
STUDIES, DESIGN AND DEVELOPMENT OF

NETWORK SECURITY ENHANCEMENT SERVICES

USING NOVEL CRYPTOGRAPHIC ALGORITHMS

A thesis submitted
by

SHEEN A MA THEW

for the award of the degree of

DOCTOR OF PHILOSOPHY

UNDER THE FACULTY OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE

COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY

KOCHI, KERALA - 682 022

June 2008

CERTIFICATE

This is to certify that the thesis titled «STUDIES, DESIGN AND

DEVELOPMENT OF NETWORK SECURITY ENHANCEMENT

SERVICES USING NOVEL CRYPTOGRAPHIC ALGORITHMS" is a

report of the original work carried out by Ms. Sheena Mathew, under

my supervision and guidance in the Department of Computer

Science, CocJun University of Science and Technology, Kochi. The

work presented in this thesis has not been submitted for any other

degree from any other university.

Kochi - 682 022

16th June 2008

- ~~id I --:-- V
Dr. K. Poulose Jacob

(Supervising Guide)
Professor and Head

Department of Computer Science

Cochin University of Science and Technology

DECLARATION

I hereby declare that the work presented in this thesis is based on

the original work carried out by me under the supervision of Dr. K.

Poulose Jacob, Professor and Head, Department of Computer

Science, Cochin University of Science and Technology, Kochi. The

work presented in this thesis has not been submitted for any other

degree from any other University.

Kochi - 682 022
16th June 2008

SHEENA MATHEW

ACK1~OWLEGEMENTS

While submitting this thesis report with a profound sense of gratitude, I

would avail this opportunity to thank those who have helped me generously in

the completion of this work.

First and foremost, I am grateful to the God Almighty for having been

my lodestar throughout my life.

r would express my deep and sincere gratitude to my supervisor and

guide, Professor K. Poulose J acob, Director, School of Computer Science

Studies, Cochin University of Science and Technology for the guidance he has

given me throughout the course of my research work. His knowledge, logical

thinking, invaluable comments, caring and supportive attitude, patience, etc.

etc. were the main driving forces of my work.

I am also indebted to Prof. Veni Madhavan, Indian Institute of Science,

Bangalore, whose fundamental approach to research in Cryptography was an

inspiration to me. The initial idea for developing the algorithm for providing

confidentiality has been the outcome of my dissertation for M.E. guided by

him at the IISc.

I would also like to mention Or. David Peter S. and all other faculty

and staff members of the department and my friends Ancy, Damodaran, Latha,

Pramod, Preetha, Ranjit, Rekha, Sara, Shahana, Sheena, Sudheep, Supriya,

Surekha and Vinod, who have been my well wishers and sources of

inspiration.

SHEENA MA THEW

ABSTRACT

Internet today has become a vital part of day to day life, owing to the

revolutionary changes it has brought about in various fields. Dependence on

the Internet as an infonnation highway and knowledge bank is exponentially

increasing so that a going back is beyond imagination. Transfer of critical

infonnation is also being carried out through the Internet. This widespread use

of the Internet coupled with the tremendous growth in e-commerce and m­

commerce has created a vital need for infonnation security.

Internet has also become an active field of crackers and intruders. The

whole development in this area can become null and void if fool-proof security

of the data is not ensured without a chance of being adulterated. It is, hence a

challenge before the professional community to develop systems to ensure

security of the data sent through the Internet.

Stream ciphers, hash functions and message authentication codes play

vital roles in providing security services like confidentiality, integrity and

authentication of the data sent through the Internet. There are several ·such

popular and dependable techniques, which have been in use widely, for quite a

long time. This long term exposure makes them vulnerable to successful or

near successful attempts for attacks. Hence it is the need of the hour to

develop new algorithms with better security.

Hence studies were conducted on various types of algorithms being

used in this area. Focus was given to identify the properties imparting security

at this stage. By making use of a perception derived from these studies, new

algorithms were designed. Performances of these algorithms were then

studied followed by necessary modifications to yield an improved system

consisting of a new stream cipher algorithm MAJE4, a new hash code JERIM-

320 and a new message authentication code MACJER-320. Detailed analysis

and comparison with the existing popular schemes were also carried out to

establish the security levels.

The Secure Socket Layer (SSL) I Transport Layer Security (TLS)

protocol is one of the most widely used security protocols in Internet. The

cryptographic algorithms RC4 and HMAC have been in use for achieving

security services like confidentiality and authentication in the SSL I TLS. But

recent attacks on RC4 and HMAC have raised questions about the reliability

of these algorithms. Hence MAJE4 and MACJER-320 have been proposed as

substitutes for them. Detailed studies on the performance of these new

algorithms were carried out; it has been observed that they are dependable

alternatives.

Contents Page No.

List of Algorithms VI

List of Figures vii

List of Tables viii

1. Introduction 1

1.1 Increasing Dependency of Modem World on Computers
1.2 Security Attacks
1.3 Threats on Internet

3
5

lA A Short Description on Different Aspects of Security Services 8
l. 5 Secure Web Communication 10
1.6 Layout of the Thesis 11

2. Studies on PRNGs & Stream Ciphers and Design &
Development of a Novel Stream Cipher & its Applications 13

2.1 Introduction to Pseudo Random Number Generators and
Stream Ciphers 15
2.l.1 Design Criteria of Pseudo Random Number Generators 16
2.1.2 Studies on Popular PRNGs and Stream Ciphers 17

2.1.2.1 Shift Register Based Generators 18
2.l.2.l.1 Linear Shift Register 18
2.1.2.1.2 Nonlinear Shift Register 19

2.1.2.2 Arithmetic and Algebraic Operations Based
Generators 20
2.1.2.2.1 Linear Congruential Generators (LCG) 20
2.1.2.2.2 X2 mod N 21

2.1.2.3 JEROBOAM 22
2.1.2.4RC4 22

2.1.3 Empirical Randomness Tests 24
2.1.3.1 Frequency Test (mono bit test) 25
2.l.3.2 Serial Test (two bit test) 25
2.l.3.3 Poker Test 26
2.1.3.4 Runs Test 26

2.1.3.5 Autocorrelation Test 27
2.l.4 Implementation ofPRNGs 28

2.1.4.1 Shift Register Based Generators 28
2.1.4.1.1 LFSR 28
2.1.4.1.2 Geffe Generator 28

2.1.4.2 Arithmetic and Algebraic Operations Based
Generators 29
2.1.4.2.1 LCGs 29
2.1.4.2.2 X2 mod N 29

2.1.4.3 JEROBOAM 29
2.1.4.4 RC4 30

2.l.5 Results 30
2.1.5.1 Shift Register Based Generators 30

2.1.5.1.1 LFSR 30
2.1.5.1.2 Geffe Generator 31

2.1.5.2 Arithmetic and Algebraic Operations Based
Generators 31
2.1.5.2.1 LCGs 31
2.1.5.2.2 X2 mod N 33

2.1.5.3 JEROBOAM 33
2.1.5.4 RC4 34

2.1.6 Performance Evaluation 34

2.2 Design and Development of Novel Stream Cipher: MAJE4 35
2.2.1 Motivation for Design of a New Stream Cipher 35
2.2.2 Design Considerations of the Stream Cipher, MAJE4 36
2.2.3 Description ofMAJE4 37
2.2.4 Randomness Tests 40
2.2.5 Results 40
2.2.6 Performance Evaluation 42

2.2.6.1 Timing Analysis 42
2.2.6.2 Memory Requirements 43

2.3 Development of a Hybrid System MARS4 using MAJE4 44
2.3.1 Need for a Hybrid System 44
2.3.2 Objectives for MARS4 46
2.3.3 Description ofMARS4 47
2.3.4 Results 50
2.3.5 Performance Evaluation 53

2.3.5.1 Timing Analysis 53
2.3.5.2 Memory Requirements 54

2.4 Message Integrity Enhancement of Nested Hash Functions
Using MAJE4 55
2.4.1 Introduction 55
2.4.2 Nested Hash Function 58
2.4.3 Use of Hash Code and MAJE4 60
2.4.4 Results 61

2.5 Conclusions 64

3. Studies on Hash Functions and Design & Development of a
Novel Hash Function JERIM-320 67

3.1 Study of Hash Functions 68

3.2 Review of Popular Hash Functions 70
3.2.1 Similarities 71
3.2.2 SHA-1 72
3.2.3 SHA-256 74
3.2.4 RIPEMD-160 76
3.2.5 RIPEMD-320 78
3.2.6 FORK-256 78
3.2.7 Differences 80

3.3 Design of a novel hash function: JERIM-320 81
3.3.1 Motivation and Design Factors 81
3.3.2 Description of JER1M-320 84

3.3.2.1 Input Block Length and Padding 85
3.3.2.2 Structure of JERIM-320 85
3.3.2.3 Single Step Operations 86
3.3.2.4 Order of the Message Words 88
3.3.2.5 Shifts 89
3.3.2.6 Boolean Functions 90
3.3.2.7 Constants 91

3.4 A Bird's Eye View on Hash Functions 92

3.5 Detailed Comparison of JERIM-320 with FORK-256 92

3.6 Security Analysis 95
3.6.1 JERIM-320 95
3.6.2 Comparison with FORK-256 96

3.7 Performance Evaluation 98
3.7.1 Practical Implementations 98

3.7.1.1 Comparison with FORK-256 98
3.7.1.2 Comparison withRIPEMD-320 100
3.7.1.3 Comparison with SHA-1, SHA-256,

RIPEMD-160 102
3.7.2 Single Step Computation 104

3.8 Statistical Analysis for the Dual Functioning of JERIM-320 105
3.8.1 Introduction 105
3.8.2 Randomness Tests 106
3.8.3 Results 106
3.8.4 Performance Evaluation 107

3.9 Conclusions 108

3.10 Test Vectors 109
3.10.1 JERIM-320 using One Message Block in Single Step

Operation 109
3.10.2 JERIM-320 using Two Different Message Blocks

in Single Step Operation 112

4. Design and Development of a New Message Authentication
Code: MACJER-320 116

4.1 MACJER-320 117
4.1.1 Introduction 117
4.1.2 Motivation and Design Factors 119
4.1.3 Description ofMACJER-320 120
4.1.4 Security Analysis 123
4.1.5 Properties ofMACJER-320 123
4.1.6 Performance Evaluation 124
4.1.7 Test Vector 126

4.2 Perfonnance Evaluation between MACJER-320 and
HMAC-SHA-1 126
4.2.1 HMAC 127
4.2.2 Security Analysis of MACs and Hash Functions 128

4.2.2.1 HMAC-SHA-l 128
4.2.3 Perfonnance Evaluation 129

4.3 Conclusions 131

5. Use of MAJE4 and MACJER-320 in Secure Socket Layer /
Transport Layer Security Protocol 133

5.1 Introduction 134
5.2 Motivation 135
5.3 Security Analysis of Algorithms 136

5.3.1 RC4 136
5.4 Alternate usage ofMAJE4 and MACJER-320 in SSL / TLS

protocol 139
5.4.1 MAJE4 & RC4 139

5.4.1.1 Timing Analysis & Memory Requirements 139
5.5 Conclusions 140

6. Summary of Results, Conclusions and Future Work 141

6.1 MAJE4 142
6.2 MARS4 142
6.3 Nested Hash Function 143
6.4 JERIM-320 144
6.5 MACJER-320 144
6.6 Use in SSL I TLS 145
6.7 Research Conclusions 146
6.8 Future Work 146

Published Work of the Author 149

Bibliography 152

List of Algorithms

Algorithm 2.1: MAJE4

Algorithm 2.2: RSA

Algorithm 2.3: MARS4

Algorithm 2.4: Nested Hash Function

Algorithm 4.1: MACJER-320

Algorithm 4.2: HMAC

vi

38

48

49

58

121

128

List of Figures

Fig. 2.1: Working of the Stream Cipher: MAJE4

Fig. 2.2: Comparison of Number of Random Bits Produced

per Second

Fig. 2.3: A Novel Hybrid Cryptographic System: MARS4

vii

36

43

46

Fig. 2.4: A Comparison of Memory Sizes for MAJE4, RSA and MARS4 55

Fig. 2.5: Use of Combined Hash Code and Encryption 57

Fig. 2.6: Model of a Nested Hash Function 60

Fig. 2.7: Total Time Taken for Hash Code Generation & Verification

and Encryption I Decryption

Fig. 3.1: Hash Code Generation and Verification

Fig. 3.2: A Single Step Operation ofSHA-l

Fig. 3.3: A Single Step Operation ofSHA-256

Fig. 3.4: A Single Step Operation ofRIPEMD-160

Fig. 3.5: A Single Step Operation ofFORK-256

Fig. 3.6: Outline of the Compression Functions of JERIM-320

Fig. 3.7: A Single Step Operation of JERIM-320

Fig. 4.1: Message Authentication Code (MAC)

Fig. 4.2: MACJER-320 Structure

64

69

74

75

77

80

86

87

118

122

List of Tables viii

Table 2.1: Timing Analysis of JEROBOAM and RC4 35

Table 2.2: Statistical Analysis using Autocorrelation Test 40

Table 2.3: Statistical Analysis using Frequency, Serial, Poker and

Runs Tests with 128-bit Key 41

Table 2.4: Statistical Analysis using Frequency, Serial, Poker and

Runs Tests with 256-bit Key 41

Table 2.5: Timing Analysis 42

Table 2.6: Time Taken for Encryption or Decryption of Files of

Various Sizes using MAJE4 50

Table 2.7: Time Taken for Encryption or Decryption of Files of

Various Sizes using RSA (N=187) 51

Table 2.8: Time Taken for Encryption or Decryption of Files of

Various Sizes using RSA (N=3431) 51

Table 2.9: Time Taken for Encryption or Decryption of Files of

Various Sizes using RSA (N=44377) 52

Table 2.10: Time Taken for Encryption or Decryption of Files of

Various Sizes using MARS4 52

Table 2.11: Time Required for Encryption and Decryption using

MAJE4, RSA and MARS4 53

Table 2.12: Memory Requirements for MAJE4, RSA and MARS4 54

Table 2.13: Time Taken for Encryption or Decryption of Files of

Various Sizes using MAJE4 62

Vlll

Table 2.14: Time Taken for Producing the Hash Code of Files of

Various Sizes using Nested Hash Function 62

Table 2.15: Total Time Taken for Producing the Hash Code and

Encryption I Decryption of Files of Various Sizes using

Nested Hash Function and MAJE4 63

Table 3.1 : Basic Notations in JERIM-320 84

Table 3.2: Order Rule of Message Words in Different Branches 88

Table 3.3: Message Order in Different Rounds 89

Table 3.4: Amount of Shifts in each Round for Different Message Blocks 90

Table 3.5: Boolean Functions 90

Table 3.6: Boolean Functions used in each Round 91

Table 3.7: Constants used in each Round 91

Table 3.8: Hash Functions at a Glance 92

Table 3.9: Comparison of JERIM-320 with FORK-256 93

Table 3.10: Comparison between the Number of Operations of

JERIM-320 and FORK-256 99

Table 3.11: Perfonnance Comparison between JERTM-320 and

FORK-256 100

Table 3.12: Comparison between the Number of Operations of

JERIM-320 and RIPEMD-320 101

Table 3.13: Perfonnance Comparison between JERIM-320 and

RIPEMD-320 102

Table 3.14: Comparison between the Number of Operations of

SHA-1, SHA-256, RIPEMD-160 and JERIM-320 103

Table 3.15: Pertonnance Comparison between SHA-l, SHA-256,

RIPEMD-160 and JERIM-320. 103

IX

Table 3.16: Statistical Analysis using Frequency and Serial Tests 106

Table 3.17: Statistical Analysis using Poker and Runs Tests 107

Table 3.18: Statistical Analysis using Autocorrelation Test 107

Table: 3.19: Performance Evaluation ofJERIM-320 as Hash Function

and as PRNG 108

Table 4.1: Variables used in MACJER-320 120

Table 4.2: Comparison between the Number of Operations of

JERIM-320 and MACJER-320 125

Table 4.3: Performance Comparisons between JERIM-320 and

MACJER-320

Table 4.4: Basic Notations in HMAC

Table 4.5: Comparison between the Number of Operations of

MACJER-320 and HMAC

125

127

130

Table 4.6: Perfonnance Comparison between MACJER-320 and HMAC 131

Table 5.1: Timing Analysis & Memory Requirements 140

x

Chapter 1

Introduction

1.1 Increasing Dependency of Modern World on Computers

Earlier computerized systems were used for the purpose of doing

complex calculations and for huge data storage by scientists and engineers

alone. Now the computers have become an inevitable component of modem

human life. For example, in home for playing games and word processing, in

office for spread sheet and data base management, in banks and other financial

institutions for electronic banking, in airlines for air traffic control systems as

well as reservations, in universities and other scientific institutions for the

analysis of scientific and other experimental data like that for weather

forecasting and for modeling & simulation, in process industry for the control

of chemical and other plants, in engineering and electronic industries for the

control of machine tools and robots, and so on. In short, computers have

become inevitable and fonn a tool for controlling the economy as a whole.

The birth of Internet has opened up the gigantic world of information

brining it under the finger-tips of even school children. For doing business, it

offers a powerful and ubiquitous medium of commerce and enables greater

connectivity of disparate groups throughout the world. Simple and cheap

ways of data transfer like e-mails and video conferences have made drastic

changes in day to day life, which could not have been dreamed of a few

decades back. Most of these tremendous opportunities of computer based

systems have resulted in huge savings in time and money and increased

Introduction

comfort level of human living, but these would not have been possible without

networking the computers. The influence of networking is steadily growing

and the number of devices, which connect to the network, increases day by

day.

As the usage of network spreads to more and more areas, it even

involves transfer of critical information including those with serious financial

implications like usage of A TMs for cash withdrawals as well as debit and

credit cards for purchasing goods. Nowadays, every user sends various types

of data and he would therefore like them to be protected while in transit over a

public network. On one hand network provides a quick, easy and cost

effective medium, while on the other hand the risk involved in secure data

transfer is increasing heavily. Recurring events such as attacks of virus and

wonns and the success of criminal attackers illustrate the weakness in the

current network. Some of the major threats in the Internet are loss of privacy,

loss of data integrity and denial of service. Providing security of data in transit

over the Internet has become a difficult and important task because of the

steadily growing data volume and importance.

Organizations spending for protection of critical infonnation assets

continue to increase. In an attempt to secure current systems and networks,

the organizations are resorting to a pool of information security systems.

However, these systems have their inherent risks. Secured Socket Layer (SSL)

[Frier A. et aI., 1996] addresses some of these issues by providing security

services such as confidentiality, data integrity and authentication.

2

Introduction

Development of wireless communication networks led to the birth of a

new era based on low-power and resource constrained systems like embedded

systems, Personal Digital Assistants (PDAs), cellular telephones, smart cards,

etc. A number of enabling technologies are being used in the delivery of

mobile service applications. They include Interactive Voice Response (IVR),

Short Messaging Service (SMS), Wireless Access Protocol (W AP) [W AP

Forum, 1998], etc. The advent oflight, low-power handheld computer devices

such as PalmTM and Handspring, are changing the way in which mobile users

interact with their home office. But the sensitive data transferred between

these devices are subject to the risk of interception by a third party. Today,

software and systems are created with disclaimers telling the public to use

these technologies at their own risk. This is not a desirable state of affair.

But, real-time encryption / decryption of data in handheld computers are

complicated by the limited storage space available in these devices. Hence

new techniques, which consume less memory, are to evolve for rescue of the

system as a whole.

1.2 Security Attacks

The main goal of providing security is to restrict access to information

and resources to just those principals that are authorized to have the access for

that information. Attacks on the security of a computer or network are

generally characterized as interruption, interception, modification and

fabrication [William Stal1ings, 2001). Interruption means an asset of the

system is destroyed or becomes unavailable or unusable. This is an attack on

availability. Examples include destruction of a piece of hardware, such as

hard disk, the cutting of a communication line or the disabling of the file

3

Introduction

management system. Interception means an unauthorized party gains access

to an asset. This is an attack on confidentiality. The unauthorized party could

be a person, a program or a computer. Examples include wiretapping to

capture data in a network and the unauthorized copying of files or programs.

Modification means an unauthorized party not only gains access to but

tampers with, an asset. This is an attack on integrity. Examples include

changing values in a data file, altering a program so that it performs differently

and modifying the content of messages being transmitted in a network.

Fabrication inserts counterfeit objects in to the system by an unauthorized

party. This is an attack on authenticity; examples include the insertion of

spurious messages in a network or the addition of records to a file.

A useful classification of these attacks is described below in tenns of

active and passive attacks [William Stallings, 2001]:

Active attacks: These attacks involve some modification of the data stream or

the creation of a false stream and can be subdivided into four categories:

masquerade, replay, modification of messages, and denial of service.

Masquerading - sending or receiving messages using the identity of another

principal without their authority. Replaying - storing intercepted messages

and sending them at a later date. Modification of messages - intercepting

messages and altering their contents before passing them on to the intended

recipient. Denial of service - flooding a channel or other resource with

messages in order to deny access by others.

Passive attacks: These attacks are in the nature of eavesdropping or monitoring

of transmissions. The goal of the opponent is to obtain infonnation that is

4

Introduction

being transmitted. Two types of passive attacks are 1. release of message

contents and 2. traffic analysis. The release of message content can be easily

understood. A telephone conversation, an electronic mail message, and a

transferred file may contain sensitive or confidential information, the release

of which comes in the first category. Traffic analysis is the extraction of data

during its transfer. It is more difficult since the information is masked. Even if

the information is captured, the opponents cannot easily extract the

information from the message. The common technique for masking contents

is encryption. Passive attacks are very difficult to detect because they do not

involve any alteration of the data. However, it is feasible to prevent the

success of these attacks. The emphasis in dealing with passive attacks is on

prevention rather than detection.

1.3 Threats on Internet

Today, the global threat landscape is arguably more dynamic than ever.

Identity theft is an increasingly prevalent threat and is a major security issue,

particularly for organizations that store and manage information regarding

identity of people. Compromises that result in the loss of personal data could

be quite costly, not only to the people whose identity may be at risk and their

respective financial institutions, but also to the organization responsible for

collecting the data. Data breaches that lead to identity theft could damage an

organization's reputation, and undermine customer and institutional

confidence in the organization. This data can include government-issued

identification numbers, credit cards, bank cards, personal identification

numbers (PINs), user accounts and email address lists.

5

Introduction

The vulnerabilities of current IT systems have become regular fare in

the press. Hardly a day passes without several news items or articles about

some security bug or exploit. Hacker break-ins and compromises of personal

computers running various versions of Microsoft Windows are of no news

value. For example, 7000 PCs in the Stanford University campus [Stanford

University, 2006] were compromised in August, 2003 and again hundreds

more in the subsequent years. Industrial espionage is no new economic threat

[Nowell Security Enforcement, 2003]. According to the Federal Bureau of

Investigation, industrial espionage costs U.S. companies anywhere from $24

billion to $100 billion annually. In another survey by the American Society

for Industrial security, the potential monetary losses as a result of security

lapses cost American industries as much as $63 billion [Ben N. Venzke,

2002]. Corporate Espionage is a reality in this age of the Internet and the

global economy. In an anonymous survey by the Computer Security Institute

(CSI) and the FBI in the US, over 50 percent of infonnation security

professionals cited corporate competitors as likely sources of cyber attack

[Richard Power, 2000]. Economic and industrial espionage occurs around the

world and U.S. companies are prime targets. Enterprise leaders must continue

to decisively address the threats posed by corporate espionage and other

methods of infonnation security breaches.

Yet we continue to transmit purchase orders and other private

messages over unsecured telephone lines via e-mail in ASCII text, which is the

least common denominator for electronic text. We rely on passwords, cards,

personal identification numbers, and keys to access restricted infonnation or

confidential files. But these fonns of identification can be stolen, forged, lost,

6

Introduction

or given away. Moreover, these fonns serve primarily to identify the person.

They cannot verify or authenticate that the person really is who he or she

claims to be. Many systems rely on IP address verification that limits access

to users with a specific domain name or Internet address. Basically, this

procedure identifies an individual by the machine he or she uses. Anybody

using a particular computer can impersonate the rightful owner.

To meet due diligence requirements, corporate infonnation officers in

all sectors must take measures to protect their networks and to create better

security architectures. With no assurance regarding the security qualities or

even the origin of software and systems, system owners have few components

from which to construct sound security architectures. Consequently, we have

entered a period of cyber security uncertainty. It is essential to protect the

communication channels and the interfaces of any system that handles

infonnation that could be the subject of attacks. Secure Socket Layer (SSL)

[AI an O. Freier et aI., 1996] and Wireless Transport Layer Security (WTLS)

[W AP Forum, 2000] are examples amongst various security protocol tools that

have been proposed to address this issue. Security protocols are carefully

designed to guard against loopholes. To this end, a practical SSL protocol has

been adopted for protection of data in transit that encompasses all network

services that use TCP/IP [Braden R., 1989] to support typical application tasks

of communication between servers and clients.

