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ABSTRACT

Fourier transform methods are employed heavily in digital signal processing. Discrete Fourier

Transform (DFT) is among the most commonly used digital signal transforms, The exponential

kernel of the DFT has the properties of symmetry and periodicity. Fast Fourier Transform (FFT)

methods for fast DFT computation exploit these kernel properties in different ways. In this thesis,

an approach of grouping data on the basis of the corresponding phase of the exponential kernel of

the DFT is exploited to introduce a new digital signal transform, named the M-dimensional Real

Transform (MRT), for l-D and 2-D signals. The new transform is developed using number­

theoretic principles as regards its specific features. A few properties of the transform are

explored, and an inverse transform presented. A fundamental assumption is that the size of the

input signal be even. The transform computation involves only real additions. The MRT is an

integer-to-integer transform. There are two kinds of redundancy, complete redundancy & derived

redundancy, in MRT. Redundancy is analyzed and removed to arrive at a more compact version

called the Unique MRT (UMRT). l-D UMRT is a non-expansive transform for all signal sizes,

while the 2-D UMRT is non-expansive for signal sizes that are powers of 2. The 2-D UMRT is

applied in image processing applications like image compression and orientation analysis. The

MRT & UMRT, being general transforms, will find potential applications in various fields of

signal and image processing.
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Chapter I 

INTRODUCTION 

1.1 Transforms in Digital Signal Processing 

A digital signal is a sequence of numbers, real or complex, that represents an information-bearing 

quantity over discrete co-ordinates of time, space or another variable. Digital signal processing 

has long come to play a pivotal role in almost all fields of technology. It involves various 

methods of dealing with digital signals, e.g., analysis and modeling of signals, their coding and 

transmission, compression, restoration etc. In the process of analyzing signals for further 

processing, signal processing theory makes use of a fundamental class of operators called signal 

transforms. Transforms convert the original signal into a form which enables relatively simpler 

analysis than in the original form. The exact effect of the transform on the signal is unique for 

each transform. Hence, different signal processing applications may use different transforms, of 

which many kinds exist. 

Transforms can thus be considered to be the fundamental components in digital signal processing, 

where a majority of operations are performed in the transform-domain. Continuous transforms 

like Fourier and Laplace transfonns were the earliest transforms used in analog signal 

manipulation. Signal processing operations utilizing these analog transforms were implemented 

using low pass, high pass, and band pass filters and spectrum analyzers. With the advent of digital 

computers, signal processing became digital in nature, and digital signal processing has been an 

area of heavy research activity. New specific applications of digital signal processing have 

resulted in development of application-specific transforms. 

The introduction of the Fast Fourier Transform (FIT), in 1965 by Cooley and Tukey [1], became 

a turning point in the evolution of digital signal processing. The FFT gave an impetus to all 

branches of digital signal and image processing and it gave rise to numerous applications for the 

FFT. The Walsh transform, introduced in 1970, found applications in signal processing. This was 

followed by the development of a large family of fast transfonns. Requirements in data 

compression led to preferences for transforms that had the property of energy compaction. 

Transform domain processing has been found suitable for signal and image restoration, 

enhancement, and feature extraction. The Discrete Cosine Transform (DCT) has the energy 

compaction property and is the underlying transform in the JPEG and MPEG standards for image, 

audio, and video compression. The next major step in the evolution of transform-based signal 



processing was the introduction of the wavelet family of transforms in the 1980s. Wavelets 

provide a better local representation of signals in contrast to the global representation that is 

characteristic to Fourier, DCT, and Walsh-Hadamard transforms. Basis functions of the wavelet 

transform are generated from a primary function, the mother wavelet, by means of coordinate 

shift and coordinate scaling operations. Since their introduction, wavelets have gained a great 

popularity. Currently, wavelets constitute a well-established and widely-used part of signal 

processing transfonn theory, and have found a wide range of applications. 

Main directions of growth in the field of transfonns for signal and image processing [2] are 

(i) further development of application-specific transforms. 

(ii) perfecting numerical representation of natural transforms for new applications 

(iii) research aimed at enabling local adaptivity of transform domain processing of signals. 

(iv) exploration of the use of digital transforms in new applications, and 

(v) development of new practical transform domain processing methods to meet growing 

demands. 

1.2 Linear transforms 

A linear transform maps an N-point input vector, x, into a K-point output vector, y, as follows 

y=A*x, 

[ 

Xo 1 XI 
x= . , 

Xi~-I 

[ 

Yo 1 YI 
y= . 

y~-l 
where A is an N x K matrix of real or complex coefficients and A * is the K x N conjugate 

transpose of A. The inverse relationship is given by 

x=By, 

A and B being related as, 

BA*=J, 

J being the N x N identity matrix. For the case N = K, B and A are related by 

B- 1 = A * 

2 



Transform coefficients may be expressed as 

q = O,1, .... ,N-1 

where aq is the qth column of the N x N matrix, A, also called the kernel of the transform. The 

inverse transform may be expressed as 

N-I 

x= LYiq 
q=O 

where bq is the qth column of the N x N matrix, B. 

Defining the inner product between two N-dimensional vectors, v and w, as 

,v-I 

(V,W) = LVqW;, 
q=O 

The transform is said to be orthogonal if 

(apaj)=O, Vi*j, 

and an orthogonal transform is defined to be orthonormal if 

The Karhunen-Loeve Transfonn (KLT) is an orthononnal transform that has much theoretical 

significance since it is considered the optimal transform for applications such as signal 

compression on account of its property of decorrelating the input, providing best energy 

compaction among all orthonormal transforms. The transform kernel of the KL T is fonned from 

the eigenvectors of the covariance matrix of the input signal. Hence, the KLT is considered a 

data-dependent transfonn, which distinguishes it from most other orthonormal transforms that 

have data-independent kernels. 

Transforms can be classified as real transforms or complex transforms. The basis of classification 

implied here is the presence or absence of complex terms in the kernel of the transform. For 

example, the OFf is a complex transform since its kernel contains the complex exponential. On 

the other hand, the kernel of the DCT contains only a cosine term and hence the transform 

coefficients of the DCT are also real, provided the input data is real, making the DCT a real 

transform. Further, real transforms may be classified on the basis whether they transform integers 

to integers. Integer-to-integer transforms have the advantage of ease of implementation. 

3 



1.2.1 Complex transforms 

1.2.1.1 Discrete Fourier Transform (DFT) 

The forward and inverse DFT of an N-point sequence Xn are defined as 

N-I -j21rnk 

Yk = IXne~-, k=O,I, ... ,N-l,and 
n~O 

1 ,v-I f21rnk 

xn "" -2 I Yke N , n = O,I, ... ,N -1, respectively. 
N k~O 

The DFT decomposes the input as a linear combination of complex exponential wavefonns of the 

unifonnly spaced frequencies. 

1.2.1.2 Number Theoretic Transforms (NTT) 

NITs are discrete Fourier transfonns that are defined over finite fields or rings. A forward and 

inverse NTT pair is defined by 

N-I 

Yk = «Lxnank»,t{, k =O,1,2, ... ,N-l 
n=O 

and 

N-I 

xn = «N-IIYka-nk»M' n ==O,1,2, ... ,N-l 
n=O 

where N is the transform length, a is a root of unity and M is the modulus. Arithmetic is 

perfonned modulo M, where M can be a prime M = p, a power of a prime M = pm or a composite 

number that results in NTT pairs defined over a Galois field. Only a small subset of NTTs has 

properties that make them useful for practical purposes. 

1.2.1.3 Fractional Fourier Transform (FRFT) 

The Fractional Fourier transform (FRFT) is a generalization of the Fourier transform. The FRFf 

of a function Xl is defined as 

The inverse FRFT is given as 

1r 1r) ( - , -k ) -/(- --- -,_, Jt'cota J-t 
4 2 J'_~J~ '" ---- -

p-a[ ] == e 2 J 2 sina dk Yk .J . e e Yk , 
27r sma -00 

4 



where a = a1£ /2. When a = 1£ I 2, the FRFT reduces to the conventional Fourier transform. 

Depending on the value of a, called the fractional operator, the actual operation performed on the 

signal by the FRFT kernel varies. The FRFT has been extended to the discrete domain using 

many methods. 

1.2.1.4 S Transform 

The S transform is a time-frequency representation obtained by extension of the ideas of the 

wavelet transform, and is based on moving, scalable Gaussian windows. It combines advantages 

of the Fourier transform and the wavelet transform by providing a frequency-dependent 

resolution of the time-frequency space along with local phase information. The S transform is 

defined as 

<Xl (T_I)2/2 

S( r,f) = f XI ~e - ·-2 -e -J2"fi dt , and the inverse as 
-<0 ,,27f 

The discrete S transform is defined as 

n N-I [fn+n} '" S(qT'-)=LH -- -2"·,,nn- eJ2!r1nqIN, n;tO, 
NT m;O NT 

and the inverse discrete S transform is obtained as 

h(kT) = I{.l IS[qT,~]}e.i2"nk!N. 
n;O N q=O NT 

1.2.2 Real Transforms 

1.2.2.1 Discrete Hartley Transform (DHT) 

The Hartley transfonn is an integral transform that shares some features with the Fourier 

transform. It produces real output for a real input, and has the duality property. In comparison, a 

real input is not transformed to a real output by the DFT. Consequently, there is a data 

redundancy in the transform domain where only one half of the 2N real values, representing the 

real and imaginary parts of the transform coefficients, are carrying any useful information. A 

modification in the definition of DFT is done in DHT to remove this drawback. The complex 

kernel of the DFT, given by e - j211nklN = cos(27fnk I N) - j sin(27fnk / N) is replaced in the discrete 

Hartley transform by the real kernel cos(27fnk I N) + sin(21£nk I N) , also called the cas function. 

5 



1.2.2.2 Discrete Cosine Transform (DCT) 

The I-D DeT of an N-point sequence Xn is defined as 

;V-I [1l"(2n+ 1)k] 
Yk = a(k) l>ncos , k =O,1, ... ,N-1 

n=O 2N 

where 

a(O) = If, a(k)=~, k =1, ... ,N-l 

1.2.2.3 Modulated Lapped Transform (ML T) 

The I-D MLT [3] decomposes a signal into over-lapping blocks. The overlap between adjacent 

blocks is L samples. Hence, each block has 2L samples, where each sample belongs to two 

blocks. The transform is defined by 

k=O, ... ,L-l n=0, ... ,2L-l 

where hn is a sine-shaped window function with period 4L symmetric about the block centre (2L-

1)12. 

The basis functions of 2-D MLT Pk,l,n,m is obtained by 

The 2-D MLT transform of a signal sn,m is given by 

2L-I2L-I 

SkI = " '" S Pklnm k,l =O, ... ,L-l , L... L... n,m , , , 
n=O m=O 

1.2.2.4 Lapped Directional Transform (LDT) 

The LDT [4] is derived from the MLT and a time-inverted and sign-inversed version of the MLT, 

referred to as MLT'. The basis functions of the 1-D MLT' are given by 

w\,n = hnsin[~ (n- L; 
1
)( k +~)] k = O, ... ,L-l n =0, ... ,2L-} 

The basis functions of the 2-D MLT' are given by 

p' =w' w ' k~/,n,m k.n I,m 

The 2-D MLT' of signal sn,m is given by 

6 



2L-I2L-\ 

S' - '" '" S p' k,1 - L...J L...J n,m k,l,n,m 
n=O m=O 

The LDT is obtained by using both the MLT and the MLT' 

{ 

SH/2,j-1/2 - S 'i-1!2,j-1/2 

~,j = SH!2,- j-112 + S 'H/2.- j-1I2 

Y-i,-j 

if i > O,j > 0 

if i > O,j < 0 

if i < 0 

where ij = -L + 1/2, - L + 3/2, ... , -112, 1/2, ... , L - 3/2, L-l/2. 

The LDT contains twice as many coefficients as the original image. The advantage of the LDT 

over the MLT is that it is capable of distinguishing between mirrored orientations in the image. 

1.2.3 Wavelet Transform 

The Continuous Wavelet Transform (CWT) of I-D signal Xl is defined as 

"'s 1 _(t-b) 
Wa,b = --<to XI Pt -a- dt 

where a and b are real and * denotes complex conjugation, and lfI(t) is the mother wavelet. If the 

mother wavelet satisfies 

_ al 1\}'(w)12 
c= _! I~ dw, o < C < 00 , then the inverse transform is 

1 "'s NOS 1 1 (t-b) x/ = C -2Wa.b ulfl -- dadb 
a=-"O b=-'" lal ",Ial a 

The Discrete Wavelet Transform (DWT) can be defined in terms of discrete-time multi resolution 

decomposition, in which the signal is decomposed to yield a low-resolution signal v: and wavelet 

coefficients l1~, j = 1,2, ... .J , where J depends on the number of levels of decomposition. The 

DWT can be computed by the inner products 

j =1,2, .... J 

where gn is the analysis scaling filter, and fin is the analysis wavelet filter. The inverse DWT 

reconstructs the signal as a linear combination of shifted synthesis wavelets weighted by the 

corresponding wavelet coefficients, plus a very low resolution approximation of the signal, as 
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where g" and h" are the synthesis scaling and wavelet filters respectively. Since shift-variance 

and other issues like lack of directionality are drawbacks of the real DWT, complex wavelet 

transforms, having complex wavelet filter coefficients, have been proposed, 

1.2.4 Integer Transforms 

Integer transforms are discrete transforms which map integer inputs to integer outputs. Some 

integer transforms use only integer arithmetic, i.e. all the elements of the transform matrix are 

integers, whereas some other integer transforms use floating-point arithmetic for integer-to­

integer transformation. The over-riding advantage of integer transforms is their simpler 

implementation when compared to non-integer transforms. Transforms such as the Walsh­

Hadamard transform and the Slant transform have integer-valued kernels. Integer trigonometric 

transforms, formed from approximations of the corresponding trigonometric transforms, and 

integer wavelet transforms, constructed by using lifting techniques, are commonly employed in 

image processing applications such as lossless compression. 

1.2.4.1 Walsh-Radamard Transform (WHT) 

The forward I-D WHT is given by 

lllr.,!\' -~ 
1 N-[ t b,(n)b,(k) 

Yk = NLX,,(-l) ,"tI ,k=O,1,2, .... N-l 
n~O 

where the summation in the exponent is performed in modulo 2 arithmetic, and bv(z) is the vth bit 

in the binary representation of z, and N is a power of 2. 

The Hadamard matrix is a square array of plus and minus ones whose rows and columns are 

orthogonal to one another. The product of the Hadamard matrix and its transpose is the identity 

matrix. The lowest order Hadamard matrix is of order two, and is given by 

If N = 2" (n an integer), and Hv is a Hadamard matrix of order N, then the Hadamard matrix H2N 

of order 2N can be obtained recursively as 

H,v ] 
-H N 

The I-D WHT 8-point transform kernel is shown in Figure 1.1. 
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1 1 1 1 

1 1 1 -1 -1 -1 -1 
1 1 -1 -1 -1 -1 1 

1 -1 -1 1 1 -1 -1 

-1 -1 1 -1 -1 1 

-1 -1 -1 1 1 -1 
-1 1 -1 -1 -1 1 

-1 1 -1 1 -1 -1 

Figure 1.1. Transfonn kernel values for 8-point I-D WHT 

1.2.4.2 Haar Transform 

Haar functions are defined as 

1 
ho(n)=hoo(n)= r:;;' 

, '>IN 
nE [0,1] 

0, otherwise, for 11 E [0,1] 

For the Haar transform, 11 = mlN, m = 0,1, ... " ,N - 1. The I-Iaar transfonn matrix for N = 8 is 

shown in Figure 1.2. 

1 1 
1 1 1 1 -1 -1 -1 -1 

J2 J2 -J2 -J2 0 0 0 0 

1 0 0 0 0 J2 J2 -J2 -J2 
18 2 -2 0 0 0 0 0 0 

0 0 2 -2 0 0 0 0 

0 0 0 0 2 -2 0 0 

0 0 0 0 0 0 2 -2 

Figure 1.2: Transfonn kernel values for 8-point I-D Haar Transform 
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1.2.4.3 Integer Trigonometric Transforms 

Integer transforms have been obtained for the trigonometric transforms i.e. DWT, DFT, DCT and 

DST, by replacing the real components in the transform kernels by integers. The transform kernel 

matrix for one version of 8-point I-D integer DCT is given in Figure 1.3. 

1 1 1 1 

5 3 2 -1 -2 -3 -5 

3 1 -I -3 -3 -I 3 

3 -1 -5 -2 2 5 1 3 

1 -1 -1 I 1 -1 -1 

2 -5 1 3 -3 -1 5 -2 

1 -3 3 -I -1 3 -3 1 

1 -2 3 -5 5 -3 2 -I 

Figure 1.3 : Transform kernel values for 8-point I-D integer DCT 

1.2.4.4 Integer Wavelet Transforms 

Different approaches to construct integer wavelet transforms exist. An important method is to 

obtain integer-to-integer wavelet transforms [5] by the use of the lifting scheme, which ensures 

perfect reconstruction. In this method, the wavelet transform is facto red into lifting steps in which 

the filter output is rounded off to the nearest integer. 

1.2.4.5 Modulo Transforms 

Modulo transforms [6] offer a new method for construction of orthogonal transforms that map 

integers to integers, and are an alternative to the lifting scheme. They are based on a theory of 

quantizing transfonn coefficients, called critical quantization. Modulo transforms are reversible, 

have rational coefficients and unit detenninant. 

1.2.4.6 Radon Transforms 

The classical Radon transform is a continuous transform. The Radon transform of a 2-D signal is 

defined on a family of straight lines. The value of the transform is the integral of the signal along 

this line. Describing a straight line as t = mq + r , the Radon transform is defined for this line as 

ao 

R(r,m) = f xt+mq,qdq 

-ao 
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With the advent of computers, the Radon transform was seen to have potential applications in 

tomography and image processing. This necessitated the introduction of discrete versions of the 

continuous Radon transform. Various approaches have been proposed for a Discrete Radon 

Transform (DRT). A DRT proposed by Gertner in [7] on a quadratic array of N x N numbers is 

described as follows: 

Let 

«(ac+bd))N = 0, O~c,d~N-l 

be a system of linear congruences. Assume that a direction on a square grid N x N is denoted as 

(c, d). Direction (c', d) is said to be orthogonal to direction (c, d) if 

«cc'+ dd')) N = ° 
The solutions to 

«ac'+bd'))N = e 

are said to be orthogonal to the solutions of «ac + bd))N = O. The solutions for each value of e = 

0, 1, 2, ... , N-l can be considered to be N discrete parallel lines. 

For a given direction (c, d), the discrete Radon transform is defined as the sum of the data over 

the corresponding orthogonal directions to (c, d) for each value of e. 

R(c.d) = " " x .. 
e L.. L... t,} 

e=O,I,2, ... ,N-l 
i j('Vi,j=>«(ic'+ jd')h=e) 

Discrete Periodic Radon Transfonn (DPRT): 

Case 1: N is prime: The DPRT of xn"n, is defined as 

N-I 

xg(d) = IXd '"2' O~d~N-l 
n,=O 

X-I 

x: (d) = IX",.«d+mn,))\, O~d,m~N-l 
n,=O 

Case 2: N is a power of 2: The DPRT is defined as 

N-I 

X;(d) = I X«d+2sn,»,\"n,' o ~ d ~ N -1, 0 ~ s ~ (N /2)-1 
n2=0 

o ~ d ~ N -1, 0 ~ m ~ N -1 

Inverse DPRT: 

Case 1: N is prime: The inverse DPRT is given by 
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Case 2: Nis a power of2: The inverse DPRT is given by 

log, N-I 2 N-I 

X = SO - "" Si - -" Xc (cl) 
n1,n'!. n1>n2 ~ nl,n~ N 2 ~ 0 ' 

i-I d-O 

where 

Orthogonal Discrete Periodoc Radon Transform (ODPRT): 

The ODPRT of 2-D signal of size N x N, where N is a power of 2, consists of three components, 

given by, 

X:,(d) =X,~(d)-X~(d +N 12), O~ m ~ N -1, O~d ~ NI 2-1 

X;(d) == X;(d) -X;(d + N 12), 0 ~ d,s ~ NI 2-1 

Xl = X + X . + x + X I 0 < n n < NI 2 1 nl.no nl.n, nl.n,+NI2 nl+N/2.n, nl+NI2.n,+i'i/2' - I> 2 - -

The inverse ODPRT is given by 

1 1 N-I 1 N12-1 
xnl .n, =-XI«(nl»NI2,«n2»NI2)+-IX~«(n2 -mnj»N)+- I X;«(n j -2sn2 »N) 

.. 4 2N m-O 2N s-O 

1.3 Motivation 

The Discrete Fourier transform (DFT) is important in many applications. In most of the DFT 

computation techniques, the real data will be converted into complex form, and the computations 

will be in complex form, which increases the computation time and the memory requirement. One 

complex multiplication requires 4 real mUltiplications and 2 real additions. Two memory 

locations will be required to store one complex data. Also, the computation time will be more for 

multiplication than addition. Thus, the speed of computation can be improved by reducing the 

number of complex multiplications. Direct computation of 2-D DFf computation involves 

N 4 complex multiplications corresponding to an N x N data. An alternative definition for 2-D 

DFT computation was proposed in [8] as given below. 

M-I 

Yk1h = I 0'~:k:W(' (1.1 ) 
p=o 
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z=((njkj +n2k2))N 

M=NI2 

(1.2) 

(1.3) 

This method involves N 3 12 complex multiplications in the transformation. As N increases, the 

computational complexity will increase exponentially in both the methods. Since Yk~~;, is a 

mapping of the data onto the planes corresponding to twiddle-factor axes of the 2-D DFT, 

frequency-domain analysis of signals can be made using y1 Pj . If a transformation from time 
I- 2 

domain to frequency domain and vice-versa using Yk;:l, in (1.2) is developed, complex arithmetic 

can be avoided and it would involve real additions only. This motivates the development of the 

new transform proposed in this thesis. 

1.4 Outline of thesis 

A survey of the literature on major signal transforms including most of those reviewed in the 

current chapter is done in Chapter n. 

In Chapter lIl, the 2-D MRT is described in detail. The forward transform is presented in section 

3.2 and the method for direct computation of 2-D MRT is presented in section 3.3. The conditions 

for existence of the 2-D MRT coefficients are given in section 3.4. Also presented in this section 

are general solutions for indices of data elements that belong in a 2-D MRT coefficient. In section 

3.5, a closed-form expression for 2-D MRT computation obtained as a result of the analysis in 

section 3.4 is presented. A few important properties of the 2-D MRT are presented and proved in 

section 3.6. Finally, the inverse 2-D MRT for N a power of 2 is detailed in section 3.7. 

Chapter IV presents the study of I-D MRT. The forward I-D MRT is proposed in section 4.2, in 

which direct l-D MRT computation is discussed and a few examples of I-D MRT are given for 

various signal sizes. Section 4.3 is dedicated to the analysis of I-D MRT. Topics treated in this 

section include phase index of I-D MRT coefficients, existence of I-D MRT coefficients, 

dependence of phase index on frequency index, and a closed-form expression for l-D MRT. In 

Chapter III, although redundancy was observed, it was not explored further. A detailed study of 

redundancy is done in section 4.4. Two types of redundancy - complete redundancy and derived 

redundancy are described in this section. The redundancy in I-D MRT is removed to obtain I-D 

UMRT in section 4.5, in which UMRT computation and the number ofUMRT coefficients also is 
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presented. The important distinction between the 1-0 MRT and the 1-0 UMRT is that the 1-0 

UMRT has the same number of coefficients as the data, unlike the expansive 1-0 MRT. In 

section 4.6 the 1-0 inverse UMRT is presented. The inverse 1-D MRT can be obtained by using 

the inverse I-D UMRT. A method of l-D signal representation using I-D MRT is presented in 

section 4.7. 

Complete redundancy in 2-D MRT is analyzed and a redundancy-eliminated representation called 

UMRT is arrived at in Chapter V. Divisor and non-divisor rows and columns, complete 

redundancy between rows/columns, number of unique 2-D MRT frequencies and unique 2-D 

MRT coefficients are the topics described in section 5.2. The 2-D UMRT is obtained from 2-D 

MRT by removing the complete redundancy present in the latter. The forward and inverse 2-D 

UMRT for N a power of 2 is presented. An N x N representation for these 2-D UMRT 

coefficients is also presented in section 5.3. 

The thesis concludes with Chapter VI which presents applications, discussion, conclusion and 

areas for further research. Applications of 2-D MRT in generation of image blocks, and of 2-D 

UMRT in image compression and orientation estimation are presented in section 6.2. A few 

important issues relevant to the MRT and UMRT are discussed in section 6.3. The chapter 

concludes by stating a few possible areas for further research in section 6.4. 
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Chapter 11 

REVIEW OF LITERATURE ON SIGNAL TRANSFORMS 

2.1 Introduction 

A review of the literature on signal transfonns would be helpful in realizing the depth and 

richness of the field of signal transforms. There is a multitude of transforms that have been 

developed over the years. The DFT is among the most popularly used transfonns in signal 

processing. Many methods have been proposed for efficient computation of the DFT. In Chapter 

I, some important transforms were described. In this chapter, the literature corresponding to these 

various transforms is reviewed. 

2.2 DFTIFFT 

Many FFT methods have been developed to perform fast DFT computation. In [1], a procedure to 

compute the N-point DFT that requires a number of operations proportional to N log N rather than 

N2 was presented. This paper proved to be a landmark in signal processing, and led to intensified 

research on other FFT methods. In [9], Yavne proposed a method that requires the least number 

of additions and multiplications for real and complex data for FFTs of length-2". An altemative 

form of the FFT was proposed in [10]. In contrast to earlier methods that required multiplication 

by complex constants, this algorithm requires either real or purely imaginary constants for 

multiplication, hence reducing the number of multiplications. However, this method requires a 

greater number of additions. A split-radix approach for length-2n was proposed in [11], in which 

radix-2 is used for the even part of the transfonn and radix-4 for the odd part. This method has the 

same number of multiplications as [10], but much fewer additions. Rader [12] showed that the 

DFT of a sequence of N points, when N is a prime number, is circular correlation, and proposed 

an FFT based on this finding. In [l3], number theoretic transforms are developed for fast 

computation of digital convolution. Winograd proposed the Winograd Fourier Transform 

Algorithm [14]. This algorithm uses Winograd's theorems on computational complexity for small 

and large values of sequence lengths. For large lengths, the Chinese remainder theorem was 

proposed to be used as part of the algorithm. Theoretically, this method required lesser number of 

multiplications than the Cooley-Tukey method. However, Winograd's algorithm was found to be 

difficult for practical implementation. 

The prime factor algorithm for FFT was proposed in [15], in which Rader's idea of conversion of 

DFT into convolution and results on implementation of short convolutions with minimum 

15 



number of multiplications was combined to produce efficient algorithms for long sequences. 

Nussbaumer in [16] introduced polynomial transforms, which have circular convolution property 

and hence could be used for fast computation of convolutions. In [17] efficient FFT algorithms 

are derived from polynomial transforms. Granata et al. [18] used the tensor product for modeling 

and designing FFT algorithms, making use of the strong connection between tensor product 

constructs and modem computer architectures. For multi-dimensional DITs, row-column method 

and vector radix methods have been used [19]. In [20], the split-radix approach is extended for 

vector-radix FFT to two and higher-dimensions. Saidi [21] presents a new FIT algorithm, the 

decimation-in-time-frequency algorithm, which is obtained by combining the decimation-in-time 

and decimation-in-frequency algorithms, thereby reducing the number of real multiplications and 

additions. This approach can be extended to vector-radix multidimensional FFT algorithms also. 

