). The ground truth infonnation (correct curve apex, end 

vertebrae and Cobb angle) is generated by an expert spine surgeon analyzing the images using a 

computer-assisted measurement tool called Amrita MedVision 

[http;llwww.arnritatech.comlmedvisonradiology.htm]. The Cobb angle is measured by placing 

lines along the superior end plate of the superior vertebral body and along the inferior end plate 

of the inferior vertebral body of the manually identified end vertebrae. The 20 images used for 

evaluation contains 30 curves (10 double curve images). The curve pattern classification in the 

ground truth data is based on the newly proposed classification tech..nique. Among these 

patients, there are 10 cases with Type I curve pattern, 1 with Type Ill, 4 with Type IV, 1 with 

Type V, 3 with Type VI and 1 with Type VII. The Cobb angle value ranged between 33 0 and 

92 o. The tolerance range of error for Cobb angle is taken to be 3 0 for the measured angle with 

respect to the ground truth, as this is well within the range of reported intra observer 

measurement error range. 

The landmark points are acquired by marking twice (at an interval of seven days) each 

image by three observers (two orthopedic surgeons and one non-clinician researcher) taking the 

images in random order. The feature descriptor is computed and inserted into the table of a 

relational database management system (RDBMS) with the patient ID (for our test images same 

as image name) as a primary key using an open database connectivity (ODBC) application. 

The aims of the experiment are given below. 

• Determine vertebrae of interest and measure Cobb angle automatically using the landmark 

points input by the three users at two different times independently. 

• Compute the average error and standard deviation of these six sets of measurement data 

with respect to the ground truth data. 

• Assign a curve type based on new classification scheme. 

• Compute the inter and intra observer reliability in measurement. 
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• Index the images using the feature descriptor detailed and conduct Query-By-Example test 

to evaluate the accuracy of CBffi system. 

7.4.7.1 Statistical Analysis 

The measurement error in Cobb angle is computed as the average of the difference and 

standard deviation of the measured data with the ground truth data. The interobserver and 

intra observer error analysis is carried out using statistical tools called Kappa Statistics [30] and 

Pearson correlation. Kappa is an index which compares the agreement against that which might 

be expected by chance, with possible value range from + I (perfect agreement) via 0 (no 

agreement above that expected by chance) to -1 (complete disagreement). In the case of 

correlation coefficient, a value of -1 indicates a perfect inverse correlation between the variables 

(that is, when the value for one variable is high, the value for the other variable is low). A value 

of 0 indicates no relationship between the variables. A value of 1 indicates a perfect correlation 

between the variables. The details of Kappa Statistics and Pearson correlation were outlined in 

Section 4.5. The cases of disagreement for Cobb angle is selected as the ones whose difference 

with ground truth was more than a tolerance range of 3 o. For AV and EV a difference in level is 

treated as disagreement. Depending on the resolution of the image used there is an intrinsic error 

associated with Cobb angle measurement. In this study, this intrinsic error associated with 

angular measurement is taken as 0.5 degrees. So, all angle measurements are rounded off to 

account for this measurement error. 

7.4.8 Results 

Table 7.2 lists the number of erroneous measurements, average error and maximum error of 

the apical vertebra level, end vertebrae level and Cobb angle of the measurement data with the 

ground truth data of the curves under investigation. Out of 30 apical vertebrae, 4 cases differed 

in all the measurements. The difference in level is half level for all the 4 cases (the disc adjacent 

to the vertebra in question). Out of the 60 end vertebrae (total count of LEV and UEV), a 

maximum of 8 cases showed a difference in level with average and maximum difference of I 

level. The number of curves for which the Cobb angle differed more than the tolerance range of 



7.4 Measurement and Retrieval of Scoliosis Images 

Table 7.2. Measurement error in apex level, end vertebra level and Cobb angle 

Parameter Observer Trial AV EV Cobb 

Observer 1 
Trial 1 4 8 6 
Trial 2 4 8 7 

No. of 
Trial 1 4 7 7 

Erroneous Observer 2 
Trial 2 4 8 8 

Measurements 
Triall 4 6 8 

Observer 3 
Trial 2 4 7 6 

Triall 
Adjacent 

1 2 degree 
Disc (.5) 

Observer 1 
Adjacent 

Trial 2 1 2 degree 
Disc (.5) 

Trial 1 
Adjacent 

1 2 degree 
Disc (.5) 

Average Error Observer 2 
Adjacent 

Trial 2 
Disc (.5) 

I 2 degree 

Trial 1 
Adjacent 

1 2 degree 
Disc (.5) 

Observer 3 
Adjacent 

Trial 2 
Disc (.5) 

1 2 degree 

Trial 1 
Adjacent 

1 5 degree 
Disc (.5) 

Observer 1 
Adjacent 

Trial 2 1 6 degree 
Disc (.5) 

Triall 
Adjacent 

1 6 degree 
Maximum 

Observer 2 
Disc (.5) 

Difference 
Trial 2 

Adjacent 
1 6 degree 

Disc (.5) 

Trial 1 
Adjacent 

1 5 degree 
Disc (.5) 

Observer 3 
Adjacent 

Trial 2 
Disc (.5) 

1 6 degree 

3 degrees from the ground truth varied from 6 to 8 for various measurements and the max 

difference in Cobb angle is 6 degrees. The average error in Cobb angle is 2.0 ° with a stc: 

deviation of 3.0 o. The Cobb angle difference is within tolerable limit for some cases even 

their end vertebra levels differed from ground truth. The average Cobb angle error for 

whose end vertebra level is different from the ground truth is 5 degrees. The curve types 

the images automatically identified by the rule based program are matching to that plot 

ground truth data by an expert spine surgeon manually. An average sample standard de\ 

of 2.0 0 is obtained between intraobserver measurements and a value of 4.0 0 for interob 
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Table 7.3 Correlation coefficient results 

Observer 1 Observer 2 Observer 3 

Trial 1 Trial 2 Trial 1 Trial 2 Trial 1 Trial 2 

AV 0.998 0.998 0.998 0.998 0.998 0.998 

EV 0.997 0.996 0.995 0.997 0.996 0.995 
GT 

Cobb 0.980 0.982 0.982 0.985 0.984 0.982 

AV 1 1 0.999 0.999 0.998 0.998 

Triall EV 1 0.998 0.995 0.997 0.995 0.996 

-I- Cobb 1 0.990 0.973 0.980 0.975 0.974 IIJ , 
IIJ 
en AV 1 1 0.999 0.999 0.999 0.999 .0 
0 

Trial 2 EV 0.998 1 0.995 0.996 0.994 0.995 

Cobb 0.989 1 0.974 0.979 0.977 0.973 

AV 0.999 0.999 1 1 0.998 0.999 

Trial 1 EV 0.995 0.995 I 0.995 0.994 0.994 
('.l ... Cobb 0.975 0.975 1 0.984 0.977 0.975 IIJ , 
IIJ en AV 0.999 0.999 1 1 0.998 0.998 oD 

0 

Trial 2 EV 0.997 0.996 0.995 1 0.991 0.993 

Cobb 0.977 0.977 0.979 1 0.969 0.970 

r') AV 0.998 0.999 0.998 0.998 1 I 
I-
IIJ , 

Trial 1 EV 0.995 0.994 0.994 0.991 I 0.994 IIJ 
en 

.0 
0 Cobb 0.972 0.975 0.972 0.969 1 0.975 

repeated observations. The average intraobserver standard deviation (SO) has been reported as 

3.5 0 and interobserver SO range from 2.8 0 to 7.2 0 in the literature [12 - 16]. The accuracy of 

the developed teclmique is better compared to the reported intraobserver measurement error 

ranges. 
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Table 7.4 Kappa statistics results 

Observer 1 Observer 2 Observer 3 

Tria11 Tria12 Tria11 Trial 2 Trial 1 Trial 2 

AV 0.87 0.88 0.88 0.85 0.78 0.81 

EV 0.69 0.73 0.65 0.71 0.66 0.68 
GT 

Cobb 0.73 0.75 0.72 0.76 0.71 0.72 

AV 1 1 0.91 0.90 0.90 0.92 

Tria11 EV 1 0.85 0.78 0.77 0.79 0.76 
.... 