The global e-Security market is estimated to be about $27.7 billion in

2005 and is expected to rise at an average annual growth rate (AAGR) of

16.0%, reaching $58 billion by 2010 [Smart Cards Expo, 2007]. This high

growth rate is attributed to a higher demand for strong security solutions in

7

Introduction

markets. Firewall and content management currently account for a majority

share of the market. Unified threat management solutions are expected to

become dominant. The Indian security market grew from Rs. 11 billion in

2002 to about Rs. 50 billion by 2006 according to IDC India [Smart Cards

Expo, 2007].

1.4 A Short Description on Different Aspects of Security

Services

In this section we discuss the four main issues that must be addressed

while designing security systems. The four main security issues are

confidentiality, authentication, integrity and non-repudiation. Confidentiality

means that only the sender and the intended recipient should be able to access

the contents of the infonnation. Authentication means that the user accessing

the information ensures that the message has come from the intended person

and not from an imposter. That is, the receiver of the data should be able to

determine its true origin. Integrity has to ensure that the received information

is identical to the transmitted information without being modified by others

during transmission. To ensure data integrity, the system must be able to

detect data insertion, deletion and modification. Non-repudiation ensures that

senders and receivers have undeniably transmitted or received information,

respectively. Non-repudiation services prevent an individual from denying that

previous actions had been performed. The goal is to ensure that the recipient

of the data is assured ofthe sender's identity.

Cryptographic algorithms are utilized to en crypt an original plaintext

message in to a cipher text at the sender side and to decrypt the cipher text

8

Introduction

back to the original message at the receIver side. The encryption and

decryption processes generally depend on a secret key being shared between

the sender and the recei v er.

There are three types of cryptographic algorithms: symmetric-key

algorithms, asymmetric-key algorithms, and hashing functions, which are

explained as follows:

Symmetric key algorithms:- In Symmetric key algorithms or private key

algorithms, both the sender and the receiver utilize the same key for both

encryption and decryption. In a two-party communication, both parties must

know the same key before transmission and measures must be taken to keep

the key a secret. The key distribution becomes increasingly more difficult

when the network grows since each pair of users must exchange keys. The

total number of key exchanges required in an n-person network is n(n-l)/2.

Though, symmetric key algorithms provide strong security, they suffer from

this key distribution problem. The widely adopted symmetric key algorithms

by the industry include Data Encryption Standard (DES) [NIST FIPSPUB 46-

3, 1999], Triple DES (3DES) [NIST FIPSPUB 46-3, 1999], RC4 [Kaukonen

K. and Thayer R., 1999] and Advanced Encryption Standard (AES) [NIST

FIPSPUB 197,2001].

Asymmetric key algorithms~- These are based on each party having

their own private key, which is shared with no-one, and a public key that is

known to all other communicating parties. This is also called public key

algorithms. When sending a message to a particular receiver, the receiver's

public key is used to en crypt the message. After receiving the message, it is

9

Introduction

decrypted using the receivers own private key. Compared to symmetric key

algorithms, asymmetric key algorithms eliminate the need to secretly distribute

a key, and therefore solve the key distribution problem. Examples of

asymmetric key algorithms are RSA [RSA Laboratories, 2002], DSA (Digital

signature algorithms) [NIST FIPSPUB 186-3, 2007] and elliptic curve

cryptography [SECG, 2000].

Hashing functions:- Unlike the other two types of cryptographic

algorithms mentioned above, hashing functions do not involve the use of keys.

They take a variable length string as input and convert it to a fixed length

output. Well-known hash functions are MD5 [Rivest R.L., 1992] and SHA-I

[NIST FIPS-180-2, 2002].

1.5 Secure Web Communications

Internet communications that are based on the Transfer Control

Protocol I Internet Protocol (TCP/IP), such as the Hypertext Transfer Protocol

(HTTP), Telnet and File Transfer Protocol (FTP), are not secure because all

communication occurs in plaintext. Confidential or sensitive information that

is transmitted with these protocols can easily be intercepted and read unless

the information is protected by encryption technology.

In addition, because any web client can send HTTP requests to a web

server and exploit weaknesses in the HTTP protocol or its implementation,

web servers that use only standard HTTP to communicate with web clients are

easy targets for denial-of-service attacks and other types of attacks.

10

Introduction

Many applications need to securely transmit data to remote

applications and computers. Secure Socket Layer (SSL) is an Internet security

protocol for point-to-point connections. Clients and servers are able to

authenticate each other and to establish a secure link, or "pipe" across the

Internet or Intranets to protect the Infonnation transmitted. SSL was designed

to solve this problem in an open standard. In SSL, a connection is made,

parties authenticated, and data securely exchanged. The latest enhancement of

SSL is called Transport Layer Security (TLS) (Michael Chernick C. et aI.,

2005]. In applications using SSL, the confidentiality ofinfonnation is ensured

using strong encryption technologies. SSL provides the transparent

authentication of servers and clients. It uses the RSA algorithm to enable

security using digital signatures [NIST FIPSPUB186-3, 2007] and digital

enveloping. For very fast encryption and decryption of data for transmission

after an SSL connection has been established, the RC4 algorithm has been the

preferred algorithm. Other algorithms are available in the SSL specification as

well. Based on the strong cryptography in SSL, users have confidence that

their infonnation is confidential, authentic and original during transfer over a

network connection.

Few other network security mechanisms are firewaIls, biometrics,

antivirus software, steganography, passwords, network intrusion-detection

systems, VPN systems, etc.

1.6 Layout of the Thesis

Chapter 1 points out the increasing dependency on computer systems

and networks and consequently the growing need for network security. The

1 1

Introduction

threats faced by the internet and the security services required to avoid or

reduce the threats are also discussed.

Chapter 2 takes up the study on varlOUS pseudo random number

generators / stream ciphers. The design of a new stream cipher MAJE4 and

development of two new applications are also included.

Chapter 3 describes the study of five popular hash functions. A new

hash function JERIM-320 is introduced for providing data integrity. It is

suggested as an alternative for the present day hash functions. The new hash

function's performance evaluation has been done.

Chapter 4 illustrates the development of a new message authentication

code MACJER-320 and compares its perfonnance with the current candidate.

Chapter 5 explores the use of newly developed algorithms MAJE4 and

MACJER-320 in Secure Socket Layer / Transport Layer Security Protocol.

Chapter 6 concludes by summarizing the results in the work and the

possible developments in future.

The performance evaluation of different algorithms detailed in this

work has been done using Pentium IV Processor, Linux Operating System and

C compiler.

12

PRNGs & Stream Ciphers

Chapter 2

Studies on PRNGs & Stream Ciphers and
Design & Development of a Novel Stream Cipher

& its Applications

Abstract:

Section 2.1 of this chapter introduces Pseudo Random Number

Generators (PRNGs) and stream ciphers, bringing out their growing

importance in various applications. The study, implementation, statistical

analysis and performance evaluation of various PRNGs and stream ciphers

have been carried out. Extensive sofffi'are implementation as well as

statistical experimentation was conducted and a stream cipher JEROBOAM

was identified upon which further studies could be conducted for bringing

improvements.

The aim of Section 2.2 is to design a stream cipher which generates a

long unpredictable key stream .vith better peJ:formance and which can be used

for cryptographic applications. Upon this view, a new fast stream cipher

MAJE4 was designed with a variable key size of 128-bit or 256-bit. The

randomness property of the stream cipher was analysed by using the empirical

tests. The performance evaluation of the MAJE4 was done in comparison with

JEROBOAM.

Section 2.3 focuses on developing an enhanced hybrid system by

combining the ffi'o cryptographic methods "vith a view to getting the

13

PRNCs & Stream Ciphers

advantages of both. A novel and fast hybrid technique MARS4 was developed

using MAJE4 and the popular asymmetric key algorithm RSA. The

performance evaluation of MARS4 was done in comparison with MAJE4 and

RSA.

Further work aims at providing integrity and confidentiality of

messages in a sw(ft and cost effective manner and is described in Section 2.4.

A nested hash function with lower computational and storage demands was

developed with a view to providing integrity in addition to the confidentiality

available with MAJE4.

14

PRNGs & Stream Ciphers

2.1 Introduction to Pseudo Random Number Generators and

Stream Ciphers

Random numbers have been in use traditionally for games, computer

simulations, test generation for the performance evaluation of computer

algorithms, Monte Carlo techniques [Halton J.H., 1970] in numerical analysis,

statistical sampling, stochastic optimization methods, etc. Today, security

issues are coming to the forefront because of the increasingly demanding

security requirements in many new applications on the internet such as e-mail,

e-commerce, e-governance, etc. Hence PRNGs are used by and large in the

development of privacy software for generating public / private key pairs,

creating digital signatures [NIST FIPSPUB 186-2, 2000] and message

authentication codes, developing stream ciphers and in many other uses of

encryption for various network security applications.

The computers used today are completely deterministic in operation,

and therefore lack convenient sources of randomness. As a result, developers

of security software rely on software-based PRNGs. Now it is hard to imagine

a well-designed cryptographic application that does not use PRNGs; they have

gained an obligatory role, which relies on randomness to generate keys,

creating padding bytes, and deriving other security-critical parameters like

passwords.

Stream ciphers are an important class of symmetric encryption

algorithms. Their basic design feature is the same as that for a One-Time-Pad

cipher [Frank Rubin, 1997], which encrypts the plain text by XORing with a

15

PRNGs & Stream Ciphers

random key produced by PRNGs. The stream ciphers require only a short

random key, which is expanded into a pseudo-random key stream, that is then

XORed with the plain text to generate the cipher text. Again the same key

stream is used to decrypt by XORing with the cipher text to form the plain

text. Thus the stream ciphers used in cryptographic algorithms rely on these

PRNGs for producing cipher texts.

Stream ciphers are usually used in applications where large amounts of

data are employed, or extremely high throughput is needed, or low complexity

hardware is a requirement. Most cutting-edge applications with these

requirements are in multimedia applications, for example music and video and

mobile phones .

•
With almost all security protocols relying on sources of randomness,

possible flaws in random number generator have become a common security

problem. But creating good random numbers is a hard problem, so hard that

there isn't a library we can just use. Hence in-depth exploration of this area by

the research community and enhancement of capabilities of PRNGs is a need

of the hour.

2.1.1 Design Criteria of Pseudo Random Number Generators

Random number generators have a central place in cryptographic

designs owing to their property of picking numbers unpredictably and using

these numbers to choose cryptographic keys [Seigenthaler T., 1985], [William

Aiello et al., 1995], [Boyar J., 1989]. In order to understand the strength of a

cryptographic algorithm, which is the ability to resist attacks [Bruce Schneier,

1996] the matter of predictability is extremely important.

16

PRNGs & Stream Ciphers

PRNGs used for cryptographic purposes are required to have:

1. maximum period to accommodate the long length of the

transmitted message.

2. capability to speed up the process.

3. complexity for analysis, since analysis could penetrate the

cryptographic system.

4. competence to produce a good distribution of values.

The aim is to produce a highly random sequence so that the

cryptanalytic attacks are not feasible.

Here some of the popular PRNGs and stream ciphers are considered,

with a view to analyzing them, evaluating their perfonnance and to select an

appropriate one for further development.

2.1.2 Studies on Popular PRNGS and Stream Ciphers

The PRNGs and stream ciphers considered for study, implementation

and statistical analysis in this work are:

1. Shift Register Based Generators

1.1 Linear Shift Register [Bruce Schneier, 1996]

Linear Feedback Shift Register (LFSR)

1.2 Nonlinear Shift Register [Wei Zeng D. et ai., 1991]

Geffe Generator

2. Arithmetic and Algebraic Operations Based Generators

2.1 Linear Congruential Generators (LCGs) [Knuth D.E., 1997]

2.2 X2 mod N [Blum M. et ai., 1986]

17

PRNGs & Stream Ciphers

3. A Fast Stream Cipher 'JEROBOAM' [Herve Chabanne and Emmanuel

Michon, 1998]

4. RC4 Stream Cipher

2.1.2.1 Shift Register Based Generators

2.1.2.1.1 Linear Shift Register

The simplest kind of feedback shift register is the Linear Feedback

Shift Register (LFSR). It is made up of two parts: a shift register and a

feedback function. The shift register is a sequence of bits. The length of a

shift register is figured in bits, if it is n bits long, it is called an n-bit shift

register. Each time a bit is needed all of the bits in the shift register are shifted

one bit to the right. The new left-most bit is computed as a function of the

other bits in the register. That is when we simply XOR certain bits in the

register, the list of these bits is called a tap sequence. The period of a shift

register is the length of the output sequence before it starts repeating [Bruce

Schneier, 1996]. LFSRs are easily implemented in digital hardware.

An n-bit LFSR can be in one of the 211_1 internal states. This means

that it can, in theory, generate 211_1 bits long pseudo random sequence before

repeating. Here 211_1 bits are generated since a shift register filled with zeros

can cause the LFSR to output a never-ending stream of zeros. For a particular

LFSR to be a maximal period LFSR, the polynomial formed from a tap

sequence must be a primitive polynomial. A polynomial over a unique

factorization domain is called primitive if its coefficients are relatively prime.

Any field is a unique factorization domain, in which each nonzero element is a

unit and there are no primes. The integers fonn a unique factorization domain

18

PRNGs & Stream Ciphers

in which the units are +1 and -1, and the primes are ±2, ±3, ±5, ±7, ±11, etc.

In general there is no easy way to generate primitive polynomials for a given

degree. Easiest way is to choose a random polynomial and test whether it is

primitive. For example consider the polynomial x 13 + x5 + x3 + X + 1. The first

number says 13 is the length of the LFSR. Take the bits at positions 13,5,3

and 1, and do XOR operation in these bits to produce a resultant bit and store

that bit in the Most Significant Bit (MSB) of LFSR after shifting all the bits in

the shift register once to the right.

2.1.2.1.2 Nonlinear Shift Register

Since LFSR sequences can be predicted from a small subset of their

subsequences, it has been proposed to use a non-linear feedback mechanism to

produce a pseudo-random sequence [Bruce Schneier,1996]. The resulting

sequence will be more difficult to analyze.

In non linear shift register, LFSRs of different lengths and different

feedback polynomials are considered. If the lengths are all relatively prime

and the feedback polynomials are all primitive, the whole generator is of

maximal length. Key for each LFSR is given as its initial state. Every time a

bit is needed, the LFSRs are shifted once to the right. The output bit is a

nonlinear function of different bits of LFSRs. This function is called a

combining function. The combining function used in the Geffe generator is

given below as an example.

Geffe generator uses three LFSRs combined in a nonlinear manner

[Wei Zeng D. et al., 1991]. Two of the LFSRs are inputs into a multiplexer,

and the third LFSR controls the output of the multiplexer. If LFSRJ, LFSR2

19

PRNGs & Stream Ciphers

and LFSR3 are the outputs of the three LFSRs, then the output of the Geffe

Generator (result) is found using the nonlinear function given by the equation

From the 'result' of this equation any number of bits can be taken to

fonn the random sequence. The procedure can be repeated to produce more

random numbers so that the length of the random sequence produced can be

increased as desired.

The period of the generator is the least common multiple of the periods

of the three generators. Assuming the degrees of the three primitive feedback

polynomials are relatively prime, the period of this generator is the product of

the periods of the three LFSRs.

2.1.2.2 Arithmetic and Algebraic Operations Based Generators

Two types of these generators have been considered, they are Linear

Congruential Generator and X2 mod N.

2.1.2.2.1 Linear Congruential Generators (LCG)

LeG is one of the oldest type of random number generators [Knuth

D.E, 1969]. This is still the most common type because of its simple iterative

fonnula Xn = aXn.1 + b mod m, which is relatively fast and easy to compute.

The values Xo (Seed or key) and m (modulus) are fixed by the designer. Here

'a' and 'b' are constants: 'a' is the multiplier and 'b' is the increment.

20

PRNGs & Stream Ciphers

The simple fonnula means that the LeG is relatively easy to program,

but selecting appropriate parameter values for Xo and m are not easy. The

current level of analysis seems insufficient to predict the parameters for best

randomness and hence the design of a statically acceptable LeG involves

much trial and error and expensive randomness testing. This generator has a

period no longer than m. If Xo and m are properly chosen, then the generator

will be a maximal period generator. Here m is a prime number.

Advantages of LeGs are that they are fast and requiring very few

operations per bit. But unfortunately LeG cannot be used in cryptography

since they are predictable. They remain useful for non-cryptographic

applications like simulations. They are generally efficient and show good

statistical behavior with respect to most of the reasonable empirical tests.

2.1.2.2.2 X2 mod N

The next generator based on arithmetic and algebraic operations is 'X2

mod N' developed by Blum, Blum and Shub [Blum M. et al., 1986]. This

PRNG seems unique in that it is claimed to be 'polynomial time unpredictable'

and 'cryptographically secure'. PRNG consists of the iterative equation X[i+ll

= X[i1
2 mod N where N is the product of two large distinct primes [Ritter T.,

1991).

Vazirani and Vazirani shows that 1082(N) Isb's of X[i+ll can be safely

used [Vazirani U and Vazirani V, 1985]. Select N as the product of two large

distinct primes P and Q. Prime P is special if P = 2P 1 + 1 and PI = 2P2 + 1,

where PI and P2 are odd primes [Ritter T., 1991].

21

PRNGs & Stream Ciphers

Because the X2 mod N generator generally defines multiple cycles with

various numbers of states, the initial value X[O] must be specifically selected to

make sure that it is not on a short cycle.

For cryptographic work, both X and N will be very large quantities,

hence the multiplication and division required for each PRNG step would be

slow. To form N, some sort of probabilistic primality test [The prime pages,

2006] on very large random numbers is applied. The X2 mod N PRNG is

claimed to be 'unpredictable' (when properly designed), but even then there is

no guarantee of secrecy because it could not resist all the attacks.

2.1.2.3 JEROBOAM

The new fast stream cipher JEROBOAM was proposed by Chabanne

and Michon [Herve Chabanne and Emmanuel Michon, 1998]. It works with a

key of 128 or 248 bits. JEROBOAM produces a pseudo random stream which

can be used as a symmetric cipher to XOR a clear text of any length. The

heart of JEROBOAM consists of eight 32-bit mwc (multiply with carry)

registers, a FIFO queue of two 16-bit data and a particular 16-bit datum. One

can choose between a 248-bit key and a 128-bit key. In 248-bit key, the key is

given by eight 32-bit words. The 32nd bit in each word must be zero and none

of these words can be zero. In 128-bit key, key is given by eight 16-bit words.

The algorithm remains the same for both the 248-bit key and 128-bit key.

2.1.2.4 RC4

RC4 is a variable key size stream cipher developed in 1987 by Ron

Rivest for RSA Data Security, Inc. The RC4 stream cipher has two phases,

22

PRNGs & Stream Ciphers

the key set-up and the key stream generation. Both phases must be perfonned

for every new key. The algorithm is based on the use of a random

pennutation. A variable length key K, of size 1 to 256 bytes is used to

initialize a 256-byte state vector S, with elements So, SI, , S25S.

Initially the entries of S are set with the values 0 to 255 in ascending

order. A temporary vector T, is also created. For a key oflength keylen bytes,

the first keylen elements of T, are copied from K, and then K is repeated as

many times as necessary to fill out T. Then, T is used to produce the initial

pennutation of S. The pseudo-code for the key set-up is as:

for i = 0 to 255

Si = i

Ti = K[i mod keylen]

end for

k=O

for i = 0 to 255

k = (k + Si + Ti) mod 256

Swap(Sj, Sk).

end for

Once S is initialized, the input key is no longer used. The next phase is

key stream generation which is described by the pseudo-code as:

i = 0

k=O

while (true)

i = (i + 1) mod 256

k = (k + Si) mod 256

23

Swap(Sj, Sk)

t = (Si + Sd mod 256

key = St.

end loop

PRNGs & Stream Ciphers

For encryption, the value 'key' is XORed with the next byte of

plaintext. For decrypt ion, the value 'key' is XORed with the next byte of

cipher text.

2.1.3 Empirical Randomness Tests

Every random sequence should be tested carefully before putting into
•

extensive use. Empirical tests [Knuth D.E., 1997] are used for this purpose.

In these tests one manipulates the groups of numbers of the sequence resulting

in certain statistics. Then these statistics are applied to statistical tests like

Chi-square test [Menezes A. et aI., 1997], which is the best known of all the

statistical tests to accept hypothesis whether the generated random sequence

has the similar distribution of a purely random sequence or not. Studies are

carried out using the following five tests, because these tests are widely used

for detennining whether the binary sequences possess the characteristics that a

truly random sequence would exhibit.

1. Frequency Test (mono bit test)

2. Serial Test (two bit test)

3. Poker Test

4. Runs Test

5. Autocorrelation Test

24

PRNGs & Stream Ciphers

2.1.3.1 Frequency Test (mono bit test)

In this test, we detennine the number of zeros and ones in the

generated random sequence. Let no and nl denote the number of zeros and

ones respectively.

The statistic used is

where n is total number of bits in the sequence. The Xl approximately

follows the ·l distribution with one degree of freedom.

2.1.3.2 Serial Test (two bit test)

In this test, we detennine whether the number of occurrences of 00, 01,

10 and 11 as subsequences of random sequence S. Let no and 111 be same as

frequency test. Let nOD, nOl, nlO and nil denote the number of occurrences of

00,01,10, and 11 respectively in S.

Then nOD + nOI + nlO + nil n-l

The statistic used is

4 (2 2 2 2) 2(2 2) X 2 = -- nOG + nO] + nlO + nIl - - no + n] + 1
n -1 n

which approximately follows the ·l distribution with two degrees of

freedom, if n ~21.

25

PRNGs & Stream Ciphers

2.1.3.3 Poker Test

In this test the generated random sequence S is divided into k = nlm

non-overlapping parts each of length rn, where m be a positive integer such

that LnlmJ ?: 5*(2111
). Let nj be the number of occurrences of the ith type of

sequence of length m, where 1 :s i :s 21n. The Poker test determines the

sequences of length m, each appear approximately the same number of times

in S.

The statistic used is

which approximately follows the X2 distribution with 21l\ -1 degrees of

freedom. Ifrn = 1, the Poker test yields the Frequency test.

2.1.3.4 Runs Test

In this test, we determine whether the number of runs of various

lengths in the sequence S is as expected in the random sequence. The

expected number of gaps (or blocks) of length i in a random sequence of

length n is ej = (n - i + 3) / i+2
. Let k be equal to the largest integer i for

which ei ?: 5. Let Bi and Gi be the number of blocks and gaps respectively of

length i, in S, for each i, 1 ::;; i ::;; k.

26

PRJvTGs & Stream Ciphers

The statistic used is

which approximately follows the i distribution with 2k-2 degree of

freedom.

2.1.3.5 Autocorrelation Test

In this test the correlations between the sequence S and its (non-cyclic)

shifted version are checked. Let d be a fixed integer, where 1 ~ d ~ nl2 -1.

The number of bits in S not equal to their d-shifts is,

A(d) "Il-d-l
= ~i=O Si + Si+d

where + is XOR operation. The statistic used is,

X; = 2 A(d:- -2
[

n-d]
"n-d

which approximately foHows normal distribution, N(O,l), if n - d ~ 10.

27

PRNGs & Stream Ciphers

2.1.4 Implementation of PRNGs

2.1.4.1 Shift Register Based Generators

2.1.4.1.1 LFSR

LFSR was implemented to generate any number of random numbers to

produce the random sequence of any length. Also the required bits were taken

from each random number to fonn the random sequence.

2.1.4.1.2 Geffe Generator

The implementation of Geffe generator contains three LFSRs of

different lengths with different feedback polynomials. These three LFSRs are

combined in a non-linear manner. If LFSR), LFSR2 and LFSR3 are the

outputs of the three LFSRs, then the output of the Geffe Generator (result) is

found out using the nonlinear function as given in the equation

From the 'result' of this equation, any number of bits can be taken to

form the random sequence. The procedure can be repeated to produce more

random numbers so that the length of the random sequence produced can be

increased as desired.

28

PRNGs & Stream Ciphers

2.1.4.2 Arithmetic and Algebraic Operations Based Generators

2.1.4.2.1 LeGs

The following functions generate pseudo-random numbers using the

LCGs. They are drand480, erand480, lrand48(), nrand48 0 , mrand480 and

jrand480. These are available with the C libraries and are used for LCG

testing. The user can give the number of random numbers and the number of

bits required per random number as inputs to produce the random sequence.

Analysis was done using 1000 different such streams produced from LCG

with different initial seed for each random stream. All the LCGs considered

were tested using the empirical tests listed in section 2.1.3.

2 2.1.4.2.2 X mod N

The seed value X was chosen to be :S 10000. The value N was chosen

as 65745881, which is the product of two large primes P and Q. The values

for P and Q are 8209 and 8009 respectively. Bits were taken from X2 mod N

to generate the random sequence.