Guo et al. [22] present an approach that uses symmetric properties of the basis function to remove 

redundancies in the calculation of the DFT. They develop an algorithm called the Quick Fourier 

Transform which has a simple structure and is well-suited for DFTs on real data. Recently, Lundy 

and van Buskirk [23] present a new matrix to derive real and complex FFT algorithms for length-

2n. This approach leads to arithmetic operation counts that are better than previously published 

results of the earlier years. Also, Johnson and Frigo [24] present a recursive modification of the 

split-radix FFT algorithm that matches the record of lowest number of arithmetic operations in 

[23]. Polynomial algebra and the Chinese Remainder Theorem were the foundations of many 

early FFT and fast convolution algorithms, to which Winograd has made considerable 

contribution. Following on this line, Puschel [25] extends the polynomial algebra framework to 

include most trigonometric transforms used in signal processing. They have developed a new 

theory called the algebraic signal processing theory, which relates algebra to linear signal 

processing. Using this theory, a class of new algorithms including general-radix algorithms for 

the DCTs can be obtained. In this theory, each unique signal model has its own class of Fourier 

transforms. 

Ansari [26] presents an extension of the DFT defined as a linear combination of the forward and 

inverse DFTs of a sequence, with the coefficients of the linear combinations forming a new real 

transform for a real sequence, called the Discrete Combination Fourier Transform (DCFT). The 

DHT is seen to be a special case of the DCFT. 

16 



2.3 FRFT 

The fractional Fourier transform (FRFT) is a generalization of the classical Fourier transform. 

Almeida [27] recognizes the utility of the FRFT to signal processing, presents its properties, 

interprets the FRFT as a spectrum rotation of the signal in the time-frequency plane, and studies 

its relationships with time-frequency representations like the short-time Fourier transform and the 

Wigner distribution. An algorithm for efficient and accurate computation of the FRFT is given in 

[28]. In [29], a general definition for FRFT is formulated for four signal classes. Soo-Chang Pei 

[30] proposed the discrete version of the FRFT, the discrete fractional Fourier transfonn 

(DFRFT), and established the relationship between FRFT and DFRFT. A closed-form analytic 

expression for DFRFT is obtained in [31]. However, an alternative definition of the DFRFf is 

presented in [32], The DFRFf approach is extended to DCT and DST in [33], yielding 

corresponding new transforms for each. Relations between fractional operations like fractional 

convolution, fractional correlation etc and time-frequency distributions are explored in [34]. A 

new method for DFRFT computation is presented in [35]. 

2.4 Time-frequency transforms 

Mathematically, the two approaches to time-frequency analysis are the linear transform approach 

and the nonlinear operations approach. The non-linear approach attempts to produce an energy 

distribution in the time-frequency domain. Gabor proposed linear transfonns for time-frequency 

analysis in [36]. That approach is to characterize a time function in time and frequency 

simultaneously, known as the Gabor expansion. A time-frequency description of a signal is 

obtained by performing Fourier analysis on the signal as it appears when seen through a set of 

identical Gaussian windows translated with respect to each other in time. Difficulty in computing 

Gabor transfonn coefficients limited use of the Gabor transfonn earlier. The proof of existence of 

the Gabor expansion of a signal into a discrete set of Gaussian elementary signals is given in [37]. 

The discrete Gabor transfonn and Gabor expansion for infinite sequences are developed in [38]. 

A Gabor transform for real, discrete signals is presented in [39], along with a computationally 

attractive method for computing the transform. A method for calculating the coefficients of the 

Gabor expansion, in the case of oversampling, is presented in [40]. Undersampled discrete Gabor 

transfonns are investigated in [41]. A related time-frequency transform, the Zak transform was 

developed in [42]. Discrete Zak transform (DZT) and fast algorithms are presented in [43]. The 

DZT is shown to be a generalization of the short-time Fourier transform in [44]. 
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2.5 Lapped transforms 

A class of unitary transformations, called lapped orthogonal transforms (LOT) is investigated in 

[45]. An exact derivation of an optimal LOT is presented in [46]. A related transfonn, the 

Modulated Lapped transform (MLT) is presented and the LOT has been generalized in [3]. 

Dietmar and Kunz proposed the Lapped Directional Transfonn (LDT), a real-valued lapped 

transform for 2-D signals in [4]. 

Integer versions of the various lapped transforms, called the Integer Lapped Transforms (ILT) are 

proposed in [47] and [48]. An orthogonal and orientation selective lapped transform, the Lapped 

Hartley transform (LHT) is presented and its properties evaluated in [49]. 

2.6 DHT 

The DHT, introduced by Bracewell in [50] is a transform that maps a real-valued sequence to a 

real-valued spectrum; it is closely related to the DFf. A set of FFT -type algorithms for fast 

computation ofDHT is developed in [51]. Data compression properties of the DHT on a Markov­

I signal are studied and compared with those of Fourier transform in [52]. The DHT is 

generalized into four classes and fast algorithms for the generalized transforms derived in [53]. 

Uniyal [54] showed that the fast Hartley transform algorithm is not superior to real-valued FFT 

algorithms. 

A split-radix algorithm capable of flexibly computing the DHT of various sequence lengths is 

presented in [55] and improvements on these algorithms in [56]. A radix-2x2x2 algorithm for 3-D 

discrete Hartley transform is presented in [57]. A direct method for computation of a length-N 

type-II generalized DHT from the coefficients of two adjacent length-N/2 generalized DHTs is 

presented in [58]. Fast algorithms for computing sliding-window generalized DHT are proposed 

in [59]. 

2.7 DeT 

The discrete cosine transform is defined in [60], where it is computed using the FIT. Eight 

different types of DCTs exist [61]. [62] presents a fast DCT algorithm that has reduced 

computational complexity compared to DCT computation using FFT. A fast DCT for 2-D signals 

is presented by Makhoul [63], making use of complex multiplications. Haque [64] presents 2-D 

fast DCT algorithms for power-of-2 dimensions that require only real mUltiplications and 

additions. A factorization of the DHT is used to obtain fast DCT algorithms in [65]. A DCT -type 
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orthogonal transform, called the Hadamard-structured DCT (HDCT) and its fast algorithms are 

proposed in [66]. A fast and modular N x N 2-D DCT algorithm using N-point I-D DCT 

computations and butterfly stages is presented in (67), a simplification which is presented in [68]. 

Bi et. al [69] propose a fast algorithm for type-II 2-D DCT that achieves savings on the number of 

arithmetic operations and decomposes the 2-D DCT into various combinations of cosine and sine 

sequences. Polynomial transfonn algorithms for multidimensional DCT (M-D DCT) are 

proposed in [70]. Fast algorithms for M-D DCT are presented in (71) and [72]. 

Cham [73] proposed conversion of DCT into integer cosine transforms (ICT) by replacing the 

real components by integers. The conditions for approximating order-8 sinusoidal transforms by 

orthogonal integer transforms using integer arithmetic are derived in [74]. General methods have 

been derived to obtain the integer transforms from a non-integer transform in [75], where integer 

transforms analogous to DFT, DST and DHT are presented. A method to factor type-II DCT into 

lifting steps and additions and then obtain a type-II integer DCT (IntDCT -II) free of floating­

point multiplications is proposed in [76]. Integer-to-integer DCT algorithms that use floating­

point arithmetic are presented in [73]. Cosine transforms are characterized in an algebraic 

framework in [77]. 

2.8 Wavelet transforms 

Relationships between the Fourier coefficients of a periodic signal and its wavelet coefficients are 

derived in [78]. The wavelet transfonn for discrete-time signals leading to the discrete wavelet 

transform is dealt with in [79], [80] and [81]. Invertible integer-to-integer wavelet transforms are 

constructed using the lifting scheme in [2]. The representation of the Fourier transform by a 

wavelet transform that uses a fully scalable modulated window is presented in [82]. Approaches 

to reducing the problem of shift variance in the DWT are reviewed in [83]. A method for 

designing translation invariant directional dyadic wavelet transforms is proposed in [84]. The 

phaselet transform, an approximately shift invariant redundant dyadic wavelet transform, is 

proposed in [85]. 

The contourlet transform, proposed in [86] is a two-dimensional transform that can capture the 

inherent geometrical structure in images. It is hence a purely two-dimensional approach in that it 

differs from the separability approach of computing 2-D transforms by their corresponding I-D 

transforms. The curved wavelet transform [87] applies I-D filters along curves for efficient image 

representation. The interval wavelet transform is used to obtain efficient edge representation in 

[88]. 
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2.9 Radon Transforms 

[89] describes the discrete Radon transform (DRT) and its exact inversion algorithm. It is shown 

that the DRT can be used to compute the classical RT, and that the DRT inversion procedure can 

be used to invert the classical RT. The DRT is used to generalize the classical RT for straight 

lines to include curves and weighted curve functions. In [90], a scheme of finite Radon transform 

on images of prime size is investigated, and image representations using the finite Radon 

transfonn are discussed. A discrete periodic Radon transform (DPRT) and its inversion are 

proposed in [91]. The DPRT preserves important properties of the continuous Radon transform. 

The inversion formula is developed using the Fourier slice theorem, and is free from 

multiplications. The DPRT introduced in [91] exhibits redundancy, is an expansive transform, 

and non-orthogonal. The same authors introduce an orthogonal discrete periodic Radon transform 

(OOPRT) in [92] using a new decomposition approach that eliminates redundancy. Realization 

methods and inverse ODPRT are also presented in the same paper. Applications of the ODPRT in 

2-D circular convolution and blind image resolution are presented in [93]. A discrete Radon 

transform based on images of size pn x pn where p is prime (p 2: 2) is presented in [94], in which 

corresponding ODPRT for the new size is also developed. 

2.10 Two-stage DFT Computation 

Two-stage DFf computation methods have been presented in the literature, as m [95]. The 

Discrete Fourier Pre-processing transform (DFPT), which is part of the strategy used in [95], is a 

pre-processing transform obtained by decomposing the cosine and sine functions of the OFT in 

terms of another set of functions. 

2.11 Conclusion 

The literature review shows that research continues along different lines on the various categories 

of signal transforms. Faster algorithms and methods to perfonu transform computation continue 

to be presented and improved upon. At the same time, newer transforms appear in the literature. 

These transforms are often extensions of an existing transform. In the case of trigonometric 

transfonns, their corresponding fractional transforms have evolved as a major area of research 

developed. A recent trend is the development of application-specific transforms, especially for 

use exclusively in image processing. Integer approximations of transforms and integer-to-integer 

transforms have been proposed. 
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Chapter HI 

DEVELOPMENT OF FORWARD AND INVERSE 2-D MRT 

3.1 Introduction 

Transfonns are used to find an alternative domain where processing of the task at hand is easier 

to perfonn. Fourier transform is popular to map a signal from time domain to frequency domain. 

The Discrete Fourier Transform (OFT) is the digital implementation of the Fourier transform and 

has many fast implementation algorithms. In the DFT computation, even when the data is real­

valued, the OFT coefficients will be complex. In [8], 2-0 OFT representation was modified in 

tenns of real additions, which requires NI2 complex multiplication in the computation of each of 

the N OFT coefficients. However, complex multiplications can be avoided if the signal is 

represented in terms of the signal components which would otherwise be multiplied with the 

exponential term in the DFT representation developed in [8]. Further, this results in a new way of 

analyzing signals. Hence a new real transform, named MRT is developed, which can represent 

signals using real additions and without complex arithmetic, and which offers a different way of 

signal analysis. 

3.2 Forward Transform 

The 2-0 OFT Yk"k
z 
of a 2-0 signal xnpll,' 0 S nl,n2 SN - 1 is given by 

N-' ,v-I 

1': = " "x Wn,k,+n,k, 0 S kl.kz S N - 1 
kl.k~ L.. ~ nI~n1 /\' , 

nJ=O n'2:::: Q 

:P:.!!. 
where W.V = e N 

Since the twiddle factor WN is periodic, (3.1) can be expressed as 
,v-I N-I 

Y. ="" x W«njk,+n,k,»v 
kI,k'2 L..J ~ nl ,n2' N 

n,;O n,;O 

(3.1) 

(3.2) 

The exponent ((nlk, + n2kz))N = p, 0 Sp S N - 1 is satisfied by a set of (n,. n2) for a given (kl' k2). 

Hence, by grouping such data and applying the property that W:+,v12 = -W;, (3.2) can be 

expressed as 

(3.3) 