L.. Cobb 1 0.89 0.83 0.80 0.75 0.74 ~ 
L.. 
(1) 
<Il AV 1 1 0.90 0.93 0.91 0.93 .0 
0 

Trial 2 EV 0.85 1 0.75 .0.76 0.76 0.78 

Cobb 0.89 1 0.74 0.79 0.77 0.78 

AV 0.91 0.90 1 1 0.88 0.89 

Tria11 EV 0.79 0.82 1 0.85 0.78 0.79 

~ Cobb 0.75 0.71 1 0.84 0.77 0.75 (1) 

G 
(1) 
<Il AV 0.89 0.89 1 1 0.88 0.82 .0 
0 

Trial 2 EV 0.77 0.76 0.85 1 0.76 0.73 

Cobb 0.77 0.79 0.83 1 0.79 0.80 

~ 
AV 0.88 0.89 0.90 0.89 1 1 

(1) 

t: Triall EV 0.75 0.74 0.73 0.71 1 0.84 (1) 
<Il 

.D 
0 Cobb 0.72 0.75 0.72 0.79 1 0.85 

Table 7.3 details the correlation coefficient values obtained for various measurements 

against ground truth data and also between each other. A high value of correlation coefficient 

obtained shows good correlation of the measured data with the ground truth data. High 

correlation coefficient values obtained for measurement of an observer against another observer 
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indicate good interobserver reliability of the system. Regarding curve pattern type, all the curves 

are classified into correct curve type in all measurements with a perfect agreement score of 1 

(not shown in Table 7.3). Similarly, the correlation coefficient shows high value for repeated 

measurements of the same observer indicating good intraobserver repeatability also. 

The overall reliability and repeatability of the developed Cobb angle measurement scheme 

is quantified by empirical study based on Kappa statistics. The results are listed in Table 7.4. 

Comparative high positive value obtained for the measurements of AV level, EV level and 

Cobb angle by the three observers indicates that measurement values closely agree. Significant 

positive values obtained for measurement of an observer against another observer indicate good 

interobserver reliability of the system. Regarding curve pattern type, all the curves are classified 

into correct curve type with a perfect agreement score of + 1 (not shown in Table 7.4). Similarly, 

the Kappa coefficient shows positive value for repeated measurements of the same observer 

indicating good intraobserver repeatability. 

The CBIR system is evaluated by Query-By-Example test using two types of queries: one is 

filtering the result based on curve type and the other is based on the number of curves in an 

image. Five images are used as query image. In the first category of query, the system retrieved 

correct set of images of the query image type in the decreasing order of similarity (more similar 

first), for all the query cases. Figure 7.9 (a) shows an example result ofa query using a Type IV 

image. Only four Type IV images are present in the database and all of them are returned 

correctly in the increasing order of distance to the query image. The same query images are used 

for retrieval in the second category of query scheme. The system retrieved images similar to 

query image with the same number of curves in a sorted manner. Figure 7.9 (b) shows an 

example query result with the first 10 images retrieved. It can be noted from Figure 7.9 (b) that, 

the first four images are of same type (Type IV) as the query image. Rest of the images have 

similar number of curves, and closer apex and end vertebra levels, Cobb angle etc (from ground 

truth information) to the query image in the increasing order of distance. The first image in each 

set (Figure 7.9 (a) and Figure 7.9 (b» is the query image. 

7.4.9 Discussion 

General purpose medical CBIR systems such as MedGIFT uses global image features like 

general shape, color and texture [31]. Usage Of such features will aid only in a general 
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(h) 

Figure 7.9 CBIR test results. First image in each set is the query image. (a) Retrieval 
results based on curve type (b) Retrieval results based on number of curves 

classification, for example, to group x~ray images of spine and skull separately. But, the real 

application of CBIR lies in identifying similar images based on the pathology of interest. For 

that, local features specific to the pathology need to be identified and used as feature 

descriptors. In the developed method, a set of features specific to the pathology scoliosis is 

identified and used as feature descriptors. They were automatically derived from a given set of 

landmark points. 

Nachiappan et al. (32J proposed a scoliosis measurement system in which the observer 

marks the lateral and medial intersecting points and the maximum angle is taken as the Cobb 

angle. The system does not identify the end vertebrae and multiple curves are not taken care of. 

In comparison with the scoliosis measurement system proposed by Stokes et al. [13, 33], the 

newly developed system is more accurate as tbe CSL is computed with respect to the spinal 

coordinates (level of iliac crests) than the global coordinates (lateral and horizontal edges of 

radiographs). Also. the rules for identifying the vertebrae of interest were formulated based on 

various parameters instead of just maximum end plate tilt angle or apical distance. 
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The proposed algorithmic approach could be applied to the sagittal plane deformities such 

as lordosis and kyphosis which are also measured using Cobb technique with lateral view 

radiographs. Pathologies of lordosis and kyphosis were introduced in Section 3.9. The system 

can support other classification schemes like King et al. [29], Peking Union Medical College 

(PUMC) method [34], Lenke et al. [35], SRS classification [36] etc by incorporating sagittal 

plane profile also. 

Since many classification schemes are in use today, there is ambiguity in selecting a 

classification scheme. They are also not interoperable. Classification systems are not fully 

reliable because of the variability that exists in curve classification [37]. Large variations are 

present among scoliosis images. A classification scheme broadly categorizes the images into 

five or six classes. So, large variations are present among images identified as similar by a 

classification scheme. Now in scoliosis treatment, surgical strategy is decided based on the 

curve type assigned by a classification scheme. Different surgical approaches for correction are 

in use today for a given curve type [34, 38] and also the fusion levels selected may vary from 

surgeon to surgeon. The only option in text based querying is to use a classification scheme, 

which has the before mentioned disadvantages. To resolve them, the developed system has a 

query scheme to retrieve similar images without using any classification scheme at all (second 

query scheme). In the proposed hybrid CBIR system (text and visual information), treatment 

procedure adopted and results obtained can be recorded, along with preoperative and 

postoperative images. Thus, a surgeon can search for similar previous cases in the database and 

assess the outcomes of various techniques for a given case in hand to decide surgical strategy, 

making the classification schemes obsolete. If a large database of pre and post-operative 

scoliosis images could be maintained, better diagnosis and treatment suggestions can be 

provided by an expert CBIR system. For those who are particular in using a classification 

scheme, a query scheme (first query scheme) is provided which helps in sorting images within a 

class type based on similarity, addressing the issue of large variations of images. The developed 

system provides additional important information for instrumentation planning such as distance 

to CSL of each vertebra, end plate tilt angle, pelvic inclination, vertebral body height, 

intervertebral disc space height etc. The proposed rule-based measurement system has the 

advantage that the scoliosis measurement can be carried out by any person who is trained in 

identifying the landmark points. The flexibility of the user makes it useful for applications like 
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large scale scoliosis screening, in which the most prohibitive part is the cost of a spine expert 

[39]. The developed system has also got applications in research and education for navigating 

large image databases. 