2.1.4.3 JEROBOAM

After performing the JEROBOAM algorithm the value obtained in the

variable cmb (6th step in the algorithm) will be a 16 bit random number. This

number was used to XOR with plain text. The algorithm was repeated for

many random numbers to form the random sequence. Up to 16 bits were

taken from each random number.

29

PRNGs & Stream Ciphers

2.1.4.4 RC4

RC4 was implemented using the pseudo code given in section 2.1.2.4

to generate any number of random numbers and producing the random

sequence of any length. Up to 8 bits were taken from each random number.

The value 'key' shown in the pseudo code was used to XOR with the plaintext

to form the cipher text.

2.1.5 Results

The summary of all the results obtained is presented in this section.

The Frequency, Serial, Poker and Runs tests were analyzed using the Chi­

square table, while Autocorrelation test was analyzed using Normal table.

2.1.5.1 Shift Register Based Generators

2.1.5.1.1 LFSR

All the five randomness tests were conducted for LFSR. The tests

were found accepting or rejecting depending upon the factors like whether the

polynomial used to specify the tap sequence was primitive or not. For the

same polynomial, when different seeds were given, different results were

obtained. For the same polynomial, same number of random numbers and

same seed, if the number of bits taken from each random number is different

then also different results were obtained. Analysis was done till 10000

random numbers were produced from a LFSR.

30

PRNGs & Stream Ciphers

2.1.5.1.2 Geffe Generator

Three different LFSRs were used here. The polynomials can be of

different lengths, tap sequences and seed values. Here also the randomness

tests were found accepting or rejecting depending upon the factors explained

for LFSR. These factors are applicable for all the three LFSRs. Analysis was

done till 10000 random numbers were produced from Geffe. Results were

found to be the same as LFSR for all the five randomness tests.

2.1.5.2 Arithmetic and Algebraic Operations Based Generators

The following generators were analyzed using 1000 different random

streams having different initial seeds.

2.1.5.2.1 r.cc-

erand480 and drand480

Both erand480 and drand480 were showing the randomness property

for 15 least significant bits for frequency and serial tests. As the number of

random numbers produced was becoming more the randomness property was

found decreasing. For about 1000 random numbers the randomness property

was not showing considerable variation, but beyond 1000 it was found

decreasing.

In poker test, both erand480 and drand480 were showing the

randomness property for the 15 least significant bits. The test was found

accepting even when the number of random numbers was increased (tested till

10000).

31

P RNGs & Stream Ciphers

erand480 passed runs test for some specific range of bits and specific

number of random numbers. i.e. 4 to 16 bits for 100 random numbers, 8 to 16

bits for 500 random numbers, 10 to 15 bits for 2000 random numbers and 13

to 15 bits for 10000 random numbers. drand480 did not pass this test.

Both erand480 and drand480 failed in autocorrelation test.

lrand480, mrand480, nrand480 and jrand480

lrand480, mrand480, nrand480 and jrand480 were showing the

randomness property for 18 least significant bits for frequency test and 16 least

significant bits for serial test. Even when more random numbers were

produced, the randomness property was found exhibiting (tested till 10000

random numbers).

In poker test, lrand480, mrand480, nrand480 and jrand480 were

showing the randomness property for the 16 least significant bits. Here also

the generators passed the tests when the number of random numbers had been

increased till 10000.

Runs test was passed by nrand480 only, for some specific range of bits

and specific number of random numbers. i.e. 4 to 16 bits for 100 random

numbers, 8 to 16 bits for 500 random numbers, 10 to 16 bits for 2000 random

numbers and 13 to 16 bits for 10000 random numbers. lrand480, mrand480

and jrand480 did not pass the runs test.

Irand480, mrand480, nrand480 and jrand480 failed in autocorrelation

test.

32

2 2.1.5.2.2 X mod N

PRNGs & Stream Ciphers

For N = 65745881 and X ~ 10000, randomness property was

exhibiting for 26 least significant bits of the random number for both

frequency and serial tests. It was also seen that as the number of random

numbers was increased the randomness property was decreasing and the

generator passed for 175 random numbers only. Here the results were

confirming to what Vazirani proved [U.Vazirani and V.Vazirani, 1985], as per

which lo~ (N) least significant bits will show randomness property, that is

lo~ (65745881) is 25.97.

In poker test, X2 mod N was showing the randomness property for the

26 least significant bits. Analysis has shown that as the number of random

numbers was increased the randomness property was getting reduced. Here it

passed for 120 random numbers only.

In runs test, the result of analysis was same as in the Poker test. X2

mod N failed in autocorrelation test.

2.1.5.3 JEROBOAM

All the five randomness tests were carried out in JEROBOAM. If the

key value given as input to the program is not correct, then it will simply exit

without doing any of the steps in the algorithm. But if the key is acceptable

according to the key setup described, JEROBOAM is producing random

numbers. The 16-bit number produced from the 6th step of the algorithm was

tested with the above tests and it passed for all of them. Hence the basic

33

PRNGs & Stream Ciphers

features of this algorithm can be explored further for developments in this

area.

2.1.5.4 RC4

All the five randomness tests were carried out in RC4. The value 'key'

produced using the pseudo code as shown in section 2.1.2.4 was tested with

the above tests and it passed for all of them.

In addition to these, the time required to generate random sequences

of different lengths were also found out for JEROBOAM and RC4, since they

have passed all the randomness tests.

2.1.6 Performance Evaluation

The summary of the performance evaluation is presented here. The

time required for producing different random bit sequences of same length in

JEROBOAM and RC4 were compared. The results are shown in Table 2.1

On comparing the memory required for executable tiles of the two

generators, JEROBOAM was found occupying lesser space compared to RC4.

The size required for optimized code for JEROBOAM was 6341 bytes, while

for RC4, it was 8077 bytes.

34

PRNGs & Stream Ciphers

Table 2.1: Timing Analysis of JEROBOAM and RC4

Number of Number of
random bits from Total

Time
PRNGs numbers each number of

(Sec.)
in each random bits

run number

200000 16 3200000 0.07

400000 16 6400000 0.14

JEROBOAM 600000 16 9600000 0.21

800000 16 12800000 0.28

1000000 16 16000000 0.37

400000 8 3200000 0.01

800000 8 6400000 0.02

RC4 1200000 8 9600000 0.03

1600000 8 12800000 0.04

2000000 8 16000000 0.05

2.2 Design and Development of Novel Stream Cipher: MAJE4

2.2.1 Motivation for Design of a New Stream Cipher

Unlike the other type of symmetric cryptographic algorithms called

block ciphers, stream ciphers encrypt / decrypt each bit independently. Stream

ciphers are much faster than block ciphers and they have greater software

efficiency. Due to these features, stream ciphers have been the choice for

several communication standards like IEEE 802.11 b [Sultan Weatherspoon,

35

PRNGs & Stream Ciphers

2000] and Bluetooth [Specification of the Bluetooth system, 2001]. Hence it

is required to have more studies and developments in this area.

A new stream cipher, which efficiently generates pseudo-random bits

that are identical to truly random bits, fonns the goal here. The stream cipher

has been named as MAJE4. It works as shown in Fig. 2.1

T
MAJE4 MAJE4

1 1
~CD -CD ~ I Plain text I I Cipher text I I Plain text I

Fig. 2.1 Working of the Stream Cipher: MAJE4

2.2.2 Design Considerations of the Stream Cipher, MAJE4

1. MAJE4 design should work efficiently on 32-bit processors.

2. It should pass all the empirical tests described in section 2.1.3.

3. The encryption sequence should have a large period. A pseudo random

number generator uses a function that produces a detenninistic stream of

bits that eventually repeats itself. The longer the key, the longer it takes

for a brute force attack [Richard Clayton, 2001] and more difficult to do

the cryptanalysis.

36

PRNGs & Stream Ciphers

4. It should have a flexible security choice with key sizes of 128 or 256

bits.

5. The key stream should approximate the properties of a true random

stream as possible.

6. It must be suitable for hardware or software and using only primitive

computational operations commonly found on microprocessors.

7. It has to be simple and fast. The algorithm must be easy to implement.

The task of detennining the strength of the algorithm also has to be

simple.

8. It should have low memory requirement to make it suitable for devices

with restricted memory.

9. It should use mixed operators. The use of more than one arithmetic and I

or Boolean operator complicates cryptanalysis. Primitive operators like

+ and /\ may be used since these operators do not commute resulting in a

difficult cryptanalysis.

2.2.3 Description of MAJE4

The mathematical operators used are

1. Addition: Addition of words, denoted by +

2. Bitwise exclusive OR: This operation is denoted by 1\.

37

PRNGs & Stream Ciphers

3. Right shift operation: The right shift of word x right by y bits is denoted by

x»y.

All the design considerations mentioned in section 2.2.2 were taken care

while designing MAJE4 stream cipher. Here the randomness property has

been tested with the primary empirical tests described in section 2.1.3. Since

MAJE4 uses only primitive computational operators like +, I", » etc, it is

suitable for hardware and software implementations. The algorithm MAJE4 is

easy to implement and fast also. The nonlinearity is obtained by alternative

usage of + and" operators, which complicates cryptanalysis.

Key setup: One can choose between a 128-bit key and 256-bit key, which are

stored as follows:

128-bit key: The four 32-bit words, ie. key[o], keY[I], keY[2] and keY[3] are

considered for storing the key.

256-bit key: The key is stored in eight 32-bit words key[o], keYIJJ, keY[2J, keY[3],

keY[41, key[sJ, keY(6) and keY[7]·

Algorithm 2.1: MAJE4

Step 1: Assign the key length kl either as 128-bit or 256-bit.

Step 2: ifkl = 128 then

kIn = 2, div = 4

else

kIn = 3, div = 8

38

PRNGs & Stream Ciphers

Step 3: if kl = 128 then consider two Isb's of key[o] and find its decimal
equivalent and store in the variable 'in'.

else

if kl = 256 then consider three Isb's of Key[o] and find its decimal
equivalent and store in the variable 'in'.

Step 4: ran = key[o] /\ keY[ill]

Step 5: if kl = 128 then consider two Isb's of ran and find its decimal
equivalent and store in the variable 'in1 '.

Step 6: if kl = 256 then consider three Isb's of ran and find its decimal
equi valent and store in the variable 'in I'.

Step 7: check the 16th bit in ran,

if it is 1 then

newran = (keY[inl] + keY[inl+lmod div]) /\ (keY[inl+2 mod div] + keYrinl+3
moddiv])

else

newran = (keY[inl]/\ keY[inl+lmoo div]) + (keY[inl+2 mod divJ /\ keY[inl+3
mod divj)

Step 8: The output 32-bit word is newran, which can be used to XOR with
the corresponding word in the plain text.

Step 9: Advance all the keys as

keYri] = keY[iJ * keYliJ + keY[iJ »20

Step 1 0: go to step3

39

PRNGs & Stream Ciphers

2.2.4 Randomness Tests

The analysis of MAJE4 is done using the empirical tests explained in

section 2.1.3, as these tests can be effectively used for detennining whether the

binary sequences possess the specific characteristics that a truly random

sequence need to have. The results of analysis are explained in section 2.2.5.

2.2.5 Results

Here the Frequency, Serial, Poker and Runs tests are analysed using

the Chi-square table and Autocorrelation test is analysed using Nonnal table,

as specified for each randomness tests. The fast stream cipher MAJE4

successfully passed all the five empirical tests for every run. Tables 2.2, 2.3

and 2.4 show the results of the speci fied tests.

Table 2.2: Statistical Analysis using Autocorrelation Test

Number of
Total number

Statistical Analysis

random
of bits 12S-bit key 256-bit key

numbers
produced Autocorrelation Autocorrelation

generated test test

300 9600 2.0855 1.5007

500 16000 2.2158 1.8581

800 25600 2.0762 2.3439

1000 32000 2.4944 1.6045

2000 64000 1.6368 1.4902

40

PRNGs & Stream Ciphers

Table 2.3: Statistical Analysis using Frequency, Serial, Poker and Runs
Tests with 128-bit Key

Number
Total no.

Statistical Analysis

of random of bits 12S-bit key
numbers

produced Frequency
generated Serial test Poker test Runs test test

500 16000 1.3690 3.6252 294.27 24.00

1000 32000 1.5961 3.5682 566.25 28.43

1500 48000 1.4083 3.4354 538.08 19.97

4000 128000 0.0632 1.2458 2099.7 29.93

6000 192000 0.2475 1.8224 2022.3 30.12

8000 256000 0.4100 2.9614 4101.1 32.33

10000 320000 0.0903 3.7286 4159.0 30.25

Table 2.4: Statistical Analysis using Frequency, Serial, Poker and Runs
Tests with 256-bit Key

Number of
Statistical Analysis

random Total no. 256-bit key
of bits numbers

produced Frequency generated Serial test Poker test Runs test
test

500 16000 0.3610 4.2347 269.69 12.79

1000 32000 0.8820 5.5466 501.05 15.86

1500 48000 0.3100 5.9851 481.64 18.87

4000 128000 0.0031 1.6390 2044.4 27.17

6000 192000 0.0316 2.3485 2011.3 27.32

8000 256000 0.0082 2.3659 4109.3 21.40

10000 320000 0.0630 1.6504 4116.4 16.16

41

PRNGs & Stream Ciphers

2.2.6 Performance Evaluation

The summary of perfonnance evaluation of MAJE4 was carried out by

comparing with JEROBOAM stream cipher and is presented in Table 2.5

2.2.6.1 Timing Analysis

From the timing analysis it can be noted that when JEROBOAM

128-bit and MAJE4 128-bi t are compared, MAJE4 128-bi t is almost 9 times

faster as shown in Fig.2.2.

Table 2.5: Timing Analysis

No. of random
No. of random

Total no. of
PRNGs Key length numbers

bits per each
bits produced

random
generated

number
(Mbps)

JEROBOAM 128-bit 26,80,000 16 40.89

MAJE4 128-bit 1,15,39,399 32 352.15

MAJE4
Variable

58,34,000 32 178.03
128-bit

MAJE4
Variable

43,99,999 32 134.27
256-bit

42

PRNGs & Stream Ciphers

0
6:; '" 'It , ;t:

'" ... N W D a:: < D w~ -, -;::- (0 wO ... ", :2 ..!.. 15 <"'" ,CIl W N ~ 2:,.N
:t~ :; ~
:;' > -

Fig. 2.2: Comparison of Number of Random bits Produced per Second

2.2.6.2 Memory Requirements

On comparing the memory required for executable files of

JEROBOAM 12B-bit and MAJE4 12B-bit, MAJE4 was found consuming

lesser space compared to JEROBOAM. The memory size for JEROBOAM,

MAJE4 128-bit and MAJE4 128 I 256 bits are 634 1 bytes, 5435 bytes and

5678 bytes respectively.

43

PRNCs & Stream Ciphers

2.3 Development of a Hybrid System MARS4 using MAJE4

2.3.1 Need for a Hybrid System

Symmetric key cryptographic algorithms, which use the same key for

encryption and decryption, are faster and efficient, but they have a

disadvantage in key exchange [Kencheng Zeng et aI., 1991], [Mustak E.

Yalcin et aI., 2004] and scalability. Key exchange is a tenn, which refers to

the means of delivering a key to both the parties who wish to exchange data

without allowing others to see the key. In symmetric key algorithm, the same

key has to be shared between both the parties, which need a secure key

transfer. In asymmetric key algorithm, the public key is known to all and the

need for private key transfer doesn't arise. The scalability problem can be

explained by considering the case of n persons communicating to each other.

The number of key pairs required in symmetric key algorithm is n*(n-l)12

[AtuI Kahate, 2005], whereas in asymmetric key algorithm it is n key pairs.

For example if 1,000 people want to securely communicate with each other,

only 1,000 public keys and the corresponding private keys are required in

asymmetric key algorithm. This is in severe contrast to the symmetric key

operation where 1,000 participants need 499,500 key pairs, thus leading to a

scalability problem. Asymmetric key cryptographic algorithms not only solve

the major problem of key exchange and scalability but also achieve the

purpose of non-repudiation [Fujisaki E. and Okamoto T, 1999a], [Williams

H.C., 1980], [Bellare M. and Rogaway P, 1995]. The dawn of asymmetric key

cryptography does not indicate the end of symmetric key cryptography. In

practice, the symmetric key and asymmetric key systems are not In

competition. Most cryptographic schemes on which e-commerce operations

44

PRNGs & Stream Ciphers

rely use a hybrid of these systems. Here the asymmetric key system is used

for the distribution of a secret key, which can be a long-term key or specific to

a particular communication session. Then the securely distributed secret key

is used to encrypt and decrypt messages in a communication channel between

two users. The performance of secret key cryptography over that of

asymmetric key, and the appeal of key distribution inherent to asymmetric key

cryptography, are the main reasons for the wide adoption of these hybrid

systems [Fujisaki E. and Okamoto T, 1999b].

As shown in Fig. 2.3 the plain text is encrypted with the fast symmetric

encryption algorithm MAJE4 and symmetric key Kt to form the cipher text

and then the symmetric key K1 of MAJE4 is encrypted with public key K2 of

asymmetric algorithm RSA [Park Stephen K. and Keith W. Miller, 1988].

Then the cipher text and encrypted symmetric key Kl are sent together by the

sender to the receiver. In the receiver side, first RSA algorithm is run with its

private key K3 to recover the symmetric key K 1. Then by using K 1 and

MAJE4 the entire cipher text is converted into plain text.

45

PRNGs & Stream Ciphers

PLAIN TEXT

CRIPTOGRAPHIC
SYSTEM
(MARS 4)

CIPHER TEXT +
ENCRYPTED,

SYMMETRlC KEY i
KII

'i(

ASYMMETRIC
ALGORlTHM

(RSA)

CYPHER TEXT +
SYMMETRlC KEY

Kt

v
SYMMETRIC
ALGORITHM

(MAJE4)

PLAIN TEXT

SYMMETRlC

ENCRYPTION KEY KI

SYMMETRIC KEY Kt

__ J~~-,-R.rP.I.EI?_
KEY KI

-<_~RI'v'I\TE_
KEY K3

ASYMMETRlC
ALGORITHM

(RSA)

PUBLIC KEY

K1

Fig. 2.3 A Novel Hybrid Cryptographic System: MARS4

2.3.2 Objectives for MARS4

The following objectives are considered while combining the two

cryptographic algorithms with a view to obtaining the merits of both the

systems.

46

PRNGs & Stream Ciphers

1. The method should be completely secure.

2. The encryption / decryption process should not take longer time.

3. The generated cipher text should be compact in size.

4. The solution should scale to a large number of users easily, without

introducing any additional complications.

5. The key exchange problem should be solved by the new method.

2.3.3 Description of MARS4

All the above-mentioned objectives were considered while proposing

MARS4. The main features of MAJE4 are explained in section 2.2.2. The

following are the main features of RSA and MARS4.

RSA

Main features

I. RSA is computationally easy for a party B to generate the key pair (Public

key KSb, Pri vate key KRb).

2. It is computationally easy for a sender A, knowing the public key KSb and

the message to be encrypted M, to generate the cipher text C = EKSb(M).

3. It is computation ally easy for the receiver B, to decrypt the resulting cipher

text using the private key to recover the original message M = DKRb(C) =

DKRb[EKSb(M)]

4. It is computationally infeasible for an opponent, knowing the public key

KS b alone to determine the private key KRb •

47

PRNGs & Stream Ciphers

5. It is also computationally infeasible for an opponent, knowing the public

key KSb and a cipher text C, to recover the original message M.

6. The encryption and decryption functions can be applied in either order. M

= DKRb[EKSb(M)] = DKSb[EKRb(M)]

Algorithm 2.2: RSA

Step I: Choose two large prime numbers P and Q.

Step 2: Calculate N = P*Q.

Step 3: Select the public key (encryption key) E such that it is not a
factor of(P-l) and (Q-l).

Step 4: Select the private key (decryption key) D such that the
following equation is true:

(D*E) mod (P-I) * (Q-I) = 1

Step 5: Encrypt the plain text PT to form the cipher text CT as
follows

CT = PTEmod N

Step 6: Send CT as the cipher text to the receiver.

Step 7: Decrypt the cipher text CT to form the plain text PT as
follows

PT=CTDmodN

The crux of RSA is that factoring N to find P and Q is not at all easy

but it is quite complex and time consuming.

48

PRNGs & Stream Ciphers

MARS4

MAJE4 and RSA can be combined to have MARS4 as a very efficient

security solution. Assume that A is the sender of a message and B is the

receiver. MARS4 works as follows.

Algorithm 2.3: MARS4

Step I: A encrypts the original plain text message (PT) with the help of
MAJE4 and the symmetric key (Kl) and forms the cipher text (eT).

Step 2: Encrypt K 1 with the public key (K2) of B using RSA.

Step 3: Attach the encrypted Kt to the eT and send it to B.

Step 4: B now uses the RSA algorithm and its private key (K3) to decrypt Kl.

Step 5: Then Buses Kl and the MAJE4 algorithm to decrypt the eT for
yielding the original plain text (PT).

As specified in the objectives of MARS4 in section 2.3.2, the

symmetric key algorithm MAJE4 is faster and it can produce 352 Mbps. Also

the generated cipher text is of the same size as the plain text. Instead, if we

had used the asymmetric key encryption as in RSA, then the operation would

have been quite slow, especially if the plain text was of larger size. Also the

cipher text produced is of larger size than the size of the plain text. Now since

the encryption of only 128-bit private key is done, RSA encryption process

would not take too long and the encrypted key will not consume more space

also. This feature of RSA is used for solving the major problem of key

exchange. MARS4 is thus having the advantages of both MAJE4 and RSA.

49

PRNGs & Stream Ciphers

2.3.4. Results

Tables 2.6 to 2.10 show the results of MAJE4, RSA and MARS4 run

with plain text of different sizes. The memory sizes of the plain text to be

encrypted as well as the cipher text, the time taken for encryption and

decryption are shown in these tables.

Table 2.6: Time Taken for Encryption or Decryption of Files of
Various Sizes using MAJE4

File size of File size of Time taken (Sec.)
plain text cipher text

(bytes) (bytes) Encryption Decryption Total

30144 30144 0.01 0.01 0.02

60003 60003 0.02 0.02 0.04

90070 90070 0.03 0.03 0.06

120014 120014 0.04 0.04 0.08

150060 150060 0.05 0.05 0.10

50

PRNGs & Stream Ciphers

Table 2.7: Time Taken for Encryption or Decryption of Files of
Various Sizes using RSA (N=187)

File size of File size of Time taken (Sec.)
plain text cipher text

(bytes) (bytes) Encryption Decryption Total

30144 101336 0.03 0.04 0.07

60003 201672 0.06 0.09 0.15

90070 302665 0.09 0.14 0.23

120014 403183 0.12 0.19 0.31

150060 504041 0.15 0.24 0.39

Table 2.8: Time Taken for Encryption or Decryption of Files of
Various Sizes using RSA (N=3431)

File size of File size of Time taken (Sec.)

plain text cipher text
(bytes) (bytes) Encryption Decryption Total

30144 140080 0.05 0.07 0.12

60003 278891 0.10 0.14 0.24

90070 418769 0.15 0.22 0.37

120014 557735 0.20 0.29 0.49

150060 697224 0.25 0.36 0.61

51

PRNGs & Stream Ciphers

Table 2.9: Time Taken for Encryption or Decryption of Files of
Various Sizes using RSA (N=44377)

File size of File size of Time taken (Sec.)

plain text cipher text
Encryption Decryption Total (bytes) (bytes)

30144 166888 0.03 0.09 0.12

60003 332224 0.06 0.18 0.24

90070 498816 0.09 0.27 0.36

120014 664584 0.12 0.36 0.48

150060 830967 0.15 0.46 0.61

Table 2.10: Time Taken for Encryption or Decryption of Files of
Various Sizes using MARS4

File size of File size of Time taken (Sec.)
plain text cipher text +

Encryption Decryption Total (bytes) key (bytes)

30144 30262 0.01 0.01 0.02

60003 60121 0.02 0.02 0.04

90070 90188 0.03 0.03 0.06

120014 120132 0.04 0.04 0.08

150060 150178 0.05 0.05 0.10

52

PRNGs & Stream Ciphers

2.3.5 Performance Evaluation

The perfonnance evaluation was done by comparing the time taken and

the memory required for encryption and decryption using MAJE4, RSA and

MARS4 algorithms.

2.3.5.1 Timing Analysis

As shown in Table 2.11, the time consumed for the MAJE4 symmetric

algorithm and the MARS4 hybrid algorithm can be seen as the same. Hence

the advantage of symmetric algorithm, which is the speed of encryption and

decryption, is preserved in the hybrid system also. Whereas RSA 8-bit

algorithm is consuming 0.07 seconds, RSA 12-bit and 16-bit are taking 0.12

seconds each. RSA 12-bit and RSA 16-bit are taking the same time since the

data is processed byte by byte. There is a difference of 0.05 seconds between

RSA 8-bit and RSA 16-bit. On considering this difference and estimating the

time required for RSA 128-bit, the time required is obtained as 0.82 seconds.