where 

~~~ = I Xn"n, - I Xn,.n" (3.4) 
'<1( n, ,n, 'p:; p '<1 (n, ,n, )=:>=; p+M 

Z = ((n,k, + n2k2))N (3.5) 
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M=NI2 (3.6) 

The computation of the N 2 DFT coefficients Yk,.k, using (3.3) and (3.4) involves M complex 

multiplications each, and thus a total of N 3 12 complex multiplications for any even N, 

given Yk(p) . If Yip) is developed as a transform, the transformation would involve only real 
1> 2 l' 2 

additions and no complex multiplications. Thus, a new transform is proposed, with (3.4) as the 

forward transform relation. The transformation maps the data x nl ,n, of size N x N into M matrices 

Yk~~2, ' for p = 0, I, "', M-I, each of size N x N. Since it maps a matrix of real data into M 

matrices of real values in the frequency domain, the proposed transform is named as an M­

dimensional Real Transform (rv1RT). 

Since the property W,rNI2 = -W; is used in arriving at the formulation in (3.3) and the definition 

of the rv1RT in (3.4), a central condition regarding the value of N in the rv1RT context is that N 

needs to be even. In the remainder of the thesis, this condition is assumed. 

From (3.4), the forward 2-D rv1RT can also be expressed as 

«njkj + n2k 2 )) N = P 

«njkj +n2k2))N = p+M 

otherwise 

Hence, the transform kernel of2-D MRT is defined by (3.4b). 

3.3 Direct Computation 

(3.4a) 

(3.4b) 

The direct computation of rv1RT can be carried out by the following steps, for a given value of kj, 

k2&p: 

1) Initialize the MRT coefficient to zero. 

2) For each (np n2) , calculate the term z in (3.5) which involves two multiplications njk j & n2k2' 

and a modulus operation w.r.t. N. 

3) Perform a logical comparison to check the conditions z = p, or z = p + M. 

4) Depending on which condition is satisfied, add or subtract the data element corresponding to 

indices (npnJ to or from the current value ofMRT coefficient respectively. 
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95 82 94 14 45 84 30 38 
23 44 92 20 93 2 19 86 
61 62 41 20 47 68 19 85 

X = 49 79 89 60 42 38 68 59 
n].n2 89 92 6 27 85 83 30 50 

76 74 35 20 53 50 54 90 
46 18 81 2 20 71 15 82 
2 41 I 75 67 43 70 64 

3360 -11 149 -11 -86 -11 149 -11 0 53 0 -316 0 -53 0 316 
20 43 -142 -6 88 137 -102 10 -73 -209 -88 -51 91 -157 18 45 

206 -88 125 116 82 -88 147 116 0 214 0 71 0 -214 0 -71 
y:(0) = 20 -6 -102 43 88 10 -142 137 y:(I) = 121 -16 10 210 95 -24 -138 118 

k"k, 4 199 195 199 -62 199 195 199 k"k, 0 -157 0 -68 0 157 0 68 
20 137 -142 10 88 43 -102 -6 73 157 88 -45 -91 209 -18 51 

206 116 147 -88 82 116 125 -88 0 -82 0 125 0 82 0 -125 
20 10 -102 137 88 -6 -142 43 -121 24 -10 -118 -95 16 138 -210 

0 134 139 -134 0 134 -139 -134 0 -316 0 53 0 316 0 -53 
68 104 94 -139 -56 48 62 -61 121 210 -138 -16 95 118 10 -24 

-16 -37 295 59 130 -37 -69 59 0 \25 0 -82 0 -125 0 82 

y:(2) = -68 139 -62 -104 56 61 -94 -48 y:(3) = -73 -51 18 -209 91 45 -88 -157 
k,,~ 0 122 345 -122 0 122 -345 -122 k,.k, 0 -68 0 -157 0 68 0 157 

68 48 94 -61 -56 104 62 -139 -121 -118 138 24 -95 -210 -10 16 
16 -59 69 37 -130 -59 -295 37 0 71 0 214 0 -71 0 -214 

-68 61 -62 -48 56 139 -94 -104 73 -45 -18 157 -91 51 88 209 

Figure 3_1: An 8 x 8 signal and its MRT matrices 

For a particular value of (kl'k2 ) , the number of data elements involved in forming all associated 

MRT coefficients is N2. Since there are N pairs (kl'k2)' there are thus N 4 computational steps 1-

4. An example of a 2-D signal of size 8 x 8, and its associated 2-D :MRT are shown in Figure 3.1. 

The following observations can be made from the 2-D MRT presented in Figure 3.1. 

1) There are 4 MRT matrices of size 8 x 8 corresponding to the given data of size 8 x 8. 

Similarly, there will be MMRT matrices of size N x N for a given data of size Nx N. 

2) The total number of 2-D MRT coefficients will be N 3 /2 for a data matrix of size N x N. 

Hence for N= 8, there will be 256 coefficients. 

3) There are a large number of zero-valued coefficients in the MRT matrices. There are no zero-

valued coefficients in J':k(,o.k), ' 16 such positions in y:(1) & y:(3) and 4 in y(2) a total of 36 such 
k,.k, k"k, ' k,.k, ' 

positions for N = 8. 

4) The MRT matrices are highly redundant. Many MRT coefficients share the same magnitude, 

although the sign may be different. e.g. y;~?) = Ys(.~) , ~1(~ = -Y7(g . 
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Since there are many MRT coefficients that are zero-valued, it is unnecessary to perfonn the 

nonnal computational steps for such values of (kt, k2) & p. There is thus scope for reducing 

computational complexity involved in MRT computation. Also, ifan (npn2) satisfies z = p, then 

it cannot satisfy z = p + M. Hence, the comparison operation need not be perfonned for both z = p 

and z = p + M. Thus a mathematical analysis of the MRT computation is perfonned in the 

following section. 

3.4 Analysis 

From the preliminary observations made above, there is a need for detailed analysis of the 

transfonnation so as to simplify the computation. Thus, there is a need for identifying the trivial 

MRT coefficients in the computation. 

3.4.1 Existence of 2-D MRT Coefficients 

In Figure 3.1 many of the MRT coefficients, like Yo~~ , are zero-valued. The first step involved in 

the computation of the MRT coefficient is the location of those input data elements (n!> n2 ) that 

0, k2 = 0, P = 1. No values of (nt. nv satisfy this equation. Hence, no valid MRT coefficient exists 

for the set of values, kl = 0, k2 := 0, p = 1. Such MRT coefficients, although invalid, are 

considered zero-valued. There are numerous sets of such invalid coefficients represented as zero 

as is observed from Figure 3.1. A few other examples of such coefficients in Figure 3.1 

areYo(,~) 'Y2(,~, Y4(,?, Y6(,~l etc. These trivial MRT coefficients can be eliminated from the MRT 

computation. Thus, there is a need for the analysis of existence of MRT coefficients, which is 

explained below. 

From (3.4), the MRT IS seen to be comprised of two summations, and a data element 

xnj,n, belongs in either of these summations provided its index (nl'n z ) IS a solution of the 

congruence equations associated with the summations. The first summation is L xn"n, for 
'<t(n"n,)::::.==p 

which the associated congruence equation is, using (3.5), 

(3.7) 

The data elements X
'VI2 

corresponding to the solutions (nl>llz) of (3.7) are defined as the positive 

group of the MRT coefficient. 

The second summation is L xnj .n, which has the corresponding congruence equation 
'<t(nj.n,l==-=~p+M 

24 



(3.8) 

The data elements X",,", corresponding to the solutions (npn2) of (3.8) are defined as the negative 

group of the MRT coefficient. 

Let q == «nl(k/g(k j , k2)) + nz(k/g(kl, k2))))N so that (3.7) becomes 

«g(kpk2)q))N == p (3.9) 

From Appendix A.3, (3.9) has d == g(g(k" k2), N) solutions mod N provided the condition dip is 

satisfied. q has incongruent solutions of the fonn 

q = qo + (N I d)t, 0 S t < d (3.10) 

where qo is a particular solution of (3.9). 

Hence, the condition for existence of a positive group is that d = g(g(kl' k2)' N) = g(kr, kz, N) is 

divisible by p, i.e. g(kr, kz, N) Ip· 

The condition for existence of positive group is: 

A: g(kI, kz, N) lp, 
Similarly, the condition for existence of negative group is 

B: g(kj, k2' N) I (p + M). 

If g(kr, k2' N) I p and g(kl' kz, N) I M, then g(k1, kz, N) I (p + M). If so, then both positive group and 

negative group exist for the MRT coefficient yt2, . If condition A is satisfied and if g(k" kz, N) I 

M is not satisfied, then condition B is not satisfied. In this case, only positive group exists 

for Yk;:], • Similarly, if condition A is not satisfied and if g(kl' kz, N) I M is also not satisfied, then 

if condition B is satisfied, then only a negative group exists for y~:], . Hence, it may be concluded 

that an MRT coefficient Yk;:2, has positive and negative groups only if the condition g(kr, kz, N) I 

M is true. If this condition is false, then either a positive group or a negative group exists, but both 

cannot exist together. 

The data groups present in the MRT coefficient having been defined, a detailed analysis of the 

data groups is presented below, which will identify the relations among data elements within a 

group. 

3.4.2 General solutions for elements in a group 

Given the particular solution qo, the solutions to nj & n2 have to be obtained. A general solution 

to (3.9) can be written as 

q =:; Nq[ + qo • q E Z 
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Using Bezout's lemma (Appendix A.t), the minimum value of the quantity (k2/a)nZ - NqJ) in 

(3.12) is given by g(kz / g(klo kz), N}. Hence, (3.12) can be expressed as 

(3.13) 

From (3.13), it is seen that nJ has g(kJ / g(kJ,k2), k2 / g(kh k2), N} solutions mod g(k2/ g(k\, kz), N), 

and hence one solution mod g(k2/ g(kb kz), N), since g(kJ / g(kb kz), kz / g(k\, kz), N} = 1. This can 

be justified as follows: g(kJ / g(kI' k2), kz / g(kJ, kz), N} = g(g(kJ / g(kJ, kz), k2 ! g(k\, kz)), N}, and 

g(krlg(kr, kz), k2/ g(kJ, k2)) = 1, from gcd property in Appendix AA. Hence, g(g(kJ / g(kr, k2), k2/ 

g(kr, kz)), N} = g(1, N} = 1. Thus, g(kJ / g(kl> kz), kz/ g(kr, kz), N} = 1. 

Hence, nl has N/g(k2/g(k\, k2), N} solutions in the range [0, N - 1]. Given nlO is a solution, nl has 

the general solution 

(3.14) 

The number of solution-pairs (nI, nz) in the range [(0, N-l], [0, N - 1]] can be determined only by 

determining the number of solutions n2, corresponding to one particular solution nlO of nI in the 

range (0, N - 1]. Given nIQ, (3.12) can be written as 

(k1 / g(kl,kz))nlO +(k2! g(kpkz))nz =Nq, +% 

:. (kz / g(kpkz))nz - Nql = Wo - (k\ / g(kpkz))n\O 

(3.15) 

(3.16) 

From (3.16), n2 has g(kz/g(kI,k2),N) solutions mod N, for a given nlO' Hence, the total number of 

solution-pairs Totsol is found by the product of two factors: 

i) fi, the number of solutions of n\ in the range (0, N - 1], and 

ii) h, the number of solutions of nz that exist for every solution of nl 
As seen already, 

J., = N! g(kz ! g(kl'k2),N) 

Iz =g(kz ! g(kpkz),N) 

From (3.17) and (3.18), 

(3.17) 

(3.18) 

Totsol = .l;lz = N (3.19) 

Thus, there are N solution-pairs (Il\, n2) in the range [[0, N - 1], (0, N - 1]]. These solution pairs 

correspond to a particular solution qo of (3.9). If (3.9) has d:= g(g(kr. kz), N) solutions, then the 

total number of solution pairs in the range [[0, N - 1], [0, N - 1]] is given by dN. 

Similarly, (3.8) becomes 

(3.20) 

(3.20) has d = g(g(kr. kz), N) solutions mod N provided the condition g(kJ, k2) I (p + M) is 

satisfied. q has incongruent solutions of the form 

q = qo + (N ! d)t, O:S t < d (3.21) 

In (3.21), qois a particular solution of(3.20). 
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Hence, the condition for existence of a negative group is that d = g(g(kJ, k2), N) = g(k), k2' N) 

divides p + M, i.e. g(kh k2' N)I (p + M). By using exactly the same analysis that has been done for 

(3.7), it can be shown that the total number of solution pairs of (3.8) in the range [[0, N - 1], [0, N 

- 1]] is given by dN, where d = g(g(kt, k2), N). 

The general solutions for elements in a group are given by: 

nl = nlO + g(k2 / g(kpkz)' N)t, 0::; t < (N / g(k2 / g(kpkz), N) -1, and 

n 2 = n20 + g(kl I g(kpk2),N)t, 0::; t < (N / g(kl I g(kl> k2),N) -1 . 

where nlO and n20 are particular solutions, i.e. they are the indices of one of the elements in the 

group. 

3.5 2-D MRT - Closed-form Computation 

The analysis shows that the forward MRT computation in (3.4) can be modified so as to eliminate 

the computation and logical operation associated with (3.5). In this way, MRT computation can 

be made simpler. Hence, the forward MRT relation is modified in this section. 

Recalling from (3.4), (3.5) & (3.6), 2-D MRT has the following definition: 

z = «nlkl + n2k2» N 

M=NI2 

The matrices Yk;~2Jor p = 0, 1, ... , M-I are the MRT matrices. 

Recalling (3.7), 

«n1kJ +n2k2»N ::: P 

nlkj + n2kz - Nq = p, q E Z 

Using Bezout' s lemma, n2k2 - Nq ::: qjg(kz, N), qj E Z 

nlkl + g(k2,N)qj ::: P 

nl has g(kt. kz, N) solutions mod g(kb N). Hence, there are Ng(kpk2,N) / g(k2,N) solutions mod 

N. Also, for the same value of nj if 

«n,kl + (n2 +v)k2»N = P v E Z, 

then, «vk2)h = o. 

(3.22) 

(3.23) 

v in (3.23) has g(k2, N) solutions mod N. Hence, 112 has g(k2' N) solutions for the same value of 111. 

So, given a particular solution (1110, 1l20), another solution at a different 11, has the value 

n, ::: nlO + g(k2 ,N) I g(k" k2 ,N) . If (n, + tt, 112 - v) is a solution of (3.7), then 

27 



«(n, +u)k, + (n2 -v)k2))N = P u, v E Z 

From equations (3.7) and (3.24), 

«uk1-vk2))N =0 

«vk2))N = «Uk'))N 

(3.24) 

(3.25) 

(3.26) 

In the most general case, solutions to (3.26) can be obtained by using congruence tables involving 

U, v, k}, k2 & N. Extended Euclidean algorithm (Appendix A.S) also can be used for its solution. 

Trial-and-error is another possible approach. However, for special cases for the values of kl & k2' 

it is possible to obtain the value of v by direct division. The value of u has already been obtained 

as g(k2' N) I g(kl' k2' N). 

Hence, (3.26) becomes 

(3.27) 

In summary, it has been established that for given values of k" k2' P and N, solutions to nl occur 

at a gap of g(k2' N) I g(k" k2' N). Further, for a given solution nb solutions to n2 occur at a gap of 

NIg(k2' N) columns. Finally, for a change in value of n, by g(k2' N) I g(k!, k2' N), a corresponding 

value of n2 is obtained from the solution to v in (3.27). The same conclusions hold for solutions 

to the negative group congruence equation 

«nl, +n2k2))N = p+M 

Using the above knowledge, the following closed-form formula is proposed for 2-D MRT. 

N(g(k,)".N)'g(k,/V)}-' g(k"N}-1 

~~ = I L [.x((nto +i1g(/s,N)1 g(k,,/s,N»))N'«Jio -j1v+j2N1 g(/s,N)))N)-
k=fJ j,=fJ (3.28) 

x«(11to +/Ig(/s,N)/ g(k,,/s,N)))N'«~ - j1v+ j2N/ g(/s,N»))N] 

In the formula, n;o,n;o,n1-O & n~oare particular solutions for the positive and negative groups 

respectively. The limitations of closed-form formula are 

1) There is need for calculation of the parameter v, and this is not always simple. 

2) Particular solutions for positive and negative groups need to be available. 

Particular solutions 

In the closed-formula proposed in (3.28), the particular solutions for positive and negative groups 

need to be computed. A particular solution for the positive group is one pair of solutions to the 

positive group congruence equation. Given(n~o,n;o), the negative group particular solution pair 

(n~, n;o) can be obtained. Assume n~ = n~o + e, n;o = 11;0 + .f, e,f E Z 

(3.29) 
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«(n~o +e)kJ + (n;o + f)k2 »N = p + M 

From equations (3.29) & (3.30), 

«ek, + fk2»N =M 

(3.30) 

(3.31) 

For a negative group particular solution to exist in the same row as a positive group particular 

solution, e = O. Hence, (3.31) becomes 

(3.32) 

Using Appendix A.3,fhas a solution if g(k2, N) I M. Hence, positive and negative group solutions 

exist in the same row if g(k2' N) I M. To obtain a solution forI in (3.32), an evaluation is done if 

the ratio k2/g(k2' N) is always odd, provided g(k2,N) I M. Let q = g(k2' N). Then, N = ql,t E Z 

:.M =(qI2)1 

Since q I M, q [ (qI2)t 

:. (q 1 2)t = qt',t' E Z 

:.['=tI2 

For t' to be an integer, t has to be even. 

Also, k2 can be expressed as 

k2 = qlp :. I1 = k2 1 q , tl E Z 

g(qll,ql) = q, :. g(tl,t) = 1 
Thus, tl is odd, and hence the ratio, k21 g(k2, N), is odd. Assume I has the solution, 

J = (N 1 2g(k2,N» 

Using (3.33), the LHS of equation (3.32) becomes, 

«(N 1 2g(k2,N»k2»,v = «(N 1 2)(k2 1 g(k2,N))N 

(3.33) 

(3.34) 

The RHS of (3.34) is equal to 0 if the ratio k2 1 g(k2' N) is even, and equal to M if the ratio 

k2 1 g(k2,N) is odd. However, the ratio has already been found to be odd. Hence, the RHS of 

(3.34) is equal to the RHS of (3.32), and thus, the proposed solution in (3.33) for I is valid. In 

conclusion, if g(k2' N) I M, n;o = 11;0 ' and 

(3.35) 

Using the same logic, the following can also be concluded: if g(kI' N) I M,.I1~O = n;o ' and 

(3.36) 

When both g(kJ, N) I M and g(k2, N) I M do not hold, g(kb k2' N) I M does not hold, and this 

implies that a negative group and positive group do not exist together. Figure 3.2 gives a flow­

chart illustrating a method for finding particular solutions for all phase indices, given (kpk2)' 
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Given kj, k2. a =0 g(g(k2,kl ),N) S2 = (((k2 / g(k2,N)fI))(Slg(k, .. V)) ' 

SI = «((kl / g(k1,N)rl))(Nlg(k,.N)) 

j«(h + W))M) == f 
i«h+"},J=«~/(2g(k,.i\'))))", 

OSwS(Nldk .. N)) I 

N 

i(dg(kl,N) + w) = f 
j(dg(kpN)+ w)= «ws,»,v 
os; w S (N 12g(k"N))-1 

11'; i, v = j + Nl2g(k2, N) 

N 

e = «dg (k" N ») ,(t"," 

r = «s,(N +e-dg(k"N)/ g(k"N»)),v 

i(e+w)=f 

i(e + w) = r + «ws,»" 

Figure 3.2: Flowchart showing computation method for MRT particular solutions 
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Algorithm corresponding to flow-chart in Figure 3.2: 

Let a = g(k],k2,N) . Calculate S2 = «(k2 I g(k2 ,N)r] ))(Nlg(k"N)) , s] = «(k] I g(k], N)r'))(Nlg(k"N)) 

if aIM is satisfied 
{ 

if g(k2,N) IM is not satisfied, interchange (g(k"N) & g(k2,N)) and (s, & S2) 

ford=0:(g(k2 ,N)la)-1 

{ 
f= mod(ds),N); 

ifmod(dg(kpN) ,N)< g(k2 ,N) 

{ 

else 
{ 

for w = 0: g(k2 ,N) :M - g(k2 ,N) 

{ 
i(dg(k],N) + w) ""' f, 

j(d g(kpN) + w) = mod«(wl g(k2,N) )S2,N}; 

v(dg(k],N) + w) = mod«wl g(k2 ,N) )S2+ NI(2g(k2,N) ),N); 

} 

e = mod(d g(k],N) , g(k2 ,N) ) 

r = mod(s2(N+e-d g(k], N) )1 g(k2, N) ,N) 

for w = 0: g(k2,N) :M - g(k2,N) 

{ 
i(e+w) = f, 
j(e+w) = mod(r+ (wl g(k2,N) )S2,N) 

v(e+w) = mod(r + (wl g(k2,N) )S2+ NI(2 g(k2,N) ),N) 

} 

lI=i 
if g(k2,N) IM is not satisfied interchange (i &j) and (1/ & v) 

else 
{ 

for d= 0: (g(k2 ,N) la) - 1 

{ 
f= mod(ds"N) 
h = mod(dg(k],N),M) 

for IV = 0: g(k2,N) :(N - g(k2 , N) ) 

{ 
i(mod(h+w,M)) =f 
j(mod(h+w,M)) = mod«wl g(k2,N) )S2,N); 

} 

U = i; v =,;; 
u(O:a:M- al2)'=O; v(O: a:M- aI2)=0; i(aI2: a:M- a)=O;j(aI2: a:M- a)=O; 
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In Figure 3.2, i, j represent arrays containing the particular solutions for positive group of all

phase indices and u, v represent similar arrays for the particular solutions for negative group of all

phase indices.

3.5.1 Comparison

In the direct method of computation for 2-D MRT outlined in section 3.3, there is a need to

perform a logical comparison for each data index(n1,n2 ) . In contrast, the computation using the

closed-form formula in (3.28) avoids this computational step. However, closed-form computation

requires overhead in the form of calculation of particular solutions. The simulation results of both

the methods give exactly same values for the coefficients. A timing comparison is done for the

two MRT computation methods and the results, for values of N varying upto 128, are plotted in

Figure 3.3 and tabulated in Table 3.1, and. For small values of N, the direct method is faster.

However as the value of N increases, it is seen that closed-form method performs exceedingly

faster. All computer experiments in this thesis were run on MATLAB 6.5 Release 13, on an HP

laptop, with Centrino--duo T2400 CPU running at 1.83 GHz, having 0.99 GB RAM, and running

on Windows XP.

Figure 3.3: Plot showing 2-D MRT computation time using direct and closed form methods
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Table 3.1: Time comparison between direct MRT computation and closed-form MRT computation. 

N Direct (seconds) Closed-fonn N Direct (seconds) Closed-form 
4 0.031 0.031 68 116.672 48.609 
6 0 0.078 70 134.734 56.266 
8 0.016 0.093 72 155.281 53.063 
10 0.015 0.188 74 177.656 71.422 
12 0.047 0.266 76 202.782 69.11 
14 0.078 0.469 78 230.672 77.25 
16 0.094 0.625 80 261.593 77.359 
18 0.172 0.922 82 295.891 99.015 
20 0.281 1.172 84 333.281 86.672 
22 0.453 1.75 86 374.953 115.468 
24 0.688 1.875 88 420.078 108.062 
26 1 2.859 90 469.735 118.062 
28 1.453 3.156 92 524.047 127.766 
30 2.047 3.969 94 583.531 153.688 
32 2.766 4.719 96 647.609 133.813 
34 3.828 6.39 98 717.703 171.656 
36 5 6.328 100 793.219 161.406 
38 6.547 8.968 102 875.578 183.547 
40 8.406 8.937 104 964.313 186.031 
42 10.719 11.079 106 1060.89 227.125 
44 13.468 12.453 108 1163.516 199.015 
46 16.797 16.1 09 110 1275.406 242.484 
48 20.719 15.015 112 1394.922 232.969 
50 25.391 20.141 114 1523.688 264.062 
52 30.812 20.891 116 1661.109 272.719 
54 37.172 24.438 118 1809.718 322.687 
56 44.5 25.484 120 1966.032 267.765 
58 52.984 33.063 122 2136.594 360.141 
60 62.625 29.485 124 2315.875 339.094 
62 73.781 40.781 126 2507.406 357.922 
64 84.953 39.438 128 2669.11 369.234 
66 100.61 45.438 

3.6 Properties 

A few properties of the 2-D MRT are analyzed in the following sections. 

3.6.1 Linearity 

and x' (MRT) Y'(p} 
nJ.n! /.:,·I\z 

then for any real-valued constants a, and (/2, 

+ t ~.r.-p) + r,p) t4x,\J>, ¥ '\», . "1~,k, ~ ~,k, (3.37) 
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Proof 

Recalling from (3.4), (3:5) & (3.6), 

"" x - "" x = y:(p) ~ ~~ ~ ~~ ~h 
'den, ,11, l=:-z= p 'den, ,n,)=:-z= p+M 

where z = «nrkr + n2k2»),y and M = N /2 

I 
'd(n"n,)=>:=p 

(ax +ax' ) 1 nl,n2 2 nt ,n2 

I (a1Xn"n, +a2x\,n) 
'd(n"n,)=-=-p+M 

I arXn"n, + I a2x'n"n, 
'den, ,n, )=:-==p 'den, ,n,)=:-== p 

+a2 ( I x'n"n, - I x'n"n) 
'den, ,n,)=:-,,-p 'den, ,n,)=:-== p+M 

Thus, the 2-D !v[RT is a linear transform. 

3.6.2 Reversal 

By signal reversal, the following operation is meant: Given the signal xn"n,' the reversed signal is 

given by x(-n,))y.«-n,l)'" An example of such an operation done to a 6 x 6 signal is shown in 

Figure 3.4. 

If xn,.'''~Yk;:l, 
and x«-nl))",«-n,,),,~Y'~;,t, then 

p'==«M-P»M' 

Proof 

s ={ 1, 
-1, 

34 

p=o 
p1:-0 

(3.38) 



(a) X = nl ,n2 

(c) 
y:(0) _ 

kl,kl -

(e) 
y:(l) _ 

kl ,k2 
-

(g) y:(2) _ 
k"k2 -

95 46 
23 2 
61 82 
49 44 
89 62 
76 79 

['37 
140 

-32 85 
612 74 

7 94 
612 -7 
-32 -90 

o 154 
-117 51 

92 41 
74 89 
18 6 
41 35 
94 81 
92 1 

14 
20 
20 
60 
27 
20 

s ={ 1, 
-1, 

2 
75 
45 
93 
47 
42 

646 93 6% I'J 48 134 47 -90 
711 90 528 -7 
lOO 103 100 94 
528 90 711 74 

47 134 48 85 

-715 o -476 -\07 
-2\ -69 57 -2\3 

-542 -160 -483 -32 ·598 -151 
o 104 119 0 -26 -113 

-683 51 -711 29 -643 141 
78 20 -17 100 62 -69 

[ 0 107 476 0 715 'IS~ -78 69 -62 -100 17 -20 
683 -141 (;43 -29 711 -51 

0113 26 0-119-104 
542 151 598 32 483 160 
117 213 -57 69 21 ·51 

p=o 
p*O 

(b) 

(d) 

(t) 

(h) 

[42 
20 I 92 79 

76J 
47 27 81 94 62 89 
93 60 35 41 44 49 

X = 45 20 18 82 61 nt,n? 6 
75 20 89 74 2 23 

2 14 41 92 46 95 

1837 -107 715 -93 715 -107 
78 -51 -48 -100 57 -90 

y'(O) _ 542 -74 643 -32 528 51 
kl ,k2 - -7 113 119 103 119 113 

542 51 528 -32 643 -74 
78 -90 57 -lOO -48 -5194 

[0 
-154 -646 0 -476 14] 

y'(I) _ 117 -85 -62 -69 47 20 
kl ,k2 - -616 -141 -483 90 -711 151 

104 100 0 26 -94 
-683 ·7 -598 -29 ·711 160 
-32 -213 17 -\34 21 -69 

~ 0 .IW 476 0 646 IS4

J 
y'(2) _ 32 69 -21 134 -17 213 

kl,k2 - 683 -160 711 29 598 7 
o 94 -26 0 -100 -104 

612-151711 ·90483141 
17 -20 -47 69 62 85 

Figure 3.4: (a): A 6 x 6 signal; (b): Ca) reversed; (c), (e) & (g): MRT matrices of (a); (d), (t) & (b): MRT 
matrices of (b). 

3.6.3 Circular shift 

If the 2-D signal is circularly shifted in either direction, the following is the behaviour of its 

correspondlngYk;:/, • Each MRT coefficient can potentially undergo a shift in the value of p to 

which it belongs, as also a sign-change. The position of the coefficient within the N x N MRT 

matrix corresponding to the new value of p is retained without any change. This is illustrated 

using an example in Figure 3.5. 
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s={ 1, 
-1, 

«p-rk) -ck2»N <M 

«p-rkI -ck2»N ~M 
Proof: 

y*;:l, = L xnl .n, - L xn,.n, 
'<f(nl,n,)=>==p '<f(nl,n,)=>==p+M 

Substituting n; =«nI -r»N,n; = «n2 -C»N 
Y '~;,1, = " , ;L xn;,n; - L 

'It(nl ,n,)=>«nlk, +n,k, »N=«p-rkl-ck,»,v 'It(r.; ,n; )=>«,,;kl+n;k, »).v=«p-rkl-ck, +M JJ.v 

y.(p) = " x· , - " 
kl,k.., ~ n,,"z ~ 

- '9'(n; .n; )=>«n;kl +n;k, ))",=«p-rkl-ck, »,\' 'It(n; ,n; )=>«n;kl+n;k, ».v=«p-rkl-ck, )).\,+M 

y,(p) = y:«p-rk,-ck,», 
kl,k, k,.k, 

Y'(p) = y«p-rk,-ck,)).1l 
k"k, k,,*, ' 

Y'(p) = _y,«p-rk,-ck'»M 
k .. k, *I,k, ' 

3.6.4 Circular convolution 

If x", .n, .-~I.-.rtl, 
cl ' Y'(p) 

an xnl.n,~ k"k, 

and x Q9 x' ,ml Y"(p) 
nl.n~ nl.Il~~ kl,k~ 

«p-rkj -ck2 »N ~M 
s={ 1, «p-rkI-ck2»,v <M 

-1, «p-rkt -ck2 »N ~M 

where <8J denotes circular convolution, then, 

s == { 1 
-1 ' 

Proof 

Let x" =x Q9X' 
I~ .n~ 12l ,!l2 n1,n! 

}I-I tv-I 

X:I •n, = L L Xj, . .i,X;(n,-i,))\.«n,-J,))\ 
i,=OJ,=O 

q<p+l 

q ~p+l 
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(a) 

(c) 

(e) 

(g) 

[" 68 30 15 50 

3~ 53 38 19 70 90 29 
20 83 19 38 82 34 
67 50 68 86 64 53 
84 71 30 85 82 73 
2 43 54 59 66 31 

['25 42 
664 5 664 -42 

-106 32 -60 38 58 ]0 
670 122 678 58 672 20 

41 144 -10 -43 -10 144 
670 20 672 58 678 122 
-106 10 58 38 -60 32 

0 -81 -474 o -787 34 
-126 54 -45 58 -18 27 
-531 132 -585 45 -502 1 

0 97 34 0 -85 90 
-724 14 -751 8 -662 -15 

-21 26 35 23 -56 21 

[ 

0 -34 787 0 474 81

J 
21 -21 56 -23 -35 -26 

724 15 662 -8 751 -14 
o -90 85 0 -34 -97 

53! -1 502 -45 585 -132 
126 -27 18 -58 45 -54 

(b) X nl ,n
2 

(d) 
y'(O) = 

kl,k2 

(t) 
i(l) = 

kl'k2 

(h) 

31 2 43 54 59 
34 85 68 30 15 
29 53 38 19 70 
34 20 83 19 38 
53 67 50 68 86 
73 84 71 30 85 

1925 34 474 -5 474 
-21 -54 60 -23 -18 

531 -122 662 45 672 
-41 -90 34 -43 34 

531 14 672 45 662 
-21 10 -18 -23 60 

~ 042 -787 o -664 
-106 21 45 -38 -35 
-724 -132 -678 -8 -502 

o -144 85 0 -10 
-670 -I -751 58 -585 
126 26 58 58 56 

o -8l 664 0 787 
-126 32 -56 -58 -58 
670 -15 585 -58 751 

o -97 !O 0 -85 
724 -20 502 8 678 
106 -27 35 38 -45 

66 
50 
90 
82 
64 
82 

34 
10 
14 

-90 
-122 
-54 

81 
'27 
20 
97 
15 

-32 

42 
-26 

I 
144 
132 
-21 

Figure 3.5: (a): A 6 x 6 signal; (b): (a) circularly shifted by 1 row and 1 column; (c), (e) & (g): MRT 
matrices of (a); (d), (1) & (h): MRT matrices of (b). 

N-] N-] 

= L L L Xil.;,X;(n,-i,)).d(n,-J,)).v 
';'(n"n, )=-«"/' +",k,)).,=p il=O ;'=0 

N-I N-I 

L L L Xi"i,X;(n,-i,)).v,((n,-i,)).v 
'<t(n, ,11, )=-«n,k,+n,k, )),=p+M j,=o i,=O 

N-I N-] 

=LL( 

.v-I N-I 

= L L (Xi"i, ( L X«n,-Mh,«n,-i,)), 
';'( ",.", )=-«",k, +",k, )).,= p 

(3.41 ) 

] 

Letq = (UlkI + J2k2))N - In (3.41), the tenns xi,,}, will have a common multiplicand Y'~;'~;} if their 

indices (jpj2) are such thatq=(U,kl + j2k2))N- Also, yt,;;V'2) =-Y'~~!k, _ Hence, 
N-I N-I 

Y"(p) -"" x y,(p-q} 
kl.k, - L.J L.J i,·i, k"k, 

i,=O J,=O 
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,v-I 

::0 L( x )y,(p-q) 
jl,j"!, kJ.k2 

q=O VU,.j,l=>(U,k,+ J,k,».v=q 

M~ ~I 

= L ( L Xj"j)Y'i;,~;) + L ( L Xj,.J,)Y1;'~;' 