7.S SpineSearch - The CBIR Software System 

A software system called 'SpineSearch' is developed based on the algorithm developed for 

CBlR of scoliosis images. The developed system provides graphical user interface (GUI) to 

measure the Cobb angle and facilita tes content based search for similar images in the database, 

based on Query-By-Example paradigm. The design and graphical user interface of the soflware 

are discussed in this section. 

7.5.1 Design 

The 'SpineSearch' was designed using object oriented programming system (OOPS) 

approach. The GUI interface and functional modules of the system was developed using 

Microsoft Visual C++ (hup:llwww.microsofl.com) and Dharma SQL Server 

(httpllwww.dhanna.com) is used as the relational database management system (ROBMS) 

engine in Wi ndows XP platfonn. The database connecti vity is im plemented using open database 
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Figure 7.10 Block diagram of Spine Search CBrn system 
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cOIUlectivity (ODBC) interface; hence the system could support any SQL engine like Oracle as 

the back end. 

The block diagram of the 'SpineSearch' CBIR system is given in Figure 7.10. A basic 

module "Landmark Points Processing" works on the landmark points input by the user, by 

marking them on the scoliosis image. It computes the tilt angle of each end plate of the vertebra 

and other distance and angle parameters. This module is used while offline processing for 

database population and online processing for search of similar images (if the query image is a 

new one which is not present in the database). The 'Feature Extraction' block forms the feature 

descriptor from the attributes generated by the "Landmark Points Processing" block. The feature 

descriptor used were outlined in Section 7.4.4 The "Search and Similarity Evaluation" block 

uses the feature descriptors and does the distance calculation between the query image and 

images in the database. This block projects the query result images to the user. All the three 

blocks interact with DBMS engine to store and retrieve images and features using an ODBC 

interface block. As the DBMS engine is interfaced through ODBC, the architecture of 

'SpineSearch' can be easily extended to client-server model and a centralized multi-center 

database can be maintained to improve the powerfulness of the CBIR system. Proper message 

handling is ensured to propagate messages or error information by the SQL engine, to be 

displayed to the user, to facilitate tracking. 

7.5.2 Graphical User Interface 

The GUI of the system should be as intuitive and user friendly as possible allowing non­

expert computer users to be able to measure and search for scoliosis images without extra 

knowledge of feature extraction or database technology. 

The main window of the GUI contains a menu bar at its top as shown in Figure 7.11. The 

main menu entries are "File", "Image", "Process", "Retrieval", "Database" and "Help". From 

each of these entries a drop down menu with different entries are presented allowing a set of 

actions. But only "File", "Retrieval", "Database" and "Help" items allow actions until an image 

is opened. 

• File: Allows opening of an image for measurement or as an example image for search. 

This menu has options for importing an already marked landmark points on the image 

or exporting landmark points to a file for later use. Also, it has provision for closing and 
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printing the opened image and quitting the system. The system supports both DTCOM 

and T IFF image format. 

• Retrieval: Provides an option to browse the database by speci fying a PID (pat icnI 

identifier) unique to image and retrieve images whose comem is matching to the comem 

of the image spec ified by PID. A window for the same is shown in Figure 7.1 2. 
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Figure 7.1:\ Int erface to adj ust image propenies 

• Database: Initiates database schema creation. Need to be done only once at first use of 

the system. 

• Help: Help documents . 

Once an image is opened using "Fi le" menu, other a lready listed options and two morc 

Icon!' In the menu bar, "Zoom In" and "Zoom QuI", to control scaling gets activated. The 

option. 

• Image: Allows changing the properties of the image such as contrast, brightness and 

gam ma correction with hct1p of sliding bars as shown in Figure 7.13. These options arc 

useful to boost vertebra boundary as spine images are sometimes highly smeared. 

Nuw the system is ready for landmark points acquisition. The left bunon click of the mouse 

marks and selects the location. Once all points arc selected. a right bUllon click wil l acquire the 

points. Figure 7.14 shows the interface with landmark points marked as red spots. 

The "Process" option in the menu bar is now ready to use. The drop down list have the '·Cobb". 

" Insert". "Update", "Show" and "Chart" options. 

• Cobb: Cumpute!' the Cobt:. angle and fcatun.' descriptor of the curve. The result is 

displayed in a window as shown in Figure 7.15. A miniature version of the imagt.: is 

displayed on the left pane and a ll curve parameters are li sted on the right pane. 

• Insert: Allows inserting the feature descriptor and image in 10 the database. 
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Figure 7.14 Interface to mark landmark points 
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• Update : Allows updat ing the fe."1ture dt::sc riptor of the image already present in the 

database. 

• Show: To displa y the result window obtai ned during Cobb compu tati on . 

• Chart: Allows viewing different tilt angles of va rious end plates of cilch ve rtebra. Al so. 

plots the distance 10 CS L and disc space slope of each ve rtehra. Various check boxes to 

select are 
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Inferior end plate tilt angle 
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Average Superior - Inferior tilt angle 

Average Left - Right till angle 

Disc space slope of each vertebra 

This is a quite useful interface for spine surgeons 10 examine the scoliosis curve for 

instru mentation planning. Figure 7.16 shows the user interface with some options for 

plolling selected. 

The "Retrieval" menu item has twO options in the drop down menu. Onc is the "Select"­

option already discussed to specify the PID and retrieve images matching 10 it. AnOlher optio n 

is "Search" which allows browsing tbe database for images similar in coment to the current ly 

opened image. The retrieval results are displayed one image per screen along with its curve 

properties. An example screen shot of query result is shown in Figure 7. 17. The interface is 

provided with a Sliding bar, rorward and backward buttons and edit box 10 navigate the result 

set. 
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7.6 Conclusions 

A novel tec hnique with better accuracy in scolios is measurement and a sc heme for CBm of 

scoliosis images are developed. An algorithm for automatic estimation of spine orientation and 

location is also developed. This is the ti rst system proposed for CBIR of scoliosis images to the 

best of our knowledge. The accuracy obtained by the proposed system fo r scoli osis 

measurement is better. compared to the reported measurement error ranges in the literature . The 

inter observer and intra observer reliability stud y conducted usi ng correlation coefficient and 

Kappa statistics proved the reliabi lity and rcpeatability of the system. The deve loped system has 

dual applicat ions: onc as an accurate scoliosis measurement system and the other as a CBIR 

system to aid diagnosis and treatment. The new system has applications in diagnosis for case­

based reasoning and evidence-based medicine. The system has eliminated the variability in end 

vertebrae selection and ambiguity in choos ing a classi fication scheme. to aid in decision making 

of surgical approach . The system is quite useful for a spine su rgeon in instrumentation planning 

by outcome analysis of the similar previolls cases. Also, the system provides important 

parameters like distancl' tu CSL of each vertebra. end plmt' ti lt angle. pelv ic incl ination. 
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vertebral body height, intervertebral disc space height etc to assist instrumentation planning. 