Thus MARS4 is found to be 41 times faster than RSA.

Table 2.11: Time Required for Encryption and Decryption using
MAJE4, RSA, and MARS4.

File size of
Time taken

Algorithm Key length plain text
(sec.)

(bytes)

MAJE4 l28-bit 30144 0.02

RSA 8-bit 30144 0.07

RSA 12-bit 30144 0.12

RSA 16-bit 30144 0.12

MARS4 128-bit 30144 0.02

53

PRNGs & Stream Ciphers

2.3.5.2 Memory Requirements

When the memory requirements for the cipher text of MAJE4 and

MARS4 are compared as shown in Table 2.12, both are found consuming

almost the same amount of memory. In RSA 8-bit the memory requirement is

almost 4 times greater than that of MARS4 and in RSA 12-bit, it is 5 times

greater. Also RSA 16-bit is 6 times greater in size than MARS4. Hence for

each additional 4-bit key in RSA, the memory size can be found increasing by

about the memory size of the given plain text as shown in Fig. 2.4. Thus if

RSA 128-bit key is used, the memory size will be about 34 times greater than

that ofMARS4.

Table 2.12: Memory Requirements for MAJE4, RSA and MARS4

Algorithm Key length
File size of File size of
plain text cipher text

MAJE4 128-bit 30144 30144

RSA 8-bit 30144 101336

RSA 12-bit 30144 140080

RSA 16-bit 30144 166888

MARS4 I 28-bit 30144 30262

54

PRNGs & Stream Ciphers

~ 150000 ~ -» e
~ 100000 .~

'" ~
~ 50000
~ ::.

0
Sbil 12bit 16bit 128bil I 28bil

RSA RSA RSA MAJE4 MARS4

Phin and Cipher Texts ofdiffi:rent Algorithm;

Fig. 2.4: A Comparison of Memory Sizes for MAJE4, RSA and MARS4

2,4 Message Integrity Enhancement of Nested Hash Functions

using MAJE4

2.4.1 Introduction

MAJ E4 has been proven to be an effecti ve algorithm for providing

confidentiality, in the previous sections. The integrity of a message is another

concern before the network securi ty service. As a different application of

MAJE4 in providing message integrity using nested hash functions, encryption

of the hash code with MAJE4 has been considered.

55

PRNGs & Stream Ciphers

Hash function is a function of all the bits of the message. It accepts a

variable size message as input and produces a fixed size output as the hash

code. A change in any bit or bits in the message results in a change in the hash

code [Mihir Bellare et aI., 1996b] thus providing an indication of message

tampering. As shown in Fig. 2.5, sender A uses the nested hash function to

compute the hash code H(M) of the message M and appends it to the message

M. Using the 128-bit key K and MAJE4 the message and the hash code are

encrypted as Ek[M 11 H(M)] and sent to the receiver B. Using the same key K

and MAJE4 the cipher text is decrypted back to produce the message and the

hash code. Now B re-computes the hash code of the received message using

the same nested hash function. Thus B validates the integrity of the message

by comparing the hash code received from A with that generated by B. Ifboth

hash codes are same then the transmission has happened securely.

56

NESTED HASH
fUNCTION

128-BITKEY

128-BITKEY

MESSAGE
(M)

ENCRYPT USING
MAJE4

CIPHER TEXT
EJM II H(M)]

DECRYPT USING
MAJE4

COMPARE

PRNGs & Stream Ciphers

-<
~
U..l
Cl
;z:
U..l
r/)

ca
~
U..l
>
W
u
U..l
~

Fig. 2.5: Use of Combined Hash Code and Encryption

57

PRNGs & Stream Ciphers

2.4.2 Nested Hash Functions

The Merkle-Damgaard model is a good one for the design of hash

functions [Ivan Damgard, 1990], [Ralph C. Merkle, 1990]. This model

simplifies the management of large inputs and the production of a fixed length

output using a function F. The message is viewed as a collection of m-bit

blocks. M= M[I] M[n] with M[i] = m bits for i=1,2 n. Assume the

length IMI of M as a multiple of m bits, which can be achieved by a suitable

padding. Enough nUl~ber of zeros is added to bring the length of message to

multiple of m bits. The blocks are then processed sequentially using the

function F. The result of the hash function till then and the current message

block are taken as the inputs. This operation is repeated over the entire

message blocks to find the hash code of the message M. Algorithm 2.4 is used

to compute the hash code.

Algorithm 2.4: Nested Hash Function

Step I: The message is viewed as a collection of 64-bit blocks. M= M[1],
M[2], M[n] with M[i];;: 64-bit, for i = I, 2, n.

Step 2: Check whether the length IMI is a multiple of 64 bits and whether n
is an even number. If not, suitably append enough zeros to bring
the length to a multiple of 64 bits and to make n even.

Step 3: Apply the first function FI which is the add operation to the
consecutive blocks. (MB[l] = M[I] + M[2], MB[2] = M[3] + M[4]
and so on till MB[n/2] = MB[n-l] + MB(n].)

Step 4: Apply the second function F2 which is an XOR operation, to the

58

Step 5:

PRNGs & Stream Ciphers

random initial value and to MB(I] and form the initial hash code.
Then F2 is applied again to the initial hash code and to MB(2] to
form the next hash code and so on. Finally apply F2 on the result of
the hash code obtained so far and to MB(n/2] to form the final hash
code H(M) of 64-bit length.

Now H (M) is added with M as the hash code.

Fig. 2.6 represents the algorithm 2.4. The random initial value used in

step 4 provides protection to the hashing process to compute the hash code of

the initial message block. The recipient can verify that the message is

unaltered by using the same random initial value, which was used to compute

the hash code of the message. If these hash codes match, then the message is

believed to have arrived unchanged from the sender. Thus the initial random

value prevents attackers from making undetectable changes to the message.

Message of any length can be considered as the input while the output hash

code is of fixed 64-bit length. The initial value used as K in the equation,

H(M) = F2K(F 1 (M)) is random and hence the attackers will not be able to

predict the initial value easily. The functions Fl and F2 are ADD and XOR

operations (Mihir BeIlare et aI., 1995] which are easy to implement both in

hardware and software. At the same time the nested usage of operators + and

11 complicates cryptanalysis. The security of the hash code mainly depends on

the cryptographic properties of the hash function H. Here the non-linearity is

obtained when functions FI and F2 are nested. This provides added security.

59

PRNGs & Stream Ciphers

Message
Block 1

Message
Block 2

Message
Block 3

Message
Block 4

T , ,
I
I

Message
Block n-1
Message
Block n

Fig. 2.6: Model of a Nested Hash Function

It is also observed that the length of a hash code in bits is directly related to the

number of trials that an attacker has to perform before a message is accepted.

For a hash code value of bit length m, the attacker has to perform on average

2m
-
1 random hash code verifications.

2.4.3 Use of Hash Code and MAJE4

The following are the steps performed for obtaining the confidentiality and

integrity using MAJE4 and nested hash function.

60

PRNGs & Stream Ciphers

1. Sender encrypts the message M as well as the hash code H(M) using 128-

bit key K and the fast stream cipher algorithm MAJE4, then sends it to the

receIver.

2. Receiver decrypts the message as well as the hash code using the same

128-bit key K and MAJE4 algorithm.

3. Receiver re-computes the hash code H(M) over the message M and checks

whether it matches with the received hash code.

4. If it matches with the hash code, then the message can be considered to

have reached securely. Otherwise it can be understood that some

distortion has happened.

2.4.4 Results

Tables 2.13 to 2.15 show the results of time requirements for MAJE4

and nested hash code when run with plain texts of different sizes. The

memory sizes of the plain text to be encrypted, the cipher text, the time taken

for encryption and decryption and the time taken for producing the hash code

are given.

61

PRNGs & Stream Ciphers

Table 2.13: Time Taken for Encryption or Decryption of Files of
Various Sizes using MAJE4

File size of File size of Time taken (Sec.)
plain text cipher text

(bytes) (bytes) Encryption Decryption

135094 135094 0.05 0.05

270728 270728 0.10 0.10

541608 541608 0.20 0.20

812440 812440 0.30 0.30

1082953 1082953 0.40 0.40

Table 2.14: Time Taken for Producing the Hash Code of Files of Various
Sizes using Nested Hash Function

File size of plain text Time taken for producing
(bytes) the hash code (Sec.)

135094 0.01

270728 0.02

541608 0.04

812440 0.06

1082953 0.08

62

PRNGs & Stream Ciphers

Table 2.15: Total Time Taken for Producing the Hash Code and
EncryptionJDecryption of Files of Various Sizes using Nested Hash Function

and MAJE4.

Total time taken for
Total time taken for

File size of plain producing and
encryption and

text (bytes) recomputing
decryption (Sec.)

hash code (Sec.)

135094 0.02 0.10

270728 0.04 0.20

541608 0.08 0.40

812440 0.12 0.60

1082953 0.16 0.80

In Table 2.15 it can be seen that only 1/5th of additional time is

required for producing the hash code along with encryption and decryption.

More over if the message size is reasonably small or up to about 135 kilobytes

then the time taken for producing the hash code is negligible. For large

messages the additional time requirement is very less as shown in Fig. 2.7.

The memory size required for executable code for nested hash code is 5899

bytes and for MAJE4 it is 5435 bytes. Hence a total of less than 12 Kilobytes

memory IS enough for providing both integrity and confidentiality of

messages.

63

PRNGs & StreaM Ciphers

1 .2

1

~
!!l- 0.8
z
w

" 0.6
;!:
w

0.4 :0
>=

0.2

0
135094 270728 541608 812440 1082953

PLAIN TEXT MEMORY SIZE (By.es)

I_ ENCRYPTlON I DECRYPTlON _ HASH FUNCTION 1

Fig. 2.7: Total Time Taken for Hash Code Generation & Verification and
Encryption I Decryption

Z.S Conclusions

Popular PRNGs and Stream Ciphers were taken up for studies based on

statistical analysis using five randomness tests. Results of analysis and further

perfonnance evaluation studies showed that JEROBOAM and RC4 are

dependable as they passed all the five randomness tests. LFSR and Geffe

passed or failed the tests depending upon the input polynomial, initial seed,

number of bits taken from each random number etc. as mentioned in 2.1.5.1.

LeG and X2 mod N failed for autocorre1ation test. Among these,

JEROBOAM is not reported to have undergone attacks, whereas RC4, LFSR,

Getfc, LeG and X2 mod N generators have undergone attacks. Hence it was

64

PRNGs & Stream Ciphers

concluded to make use of the intrinsic qualities of JEROBOAM as basic

guidelines for future development.

A new stream Cipher MAJ E4 was designed on this basis. The focus

was on the security aspects in addition to easy implementation in hardware and

software. Analysis and performance evaluation revealed that MAJE4 is a

reliable generator much faster than JEROBOAM. All the five empirical tests

were passed by this generator for all the random streams produced. It can be

effectively used for applications that require encryption I decryption of a

stream of data sent through the Internet. The lesser memory requirement

makes it suitable for devices with limited memory.

Exploration of different applications for MA1E4 gave birth to MARS4,

a hybrid cryptographic system. Performance evaluation studies proved

MARS4 to be much faster than the popular RSA. The memory requirement

for MARS4 is also less than RSA. MARS4 also provides a solution to the key

exchange problem seen among symmetric key algorithms. Thus the

advantages of both symmetric and asymmetric cryptographic algorithms are

preserved in MARS4. It was proven to be a very sound technique for

transferring messages where confidentiality is of importance to the users.

Integrity of message is an additional property that can be achieved

along with confidentiality. With a very small increase in time, this could be

achieved by using nested hash functions. The time required for messages with

a memory of upto 135 Kbytes is found negligible. Also the additional memory

size needed for implementing the hash function is only 5899 bytes. Nested

hash functions with MAJE4 can be used for applications that require message

65

PRNGs & Stream Ciphers

integrity and encryption I decryption of stream of data sent through the

Internet.

When advanced cryptographic systems with lesser memory and good

speed are made available, they become easier to implement and manage and

more internet users can take advantage of their benefits.

66

Hash Functions

Chapter 3

Studies on Hash Functions and Design &
Development ofa Novel Hash Function

JERIM-320

Abstract:

Providing integrity of messages is one of the main desirable

network security services as mentioned in Section 1.4. Use of MAJE4

along with nested hash function was considered in the previous Section as

an application of providing integrity in addition to confidentiality. But

message integrity is a stand alone service which needs to be ensured for

different applications in the network. Hence to enhance security services,

studies on existing hash functions have been carried out and a new hash

function JERIM-320 with better security has been proposed in this chapter.

Performance evaluation has been carried out by comparing with 5 popular

hash functions by using practical implementation and also by using step

computation methods. This work suggests lERIM-320 as an alternative for

the present day hashfimctions. The randomness property of JERlM-320 is

analysed by means olthe statistical experiments. This is done to ensure the

integrity of messages as well as to generate a long unpredictable key

stream with better performance using JERlM-320 and hence to expose it

for applications requiring pseudo-random number generations also.

67

Hash Functions

3.1 Study of Hash Functions

In recent years, due to the prospenng use of internet applications,

ensuring confidentiality, integrity and authenticity of infonnation is becoming

an increasingly important issue. At present, most of the current planetary data

archives are stored online in rewritable media. As such, the data are

vulnerable to accidental changes and deletions as well as intentional changes

by virus, trojans and the like. Viruses typically modify the host files that they

infect, and hence one way of virus detection involves checking files for signs

of unauthorized modification [Raphabel C et aI., 2006]. When two persons are

communicating over an insecure channel, they need a method by which the

original infonnation sent by the sender can be accepted by the receiver without

an uncertainty on possible alteration or leakage; this is called ensuring the

integrity of message. When a person 'A' sends a message to another person

'B', the hash code computed using the hash function is appended to the

message. After receiving the message, 'B' re-computes the hash code using

the same hash function and compares with the received hash code. lfboth are

the same, then 'B' can confinn that the message has started off from the

intended sender and it has not been tampered with, during the transmission;

this is shown in Fig. 3.1.

68

Hash Functions

HASH
FUNCTION

MESSAGE

MESSAGE

r---~ HASH CODE

COMPARE

Fig. 3.1: Hash Code Generation and Verification

Hash functions are important components in many cryptographic

applications and security protocol suites. The most important uses are in the

protection of information authentication and as a tool for digital signature

schemes. The succeeding paragraphs present the observations of an overall

review of cryptographic hash functions.

1. Desirable properties [William Stallings, 2003] for hash functions:

a. Hash functions can be applied to messages of any length, x.

b. They produce an output of fixed length.

c. For any given x, it is easy to compute H(x) making both the hardware

and software implementation easy.

d. For any given value h, it is computationally infeasible to find x such

that H(x) = h. (Preimage resistance) [Erhan K, 2007]

69

Hash Functions

e. For any given block x, it is computationally infeasible to find y :j:. x

with Hey) = H(x). (Second preimage resistance) [Erhan K, 2007]

f It is computationally infeasible to find any pair (x, y) such that H(x)

= H(y). (Collision resistance). [Erhan K, 2007]

2. Most popular hash functions are designed using Merkle-Damgaard

model [Ivan Damgard, 1989J, [Ralph C. Merkle, 1989]. This model

simplifies the management of large inputs and produces a fixed length

output using a function HF. The message is viewed as a collection of

m-bit blocks:

M = M[I] ... M[n] with M[il = m bits for i = 1, 2, , n.

The hash function H can be described as follows:

HFo = IV; HFi = f(HFi_I' M[il), where 1 :s i :Sn;

HeM) =HFn.

Here f is the compression function of H, HFi is the chaining variable

between stage i-I and stage i, and IV denotes the initial chaining value. This

iterative construction in the model provides a moderate goal of extending the

domain of collision resistant functions. Many hash functions such as MD4

[Rivest R.L., 1990J, MD5 [Rivest R.L., 1992] and SHA-family [NIST FIPS-

180-2, 2002] are based on this concept.

3.2 Review of Popular Hash Functions

In this section, the hash functions SHA-I, SHA-256, RIPEMD-160,

RIPEMD-320 and FORK-256, their similarities and differences are briefly

described.

70

Hash Functions

3.2.1 Similarities

The general skeleton of these hash functions shows their similarities

and consists of the following steps:

1. Initialization: A few constant values are defined in this step. These

constants include initial chaining values (IV s), order of accessing message

words, additive constants and the number of bits for rotation in each step.

2. Preprocessing: The message to be hashed has to be of length divisible by

512. Otherwise padding bits are used to append the message, with a single

bit of value' l' followed by the required number of O's. This makes the

message length equal to 64 bits less than a multiple of 512-bit blocks, each

of which consists of sixteen 32-bit words.

3. Processing: This is the heart of the algorithm, where each 512-bit block is

processed in one step. Each step consists of the following sub steps

a. Initialize working variables with the current values of the chaining

variables.

b. Update the working variables using some computation in rounds. Each

round has almost the same computation in all its steps.

c. Update the chaining variables

4. Completion: The final hash value is composed to form the hash code by

updating the chaining variables.

71

Hash Functions

3.2.2 SHA-l

The SHA senes of algorithms which stand for 'Secure Hash

Algorithm' were developed by NIST [NIST FIPS-180-2, 2002]. SHA

algorithms are based upon the MD4 and MD5 [Rivest R.L., 1992] algorithms

developed by Ron Rivest. SHA was released by the National Security

Authority as a US Government Standard in 1993. SHA-O is commonly known

as SHA, it was the first materialization of the secure hashing algorithm. This

first version was withdrawn soon after release due to weaknesses in the design.

SHA-l released a couple of years later fixed these problems. It was released

in 1995, and is similar to MD4 and MD5 hashing algorithms. It is considered

as MD5's successor and is slightly more secure than MD4 & MD5. SHA-l is

also slower than MD5 and produces a 160-bit hash. The SHA-1 algorithm is

featured in a large number of security protocols and applications. Both SHA

and SHA-I produce a hash value of 160 bits.

In hash functions, the given message is divided into 512-bit blocks

and again each block is divided into sixteen 32-bit sub blocks. The

sixteen 32-bit words M j , where 0 ::; i ::; 15, are then linearly expanded into

eighty 32-bit words W j as

forO~ i ~ 15,

for 16 ~ i ~ 79.

The state update transformation operates on five 32-bit registers,

which are initialized with the current value of the chaining variable. It

72

Hash Functions

consists of 80 steps, divided into 4 rounds of 20 steps each. A single step

of the state update transformation is shown in Fig. 3.2. In each step the

function f is applied to the state variables Bi , Ci , and Dj. The function f

depends on the step numbers: 0 to 19 (round 1) use Ji and steps 40 to 59

(round 3) use./2. 13 is applied in the remaining steps (round 2 and 4). The

functions are defined as:

Ji (B ,CD) = CB 1\ C) V (-,B 1\ D)

12 (B ,C,D) = CB 1\ C) V CB A D) V (C 1\ D)

13 (B ,CD) = B $ C $ D,

where A denotes the logical AND operation, V denotes the logical

OR operation, $ corresponds to addition modulo 2, and -,B is the bitwise

complement of B. The state update transformation also uses step

constants K j •

73

Hash Functions

Fig. 3.2: A Single Step Operation of SHA-l

3.2.3 SHA-256

SHA-256 is a part of the SHA-2 family of products having the

capability for larger output strings. SHA-256 [NIST FIPS-180-2, 2002]

operates on chaining variables of 256 bits. The message expansion takes as

input a vector m with 16 words Mj and outputs 64 32-bit words Wj, generated

according to the following fonnula:

for 0$ i $15,

for 16 $ i $ 63.

The functions ()o (x) and ()\ (x) are defined as follows:

74

0"0 (X) = ROTR7 (x) EEl ROTR I8
(X) EEl SHR3(x)

0"1 (x) = ROTR I7 (x) EEl ROTR 19
(X) EEl SHRlO(x)

Hash Functions

where ROTRa denotes cyclic rotation by 'a' positions to the right, and

SHRa denotes a logical shift by 'a' positions to the right.

o :

,,, ... j._ ... -
.I t" \

',,- -.

\ ,,.... -+-----'1

.. ' ...

Fig. 3.3: A Single Step Operation of SHA-256

The compression function consists of 64 identical steps. One step IS

shown in Fig. 3.3. The step transformation employs the bitwise Boolean

functionsfl1AJ and fIF and two linear functions La (x) and LI (x) given by:

75

fMA.J (A ,B, C) = (A 11 B) EEl (A 11 C) EEl (B 11 C)

fIF (E,F,G) (E 11 F) EEl (--,E 11 G)

Lo(x) = ROTR2(X)ffi ROTR 13 (x) $ ROTR 22 (x)

Lt (x) = ROTR 6 (x) ffi ROTR ll (x) ffi ROTR 25 (x).

Hash Functions

The i-th step uses a fixed constant K j and the i-th word W j of the

expanded message.

3.2.4 RIPEMD-160

RIPEMD-160 (RACE Integrity Primitives Evaluation Message Digest)

is a 160-bit hash function developed in Europe by Hans Dobbertin, Antoon

Bosselaers and Bart Preneel, and published in 1996 [Dobbertin H. et aI.,

1996]. It produces a 160-bit hash value. Like its predecessor RIPEMD, it

consists of two parallel streams. While RIPEMD consists of two same

parallel streams of MD4, the two streams are designed differently in the case

ofRIPEMD-160. The message expansion ofRIPEMD-160 is a permutation of the

16 message words in each round, where different permutations are used in each

round of the left and the right stream. In each stream, 5 rounds of 16 steps each are

used to update the five 32-bit registers. Fig. 3.4 shows one step transformation.

The step transformation employs five bitwise Boolean functions.f!, .. ,/5 in each

stream:

fi(B,CD) = B EB C EB D

/i(B,C,D) = (B" C) V (--,B" D)

.h(B, CD) = (B V --, C) EB D

76

Hash Functions

j4(B.C.D) = (B A D) V (C A -'D)

J5(B,C,D) = B (f) (C V --D)

Where EB denotes the bitwise XOR operation, A denotes the logical

AND operation, V denotes the logical OR operation and -, denotes the

bitwise complement operation. The order of the Boolean function is

different in each stream. A constant Ki is added in every step; the constant is

different for each round and for each stream. Different rotation values'S' are

used in each step and in both streams. After the last step, the initial value and

the values of the right and the left streams are combined, resulting in the

output of one iteration.

Fig. 3.4: A Single Step Operation of RIPEMD-160

77

Hash Functions

3.2.5 RIPEMD-320

RIPEMD-320 [Dobbertin H. et aI., 1996] is an iterative hash

function that operates on 32-bit words. This round function takes a 10-

word chaining variable and a 16-word message block as inputs and maps

them into a new chaining variable. All operations are defined on 32-bit

words. This is an extension of RIPEMD-160, and is intended for

applications that require a longer hash result without having the need for

a larger security level than RIPEMD-160. In short, RIPEMD-320 is a

double width string vari ant of the popular RIPEMD-160.

3.2.6 FORK-256

The design of the FORK-256 hash function is proposed by Hong

et al. in [Hong D. et aI., 2006] _ It follows the iteration principle proposed

by Merkle [Ralph C. Merkle, 1989] and Damgard [Ivan Damgard, 1989],

and its compression function hashes a 512-bit message block M at each

iteration and uses a 256-bit chaining variable CV n- The name of FORK-

256 comes from the fact that the internal state is modified

simultaneously in four parallel streams, and the four corresponding

outputs hI , . _ . ,h4 are recombined as h' = (h 1 + h2) EEl (h3 + h4) and

produces the output CV n+l = h' + eVIl of the compression function. To

process the 512-bit message M with the chaining variable eVn, M is first

divided into sixteen 32-bit words Mo, M I, ___ ,MI5 - The processing

applied in each of the four streams is the same and consists of eight

iterations of a step transformation on an internal state. The internal state

consists of eight 32-bit words denoted by A, B , C , D, E , F , G and H,

78

Hash Functions

and the step transformation involves several parameters such as varying

constants Uj,r and Pj,n and two 32-bit words M j and Mj from M. These

words M j and M j are chosen depending on the stream number and the

round number according to the rules of message ordering. Basically, a

pennutation aj is applied in stream j to select the sub-blocks Mcrj(2i) and

Mcrj(2i+l) at round i. The step transformation itself is pictured in Fig. 3.5.

The two non-linear functions f and g used in each step are defined as

follows:

f (x) = x + (x«<7 EB x«<22), g(x) = x EEl (x«< 13 + x«<27)

Here 'EB' denotes bitwise XOR, '+' denotes integer addition, and

w«<k denotes the word w cyclically rotated by k bit positions to the

left.

In Fig.3.5, Aj,r , ... , Hj,r, words of the internal registers of stream j

are shown, after step r. The words Aa , ... , HD , denote the common initial

state of the registers. There are eight rounds in each of the four streams.