q=O VU,.j,)=>{(U,k,+J,"-'»v=<J) q=M 'iU"J,)=>{U,k,+j,k,)),,=q 

M~ M~ 

::0 L( L Xj,,j)Y1~;:' - L( L Xj,,j,)yt~:) 
q=O 'i(j,,j,)=>(U,k,+J,k,),,,=q q=O 'i(j,.j,)=>(U,k,+;',k,».v=q+M 

M-I 

= L( X . . - " x . . )y~p-ql 
h~ ~ ~~ ~A 

q=O <JU,,j, )=>{U,k,+ j,k, lh=q <J(jl.hl=>{U,k, + j,k,)).,=q+M 

M-I 
::0 "y~q) yt(p-q) 
~ k"k, k"k, 
q=O 

When (p - q) < 0, y t;.:l ::0 - Yk;~~-q»M l 
Thus (3.42) can be written in the following manner, 

y,,(p) =" sy(q) yt(((p-q)),,,l = M-I s={ 1, q<p+l 
k"k, ~ ",.k, k"k,' -1, q~p+l 

j=O 

3.6.5 Isometric Transformations 

(3.42) 

There are eight isometric transformations generally used III image processmg. Besides the 

original signal, the seven other transformations are 1) 90° rotation, 2) 1800 rotation, 3) 

270° rotation, 4) reflection along mid-vertical axis, 5) reflection along mid-horizontal axis, 6) 

reflection along diagonal, and 7) reflection along cross-diagonal. Bracewell et al [96] have 

presented a theorem which determines what the 2-D Fourier transform becomes when the signal 

is subjected to an affine co-ordinate transfonnation. Using this theorem, the relevant 

transfonnations in the 2-D MRT domain can be derived. 

If the original block is denoted J and the transformed block is denoted g, and they are related in 

the following manner, 

g(npnz) = J(xn l + yn2 + =,anl + bnz +c) 

and if F & G stand for the MRT ofJ and g respectively, then G and F are related in the following 

manner. 

k; = «xkJ + ykJ),v 

k; = «akl +bk2 )),y 

p'=«p+w)).1.f 

(3.43) 
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W= kl«xz)OR(ac)) + k2«yz)OR(bc)) (3.44) 

s={ 1, «P+W))N <M 
-1, «p +W))N ?M 

In the above mapping, the parameters (x, y, z) and (a, b, c) take the values shown in table 3.2 

corresponding to each transformation. The OR function in (3.44) is defined as 

hIOR~={ 1, 
-1, 

Transformation 

90° 
1800 

2700 

mid-horizontal 
mid-vertical 

Diagonal 
Cross-diagonal 

(hI *0) or (h2 *0) 

h=Ol.=O J , ''2 

Table 3.2: Isometric transformations in MRT domain 

x y z a 
0 1 0 -1 

-1 0 N-l 0 

0 -1 N -1 1 

-1 0 N - 1 0 

1 0 0 0 

0 -1 N -1 -1 

0 1 0 1 

3.7 Inverse Transform (2-D IMRT) for N a power of 2 

b c 
0 N - 1 

-1 N-l 

0 0 

1 0 

-I N -1 
0 N -1 
0 0 

Since the DFT and the IDFT are duals of each other, and the MRT is related to the DFT, it can be 

intuitively assumed that the inverse MRT is a dual of the forward MRT. Hence, the following 

formula is proposed for inverse 2-D MRT for N power of 2: 

(3.45) 

The terms in I '4;:), and in I ytk), in (3.45) are the MRT coefficients in 
V(k!,k,)=>z=p V(kt,k,)=>z=p-t-M 

which xn!,n, is present. In other words, these are the values of (kJ , k2 ) that satisfy the two equations 

(3.7) and (3.8), respectively, 

«nlkl +n2k2»)N = p 

((nJkJ +n2k2 )),v = p +M . 

= p. The proof may be divided into two parts: (i) to show the need for division by the factor N 2 in 

(3.45), and (ii) to demonstrate that all other terms xn n besides Xn n that occur in 
". h \- 1 
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I Yk~;~ and I Yk~ ;k), such that they satisfy the following linear congruence 
V(k"k,)=>z~p V(k"k,)=>z;p+M 

equations «nakl + ntt2»N = p and «l1akl + ntt2»N = p + M respectively, cancel each other leaving 

behind the termN:I)\I~' 

Division by N 2: 

For any (111'11 2 ), the total number ofMRT coefficientsYk;:,l, whose indices (kJ, k2,p) solve (3.7) or 

(3.8) is N 2 
• This is proved using the following cases. 

Case (a): (nl t-= 0, n2 -j:. 0) 

The indices (kl ,k2 ) of Yk;;l, in which xnl,n, IS present can be found by solving the linear 

congruence equations (3.7) and (3.8). 

(3.7) can be written as the linear equation 

nlkl +n2k2 + Nt = P 

(3.46) can be written as 
g(nl'n2 )q + Nt::: p 

n n 
q::: I kl + 2 k2' 

g(n l ,n2 ) g(n l ,n2 ) 

q::: n;kl + n;k2 

. nl ' n2 111::: ,112 ::: 
g(npn2) g(n l ,n2 ) 

(3.46) 

(3.47) 

(3.47) has g(g(n), n2), N) solutions mod N. The general solution is of the form q = Ns + qo, SE Z, 

qo being a particular solution. 

n;k! + n;k2 ::: Ns + qo (3.48) 

The number of solutions of (k l ,k2 ) in the range [[0, N - 1], [0, N - 1]] can be found by 

multiplying two quantities: (i) the number of solutions of kl in the range [0, N - 1), (ii) the number 

of solutions of k2 for a given solution of kl. 

Given a particular solution (klQ, k20) of (3.48), then 

n;(klO +n;tl )+n;(k20 -n;t])=Ns+qo,t, EZ (3.49) 

The values that k, can have is determined by the relationship between n;t] and N. Using Bezout's 

lemma, 

(3.50) 

Using (3.50), (3.49) can be written as 

~(Iso +1,g(n;,N)- Nt2 )+n; (Is.o -~t]) :::Ns+%, I, E Z (3.51 ) 
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~(k!O +t3g(~,N) +~('sO -~tl) =Ns'+%, s' = (s+n;t2) (3.52) 

From (3.52), it is seen that kl has the general solution kw +t3g(n~,N). Thus, two successive 

solutions differ by g(n;,N). The number of solutions of k) that lie in the range [0, N - 1] is 

thusN / g(n;,N). 

The number of solutions of k2 for the same value of k) can be found from the number of solutions 

forj in the following equation. 

q = n;k) + n;(kz + j) 

n;k) +n;(kz + j) = Nq, +qo j,q) EO 

From (3.48) and (3.54), 

n;j-N(q) +s)=O 

(3.53) 

(3.54) 

(3.55) 

The number of solutions of j is given by g(n;,N). One of these solutions will be j = 0. The 

number of solutions of k2 for the same value of k) is thusg(n;,N). 

The number of solutions of (kh k2) in the range [[0, N - 1], [0, N - 1]] is thus N. There are an equal 

number of solutions to (3.8). Thus, for a given value of p, there are 2N solutions for (kpk2)' For a 

given value of p, q in (3.47) has g(g(nt. n2), N) solutions. The total number of solutions is thus 

2Ng(g(nh n2), N). 

The number of possible values of p is given by M/g(g(nJ, n2), N) since p has to be a multiple of 

g(g(nI. n2), N). The total number of solutions over all values of p is thus 

Example: 

Let N = 8, n I = 1, n2 = 1 

(3.7) can be written as 

kl + k2 + Nt = P , 

q+Nt = P 

q =kl + k2 

k) + k2 = Ns + qo 

(3.56) 

Let p = 0, hence qo = 0, and, (kl> k2) = (0,0), (1,7), (2,6), (3,5), (4,4), (5,3), (6,2), (7,1) are 

solutions. Similarly, there are 8 solutions to (3.8) also, and thus 16 solutions associated with this 

value of p. The possible values of p = 0, 1, 2, 3. The total number of solutions over all these 

values of p is thus 64. 

Case (b): (n) = 0, n2 oF 0) or (n) oF 0, n2 = 0) 

Assume n) = 0. Thus, (3.46) becomes 
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(3.57) 

Hence, there are g(n2, N) solutions for kz which occur in the range [0, N - 1]. For each solution of 

k2' there are N solutions of kj since nj = O. Accounting for the solutions to (3.8), there are 

2Ng(n2' N) solutions for a given value of p. The total number of solutions over all values of p is 

thus 

Case (c): (nJ = 0, n2 = 0) 

Here, (3.46) becomes 

Okj + Ok2 + Nz = p 

(3.58) 

(3.59) 

Thus all values in (kp k2 ) EO are solutions of (3.59), yielding N 2 solutions in the range [[0, N -

1), [0, N - 1)]. Thus, for all possible values of (npn2)' the total number of MRT values 

Yk;:l, whose indices (kJ, k2' p) solve the equations (3.7) or (3.8) is N2
• The summation in (3.45) 

would have the tennx~,,,, repeating N 2 times. To obtainxn!,n, the summation thus needs to be 

divided by N 2 
• 

(ii) Cancellation of other tenns x'\,,Il, 

Given a term xn!,n, and another tenn -'),.,Il, that occur with positive signs in the expansion of MRT 

coefficient Yk(P; , there could possibly be other MRT coefficients in which these two tenns occur 
I' 2 

together. The frequency indices of the MRT coefficients in which these two tenns occur with 

positive signs can be found from the solutions of the following equations 

«nJk j + ni2 )) N = P 

«nak[ +nbk2 ))N = P 

(3.60) 

(3.61) 

Similarly, the tenns xn!,n, and xn.,ll, could occur in the same MRT coefficient, but with opposite 

signs. The frequency indices of such MRT coefficients can be found from 

«njkx + n2k l »),y = P 

«nak, + nbky))N = P + M 

(3.62) 

(3.63) 

From the method followed for solution of (3.7), it may be recalled that there are g(g(k j , k2), N) 

solutions mod N to (3.60). Assume that (klO' k20) is a particular solution. Thus, kl has solution 

k j == kIO + n;, and k2 has solutionk2 == k20 - n;, . Substituting the values of kIO and k20 in (3.61), 

«nuCkjO +n;r)+n,,(k20 -n;t»),v = p 

(klO' km) is a solution of (3.61) also. 
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Hence 

((naklO +nbk20 ))N = p 

From (3.64) and (3.61), 

(nan~ - nbn;)t + Nz = 0 

(3.65) 

(3.66) 

The number of solutions of t is g(nan; - nbn;, N). Thus, the total number of common solutions of 

(3.60) and (3.61) is g(g(k!,k2 ), N)g(nan; - nbn;, N) . 

Similarly, the number of solutions to (3.62) and (3.63) can also be shown to be 

g(g(k"k2),N)g(nan; -nbn;,N). Thus the terms cancel each other leaving behind only xn"n,' 

Two other possibilities are that xn"n, will be both negative for some frequency indices and will be 

of opposite signs in some other frequency indices. The number of such frequency indices is also 

same as the two cases above. Thus, the proof of inverse MRT is complete. 

3.8 Conclusion 

2-D MRT, which has been introduced in this chapter, is a new real transform for 2-D signals. It is 

formed by grouping data elements on the basis of the twiddle-factor phase to which it 

corresponds in the context of the DFT definition. Hence, this is a new way of analyzing a signal, 

from the point of view of phase. The MRT thus carries both frequency and phase information. 

The MRT is, however, an expansive transform since there are M MRT matrices of size N x N for 

a data of size N x N. Among these matrices, there are both zero-valued positions as well as 

redundancies. Removal of these could result in a more compact and efficient form of the MRT. 

This calls for a detailed study of the phenomenon of redundancy in MRT. Since this analysis 

would be simpler to do in a 1-D context, the 1-D version ofMRT is presented in Chapter N. 
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Chapter IV 

DEVELOPMENT OF FORWARD AND INVERSE 1- D MRT 

4.1 Introduction 

2-D MRT has been developed and analyzed in chapter Ill. A detailed study of redundancy that 

occurs in 2-D MRT was not taken up in chapter Ill. Due to the simplification provided by the 

reduction of dimension, it would be convenient to develop 1-0 MRT and study it completely and 

then use this knowledge in further study of 2-D MRT. Hence, in this chapter, the 1-0 MR.T is 

developed, and analyzed in detail. Finally, the 1-0 MR.T is simplified by removing redundancy to 

obtain the I-D UMRT. 

4.2 Forward 1-D MRT 

The I-D MRT Yk(P) of a I-D sequence xn' Os; n S; N -1, is defined as 

v(p) _ "" "" 1k - ~ xn - ~ xn' (4.1) 
'tn=>«nk».v=p 'V11=>«nk)l..=p+M 

k = O,I,2, .... N -I, p = O,I,2, .... M -I, and, M = N12. 

In (4.1), k is the frequency index, and p is the phase index. Thus I-D MRT maps an array of 

length N into M arrays, each of length N. Hence the mapping involves computation of MN 

coefficients in terms of real additions. The 1-0 MRT can also be expressed as 

N-I 

Y,,(P)=LAk,p,nXn' Os;ks;N-I,OS;pS;M-l (4.la) 
n=O 

{

I, «nk»N = P 

Ak,p,n= -1, «nk»N=p+M 

0, otherwise 

(4.1 b) 

Thus, the kernel Ak,p,n maps the data Xn into the I-D MRT yk(p) • 

4.2.1 Direct I-D MRT Computation 

The 1-0 MRTY?1,k=O,1,2, .... N-l, and p=O,I,2, .... M-I, of the given sequence x'" 

° ~ n ~ N -1, is computed as follows, using real additions only. 

1) For a given k & p, initialize Yk(P) = 0. 

2) For each value of n, 0 'S. n 'S. N - 1, compute z = «nk»N 

If z =p y:(p) = y:(p) + x else if z =p + M y:(p) = y:(p) - x else go to the next value of n 
'k k n' 'k k n' . 
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3) For each value of k & p, repeat steps 1-2. 

Example 4.1: 

Letx=[95 23 61 49 89 76 46 2], N=8, 

Then, Yk(P) , the corresponding MRT of x, is 

y:(O) = 
k [441 6 77 6 141 6 77 6] 

y:(l) = 
k [ 0 -53 0 47 0 53 0 -47] 

y:(2) = 
k 0 15 48 -15 0 15 -48 -15] 

y:(3) = 
k 0 47 o -53 o -47 0 53] 

The direct method requires N computations of z and its logical checking for every MRT 

coefficient. Computation of all MRT coefficients corresponding to one frequency involves 

addition of N data. Thus, the total number of additions involved in the MRT computation 

isN(N -1). 

4.2.2 Examples 

In this section, the relation between I-D MRT coefficients and data for values of N= 4,6,8 & 10 

are presented. 

4.2.2.1 I-D MRT for N::: 4 

The relations between I-D MRT coefficients and corresponding data elements, for N = 4, are 

given below. The corresponding transform kernel representations Ak,p,n are shown in Figure 4.1. 

l. y:{O) o =xo +X[ +X2 +X3 2. y:{O) - x -x 
[ - 0 2 

3. y:(l) = X - x 
[ [3 4. y:(O) _ 

2 - Xo - XI + X2 - X3 

5. y(O) _ 
3 - -Xo +X2 6. y:(I) = -x +x 

3 I 3 
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Figure 4.1: Kernel representation A k,p,n of 1-D MRT for N= 4

4.2.2.2 I-D MRT for N= 6

The relations between MRT coefficients and corresponding data elements , for N = 6, are given

below. The corresponding transform kernel representations A k,p,n are shown in Figure 4.2.

1. y; (0 ) _ 2. r. (0) -o - Xo + XI + x2 + x3 + x4 + Xs I - xo-x3

3. r.(l) = X -x 4. y'(2 )
I I 4 I =x2-xs

5. y (O) 6. y (l)_
2 =XO +x3 2 - -x2-xs

7. y (2) =x +x 8. y,(0) -
2 1 4 3 -Xo -XI +x2 - x3+x4-xs

9. y (O) 10. y (l ) =-x-x4 =XO +x3 4 1 4

11. y (2) 12. r. (0) -4 =x2+xs S -Xo-x3

13. y' (l ) --x +x 14. y'(2) -
s - 2 S S - - XI + X4
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Figure 4.2: Kernel representation Ak•p•n of a few 1-D MRT coefficients, N = 6

4.2.2.3 I-D MRT for N= 8

The relations between data elements and corresponding MRT coefficients, for N = 8, are given

below. The graphical representation of some the relations are shown in Figure 4.3.

1. r, (O)o =Xo +XI +x2 +x3+ x4+Xs +x6+x7

2. r, (O) - 3. r,(I) -I -xo-x4 I -XI -xs

4. y'(2) 5. 1';(3) =X3-~1 =X2 -x6

6. r,(O) - 7. y(2) _
2 -XO-X2 +X4-X6 2 -XI -X3+xs-~

8. y (O) _ 9. 1;(1) =X3-~3 - Xo-x4

10. y (2) _ 11. y (3) = X -x3 - - x2 + X6 3 I S

12. y (O) _
4 - Xo - XI +x2 - x3+ x4 - Xs +x6 - x7
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Figure 4.3: Kernel representation Ak.p,n of a few I-D MRT coefficients, N = 8

13. y.(O) - X -x 14. y' (l ) -
5 - 0 4 5 - -Xl +xs

15. y' (2) - 16. y' (3) - -x +X5 -X2 -X6 5 - 3 7

17. y.(O) - 18. y'(2) -
6 - Xo -.xz +X4 - X6 6 - -Xl + X3 - Xs + x 7

19. y (O) - X -x 20. y (l ) _
7 - 0 4 7 - -X3 +x7

21. y(2) _ 22. y(3) =-x +X7 - - X2 + X6 7 I 5
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4.2.2.4 I-D MRT for N= 10 

The relations between data elements and corresponding MRT coefficients, for N= 10, are given 

below. 

1. y;(O) o == Xo + x, + x2 + X3 + X4 + Xs + X6 + x7 + ~ + X9 

2. y;(Ol = x -x 
I 0 S 3. y;(I) ==X -x 

I '6 

4. r;(2) == x2 - x., 5. r;(3) == X3 - Xg 

6. y;(4) _ 
I -X4 -x9 7. y(O) _ 

2 -Xo +xs 

8. Y2(1) = -x
3 

- Xg 9. y(2) - x +x 2 - I 6 

10. YP) ==-x4 --X9 11. y(4) 2 =x2 +X7 

12. y:(O) =x -x 3 0 S 13. J;(I) = -x
2 

+ x., 

14. y(2l _ 3 - x4 -x9 15. y:(3)_ 3 - XI -X6 

16. y(4) ==-x +x 3 3 8 17. yeO) ==X +x 4 0 5 

18. ye') - -x -x 4 - 4 9 19. y(2) = x +x 4 3 8 

20. y(3) = -x -x 4 2 7 21. y(4) =x +x 4 I 6 

22. y;(O) _ 
S -xo -x, +X2 -x3 +X4 -xs +X6 -X7 +~ -xg 

23. y;CO) ==x +x 6 0 5 24. y;(I) - -x -x 
6 - I 6 

25. y;(2) =x +x 627 26. y;(3) == -x -x 6 3 S 

27. y(4) 6 == x4 +Xg 28. yCO)==x -x 7 0 5 

29. y(l) =x -Xg 7 3 30. y(2) _ 
7 --x, +X6 

31. y(3) ==-x +x 7 4 9 32. y(4) = x -x 7 2 7 

33. y;(O) = x +x 8 0 5 34. r.:(I) -8 - -X 2-X7 

35. y;(2) = x +x 8 4 9 36. r.:(3) - -x - X 8 - , 6 

37. y;(4) 8 ==X3 +xs 38. y;(O) =x -x 9 0 5 

39. y;(I)--x +x 
9 - 4 9 40. y;(2) == -x + Xg 9 3 

41. y;(3) = -x +x 9 2 7 42. y;(4) - -x +x 9 - , 6 

4.2.2.5 Observations 

The following observations can be made about the relationships between 1-0 MRT coefficients 

and the data, as laid out in sections 4.2.2.1 - 4.2.2.4 for various values of N. 

1) For all values of N, MRT coefficient Yo(O) is made up of the simple addition of all the elements 

of the data. 
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2) For all values of N, there is one and only one MRT coefficient which is made up of alternate 

additions and subtractions among all the elements of the data. Such coefficients are of the 

form Y~O) , as seen in coefficient no. 4 corresponding to N = 4, coefficient no. 8 corresponding to 

N= 6, and coefficient no. 12 corresponding to N= 8. 

3) For all values of N, some MRT coefficients are made up of only a subtraction among two 

elements of the data. Examples are in coefficient nos. 2, 3 & 5 corresponding to N = 4. 

4) Some MRT coefficients are made up of only one addition among two elements of the data. 

Examples are in coefficient nos. 5, 7 & 9 corresponding to N = 6. Some MRT coefficients are 

made up of a negated addition among two elements of the data. Examples are in coefficient nos. 6 

& 10 corresponding to N = 6. 

5) There exist MRT coefficients that are exact negations of other MRT coefficients. If the sign of 

such an MRT coefficient is inverted, another MRT coefficient of the same order N is obtained. 

Examples for this are the pairs of coefficient nos. 3 & 14 corresponding to N = 6, nos. 6 & 11 

corresponding to N = 6, and nos. 6 & 39 corresponding to N = 10. 

6) There exist MRT coefficients that are exactly equal to other MRT coefficients. More than one 

MRT coefficients share the same value for some values of order N. Examples for this are the pairs 

2 & 12 corresponding to N= 6,4 & 32 corresponding to N= 10, and 10 & 18 corresponding to N 

= 10. 

7) For any N, 1';(0) and Y~O) are the only MRT coefficients that involve all the elements of the 

data. 

4.3 Analysis 

From the preliminary observations made above, a detailed analysis of the 1-0 MRT coefficients 

is necessary. Oata elements form positive and negative groups. The phase index of an MRT 

coefficient has particular significance. The existence of a 1-0 MRT coefficient can be explained 

on the basis of number theoretic principles. The conditions of existence relate the phase and 

frequency indices. The index of a data element in positive and negative groups can be found 

using different methods. It is possible to re-write the forward 1-0 MRT in (4.1) in the form of an 

arithmetic series. The MRT has physical significance. These aspects are discussed in the 

following sub-sections. 
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4.3.1 Data Elements in an MRT Coefficient 

The first group corresponds to those data elements whose indices satisfy the congruence relation 

«nk))N = p, and the second group corresponds to the elements with indices that satisfy the 

congruence relation ((nk))N = p + M. Thus there are two congruence relations: 

(nk))N = P 

((nk))N = p+M 

(a) Positive Data Group: 

(4.2) 

(4.3) 

The group of data elements whose indices satisfy the congruence relation ((nk))N = p is defined as 

the positive data group of the I-D MRT coefficient yk(p). 

(b) Negative Data Group: 

The group of data elements whose indices satisfy the congruence relation ((nk))N = p + M is 

defined as the negative data group of the I-D MRT coefficient y}p). 

Example 4.2: 

From section 4.2.2.3, the data elements Xo, X2, X4 and X6, form the positive group of the MRT 

coefficientY?), and data elements x\, X3, Xs and X7, form the negative group of the MRT 

coefficient y
4
(O) 

4.3.2 Phase Index in MRT 

An MRT coefficient has two indices, the frequency index and the phase index. By formal 

definition of the MRT, the phase index has values in the range [0, M - 1]. 

(a) Valid Phase Index 

Although the MRT definition is such that the phase index has values in the range [0, M - 1], the 

nature of the linear congruence equations involved makes it theoretically possible for the value of 

phase index p to have values in the range [0, N - 1]. Given an MRT coefficient Y;P) , a value for 

the phase indexp in the range [0, N - 1] is defined to be a valid phase index for a given frequency 

index kif kip. 
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Example 4.3: 

For N = 6, if k:= 2, then p = 0, 2, & 4 satisfy kip, and hence these are valid phase indices for this 

value of k. 

(b) Allowable Phase Index 

A phase index p is defined to be an allowable phase index if p < M. The allowable phase index 

actually is the phase index that is referred to in the fonnal definition ofMRT. 

Theorem 4.1 

v(p) __ v(p+M) 
1* - 1k 

Proof 
The elements na that are in the positive group of the MRT coefficient y;Pl can be found as 

solutions of 

(4.4) 

The elements n: that are in the negative group of the MRT coefficient y;P) can be found as 

solutions of 

(4.5) 

The elements nb that are in the positive group of the MRT coefficient y}P+M) can be found as 

solutions of 

(4.6) 

The elements n~ that are in the negative group of the MRT coefficient y?+M) can be found as 

solutions of 

«n~k»N = p + M + M = P + N, which can be written as 

«n~k»N = p 
From (4.4) and (4.7), it can be inferred that 

, 
na =nb 

From (4.5) and (4.6), it can be inferred that 

na = nb 
From (4.8) and (4.9) and the definition ofMRT in (4.1), 

y}p) = Ina - Inb 

= Inb• - Ina· 

= -(In". - Inb') 
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__ v(p+M) 
- lie 

• v(p) = _ v(p+M) 
• oile lie 

4.3.3 Existence of I-D MRT Coefficient 

Equations (4.2) and (4.3) that define the I-D MRT are linear congruences. A basic theorem from 

number theory, given in Appendix A.3, provides necessary and sufficient condition for a linear 

congruence to be solvable (97). It also gives the number of incongruent solutions if the linear 

congruence is solvable, and also a formula for finding the solutions. Using this theorem, the 

conditions for existence ofMRT coefficient Yk(p) for data of order N can be stated as a theorem: 

Theorem 4.2 

An MRT coefficient rip) exists for data of order N if either of the following two conditions is 

satisfied: 

Condition 1: g(k,N)lp 

Condition 2: g(k, N)I(p + M) 

If condition I holds, there are elements in the positive data group of the MRT coefficient. If 

condition 2 holds, there are elements in the negative data group of the MRT coefficient. 

Proof 

An MRT coefficient riP) exists for data of order N when there are data elements whose indices 

satisfy (4.2) and/or (4.3), in other words, when linear congruences (4.2) and/or (4.3) have 

solutions. From Appendix A.3, the necessary and sufficient condition for (4.2) to be solvable is 

thatg(k,N)lp. Similarly, g(k,N)I(p+M)becomes the necessary and sufficient condition for 

(4.3) to be solvable. Hence, if the two conditions g(k,N)lp and/or g(k, N)I(p + M) is satisfied, 

an MRT coefficient YIe(P) exists for data of given order N . If condition 1 is satisfied, there are 

elements in the positive data group, and if condition 2 is satisfied, there are elements in the 

negative data group. 

From Appendix A.3, a linear congruence «nk))N = p, if solvable, has g(k, N) solutions mod N. 

Hence, n has g(k,N) solutions in the range [0, N - 1] and thus g(k,N) data elements in the 

positive group. Also, given no is a member of the positive group (particular solution), the other 

solutions are given by n = no +(N / g(k,N))t, 0 ~ t <g(k,N), which are, in other words, the 
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other members of the positive group. The solutions of n are congruent modulo N, i.e. if no is a 

solution, no + N is also a solution. Hence, if the value of n obtained from the general solution 

exceeds N, it is understood that this value of n actually corresponds to the data element with index 

«n))N. It can be assured that the value of n obtained from the general solution does not exceed N 

by assuring that the particular solution no is the numerically smallest particular solution in the 

range [0, N - 1]. The same explanation holds for the number of data elements in the negative 

group and also the general expression for data elements, since the structure of the linear 

congruence equations corresponding to both groups is the same. In this context, the following can 

be concluded: 

The indices of the data elements in the positive (or negative) data group of an MRT coefficient 

form an arithmetic progression of the fonn 

N 2N 3N (g(k, N) -l)N 
no,no + ,no + ,no + ........... no + , 

g(k,N) g(k,N) g(k,N) g(k,N) 

given no is the smallest member of the positive (or negative) data group. 

Defining gk = N , 
g(k,N) 

(4.S.1) can be written as, 

no,no + gk ,no + 2gk ,no + 3gk .......... ·no +(g(k, N) -l)gk , or 

j == [O,(g(k,N) -1)] 

4.3.4 Dependence of Phase Index on Frequency Index 

(4.S.1) 

(4.S.1a) 

(4.S.1b) 

The existence of I-D MRT coefficients can be studied for their dependence on the frequency 

index k. 

(a) k == ° 
When k == 0, the left-hand side of (4.2) becomes g(O, N), which is equal to N. Thus the condition 

for existence of positive group becomes Nip. The only value of p that satisfies this condition is p 

== 0. Hence, for k == 0, the positive group exists only for p == 0. From (4.3), the condition for 

existence of negative group becomes NI (P + M), which is satisfied only when p == M. Hence, the 

negative group exists only for p == M, when k == 0. However, from theorem 4.1, this negative 

group is only a sign-reversal of the positive group for p == O. If the value of p is restricted to the 

range [0, M-I] as in (4.1), then the existence condition for negative group is not satisfied by any 
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value of p, which implies the non-existence of a negative group. Thus, an MRT coefficient with' k 

= ° exists only for p = 0, and it has only a positive group. 

(b) k= 1 

When k = 1, g(k,N) = 1. For this case, the existence condition (4.2) becomes 1 1 p. This 

condition is satisfied by all values of p in the range [0, M-I]. Similarly, the negative group 

condition in (4.3) is also satisfied by all values of p in this range, since the condition is 

11 (p + M). Hence, when k = 1, MRT coefficients exists for all values of p in the range 

[O,M -1]. Also, positive and negative groups exist for all MRT coefficients when k = 1. 

(c) k= 2 

Since N is even, g(k,N) = 2. The positive group condition here becomes 21 p. This is satisfied by 

all even values of p in the range [0, M-I]. The negative group condition is 2 1 (p + M). The 

solutions of this condition depend on the value of N. 

(i) M is even: When M is even, 2 1 (p + M) is satisfied by all even values of p. 

(ii) M is odd: When M is odd, 2 1 (p + M) is satisfied by all odd values of p, since the sum of 

two odd numbers is even. 

In summary, when k = 2, MRT coefficients have positive groups for even values of p in the range 