One of the advantages of the proposed system is that the user need not be an expert spine 

surgeon. Thus, a trained user can do offline database population and also use the system for 

diagnostic purpose in large scale initial scoliosis screening, so as to reduce the cost of a spine 

expert. Also, the system has applications in research and education to browse large image 

repositories. 
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Chapter 8 

Conclusions and Future Work 

8.1 Conclusions 

In this thesis, techniques for content-based image retrieval of general and biomedical 

images have been investigated. For general images shape descriptors, and for biomedical images 

scoliosis images have been the focus of the research. State of the art shape representation 

techniques and CBIR systems were reviewed. The main contributions were the development of 

novel shape descriptors and a system for CBIR of scoliosis images. 

MPEG-7 has adopted two notions of shape descriptors: region-based and contour based. 

The ARTD is the region-based and CSSD the contour-based shape descriptor adopted by 

MPEG-7. ZMD is also widely used as region shape descriptor. A previous study reports that 

ZMD has better contour description ability than CSSD. The ARTD also belongs to the Zemike 

moment family and hence has similar properties. Also there are reports that Legendre moments 

based on orthogonal Legendre polynomial have better image representation capability than 

Zernike moments. But, they lack invariance to geometric transfonnations. Improving invariance 

to transformations, a new shape descriptor called Improved Legendre Moment Descriptor 

(ILMD) based on Legendre polynomials has been developed. ARTD, ZMD and CSSD were 

implemented and used for comparison of the retrieval performance of the proposed descriptor. 

Techniques were developed for the improvement of invariance of the Legendre moments to 

geometric transformations like translation, rotation and scaling. Legendre polynomials have 

asymptotic zero distribution. Hence, invariance improved Legendre moment descriptor was 

used as a contour-based descriptor. To better represent the interior content of a shape as region-
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based descriptor, a modified Legendre polynomial to distribute more zeroes in the central region 

was selected. A new region shape descriptor was formed by a combination of invariance 

improved Legendre polynomial and modified Legendre polynomial based moments. Retrieval 

performance of the proposed descriptors were compared using recall - precision pair (RPP) and 

average normalized modified retrieval rank (ANMRR) with CSSD, ZMD and ARTD using 

MPEG-7 contour shape database CE-l and region shape database CE-2. Experiments showed 

that retrieval performances of the proposed descriptors are better than CSSD, ZMD and ARTD. 

To improve the performance of ILMD in the case of affine transformations, a pre-processing 

step was proposed. Shapes were normalized by compacting to improve invariance to affine 

transformations. A scheme for CBIR was developed using k-means clustering of shape 

descriptors. ILMD found to have better clustering accuracy than other descriptors. 

User interaction is an important aspect in improving retrieval accuracy of CBIR. Hence, a 

new relevance feedback scheme was developed using neural networks, as a classification 

problem. The classification accuracy of ILMD, ZMD and ARTD shape descriptors using SVM, 

Ls-SVM, PNN and LVQ classifiers were investigated. ILMD with SVM was found to be the 

optimum shape descriptor - classifier combination, by statistical analysis using McNemar Test. 

So, a new relevance feedback scheme was designed using ILMD and SVM. Relevant feed back 

samples were selected by the user for training the SVM classifier from an initial retrieval results 

using city block distance measure. Then, SVM classifies the image into query class or 

otherwise. Results indicated improvement in retrieval accuracy. 

The present technique for querying scoliosis images is based on the curve type assigned 

using a classification scheme. The manual annotated text-based querying and retrieval of 

scoliosis images is not accurate due to the following reasons of user SUbjectivity: variability in 

the selection of strategic vertebrae, ambiguity due to the existence of many classification 

schemes and large intra class variation of scoliosis images within a curve type. Moreover, 

different classification schemes are not interoperable. Hence, a novel scheme for CBIR of 

scoliosis images was developed. In the literature, no technique is so far reported for CBIR of 

scoliosis images. 

An algorithm based on the mathematical morphology was developed for automatic 

determination of location and orientation of spine in digital radiographs. A rule based algorithm 

was formulated for automatic .selection of strategic vertebrae using some landmark points input 
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by the user. It is based on the features such as maxima and minima, and zero - crossings of the 

end plate tilt angle of each vertebrae. Cobb angle and other parameters of scoliosis curve were 

automatically computed using the strategic vertebra levels and end plate tilt angles. Experiments 

were conducted by three independent observers marking the images twice, at an interval of 

seven days. Accuracy was evaluated using average error and standard deviation. Inter and intra 

observer reliability of the system was measured using statistical techniques such as Kappa 

statistics and correlation coefficient. The results showed that error ranges obtained are low 

compared to the reported error ranges in the literature. Also, statistical studies showed 

interobserver and intraobserver reliability. Hence, the developed system is accurate, reliable and 

repeatable. 

A feature descriptor for scoliosis images was designed using the curve type, number of 

curves, convexity of curve, Cobb angle, spinal balance, AV levels, apical distances, levels of 

UEV and LEV, average superior-inferior end plate tilt angle of Tl, average superior - inferior 

end plate tilt angle of L4 and pelvic inclination. Two query schemes were designed: one using a 

classification scheme (for those who are particular in using a classification scheme) and another 

without using a classification scheme. Query-By-Example tests were conducted using both 

query schemes. It was found that the system retrieved images clinically similar to the query 

image, in both schemes. Although, the first query scheme has the limitation of using a 

classification scheme it resolves the issue of large intra class variation. The query scheme 

without using a classification scheme retrieved all the images belonging to the query image 

class, in addition to other similar images, in increasing order of distance. Thus, query scheme 

without a classification scheme is superior as it eliminates ambiguity of a classification scheme. 

The pre and post operative images and treatment procedure adopted have been incorporated 

into the CBIR system. The CBIR of scoliosis images has special importance, since different 

treatment strategies are adopted by various surgeons worldwide for a similar case, based on the 

classification scheme they use. Traditional, querying using a classification scheme will retrieve 

only images classified using specified classification scheme. But, using the developed CBIR 

system outcome analysis of various techniques can be carried out for similar previous cases, as 

it does not use a classification scheme. A software system called 'SpineSearch' was developed 

based on the proposed algorithm for CBIR of scoliosis images. Since, the user of the system 

need not be a spine surgeon; the cost involved in larg~ scale scoliosis screening is reduced. For 
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spine surgeons, the system is useful in diagnostic purpose for case-based reasoning and 

evidence-based medicine and as an accurate measurement and instrumentation planning tool. 

The developed system has also applications in research and education, for navigation of large 

image repositories. 

8.2 Future Work 

The ILMD has been applied to object shapes of binary image. Extensions to gray scale 

image are a possible improvement of the scope of the descriptor. Also, combination of ILMD 

with other features such as color or texture could be investigated for improving accuracy of 

CBIR. 