79

Hash Functions

Fig. 3.5: A Single Step Operation ofFORK-256

3.2.7 Differences

The main differences between the five hash functions SHA-l,

SHA-256, RIPEMD-160, RIPEMD-320 and FORK-256 are summarized as

follows:

1. Sixteen 32-bit message words are used as 80 words in SHA-l and 64

words in SHA-256. In each compression step, one word is then referred in

80

Hash Functions

a serial fashion. But RIPEMD-160, RIPEMD-320 and FORK-256 use

only 16 words and in different accessing orders.

2. For each 512-bit block, SHA-l has 4 rounds of 20 steps each, SHA-256

has 4 rounds of 16 steps each, and RIPEMD-160 and RIPEMD-320 have 5

rounds each of 16 steps and FORK-256 has single round with 8 steps.

3. Working variables in the five hash functions are not updated in the same

way in compression steps.

4. RIPEMD-160 and RIPEMD-320 use two parallel processing streams while

FORK-256 uses four parallel processing streams for each 512-bit message

block. Only one processing stream each is used by the other two.

5. After processing each 512-bit message block, SHA-1, SHA-256,

RIPEMD-320 and FORK-256 update the chaining variables in the same

way, whereas RIPEMD-160 uses a different way to update them.

6. The final hash values of SHA-l and RIPEMD-160 are 160-bit long; for

SHA-256 and FORK-256 the values are 256-bit long; whereas for

RIPEMD-320, it is 320-bit long.

3.3 Design of a Novel Hash Function: JERIM-320

3.3.1 Motivation and Design Factors

The successful use of cryptographic algorithms for detection of file

tampering lies in the fact that any small change in the source file should result

in a significant change in the hash code. MD5, SHA-l and RIPEMD

81

Hash Functions

algorithms are popularly used for generating hash codes. But these algorithms

have been broken at various levels [Biham E. et aL, 2005], [Chabaud F. and

Joux A., 1998], [Dobbertin H., 1996], [Biham E. and Chen R., 2004].

Collisions in the hash code have proved that a file may be modified without a

corresponding change in the hash code. Generally a function which has a

good diffusion property [Coskun B. and Memon N., 2006] cannot be so light,

but most step functions have been developed to be light for efficiency. This is

why MD4 type hash functions including SHA-1 are vulnerable to Wang et.

al,'s collision finding attacks [Xiaoyun Wang and Hongbo Yu, 2005]. If a

longer hash function such as RIPEMD-320 or SHA-512 [NIST FIPS-180-2,

2004] is used, the collisions are less likely and the benefits of greater security

supersede the computational compromise of the longer hash function.

The SHA-2 [Phi lip Hawkes, et al., 2004] hash functions are quite

resistant against those attack techniques which have been used to attack MD4,

MD5 and SHA-1. The SHA-2 functions are possible short term alternatives to

SHA-1. No attacks against SHA-2 functions have been noticed.

An alternative to this is RIPEMD-family [Dobbertin H., 1996], which

has a different design approach for providing secure hash code. The attacker

who tries to break members of RIPEMD family should try simultaneously at

two ways where the message difference passes. This design strategy is still

considered successful in so far as no effective attack on RIPEMD family has

been reported except the first proposal of RIPEMD. The RIPEMD family has

heavier hash functions compared to MD4 family. For example, the first

proposal of RIPEMD consists of two lines of MD4. The number of steps in

82

Hash Functions

RIPEMD-160 is almost same as that in SHA-O. No specific attack against

RIPEMD-160 or RIPEMD-320 has been reported.

As a result of a large number of attacks on hash functions such as

MD5 and SHA-l of the so called MD4 family, there is an increasing need for

developing alternate designs based on new principles for future hash functions.

Several attacks on hash functions are focused on alleviating the difference of

intermediate values which are caused by the difference in the message. In this

context, a hash function can be considered secure, if it is computationally hard

to alleviate such difference in its compression function.

Based on these considerations a new hash algorithm JERIM-320 has

been designed. In the design criteria, more emphasis is given to security over

speed because of the practically negligible effect of increase in the time

requirement even though it is also considered as one of the measures of

performance. The efficiency of the new hash function is its design based on

potential parallelism.

The properties envisaged during the design of JERIM-320 are:

a. It should be highly secure

b. It should have a higher hash length to resist against the birthday attack

[Wagner D., 2002].

c. It should have a structure resistant to all known attacks including Wang

et. aI's attack [Xiaoyun Wang and Hongbo Yu, 2005].

83

Hash Functions

d. It should have a reasonable perfonnance with respect to speed of

operation.

The size of the hash value and that of the intermediate state are selected as

320 bits. This value has been chosen for the following reasons:

a. Since 32-bit words are generally used; the size should be a multiple of

32.

b. Most of the successful shortcut attacks on existing hash functions are

found to be at the intermediate state rather than at the final value. The

attacker typically chooses two colliding values for an intermediate block,

and is propagated to a collision of the full function. But, these attacks

would not have been successful, if the intermediate values were larger.

3.3.2 Description of JERIM-320

The basic notations used in JERIM-320 are shown in Table 3.1.

Table 3.1: Basic Notations in JERIM-320

Notation Description

X"Y Addition of X and Y modulo 2 (XOR)

X+Y Addition of X and Y

XVY Bitwise OR operation of X and Y

Xi\Y Bitwise AND operation of X and Y

-'X Bitwise NOT operation of X

X«<n Bit-rotation of X by n bits to the left

84

Hash Functions

3.3.2.1 Input Block Length and Padding

An input message is processed as 512-bit blocks. Padding is used to

make the length of the original message equal to a value which is 64 bits less

than the exact multiple of 512 bits. The padding consists of a single I-bit,

followed by as many O-bits, as required. After padding, the original length of

the message is calculated and added at the end of the message as a 64-bit

value. In the case of very long message, the length of the message is

calculated as the original message length modulo 264.

3.3.2.2 Structure of JERIM-320

Fig. 3.6 shows the outline of the compression function of JERIM-320.

It consists of four parallel branches Bl, B2, B3 and B4. The initial chaining

variable CVi is given as input to the compression functions. CV j consists of

10 registers A,B,C,D,E,F,G,H,1 and J. These chaining variables in each

branch are initialized as given below.

Al = A2 = A3 = A4 = Oxb54ff53a

Bl = B2 = B3 = B4 = Ox67452801

Cl = C2 = C3 = C4 = Oxabcdab84

D 1 = D2 = D3 = D4 = Oxc2d3eOfl

El = E2 = E3 = E4 = Ox2e72d96c

Fl = F2 = F3 = F4 = Ox4abOcd91

G 1 = G2 = G3 = G4 = Ox9a056873

HI = H2 = H3 = H4 = Ox5ca28c67

11 = 12 = I3 = 14 = Oxa14fe235

J1 = J2 = J3 = J4 = Ox863d421c

85

Hash Functions

Each successive 512-bit message block M is divided into sixteen 32-bit

sub blocks Mo, M[, ... , M I5 as Li(M) and given as input to all four branches.

The following computation is done to update CV i to CVi+1 as CVi+! = CVj /\

(Bloutput /\ B20utput) + (B30utput /\ B40utput)). Finally the message is

transformed into the 320-bit hash value.

CVi

+

CV i+1

Fig. 3.6: Outline of the Compression Functions of JERIM-320

3.3.2.3 Single Step Operations

Five rounds are used in JERIM-320 for each 512-bit message block.

The sixteen 32-bit sub blocks of the 512-bit block in each round are processed

in four parallel branches. The inputs to each single step operations are the

86

Hash Functions

sixteen sub blocks, the chaining variables AI, B1, ... J1, A2, B2, ... J2, A3,

B3,13, A4, B4,14 of each branch and the constants K[t}. Order of

message words in each branch and each round is shown in Table 3.2 and Table

3.3. Shift values, Boolean functions and Constants in each branch and each

round are shown in Table 3.4, Table 3.6 and Table 3.7 respectively. There are

16 single step iterations in each round and in all the four branches as shown in

Fig. 3.7. The output of each iteration is copied again into the chaining

variables AI, B1, ... 11; A2, B2, ... J2; A3, B3,13; A4, B4,14 and so on.

Fig. 3.7: A Single Step Operation of JERIM-320

87

Hash Functions

3.3.2.4 Order of the Message Words

The order in which the blocks are combined is important to prevent the

collisions. In order to resist Wang et. al attack, different message orders have

been used in different branches as shown in Table 3.2.

Table 3.2: Order Rule of Message Words in Different Branches

I 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

B1(jJ 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14

B2(i) 15 12 8 10 9 14 11 13 4 3 7 5 6 1 0

B3(i) 7 14 15 2 11 1 5 10 9 0 3 4 12 8 13

B4(i) 4 8 3 12 6 9 13 0 1 7 14 15 2 11 5

The conditions considered for defining the order of message words

[Hong D. et al., 2006] are:

1. Each word is applied twice in the upper and lower parts of the table.

2. Each word is applied twice in the left and right parts of the table.

3. Hence each word is considered 4 times and is indexed by 0 to 15.

15

15

2

6

10

To make the attacks more difficult, the order of message in each round

for the four branches are considered differently by considering cyclic shift of i

as shown in Table 3.3. Each column of its argument is shifted cyclically and

independently, so that column i is shifted left by i positions.

88

Hash Functions

Table 3.3: Message Order in Different Rounds

Round Message order using cyclic shift of i

Round 1 i=O to 15

Round2 i=3 to 15, i=O to 2

Round3 i=7 to 15, i=O to 6

Round4 i=9 to 15, i=O to 8

Round5 1=1 3 to 15, i =0 to 12

3.3.2.5 Shifts

The variable shift values as shown in Table 3.4 provide better

immunity against attacks such as differential collision [Chabaud F. and Joux

A., 1998]. The generalization of inner collisions to a full compression is

harder with variable shift amounts. The design criteria [Dobbertin H. et aI.,

1996] are:

1. The shifts are chosen between 5 and 15.

2. Every message block should be rotated over different amounts.

Since the message order in each round for the four branches are

considered differently by considering cyclic shift of i, the order in which shift

constant is used in each branch and in each round is also varying.

89

Hash Functions

Table 3.4: Amount of Shifts in each Round for Different Message Blocks

Round Mo MI M2 M3 M4 Ms M6 M7 Ms M9 MIO MIl M12 MI3 Mu M I5

1 15 14 12 13 9 8 7 6 11 12 14 15 6 5 8 9

2 14 15 13 11 8 7 9 5 12 14 13 11 5 6 7 8

3 13 12 14 15 7 5 6 9 13 15 12 14 9 8 5 7

4 12 13 11 14 6 6 5 8 14 13 11 12 8 7 6 5

5 11 11 15 12 5 9 8 7 15 11 15 13 7 9 9 6

3.3.2.6 Boolean Functions

The ten different boolean functions used are given in Table 3.5. In

each single step operation there are two boolean functions f and g. In each

round there are different f and g boolean functions as shown in Table 3.6,

which help to resist attacks. The SAC (Strict Avalanche Criterion) [Yuan li

and Cusick T.W., 2005J property of boolean functions also helps to defy

attacks.

Table 3.5: Boolean Functions

flex, y, z) = g4(x, y, z) = X 1\ Y 1\ z

f2 (x, y, z) = g3(x, y, z) = (x A y) Y (-.x: A z)

f3(x, y, z) = g7(x, y, z) = (x A-' y) 1\ z

f4(x, y, z) = gl(x, y, z) = (x A z) Y (y A-. z)
f5(x, y, z) = g9(x, y, z) = X 1\ (y Y-' z)

f6(x, y, z) = g2(x, y, z) = (x Y y) A (-'x Y z)

f7(x, y, z) = g6(x, y, z) = (x A-' y) 1\ z

f8(x, y, z) = g5(x, y, z) = (x Y z) A (y Y-' z)

f9(x, y, z) = glO(x, y, z) = X 1\ (y A-' z)

fl O(x, y, z) = g8(x, y, z) = X 1\ (....,y A z)

90

Hash Functions

Table 3.6: Boolean Functions used in each Round.

Branch Roundl Round2 Round3 Round4 RoundS

Bl fl,gl £1,g2 £3,g8 f4,g4 f5,g5

B2 flO,gl0 f9,g9 f8,g3 f7,g7 f6,g6

B3 f6,g6 f7,g7 f8,g8 f9,g9 flO,g10

B4 f5,g5 f4,g4 £3,g3 £1,g2 fl,g1

3.3.2.7 Constants

Here twenty different constants are used as shown in Table 3.7. These

constants represent the first 32 bits of the fractional parts of the cube roots of

the first twenty prime numbers. Different constants introduce asymmetry to

each round. By using constants, resistance to the attacker who tries to find a

good differential characteristic [Niels Ferguson, 1998] can be achieved with a

higher probability.

Table 3.7: Constants used in each Round

Branch Roundl Round2 Round3 Round4 RoundS

Bl 428a2f98x 71374491x B5cOfbcfx E9b5dba5 x 3956c25bx

B2 59fl11flx 923f82a4x Ab1c5ed5x D807aa98x 12835b01x

B3 243185bex 550c7dc3x 72be5d74x 80deb1 fex 9bdc06a7x

B4 c19bfl74x e49b69c1x efbe4786x Ofc19dc6x 240calccx

With these, the description of the design features of JERIM-320 is

completed.

91

Hash Functions

3.4 A Bird's Eye View on Hash Functions

A brief overview of the above discussions is summarized in Table 3.8.

Table 3.8: Hash Functions at a Glance

~ ~ <I) e ~ ~
.~

N = = N N <I) -c .•
<I) 0 .c .- - .- - <1)- "0 _~o ~-;; 0 <I) <I) <I) <I) <I) i><

.... c ~ - <I) - ~;:: "0;:: := .-::: := ~ ~ eo:! Oll.-::: eo:!
0 I:.I,Q -,Q .&e ---~ ~e - -0 -0Jl o -- o -- ~ eo:! ~ ~ 0 - i:iS ~ := ~ ~ c.;:: c. U -< 0

~
0 e

SHA-1 512 32 160 80 Serial 264 -1
+, and, or, Yes (year

xor, rotl, not 2005)

+, and, or,
SHA-256 512 32 256 64 Serial 264 -1 xor, shr, rotr, None yet

not

RIPEMD-
512 32 160 80

Parallel
264 -1

+, and, or,
None yet

160 (2 lines) xor, rot!, not

RIPEMD-
512 32 320 80

Parallel
264 -1

+, and, or,
None yet

320 (2 lines) xor, rotI, not

Parallel
+, and, or, Yes

FORK-256 512 32 256 8
(4 lines)

264 -1 xor, shr, (year
shl,rotl,rotr 2007)

JERIM-320 512 32 320 80
Parallel

264 -1
+, and, or,

None yet
(4 lines) xor, rotl, not

3.5 Detailed Comparison of JERIM-320 with FORK-256

Among the algorithms considered for study in section 3.2, FORK-256

can be considered to have the most similar design with JERIM-320 since both

have four parallel lines of message processing. Hence a detailed comparison

of JERIM-320 with FORK-256 has been done; this is shown in Table 3.9.

92

Hash Functions

Table 3.9: Comparison of JERIM-320 with FORK-256

1. Differences

SI.
Properties JERIM-320 FORK-256 Advantages of

No. JERIM-320

Message digest
Makes brute

1. 320 bits 256 bits force attack
Length

more difficult.

Given a message
Finding

digest, number
prelmage or

2.
of operations

2320 2256 second preimage
required to find

the original
reqUIres more

operations.
message.

The speed of
JERIM-320 is

3. Speed 23.37 Mbps 48.05 Mbps
also acceptable
considering the
higher degree of

security.

4.
Message block

20 times 4 times
Helps to resist

processmg attacks

Message
ordering in each

Ordering rule of
round for the More resistance

Ordering of four branches
message words

to Wang et. al
5. in different

message words are considered
branches is same

attacks
differently by

always.
considering

cyclic shift of i

Provide better
Variable shift

Constant shift
immunity

6. Shift values values in
values

against
different rounds differential

collision attack.

93

Hash Functions

The SAC
Ten different property of

7.
Boolean Boolean Two Boolean Boolean
functions functions are functions functions help to

used. resist against
attacks.

Increases

8. Constants
Twenty different Sixteen different asymmetry and

constants constants hence more
secure.

JERIM-320 can
use either the FORK-256 uses
same or two two different Provides

9. Message Block different sub message sub flexibility on
blocks in a blocks in single security
single step step operation
operation

Number of Five rounds of
Increases the

rounds and 16 single step Single round of
complexity and

10. single step iterations 8 single step
makes attack

iterations in making a total iterations only.
more difficult

each branch. of 80 iterations

2. Similarities

SI.
Properties JERIM-320 FORK-256 -

No.

It consists of
Same as JERIM-

1. Parallel branch four parallel -
branches

320

Padding is used
to make the

original message

2.
Input block and length equal to a Same as JERIM-

padding value 64 bits 320
-

less than the
exact mUltiple of

512 bits.

94

Hash Functions

The comparison given in Table 3.9 clearly reveals the supremacy of

JERIM-320 over FORK-256 due to the following properties

1. 320-bit hash length

2. eighty number of iterations on the message

3. twenty times processing of each message block

4. different message ordering in each round for all the four branches

5. introduction of cyclic shift

6. different order rule of message words for different branches

7. variable shift values, more number of Boolean functions and more
number of constants.

These enhancements make JERIM-320 capable of resisting attacks to a

much higher degree. It can be concluded that JERIM-320 is more secure than

FORK-256.

3.6 Security Analysis

3.6.1 JERIM-320

1. The main difficulty in cryptanalyzing JERIM-320 comes from the fact

that the same message blocks are given as input to each of the four

streams in a permuted fashion. The attacker who tries to break JERIM-

320 should aim simultaneously at four ways where the message

difference passes, which would make the attacks more difficult.

2. By using one message sub block twice at each single step, it has been

made difficult to construct a differential characteristic with high

95

Hash Functions

probability.

3. To avoid an attack that depends on brute-force methods [Richard

Clayton, 2001] the output from the hash function has been made

sufficiently long.

4. While combining the outputs from the four branches, orthogonal

operations (+ and "') are used to create confusion and diffusion which

adds to the security.

5. There is a strong avalanche effect [Subariah Ibrahim, et aI., 2005] hence

a change in a single message bit affects all the registers after five rounds.

6. All shortcut attacks on MD / Snefru [Bart Preneel, et aI., 1998] target one

of the intermediate blocks. Increasing the intennediate value to 320 bits

helps to prevent these attacks.

7. The single step operation ensures that changing a small number of bits in

the message affects many bits during the various passes. Together with

the strong avalanche, this helps JERIM-320 to resist attacks like

Dobbertin's differential attack [Dobbertin H., 1996] on MD4.

3.6.2 Comparison with FORK-256

1. An independent analysis resulting in a I-bit near collision attack against

a reduced version of FORK-256 has been published [Matusiewicz K. et

aI., 2007b]. Then they have shown how to use this result to attack the

complete FORK-256 hash function. There are eighty rounds of single

step operations in JERIM-320 to make all such chances difficult.

96

Hash Functions

2. In FORK-256, the use of four streams with message reordering as a

means to protect against differential analysis [Matusiewicz K. et aI.,

2007b] is ineffective since the same difference is applied to every

message block and the same differential pattern is occurring

simultaneously in the four streams. This is taken care in JERIM-320 by

using a cyclic shift of i in the message ordering in each round so that

different message orderings are used in different rounds. This causes the

JERIM-320 algorithm to be much more resistant than FORK-256.

3. In FORK-256 the same compression functions f and g are used in all the

four branches. Also some weakness in FORK-256 compression function

has been published on two branches of the algorithm [Matusiewicz K. et

aI., 2007a]. This is overcome in JERIM-320 by using different

compression functions in different branches and also in different rounds.

Here if an attacker constructs an intended differential characteristic for

one branch function, the different compression functions will cause

unintended differential pattern in the other branch functions, thus finding

specific differences for patterns would be difficult.

4. In FORK-256, the differences in the words of the internal state register

do not diffuse identically. Thus, only the differences in the words A and

E will spread to the other registers in the next round. As a result, a near

collision occurs in FORK-256 [Matusiewicz K. et aI., 2007b]. This

factor is taken care in JERIM-320 by using the non linear functions f and

g. Moreover these non linear functions are different in each branch and

in each round. Also the shift values in each branch, for all the iterations

are different which helps to change the internal values.

97

Hash Functions

3.7 Performance Evaluation

3.7.1 Practical Implementations

In this section the perfonnance evaluation of the hash functions is done

using practical implementations and by using single step computations. The

total number of operations, memory requirements and the speed performance

of JERIM-320 using one message block in single step operation and using two

message blocks in single step operation were compared with FORK-256,

SHA-l, SHA-256, RIPEMD-160 and RIPEMD-320. A detailed comparison

with FORK-256 is given in section 3.7.1.1 due to the similarity in main

structure. Also a separate comparison with RIPEMD-320 is given in section

3.7.1.2, since it matches with the hash length of JERIM-320. Comparisons

with the other hash functions SHA-I, SHA-256, RIPEMD-160 are given in

section 3.7.1.3.

3.7.1.1 Comparison with FORK-256

As shown in Table 3.10 the total number of operations used in a single

step operation of FORK-256 is 1.3 times than that in JERIM-320.

98

Hash Functions

Table 3.10: Comparison between the Number of Operations of JERIM-320
and FORK-256

JERIM-320 JERIM-320
(using one (using two

Operation message block in message blocks FORK-256
single step in single step
operation) operation)

Addition 42 42 97

Bitwise operation
187 187 112

('\V, A,-')

Shift operation 33 33 137

Total number of
262 262 346

operations

As shown in Table 3.11, the memory requirement of JERIM-320 is less

than that ofFORK-256. JERIM-320 uses 80 iterations for each message block,

where as FORK-256 uses only 8 iterations. In each branch there are ten

chaining variables in JERIM-320, but FORK-256 has only 8 variables.

Moreover each message block is processed 20 times in JERIM-320 where as

in FORK-256 it is only 4 times. Due to these, obviously the speed of

operation will be slightly less for JERIM-320 than FORK-256 as shown in

Table 3.11. The speed of JERIM-320 using one message block in single step

operation is nearly 3.4 times less than that of FORK-256 and JERIM-320

using two message blocks in single step operation is 2.05 times less than that

of FORK-256. But the multiple iterations and processing on the message

blocks in JERIM-320 will result in much higher security. The speed of

JERIM-320 is still very much acceptab1e.

99

Hash Functions

Table 3.11: Perfonnance Comparison between JERIM-320 and FORK-256

Memory
Algorithm Speed (Mbps) requirement

(bytes)

JERIM-320 using one message
14.01 12003

block in single step operation

JERIM-320 using two different
message blocks in single step 23.37 12039

operation

FORK-256 48.05 12149

3.7.1.2 Comparison with RIPEMD-320

A comparison of JERIM-320 and RIPEMD-320 with respect to the

total number of operations is shown in Table 3.12, while that with respect to

memory requirements and the speed ofperfonnance is shown in Table 3.13.

RIPEMD-320 provides the ability for longer hash strings and is a

double width string variant of the popular RIPEMD-160. But both of these

have only two lines of message processing and each message block is

processed ten times only. Hence RIPEMD-320 and RIPEMD-160 are almost

equally susceptible to attacks in the long run. As shown in Table 3.12, the

total number of operations used in JERIM-320 is 4.03 times more than that in

RIPEMD-320. Due to this, although the speed of JERIM-320 is slightly

lower, the multiple operations on the message blocks will result in higher

security.

100

Hash Functions

Table 3.12: Comparison between the Number of Operations of JERIM-320
and RIPEMD-320.

JERIM-320 JERIM-320
(using one (using two

Operation message block message blocks RIPEMD-320
in single step in single step

operation) operation)

Addition 42 42 20

Bitwise
operation 187 187 36
(\V, A,-')

Shift operation 33 33 9

Total number of
262 262 65 operations

As shown in Table 3.13, the memory requirement of JERIM-320 is 1.3

times more than that of RIPEMD-320. JERIM-320 makes use of four parallel

lines of message processing and hence the variables and computations required

in JERIM-320 are more. The speed of JERIM-320 using one message block in

single step operation is nearly 2.5 times less than that of RIPEMD-320 and

that of JERIM-320 using two message blocks in single step operation is 1.5

times less than that of RIPEMD-320. These are because of the increased

number of Boolean functions, constants and the more number of lines of

message processing used in JERIM-320. The number of Boolean operations

in RIPEMD-320 is five while that in JERIM-320 is ten. Similarly the number

of constants in RIPEMD-320 is ten while for JERIM-320 it is twenty. Also

each block in RIPEMD-320 is processed ten times while in JERIM-320, it is

101

Haslz Functions

twenty times. With all these, lERIM-320 provides higher security to make its

overall performance good enough for acceptance by the internet community.