[0, M-I]. Negative groups exist for odd values of p when M is odd and for even values of p 

when M is even. For M even, MRT coefficients with k = 2 have positive and negative groups for 

even p, and MRT coefficients with odd p do not exist. For M odd, MRT coefficients exist for all 

values of p, having only positive groups for even p and only negative groups for odd p. 

(d) General Value k 

(i) k & N are relatively prime: In this case, g(k,N)= 1. The condition for existence of positive 

data group becomes 1 I p, and that for the negative data group becomes 1 I (p + M). These two 

conditions are exactly same as those for k = 1. Hence, the conclusions are also the same as that 

for k = 1; when g(k, N) = 1, MRT coefficients corresponding to k exist for all values of p in the 

range [0, M - 1]. So do positive and negative data groups. 

(ii) k is a divisor of N: When k is a divisor of N, g(k, N) = k. The condition corresponding to (4.2) 

here becomes kip. This condition is satisfied when p is a multiple of k. The number of such p in 

the range [0, N - 1] is given by Nlk. The values of p are thus p = 0, k, 2k ... N - k. The condition 
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corresponding to (4.3) is now k I (p + M). When kip, the condition k I (P + M) has solutions only 

if k is a divisor of M. This implies that an MRT coefficient has both positive and negative groups 

only if k is a divisor of M. If k is not a divisor of M, only one among the positive and negative 

groups exists, for a given value of p, as discussed below. 

(a) k is a divisor of M: It has been seen in the above paragraph that the valid phase indices for 

which MRT coefficients have positive groups are given by p = 0, k, 2k ... N - k. There are N / k 

such valid phase indices. When k I M is satisfied, negative groups also exist for all these MRT 

coefficients. However, from theorem 4.1, yip) ==-yiP+
M

). A general term of the series of valid 

phase indices can be written as dk, where d is an integer in the range [0, (N / k) - 1]. Since k I M, 

there exists an integer c < M such that ck = M. Hence, for a valid phase index p in the range 

[O,M -1] (allowable phase index), Yi
p

+
ck

) = y~P+M) == -Yk(P) • This implies that for every valid 

allowable phase index p, there is a valid non-allowable phase index p+ck such that 

y~p) == _Y,,(P+ck) • MRT coefficients corresponding to these non-allowable phase indices differ only 

in sign from their allowable phase counterparts. Thus, these non-allowable phase indices may be 

neglected since they provide MRT coefficients that are sign-reversed versions of MRT 

coefficients provided by allowable phase indices. There are thus M / k allowable phase indices 

and hence M / k MRT coefficients, the phase indices being given by the arithmetic series p = 0, k, 

2k, 3k ... M - k. MRT coefficients corresponding to these phase indices have both positive and 

negative groups simultaneously. 

(b) k is not a divisor of M: In this case, for a valid phase index, only one among the positive or 

negative groups exists. The valid phase indices still form an arithmetic series p == 0, k, 2k ... N -

k. Since k is a non-divisor of M, there does not exist an integer c that satisfies p + ck = p + M, and 

hence, the possibility that Y?) == - y/p+ck) does not exist. Thus, for p > M, where p is a valid phase 

index, there is no valid phase index p - M. However, the relation Y?) = -J1P-M) is still valid. 

Thus, for p > M, there exists an allowable but non-valid phase index of value p - M. To express 

the MRT corresponding to a valid phase index p > M in tenns of an allowable phase index, the 

relation ~(P) == - yiP-M) may be used. When kip, the condition k I (P + M) has solutions only if k 

is a divisor of M. Thus, MRT coefficients formed by valid phase indices have only positive 

groups. The negative of the MRT coefficient formed by the valid phase index p greater than M, 

p > M is the MRT coefficient formed by the allowable non-valid phase index p - M. Hence, the 

positive data group of the MRT coefficient with p > M becomes the negative data group of the 
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MRT coefficient with allowable non-valid phase index P - M. Thus, among the M allowable 

phase indices, a subset of them consists of valid phase indices, while the other subset consists of 

allowable non-valid phase indices of the form P - M that are obtained from valid phase indices 

p>M. 

The distance between two successive valid phase indices is k. Given an allowable and 

numerically smallest valid phase index PI < M, assume that the nearest allowable non-valid phase 

index is P2. The valid phase index corresponding to P2 is P; = P2 + M. Given q is the smallest 

integer such that qk > M, 

P; = PI +qk 

This equation can be justified along the following lines. P2 is the nearest allowable non-valid 

phase index to PI. PI is the smallest allowable valid phase index. There does not exist a valid 

phase index P; = PI + M. The next valid phase index is thus given by P; = PI + qk, since q is the 

smallest integer such that qk > M 

:·P2 - PI :::qk-M 

Since kiN, there exists an integer t such that N = tk. Hence, MIk = tl2. Since k is not a divisor of 

M, tl2 cannot be an integer. For this, t has to be odd. k == Nit. Since, division of an even number 

by an odd number yields an even number, k is even. Since kiN and k is even, it follows that 

(k I 2)1 M . 

Hence, 

M =dkI2, d EZ 

:. P2 - PI ::: qk - dk 1 2 

:. P2 - PI = 2q(k 1 2) - dk 1 2 

:. P2 - PI ::: (2q - d)(k 1 2) 

The value of (2q - d) cannot be greater than 1, since, then in that case, 

P2 - PI ~k 

As assumed earlier, PI is the numerically smallest allowable valid phase index and P; is the first 

valid phase index greater than M. Hence, the distance between P; and M has to be lesser than k. 

Thus, the distance between PI and P2 has to be lesser than k. Hence, 

P2 - PI =k 12 

The next valid index after PI is given by 

P3 = PI +k 
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From (4.lO) and (4.11), 

P3 - P2 = k 12 

If P~ is the next valid phase index after P; , then 

p~ has a corresponding non-valid allowable phase index P4 given by 

From (4.12) and (4.13), 

(4.12) 

(4.13) 

Hence, there is an allowable non-valid phase index between every successive pair of allowable 

valid phase indices. The MR.T coefficient formed by these allowable non-valid phase indices will 

have the same magnitude and opposite sign as the MR.T coefficient formed by the corresponding 

non-allowable valid phase indices. 

The sequence of allowable phase indices would thus be: 

k k k 
Po' Po +-, Po +k, Po +3-, ........... , Po +M --. 

2 2 2 
(4.S.2) 

When k is not a divisor of M, MR.T coefficients exist for these allowable phase indices and they 

will have either a positive group or a negative group only. There are NI k allowable phase indices 

in this case, and when k is a non-divisor of M, NI k is odd. Since k is a divisor of N, the condition 

for existence for solutions is kip. The smallest value of p that satisfies this condition is p = O. 

Hence, the first valid allowable phase index is po = O. This phase index corresponds to an MR.T 

coefficient with a positive group only, and the next allowable phase index is k 1 2, which 

corresponds to an MRT coefficient with a negative group only. This property alternates till the 

last allowable phase index M - (k 1 2) is reached. This last phase index corresponds to an MRT 

coefficient with only a positive group, since the total number of allowable phase indices is odd. In 

other words, it can be concluded that MRT coefficients with only a positive group have allowable 

phase indices that are even mUltiples of k 12, starting from 0 and ending at (N - k) 12. The 

number of such MRT coefficients is hence given by «NI2k) + (112». Similarly, the MRT 

coet1icients with only a negative group have allowable phase indices that are odd multiples of 

k 1 2, starting from k 1 2 and ending at M - k. The number of such MR.T coefficients is given by 
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«NI2k) - (112». The total number of I-D MRT coefficients is thus N / k, and the sequence of 

allowable phase indices is: 

k k k 
O,-,k,3-, ........... ,M--. 

2 2 2 
(4.S.3) 

The sequence of allowable phase indices that correspond to MRT coefficients having only 

positive groups is 

0, k, 2k, ......... , (N -k)/ 2, (4.S.4) 

and the sequence of allowable phase indices that correspond to MRT coefficients having only 

negative groups is 

k / 2, 3k 12, 5k / 2, ........... , M - k (4.S.5) 

4.3.5 Particular Solutions for Data Groups 

From (4.S.1a), the indices of the elements of the positive (or negative) data group of an I-D MRT 

coefficient form an arithmetic series of the form 

given no is the smallest member of the positive (or negative) data group. Using this arithmetic 

series, the indices of data elements that are present in the positive and negative data groups of an 

MRT coefficient can be found out. However, this formula pre-supposes the knowledge of a 

particular solution no. This sub-section deals with the value of this particular solution. The linear 

congruence equation «nk))N = p is solvable only if g(k,N) I p. Two cases for the value of kneed 

to be considered here. 

(a) k, a divisor of N 

When k is a divisor of N, g(k,N)= k. Hence, the linear congruence «nk»N = p has a particular 

solution n+ = p/k, so that «nok)),v = {«(P/k)k»),y = p. 

Theorem 4.3 

(a) When k is a divisor of N, the index n+ of the first element in the positive data group of an 

MRT coefficient Yk(P) is given by n T = p / k. 

(b) For k a divisor of M, if data element with index n occurs in the positive data group of an MRT 

coefficient Yk(p) , then the data element with index n + (M / k) occurs in the negative data group of 

the same MR T coefficient. 
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(c) The index of first data element in the positive group of an MRT coefficient yk(p} , when k is 

not a divisor of M is given by n+= p I k. The index of first data element in the negative group of 

an MRT coefficient y}P), when k is not a divisor of M is given by 11_ = (P+M)lk. 

Proof 

(a) The index of the first element of MRT coefficient y?l is the smallest solution of the 

congruence equation, (42), 

«nk)),v = p-

Solutions exist for (4.2) only if g(k,N) divides p, which can be written as g(k,N) I p, i.e. kip, 

since g(k,N) = k . 

Since kip, the smallest solution to (4.2) is n+ = p/k, and thus n+ = p/k is the first element in the 

positive data group ofMRT coefficient Y:P) . 

The condition g(k,M) = k is necessary for both positive and negative groups to be present in an 

MRT coefficient. 

(b) Given «nk))N = p. 

M M 
:. «(n + T)k))N = «nk));v + «Tk»);v = p + M 

Thus, if data element with index n occurs in the positive group, data element with index n + Mlk 

occurs in the negative group since «(11 + Mlk) k)) N = P + M. 

(c) From (4.S.3), when k is not a divisor of M, the sequence of allowable phase indices is 
k 3k k 

0, -, k, -, ........... , M --. 
222 

From (4.S.4), the sequence of allowable phase indices that correspond to MRT coefficients 

having only positive groups is 

k 
0, k, 2k, ........... , M--

2 

From (4.S.5), the sequence of allowable phase indices that correspond to MRT coefficients 

having only negative groups is 

k 3k 5k 
2' 2' 2'···········,M -k. 
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The allowable phase indices that provide MRT coefficients with only positive groups are valid 

phase indices. Hence, the first data element that satisfies «nk»N = p is obtained by the straight­

forward division p / k since kip is satisfied, p being a valid phase index. Hence, index of the first 

data element in the positive group is n+= p / k. 

Also, the allowable phase indices that provide MRT coefficients with only negative groups are 

actually non-valid allowable phase indices. Given a non-valid phase index p., the valid phase 

index P+ corresponding to p. is given by P+ = p_ + M. Hence, index of the first data element in the 

negative group is n.= (p + M)/k. 

(b) k, a non-divisor of N 

In this case, n+ = p / g(k, N) cannot be a solution since g(k,N) I- k. The extended Euclidean 

algorithm (Appendix A.5) can be used to find a particular solution for this case. 

Example 4.4: 

If the existence of MRT coefficient YP) needs to be checked for N = 8, using theorem 4.2, the 

sufficient conditions are g(2,8) 12 and/or g(2,8) 1 6. Both of these conditions are satisfied, since 

g(2,S) = 2, and both 2 \ 2 and 2 \ 6 hold. Hence, the MRT coefficient y?l exists for N = 8. 

Checking existence of MRT coefficient Y2(1) for N = 8, this MRT coefficient does not exist since 

both the necessary conditions g(2,8) \1 and g(2,8) I 5 do not hold. Similarly, (4.S.l) gives the 

indices of the data elements that make up the MR T coefficient. The number of coeffici~nts in the 

positive group of MR T coefficient YP) for order 8 is equal to g(2, 8) = 2, and in the negative 

group of the same MRT coefficient is also g(2,8) = 2. Given no is an index present in the positive 

group (no can be obtained by finding a particular solution for (4.2), other indices are given by 

n = no + (8 / g(2,8»! , where 0 ~ t < g(2,8) . Thus, n = no + 4!, 0 :s t < 2. 

4.3.6 I-D MRT: Closed-form Expression 

From the definition ofMRT, and from the arithmetic series of indices of members in the positive 

and negative data groups in (4.S.la), and, given n+ is a member of the positive group, and n. is a 

member of the negative group, a I-D MRT coefficient can be expressed in the following manner: 

W} =[xn +xn +g + Xn +2g +xn +3u •••• -...... +Xn ug(k '\'}-l)g J-
t + J: '" J.. ..-:.1<. ''t '\.' k 

(4.14) 
[ Xo +xn +g +xn +2g + xn +3u + ........... + Xn ->io(k .\'}-l)o ] 

,<- - ~ k - J.. -.:::0,1; • \~., -, 0* 
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This can be further simplified as 

g(Ie,N)-1 

~(P) = L [xn++Jg , -Xn_-ig.] (4. 14a) 
j=O 

(4.14a) is a closed-form fonnula for computing I-D MRT coefficients. However, an important 

requirement in (4.14) is that the index of one member each of the positive and negative groups 

respectively needs to be known beforehand. As discussed earlier, the extended Euclidean 

algorithm provides these indices. 

When k is a divisor of N, theorem 4.3(a) specifies the value of the index of the first element in the 

positive group, 11+ = P / k. Also, from theorem 4.3(b), there exists a relation between an index in 

the positive group and an index in the negative group, given k is a factor of M. Hence, given n+, n_ 

= n+ + (M / k). When k is not a divisor of M, theorem 4.3(c) gives the value of phase indices that 

correspond to MRT coefficients that have only positive groups, and MRT coefficients that have 

only negative groups. 

Case 1: Structure of I-D MRT Coefficient When k is a Divisor of M 

When k is a divisor of M, n+ = pI k, and n_ = n+ + (M I k). Also, g(k,N)= k. Using these 

relations to rewrite (4.14), 

np
) =[XE +xE;!. +xE.2!- +XE~"" ... ""+XEI(k-I)N]-

k tie k k k k le k 

[XE? +xE~ +xP~ +xE~ + ........... +XE1 (2k-1lN] 
k 21e k 2k k 21e le 2k k 2k 

(4.15) 

On further simplification, 

k-I[ ] ~(P) = L x jN+P - X(2j+l)N+2p 

./=0 k 2k 

(4.15a) 

p= 0, k, 2k, ... M-k 

Case 2: Structure ofMRT Coefficient when k is a non-divisor of M 

When k is not a divisor of M, it has been found in section 4.3.4.4 that positive and negative 

groups cannot exist together for the same MRT coefficient. For certain values of p. only positive 

groups exist. For other values of p, only negative groups exist. As seen, for positive groups, 

n+ = p I k, and for negative groups, n- = (p + M)/k. An MRT coefficient with only a positive 

group has the following fonn: 
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riP) =[XE +XE+'!- +XE~ +XE~"'h"''''+XEI(k-I)N] 
k kk kk kk k k 

(4.16) 

which, when simplified, becomes 

k-I [ ] 
Yk(p) = I Xj!,"!"-.E 

}-o k 

(4. 16a) 

P = 0, k, 2k, ... M - kl2 

Similarly, an MRT coefficient with only a negative group has the following fonn: 

rip) =-[XI*M +XI*M +'!- +XI*M ~ + .......... +XE1(k-llN] 
k kk kk kk 

(4.17) 
which when simplified, becomes 

k-I[ ] Y}P)=-I X jN+p +M 

}=o k 

(4.17a) 

P = k12, 3k12, ... M - k 

Case 3: Structure ofMRT Coefficient when k is co-prime to N 

When k is co-prime to N, g(k,N)= 1. Thus, there is only one element in the positive group and 

similarly only one element in the negative group. The values of n+ and n. need to be found out 

using the Euclidean algorithm or by trial-and-error method. The MRT coefficient will have the 

fonn 

(4.18) 

p = 0, 1,2,3, ... , M-I. 

4.3.7 Physical Significance ofMRT 

An :MRT coefficient has both frequency and phase indices. In the MRT coefficient y;P) , k is a 

frequency index, and p is a phase index. In comparison, a DFT coefficient has only one index, 

and that is the frequency index. Hence, a distinguishing feature of the MRT coefficient is the 

presence of an extra index, the phase index. The presence of this index provides some 

infonnation regarding phase of the signal. This point can be best examined from Figure 4.3, 

which shows the basis vectors of an MRT coefficient for N = 8. Consider the basis vector for 

MRT coefficient 1';(0) • The value of the frequency index of this MRT coefficient indicates that the 

coefficient provides information about presence of frequency content k = 1 in the signal. Hence, 

there is a positive peak and a negative peak in the basis vector which indicates one frequency 

cycle. The location of the positive peak of the frequency cycle is dependent on the value of this 
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phase index. The distance of the negative peak from the positive peak depends on the frequency. 

The physical significance of an MRT coefficient is this: the phase index specifies the starting 

time of the frequency cycle. The MRT can hence be considered a time-frequency representation 

of the input signal. In contrast to the OFf which is a frequency transform, the MRT, though 

directly related to the OFT, has localization in time as well as in frequency. Also, MRT 

coefficients can be considered to be constituent parts of the OFf; parts which, if weighted by the 

exponential kernel, would yield the OFT of the corresponding frequency. For N = 8, OFf 

coefficient Yk can be expressed in terms of corresponding MRTs as 

y: - y:(Olw. 0 + y(I)w.1 + y(2)w. 2 + y(3)w. 3 
k- k 8 k g k 8 k 8 

4.4 Redundancy in MRT 

In section 4.2.2.5, one of the observations made regarding 1-0 MRT is that the coefficients are 

sometimes exact negations of other coefficients, i.e. a number of 1-0 MRT coefficients can be 

obtained by reversing the sign of an MRT coefficient. Also, MRT coefficients are sometimes 

exactly equal to other MRT coefficients, i.e. more than one MRT coefficients share the same 

values. In general, for certain values of N, a group of MRT coefficients having different 

frequency and phase indices, have the same magnitude. The sign of the coefficients mayor may 

not be the same. This phenomenon can be looked at in different ways. First, it means that the 

same information is represented by various MRT coefficients. This implies that such MRT 

coefficients share some common properties. MRT is a measure of signal content at a specific 

frequency and pertaining to a specific phase/temporal location. Thus, when many MRT 

coefficients have the same value, this means that the information conveyed is the same for all 

these combinations of frequency and phase indices. Hence, there is an element of predictability 

involved between different combinations of frequency and phase on the basis of their associated 

MRT coefficients. Secondly, predictability leads to the next aspect of redundancy. The presence 

of the same value at different frequency/phase indices indicates an element of redundancy in the 

transform. If this repetition can be accurately predicted, then a simpler transform structure can be 

evolved by removing the redundant MRT coefficients to yield a transform that has no 

redundancy. Hence, a detailed analysis of different redundancies present in MRT coefficients is 

performed as follows. 
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4.4.1 Complete Redundancy 

By complete redundancy, it is meant that another MRT coefficient has exactly the same 

magnitude as Y?) except for a possible difference in sign. 

From a basic theorem [98) in number theory, 

if 

«q))N = d 
and h is a multiplication factor, then 

«hq)) N = hd 
«gcd(h.N» ) 

If g(h,N) = 1, (4.20) becomes 

«hq))N =hd 

Given Yk(P), n satisfies 

«nk))N = p 

and n I such that 

«n'k))N = p+M 

If there is h such that g(h,N) = 1, using (4.19), (4.20) & (4.21), 

and 

«n(hk)))N = hp 

«n'(hk)))N =h(p+M) 

«n'(hk)))N = hp + hM 

Since g(h,N) = 1, h is odd, and hence 

hp+hM=hp+M 

Using (4.27), (4.26) may be written as 

«n'(hk)))N = hp + M 

(4.19) 

(4.20) 

(4.21) 

(4.22) 

(4.23) 

(4.24) 

(4.25) 

(4.26) 

(4.27) 

(4.28) 

From the definition of 1-D MRT, and (4.24) & (4.28), it is seen that nand n' form the MRT 

coefficient y"~p). Using (4.22), (4.23), (4.24) & (4.28), 

y;(p) = y«hp»N 
k (hk», 

If hp ::0: M, then 

y«(hp)h) = _ y(hp-M) 
«hk)),. «hk», (4.29) 

smce 
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y,(p) - _y,(p-M) - _y,(p+M) 
k - k - k 

Hence, the following theorem on redundancy can be stated: 

Theorem 4.6 
y:«hp»)", - y:(p) 

Given y;p),forall h such that g(h,N)= 1, «Ilk)), - k for «hp))N <M, and, 

y«(hp)).,.-M) - -y,(p) 
«Irk)), - k for «hp)),v ~ M. (4.30) 

Theorem 4.6 shows that redundancy can be predicted from the values of N and the values of the 

frequency and phase indices. Given a pair of frequency index and phase index (k, p), the 

frequency and phase index pairs of all other MRT coefficients that are redundant with respect to 

the MRT coefficient with frequency and phase index pair (k, p) can be found out from theorem 

4.6, which states that the condition for redundancy is that the multiplication factor that relates the 

frequency indices of two redundant MRT coefficients is co-prime to N. 

Example 4.5: 

Let N = 6. From section 4.2.2.2, it is seen from coefficients nos. 2, 3 & 4 and from 12, 13 & 14 

that MRT coefficients corresponding to k = 5 are completely redundant with those corresponding 

to k = 1. Relations of complete redundancy exist also between MRT coefficients with k = 2 and 

k=4. The only integer h, other than 1, in [0, 5], that satisfies g(h,6) = 1, is h = 5. Since 

5:= «5 x 1))6 and 4 = «5 x 2))6, this explains redundancy between k = 1 & k = 5, and k = 2 & 

k = 4, respectively. 

4.4.1.1 Significance of Frequency Index 

The value of the frequency index k is significant with regard to the predictability of other MRT 

coefficients k' from knowledge of MRT coefficient with frequency index k. If k 1:= hk and 

g(h, N) = 1 , then there exists redundancy between MRT coefficients of the two frequency indices 

k& k', 

(a) Frequency index co-prime to N 

When k = 1, all those values of k' that are co-prime to N can be obtained from MRT coefficients 

with frequency index k = 1. 

(b) Frequency index, Divisor of N 
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If k' is a divisor of N, then k' cannot be obtained by multiplying an integer k with an integer h, 

k'==hk, such that g(h,N) = 1 and k ,*k'. This can be explained as follows: Assume that k' can 

be expressed as k' = hk , and h '* 1 , and k '* 1 . Then, both hand k are divisors of N too. Hence, 

g(h,N)=h, and g(k,N)=k. Thus, if either h=land k,*l, or h,*land k=1, then h=k', or 

k = k', which is a trivial solution. Thus, there cannot be an h such that g(h, N) = 1, and MRT 

coefficients with frequency indices that are divisors of N cannot be redundant to each other. 

(c) Frequency index, Non-prime Non-divisor of N 

Assume a frequency index k' exists such that k' = hk , such that g( h, N) = 1 and k #- k' . If k' is 

non-prime, it has a non-unity gcd with N, i.e. it has a non-trivial common divisor with N. Hence, 

even if it is not a divisor of N, it can be obtained by complete redundancy from the common 

divisor. 

Theorem 4.1 

MR.T coefficients with frequency indices that have common gcd w.r.t. N are all completely 

redundant to each other. 

Proof 

Assume kl and k2 are two frequency indices that have common gcd W.r.t. N. 

g(kI'N) = k 

g(k2 ,N) =k 

Assume h exists such that 

g(h,N) =1 

(4.31 ) 

(4.32) 

(4.33) 

From (4.33), h and N have only one common divisor, and it is one. The extra divisors of the 

product hkl when compared with divisors of kl will be the divisors of h. Since none of these extra 

divisors (except divisor 1) are also present in N, the common divisors among hk( and N are the 

same as the common divisors among kl and N, which implies that, 

g(hkpN) = k 

« hkl » N = hk
J 

- Nq , if 0 75. hkl - Nq < N , q E D 

Using (4.35) and gcd property 

g«(hkl»N,N) = g(hkl - Nq,N) = g(hkpN) = k 

From (4.32) and (4.36), 

k2 = «hkt»N 
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From (4.33) & (4.37), and using theorem 4.6, it can be concluded that frequency indices kl and kz 

are completely redundant. Hence, theorem is proved. 

Example 4.6: 

Let N = 8. From section 4.2.2.3, the following relations can be verified: 

y.(O) = y(O) _ y.(O) = y(O) 
1 3 - 5 7' 

y'(2) = _y(2) = y'(2) = _y(2) and 
1 3 5 7" 

y. (3) _ y(l) - _y'(3) __ y(l) 
1-3-5-7' 

Since k == 1, 3, 5 & 7 share the same gcd of 1 w.r.t. N, there is redundancy among MRT 

coefficients of these frequencies. Similarly, since g(2,8) = g(6,8) = 2, Y?) = y6(O) , and 

Y (Z) = _y(2) 
2 6' 

4.4.1.2 Redundant Frequency Groups 

Theorem 4.7 implies that frequency indices can be grouped on the basis of their gcd W.r.t. N. All 

non-divisor frequency indices are related to divisor frequency indices through multiplication 

factors h such that g(h, N) = 1. Thus the multiplicative factors, that are co-prime to N, are at the 

heart of the phenomenon of complete redundancy. The number of possible multiplication factors 

that are involved in complete redundancy is given by Euler's totient function ~(N), defined as the 

number of posi ti ve integers :'S N that are co-prime to N, where 1 is counted as being co-prime to 

all numbers. Given 1-D MRT coefficients of frequency k = 1, there are ~(N) -1 other frequency 

indices whose associated MRT coefficients can be derived from the MRT coefficient with k = 1. 

Along with k = 1, these ~(N) frequency indices thus form the set of frequency indices that have 

g(k,N) = I. There are similar sets of frequency indices that have common gcds w.r.t. N, and each 

set is associated with a particular divisor of N. The size of this set of frequency indices can be 