In the case of CBIR of scoliosis images, the proposed system is based on the association of 

coronal plane profile to surgical strategy. Currently, the system does not consider the sagittal 

profile, axial plane rotation and side bending radiographs. Future research could be to integrate 

this information also to aid the surgeon. Incorporating the sagittal and axial plane profile would 

improve the utility of the system in assigning surgical protocol. Also, it would help supporting 

many new classification schemes like Lenke et.al., PUMC, SRS etc. By incorporating a large 

database across multi centers worldwide, the efficiency of the CBIR system can be improved. 



Appendices 

During initial part of the research, wavelet transform based techniques were studied by the 
author. Algorithms developed for wavelet tramform computation as part of the research are 
included as appendices in this thesis. Appendix A describes a fast algorithm based on FFT for 
discrete wavelet transform and Appendix B details a computational structure and algorithm for 
wavelet packet decomposition on massively parallel processors machine. 



Appendix A 

Development of a Modified FFT -Based 

Algorithm for DWT 

A.I Introduction 

The Discrete Wavelet Transform (DWT) [1], in which both time, scale parameters are 

discrete, has been recognized as a natural wavelet transform for discrete time signals. The 

demand for real-time operations in many signal processing tasks with large data sets has 

necessitated fast and computationally efficient algorithms [2, 3, 4, 5, 6] for wavelet transform. 

Also, many parallel algorithms [7] are available for a variety of parallel processing 

architectures. 

This appendix primarily focuses on the development of an FFT -based algorithm for real­

time computation of the DWT. The computational advantage of the proposed algorithm is 

compared with the FFT-based Fast Wavelet Transform algorithm proposed by Rioul [5) in 

terms of number of computations per point, for various wavelet kernel size and decomposition 

levels. 

A.2 Computational Structure for Fast Wavelet Transform (FWT) 

The computational reorganization proposed by Rioul [5] to reduce the computational load 

of the well known pyramidal algorithm [8] for DWT and the FFT -based algorithm for its 

implementation is discussed in this section. 

According to the pyramidal structure proposed by Mallat [8], the DWT elementary cell (for 

each level) contains two filtering operations (a highpass filter H(z) and a lowpass filter G(z)), 
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Figure A.l (a) Elementary DWT cell for FWT and (b) FFT-based implementation ofDWT cell 

which are followed by dyadic downsampling. The arithmetic complexity of an FIR filter 

implementation can be reduced by bringing together the computation of several successive 

outputs [9]. Since the filter outputs are decimated, the filter bank. building blocks can be 

reorganized [6, 10] based on biphase decomposition (separating into odd and even sequences). 

The reorganized computational structure is shown in Figure A.I (a). The z-domain 

representation of the biphase decomposition of a sequence y (n) is 

(A.I) 

where Yo(z) = Ly[2n]z-n ,the even part and r;(z) = Ly[2n+l]z-n ,theoddpart. 

" n 

Similarly, the biphase decomposition of the L-tap filters G(z) and H(z) results in their LI2-tap 

components G(z) = Go(z) + G j (z) andH(z) = Ho(z) + H j (z). Now, the approximation 

subband for level} can be obtained by 

(A.2a) 

and the detail sub band 

(A.2b) 

where 1 ~} < J; J is the lowest level of decomposition and Yo
o (z) and 'y:j

O 
(z) are the biphase - g g 

components of the input sequence x(n). 
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An FFT -based implementation of the above structure is described next. The input of the 

DWT cell is given in blocks of B samples (each LI2 filter operates on BI2 length samples) and 

the wrap-around effect [9] due to cyclic-convolution can be avoided by using overlap-add or 

overlap-save method. For a filter of length LI2 and a sequence of length B12, the input block­

length without wrap-around effect for N point DFT is, 

B = 2N -(L-2) (A3) 

A length-N FFT of the biphase components of the input sequence and the wavelet I scaling 

filters are computed. Now, four frequency-domain convolutions are performed by multiplying 

the (Hermitian symmetric) FFT of the input by the (Hermitian symmetric) FFT of the 

corresponding filter as shown in Figure Al (b). The corresponding subsequences are added 

together for approximation I detail subband and inverse FFT (IFFT) is computed. The 

approximation subband is used as input for further decomposition. As the data size gets halved 

at each level due to subsampling, waiting for more blocks from the previous level can be done 

so that each cell has the same input block length of B for FFT/IFFT operation. A length-N FFT 

is most efficient for an optimized value of the block length. 

The signal can be reconstructed from the wavelet representation by transposition of the 

analysis algorithm and by using synthesis filters H(z) and G(z) , which are time-reversed 

versions of the corresponding analysis filters [5]. 

A.3 Proposed Modified FFT-Based Algorithm 

The proposed algorithm is based on the frequency domain subsampling and makes use of 

the computational advantage of fast-convolution provided by the structure discussed in Section 

A2. 

By eliminating the calculation of the approximation subband in levels other than the lowest 

one of the FWT algorithm, two FFT and one IFFT operations in the intermediate levels can be 

avoided. 

The proposed modified algorithm is explained below. The input for the first level is data 

samples taken in blocks of length B (as per Equation (A3» and split into even- and odd-
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indexed sequences of length B/2 (Equation (AI». Now, compute N point FFT of these 

: equences and the initial FFT length N is chosen satisfying the condition, N ~ 2J
-

1 * L / 2 ; 

where J is the maximum decomposition level (division by 2 factor as we use biphase 

components). As the sequence size reduces by half on entering the next level, the FFT length of 

the biphase components of the wavelet/scaling filter coefficients are N/2 j-I for levelj. For the 

first level, the frequency-domain convolutions are performed by multiplying (Hermitian 

symmetric) FFT of the input by the (Hermitian symmetric) FFT of the wavelet filter and the 

resulting sequences are added together. Length-N IFFT is applied to obtain the input block's 

wavelet coefficients for the first level. For the approximation coefficients, the (Hermitian 

symmetric) FFTs of the scaling filter are used and the resulting sequences are added together. 

Without computing IF FT of the approximation coefficients, decomposition for the lower 

levels can be done in the Fourier space. If yt'[k] is a length-NFourier transform, the length-

N/2 Fourier transform of its downsampled version is 

(A.4) 

The y; [k] corresponds to the Fourier transform of even samples and that of odd ones have a 
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Figure A2 Proposed FFT-based algorithm. (FS stands for Fourier-domain 
sub sampl ing) 
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phase shift [6]. The Fourier-domain approximation coefficients at level (i-I) are downsampled 

as per Equation (AA) to halve the resolution and passed as input for next level}. The Hermitian 

symmetric Fourier-coefficients of the resulting odd I even sequences are multiplied with the 

corresponding Hermitian symmetric filter FFT N .. 2i -' to get the detail I approximation 

coefficients for level 2 :s j :s J. The length-Nl2 j-! IFFT can be done in each level j for the 

wavelet coefficients to get the detail subband and in the last level, length-NI2./-
j 

IFFT is used 

for approximation sub band computation. The coefficients from various blocks are grouped 

together to get the wavelet I approximation subband. So, every level, except the first and last, 

has only one IFFT operation (for detail subband) other than complex multiplication and block 

addition operations. A two level decomposition implementation of the proposed algorithm is 

shown in Figure (A.2). 