Table 3.13: Performance Comparison between JERIM-320 and
RIPEMD-320

Speed
Memory

Algorithm
(Mbps)

requirement
(bytes)

JERIM-320 using one message
14.01 12003

block in single step operation

JERIM-320 using two different
message blocks in single step 23.37 12039

operation

RIPEMD-320 35.63 8927

3.7.1.3 Comparison with SHA-l. SHA-256, RIPEMD-160

As shown in Table 3.14 the total number of operations used in JERIM-

320 is 7 times that of SHA-l, 3.7 times that of SHA-256 and 4 times that of

RIPEMD-160. This is because of the hash function JERIM-320 making use of

four parallel lines of message processing and hence the variables and

computations in JERIM-320 will be more compared to other hash functions

mentioned here.

102

Hash Functions

Table 3.14: Comparison between the Number of Operations of SHA-l,
SHA-256, RIPEMD-160 and JERIM-320

Operation SHA-1 SHA-256
RIPE MD JERIM-
-160 320

Addition 12 20 20 42

Bitwise
operation 18 27 36 187
('\V,I\,-')

Shift operation 7 23 9 33

Total number
37 70 65 262

of operations

As shown in Table 3.15, the memory requirement for JERIM-320 is

more and the speed is less than that of SHA-l, SHA-256 and RIPEMD-160.

This is because of the increased number of Boolean functions, the need for

other operations like add, shift as well as the greater number of lines of

message processing used in JERIM-320.

Table 3.15: Performance Comparison between SHA-l, SHA-256,
RIPEMD-160 and JERIM-320

Memory
Algorithm Speed (Mbps) requirements

(bytes)

SHA-1 60.89 6533

SHA-256 55.93 7214

RIPEMD-160 35.89 8679

JERIM-320 14.01 12003

103

Hash Functions

3.7.2 Single Step Computation

The single step computation for comparison of speed of the six hash

functions is as follows:

The step operation of SHA-l consists of 4 additions, 2 shift and a Boolean

function. The Boolean function consists of 3 unit operations, and the step

operations consist of 80 steps (4 rounds * 20 iterations). That is 1 (stream) *
80 (steps) * 9 (step operations) = 720 (unit operations)

The step operation of SHA-256 consists of 7 additions, 2 summations and 2

Boolean functions. Each Boolean function and summation consists of 3 unit

operations, and the step operation consists of 64 steps. That is 1 (stream) * 64

(steps) * 19(step operations) = 1216 (unit operations)

RIPEMD-160 consists of 4 additions, 2 circular shifts and a Boolean function.

The Boolean function consists of 3 unit operations.

2(streams) * 80(steps) * 9(step operations) = 1440 (unit operations).

RIPEMD-320 consists of 4 additions, 2 circular shifts and a Boolean function.

The Boolean function consists of 3 unit operations.

2(streams) * 80(steps) * 9(step operations) = 1440 (unit operations).

FORK-256 consists of 10 additions, 6 XORs, 8 circular shifts and 2 Boolean

function. The Boolean function consists of 1 unit operations.

4(streams) * 8(steps) * 26(step operations) = 832 (unit operations).

The step operation of JERIM-320 consists of 5 additions, 4 XORs, 4 shift and

2 Boolean functions. Each Boolean function consists of 3 unit operations, and

the step operation consists of 80 steps (5 rounds * 16 iterations). That is 4

(streams) * 80 (steps) * 19 (step operations) = 6080 (unit operations).

104

Hash Functions

From the above computations it can be seen that the number of unit

operations in JERIM-320 is 8.4 times than in SHA-l, 5 times than in SHA-

256, 4.2 times than in RIPEMD-160 and RIPEMD-320 and 7.3 times than in

FORK-256. Due to this, the hash code produced in JERIM-320 will be much

more secure than the other hash functions.

3.8 Statistical Analysis for the Dual Functioning of JERIM-320

3.8.1 Introduction

Cryptographic hash functions can also contribute to be a good

foundation for a PRNG [John Viega, 2003]. Several designs have been using

MD5 or SHA-l in this capacity. HMAC-SHA-lis generally considered to be

indistinguishable from a PRF (Pseudo Random Function), a function selected

at random from arbitrary strings to 160-bit outputs.

A PRNG can be implemented using the hash function JERIM-320 in

the following way:

The ten chaining variables in the JERIM-320 hash function are

initialized with values which are considered as the seed value for the

generator. The message whose integrity is to be validated is given as input to

JERIM-320. The message is processed as S12-bit blocks and for each 512-bit

block an intermediate hash code is generated. This intermediate hash code is

considered as the Pseudo random number. Again the values of chaining

variables are replaced with the intermediate hash code values. Then the next

512-bit message block is considered and so on. The number of random

numbers it can produce depends upon the input message length. A good hash

105

Hash Functions

function will be able to produce random values with sufficient speed and

quality. Since good hash functions can be substituted as PRNGs, we focus on

analyzing the randomness property of the hash function JERIM-320.

3.8.2 Randomness Tests

The statistical analysis of JERIM-320 is done mainly using the tests

listed in section 2.1.3. 'These tests are commonly intended for determining

whether the binary sequences possess some specific characteristics that a truly

random sequence is likely to exhibit.

3.8.3 Results

Here Frequency, Serial, Poker and Runs tests are analysed using the

Chi-square table and Autocorrelation test is analysed using Normal table, as

specified for each randomness tests. Tables 3.16, 3.1 7 and 3.18 show the

results of the specified tests.

Table 3.16: Statistical Analysis using Frequency and Serial Tests

Input File
No. of No. of bits in

Total no. of
intermediate each Frequency

Size bits Serial Test
(bytes)

hash codes as intermediate
considered

Test
PRN hash code

69 20 32 640 0.2250 2.3649

407 70 32 2240 0.0875 2.0880

4207 660 32 21120 0.0547 2.0706

7514 1180 32 37760 0.7653 5.1989

10669 1670 32 53440 0.2102 2.9519

106

Hash Functions

Table 3.17: Statistical Analysis using Poker and Runs Tests

Input File
No. of No. of bits in

Total no. of
intermediate each

Size
hash codes intermediate

bits Poker Test Runs Test
(bytes)

asPRN hash code
considered

69 20 32 640 12.60 7.82

407 70 32 2240 40.94 4.93

4207 660 32 21120 245.23 14.48

7514 1180 32 37760 529.67 15.93

10669 1670 32 53440 1043.65 14.14

Table 3.18: Statistical Analysis using Autocorrelation Test

Input
No. of No. of bits in

Total no. of
intermediate each Autocorrelation

File Size
hash codes intermediate

bits
Test

(bytes)
asPRN hash code

considered

69 20 32 640 1.4823

407 70 32 2240 2.7360

4207 660 32 21120 1.6176

7514 1180 32 37760 2.4346

10669 1670 32 53440 1.5878

3.8.4 Performance Evaluation

Details of the perfonnance evaluation are shown in Table 3.19. The

JERIM-320 can handle messages of length 9.7 Mbps for ensuring the message

integrity and simultaneously producing random numbers. Since each 512-bit

block produces an intennediate hash code of 320-bit, the number of random

bits JERIM-320 produce are 6.06 Mbps. The JERIM-320 hash function

successfully passes all the five empirical tests for every run. The memory

107

Hash Functions

requirement for JERIM-320 is only 11462 bytes. Hence JERIM-320 can be

simultaneously used for providing message integrity and for generating pseudo

random numbers with reasonable speed.

Table: 3.19: Performance Evaluation of JERIM-320 as Hash Function
and as PRNG

Message Number of
length for Random Memory

Algorithm ensuring bits requirement
integrity produced (bytes)
(Mbps) (Mbps)

JERIM-320 9.7 6.06 11462

From the results of analysis and performance evaluation it can be seen

that JERIM-320 is also a reliable random number generator. All the five

empirical tests are passed by this generator for all the random streams

produced. Hence JERIM-320 can be used not only to ensure message integrity

but also as an efficient pseudo random number generator. The dual services of

JERIM-320 make it very useful in cryptographic applications.

3.9 Conclusions

Detailed studies on different popular Hash Functions have been done,

desired properties were identified and a new hash function called JERIM-320

with improved security and reasonable speed has been designed. Various

cryptographic hashes are analyzed with JERIM-320 using practical

implementations and using single step computations. The core strength of

JERIM-320 is the four parallel lines with five rounds which provide a strong

nonlinear avalanche plus more number of register operations that increase

108

Hash Functions

diffusion and make differential attacks harder. Other salient features of

JERIM-320 which help to provide improved security are the larger number of

Boolean functions and constants and repeated processing of each message

block with increased number of operations in each single step. These

enhancements make JERIM-320 capable of resisting attacks to a much higher

degree compared to the other ones. Since message integrity is an important

security service in today's high-speed network protocols and also since the

confidence level with respect to the current candidates is coming down, new

hash schemes have become a necessity. A more secure hash code JERIM-320

can definitely be a substitution.

3.10 Test Vectors

The following are few test vectors using one message block and two

message blocks in single step operation of JERIM-320 hash function.

3.10.1 JERIM-320 using One Message Block in Single Step Operation

Message 1

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123

456789abcdefghij

Intermediate Values:

Branch 1

a2e47dcl f7de8b66 9261Oe5a 642d9193 dlb17ef4 8025af21 6be9dfb

49de3ccc 1502d6ae cf596c85

109

Hash Functions

Branch2

2e47d19f 11f7b254 8db858c6 b906f89a 7d24c5df 49d2dbab gea4903e

8e6805cO 206273be 9dc7eb34

Branch3

7f4d8321 894e27b7 fddb05d aa293970 74c83bda d387cb05 ce397853

1f7e3eff 45323469 ab4cOc62

Branch4

e4d22efl ba06df58 eOc12344 4852c253 e82bc3ba 3e1 f9d87 d8cd742a

f9d89672 dbbc3c25 6a654e78

Hash Code

1518cd491d4d177ff33cld89 5786e925 fa38cfD4 f6c6413ee5ala61

78f830377072e78ebe33818b

Message 2

jbcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ01234

56789abcdefghij

Intermediate Values:

Branch 1

2bb 17fd8 88b2907b fb5597b9 e08e4cf7 d869113e ce86fffb I Of657 de

39764f9c 1 b563eb9 fa612803

Branch2

3ddd6242 27636afd 6b9313ed 1873d830 610d9b05 aaae8d4 93603614

64060d12 3e3b507c ea199gee

Branch3

4lc3a8e5 e32e6792 f43821e2 bff7dd18 6285f80 7f31331a 5a190dc 769f1f85

919a3d1f8c9cc946

110

Hash Functions

Branch4

9da92331 d9f50dad 4fd24ffc b7610f52 f4e9f3aO f07089d5 9a4bf89a

84827901 a2ad3d872a8b786e

Hash Code

44a71 b45 d3ebb45e 62a2aa2f f9c2c6df eel d95d6 5905efOc de51 f3ff

3a72b49c 4cb3a37 e4feclf8

Message 3

ABCDEFGHIJKLMNO PQRSTUVWXYZabcdefghijklmnopqrstuvwxyzO 123

456789ABCDEFGHIJ

Intennediate Values:

Branch 1

c77dfed4 614b7c4l 3bd726al a0966262 fc6c97f9 41feb695 682433d4

b3 dOdc73 a 71 dgebc flbc6abO

Branch2

lf4552da 71223052 247af80 9af62dea 8505b776 a2daOced abaeec81

784e8cb8 295cda 13 2e80426f

Branch3

77691f2c dc67d24a Ib6c4a68 fad8fde2 77bebOa7 94c3fc9f6ce06ba8

3e3420a7 a88b6497 be403656

Branch4

ccd691dc 29bl044d 49afd85e c612fa5b 30f546e6 c2c75448 508fOa53

43d85c705c26elcl d990b677

Hash Code

cb1dl549 295fle1b 515b5fa6 9fUc6d46 a71cb8d 163de581 2ea157cc

tbl13d66 61caOl89 a49b148c

111

Hash Functions

Message 4

JBCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzO 1234

56789 ABCDEFGHIJ

Intennediate V al ues:

Branchl

44f55b669842f2l c13bc735 dcOacf25 6fdac5e6 8476000 c77ee292 eca37aOe

25b432fe 7aOefa40

Branch2

79686a9b 38974aac 4ca8937a cfe76c90 bb28f497 2cOld4 d338f286 la270d49

d955d46c b2fael Of

Branch3

f83dl27d eOc70ca6 cccbl814 d4fDala ea6cb6cb 6e52fccfca13e26a f55f29dc

908fOb13 d98b9335

Branch4

2871fd6fd3e258 lda9c273 cff5f7cO 50586673 13d7aOa4 b2255cf7 3815484

a8e777f3 ad5f92b6

Hash Code:

595b4d64 44cb2fa7 5ee3d44c b2cbbfae 807aede2 6547cd46 b2f07391

364eb41 c34bb7fe l4bca5b9

3.10.2 JERIM-320 using Two Different Message Blocks in Single Step

Operation

Messagel

abcdefghijklmnopqrstuvwxyzABCDEFGHlJKLMNOPQRSTUVWXYZ0123

456789abcdefghij

112

Hash Functions

Intermediate Values:

Branch 1

4383170a ab2f4c9f 720700b2 58b7a70c f37cea35 fe9b3326 8b7871a7

99873e8 b6bf475a d50e448d

Branch2

76eef25 f6bfD918 fb240e3e 570221 fd 2e19cgefbaaace8e 850ace28 25f46e36

2b54edcd 6bd8da7a

Branch3

2d9678c2 88c76853 f468278e aflfe30b 6a59130f d722a202 a6bbe9aa

9c08835e 779d9324 aOb53eO

Branch4

4d96fD5a e837e968 93693d79 3a6773e 82b71d7b 7aab3f62 69cOcl f2

7906d4f5 997afe39 49834e4b

Hash Code:

94311971 3df02765 304f54e4 952ca42 fDf2a85 3a3ad78c 86ee3f9a 9c2e75f3

8c1d542b 1af336d6

Message 2

jbcdefghijk1mnopqrstuvwxyzABCD EFGHIJKLMN OPQRSTUVWXYZO 1234

56789abcdefghij

Intermediate Values:

Branch1

66baf333 e3f3b3cd 33525789 7d588262 e733f1 c4 2cb06831 e2b7c5lf

e65c07e9 f252424e 2b5eOece

113

Hash Functions

Branch2

7fe61eOe 9b3911db 5982910 d64958eb e395685f 8e4cd3c9 1e434afe

fb49c850 343f7682 e8ebd290

Branch3

18bf4291 69a1ca34 b27811aa 72b5def8 f40b6d7f37c2fea8 962bba12

237d9fl 0 50c66664 a7219835

Branch4

7f02f6c4 58652c44 a43a159b 77a2e22b a7488c47 6266f5a7 2deeea13

206c2be539784dea9a9d1860

Hash Code:

7f43bObO 7ba8b8ce b32d1099 4d6b329 e3dd6362 2434e2dO e9d7a660

afbf927a cab690b9 b2d5619f

Message 3

ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzO 123

456789ABCDEFGHIJ

Intermediate Values:

Branch!

12505570 af4b 1952 fbf3443b 30c9f41 c 4515ae48 71 cc5927 21527ec3

90175a19 b3668c63 d8d55f91

Branch2

213b2bea e6b6cdbd 74bd72c3 13fa35bb cd9a8edb laa0586b e9ge7b73

fd 1 b6d96 320ce9fe 94c6d998

Branch3

886b235fcb7e593e f8150760 a41b6a73 332cb981 4570312a ae01be73

b96395dO bef6bb6 1700f993

114

Hash Functions

Branch4

5f63be3 a5710e8 4af02fdf70104edf9001025e 208adbaa a9b85847 b521

8c56de58 a73aeefd

Hash Code

1108ea66 3690671d 8c159bb4 215a864c 41a2652e beObfOad 475bee5a

60c21 c72 51 f315a6 e28451 f2

Message 4

IBCD EFGHIJKLMN OPQRSTUVWXYZabcdefghijklmnopqrstuvwxyzO 1234

56789ABCDEFGHIl

Intermediate Values:

Branch 1

5240a705 747c9471 df6da2e4 Ifc9add9 893fOf5f 8c725963 e1eb72f

dd2bc9d9 abe7fa8 f785ddc9

Branch2

341f1fl af67dedd b955cfe6 13f45808 5a96cd1b d9cddOb7 c53d6lfe

b440b60c 9f2e7824 57d46a8

Branch3

7e65157b d661 cd2a d3fee90a f24587af 19a9de96 3c8dl83b 53c83a48

f30db4f9 bea3b716 f86592f6

Branch4

e995bf68 bad3e012 cc2afdeb dfbd4802 52769c41 f6f6d7ff 5d23b831

9age3aa4 8b4c4f16 101badb4

Hash Code:

2dd6daa 79c353ce d78f8e05 374ae7fO 2c3eOb64 c00098fb dd4dcc2e

e38ae930 316dd34f 664e84ea

115

lvfessage Authentication Code

Chapter 4

Design and Development of a New Message
Authentication Code: MACJER-320

Abstract:

The security services of providing confidentiality and integrity have

been dealt with in the previous chapters. The other two main security services

demanded by the network community could be message authentication and

non-repudiation. Message authentication ensures two or more parties to

verify that the received digital content is sent from an authorized person,

which is important for electronic communication such as e-mail, e-commerce

etc. This chapter introduces a new message authentication code MACJER-

320. It is developed using JERIM-320 and in combination with a 320-bit

secret key. MACJER-320 is using JERlM-320, a 320-bit hash function, while

the popular HMAC uses a J60-bit hash function, SHA-l. The performance

evaluation of the two methods has been done by using practical

implementation.

116

Message Authentication Code

4.1 MACJER-320

4.1.1 Introduction

Verifying the integrity, authenticity and non repudiation of infonnation

IS a major necessity in computer systems and networks. Message

authentication code (MAC) is one of the fundamental cryptographic primitives

used extensively in the construction of security services in networks for

general digital data transfer offering authentication of sender, data integrity

and to some extend the non-repudiation. In particular, two persons

communicating over an insecure channel require a method by which

infonnation sent by one person can be received and validated as authentic by

the other. When a person' A' transmits a message to another person 'B', it

appends to the message a value called the authentication tag, which is

computed by the MAC algorithm as a function of the transmitted message and

the shared secret key. At reception, 'B' recalculates the authentication tag on

the received message using the same mechanism and key, and checks whether

the value obtained is equal to the tag attached to the received message. Ifboth

are the same, then 'B' can confinn that the message has started off from the

intended sender and that it has not been tampered with during the

transmission. Here the sender and receiver share a secret key k. The sender

uses k to generate a tag and sends it along with the message to the receiver.

Only the party who shares the secret key can generate the same tag. This

ensures the sender's authenticity and non-repudiation. The algorithm

producing the MAC is designed to reflect any changes in the message. This

ensures the data integrity. Such a mechanism is most commonly based on the

117

Message Authentication Code

secret key shared between the parties, which take the fonn of a message

authentication code. This is shown in Fig. 4.1.

11
MESSAGE

MAC CODE al

~
:>-
~

~

Fig. 4.1: Message Authentication Code (MAC)

MACs fall into two categories based on their fundamental building

blocks [William Stallings, 2003]. One approach is to use symmetric block

cipher in a cipher block chaining mode. Here MACs are constructed out of

block ciphers like DES [NIST FIPSPUB 46-3, 1999] as seen in the DES-CBC

MAC [Mihir Bellare et aI., 1999], widely used in US and in International

standards. The basic idea is to en crypt the message blocks using DES-CBC

and output the final block in the cipher text as the checksum. Another popular

approach is to use cryptographic hash functions like SHA-l and MD5. This is

particularly visible in the internet community, where the development of

security protocols has lead to the need for simple, efficient and widely

available MAC mechanisms. MACs with hash functions are more popular

because they are faster than block ciphers in software implementation.

118

Message Authentication Code

MAC algorithms are widely used in Internet security protocols

(SSLlTLS, SSH, IPsec.) for encryption and authentication to support secure

browsing, file transfer and remote login between the end users and servers

(Bo Yang et aI., 2006), in mobile communications COSM and 30PP) and in

the financial sector for debit and credit transactions [Helena Handschuh,

2004]. Routing protocols have begun to use message authentication systems

to verify the routing information transferred among routers. The security of

the MAC algorithm depends on the difficulty for an unauthorized entity to

produce a forgery that is, a new message with a valid MAC.

In short, a MAC can be thought of as a keyed hash, with the following

properties:

1. Given any message, it is difficult to create a MAC without knowing the key.

2. Given a message and the corresponding MAC, it is difficult to create a new

message with the same MAC.

3. Given any MAC, it is difficult to find a message that corresponds to it or

matches it.

4.1.2. Motivation and Design Factors

The popular MAC mechanism used nowadays is the HMAC [NIST

FIPSPUB 198, 2002] with MD5 or SHA-1 as the hash function. But the

strength of MD5 [Rivest R.L., 1992] and SHA-1 [NIST FIPSPUB 180-2,

2002J has been called into question as a result of recent findings [Jongsung

Kim et aI., 2006]. Therefore development of new message authentication

codes that involve the use of cryptographic hash functions with sound security

119

Message Authentication Code

assumptions on the basic hash function are important in the current scenario.

The outcome of an attempt in this line is a new message authentication code

MACJER-320.

The following are the design objectives ofMACJER-320:

1. To be able to use widely available hash functions without modifications.

2. To allow easy replacement of the embedded hash function in case faster or

more secure hash functions are found or required.

3. To preserve the original performance of the hash function without

incurring a significant drop.

4. To use and handle keys in a simple way.

5. To have a well understood cryptographic analysis of the strength of the

authentication mechanism based on reasonable assumptions about the

embedded hash function.

4.1.3 Description of MACJER-320

The variables used in the MACJER-320 construction are given in Table 4.1.

Table 4.1: Variables used in MACJER-320

K - Shared symmetric key.

M - Input message.

B - Number of bits in each block.

MDA - Message digest algorithm or Hash Function (JERIM 320)

120

Message Authentication Code

H - Hash code

SH - Circular shifted hash code H

SK - Circular shifted key K

The step-by-step approach ofMACJER-320 is given in Algorithm 4.1

Algorithm 4.1: MACJER-320

Step 1: Make length ofK equal to B.

Here the initial key K is 320-bit long and the block length B is 512-
bit. To make the length ofK equal to the block length add as many
o bits as required to the left ofK. Hence add 192,0 bits to the left
of key K.

Step 2: Prefix and suffix the key along with the message.

Divide the key into two equal parts (256 bits each) and then prefix
the message using 256 lsb bits of the key and suffix the message
using 256 msb bits of the key.

Step 3: Apply the message digest algorithm or hash function.

Now, JERIM-320 is applied to the output of step 2 (Le. to the
combination of the 256 lsb bits of the key, the message and the
256 msb bits of the key) to produce the 320-bit hash code H.

Step 4: Circular shift hash code H and the initial key K.

Circular shift H by 13 bits and key K by 17 bits to the left to
produce the shifted hash SH and the shifted key SK.

Step 5: XOR K with SH to produce KSH.

Now XOR K with SH to produce a variable called KSH.

121

Message Authentication Code

Step 6: Add H with SK to produce HSK.

Now add H with SK to produce a variable called HSK

Step 7: XOR KSH with HSK to produce MAC.

XOR KSH with HSK to produce the final 320-bit message
authentication code.

A pictorial representation of these seven steps are given in Fig. 4.2.

original key
(nO-bit)

Transformed xey (512-M)

MSB 256 bits

Message Digest .AJgorithm • JERIM-320

Hash code (320-btt)

MAC
(Message

authentication
code-nO bit)

Md

Fig 4.2: MACJER-320 Structure

122

Message Authentication Code

4.1.4 Security Analysis

section 4.1.5 gives an analysis of the properties of MACJER-320, the

new Message Authentication Code, to establish its significantly higher level of

security than the popularly used ones.

4.1.5 Properties of MACJER-320

1. The security of the message authentication mechanism presented here

depends mainly on the cryptographic properties of the hash function

JERIM-320 as mentioned in section 3.6.1.

2. The length in bits of a message authentication code is directly related

to the number of trials that an intruder has to perfonn before a message

is accepted. For a MAC value of bit-length m, the intruder has to

perform on average of 2m
-
1 random on-line MAC verifications before

his strategy succeeds. Thus in MACJER-320, an intruder requires 2320
-
1

trials.

3. The message is enveloped with a secret prefix and a secret suffix

before the hash code is computed. This hybrid method is stronger than

either the prefix or the suffix variant [Gene Tsudik, 1992] and provides

protection against message substitution attacks [Lifeng Lai et aI., 2008]

when used in conjunction with a strong hash function JERIM-320.

Also the splitting of the key into two parts strengthens the key by

increasing confusion at the cipher text level [Thomas Calabrese, 2006]

4. Another important property of this hybrid method is its resistance to

birthday attacks [Wagner D., 2002]. Consideration of these attacks is

123

Message Authentication Code

important since they strongly improve on exhaustive search attacks.

Since these attacks require knowledge of the MAC value (for a given
'2 key) on about 2nl messages (where n is the length of the hash output)

for values of n :;;. 320 the attack becomes totally infeasible [Menezes A.

et al., 1997].

5. When combining functions and operations together, the orthogonal

operations like XOR and addition are used which cause confusion and

diffusion in the MAC.