derived for a divisor k of N. There are ~(N)possible multiplicative factors that can be used to 

generate other members of the set of frequency indices corresponding to k. From theorem 4.6, the 

equation for complete redundancy is k' = «hk»N' where g(h,N) = 1. Also, 

«hk))N = «(h + 'f1)k))N (4.38) 

(4.38) implies that the set of k'that is generated from divisor k is unique only for multiplicative 

factors in the set [0, (N / k)-l], and repeats thereafter for the remaining sets of the same length. 
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Hence the problem now gets reduced to k' = «hk))Nlk where g(h,N / k) = 1. The number of such 

multiplicative factors h is ~(N / k) > and these factors are the totatives (Appendix A.6) of N / k. 

Hence, the number of frequency indices that are related by complete redundancy to a frequency 

index k is given by ~(N / k) and they are obtained by k' = «hk))N where g(h,N / k) '" 1. 

From number theory [99] 

L~(d)=N, ifN?:.I, ( 4.39) 
diN 

From (4.39), the sum of the tenns ~(N / k) over all divisors of N is given by N, 

since L~(d) = I~(N / d) . Hence, all the Nfrequency indices k = [O,N -1] have been mapped. 
diN diN 

Thus, all frequency indices of 1-D MRT can be classified on the basis of their gcd w.r.t. N. 

Theorem 4.8 

There exists one-to-one mapping between phase indices of I-D MRT coefficients of frequencies k 

and k' related through complete redundancy. 

Proof 

For two MRT coefficients of frequencies k and k'that are related through complete redundancy, 

the number of phase indices corresponding to each frequency is the same since 

g(k,N) = g(k',N) , and the number of phase indices is given by Nlg(k, N). The phase indices are 

in the range [0, M-I]. From theorem 4.6 on complete redundancy, the relation between phase is 

given by p' = «hp)) N' g(h, N) = 1. Using theorem on reduced residue systems in Appendix A.8, 

on multiplication with h, the resultant set of phase indices p I also will have the same composition 

as the original set. Multiplication of the phase indices in (0, M-I] by h and then perfonning 

modulus w.r.t. M reproduces the set, but with the order of the elements in the set possibly altered. 

In this way, the phase indices of MRT coefficients of two completely redundant frequencies are 

completely mapped to each other. 

Example 4.7: 

Let N = 8. From section 4.2.2.3, 

y;(O) = y(O) 
I 3' 

y;(l) = y(3) 
I 3' 

y.(2) = _ y(2) and 
I 3" 
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y.(3) ~ y(l) 
I ~ 3 • 

Since k = 1 and k = 3 are redundant through the co-prime h = 3, the set of phase indices of k = 1, 

p={O,1,2,3}, when subjected to the operation p'=«hp)),v, would result in p'={0,3,6,1}, 

which reduces to p' = {0,3,2,1} after the condition «/tP)N < M is checked and relevant sign 

change. Hence, p = { 0, 1, 2, 3} maps to p' = { 0, 3, 2, I} . 

4.4.2 Derived redundancy 

The concept of complete redundancy has been presented in section 4.4.1. For N = 6, from 2, 3,4 

& 8 in section 4.2.2.2 

Also, from 1, 5, 6 & 7 in section 4.2.2.2, 

y;(O) ~ y(O) ~ y(l) + y(2) 
o - 2 2 2 

(4.40) 

(4.41) 

For N = 6, all MRT coefficients with k = 1 combine to re-appear in the MRT coefficient 

with k = 3. The same happens between MRT coefficients of frequency k = 2 and k = O. Thus, 

although MRT coefficients with k = 3 and k = 0 do not exhibit complete redundancy; they are 

actually fonned by combinations of unique MRT coefficients of frequency k = 1 and k = 2 

respectively. These MRT coefficients can thus be derived from combinations of other unique 

MRT coefficients. Hence, there exists an element of redundancy in these coefficients, but it is not 

complete redundancy. These may thus be called derived redundant coefficients and the 

phenomenon may be called derived redundancy. 

An MRT coefficient is called a derived MRT coefficient if it can be obtained by a combination of 

other MRT coefficients. The main feature in derived redundancy is that more than one MRT 

coefficient, all of the same frequency, is completely present in another MRT coefficient of a 

different frequency. It is a relationship in which one MRT coefficient 'A' completely contains 

another MRT coefficient 'B', but 'B' only partially contains 'A'. 'A' is a combination of other 

MRT coefficients, with each of which 'A' has the same nature of relationship that it has with 'B'. 

Let Y},p)be an MRT coefficient of type 'A', and Y}Pu) be an MRT coefficient of type 'B', The 

congruence relations for Y}Pu) are «nk»),v = po and «nk)h! = p" + M. The congruence relations for 

Y/!') are «nk ')h· = p and «nk '),v = p + M . Assume that a relation k' = dk exists between k and 

k'. Hence, «dnk»N=pand «dnk»),y=p+M. «dnk)h=p may be written as 
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«nk»N = pi dif g(d,N)=d, and dIp. In other words, d should be a divisor of N. From 

«nk»N = pi d and «nk»N = pa, Pa = pi d . Multiplying both sides of «nk»N = pa + M by d, 

«dnk»N = dpa + dM. If d is odd, this can be written as «dnk»N = dp" + M, which becomes 

«nk ~)N = P + M . Hence, if there is an odd divisor d of N, k t 
=: dk , then derived redundancy 

exists between Y}P.) and Y}!,l. Hence, it can be concluded that derived redundancy cannot occur 

when N is a power of 2 since N has no odd divisors. For all other even values of N, derived 

redundancy occurs since N would have odd divisors. The smallest value of p that satisfies 

Pa = P I d is obtained when p < N. Let the lowest phase index among the group of MRT 

coefficients of frequency k will be Po = p Id. Other values of the phase indices will be 

Pa =(p+N)1 d,(p+2N)1 d etc. 

From (4.15), given a frequency index k, and a phase pi, MRT coefficient Yk(P,l has the following 

structure: 

An MRT coefficient of the same frequency k, but another phase Pi' yk(P,l has, 

l1P
) =[Xp, +xp, N +xPJ 2N +xPj 3N···········+ x p, (k-IJN]~ 

---L ---L+-- _+-- _+-- _~ 

k kk kk kk k k 

[
xp M +Xp 3M +Xp SM +Xp 7M···········+ x p (2k-IJM] 

!.L+-- -L+-- ....-L+-- -L+-- :....L~ 
kk kk kk kk k k 

(4.42) 

(4.43) 

Another frequency k' will have an MRT coefficient Y}!') with the phase p, and will have the form 

Yi!,l =[Xl!. +xl!.+!i +X£.+~~ +X£.+~"'''''''''+Xl!.I(k-Il~]~ 
k' k' k' k' k' k' k' k' k' 

[Xl!.+~ +Xl!.+3M +Xl!.+5M +Xl!.+7M ........... + Xl!.J3!--::llM] 
k' k' k' k' k' k' k' k' k' k' 

(4.44) 

By derived redundancy, 

y,(p) == v(P') + v(p) + + y,(p,,) 
k' 1 k 1 k ... /.. (4.45) 
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The difference between the index of the first element in the positive group and the index of the 

second element in the positive group of MRT coefficient y/p) is q'= NI kt. The difference 

between the first index of the positive group of MRT coefficient y?,l and the first index of 

positive group of MRT coefficient yk(P) is q = (pj - pYk. From (4.42), (4.43), (4.44) & (4.45), 

derived redundancy occurs when q = q' and Pi 1 k = P 1 k' . 

. N _ (Pj - Pi) .. --
k' k 

k' 
Also P=~ , k 

(4.46) 

The number of valid phase indices for MRT coefficient Y/.p) is NI kt . Similarly, the number of 

valid phase indices for MRT coefficient Y?;) is Nlk. There are k'elements in positive group of 

Yk(.PI, and k elements in positive group of y}p;) . When derived redundancy exists between MRT 

coefficient of higher frequency Yk(.P) and MRT coefficients of lower frequency Yk(P,l, Yk(Pj) etc., 

the number of MRT coefficients of the lower frequency k that should combine to form one MRT 

coefficient of a higher frequency is k'l k . There are NI k' MRT coefficients of frequency k', and 

NI k MRT coefficients of frequency k. For N 1 k coefficients of frequency k to combine to form 

NI k' coefficients of frequency k', k'l k coefficients of frequency k need to combine to form one 

coefficient of frequency k'. Given Po is the smallest valid phase index of the k'l k MRT 

coefficients of lower frequency k that combine to form the MRT coefficient of higher frequency 

k', using (4.46), the valid phase indices of the k'l k MRT coefficients form the following 

Nk Nk Nk Nk 
sequence: Po, Po +--;;;, Po +2--;;;, Po +3--;;;, ........... , Po +N ---;;;. 

Assume there is an integer q such that 

Nk -M 
q k' - , 

which when simplified becomes, 

k' = 2qk 

Hence, if k' = 2qk , there will be a term Po + qNk 1 k' = Po + M in the sequence of valid phase 

indices, and hence any tenn p such that P < M will have another tenn p + qNk 1 k '= p + M in the 
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sequence. Thus, MRT coefficient Y,,(.P) will be a sum ofMRT coefficients with valid phase indices 

that form a sequence which contains elements of the form p and p +M. From theorem 4.1, 

Y (p) __ v(p+M) 
k - 1" 

Hence, a sum of MRT coefficients having valid phase indices in this sequence will have zero 

elements, which implies the non-existence of the MRT coefficient. Hence, for a lower frequency 

k and a higher frequency k' that satisfy k' = 2qk , it is not possible for MRT coefficients of the 

lower frequency to combine to form an MRT coefficient of the higher frequency. The relation 

Yk(P) = - y?+M) cannot exist between any two valid phase indices in the above sequence if there 

is no integer q such that qNk / k I = M . Hence, there would be non-allowable valid phase indices 

that are greater than M and these would have corresponding allowable non-valid phase indices. 

The distance between successive valid phase indices is Nk / k'. Given an allowable and 

numerically smallest valid phase index PI < M, assume that the nearest allowable non-valid phase 

index is P2. The valid phase index corresponding to P2 is P; = h + M . Given q is the smallest 

integer such that qNk / k' > M , 

(4.47) 

For derived redundancy, it is required that 

k'=dk 

where d is an odd integer. 
Nk N 
k' d 

N dNk 

2 2k' 

Using (4.47), 

Nk N _ Nk dNk _ (2 d) Nk q--,:; -2 - q----;:; - 2k' - q - 2k' 

Nk 
P2 - PI =(2q-d)-

2k' 

The value of (2q - d) CalIDOt be even since it is a difference between an even integer 2q and an 

odd integer d. The value of (2q - cl) cannot be greater than 1 since then 
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As assumed, PI is the numerically smallest allowable valid phase index and P; is the first valid 

phase index greater than M. Hence, the difference between p~ and M has to be lesser than 

Nk / k I. Thus, the distance between PI and P2 has to be lesser than Nk / k I. Hence, 

Nk 
P2 - PI = 2k' 

There is thus an allowable non-valid phase index between every couple of allowable valid phase 

indices. The MRT coefficient formed by these allowable non-valid phase indices will have the 

same magnitude and opposite sign as the MRT coefficient formed by the corresponding non­

allowable valid phase indices. 

The sequence of allowable phase indices would thus be: 

Nk Nk 3Nk N Nk 
PO' Po + 2k"Po+Tr'Po+ 2k' , ........... ,Po+2 - 2k

" 

Hence, the equation for derived redundancy can be stated as: 

Nk Nk 3Nk N Nk 

y:(p) = y:p" _ y:( Po+ 2k.l + y:(Po+7) _ y:(Po+-U;) y:(Po+ 2-2k.l 
k' k k k k .......... k 

There are N / k' groups of MRT coefficients of lower frequency k that combine to fOlm N / k' 

MRT coefficients of higher frequency k I. There are k '/ k MRT coefficients in each of these 

groups. Also, the structure of each of these groups is the same. The smallest possible phase index 

for MRT coefficient of frequency k' is given by P = 0. The yhase index of the first MRT 

coefficient of lower frequency k that are related through derived redundancy to the MRT 

coefficient of frequency k' is Pi = p/d = O. The next higher phase index of MRT coefficient of 

frequency k' is given by P = k'. The phase index of the first MRT coefficient of lower frequency 

k related through derived redundancy to this MRT coefficient of frequency k'and phase k' is 

given by Pi = k '/ d = k . Hence, the MRT coefficient of frequency k' and phase P is given by 

P = 0, k', 2k', 3k', ..... , M -k' 

In the discussion so far, the assumption has been that k I M. In case this condition does not hold, 

the number of MRT coefficients of frequency k is given by Nlk. If k I M does not hold, then k' I M 

does not hold either. Hence, the number of MRT coefficients of higher frequency k' is given by 
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N / k'. For a frequency index k'that is not a divisor of M, from section 4.3.4.4, the sequence of 

values of allowable phase indices is given by 

k' k' k' 
Po, Po +-, Po +k', Po +3-, ........... , Po +M --., where Po = 0. 

2 2 2 

Hence, the MR T coefficient of frequency k' and phase P is given by 

P = 0, k'/ 2, k', 3k'/ 2, ..... ,M -k'/ 2 

In summary, 

(pk) (.k.(p+M)) (~(p+2M)) (~(p+3M)) (k (P+(~-I)M» 
Yk~P) = ~ k, - Y

k 
k, + ~ k, - Y

k 
k, + .......... Y

k 
k, k (4.48) 

P = 0, k" 2kr, 3kr,· .. ··, M -kr , 

P = 0, kr / 2, k" 3kr /2, ..... , M - kr /2 , otherwise. 

(4.48a) 

P =0,kr,2kr,3k" ..... M -k" if k IM,k, IM 

P = O,kr / 2,kr,3kr / 2, ..... M - kr /2, otherwise 

Thus, a new representation of the MRT can be derived by removing the various types of 

redundancies present in the MRT, as explained in the next section. 

Tables 4.1:(a)-(e) show the mapping between divisors, odd divisors and non-divisors 

corresponding to complete redundancy and derived redundancy for various values of N. The 

divisors of N are in the first column. The co-primes and odd-divisors of N are in the first row. 

Non-divisors are obtained from divisors through multiplication with co-primes and modulus w.r.t. 

N. The entire set [0, N - 1 J is accounted for in this way, as seen in the tables. Also, there is 

derived redundancy relationship through multiplication with odd divisors. 
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Table 4.1(a): Complete redundancy and derived redundancy relations for N =' 6 

N""6 Co-prime Odd divisor 

5 3 

1 5 3 

2 4 6 

3 

6 

Table 4.1(b): Complete redundancy and derived redundancy relations for N = 12 

N= 12 Co-primes Odd divisors 

5 7 11 3 

1 5 7 11 3 

2 10 6 

3 9 

4 8 12 

6 

12 

Table 4.1(c): Complete redundancy and derived redundancy relations for N = 18 

N= 18 Co-primes Odd divisors 

5 7 11 13 17 3 9 

1 5 7 11 13 17 3 9 

2 10 14 4 8 16 6 18 

3 15 

6 12 

9 

18 
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Table 4.1(d): Complete redundancy and derived redundancy relations for N= 24 

N=24 Co-primes Odd divisors 

5 7 11 13 17 19 23 3 

1 5 7 11 13 17 19 23 3 

2 10 14 22 6 

3 15 21 9 

4 20 12 

6 18 

8 16 24 

12 

24 

Table 4.1(e): Complete redundancy and derived redundancy relations for N = 30 

N=30 Co-primes Odd di visors 

7 11 13 17 19 23 29 3 5 15 

1 7 11 13 17 19 23 29 3 5 15 

2 14 22 26 4 8 16 28 6 10 30 

3 21 9 27 

5 25 

6 12 18 24 

10 20 

15 

30 

4.5 I-D Unique MRT (l-D UMRT) 

On the basis of the concepts of complete redundancy and derived redundancy, I-D MRT 

coefficients can be classified as unique and relatively unique. It is seen that MRT coefficients that 

are of divisor frequencies, cannot be obtained from other divisors through complete redundancy. 

Hence they are called unique MRT coefficients. However, if such divisors are related to other 

divisors through multiplication by an odd divisor, then they exhibit derived redundancy. For 

example, for N = 6, although k = 3 is a divisor frequency and cannot be obtained through 
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complete redundancy from any other divisor frequency, it exhibits derived redundancy since it 

can be obtained through derived redundancy from k = 1 using the odd divisor 3. Such divisors are 

thus only relatively unique. Removing the relatively unique divisors frequencies from the group 

of unique divisor frequencies, only those divisor frequencies remain which are not related to other 

divisor frequencies through multiplication by an odd divisor. These divisors can be considered 

absolutely unique. For N = 6, the list of divisor frequencies is given by the set {l, 2, 3, 6}. 

Removing relatively unique divisor frequencies 3 & 6 from the set would result in the absolutely 

unique divisor set {l, 2}. Absolutely unique divisors should not be expressible in fonn k' = dk , 

where d is an odd integer. Among the divisors of N, the only divisors that satisfy this requirement 

are those that are powers of 2, as observed in the above example. If k' = 2a 
, then for any value of 

k and odd values of d other than d = 1, k t 1:- dk . Hence, the set of unique divisors of N consists 

only of those divisors that are powers of 2. MRT coefficients having unique divisor frequencies 

are called unique MRT (UMRT) coefficients. Thus, I-D UMRT is composed of all MRT 

coefficients that have frequencies that are powers of 2. 

4.5.1 Number of Unique Coefficients 

There are totally MNMRT coefficients, as in section 4.2, for a I-D signal oflength N. It is sought 

to detennine the exact number of UMRT coefficients. A frequency that is a power of 2 yields 

unique coefficients. Since k = 0 = «N»),v, and N is a power of 2, then k = 0 is a frequency that 

yields a unique coefficient. Similarly, if N is not a power of 2, k = 0 does not yield UMRT 

coefficients. Hence, the set of unique coefficients vary depending on whether N is a power of 2 or 

not. 

Case I: N a power of 2 

The frequency indices that produce unique coefficients for N power of 2 are themselves powers 

of 2. The first frequency index is k = 1, and followed by k = 2, 4, ... , N. The number of unique 

coefficients produced by each frequency index k is given by the number of allowable phase 

indices for each frequency index k. From section 4.3.4, for an MRT coefficient Y:p) to exist, p 

should be divisible by k. When k = N, this condition has only one solution for p, p = O. All other 

frequency indices have M I k coefficients each. Hence, the total number of UMRT coefficients is 

given by 

Jog, M M 
Tot=l+ L -

1=0 21 
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log,M 1 
=l+M L-

1=0 21 

1- (1/ 2 )(log, M +1) 

= 1 + M (--'----'----
(1/2) 

= 1 + N(1- 2-(log,M+l)) 

1 
=l+N(l--) 

N 

=N 

Hence, the number ofUMRT coefficients, when N is a power of 2, is N. 

Case 2: N not a power of 2 

Assume k' is the frequency index that is the highest power of 2 and also a divisor of N. Let 

N = dk' . Here, d has to be an odd integer; otherwise, if d is even, then k' cannot he the highest 

power of 2 that is a divisor of N. Since d is odd, k' cannot be a divisor of M since d /2 is not an 

integer. There are N / k I valid phase indices and thus N / k I MRT coefficients when k I is not a 

divisor of M. All divisors of Nthat are powers of2 and lesser than k'are divisors of M. These are 

k = 1,2,4, ... , k' /2. There are MIk MRT coefficients for all these frequency indices. For N not a 

power of 2, k = 0 is a frequency that can be obtained by derived redundancy. A frequency k = 0 

can also be considered to be k = N, since «N))N =0. This frequency N is related to k' by N = dk' , 

where d is odd. This is a sufficient condition for derived redundancy. Hence, unlike the case 

when N is a power of 2, k = 0 does not produce an absolutely unique MRT coefficient. Hence, the 

total number ofUMRT coefficients over all frequencies is given by 

N log,(k'12) M 
Tot=-+ L -

k' 1=0 21 

N (1- 2(-log,(k'/2)-I)) 

= - + M -'----------'-
k' (1/2) 

N 2 
= k'+ N(l- 2k') 

=N 

It can thus be concluded that the number of unique MRT coefficients, needed to represent a I-D 

sequence of size N, is N irrespective of the type of N, corresponding to frequencies that are 

powers of 2 and divisors of N, starting from k = 1. 
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4.5.2 I-D UMRT Computation 

The I-D UMRT coefficients can be computed as below: 

(i) N a power of 2 

n=O 

k-l( ) 
Yk(P) == ~ x jN+ P - X(2j+l)N+2p , 

)=0 k 2k 

(ii) N not a power of 2 

M 
k=t, O~t~log2M, p=tk, O~t~--l 

k 

M 
p=tk, O~t~--l 

k 

k'-I( ) Y:,p) = - ~ XjN!p+M 

;=0 k' 

Ml 
p=tk', o~ t~--­

k' 2 

k' M 3 
p=tk'+-, O~t ~---

2 k' 2 

where k' is the highest frequency index that is a power of2 and also a divisor of N. 

4.6 I-D Inverse UMRT 

Since there are N I-D UMRT coefficients, it can be expected that a I-D signal can be completely 

reconstructed from its UMRT representation. Since the MRT is a many-to-many mapping, there 

would be many corresponding UMRT coefficients in which Xn is present. Hence, the inverse 

procedure for recovering Xn from UMRT coefficients would logically involve only those UMRT 

coefficients in which Xn are present. Since the forward MRT is a process of subtraction between 

summations of two groups of data elements depending on the value of z = ((nk))N, the inverse 

process would also proceed along similar lines. The phase indices ofUMRT coefficients in which 

Xn are present can be found by multiplying n with each unique frequency. An inverse fonnula that 

is based on these arguments is presented below along with the relevant proof. 

4.6.1 N, a power of 2 

Theorem 4.9 

Given the UMRT of a J-D signal of size N. N being a power of 2, the I-D signal can be 

reconstructed from its UMRT by the following fonnula 
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1 log,M 1 
X = - y;(0) + " - y«2' n))N ,0 S. n S. N - 1 

n N 0 L... 21+1 2' 
1=0 

Proof 

(4.49) 

The data element that needs to be recovered from the UMRT is given by X n• For any frequency 

index k, the value of the phase index p of the UMRT coefficient Yk{P) that contains Xn is given by 

((nk))N = p. Thus for a frequency that is a power of 2, k = 2a
, the UMRT coefficient that contains 

Xn is ~~2a n))., .The UMRT coefficient Yo{O) contains all the elements of the data including Xn since 

((nk))N = 0, '\In, when k = O. In (4.49), Yo(O) is multiplied by (l1N), and the other UMRT 

coefficients by (1/21
+

1
). As a result, the Xn that is present in these coefficients is multiplied by the 

corresponding factors. The resultant factor f that multiplies x" as a result of the summation can 

thus be found by adding up these individual mUltiplication factors. 

1 \og,M 1 

j= N + ~ t+l 

1 log, M 
j=-+ L r(I+I) 

N 1=0 

1 1 (1- r{log,M+l») 

j= N +2 1 

2 

1 1 
j=-+I--=1. 

N N 

Hence, as a result of the summation, one of the components of the result is the data Xn. 

A UMRT coefficient ~~2an)).v contains other terms besides X n. For the summation formula to be 

correct, these other terms that occur in the various UMRT coefficients ~~~2a n))" need to vanish. To 

prove that they do, the first observation is regarding the smallest frequency index k where any of 

the other data elements occur along with X n• Here, r;?) is excluded since it contains all data 

elements and all these elements have a positive sign. Excluding YO(O) , another element occurs 

along with Xn first when frequency index k = 1. For example, for N = 8, r;(O) = Xo - x 4 • Hence, if 

Xo is the data to be found, it is seen that X4 occurs with an opposite sign along with Xo in the IvIRT 

coefficient corresponding to k = 1, glven by r;{O). From (4.S.1), when k = 1, g(k, N) = 1, and 

hence there is only one data element in both positive and negative groups. Also, from theorem 

4.3(b), the distance between an element in the positive group and a corresponding element in the 
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negative group is given by M / k. Hence, the data elements Xn and Xn+M, occur with opposite signs, 

in any MRT coefficient r;(p) , i.e. having frequency k = I. Similarly, for frequency index k = 2, 

h d I 'th . . . . y(p) . t e ata e ement Xn+M occurs W1 poslhve SIgn smce 2 = Xn - Xn+N14 + X n tNl2 - X n+3NI4, gIven 

«nk»N = p. From section 4.3, the distance between two successive data elements in a positive or 

negative group is given by N / g(k, N). Since k is a divisor of N, this distance becomes N / k. From 

theorem 4.3(b), the distance between the first data element in a positive group and the first data 

element in a negative group is given by M / k. Hence, if an element x~ occurs along with Xn in a 

UMRT coefficient Y?) but with opposite sign as Xn , thp.n, 

, N 
n =n+qodd-

2k 
(4.50) 

where qodd is an odd integer. At the next higher frequency k' = 2k , (4.50) becomes 

(4.51) 

From (4.S.1 b), the general form for a data element Xw of same sign present along with element Xn 

in the MRT coefficient Yk~P) is given by (since k' is a divisor of N, g(k', N) = k') 

, .N 
n =n+}­

k' 

where} = 0,1,2,3'00' k' - I 

(4.52) 

It is seen that (4.51) is a special case of (4.52). The same holds for any higher frequency of the 

form k' = 2k • Hence, given k is the smallest frequency index at which any element x~ occurs 

along with Xn with opposite sign as X n, for all higher frequencies k' = 2k , the element x~ occurs 

along with Xn, however, with the same sign as Xn• An example can be used from section 4.2.2.3; 

Considering data element X4, it is seen that it occurs with opposite sign as Xo in r;(O) , and with 

same sign as Xo in coefficients of higher frequencies, k = 2 & k = 4. Conversely, it can also be 

concluded that any element x~ that occurs with element Xn in a UMRT coefficient of a frequency 

k I and has the same sign as Xn also occurs along wi th Xn in a UMR T coefficient k such that 

k' = 2k , but having opposite sign as Xn-

Given k is the smallest frequency index at which any element xn occurs along with Xn with 

opposite sign as Xm the multiplication factor associated with x~ from the inverse formula is 
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(-1/2k). For all higher frequencies up to M, the multiplication factor is1l2k t
, k'= 2k, 4k ... M. 

Thus the sum of the serit;s 

1 I 1 1 1 
j=---+-+-+ -

N 2k 4k 8k ·····2M 

will provide the value of the multiplication factorfassociated with element x~. 

Assume k = Nlq. First the sum of the following series can be found 

1 1 1 
-+-+ ..... -=fa 4k 8k 2M 

log,M 1 
fa = L .2j+1 

}'~log,2N/ - / q 

The number of terms in this summation is log2 q - 1. 

q q-2 q-2 
---=--
2N q 2N 

From (4.53), 

1 1 1 1 q-2 q 1 f=---+.f =---+-=-~-=O 
N II a N II 2N 2N II 

(4.53) 

Thus, all other data elements x~ that occur along with Xn in the various :tv1RT coefficients in the 

summation of the inverse formula cancel out, leaving behind only the desired data element Xn• 

Hence, the fonnula for inverse UMRT is proved. 

Example 4.8 

Let N= 4, and let XI be the data element to be determined. The unique frequencies are k = 0, 1,2. 

The corresponding phase indices «nk»4 are p = 0, 1, 2. Yo(O) = Xo + Xl + x2 + x3' J;(l) = Xl - X» 

r;(2) = - Y2(O) = -xo + Xl - x2 + x3 • The associated multiplication factors in (4.49) for these three 

MRT coefficients are 114, 1/2, and 1/4 respectively. First, the effect of the multiplication factors 

on Xl when using (4.49) can be calculated. It is seen that the sum of these factors gives 1, thus 

ensuring Xl is available as the result of (4.49). The sum of the multiplication factors for Xo gives 