Since each block at any stage is processed independently, the algorithm has no inter-block 

dependency as in the case of FWT. So, no hidden synchronization overhead is involved in the 

proposed algorithm implementation. 

For the synthesis part, the transposed flow graph of the analysis algorithm shown in 

Figure (A.2) can be used with synthesis filter components which are time-reversed versions of 

analysis filters. 

AA Computational Complexity 

The computational complexity in terms of the number of real multiplications and real 

additions required by the candidate algorithms is calculated in this section. The total number of 

operations (multiplications + additions) is considered as the appropriate criterion for 

performance comparison of various algorithms [5]. 

The "split-radix" FFT [11] used in both algorithms has best known complexity for length 

N = 2k . For real data, the split-radix FFT (or inverse FFT) requires exactly 

2 k-j (k - 3) + 2 (real) mUltiplications (A.5) 

and 

2k
-

1 (3k - 5) + 4 (real) additions (A.6) 
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The filters (H(z) and G(z)) in the computation of the DWT usually have equal length. The filter 

FFT's can be pre-computed and applied as and when needed. 

The FWT algorithm has a regular computational structure. The operations required by an 

elementary cell are counted as follows [5}. The four frequency-domain convolution operations 

require 4N12 complex multiplications. Assuming that a complex multiplication is done with 

three real multiplications and three real additions [9}, the computational complexity of an 

elementary cell can be expressed as 

2 FFT N + 4*3*NI2 mults + 4*3*NI2 adds + 2*N12 adds + 2 IFFT N 

This can be simplified as k2 k
+! + 8 multiplications and (3k -1)2k+! + 16 additions [5}. The 

total number of elementary cells required for depth J decomposition is 2 * (1- 2 -J ) . So, the 

total number of multiplications required per point is 

(A.7) 

and the total number of additions per point is 

AI = ((3k -1)2 k
+! + 16) * 2 * (1- rJ ))/ B (A.8) 

In the case of proposed algorithm, the first level has two length-N FFT and one length-N 

IFFT. The last level has two length- N / 2 J
-

1 IFFT and all the intermediate levels has one 

length- N / 2 j-I IFFT computations per input block. The frequency-domain convolution 

complexity is 4*(NI2 j) and block addition complexity is 2*(NI2 j), where 1 :::: j :S J. The 

frequency-domain downsampling operation for level j requires NI2 j additions. The total 

operations on an input block for decomposition depth J can be expressed as 

(2 FFT N)1 + (2 IFFT N 2,-I)J + (IFFT N.2,-1 ) 1-->(J-l) + (~ h->(J-l) adds + (4*3* ~ h .... J mults 

( **N) dd *N) *N -j 4 3 -. 1-->J a s+ (2 -. 1-->J adds+(2 -. ) 1-->(J-\) adds. 
2J 2 J 2 J 
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The sUbscript of parenthesis denotes the level in which the operations are perfonned. The total 

number of multiplications per point, using Equation (A.S), is 

.I 

M2 =«2k(k-3)+4)+(2k-J(k-J-2)+2+(L:2k-j(k- j+1O)+2))/B (A. 9) 
j~l 

The total number of additions per point, using Equation (A.6), is 

J J-l 

A2 = «2k(3k-S)+8) + (2 k
-

J (3(k-J) - 2) +4)+ (2)* 2k
-
j (k- j +4) +4)+ (L2"-j»! B (A.IO) 

j=l j=l 

The computational complexity per point of the FWT and that of the proposed algoritlun are 

calculated using the above equations. Appropriate initial FFT length which gives best 

perfonnance for a given algorithm is chosen for a particular wavelet kernel size. The results are 

detailed below. 

A.S Results and Discussions 

Table A.I lists the resulting number of real multiplications per input point required by the 

candidate algoritluns for various wavelet kernel sizes at different decomposition depths. The 

proposed algoritlun has less number of multiplications per point for filter size greater than four 

and decomposition depth greater than one. Also, the performance improves with an increase in 

decomposition depth. 

Table A.2 lists the number of real additions per point required for both algorithms. The 

number of real additions is less for the proposed algorithm compared to FWT for filter size 

greater than two. The same trend as in Table A.I can be seen regarding the improvement in 

addition complexity also with an increase in wavelet kernel size and level. 

Although both Vetterli's algorithm [6] and the proposed algorithm uses Fourier-domain 

subsampling, the latter has better performance due to the use of subsampled sequences for 

initial FFT computation (FFT length being more close to the best performance length) and 

Hermitian symmetry property. 
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Table A.I FFT -Based DWT algorithms: multiplication complexity per point* 
Filter LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 LEVELS FFTLENGTH 
Length I II I II I II I II I II I II 

2 3.0 5.1 4.5 6.4 5.2 7.0 5.6 7.4 5.8 7.5 2 32 

4 4.0 5.2 6.0 6.6 7.0 7.2 7.5 7.6 7.7 7.8 4 32 

8 5.2 6.3 7.8 7.6 9.1 8.3 9.8 8.7 10.1 8.8 16 64 

16 6.5 7.4 9.8 8.7 11.8 9.4 12.3 9.7 12.7 9.9 32 128 

32 7.9 8.5 11.8 9.8 13.8 10.5 14.8 10.8 15.3 11.0 64 256 

64 9.1 9.5 13.6 10.9 15.9 11.5 17.1 11.9 17.6 12.0 256 512 

128 10.2 10.6 15.4 12.0 17.9 12.6 19.2 13.0 19.9 13.1 512 1024 

*Each entry gives the number of real multiplications per input point for various decomposition levels. 
The notations I and II represents the FWT algorithm and the proposed algorithm respectively. The last 
column shows the corresponding initial FFT length. 

T b a le A.2 FFT-Base dD WT algonthms: addition compleXity per point* 
Filter LEVEL 1 LEVEL 2 LEVEL 3 LEVEL 4 LEVELS FFTLENGTH 
Length I II I II I II 1 II I II I II 

2 6.0 13.7 9.0 15.0 10.5 15.7 11.2 16.1 11.6 16.3 2 32 

4 9.3 14.1 14.0 15.5 16.3 16.2 17.5 16.6 18.0 16.8 4 32 

8 14.1 17.4 21.2 18.7 24.7 19.4 26.5 19.8 27.4 20.0 16 64 

16 18.2 20.6 27.3 22.0 31.9 22.7 34.2 23.0 35.3 23.2 32 128 

32 22.3 23.9 33.5 25.2 39.1 25.9 41.9 26.2 43.3 26.4 64 256 

64 26.2 27.1 39.3 28.4 45.8 29.1 49.1 29.5 50.7 29.6 256 512 

128 29.6 30.4 44.5 31.7 51.9 32.4 55.6 32.7 57.4 32.9 512 1024 
.. .. 

*Each entry gIves the number of real additIons per LDput pomt for vanous decomposItIon levels. The 
notations I and II represents the FWT algorithm and the proposed algorithm respectively. The last 
column shows the corresponding initial FFT length. 