6. The shifting of the hash code and key was done to increase confusion

thus strengthening the output.

7. XORing has the effect ofrandomizing the input almost completely and

overcoming any regularity that may appear in the output.

4.1.6. Performance Evaluation

The total number of operations, memory requirements and the speed

performance of JERIM-320 using one message block in single step operation

and MACJER-320 were evaluated.

As shown in Table 4.2 and Table 4.3, the total number of operations

used and the memory requirement in MACJER-320 are just 1.06 times than

that in JERIM-320. This negligible increase in number of operations will not

practically affect the speed of MACJER-320. As shown in Table 4.3, the

speed of MACJER-320 is less only by 0.06 times that of JERIM-320, but

authentication service could also be achieved along with message integrity

while using MACJER-320. Moreover, the simple and inexpensive secret

124

Message Authentication Code

prefix and secret suffix methods, the usage of orthogonal operators, the usage

of shift operators and the usage of 320 bits secret key in MACJER-320

provide protection against differential attacks [Jiqiang Lu et aI., 2006], when

used in conjunction with the strong hash function JERIM-320.

Table 4.2: Comparison between the Number of Operations of
JERIM-320 and MACJER-320

JERIM-320 (using

Operation
one message block

MACJER-320
in single step

operation)

Addition 42 46

Bitwise operation
187 193

(,\V, A,"")

Shift operation 33 41

Total number of
262 280

operations

Table 4.3: Performance Comparison between
JERIM-320 and MACJER-320

Speed
Memory

Algorithm
(Mbps)

requirements
(bytes)

JERIM-320 using one message
14.01 12003

block in single step operation

MACJER-320 13.15 12530

125

]v[essage Authentication Code

4.1.7 Test Vector

Key

Ox2345676,Ox46565688,Ox57239945,Ox45111571,Ox77783528,Ox72885357,0

xl7242468,Ox53338223,Ox42871903,Ox97238156

Message:

abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

Message Authentication Code:

6c3e78aa 63c33adl 48037b20 41ge471c 67a3b429 c2c5c8bl d909d7a8

3404118f 2beaddf4 8ibb08e7

Message:

jbcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ

Message Authentication Code:

980b9b98 dOaa2d30 580317bd 3ca5gedb 2fD0667 e938aOef ladb0270

20fgee91 c4308808 cge58889

4.2 Performance Evaluation between MACJER-320 and

HMAC-SHA-l

A brief description of HMAC and the perfonnance evaluation of

MACJER-320 in comparison with the popular HMAC-SHA-l have been done

126

Message Authentication Code

in this section. The Secure Hash Algorithm (SHA-1) is referred to section

3.2.2.

4.2.1 HMAC

The different variables used in the HMAC algorithm are shown in

Table 4.4.

Table 4.4: Basic Notations in HMAC

MD - Message digest I hash function

M - Input message

B - Number of bits in each block

K - Shared symmetric key

Kl - Transformed key K

Ipad - String 00110110 repeated b/8 times

Opad - String 01011010 repeated b/8 times

H - Hash code

The step-by-step approach of the HMAC message authentication code

is given in Algorithm 4.2.

127

Message Authentication Code

Algorithm 4.2: HMAC

Step 1: Make the length of K equal to B. Append enough zeros to the
left end of K to create a B bit key K 1.

Step 2: XOR K1 with Ipad to produce the B bit block S.

Step 3: Append M to S. That is the original message is simply appended
to the end of S.

Step 4: Apply the Message digest algorithm / hash function to the
output of Step 3 to produce hash code H.

Step 5: XOR K1 with Opad to produce the B bit block SI.

Step 6: Append the hash code H produced in Step 4 to SI.

Step 7: Apply the message digest algorithm / hash function to the output
of Step 6 to produce the final MAC.

4.2.2 Security Analysis of MACs and Hash Functions

sections 4.1.4 and 3.6.1 describe an analysis of the properties of

MACJER-320 and JERIM-320. The security analysis of HMAC-SHA-l is

explained in 4.2.2.1.

4.2.2.1 HAMC-SHA-1

1. In HMAC the XOR with Ipad results in flipping one-half of the bits of

K. Similarly the XOR with Opad results in flipping the other-half of the

bits of K, but a different set of bits. In effect, by passing Sand SI

through the compression function of the hash algorithm, we have pseudo

randomly generated two keys from K, which adds security to HMAC.

128

Message Authentication Code

2. The recent attacks by Wang et al. [Xiaoyun Wang and Hongbo Yu,

2005] and Biham et al. [Biham E. et aI., 2005] have undermined the

confidence in the popular hash functions such as MD5 or SHA-I.

3. As outlined in the paper "keying hash functions for message

authentication", HMACs can be vulnerable to birthday, collision and

other attacks. [Mihir Bellare et aI., 1996b].

4. Other publications "On the security of HMAC and NMAC based on

HAVAL, MD4, MD5, SHA-O and SHA-l" [Jongsung Kim et al., 2006]

and "Note on Distinguishing, Forgery and Second Preimage Attacks on

HMAC-SHA-l and a Method to Reduce the Key Entrophy of NMAC"

[Christian Rechberger and Vincent Rijimen, 2006] have shown how to

use the differential distinguishers to devise a forger attack on HMAC.

5. The strongest attack known against HMAC is based on the frequency of

collisions for the hash function. With this, HMACs have become more

insecure [Mihir Bellare et al., 1996a].

In this scenario, the security provided by the HMAC is no more fully

reliable, although the same is being widely used even now. This calls for a

performance evaluation between MACJER-320 and HMAC-SHA-l to explore

the possible usage ofMACJER-320 as an alternative.

4.2.3 Performance Evaluation

The perfonnance evaluation of MACJER-320 and HMAC-SHA-l IS

done using practical implementations. Evaluation of JERIM-320 and SHA-l

using single step computations has already been done in section 3.7.2. The

129

Message Authentication Code

total number of operations, memory requirements and the speed performance

of MACJER-320 using JERIM-320 hash function and HMAC using SHA-1

hash function are compared here.

The MACJER-320 produces a MAC of 320 bits where as HMAC­

SHA-1 produces a MAC of160 bits only. Hence MACJER-320 can definitely

provide added security than HMAC-SHA-1.

As shown in Table 4.5 the total number of operations used in

MACJER-320 is 3.7 times than that in HMAC-SHA-l. The hash function

JERIM-320 in MACJER-320 makes use of four parallel lines of message

processing and hence the variables and computations required in JERIM-320

will be more compared to the single stream hash function SHA-I in HMAC.

The multiple operations on the message blocks in MACJER-320 will result in

much higher security with a negligible compromise in the speed of operation.

Table 4.5: Comparison between the Number of Operations of
MACJER-320 and HMAC

MACJER-320 HMAC
Operation using using

JERIM-320 SHA-l

Addition 46 24

Bitwise operation (/\,V, A,-') 193 39

Shift operation 41 13

Total number of operations 280 76

130

Message Authentication Code

As shown in Table 4.6, the memory requirement for MACJER-320 is

more than that of HMAC-SHA-l and the speed of MACJER-320 is less than

that ofHMAC-SHA-l. These are because of the increased number of Boolean

functions, the need for other operations like add, shift as well as the greater

number oflines of message processing used in JERIM-320 than in SHA-1.

Table 4.6 Performance Comparisons between MACJER-320 and HMAC

Speed
Memory

Algorithm requirements
(Mbps)

(bytes)

MACJER-320 using JERIM-320 l3.15 12530

HMAC using SHA-1 57.58 8074

4.3 Conclusions

A new message authentication code called MACJER-320 has been

designed with better security and reasonable speed. In MACJER-320, the

simple and inexpensive secret prefix and secret suffix methods, orthogonal

operators, shift operators and 320-bit secret key provide protection against

differential attacks, when used in conjunction with a strong hash function

JERIM-320. Moreover in MACJER-320 the hash function can be used as a

black box, so that the replacement of the underlying hash function is easily

supported. Also with a minute increase in time and memory requirement,

additional security services like message authentication and non-repudiation

could also be achieved along with message integrity.

131

Message Authentication Code

The perfonnance evaluation of MACJER-320 is done by comparing

with the popular HMAC using practical implementations. MACJER-320

produces an output of 320 bit MAC code and hence it is more secure than the

160 bit MAC code produced by HMAC-SHA-l. Due to the more number of

operations perfonned in each message block, the MAC code produced by

MACJER-320 is definitely more secure compared to HMAC-SHA-l. Since

message integrity and authentication services are very important in today's

high-speed network protocols and in the light of confidence levels with the

current candidates like SHA-l are coming down, new MAC schemes are

necessary and more secure MAC codes like MACJER-320 could be a good

option.

132

Applications in SSL / TLS

Chapter 5

Use ofMAJE4 and MACJER-320 in
Secure Socket Layer / Transport Layer

Security Protocol

Abstract:

The demand for information security in Internet based applications is

by and large met by the Secure Socket Layer (SSL) / Transport Layer Security

(TLS) protocol, 'which is in use widely. It provides protection against eaves

droppings, tampering and forgery. The cryptographic algorithms RC4 and

HMA C have been in use for achieving security services like confidentiality and

authentication in the SSL / TLS. But recent attacks against RC4 and HMAC

have raised questions in the confidence on these algorithms. Hence two novel

cryptographic algorithms MAJE4 and MACJER-320 have been proposed as

substitutes for them. The focus of this work is to establish the performance of

these new algorithms and sllggest them as dependable alternatives to satisfy

the need of security services in SSL / TLS. The performance evaluation has

been done by using practical implementation.

133

Applications in SSL / TLS

5.1 Introduction

SSL protocol has been universally accepted in the World Wide Web

for authenticated and encrypted communication between clients and servers.

It was originally developed by Netscape, its version 1.0 was never publicly

released; version 2.0 was released in 1994 but contained a number of security

flaws which ultimately led to the design of version 3.0 which was released in

1996 [Transport Layer Security, 2008]. At present, SSL is widely deployed in

many intranets as well as over the public Internet in the form of SSL capable

servers and clients and has become the de facto standard for Transport Layer

Security. The Internet Engineering Task Force (IETF) standardized SSL as an

IETF standard under the name of Transport Layer Security (TLS) protocol

[Alien C. and Dierks T., 1997]. The few real world, practical applications of

SSL & TLS are Client Server systems, Financial systems, Information systems

to create remote access and administration applications, Travel industry to

create on line reservation systems and secure information transfer, etc.

[Security Protocol, 1999]. Visa, MasterCard, American Express and many

leading financial institutions have endorsed SSL / TLS for commerce over the

Internet. Some early implementations of SSL used 40-bit symmetric keys

because of US government restrictions on the export of cryptographic

technology. The 40-bit key size limitation has mostly gone away and modem

implementations use 128-bit (or longer) keys for symmetric key ciphers.

One of the reasons that SSL has outgrown other transport and

application layer security protocols such as SSH, SET, and SMIME in terms

of deployment is that it is application protocol independent [George

Apostolopoulos et aI., 2000]. Conceptually, any application that runs over

134

Applications in SSL I TLS

TCP can also run over SSL. There are many examples of applications such as

TELNET and FTP running transparently over SSL. However, SSL is most

widely used as the secure transport layer below HTTP. A large number of e­

commerce sites dealing with private and sensitive information use SSL as the

secure transport layer. This number is expected to grow, as more and more

businesses and users embrace electronic commerce. As security becomes an

integral feature for Internet applications and the use of SSLlTLS increases, its

impact on the performance of the servers as well as the clients is going to be

increasingly important. Browsers like Netscape Navigator and Internet

Explorer can access SSL enabled web pages by using URLs that start with

https: instead ofhttp.

The main objectives for SSL are:

1. Authenticating the client and server to each other.

2. Ensuring data integrity

3. Securing data privacy.

5.2 Motivation

In applications using SSL, the confidentiality of information is ensured

using strong encryption algorithms. For very fast encryption and decryption

of data for transmission after an SSL connection has been established, RC4 is

the most widely used algorithm. HMAC-SHA-l has been recommended for

message authentication in several network security protocols. The key reasons

behind this are the free availability, the flexibility of chaining the hash

135

Applications in SSL / TLS

function and the reasonable speed, among others. Even though RC4 and

HMAC-SHA-l are the most widely used ciphers of secure web applications,

the strength of RC4 and SHA-1 has been called into question as a result of

recent findings. Hence it is required to have proven and new methods to meet

the future requirements. The analysis of novel cryptographic algorithms

MAJE4 and MACJER-320 and their perfonnance in comparison with the

popular ones RC4 and HMAC-SHAl have been done in this context and they

have been proposed as alternatives.

5.3 Security Analysis of Algorithms

section 2.1.3 shows that all the five randomness tests were passed by

MAJE4. The security analysis of HMAC is explained in 4.2.2.1. Sections

3.6.1 and 4.1.4 describe the security analysis of JERIM-320 and MACJER-

320. Security related findings ofRC4 algorithm is given in section 5.3.1.

5.3.1 RC4

Some of the published attacks on RC4 are as follows:

1. The first known weaknesses in RC4 were reported in 1995 by Ross

[Roos A., 1995] and Wagner [Wagner D., 1995]. They described

several classes of keys that have specific weaknesses including

predictable output or output that leaks key infonnation. Later a related

key attack was observed for long keys (2048 bits) [Grosul A.I. and

Wallach D.S., 2000].

136

Applications in SSL / TLS

2. Since the output of RC4 stream cipher is used to encrypt the plain text

by bitwise XOR, any observable bias in the output can be used as the

basis for an attack. A correlation was detected by Golic [Golic J.Dj.,

1997] between bytes at time t and t+2. Many stronger correlations

were later reported by Fluhrer and McOrew [Fluhrer S.R. and McGrew

D.A.,2001].

3. Attacks to guess the internal state and then check for consistency with

known output have been studied independently by several researchers

and results were published [Mister S. and Tavares S.E., 1999];

[Knudsen L. et al., 1998] and [Oolic J .Dj., 2000].

4. The most significant attacks on RC4 have been based on exploiting the

simplicity of the initialization algorithm to discover an observable bias

in the first few bytes of the output sequence. A bias in the second

output byte also has been reported [Mantin L and Shamir A., 2001].

The value zero occurs with twice the expected probability for a random

sequence. A bias in the first byte was also reported [Mironov 1., 2002].

5. Fluhrer S., Martin I. and Shamir A. published a report [Fluhrer S. et al.,

2001] that describes several weaknesses in the key scheduling

algorithm of RC4 and proposes attacks for exploiting those

weaknesses.

6. Klein [Andreas Klein, 2007] showed an improved way of attacking

RC4 using related keys that does not need the 'resolved condition' on

the IVs and gets by with a significantly reduced number of frames.

137

Applications in SSL / TLS

7. Subhamoy Maitra and Goutam Paul gave an independent analysis

(Subhamoy Maitra and Goutam Paul, 2007] of Klein's attack with

results similar to multiple key bytes extension.

8. Vaudenay and Vuagnoux presented a similar attack at SAC 2007

[Serge Vaudenay and Martin Vuagnoux, 2007] which additionally

makes use of the fact that the RC4 key is stretched to 256 bytes by

repeating it. The same trick was reported by Ohigashi, Ozasa,

Fujikawa, Kuwadako and Morii [Toshihiro Ohigashi et aI., 2007] who

developed an improved version of the attack.

9. The implication of these findings is that a buffer overflow attack

[Crispin Cowan et aI., 1999] or a similar attack can be used to learn a

single state of the generator, which can then be used to predict all

random values, such as SSL keys. This attack is more severe and more

efficient than other known attacks.

These problems with RC4 have raised serious alert on the security of

protocols like the SSL which are using RC4 for providing confidentiality.

5.4 Alternate usage of MAJE4 and MACJER-320 in SSL /
TLS Protocol

In SSL, the confidentiality ofthe information is achieved by using RC4

and integrity and authentication by HMAC-SHA-l. In the light of threats to

these methods as described in sections 5.3.1 and 4.2.2.1, an alternative can be

suggested by employing MAJE4 and MACJER-320. The MAJE4 is a 128-bit

or 256-bit key algorithm and the randomness property of the stream cipher

was proven by five empirical tests like frequency test, serial test, poker test,

138

Applications in SSL ! TLS

runs test and autocorrelation test in section 2.2.5. MACJER-320 is also a

competent algorithm for providing message authentication as discussed in

sections 4.1.3 & 4.1.4. Hence MAJE4 and MACJER-320 algorithms can be

used effectively in place of RC4 and HMAC-SHA-1 for encryption and

authentication.

5.4.1 MAJE4 & RC4

5.4.1.1 Timing Analysis & Memory Requirements

From the timing analysis it can be noted that when RC4 and MAJE4

are compared, MAJE4 is almost 1.2 times faster as shown in Table 5.1. On

comparing the memory required for executable files, MAJE4 was found

consuming lesser space compared to RC4. The memory size required for RC4

is 8077 bytes and for MAJE4 it is 5435 bytes.

Table 5.1: Timing Analysis & Memory Requirements

No. of
No. of random Total no.

Memory
Key random bits per of bits

PRNGs
length numbers each produced

require-
ments

generated random (Mbps)
(bytes)

number

MAJE4 128-bit 1,15,39,399 32 352.15 5435

RC4 128-bit 3,95,99,988 8 302.12 8077

139

Applications in SSL / TLS

5.5 Conclusions

The SSL designers have chosen to use the then available algorithms

RC4 as fast stream cipher and HMAC as hash-based construction for its

security services. But recent findings show that the confidence level in these

algorithms is coming down. It is clear that a transition to a newer encryption

and message authentication algorithms will be required in the near future,

since the information handled is very sensitive. It is in this situation that more

secure algorithms MAJE4 and MACJER-320 are suggested which can

definitely become good substitutes.

140

Abstract:

Conclusions

Chapter 6

Summary of Results, Conclusions and
Future Work

The summary of the results of the study of PRNGs / stream ciphers,

hash functions and message authentication codes are presented in this chapter.

Also the performance evaluation of novel algorithms MAJE4, MARS4 and

MACJER-320 for achieving confidentiality, integrity and message

authentication are summarized. The performance of these algorithms were

compared with the current algorithms and an alternate usage of algorithms in

SSLlTLS was suggested.

141

Conclusions

6.1 MAJE4

The study of various popular Pseudo Random Number Generators and

Stream Ciphers have been carried out based on statistical analysis using five

randomness tests. Extensive software implementations and statistical

experimentation were conducted with a view to identifying a reliable PRNG or

Stream Cipher. Results of analysis and performance evaluation studies

showed that JEROBOAM and RC4 are dependable as they passed all the five

randomness tests. Since RC4 had undergone attacks, it was concluded to

make use of the inherent qualities of JEROBOAM as basic guidelines for

future development.

The next goal was to design a stream cipher which generates a long

unpredictable key stream with better performance. On this view, a new fast

stream cipher MAJE4 was designed with a variable key size of 128-bit or 256-

bit. The randomness property of MAJE4 was analysed as shown in section

2.2.5. The performance evaluation of the stream cipher was done by

comparing with JEROBOAM. This is shown in Sec 2.2.6. Processing time

and memory requirements were considered as the perfonnance parameters for

the comparison. The comparison studies revealed that MAJE4 is superior to

JEROBOAM in terms of both the performance parameters. Details are given

in sections 2.2.6.1 and 2.2.6.2.

6.2 MARS4

Having designed the stream cipher MAJE4, which is a symmetric key

algorithm, the focus was on developing a new application by combining the

142

Conclusions

two cryptographic methods - the symmetric key algorithm and the asymmetric

key algorithm, with the objective of getting advantages of both. Thus, a novel

and fast hybrid technique MARS4 was developed using MAJE4 and the

popular asymmetric key algorithm RSA. The performance evaluation of

MARS4 was done in comparison with MAJE4 and RSA. Details of the results

are explained in section 2.3.4. Results have proven that MARS4 which uses

MAJE4 as the stream cipher, performs much better than the systems which use

RSA. It was found to be much faster than the popular RSA and its memory

requirement was also less than RSA. MARS4 also provides a solution to the

key exchange problem seen among symmetric key algorithms, thus preserving

the advantages of both symmetric and asymmetric cryptographic systems. In

short, MARS4 can be projected to be a very sound technique for transferring

messages where confidentiality is of importance to the users.

6.3 Nested Hash Function

Further work was aimed at providing integrity and confidentiality of

messages in a swift and cost effective manner and is described in section 2.4.

A nested hash function with lower computational and storage demands is

developed for providing integrity to messages. Here the hash code and the

message are encrypted using MAJE4 with a limited increase in processing

time and memory as shown in section 2.4.4. Nested hash functions together

with MAJE4 are recommended for internet applications that require both

message integrity and confidentiality. When advanced cryptographic systems

with good speed and lesser memory are made available, it becomes easier to

implement and manage and hence more internet users can take advantage of

these benefits.

143

Conclusions

6.4 JERIM-320

Message integrity is another distinct service which needs to be ensured

during data transfer through the network. To enhance security services,

detailed studies on different popular Hash Functions have been done, desired

properties were identified and a new hash function called JERIM-320 with

improved security and reasonable speed has been designed.

Performance evaluation of JERIM-320 has been carried out by

comparing with 5 popular hash functions SHA-I, SHA-256, RIPEMD-160,

RIPEMD-320 and FORK-256 by using practical implementation and also by

using step computation. This is given in section 3.7. A detailed comparison

with FORK-256, a separate comparison with RIPEMD-320 and comparisons

with the other hash functions SHA-l, SHA-256, RIPEMD-160 are also done.

From the results in sections 3.8.3 and 3.8.4, it can be seen that JERIM-320 is a

reliable random number generator with sufficient speed. It can also fonn an

alternative for the present day hash functions for providing data integrity.

These dual services of JERIM-320 as a hash function as well as a PRNG

makes it very useful in cryptographic applications.

6.5 MACJER-320

The security services of providing confidentiality and integrity have

been dealt with in the previous sections. The other two main security services

demanded by the network community are message authentication and non­

repudiation.

144

Conclusions

A new message authentication code called MACJER-320 with better

security and reasonable speed has been proposed. This was done using

JERIM-320 in combination with a 320-bit secret key.

The performance studies of MACJER-320 were then conducted.

Performance evaluation of the message authentication codes MACJER-320

and HMAC-SHAl was also done using practical implementations as given in

section 4.2.3. The multiple operations on the message blocks in MACJER-320

result in much higher security with a negligible compromise in the speed of

operation. MACJER-320 was concluded to provide higher security than

HMAC-SHAl. Moreover in MACJER-320 the hash function can be used as a

black box, so that the replacement of the underlying hash function is easily

supported. Since message integrity and authentication services are very

important in today's high-speed network protocols and in the light of

confidence levels with the current candidates like SHA-l are coming down,

new MAC schemes are necessary and more secure MAC codes like MACJER-

320 could be a good option.

6.6 Use in SSL / TLS

The Secure Socket Layer (SSL) I Transport Layer Security (TLS)

protocol is the most widely used security protocol in the Internet which meets

the demand for infonnation security. The cryptographic algorithms like RC4

and HMAC have been in use for achieving security services like

confidentiality and authentication in the SSL. But recent attacks against RC4

and HMAC have raised questions on the confidence of these algorithms. It is

clear that a transition to a newer encryption and message authentication

145

Conclusions

algorithms will be required in the near future, since the infonnation handled is

very sensitive. It is in this situation that more secure algorithms MAJE4 and

MACJER~320 are suggested which can definitely become good substitutes.

The focus of this area of the work is to establish the performance of these new

algorithms and suggest them as dependable alternatives.

6.7 Research Conclusions

The work includes an elaborate study on the different security services

that are necessitated for conveying information reliably through the network.

After unravelling the efficient algorithms in different services, improvements

have been attempted on these areas resulting in proposing new algorithms.

Performance studies were conducted to establish the merits of these

algorithms. Altogether, this work forms a comprehensive approach on the

three major dimensions of security services namely confidentiality, integrity

and authentication and contributes to an enhanced security system.

6.8 Future Work

Following are the few suggestions for future work:

1. The fourth main security service called non~repudiation blocks the

sender's denial that the sender had not sent a particular message.

Whereas authentication of identity may be sufficient for applications

where the sender needs only to convince the recipient of his I her

identity, the legal requirements of many e-commerce applications

require non-repudiation to be sufficiently robust for the recipient to

prove to a third party such as a judge or jury that the sender's denial

146

Conclusions

was false. Conventional crypto with a single shared secret key may be

sufficient for two-party authentication, but public key technology is

needed for three-party non-repudiation in open systems such as the

Internet. Non repudiation with public key technology can be achieved

by using digital signatures. This area may be explored further.

2. Other than SSL, there are security protocols used by the network users.

One is the Standard for cryptography based authentication, integrity

and confidentiality services at the IP datagram layer, usually called

IPsec. Another one is Pont to Point Tunneling Protocol known as

PPTP which is used to create Virtual Private Network communication

across the Internet. This works at the IP Datagram layer. Next is the

Secure Electronic Transaction. SET allows secure credit card

transactions over the Internet. Another security protocol is S/MIME

(Secure MIME) which guarantees the secure transmission, storage and

authentication and forwarding of secret data at the application layer.