1/4 - 1/4 = 0. For X2, this is 114 - 114 = 0. For X}, this becomes 114 - 1/2 + 1/4 = 0. Thus, Xo, X2 

and X3 cancel out, leaving behind only Xl' 
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4.6.2 N, Not a power of2 

Theorem 4.10 

Given the UMRT of a I-D signal of size N, N not being a power of 2, the I-D signal can be 

reconstructed from its UMRT by the following formula 

1 . log, k '-I 1 ' 
x = - y,(;nk »).v + " _ y«2 n)lv 

n k' k L.. 2/+1 2' 
,~O 

where k' is the highest frequency index that is a power of 2 and also a divisor of N. 

Proof 

(4.54) 

The data element that needs to be recovered from the UMRT is given by Xn• For any frequency 

index k, the value of the phase indexp of the UMRT coefficient y/p) that contains Xn is given by 

«nk))."1 = p. Thus for a frequency index that is a power of 2, k = 2a
, the UMRT coefficient that 

contains Xn is ~~2· n))". The UMRT coefficient ysnk'»)N is multiplied by (1/ k '), and the other 

UMRT coefficients are multiplied by (1/21+1). The resultant factor fthat multiplies Xn as a result of 

the summation can be proved to be using the same method used in section 4.6.1 for case 1. 

Similarly, using the method adopted for case 1 in section 4.6.1, it can also be shown that other 

data elements other than Xn cancel out in the summation, leaving behind only the desired data 

element Xn • Hence, the proposed formula is proved. 

4.6.3 Any even N 

From (4.49) and (4.54), for the two categories of values of N, it can be observed that the structure 

of both formulae is similar. In both, there is a summation term and a second tenn that contains 

only one UMRT coefficient. First, a comparison can be made between the two single-coefficient 

terms of both equations. The denominator in (4.49) for this term is N, while the denominator in 

(4.54) for the same term is k'. N is the order of the data, while k' is the highest power-of-2 

divisor of N. When N is a power of 2, the value of k' is actually equal to N. Hence, the 

denominator for these terms in (4.49) and (4.54) can be generalized as k', the highest power-of-2 

divisor of N, irrespective of whether N is a power of 2 or otherwise. However, the frequency 

index of the first term in (4.49) is zero, while that of the corresponding term in (4.54) is k'. A 

generalizing term for both these values is « k' )),v. This term becomes zero for values of N that are 

powers of 2, and it remains k'for other values of N. Next, the summation terms in (4.49) and 

(4.54) may be compared with each other. The upper limit of the summation in (4.49) is log2M 
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while it is log2(k')-1 in (4.54). As discussed above, for N a power of 2, k'= N. Hence the tenn 

log2(k')-1 becomes 10&(N)-1 which is equal to 10&M. Thus the upper limit can be generalized 

to the term lo&(k')-l. There is no further difference between (4.49) and (4.54). Thus, in light of 

these observations, (4.54) can be generalized to be applicable to any even value of N. Hence, the 

following equation can be used for signal reconstruction from UMRT, for a signal of size N, N 

being any even. 

I !og,k'-! 1 
x == _ y CC nk1)", + " _ yCC2' n), 

n k' CW)).v L.. 21+1 2' 
1=0 

where k' is the highest power-of-2 divisor of N. 

(4.55) 

(4.55) makes use of the relation ykCp) == - yk(p+M) , given by theorem 4.1. (4.55) can also be 

expressed in a way that shows the duality in the inverse transform relation with the forward 

transfonn. Then there would be a need for checking if the value of «nk»M exceeds M or not. 

As an example, (4.55) can be used to reconstruct the 8-point 1-D sequence used as an example in 

section (4.2.1). Since N = 8, k' == 8 , and t in the summation in (4.55) takes the values 0, 1, & 2. 

Table 4.2: Example showing reconstruction of 8-point I-D sequence using inverse 1-D UMRT. 

N 0 1 2 3 4 5 6 7 

(k' = &). Yo
CO ) ! 8 55.125 55.125 55.125 55.125 55.125 55.125 55.125 55.125 

(I = 0). r;C«n)).) / 2 3 -26.5 7.5 23.5 -3 26.5 -7.5 -23.5 

(t = 1), y
2
C«2n)),) ! 4 19.25 12 -19.25 -12 19.25 12 -19.25 -12 

(t = 2), y}CC4n».) ! 8 17.625 -17.625 17.625 -17.625 17.625 -17.625 17.625 -17.625 

Xn 95 23 61 49 89 76 46 2 

Number of computations: 

From (4.55), it is seen that in order to reconstruct a data element, an MRT coefficient of each 

power-of-2 divisor frequency is required. The total number of MRT coefficients required is hence 

given by the number of power-of-2 divisors of N. Given k' is the highest power-of-2 divisor of N, 

the number of power-of-2 divisors of N is given by log2 k' + 1, which thus gives the number of 

MRT coefficients involved in the computation of each data element. Also, each of the 

corresponding MRT coefficients needs to be multiplied by a scaling factor. Table 4.3 shows the 
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number ofUMRT coefficients required for computing 1-0 inverse UMRT for different values of 

N. 

Table 4.3: Number of UMRT coefficients involved in inverse I-D UMRT for a few values of N. 

N k' log2 k' + 1 

4 4 3 

6 2 2 

8 8 4 

10 2 2 

12 4 3 

14 2 2 

16 16 5 

18 2 2 

20 4 3 

4.7 1-D Signal Representation 

In section 4.5, it is shown that a 1-0 signal of size N could be represented by using 1-0 UMRT 

coefficients with frequencies that are powers of 2. It is also shown that the number of such 

UMRT coefficients is equal to N. However, there are applications which need non-power-of-2 

frequencies in the signal representation. Thus some of the UMRT coefficients can be replaced by 

exploiting the derived redundancy relationship between the UMRT coefficients and MRT 

coefficients having non-power-of-2 frequencies. Hence, from the UMRT coefficients spread over 

M arrays of the MRT, it is required to fonn a single array of N UMRT coefficients to represent 

the 1-0 signal in the UMRT domain. Both of these representations are proposed in the following 

sub-sections. 

4.7.1 Representation using 1-D UMRT 

MRT coefficients of a 1-0 signal have two indices, the frequency index k and the phase indexp. 

It is sought to arrive at a 1-0 array comprising UMRT coefficients. Hence, there is a need for a 

mapping from the indices (k, p) of a UMRT coefficient to the position v of that coefficient in the 

1-0 transfonn array. This mapping needs to be known in the reverse direction also, from the 

position index to the frequency and phase indices. The following mapping is proposed to this 

effect. khj is the largest divisor of N that is also a power of 2. The mapping is done in such a way 
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that MRT coefficients appear in the I-D array in ascending order of the frequency. Since k = 0 

corresponds to k = N, MRT coefficients with frequency k = 0 appears last. 

(k,p) ---; v: 

k'=kh/ 12 

VI =N-M Ik' 

k'=k 

VI =N-Nlk' 

} 
} 

Similarly, the reverse mapping relations are given by the following relations: 

v ---; (k,p) 

N - NI k :$; v < N - NI 2k 

k = {1,2,4,S .... kh/ 12} 

p=k(v-N+Nlk) 

k = «kh/ »)N 

p =kh/(v-N + NI khf)1 2 

} v<N -N I kh/ 

} v'2.N -N I khf 

Tables 4.4 and 4.5 shows the mappings for N = 8 and 12 respectively. 

Table 4.4: Proposed mapping between I-D UMRT indices and array indices, for N = 8 

(k,p) (1,0) (l,1 ) (1,2) (1,3) (2,0) (2,2) (4,0) (0,0) 

v 0 1 2 3 4 5 6 7 

Table 4.5: Proposed mapping between 1-D UMRT indices and array indices, for N= 12 

(k,p) (1,0) (1,1 ) (l,2) (1,3) (1,4) ( 1,5) (2,0) (2,2) (2,4) (4,0) (4,2) 

v 0 1 2 3 4 5 6 7 8 9 10 

4.7.2 Representation associating derived redundancy to UMRT 

(4,4) 

11 

In sec. 4.7.1, a I-D signal was represented in the UMRT domain m tenns of power-of-2 

frequencies. However, the derived redundancy that exists between these UMRT frequencies and 

other frequencies allows for altemate representations of the I-D signal using MRT coefficients. 

Consider an example, N = 12. The set of UMRT frequencies, defined here as the basic set of 
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frequencies, corresponding to this value of N, is k = {I, 2, 4}. There exists one odd divisor of N, d 

= 3, which gives rise to derived redundancy between each frequency in the basic set and a 

corresponding frequency given by «dk)),v. The relevant equations are given below. 

y:(0) = y:(0) _ y'(2) + y'(4) 
J I I 1 

y(3) = y'(1) _ y'(3) + y'(5) 
3 I I I 

y(O) -:: y(O) _ y:(2) + y:(4) 
6 2 2 2 

y(O) = y(O) _ y(2) + y(4) 
o 4 4 4 

In the signal representation proposed in section 4.7.1, the set of UMRT coefficients on the RHS 

of the equations above could be used for a UMRT representation of the signal since they 

correspond to the power-of-2 frequencies. Now, a possible alternative method ofrepresentation is 

to replace one element each from the RHS of these equations with the corresponding derived 

MRT coefficient on the LHS in the UMRT representation of the I-D signaL In the method 

proposed earlier, the output would be the set of UMRT coefficients {~CO) y;(I) ~(2) ~(3) ~(4) 

y'(5) y:(O) y(2) y:(4) yCO) y(2) y(4)} In the presently proposed method y'(2) would be replaced 1222444' 'I 

by its corresponding derived MRT coefficient ~(O) , and similarly ~(3) by r;(3), r;(2) by Y6(0), and 

y(2) byY(O) The output set is now given by {Y.(O) y'(l) y(O) y:(3) y(4) y;tS) y(O) y(O) y(4) y(O) 
4 O· I 133 I I 2 ~ 24 

Yo(O) yt)}. The inverse transform developed in section 4.6 requires all the MRT coefficients of 

the basic frequencies. Hence, in order to obtain the I-D signal from the present set of MRT 

coefficients, coefficients corresponding to all the UMRT frequencies are required. However, the 

entire set of coefficients corresponding to the UMRT frequencies is not available in this method, 

since some of them have been replaced by derived MRT coefficients. However, using the derived 

redundancy equations, the replaced UMRT frequency coefficients can be obtained from the 

coefficients actually available in the set of output coefficients. Once the entire set of UMRT 

coefficients is available, the I-D signal can be obtained by performing the inverse UMRT on this 

set of coefficients. 

Formalizing the above, let N have n odd divisors. Hence, all of these divisors would produce 

derived redundancy. Also, let k'be the highest power-of-2 divisor of N. Hence, the UMRT set of 

frequencies is given by {I 2 4 8 ... k f }. Each of these frequencies would have corresponding 

derived frequencies obtained from products with the odd divisors. Let the set of odd divisors be 

given by {Xl Xl ..• xn}. Let kr be a frequency related to a UMRT frequency k through derived 
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redundancy. The derived redundancy equations relating MRT coefficients of frequencies kr and k 

are recalled here from (4.48): 

(pk) (~(p+M» (~(p+2M)) (~(p+3M» (~(p+(~-I)M» 
y:(p) _ y: k, _ y: k, + y: k, _ y: k, + ... + Y:k k, k 

k, - k k k k 

p == O,kr I 2,kn 3kr I 2, ..... M -kr 12, otherwise 

The proposed method is to replace one of the MRT coefficients on the RHS by the MRT 

coefficient on the LHS, i.e. Yk~P). There are k) k MRT coefficients on the RHS. One among these 

has to be chosen to be replaced by Yk;P) in the output set. A logical choice is to choose the 

coefficient in the centre among the RHS coefficients. The serial position of this coefficient is 

(k_(p+«~-I)I2)M )) 
given by (~+l) /2. The MRT coefficient corresponding to this position is ~ k, k • Hence, 

( k (p+«k'--I)i2)M)) 

the coefficient ~ k, k among the set of UMRT coefficients of frequency k is replaced 

by the derived coefficient Yk:p) . Since, there are Mlkr derived-frequency coefficients, Mlkr UMRT 

coefficients are replaced in this manner by the corresponding derived frequency MRT 

coefficients. After this replacement, there are only (Mlk - Mlkr) UMRT coefficients of frequency 

k remaining in the output set. Half of them occur serially before the Mlkr derived frequency 

replacement coefficients in the output set, and half of them after. The sequence of phase indices 

of the first half of these UMRT frequency coefficients is given by p = 0, k, 2k, .. .. «(l/2)(Mlk -

Mlkr)-1)k. The sequence of the latter half is given by p = (M-(1I2)(Mlk - Mlkr)-l )k, (M-(1/2) (Mlk 

- Mlkr))k, (M-(1/2) (Mlk - Mlkr)+1)k, .... , M-k. Thus, the proposed placement of the output 

coefficients has been arrived at. But this has been done only for one derived frequency. However, 

in the general case, there can be more than one odd divisor of N, and hence more than one derived 

frequency for a UMRT frequency. Here arises the problem of forming the output set of 

coefficients containing coefficients from all the UMRT frequencies and the derived frequencies. 

Thus, in the placement method exchange the UMRT frequency with the corresponding derived 

frequency coefficient. The following procedure is proposed for k = 1 and its derived frequencies. 

By using relevant values for the starting and ending serial positions for each frequency in a I-D 

array, the following steps can be used for all UMRT frequencies and their associated derived 

redundancy frequencies: 

1) All odd divisors are sorted in ascending order. 
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2) The value (1/2) (Mlk - Mlkr) + I is calculated for each kr. This is the serial position of the first 

derived frequency coefficient of frequency kr in the output set. Also, the value M-(1I2) (Mlk -

Mlkr) is calculated. This is the serial position of the last derived frequency coefficient of 

frequency kr in the output set. 

3) For each k" starting from the smallest value, coefficients of frequency kr are placed at locations 

starting from the above-calculated first serial position until a first serial position corresponding to 

the next higher value of kr is reached. 

4) For each k" starting from the smallest value, coefficients of frequency kr are placed at locations 

starting from the above-calculated last serial position until a last serial position corresponding to 

the next higher value of kr is reached. 

5) For the highest value of k" all MRT coefficients of kr will be present in the output set. 

Figure 4.4(a) shows the array ofUMRT coefficients of N= 12 which is modified according to the 

proposed placement method for derived and basic frequency MRT coefficients to yield the new 

array shown in Figure 4.4(b). 

Also, it is possible to replace any of the UMRT coefficients of power-of-2 frequencies with 

UMRT coefficients that are completely redundant with the former. 

y;(0) 
1 

y;(1) 
1 

y;(2) 
I 

y;(3) 
1 

y;(4) 
1 

y;(S) 
I 

y(O) 
2 

y(2) 
2 

y(4) 
2 

y(O) 
4 

y(2) 
4 

y(4) 
4 

(a) 
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I 

y;(l) 
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y(O) 
3 

y;(3) 
3 

y;(4) 
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y(O) 
2 

y(O) 
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y(4) 
2 

y(O) 
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y(O) 
0 

y(4) 
4 
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Figure 4.4: (a) - Placement of UMRT coefficients for N: 12, (b) - Proposed placement of MRT and 
UMRT coefficients for N'" 12 

The I-D signal can be reconstructed from the above UMRT representation, including non power­

of-2 frequencies, by the following method. The signal reconstruction using the inverse UMRT, all 

the coefficients corresponding to the power-of-2 frequencies are required. Since in the present 

representation consists of coefficients corresponding to power-of-2 frequencies as well as derived 

non-power-of-2 frequencies, the preliminary task is to re-convert the derived frequency 
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coefficients into their corresponding power-of-2 frequency coefficients. From (4.48a), relating a 

derived frequency coefficient kr with its power-of-2 frequency counterpart k: 

p = O,kr / 2,kr,3kr / 2, ..... M - kr /2, otherwise 

In the alternate representation using non-power-of-2 frequencies, the power-of-2 frequency 

(.!( p+« k, -1)12 )M) 

coefficient Yk k, k is replaced by the derived frequency coefficient Yk~P) • Hence, during 

the reconstruction, the reverse process needs to be performed, i.e. the coefficient Yk~P) is to be 

(.!(p+«~' -J)/2)M) 

replaced by the coefficient Yk k, k • The reconstruction formula may be written as 

( 4.56) 

From (4.56), it is seen that higher the value of kn the number of coefficients that are in the first 

half of the set of power-of-2 frequency coefficients in the output is higher. The same is true for 

the number of coefficients in the latter half of the set of UMRT frequency coefficients. This also 

implies that the number of UMRT frequency coefficients replaced by derived frequency 

coefficients is lesser, higher the value of kr • Hence, lower the value of kn more the number of 

replaced UMRT frequency coefficients. 

4.8 Conclusion 

I-D MRT is a new representation of I-D signals and involves only real additions. However, the 

MRT is expansive and redundant. The I-D UMRT removes these features ofMRT to give a real, 

invertible, non-expansive I-D signal transfonn for any even value of N. The derived redundancy 

property of the transfonn ensures flexibility in signal representation by allowing for inter­

frequency conversion. A 2-D counterpart for the I-D UMRT, sharing the inversion and non­

expansion properties, could be a useful tool for 2-D signal processing. The study of complete 

redundancy in 2-D MRT is perfonned to derive 2-D UMRT and is presented in Chapter V. 
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Chapter V 

DEVELOPMENT OF FORWARD AND INVERSE 2-D UMRT 

5.1 Introduction 

The occurrence of redundancy in 2-D MRT is observed in section 3.2, and a detailed study of 

redundancy in I-D MRT is performed in section 4.4. In this chapter, the study of redundancy 

performed in Chapter IV is extended to the 2-D MRT. Complete redundancy in 2-D MRT is 

investigated, and 2-D UMRT is developed by eliminating complete redundancy in 2-D MRT. 

5.2 Redundancy in 2-D MRT 

The 2-D MRT is developed with the assumption that the data is a square matrix of size N x N, 

where N is even. It is observed in sec. 4.4.1.2 that the divisors of N form groups comprising of the 

divisor and associated non-divisors, where all members of the group have a common gcd w.r.t. N. 

Extending this result to 2-D signals, rows and columns can be classified into divisor 

rows/columns and non-divisor rows/columns. The mapping between each divisor and related non­

divisors in the case of I-D translates to mapping between rows/columns and non-divisor 

rows/columns. Complete redundancy can exist between divisor columns and non-divisor 

columns, and also within divisor columns. These issues are studied and expressions for the 

number of unique frequencies and the number of UMRT coefficients derived in the following 

sections. 

5.2.1 Mapping of Divisors 

It can be recalled from section 4.4.1.2 that integers in the range [0, N - 1] form groups on the 

basis of their respective gcd w.r.t. N. For eg, for N = 8, each element in the set of integers {1, 3, 5, 

7} share the common gcd of 1 w.r.t. N. Similarly, the common gcd is 2 for the set {2, 6}, 4 for 

{4}, and 8 for {O}. In each group, one element is a divisor of N, and the other elements can be 

derived from this divisor element by multiplication with integers that are co-prime to N. For 

example, in the set {2, 6}, 6 can be obtained by multiplying 2 with 3, 3 being co-prime to 8. 

These divisors, 0, 1, 2, 4 thus form the generators of the non-divisors for N = 8. In this manner, 

all non-divisors can be mapped to the divisors of any even N. Hence, each divisor along with its 

set of associated non-divisors can be considered to be a group identified by the common gcd of 

all the elements in the group, and this gcd is equal to the value of the divisor. Since each divisor 

has an associated gcd group, the number of such groups is equal to the number of divisors of N. 
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This property is used in analyzing the redundancy in 2-D MRT. The analysis can the done in 

terms of rows or columns. In the following sections, although a column-wise approach is used, 

the concepts developed apply equally to rows as well. 

5.2.2 Divisor Columns 

A divisor column is defined as the set of frequencies (kl'kJ where kr = [0, N - 1], and k2 is a 

divisor of N. Consider the operation «(hkr))N,«hk2))N), where g(h,N) = 1. Since k2 is a divisor, 

the product «hk1))N will produce another element in the group of integers that share a common 

value of k2 for the gcd W.r.t. N Also, «hk2))N is a non-divisor of N. The product «hkr)N will 

similarly produce a value that has the same gcd w.r.t. N as kr has. Since kt = [0, N - 1], kr can 

belong to anyone of the groups corresponding to the common gcd w.r.t. N. Multiplication of each 

kr in the range [0, N - 1] with a co-prime to N implies multiplication of each gcd group in the 

same range with a co-prime to N The result of each product is the same group, however with the 

position of the elements within the group altered. For example, when N = 8, multiplying the gcd 

group corresponding to gcd 1, {1, 3, 5, 7}, with the co-prime 5 and taking the modulus w.r.t. N= 

8 results in the group {5,7, 1, 3}, and the similar operation with the gcd group corresponding to 

gcd 2, {2, 6}, results in the same group {2, 6}. Thus, the union of all these product groups would 

still form the set of integers in the range [0, N - 1]. Hence, the product «hkt»N for kr=[O, N - 1] 

maps in a one-to-one manner to integers in the range [0, N - 1]. In conclusion, the operation 

«(hkr»N,«hk2»N) signifies another column, and since «hk2))N is a non-divisor of N, the new 

column is a non-divisor column. In this way, the N columns of the N x N matrix can be classified 

into divisor columns and non-divisor columns. Similarly, the N rows can also be classified into 

divisor rows and non-divisor rows. Since the mapping between divisor columns and non-divisor 

columns takes place through multiplication by a co-prime to N, using theorem 4.6, there is 

complete redundancy between the divisor columns and corresponding non-divisor columns. This 

is studied in section 5.2.3 

5.2.3 Complete Redundancy between Columns 

Since non-divisor columns are completely redundant with divisor columns, the divisor columns 

can be considered unique columns, and the number of unique columns is thus equal to the number 

of divisors of N. Since there is complete redundancy between the divisor columns and 

corresponding non-divisor columns, from the knowledge of the MRT coefficients corresponding 

to the divisor columns, the MRT coefficients corresponding to all the non-divisor columns can be 

found. The number of non-divisor columns that are redundant with a divisor column can be 
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obtained by extending the results of section 4.4.1.2. From that section, the number of non-divisors 

that are related by complete redundancy to a divisor k is given by ,peN / k) and they are obtained 

by k' = «hk))Nlk where g(h, N / k) = 1. Hence, given a divisor column ([0, N - 1], k2), the number 

of columns completely redundant with this divisor column is given by,p(N / k2 ) • For example, 

when N = 8, there are rjJ(N / k2 ) == ,pc 4) == 2 redundant columns when k2 = 2, as can be observed in 

Figure 3.1. Complete redundancy can exist within divisor columns also. From a certain number of 

unique frequencies within a divisor column, all other indices of the divisor column can be 

obtained through complete redundancy. This is discussed in section 5.2.4, where an expression 

for the number of unique frequencies (k, k2 ) where k satisfies g(k, N) = kl for a given column k2 is 

obtained. 

5.2.4 Complete Redundancy within Divisor Columns 

Given a frequency (kl ,k2), complete redundancy exists within the column k2 if «hk2)N = k2, 

given g(h, N) = 1. «hk2))N = k2 being a congruence equation, from Appendix A.3, the general 

solution for h is given by h = ho + Nt / g(kz, N), 0 :s t :s N - g(k2' N), ho = 1. From section 

4.4.1.2, the number of integers that share a common gcd k2 w.r.t. N, is given by rjJ(N / kz) . Hence, 

the number of co-primes in the set of co-primes to N that are sufficient to generate all elements in 

the gcd group corresponding to k2 is also given by ,peN / k2) . The number of co-primes to N is 

given by ,p(N). From among these ,peN) co-primes, since only ,peN / kz) are needed to generate 

the gcd group, more than one co-prime among the set of rjJ(N) co-primes maps to the same 

element in the gcd group, and thus more than one co-prime maps k2 to itself. The number of co­

primes that maps an element in a gcd group to itself is thus given by ,peN) / rjJ(N / k2 ) = l(k2)' 

Thus, the number of co-primes h that satisfy «hkz))N = k2 and g(h, N) = 1 is also l(kz). 

LetNbe 

i=l 

The totient function (Appendix A. 7), is defined as 

q 

TI (r; -1) 
rjJ(N)=N--<-=i=,,-1 --

q 

TIr; 
i=1 
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(5.2) 



Let k2 == n tjwj 

i=' 

q 

N / k2 == IT tja;-wj 

i=' 

n (tj-l) 

,p(N / k2) == (N / k2) i="Vi=:>a;;,,; 

IT tj 

n (tj -1) 
:.I(k2) ==,p(N)/ ,p(N / k

2
) ==k2 i=I,Vi=:>a,;wi 

IT tj 
i=l:v'i=>aj"~wi 

(5.3) 

(5.4) 

(5.5) 

(5.6) 

l(k2) is the number of co-primes that cause k2 to be mapped to itself by «hk2»N. If the same co­

prime h maps k, such that «hk'»N f:: kb then this is an example of redundancy within divisor 

column k2. However, if «hkl»N= k, & «hk2»N = k2, then «(hk,»N,«hk2»N) = (k"k2 ). This is only 

a trivial form of redundancy. Within a column, the kl indices from [0, N - 1] can be grouped on 

the basis of their gcd w.r.t. N. l(k) is the number of co-primes that map an element of gcd group k 

to itself. 

Example 5-1: 

Let N == 24 and (k\, k2) = (2,3). 

TotativesofN= {1,5, 7,11,13,17, 19,23} 

,peN) == ,p(24) = 8 

,p( N / k2) == ,p(8) == 4 

1(k2) =,p(N)/ ,p(N / k2) == 2 

Let elements counted by l(k2) form the set of co-primes L(k2)' In example 5.1, L(k2) = {I, 17}. 

The totatives of N can be divided into two sets of 4 co-primes each for the case k2 = 3. A pair of 

co-primes from each group have the property that they map a member of the gcd set 

corresponding to k2 = 3 to the same member itself. The co-prime pair {I, 17} has this property. If 

any element of divisor column 3 is multiplied with either of the co-primes I or 17, the resultant 

product also belongs in the same divisor column, since «1 x 3)b=«17 x 3»24 = 3. Hence, given 

any element in divisor column k2 whose first index belongs to a gcd set, multiplication with co­

primes 1 and 17 ensures that the product element also is in the same divisor column with a first 