A.6 Conclusion 

A computationally efficient FFT-based DWT algorithm is presented in this appendix. The 

FWT algorithm [4] has been proved to be better in perfonnance than pyramidal algorithm by 

Mallat [8] and FFT-based Vetterli's Algorithm [6]. The computational complexity calculations 

show that the proposed algorithm provides remarkable savings for wavelet kernel size greater 

than four (which are widely used), compared to FWT. Also, the perfonnance of the algorithm 

increases with decomposition depth. The lack of inter-block dependency is a useful feature in 

parallel processing environment. The proposed algorithm is best suited for computationally 

intensive applications, such as in image processing. 
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Appendix B 

Development of a Computational Structure for 

Fast Computation of Wavelet Packet Transform 

on MPPs 

B.1 Introduction 

In this appendix, a Parallel Multiple Subsequence (PMS) structure is developed for wavelet 

packet (WP) decomposition. In PMS structure, sub bands are computed using subsequences 

obtained directly from the input data, improving parallelism in computation. An algorithm for 

implementation of PMS on massively parallel processors (MPPs) is also developed. 

Wavelet packets, which comprise of the entire family of subband coded decompositions, is 

an ideal tool in multiresolution analysis. In the wavelet transform [1] computation, the signal is 

decomposed into coarse scale approximations and the detail signal. This procedure is applied 

recursively to the coarse scale approximations leading to the well known filter bank tree wavelet 

decomposition structure. In the WP decomposition the recursive procedure is applied to both 

coarse scale approximation and detail signals, which leads to a complete binary tree, giving 

more flexibility in frequency resolution. 

Several efficient parallel algorithms [2, 3] proposed for the fast wavelet transform are 

applicable to WP decomposition also. Some of the works in parallel wavelet packet 

decomposition includes subband based approaches for performing the best basis selection on 
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rarallel MllvlD [4, 5] and SllvlD [6] architectures, parallel wavelet packet decomposition in 

numerics [7] and some of their applications [8]. 

But, most of these algorithms are based on the filter bank tree structure. The delay 

associated with the implementation grows exponentially with the number of levels [9]. For 

instance, the set of basis functions for Short Time Fourier representation of a signal requires the 

lowest level WP subbands only. With filter bank tree structure, one has to perform unnecessary 

computations by way of evaluating the higher level subbands. One of the important factors 

limiting the range of scalability in parallel processing is the sequential component of the 

algorithm [2]. 

B.2 Wavelet Packet Transform Algorithms 

This section briefly describes the filter bank tree algorithm by Mallat [10] and proposed 

PMS structure [11] based algorithm for WP decomposition is then explained. 

B-2.1 The Filter Bank Tree WP Algorithm 

The wavelet packet decomposition extends the discrete wavelet transform in a way that 

each level j consists of 2 j subbands, generated by a tree of low pass and high pass operations. 

Consider the analysis filter bank of the I-D WP scheme shown in Figure B.I. In this figure, the 

analysis filters H(z) represents a high pass filter and G(z) represents a low pass filter. The WP 

transform of a discrete signal x(n) can be computed by convolving with filters H(z) and G(z) 

followed by dyadic downsampling. This process is repeated on both sequences until the required 

x(n) 

X~j H(z) ----0- Xj2 

-I H(z) ]-I£J 
B-0-X; 

IH(z)I-~- xff 

§-@-X; 
Figure B.l Two level WP decomposition using filter bank tree algorithm 
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level of decomposition is reached. 

The WP subbands at any level} are given by 

(B.la) 

XfJn) = L,g(k)Xr l (2n-k) (8.1 b) 
k 

where X 10 =x(n); the input sequence (n e Z),} = 1,2, ... J; denotes different levels and 1 ~ i ~ 

2 j-I is the subband index within a level. 

B.2.2 Parallel Multiple Subsequence (PMS) Structure Based Algorithm 

The PMS structure [11], originally developed for DWT, is based on the principle of 

polyphase splitting for subband decomposition. Here, an extension to the PMS structure for WP 

transform is developed. From the wavelet (defined by its filter H(z)) and its smoothing function 

(defined by its filter G(z) we compute the filter coefficients for the sub bands at each level by 

successive convolutions and upsampling. Subbands at various levels are computed directly by 

convolving the corresponding filter with the original data. 

The sub bands can be computed based on the PMS structure as follows 

" 
X fi-l (k);; ! xj,p (k) * h!.p (-k) 

p=I 

2) 

X{;(k) = LXj.p(k) * g/,p(-k) 
p~I 

where * denote convolution and 1 ~ i ~ 2 j-I is the sub band index, 

X}.P (k) = x(2} k + p -1), 

h!.p(k)=h!(2 j k+2} -p+l),and 

g/.p(k)=g/(2 j k+2 j -p+l). 

(8.2a) 

(B.2b) 

The PMS structure for second level WP decomposition is shown in Figure B.2 Being a 

regular structure, this can be extended to any level. The PMS structure has got parallelism both 

within and between levels, making it highly suitable in paraflel processing environment. 
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r---~-IG(Z)~.l1 

x(n) 

X; 

Figure B.2 Second level WP decomposition using PMS structure 

B.3 Algorithm Analysis 

The scalability and computational complexity of the algorithms described in Section (B.2) 

are analyzed Oh coarse-grained machines. The platform used is a distributed memory 
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architecture in which each processor has fast access to local memory 

B.3.1 Computational Model and Assumptions 

The notion of scalability of an algorithm and parameters of the computational model are 

defined based on references [12, 13]. Let tr be the time required for one floating point operation. 

The time required for the complete transfer of a message containing m words between two 

processors that are I connections away is given by the t s + ( t w m) '" I, where t 5 is the startup 

time, and t w = bytes-per-word / B, where B is the bandwidth of the communication channel 

between the processors in bytes per second. So, the total execution time mainly consists of two 

parts: one corresponding to the computation complexity and the other corresponding to the 

communication complexity. 

Let T(n,p) be the time taken by an algorithm on a p processor architecture with input data 

size n. The algorithm is considered scalable on the structure if T(n,p) increases linearly with an 

increase in the data size or decrease linearly with the increasing number of processors (machine 

size). We assume that p < n, as we are interested in large problem sizes generally. 

The performance study of the algorithms is done by varying the machine size (P), problem 

size (n) and the wavelet filter kernel size (L) for different levels of decomposition. For the sake 

of simplicity in analysis, we assume that the problem size and machine size are powers of 2, i.e., 

2 n and 2 a respectively. The scalability and perfonnance in parallel environment is analyzed for 

generating subbands at a given level only. 

B.3.2 Data Distribution Strategy 

The main problem faced, when dealing with multicomputers, is how to perfonn an efficient 

mapping of tasks and data to the processors which raises the questions of load balancing and 

communication minimization. Both questions are closely connected with the data distribution 

task. For both the algorithms, two methods of handling border data (L coefficients of the 

neighboring Processing Elements (PE) are required to compute a single output coefficient at the 

border) can be used [14]. They are 

• Data Swapping: Each PE computes only non-redundant data and then exchanges these 

results with the appropriate neighboring PEs, in order to get the necessary data for the next 
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calculation step (i.e., the next decomposition level). 

~ Data Overlapping: In the initialization step, each PE is provided not only its share of the 

original signal but also the data set which is required to compute the redundant data. This 

avoids additional communication with neighbor PEs to obtain the border data. 

Appropriate data distribution scheme is chosen in the analysis for a given algorithm. 