SSH (Secure shell) Protocol that permits users secure remote access

over a network from one computer to another is also a protocol which

is widely used.

In all these protocols, the asymmetric key algorithm RSA has

been used generally for providing confidentiality. Asymmetric

key algorithms are usually slower and consume a lot of memory.

During our studies, RSA was found to be less efficient in terms of

processing time and memory consumption. Hence development of a

secure asymmetric algorithm which is more efficient than the RSA will

be a useful work.

147

Conclusions

3. The Hash function, JERIM-320 can be made available In several

different strengths, by varying the number of rounds. Another

innovation is possible by accommodating a variety of hash output

Sizes. These improvements will help to customize the security

requirements.

148

Publications

Published Work of the Author

1. Sheena Mathew, K.Paulose Jacob, "A New Fast Stream Cipher:

MAJE4", Proceedings of the International Conference IEEE INDICON

2005, pp 60-63, lIT Madras, Chennai.

2. Sheena Mathew, K.Paulose Jacob, "Performance evaluation of Pseudo

Random Number Generators- A Statistical Analysis", Proceedings of

International Conference on Resource Utilisation and Intelligent

Systems, INCRUIS 2006, pp 224-229, Kongu Engg. College, Erode.

3. Sheena Mathew, K.Paulose Jacob, "A Novel Fast Hybrid

Cryptographic System: MARS4", Proceedings of IEEE INDICON

2006, ppl-5, New Delhi.

4. Sheena Mathcw, K.Paulose Jacob, "Message Integrity in the World

Wide Web: Use of Nested Hash Function and a Fast Stream Cipher",

Proceedings of 14th International Conference on Advanced Computing

and Communication, pp 147-150, ADCOM 2006, NIT, Surathkal.

This paper has since been published in the

International Journal ofInformation Processing, pp 19-25, Vol. 1, No.

2,2007.

149

Publications

5. Sheena Mathew, K.Poulose Jacob, "A Novel High Security Message

Authentication Code: MACJER-320 and its Perfonnance Evaluation", The

lcfai Journal of Computer Sciences, pp 16-28, Volll, No.l, January 2008.

Papers Accepted and awaiting publication:-

6. Sheena Mathew, K.Poulose Jacob, "JERIM-320: A New 320-bit Hash

Function with Higher Security", International Journal of Computers,

Systems and Signals.

7. Sheena Mathew, K.Poulose Jacob, "JERIM-320: A 320-bit Hash Function

with Dual Applications - A Statistical Analysis", Journal of Discrete

Mathematical Science & Cryptography.

8. Sheena Mathew, K.Poulose Jacob, "JERIM-320: A New 320-bit Hash

Function Compared to Hash Functions with Parallel Branches",

International Journal of Computer Science and Applications.

Papers Communicated:-

9. Sheena Mathew, K.Poulose Jacob, "Perfonnance Evaluation of a Novel

Hash Function JERIM-320 in Comparison with Popular Hash Functions".

10. Sheena Mathew, K.Poulose Jacob, "MACJER-320: A New Hash Based

Message Authentication Code".

11. Sheena Mathew, K.Poulose Jacob, "Use of Novel Algorithms MAJE4 and

MACJER-320 for achieving confidentiality and message Authentication in

SSL & TLS".

150

Bibliography

Bibliography

l. Alan O. Freier, Phi lip Karlton and Paul C. Kocher, "The SSL Protocol

Version 3.0", Internet Draft, March 1996,

URL: http://www.freesoft.orglCIE/Topics/ssl-draftlINDEX.HTM

2. Allen C. and Dierks T., "The TLS Protocol Version 1.0", Internet

Draft, Internet Engineering Task Force, November 1997,

URL: http://toolsjetf.orglhtml/rfc2246

3. Andreas Klein, "Attacks on the RC4 stream cipher", Journal of

Designs, Codes and Cryptography, Springer Netherlands, 2008 URL:

http://www.quequero.orgluicwiki/images/Attacks_on_the_RC4_stream

_ ci pher. pd f

4. Atul Kahate, Cryptography and Network Security, Tata McGraw-Hill,

2005

5. Bart Preneel, Vincent Rijmen, and Antoon Bosselaers, "Recent

Developments in the Design of Conventional Cryptographic

Algorithms" 1998,

URL: ftp://ftp.esat.kuleuven.ac.be/cosiclbosselae/algo.pdf

6. Bellare M. and Rogaway P, "Optimal Asymmetric Encryption",

Proc. ofEurocrypf94, LNCS 950, Springer-Verlag 1995, pp.92-111

7. Ben N. Venzke, "Economic Industrial Espionage", July 14th 2002,

URL: http://www.computerconsultants.com/newsl.htm

151

Bibliography

8. Biharn E. and Chen R., "Near Collissions of SHA-O", Advances in

Cryptology- CRYPTO, LNCS 3152, Springer- Verlag, 2004,

pp. 290-305

9. Biham E. and Chen R., Joux A., Carribault P., Lemuet C., and Jalby

W., "Collissions of SHA-O and Reduced SHA-I", Advances in

Cryptology-EUROCRYPT, LNCS 3494, Springer- Verlag, 2005,

pp.36-57

10. Blum M., Blum L. and M. Shub , "A Simple Unpredictable Pseudo

Random Number Generator," SIAM Journal of Computing, 1986

11. Bo Yang, Ramesh Karri, David A. McGrew, "A High- Speed

Hardware Architecture for Universal Message Authentication Code",

IEEE Journal on Selected Areas in Communications, Vol 24, No.10,

2006, pp. 1831-1839

12. Boyar J., "Inferring Sequences Produced by Pseudo-Random Number

Generators", Journal of ACM, Vo1.36(1), Jan 1989, pp. 129-141

13. Braden R., "RFC 1122: Requirements for Internet Hosts­

Communication Layers", October 1989,

URL: http://www.isi.edu/in-notes/rfc 1122.txt

14. Bruce Schneier, Applied Cryptography, John Wiley and Sons, 1996

15. Chabaud F. and Joux A., "Differential Collissions in SHA-O",

Advances in Cryptology- CRYPTO, LNCS 1462, Springer- Verlag,

1998, pp. 56-71

152

Bibliography

16. Christian Rechberger and Vincent Rijmen, "Note on Distinguishing,

Forgery, and Second Preimage Attacks on HMAC-SHA-l and a

Method to Reduce the Key Entropy of NMAC", 2006,

URL:

http://citeseer-ist.psu.edu/cache/papers/cs2/338/http:zSzzSzeprint.iacr.o

rgzSz200GzSz290. pdf/note-on-distinguishing-forgery. pdf

17. Coskun B. and Memon N., "Confusion/diffusion capabilities of some

robust hash functions," Proc. CISS, Conf. on Infonnation Sciences and

Systems, March 2006, pp. 1188 - 1193.

18. Crispin Cowan, Perry Wagle, Calton Pu, Steve Beattie, and 10nathan

Walpole, "Buffer Overflows:Attacks and Defenses for the

Vulnerability of the Decade", 1999,

URL:http://www.ece.cmu.edu/~adrian/630-f04/readings/cowan­

vulnerability.pdf

19. Dobbertin H., "Cryptanalysis of MD4", Fast Software Encryption,

LNCS 1039, Springer-Verlag, 1996, pp. 53-69.

20. Dobbertin H., Bosselaers A., Preneel B., "RIPEMD-160, a

strengthened version of RIPEMD". Fast Software Encryption, LNCS

1039, Springer- Verlag, 1996, pp. 71-82.

21. Erhan K, "Properties of Secure Hash Functions", Denim Group, Nov.

2007, URL:http://denimgroup.typepad.com/denim_group/2007111/

properties-of-1.html

22. Fluhrcr S., Mantin I., Shamir A., " Weakness in the key scheduling

153

Bibliography

Algorithm of RC4", Proceedings in the selected Areas in Cryptography

2001, SAC'01, LNCS vo1.2259, Springer-Verlag, 2001, pp. 1-24.

23. Fluhrer S.R. and McGrew D.A., "Statistical Analysis of the Alleged

RC4 Keystream Generator", Proceedings of Fast Software Encryption

2000, LNCS vol. 1978, Springer-Verlag, 2001, pp.19-30.

24. Frank Rubin, "One-Time pad Cryptography", 1997,

URL: http://www.mastersoftware.biz/crypt005.htm

25. Frier A., Karlton P., and KocherP., "The SSL 3.0 Protocol", Netscape

Communications Corporation, Nov. 1996,

URL: http://home.de.netscape.com/eng/ss13/draft302.txt

26. Fujisaki E. and Okamoto T., "How to Enhance the Seurity of Public­

Key Encryption at Minimum Cost", Proc. Of PKC' 99, Springer­

Verlag, LNCS 1560, 1999a, pp.53-68.

27. Fujisaki E. and Okamoto T, "Secure Integration of Asymmetric and

Symmetric Encryption Schemes", Proc. Of Crypto'99, Springer -

Verlag LNCS 1666, 1999b, pp. 535-554.

28. Gene Tsudik, "Message Authentication with One-Way Hash

Functions", Proceedings ofIEEE-INFOCOM 92, pp. 2055-2059.

29. George Apostolopoulos, Vinod peris, Prashant Pradhan, Debanjan

Sahi, "Securing Electronic Commerce: Reducing the SSL Overhead",

IEEE Network, 14(4), July 2000, pp. 8-16.

154

Bibliography

30. Golic J.Dj., "Linear statistical Weakness of alleged RC4 keystream

generator", Advances in Cryptology - Eurocrypt 97, LNCS vol. 1233,

Springer-Verlag, 1997, pp.226-238.

31. Golic J.Dj., "Iterative Probabilistic Crypt analysis of RC4 Keystream

Generator", Proceedings of ACISP 2000, LNCS vo1.1841, Springer -

Verlag, 2000, pp. 220-233.

32. Grosul A.I and Wallach D.S, "A Related Key Cryptanalysis of RC4",

Manuscript from Department of Computer Science, Rice University, 6

June 2000.

33. Halton J. H., "A Retrospective and Prospective Survey of the Monte

Carlo Method,tI SIAM Review, 1970, 12(1): pp.I-63,

URL:http://www.cs.fsu.edul-mascagni/Halton_SIAM_Review_

1970.pdf

34. Helena Handschuh, Gemplus, Bart Preneel and K.U.Leuven, "Minding

Your MAC Algorithms", 2004,

URL:http://www.gemplusbanlmote.com.br/smart/rdipublicationsIpdf/H

P04isb.pdf

35. Herve Chabanne and Emmanuel Michon, "Jeroboam", Fast Software

Encryptions Conference, Springer LNCS, 1998.

36. Hong D., chang D., Sung 1., Lee S., Hong S., Lee 1., Moon D., Chee

S., "A New Dedicated 256-Bit Hash Function : FORK-256", Fast

Software Encryption , LNCS 4047, Springer- Verlag, 2006, pp. 195-

209.

155

Bibliography

37. lvan Damgard, "A design principle for hash functions"., Advances in

Cryptology - CRYPTO '89 Volume 435 of Lecturer Notes in

Computer Science, Berlin, New York, Tokyo, Springer - Verlag, 1990,

pp. 416-427.

38. Jiqiang Lu, Jongsung Kim, Nathan Keller and Orr Dunkelman,

"Differential and Rectangle Attacks on Reduced-Round SHACAL-l ",

2006, URL:http://www.ma.huji.ac.ill-nkeller/artic1e-853.pdf

39. John Viega, "Practical Random Number Generation in Software",

Proc. 19th Annual Computer Security Applications Conference, 2003,

URL: http://www .acsac.orgl2003/papers!79. pdf

40. Jongsung Kim, Alex Biryukov, Bart Preneel, Seokhie Hong "On the

Security ofHMAC and NMAC Based on HAVAL, MD4, MD5, SHA­

o and SHA-l", Proceedings ofSCN 2006, LNCS, Springer-Verlag.

41. Kaukonen K. and Thayer R., December 1999, "A Stream Cipher

Encryption Algorithm I! Arc four"" ,

URL:http://www.mozilla.orglprojects/security/pki/nss/draft-kaukonen­

ci pher-arcfour-03 .txt

42. Kencheng Zeng, Chung-Huang Yang, Dah-Yea Wei and T.R.N. Rao,

"Pseudorandom Bit Generators in Stream-Cipher Cryptography", IEEE

Computer, February 1991, pp. 8-17

43. Knudsen L., Meier W., Preneel R, Rijmen V. and Verdoolaege S.,

"Analysis methods for (alleged) RC4", Advances in Cryptology -

AsiaCrypt 98, LNCS vo1.1514, Springer -Verlag, 1998, pp.327-341.

156

Bibliography

44. Knuth D.E., The Art of Computer Programming: Vo1.2, Seminumerical

Algorithms, Third Edition, Addison -Wesley, 1997.

45. Lifeng Lai, Hesham El Gamal and H. Vincent Poor, "Authentication

over Noisy Channels", 2008,

URL:http://arxiv.orglPS _ cache/arxiv/pdf/0802/0802.270 1 v1.pdf

46. Mantin I. and Shamir A., "A Practical Attack on Broadcast RC4",

Proceedings of Fast Software Encryption, 2001, LNCS, vol.xx, pp.l52-

164, Springer-Verlag, 2001.

47. Matusiewicz K., Contini S., Pipeprzyk J., "Weaknesses of the FORK-

256 compression function", 2007a,

URL:http://eprint.iacr.org/2006/317.pdf

48. Matusiewicz K., Thomas Peyrin, Olivier Billet, Scott Contini and losef

Pieprzyk, "Cryptanalysis of FORK-256", Fast Software Encryption,

LNCS 4593, Springer- Verlag, 2007b, pp.19-38.

49. Menezes A., van Oorschot P. and Vanstone S., Handbook of Applied

Cryptography, CRC Press, 1997,

URL:http://www.cacr.math.uwaterloo.ca/hac/about/chap5.pdf

50. Michael Chemick c., Charles Edington Ill, Matthew l. Fanto, Rob

Rosenthal, "Guidelines for the Selection and Use of Transport Layer

Security (TLS) Implementations", June 2005,

URL:http://csrc.nist.gov/publications/nistpubs/800-52/SP800-52.pdf

157

Bibliography

51. Mihir Bellare, Roch Guerin, Philip Rogeway, "XOR MACs: New

Methods for Message Authentication using Finite Pseudorandom

Functions", Advances in Cryptology - Crypto 95 Proceedings,Lecturer

Notes in Computer Science Vol. 963, D.Coppersmith ed. Springer -

Verlag, 1995.

52. Mihir Bellare, Ran Canetti, Hugo Krawczyk , "Message Athentication

Using Hash Functions - The MAC Construction", RSA Laboratories

CryptoBytes, Vol.2, No.l, Springer- Verlag, 1996a.

53. Mihir Bellare, Ran Canetti, Hugo Krawczyk , "Keying Hash Functions

for Message Authentication", Advances in Cryptology - Crypto 96

Proceedings,Lecturer Notes in Computer Science Vol. 1109, Springer

- Verlag, 1996b.

54. Mihir Bellare, Joe Kilian and Phillip Rogaway, "The Security of the

Cipher Block Chaining Message Authentication Code", July 1999,

URL: http://www.cs.ucdavis.edulresearchltech-reports/ 1997 ICSE-97-

15.pdf

55. Mironov 1., "(Not so) Random Shuffles of RC4", Advances in

Cryptology -CRYPTO-2002, LNCS vo1.2442, Springer Verlag, 2002,

pp. 304-319.

56. Mister S. and Tavares S.E., "Cryptanalysis of RC4-1ike Ciphers",

Proceedings of SAC'98, LNCS vol. 1556, Springer- Verlag, 1999,

pp.131-143.

158

Bibliography

57. Mustak E. Yalcin, Johan A. K. Suykens and Joos Vandewalle, "True

Random Bit Generation From a Double-Scroll Attractor", IEEE

Transactions on Circuits and Systems, Vol. 51, No.7, July 2004, pp

1395-1404.

58. National Institute for Standards and Technology, "Data Encryption

Standard (DES) FIPS PUB 46-3", U.S. Department of Commerce, Oct.

1999, URL: http://csrc.nist.gov/publications/fips/fips46-3/fips46-3.pdf

59. National Institute for Standards and Technology, "Digital Signature

Standard (DSS) FIPS PUB 186-2", U .S. Department of Commerce,

Jan. 2000, URL: http://csrc.nist.gov/publications/fips/fips186-

2/fips186-2- changel.pdf

60. National Institute for Standards and Technology, "Advanced

Encryption Standard (AES) FIPS PUB 197", U.S. Department of

Commerce, Nov. 2001,

URL:http://csrc.nist.gov/publications/fips/fips 197/fips-197 .pdf

61. National Institute of Standards and Technology (NIST), "FIPS-180-2:

Secure Hash Standard", 2002,

URL:http:// csrc.nist.gov Ipublicationslfi ps/fips 180-2/fips 180-2. pdf

62. National Institute of Standards and Technology, Federal Information

Processing Standards (FIPS) Publication 198, "The Keyed-Hash

Message Authentication Code (HMAC)", March 2002,

URL:http://csrc.nist.gov/publications/fips/fipsI98/fips-198a.pdf

159

Bibliography

63. National Institute of Standards and Technology, "Federal Infonnation

Processing Standards (FIPS) Publication 180-2", Secure Hash Standard

(SHS), February, 2004

64. National Institute for Standards and Technology, "DRAFT RSA Strong

Primes - Digital Signature Standard (DSS) FIPS PUB 186-3", U.S.

Department of Commerce, Dec. 2007,

URL:http://csrc.nist.gov/publications/drafts/fips _186-3/fips186-

3 _ Strong-Prime-Sections _ Dec2007.pdf

65. Niels Ferguson, "Twofish Technical Report #l-Upper bounds on

differential characteristics in Twofish", 1998,

URL: http://www.schneier.com/paper-two fish -di fferential. pdf

66. Nowell Security Enforcement, "Preventing Industrial Espionage",

2003, URL:http://www.nowellgroup.comlindex.php?page=espionage

67. Park Stephen K. and Keith W. Miller, "Random Number Generators:

Good ones are hard to find", Communications of the ACM, October

1988, pp.1192-1201.

68. Philip Hawkes, Michael Paddon, and Gregory G. Rose, " On corrective

patterns for the SHA-2 family", Cryptology ePrint Archive, Report

2004/207, August 2004, URL: http://eprint.iacr.org/2004/207.pdf

69. The prime pages, "Finding primes, proving primality", Sept. 2006,

URL: http://primes.utm.edulprove/prove2_3.html

160

Bibliography

70. Raphabel C, W.Phan and David Wanger, "Security considerations for

incremental hash functions based on pair block chaining", Journal of

Computers & Security 25(2006), pp 131-136.

71. Ralph C.Merk1e, "One way hash functions and DES", Inadvances in

Cryptology - CRYPTO '89 Volume 435 of Lecturer Notes in

Computer Science, Berlin, New York, Tokyo, Springer - Verlag, 1990,

pp. 428-446.

72. Richard Clayton, "Brute force attacks on cryptographic keys", Oct.

2001, URL: http://www.cl.cam.ac.uki-rnc1/brute.html

73. Richard Power, "Richard Power On Corporate Espionage",

September 15th 2000,

URL:http://www.techtv.com/cybercrime/print/0.231 02, 12005,00.html.

74. Ritter T., "The Efficient Generation of Cryptographic Confusion

Sequences," Cryptologia, 15(2), 1991, pp. 81-139.

75. Rivest R.L., "The MD4 message digest algorithm", Advances in

Cryptology-CRYPTO, LNCS 537, Springer-Verlag, 1990, pp.303-311.

76. Rivest R.L., "The MD5 message digest algorithm", (RFC 1320),

Internet Activities Board, Internet Privacy Task Force, 1992.

77. Roos A., "A Class of weak keys in the RC4 stream cipher", sci.crypt,

1995.

161

Bibliography

78. RSA Laboratories, "PKCS #1 v2.1: RSA Encryption Standard", June

2002, URL: ftp://ftp.rsasecurity.com/pub/pkcs/pkcs-1/pkcs-1 v2-1.pdf.

79. Security Protocols Overview An RSA Data Security Brief, 1999,

URL: http://www.comms.scitech.susx.ac.uklfftlcrypto/security-

protocols.pdf

80. Seigenthaler T., "Decrypting a class of Stream Ciphers Using Cipher

text Only", IEEE Transactions on computer, Vol C-34, No.1,

Jan 1985, pp. 81-85

81. Serge Vaudenay and Martin Vuagnoux, "Passive-only key recovery

attacks on RC4". In Selected Areas in Cryptography 2007, Lecturer

Notes in Computer Science, Springer 2007

82. SmartCards Expo, 2007,

URL:http://www.electronicstoday.orgie_security2007.htm

83. "Specification of the Bluetooth system", vol.l.l , Feb. 2001,

URL:http://www.bluetooth.com!dev/ specifications.asp

84. Standards for Efficient Cryptography Group (SECG), "SEC 1: Elliptic

Curve Cryptography, Version 1.0", September 20, 2000.

URL:http://www.secg.orgidownload/aid-385/sec1_final.pdf

85. Stanford University, "Network security resources and reporting

problems", School of Earth Sciences, Oct. 2006,

URL:http://pangea.stanford.edulcomputerinfo/resources/network!

security/

162

Bibliography

86. Subariah Ibrahim, Mohd Aizaini Maarof and Norbik Bashah Idris,

"Avalanche Analysis of Extended Feistel Network", 2005,

URL:http://eprints.utm.my/3258/l/Subariah_PARS05.pdf

87. Subhamoy Maitra and Goutam Paul, "Many keystream bytes ofRC4

leak secret key information", Cryptology ePrint Archieve, Report

2007/261,2007, URL: http://eprint.iacr.orgl.

88. Sultan Weatherspoon, "Overview of IEEE 802.11 b Security", Intel

Technology Journal Q2, 2000, pp. 1-5,

URL:ftp:lldownload.intel.comJtechnology/itjlq22000/pdf/art_5.pdf

89. Thomas Calabrese, "Information Security Intelligence Cryptographic

Principles and Applications", Thomson Delmar Learning, India 2006.

90. Toshihiro Ohigashi, Hidenori Kuwakado and Masakatu Morii, "A Key

Recovery Attack on WEP with Less Packets", Technical Report of

IEICE, ISEC Nov., 2007.

91. Transport layer Security, Wikipedia, 2008

URL:http://en. wikipedia.orglwiki/Secure _Sockets_Layer

92. Vazirani U. and Vazirani V., "Efficient and Secure Pseudo Random

Number Generation (extended abstract) Advances in Applied

Cryptology," Proceedings of CRYPTO 84, Springer - Verlag, 1985,

pp. 193-202.

93. Wagner D., "My RC4 weak keys", sci.crypt, September 1995.

163

Bibliography

94. Wagner D., "A Generalized Birthday Problem", Proceedings of Crypto

'02, LNCS vol. 2442, Springer-Verlag, 2002.

95. W AP Forum, "Wireless Application Protocol Architecture

Specification, WAP-100-WAPArch-19980430-a", WAP Forum

Specifications 30-Apr-1998 version,

URL:http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.

html

96. WAP Forum, "Wireless Application Protocol Wireless Transport Layer

Security Specification, W AP-199-WTLS-20000218-a", W AP Forum

Specifications 18-Feb-2000 version,

URL:http://www.openmobilealliance.org/tech/affiliates/wap/wapindex.

html

97. Wei Zeng D.,Yang K. C. and Rao T., "Pseudo Random bit Generators

in Stream Cipher Cryptography," IEEE Computer, 1991.

98. William Aiello, Sivaramakrishnan Rajagopalan and Ramarathnam

Venkatesan, "Design of Practical and Provably Good Random Number

Generators", SODA'95, ACM Jan 1995, pp. 1-9.

99. William Stallings, Network Security Essentials- Applications and

Standards, Pearson Education, 2001.

lOO.William Stallings, Cryptography and Network Security- Principles and

Practices, Pearson Education, 2003.

164

Bibliography

lOl.Williams H.C., "A Modification of the RSA Public key Encryption

Procedure", IEEE Trans. on Infonnation Theory, Vol. IT-26, No.6,

1980, pp.726-729.

l02.Xiaoyun Wang and Hongbo Vu, "How to break MD5 and other hash

functions", Advances in Cryptology - EUROCRYPT, LNCS 3494,

Springer-Verlag, 2005, pp. 19-35.

l03.Yuan li and T. W. Cusick, "Strict Avalanche Criterion Over Finite

Fields", 2005, URL: http://eprint.iacLorg/2005/361.pdf

165

	TITLE
	CERTIFICATE
	DECLARATION
	ACK1~OWLEGEMENTS
	ABSTRACT
	Contents
	List of Algorithms
	List of Figures
	List of Tables
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Publications
	Bibliography