B.3.3 Analysis of the Filter Bank Tree Algorithm 

The parallel implementation algorithm used here is based on WP image decomposition 

algorithm proposed by Feil and Uhl [5]. It is found that for data distribution, in a filter bank tree 

algorithm, the data overlapping approach is not competitive at all over a wide range of different 

architectures [6]. So, the data distribution scheme used here will be Data swapping method. 

The most natural way to distribute the computational work of a WP transform can be found 

on a distributed memory architecture with the number of PEs equal to a power of 2, i.e., p= 2 a • 

The input data 2'1 for each level (will be approximately the same as the original input data, 

ignoring the increase in length caused by convolution, as all subbands are retained in WP 

decomposition) is partitioned into 2 a parts of equal size 2 II-a • The partitioning is done in two 

different ways depending upon whether level} is smaller or larger than a. Let i denote the 

subband index and 0 :S i < 2 j • If} < a, a subband with index i is not assigned to a single PE but 

is shared by PEs with processor index in the range 2 a- j * i to 2 a- j * (i + 1) -1. Therefore, in the 

initialization step, those 2 a- j PEs will exchange their data in order to have the entire shared 

subband residing on each of them. Then, in the second step, they will calculate their own part of 

the subband they share at level} + 1. If} 2: a, 2 j-a subbands and also their two children reside on 

each PE. Thus no communication among PEs is needed for the subset of subbands residing on 

each PE at level}. 

The message communication required for level} is L (filter length) data units across 

2 a
-

j
+

1 _l PEs for subband computation and 2,,-adata units across 2a
-

j PEs for data re­

distribution on entering a new level. This is required for all the 2 j sub bands of the level. Thus, 

the overall communication amount (ie., the number of datapoints sent) can be expressed as 
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a-I 

m=L)L*C2a-j+l-l)+r-a *2 a-j )*2 j 

j=! 
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(B.3) 

The total number of PEs involved in the message transfer at various stages IS 

a-I 

k = 2:) * 2a 
- 2i. Based on the parameters described in Section B.3.l, the total time required 

j=I 

for message communication is k * t s + m * t w • The computation of each output 

coefficient requires 2L floating point operations (additions and multiplications). As each 

processor holds 2 N-a data units, the total computation time is 2L * 2 n-a * J * ff, where J is the 

maximum decomposition level. Thus the total time taken for WP decomposition is given by, 

T. = (2L * 2 n-a * J * t ) + (k * t + m * t ) ! f s M' 
(B.4) 

B.3.4 Analysis of the PMS Structure Based Algorithm 

As the PMS structure is tailored for the parallel computation of the subbands of a given 

level directly from the original input sequence, there is no sequential part in the algorithm. So, 

the data distribution scheme proposed for PMS structure based algorithm is Data Overlapping 

approach i.e., all necessary data desired to compute the subbands is sent to the processors 

initially. The proposed data distribution strategy is outlined below. 

The number of subbands in a regular WP decomposition scheme is 2i for levelj. But, PMS 

structure splits each subband (and the corresponding filter) again into 2 j subsequences. This 

results in 2 j * 2 j sub sequences for the level j. The input data is partitioned into 2 a parts of 

equal size 2 n-a. The data partitioning can be done in two different ways depending upon 

whether 2j is smaller or larger than a. Let i denote the subsequence index and 0 Si < 22j 
• If 2j 

< a, the number of subsequences is less than the number of available PEs and each subsequence 

with an index i is not assigned to a single PE but is shared by PEs with processor index in the 

range 2 a-2} * i to 2 a-2j * (i + I) - I . The redundant data units to be distributed initially among 

PEs is L j / 2 j , where L j = (L - 1)( 2} -1) + 1; the filter length for levelj. As each PE is having 

the entire data units required, no message communication need to be performed in this 

distribution scheme and the computational work is uniformly distributed. If 2j 2: a, 
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2 2j
-

a sub sequences can reside on each PE. Then, initial redundant data distribution is also not 

required. 

The computation of each output coefficient requires 

point operations. Since each processor holds 2 n-n data units, the total computation time is 2 L j * 

2 n-Q * t f; As there is no message passing required, the total time taken for WP decomposition 

is 

T 2 = 2 L j * 2 n-a * t( (B.5) 

B.4 Analytical Results and Discussion 

In order to get an approximate figure of the timings, the system parameters of Intel Paragon 

XP / S machine [2] is used in equation (BA) and (B.5). The paragon machine has a 2 - D mesh 

(torus) connection structure with support for number of processors in the range of 64 - 4000. 

The per node memory capacity is 128 MB. The communication bandwidth of the machine is 

200 MB/s. Each processor has a peak: performance (64 bits) of 75 Mflop / s and the 

communication latency is around 100 Ilsecs. The performance measurement criterion used here 

is speedup, which is taken as the ratio of execution time of the filter bank tree algorithm to that 

of the PMS structure based algorithm, i.e., 

speedup = T 1 / T 2 (B6) 

Figure B.3 compares the scalability of the candidate algorithms for increasing machine and 

problem size. Figure B.3(a) plots the execution time of filter bank tree and PMS based 

algorithms at a decomposition depth of 6 on various machine size with fixed wavelet kernel size 

(L = 16) for a problem size of 128 MB. The execution time decreases for the PMS based 

algorithm with an increase in machine size whereas it linearly increases for the filter bank tree 

algorithm due to the communication overhead. Figure B.3(b) shows the execution time for 

various problem sizes on 512 processors of the Paragon using a 16-tap wavelet kernel for 

various problem sizes. It can be noted that the execution time increases linearly with the 

problem size and hence PMS algorithm perfectly satisfies the scalability criterion. Although the 

execution time for both the algorithms increases with problem size, due to the communication 
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overhead caused by the data rc-distribution between the levels, the rate of increase of filter bank 

tree algorithm is much faster than that of PMS. 

Figure 0.4 shows the speedup of the proposed algorithm over the filter bank tree algorithm 

for various decomposition levels. The speedup increases significantly with machine size up to 

level 8 as shown in Figure BA (a). The plO! of spcedup for a usual range of filter length, 32, at a 
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machine Slze of 512 is given in Figure B.4 (b). This figure also indicates that even at a 

decomposition depth of 10 the speedup value is 2, which is very promising. 

The timing calculations did not take into account the practical runtime delay factors such as 

network congestion. But, excluding these factors favors only filter bank tree algorithm as no 

inter-processor message transfer is demanded by the PMS based algorithm. The results obtained 

suggest that the proposed algorithm is superior to filter bank tree algorithm on massively 

parallel processors for lowest level wavelet packet subband decomposition. Besides, the 

proposed algorithm has much better performance for large problem sizes. 

B.S Conclusion 

An efficient and scalable computational structure and its parallel implementation for WP 

decomposition on massively parallel processors with distributed memory were developed. The 

analytical study shows considerable· speedup of the PMS structure based algorithm in 

comparison with filter bank tree based algorithm. As no inter-processor communication 

overhead is involved in PMS based algorithm, it provides architectural and algorithmic 

scalability. Due to increase in communication overhead with the machine size and problem size, 

the filter bank tree algorithm is not perfectly scalable. The PMS structure based algorithm is 

useful for applications like in numerical mathematics and Short Time Fourier Transform basis 

representation. 
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