index that is in the same gcd set. This resultant element is thus redundant with the original 
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element, and this is an example of redundancy within the same column, provided the resultant 

product of the first index is not equal to the first index of the original element. In that case, the 

original element has simply mapped to itself, thus it is a case of trivial redundancy, i.e. «(hkl»N, 

«hk2))N) = (kl,k2)' Hence, two conditions must be satisfied for redundancy within the same 

column: 

1) The second index should map to itself «(hk2»N = k2), and, 

2) The first index should not map to itself «(hk'»N -# k,). 

In other words, the set of co-primes that map k2 to itself (1 & 17 in the example above) and the set 

of co-primes that map the first index k, to itself should not have any common elements (other 

than 1, which corresponds to trivial redundancy). From Appendix A.3, a co-prime that maps a 

divisor to itself has the general equation 

h = ho + Nt/ g(k2,N), 0 S t < g(k2,N), ho = 1 

Since divisors are under consideration here, g(kz, N) = k2' and (5.7) can be written as 

h2 = 1 + Nt2/k2' 0::: 12 < k2 

Similarly, corresponding co-primes for k, have the form 

h, = 1 + Ntt! kt, 0::: tl < k, 

If there are common elements among h, and hz, then, for some value of t, and 12, 

h, = h2 = h. 

For such values, from (5.8) - (5.10), 

NI,/k, = N12/k2 

l,k2 = t2k, 

IJk2 - t2k\ = 0 

(5.7) 

(5.8) 

(5.9) 

(5.10) 

(5.11 ) 

(5.12) 

(5.13) 

From (5.13) and Appendix A.2, 1\ has g(k"kz) solutions mod kt, and 12 has g(k"k2) solutions 

mod kz• Hence, the number of common elements among hi and h2 is given by g( k" k2 ) . 

A particular solution for (5.13) is I, = 0, 12 = O. General solutions are given by 

I, = q,k,/g(kt. k2), 12 = q2k2/g(kl' k2) , q)g2 E Z (5.14) 

From (5.8) & (5.14), 

h2 = 1 + N(Q2k2/g(k), k2»/k2 (5.15) 

= 1 + N(q2/g(kJ, k2» (5.16) 

Similarly, 

h\ = 1 + N(q)/g(k), k2» (5.17) 

(5.16) and (5.17) can be combined as 

h = 1 + Nq/g(k" k2), (5.18) 
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(5.18) is the equation for the integers that map the pair (kpk2) to itself. But there is the additional 

requirement that h is a co-prime number. The number of such co-primes h is hence given by 

/(g(kpk2))' Hence, the number of co-primes that satisfy the condition «(hk.))N,«hk2))N) = 

(k .. k2) is given by l(g(kpk2))' This implies that the number of frequency indices completely 

redundant with a given frequency index (k .. k2) is given by rjJ(N) ll(g(k.,k2)) , which, using (5.6), 

becomes ~(N / g(k.,k2)). 

The number of elements in the set of integers that share a common gcd k. w.r.t. N is given by 

~(N / kr). The number of elements in this group that are unique in column k2 is hence given by 

~(N / kr) / l(k2) , assuming there are no common elements among L(kr) and L(k2)' For example 

5.1, if kl = 2, then the number of elements in the gcd set corresponding to this value of kr is 

~(N /2)= 4, given by {2, 6, 10, 14}. If k2 = 2, then the number of co-primes that map 2 to itself, 

given by l(k2) = 2, is {I, 13}. Hence, each frequency (k,k2)' where k is an element in the gcd 

group kr, is completely redundant with another frequency (k',k2), where k' * k, besides being 

trivially redundant with itself. The number of unique frequencies among the group (k,k2 ) is thus 

assumed to be ~(N / k.) / l(k2)' However, the number of common co-primes among L(kr) & L(k2) 

is given by l(g(kt. k2)), and these co-primes are {l, 13}. Since /(g(kltk2)) = 2, these common co­

primes cause trivial redundancy and thus do not cause complete redundancy. Hence, to account 

for the presence of these common co-primes, the expression presently obtained, tjJ(N / k1) / /(k2) , 

needs to be multiplied by the factor l(g(kb k2))' Thus, the number of unique frequencies (k,k2) in 

column k2 such that all k has the common gcd kl W.r.t. N, i.e. g(k, N) :: kr, is given by 

_ tjJ(N)I(g(kpk2)) 

l(k1 )1(k2) 

_ ~(N / kl)~(N / k2) 

~(N / g(kpk2)) 

Example 5.2: 

(5.19) 

(5.20) 

(5.21) 

Table 5.1 shows the values of Ukjk, evaluated for all possible values of kr, k2 for N = 8. Given N = 

8, ~(N)= 4, 1(1) = 1, /(2) = 2,1(4) = 4, and l(8) = 4. 
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Table 5.1: Values of Uk,.k, evaluated for divisor frequencies k" k} for N= 8. 

k2 1 2 4 8 

kJ 

1 4 2 1 1 

2 2 2 1 1 

4 1 1 1 1 

8 1 1 1 1 

(5.19) - (5.21) give the number of unique frequencies in column k2 for gcd kl W.r.t. N. The next 

objective is to compute the number of unique frequencies over all divisor columns. 

5.2.5 Number of unique frequencies 

Since analysis needs to be done in terms of divisors, it is suitable to express N in terms of its 

prime divisors as given below. 

Let N::: [rrt' (5.22) 
i=1 

The divisors of N are given by the different powers of prime divisor r. 

The number of unique 2-D MRT frequencies for any given divisor can be considered first. For 

any given value of g(k" k2)' the number of k\ that share this gcd with k2 can be calculated. 

q q 

Let kz ::: TI t;W; , and k! ::: TI t;"; 
i=' 

q q 

g(k!,k2 )::: TI1jmin(""w;l ::: TI'i"' 
i=1 i=l 

From (5.23) and (5.24), the following cases arise: 

i) If Ui < Wi, the possible values of Vi are given by, 

ii) If Ui = Wi, the possible values of Vi are, 

Vi = Uj, Ui + 1, Ui + 2, Uj + 3, ... , ai 

iii) If Uj = Wj = aj, the possible values of Vi are, 

Vi = ai= Ui 

Hence, from (5.23), (5.24) and (5.25), if Ui < Wj for all i, then 

k! = g(k], k2) 

If u, = ,Vi for some i, 
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(5.25) 
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k, ~ LrL ,," Jg(k"k,), O<b, ~a, -", 

Hence, from (5.29) and (B,2) in Appendix B,2, 

I(k,) ~LrL ,," }(g(kpk,)), O~b, ~a, -u,-1 

(5.29) 

(5.30) 

=[.n (r,.-I)J[.n r/' JI(g(kp k2)), O:;bj :;aj -uj -l,if Vi=U i (5.31) 
V'1~Vj"~al 'rfl"=>vi~aj 

The number of unique frequency indices for a given value of (kl,k2) is given by (5.20). For a 

given value of g(kpk2) ' the values of kJ corresponding to g(kpkz) are known from (5.25) -

(5.27). If the number of unique frequencies corresponding to each such value of k, is calculated 

using (5.20) and these are summed, the number of unique frequencies U(g(kpk2),k2) 

corresponding to the given values of g (kl ,k2 ) and kz are obtained. 

:. U(g(kl ,k2 ),kz) = L 
'ik,,,",g(k,,k,) 

~(N)I(g(kl,k2)) 

1(kl )l(k2) 
(5.32) 

In (5.32), the notation Vkl => g(kpkz) implies that the summation is done for all values of kl that 

satisfies the specific value of g (k" k2 ) • 

Considering the case when Nhas only one prime divisor r, for u = w, 

since g(kj, k2 ) and kz are constant, 

= ~(N)I(g(k]>k2)) ( 1 + 1 + z 1 + ...... 
l(k2) l(g(kpkz)) rl(g(kl,k2)) r l(g(kpk2)) 

1 1 
+ + ) 

r(a, -I)l(g(kl' kz)) rea, -I) (r -l)l(g(kl' k
2

)) 

~(N) 1 1 1 1 
=--(I+-+2'+ .... ··-(-I} + (1) ) 

l(k2) r r r Q,- r a,- (r-l) 

Simplifying, 

. (ra -1) 1 r 
.. ( (a -1)( 1) + (a -1)( 1)) =-1 r' r- r' r- r-

99 

(5.33) 

(5.34) 
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. U( (k k ) k ) - r/J( N) _r ~ 
. . g P 2 , 2 - I (k

2
) (r -1) 

Example 5.3: 

(5.36) 

When N= 8, r = 2. If k2 = 2 and g(kl'k2)= 2, the condition Lt = w is satisfied, and hence from 

(5.36), U(2, 2) = 4. These four unique frequencies are (0,2), (2,2), (4,2) and (6,2). It can be 

verified that all these 4 frequencies are such that g(kpk2)= 2. 

If u < w, kl = g(k[, k2), l(kJ) = 1(g(kJ, k2», hence 

U(g(k k ) k ) = ~(N)I(g(kpk2» = ~(N) 
P 2 , 2 l(kJ)I(k2) l(k2) 

(5.37) 

Example 5.4: 

For N = 8, if k2 = 4 and g(kpk2)= 2, the condition u < w is satisfied, and hence from (5.37), 

U(g(kJ,k2), k2) = 1. This unique frequency is (2,4), and g(2,4) = 2. 

(5.37a) 

If Nhas two divisors, r] & r2, 

kJ = g(kpk2)' /ig(kpk2)' ,/g(kp k2), li3g(kp k2), .. ···· 

... /iD'g(kpk2 ), lig(kpk2)' ,tr2g(kpk2)' 'i\g(kJ,k2),· .. 

= ~(N)I(g(kpk2» ( 1 + 1 + 2 1 + ... 
l(k2) l(g(kJ,k2» rjl(g(kpk2» 'i l(g(kl,k2» 

1 1 + +--------------
'i(a,-J)I(g(kp k2» r1(D,-J)('i -1)I(g(kpk2» 

1 1 1 
+ + + 2 + ... 

r21(g(kl'k2» 'irAg(kJ,k2» 'i rzl(g(kpk2» 

1 1 + +---------------
li(<l,-J)r

2
1(g(k] , k

2
» Ij(a,-l) (r] -l)rzl(g(kp k

2
» 
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111 
+ 2 + 2 + 2 2 + ... 

r21(g(kl>k2)) 'i r21(g(kl ,k2 )) 'i r2 1(g(k1,k2 )) 

1 1 
(a -1) 2 + (a -I) 2 + .... 

'i 1 r21(g(kpk2)) 'i' (Ij -1)r21(g(kl ,k2)) 

1 1 1 
+ (a,-I) + (a,-I) + ...... (a -I) (a,-l) 

r2 ' (r2-1)I(g(k1,kz)) Ijr2 - (r2-1)/(g(kpk2)) 'i' r2 · (r2-1)I(g(kp kz)) 

1 
+ (a,-I) ( 1) (a,-1) ( 1)1( (k k ))) 'i 'i- r2 ' r2 - g P 2 

r/J(N) 1 1 1 1 = --(1 + - + 2: + ...... ---c;:i) + ----:-(a-,-I::-) --
l(k2) 1j 'i 1j , 'i' (1j -1) 

1 1 1 1 1 
+-+-+-2-+······ ( I) + ( I) 

r r.r r. r. r. a,- r. r. 0,- (r. -1)r 
Z lZ 12 1 2 1 1 2 

1 1 1 1 
+ r{a,-I) (r. -1) + r. r(a,-I) (r -1) + ...... r.(a,-I) r(a,-I) (r -1) + r.(a,-I) (r. _1)r(a,-I) (r -1)) 

2 2 12 2 1 2 2 1 I 2 2 

Similarly, ifuI = Wj, and U2 < W2, 

and if Ul < Wj, and U2 = W2, 

U( (k k) k ) - r/J( N) ~ 
g I' 2 , 2 - l(k2) 'i -1 (5.38a) 

(5.38b) 

(5.39) 

The number of unique frequencies for a given pair (g(k"k2),k2) has been obtained and the next 

logical step is to obtain the total number of unique frequencies for N by summing the term 

U(g(kl ,k2 ),k2 ) over all values of divisor k2 ofN. 
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Let Nhave only one prime divisor. In this case, kz can have the values 1, r,?, ?, ... , ,.a. 

As seen earlier, when u =: w, U(g(kpkz),k2) is given by (5.36) and, when Lt < W, U(g(kJ ,kz),k2 ) 

is given by (5.37). The total number of unique frequencies for a given value of kz, defined by 

B(k2), is thus obtained by summing U(g(kpk2),k2) over aU possible values of 

g(kpk2) corresponding to this value of k2. For any given value of k2 =: r lV
, the possible values of 

g(kpk2) are, g(kpk2)= r", Lt = 0, 1,2, 3, .... w. For k2 < N, using (5.36) and (5.37), B(k2) is thus 

given by 

r/J(N) [ r J 
= l(k

2
) w+ r-l 

From Appendix B.l, 

if kz < N, l(k2) = k2 = rII', else l(kz) = I'.l(r-l) 

Hence, for kz = 1, r,?, ... ra
-
I
, 

B(k2) = ,p(N)[w+_r_], 
rW r-1 

And, for k2 = N = I, «k2)),v = 0), and using (5.37a), 

B(k ) =: ,peN) [a + 1] . 
2 r a - 1(r -1) 

Example 5.5: 

(5.40) 

(5.41) 

(5.42) 

(5.43) 

(5.44) 

When N= 8, and kz = 4, the possible values of g(kpk2)are g(kl'k2)= 1,2 & 4. Using (5.37), 

U(1,4) = 1, U(2,4) = 1, and using (5.36), U(4,4) = 2. Summing these values gives B(4) = 4. 

Verifying this value of B(4) using (5.43), 

B(4) = ,peN) [2 + _2_] = 4. 
4 2-1 

Continuing with N = 8, when k2 = 8, the possible values of g(kI, k2) are g(kl' kz) = 1, 2, 4 & 8. 

Using (5.37), U(1,8) = 1, U(2,8) = 1, U(4,8) = 1 and using (5.37a), U(8,8) = 1. Summing these 

values gives B(8) = 4. Verifying this value of B(8) using (5.44), 

B(8)= rjJ(N) [3+1]=4. 
4(2 -1) 
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To obtain the total number of unique frequencies for a given N, defined as U, the terms B(k2) 

needs to be summed for all divisors kz of N. 

'= I rP(N)[w+_r]+ rP(N) [a+l] 
w=O rll' r-l ra-J(r_l) 

[a-l[w ( r )( I)J a+l] 
'=rP(N) ~ rW+ r-I rW +ra- I (r-l) 

Simplifying, 

~[~] ~ r:r-~~~:a~a 

a-I [( r )( I)] ( r ) (r
a -I) ~ r-I rW = r-I (r_l)ra- I 

From (S.46) and (5.47), 

~[~+(_r )(_1 )]= (ra -1)(r+I)-a(r-l) 
L...- w 1 w (1)2 a-I 
1\=0 r r- r r- r 

From (S.48), (5.45) becomes, 

U=rP(N)[(r
a 

-1)(r+I)-a(r-l) + (a+l) ] 
(r_I)2 r a-J r a- I (r-l) 

= rP(N)[(r
a 

-1)(r + I) - a(r -I) + (r -1)(a + I)] 
(r _1)2 r a- I 

= rP(N)[(r
a 

-I)(r + 1) -(r-I)(a - a -I)] 
(r_I)2 r a-l 

=tP(N)[(r
a 
-I)(r+l)+(r-I)] 

(r _1)2 r a- I 

From Appendix A. 7, 

rP(N) = N r
-

I 

r 

U=N(r-l)(r
a 

-1)(r+l)+(r-l») 
r (r _1)2 r a- I 

=(N)(ra -1)(r+I)+(r-l») 
r (r-l)r"- I 
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(S.46) 

(5.47) 

(5.48) 

(S.49) 

(S.49a) 

(S.49b) 



=(~)(ra -1)(r+l)+(r-l)) 
r (r _1)ra- l 

=(r
a 
-l)(r+l)+(r-l)) 

(r-l) 

= (r
a 

-1)(r + 1) + 1 
(r-l) 

Example 5.6: 

(5.50) 

For N= 8, the possible values of kz are kz = 1,2,4 & 8. Using (5.43), B(1) = 8, B(2) = 6, B(4) = 4 

and using (5.44), B(8) = 4. Summing these values gives U = 22. Calculating U from (5.50) to 

verify the value obtained above, 

U = (2
3 

-1)(2 + 1) + 1 = 22. 
(2-1) 

The total number of unique frequencies when N has one prime divisor is given by (5.50). 

Considering the case when Nhas two prime divisors rl and rz, 

let N = 'ia'rt 

Number of divisors = (al + I)(az + 1) 

(5.51) 

(5.52) 

(5.53) 

For a given value of kz, number of possible values of g(kt, kz) = (Wl + 1)(wz + 1), since UI = 

0,1,2, .... ,w!, Uz = 0,1,2, .... , Wz. 

(i) When Wl < ai, Wz < az 

(a) When Ul < WI, Uz < Wz, 

UI = 0,1,2, .... ,wl-l, U2 = 0,1,2, .... , wz-l 

The number of such values of g(kl' k z ) is Wj Wz. 

From (5.28), kl = g(kl' kz)' hence l(k l ) = l(g(kp kz)). From (5.39) and Appendix B.I, the number 

of unique frequencies for a given value of g(kpk2)& k2 is hence given by 

(5.54) 
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From (5.38a), I 
V'k,=:>g(kl,k,) 

The number of possible values of g(kl,k2 ) is W2, since U2 = 0,1,2, .... , W2 - 1. Hence, from (5.32) 

and Appendix B.l, 

U( (k k ) k ) - tj;(N) -L 
g I' 2 , 2 - W 1)', 1 

From (5.38b), 

lj 1r2 -lj-

l(g(k],k2» 

l(kl ) 

The number of possible values of g(kl>k2) is WJ, since Ul = 0,1,2, .... , Wl- 1. From (5.32), 

U( (k k ) k ) - tj;(N) -.!L 
gI'2'2-",I<', 1 

fj 1rz -r2 -

VI = WJ, WI + 1, ... , aI, Vz = W2, Wz + 1, ... , a2 

From (5.38), l(g(kpk2)) ==-L-.!L 
E(kl ) lj -1 r2 -1 

There is only one possible value of g(k"kz), since Ltl = W[, Uz = Wz. 

(5.55) 

(5.57) 

The sum of (5.54), (5.55), (5.56) & (5.57) each scaled appropriately by the corresponding number 

of possible values of g(kl ,k2 ) gives the number of unique frequencies over all possible values of 

g(kl ,kz )for a given value of kz, for the case Wt < aJ, W2 < a2. 

(a) When Ut < W[, Uz < W2, 

Ut = 0,1,2, .... ,wl-l, Uz = 0,1,2, .... , wr1 

No values of Ut and U2 that satisfy this condition. 
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U( (k k) k ) _ ~(N) 
g l' Z , Z - W -1 ( 1) w, fi' rI - rz -

The number of possible values of g(kl'kz) is Wz. 

U( (k k) k ) _ ~(N) 
g l' Z , Z - w -1 ( 1) lY, 

fi' fi- rz -

(c) Similarly, when UI < Wb Uz = Wz, 

From (S.38b), l(g(kl'kz» --.-!L 
l(kI ) r1 -1 

The number of possible values of g(k" kz) is WI. 

U( (k k) k ) - ~(N) rz 
g " z , z - "',-I ( 1) w, -1 fi 1]- rz rz 

(d) When UI = HI" Uz = Wz, 

v, = W" WI + 1, ... , a" V2 = WZ, W2 + 1, ... ,az 

Since Le! = WI = a" and using the method used to obtain (S.38), 

l(g(k"kl» =-.-!L 
l(kI ) r2 -1 

There is only one possible value of g(kI,kz) 

U( (k k ) k ) - ~(N) r2 
g l' 1 , 1 - w -1 ( 1) \l', 1 fi' 1] - r1 · rz -

l(g(kI,kz» ~1 
l(kI ) 

(S.60) 

(S.61) 

(S.62) 

From (S.S9), (S.60), (S.61) & (S.62) and appropriate scaling, the number of unique frequencies 

over all possible values of g(k"k2) for a given value of kz for the case WI = a" W2 < a2 is given 

by, 

E(k)- ~(N) [ww +w +w(~)+(~)l 
z - fi"i- I (1] -1)rz"" 1 z z 1 rz -1 r

2 
-1 

(S.63 ) 

(iii) Similarly, when WI < a" Wz = al, 

(S.64) 
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Ut = 0,1,2, .... ,wl-l, U2 = 0,1,2, .... , wrl 

The number of possible values of g(kpk2) is WIW2. 

U( (k k) k ) - rf(N) 
g I' 2 , 2 - a -I ( 1) a,-I ( 1) 1(' 1(- r2 - r2 -

The number of possible values of g(kl ,k2 ) is W2. 

U( (k k) k ) - rf(N) 
g I' 2 , 2 - a -I ( 1) a,-I ( 1) 1(' 1(- r2 - r2 -

The number of possible values of g(kl ,k2 ) is WI_ 

U( (k k ) k ) - rf(N) 
g I' 2 ' 2 - a,-I( -1) .a2-1( -1) 

1( 1( '2 r2 

(d) When UI = Wh U2 = Wz, 

/(g(kpk2» = 1 
l(kl ) 

l(g(kpk2» = 1 
l(kl ) 

There is only one possible value of g(k"kz). From (5.32) and Appendix B.l, 

U(a(k k ) k ) - rf(N) 
.:;, I' 2 , 2 - a -I ( 1) a,-I ( 1) 1j J 1j - r2 - rz -

From (5.65), (5.66), (5.67) & (5.68) and doing appropriate scaling, 
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(5.65) 

l(g(kp k2» =1 
l(k]) 

(5.66) 

l(g(kpk2» = 1 
l(kl ) 

(5.67) 

(5.68) 



(S.68a) 

From (S.S8), (S.63), (S.64) & (S.68a), the total number of unique frequencies of N can be 

calculated as 

=';'(N)[~~[~I2':L+--.!L ~1~1 + (az +l) 1 
'P L w ~ w, ~ w~ a .. -l 

Wl~O 'i 1 w:~o rz . rz -1 W2~O rz . rz ' (rz -1) 

a1 +l ~ 1 [~l Wz rz ~J 1 (az +l) II 
+ a -I L -,-.. L. -"-', + ~- L. -,-", + -a-'-,--'J~-'--

Ij 1 (Ij -1) "i~O 'i 1 w:~o 1'Z ' rz -1 w,~o r2 ' rz' (r2 -1) 

(S.69) 

From (S.49a), 

[~ ~+_r_~_1 + (a+l) ]= (r
a 

-1)(r+l)+(r-l) 
~ w 1 L. 11' a-I (1) (1)2 a-I ,,~O r r - l\~O r r r - r - r 
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= [(riG! -1)(1j + 1) + (Ij -1)][(rzG2 -1)(rz + 1) + (rz -1)] 
('i-I) (rz -1) 

= [(tt! -1)(1j +1) +1][(rz
Q2 

-l)(rz +1) +1] 
('i-I) (rz-l) 

(5.70) 

Thus, an expression for the number of unique frequencies has been obtained for N that has two 

prime di vi sors. 

Example 5.7: 

2-13-1 
LetN= 6, so that rj = 2, r2 = 3, al = 1, az = 1, q5(6):::: 6--:::: 2. 

2 3 

(i) When Wl < a" Wz < a2 

WI= 0, W2= 0. 

(a) UI < WI, U2 < W2, 

No values of Uj and Uz that satisfy this condition. 

(b) U! = Wj, U2 < W2, 

No values of u! and U2 that satisfy this condition. 

No values of H! and U2 that satisfy this condition. 

(d) u! = Wj, U2 = Wz, 

Uj = 0, U2= 0. 

VI = 0, 1, V2 = 0, 1. 

From (5.57), 

U(I,l):::: ~_2 __ 3_:::: 6 
12-13-1 

From (a), (b), (c) & (d), 

B(I):::: U(l, 1):::: 6 

B(1)=~[(_2 )(_3 )]=6 
1 2-1 3-1 

(ii) Wj :::: at. Wz < Gz 

Wl = 1, W2= o. 
(a) Ltl < WI, U2 < Wl, 

No values of Uj and U2 that satisfy this condi.tion. 
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(b) Ul = Wl, U2 < W2, 

No values of UI and Uz that satisfy this condition. 

(c) UI < Wl, U2 = W2, 

Ut = 0, U2 = o. 
VI = 0, V2 = 0, L 

2 3 
From (5.61), U(1,2) = --::: 3 

1 3-1 

(d) Ul ::: WI, U2 = W2, 

Ul = 1, U2 = O. 

vl=l, v2=0,L 

From (5.61), 

U(2 2)=~~3_ =3 
, 13-1 

From (a), (b), (c) & (d), 

B(2) = U(1,2) +U(2,2) = 6 

B(2)=~[1(_3 )+(_3 )]=6 
1 3-1 3-1 

(iii) Wl < ai, W2 = az 

w)=O, w2=1. 

B 3 --- -- + - -4 2 [( 2 ) ( 2 )J ( )- (3-1) 2-1 2-1-

(iv) WI = ab W2 = a2 

WI = 1, W2 = L 

(a) U) < WI, U2 < W2, 

Ul = 0, Uz = 0 

The number of possible values of g(kl; k2 ) is L 

2 
U(16)=--=1 

, (3-1) 

(b) u) = Wt, U2 < W2, 

ul=l, U2=0 

vl=l, V2=0 

The number of possible values of g(k1, k2 ) is 1. 

2 
U(26)=--=1 

, (3 -1) 
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(c) UI < WI, U2 = W2, 

U) = 0, U2 = 1 

VI = 0, V2 = 1 

The number of possible values of g(kI ,k2 ) is 1. 

2 
U(36)=--=1 

, (3 -1) 

(d) Ul = W), U2 = W2, 

Uj = 1, U2= 1 

vl=l, v2=1 

There is only one possible value of g(k1,k2). 

U(6,6) = 1 

From (a), (b), (c) & (d), 

B(6) = (3~1) [(1+1)(1+1)]=4 

U == B(1) + B(2) + B(3) + B(6) == 20 

Verifying this value using (S.70), 

U =[(2-1)(2+ I) + 1][(3-1)(3+ 1) + I] = (4)(S) =20. 
(2 -1) (3 -1) 

U = [(1jQI -1)(1j +1) +1] 
N, (1j -1) 

and, 

U =[(rt -1)(r2 +1) +1] 
N, (r2 -I) , 

given g(1j,r2 ) = 1. 

(S.70a) 

(S.70b) 

IfN=NjN2 ==1ja1rt, from (S.70), (S.70a), and (S.70b), UN =UN,uN,. Hence, it can be concluded 

that the number of unique 2-D MRT frequencies is a multiplicative function. By mathematical 

induction, for N that has q prime divisors, N = IT'iQ' , the number of unique frequencies is hence 
i~l 

given by 

U == Il[ (lja, -1~(Ij + I) + 1] 
i~l (Ij 1) 

(S.71) 
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The number of unique frequencies to be used in a representation of 2-D MRT using only the 

MRT coefficients corresponding to these unique frequencies is given by (5.71). Table 5.2 shows 

the number of unique frequencies calculated using (5.71) for various values of N. Now, the 

number of unique MRT coefficients corresponding to these unique frequencies is to be found out, 

as described below. 

Table 5.2: Number of unique frequencies for various values of N 

N Representation of No. of unique N Representation of No. of unique 

Nin terms of frequencies Nin terms of frequencies 

prime divisors prime divisors 

4 2- 10 42 237 180 

6 23 20 60 2- 35 350 

8 23 22 64 t' 190 

10 25 28 80 24 5 322 

12 2- 3 50 100 2- 5- 370 

14 27 36 128 2' 382 

16 2"~ 46 144 23 3- 782 

18 2 3- 68 180 2- 3- 5 1190 

20 2- 5 70 200 23 5- 814 

24 23 3 110 210 2357 1260 

30 235 140 256 2~ 766 

32 2) 94 324 2- 34 1610 

36 2- 3- 170 500 2- 53 1870 

40 2; 5 154 512 2~ 1534 

5.2.6 Number of Unique Coefficients 

If the number of unique 2-D MRT frequencies is available, it is possible to detennine the number 

of unique 2-D MRT coefficients. The case when Nhas only one prime divisor is considered first. 

If that prime divisor is assumed to be 2, then N is a power of 2. The next case is when Nhas two 

prime divisors. Since there is a prime divisor other than 2, such values of N are not powers of 2. 

The expressions obtained for these two cases can be generalized for the case when N has any 

number of prime divisors. From section 3.4.1, the existence of a 2-D MRT coefficient is 

dependent on whether g(k1,k2 ,N) I p and g(kl,k},N) I (p + M). Also, an MRT coefficient has 

positive and negative groups only if the condition g(kpk},N) I M is true. Similarly, using 

theorem 4.2 and the explanation given in 3.4.1, a I-D MRT coefficient has positive and negative 
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groups only if the condition g(k,N) I M is true. For k a divisor of N, g(k,N) = k. From section 

4.3.4, the number of I-D MRT coefficients associated with divisor frequency k is M / k, if k I M, 

and N J kif k I M is not satisfied. In the 2-D case, for unique frequencies corresponding to divisor 

columns, g(k2,N)=k2 , and hence, g(kpk2,N)= g(kpk2)' Thus, for a given value of g(k"k2 ) , 

the number ofMRT coefficients is M / g(kl,k2), if g(kpk2) I M, and N / g(kl ,k2 ) if g(kl ,k2) I M 

is not satisfied. 

Given the number of unique frequencies corresponding to the given values of g(kpk2) and k2' 

U(g(kpk2),k2) , the number of unique MRT coefficients corresponding to these values of 

(5.72) 

otherwise 

The total number of unique 2-D MRT coefficients corresponding to g(kl'k2)' defined by 

Cg(k"k:) , can be found by summing the LHS of (5.72) over all possible values of k2• Finally, the 

total number of unique MRT coefficients for a given value of N, defined by C, can be found by 

summing Cg(k,h) over all possible values of g(kpk2)' The analysis presented below proceeds 

along these lines. 

Case (i) N= rP, r= 2 

The possible values of g(kpk2) are g(kpk2) =,.u, O:s u:S a 

Given g(kl,k2 ) , k2 has to be greater than or equal to g(kpk2)' hence k2 = r"', u:S w:S a 

The number of unique frequencies for a given value of g(kl> k2) and k2, is given by (5.36), (5.37) 

& (5.37a). When g(kl,k2) = 1, & k2 = 1, and since 10) = 1, the number of unique frequencies is 

given, from (5.36), by 

U(ll) = ~(N)r 
, r -1 ' 

:. A(ll) = U(ll) N = ~(N)r N 
, '2 r-l 2 

(5.72a) 

Similarly, when g(kl,k2) = 1, other possible values of k2 = r, ?, ... , rP , then the number of 

unique frequencies is, from (5.37), 
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Let Cg (k
l
.k

2
) be the total number of unique MRT coefficients corresponding to g(k[, k2 ). 

a 

:. Cg(ts,k,) = IACg(k[,k2),r
i

) 

i~tl 

Hence, from (5.72a) and (5.72b) and (5.73), 

C - N -+ -+ -[
ra-Ill ] N 

1 - ~( ) -1 I w a-I C -I) 2 r \\=1 r r r 

Simplifying the tenns in RHS, 

a-Ill 1 

~rw+ ra-ICr-I):::: rb-l(r-I) 

Hence, 

_r_+ I-I + \ = (r+I) 
r-\ w~lrlV ra-I(r-I) (r-I) 

:,CI =~(N)[r+I]N r-l 2 

(5.72b) 

(5.73) 

(5.74) 

(5.75) 

(5.76) 

(5.77) 

Considering the case of g(kl ,k2 ) = r, the possible values of k2 are k2 = r, ;, ... ra. When k2:::: r, l(r) 

:::: r; the number of unique frequencies is given from (5.36) as 

U( ) :::: ifJ(N)r r,r . 
r(r -1) 

A(r,r):::: ~(N)r N 
r(r-I) 2r 

And for k2 = ;, (5.37) gives 

U(r,r 2 ):::: ~(~) • 

r 
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(5.78) 

Summing all such terms, the number of unique MRT coefficients for g(kpk2) = r is given by 

Generalizing from (5.79), for g(kpkz) = 1', 0 :s d :s a-I, the number of unique 2-D MRT 

coefficients is given by 

C _A,(N)r+I N_I_ 0 d 1 
rd -'I' r-I 2 (rd )2' ::; ::;a- (5.80) 

When g(kl'k2) = 1', g(kpkz) I M is not satisfied, hence there is N / g(kl'k2) = N / I' = 1 MRT 

coefficient for each unique frequency. Also, the only possible value of kz is kz = 1'. Also, 

/(ra) = ra-I(r -1). Hence, from (5.37a), the number of unique MRT coefficients for g(kI, k2) = ra 

is given by 

c = iP(N) 
r" ra-I(r-I) 

(5.81) 

(5.80) and (5.81) give the number of unique MRT coefficients for each possible value of 

g(kpk2)' The total number of unique MRT coefficients for a given N can be obtained by adding 

the number of unique MRT coefficients corresponding to each value of g(kl ,kz) and is given by 

a (r + 1) N [ a-Ill rp( N) 
C=~Cr,=rp(N)(r_l)2 ~r2W +ra-I(r-l) (5.82) 

_ N(r+l)N(r
2a

-l) 1 + iP(N) 
- iP( ) (r -1) 2 (r2 -1) r2(a-l) ra-I(r -1) 

= iP(N) [N _r_ (r2Q -1) + 1] 
(r-l)ra- I 2 r-l ra 

Using (5.49b), 

c=[N(r-l) 1 ][N_l_' (r2a -1) +1] 
r (r_l)ra- I 2 r-I rQ 

(5.83) 

[
N(r-I) 1] . 
--'---'- ----:-1 = 1 , and, SInce r = 2, 

r (r-l)r a
-
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[
N r (r

2a 
-1) + 1] ~ ,.2a 

2 r-l ra 

Hence, for N a power of 2, the number of unique MRT coefficients is N 2 
• 

Example 5.8: 

LetN= 8. 

(5.84) 

The possible values of g(k"kz) = 1,2,4, 8. kz has to be greater than or equal to g(kpk2) for a 

given g(kl>k2)' When g(kpkz) = 1, & kz = 1, and since l(l) = 1, the number of unique 

frequencies is given, from (5.36), by 

U(l,l) ~ ~(N)r ~ 8. 
r-l 

Similarly, when g(kpkz) = 1, other possible values of k2 = 2, 4, 8, then the number of unique 

frequencies is, from (5.37), U(l,2) ~ 2 , U(l,4) = 1, U(1,8) = 1. Since there are 4 MRT 

coefficients associated with g(kpkz ) ~ I, from (5.72), A(l,l) = 32, A(l,2) = 8, A(l,4) = 4, A(l,8) 

= 4. The total number ofMRT coefficients for g(kh kz) = 1, and all possible values of k2 = 1,2,4, 

8 is given by 

Cl ~ A(l,l) + A(l, 2) + A(l,4) + A(1,8) ~ 48 

Similarly, when g(k"kz) = 2, the possible values of kz are k2 = 2,4, S. When k2 = 2, the number 

of unique frequencies is given from (5.36) as 

U(2 2) ~ ~(8)2 ~4. 
, 2(2-1) 

And for k2 = 4, (5.37) gives U(2,4) = 1, U(2,8) = 1. A(2,2) = 8, A(2,4) = 2, A(2,8) = 2. Summing, 

the number of unique MRT coefficients for g(kl' k2 ) = 2 is 

Cl ~ A(2, 2) + A(2,4) + A(2,8) ~ 12 

Using similar approach, U(4,4) = 2 , U(4,8) = 1, A(4,4) = 2, A(4,8) = 1, U(8,8) = 1, A(8,8) = 1 

and C4 = A(4,4) + A(4,S) = 3. Also, Cs = As = 1. 

The total number of unique MRT coefficients for N= 8 is thus C= Cl + C2 + C4+ Cs ~ 64. 

Hence, for N~ 8, the number of unique MRT coefficients is N2 = 64. 
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The total number of unique 2-D MRT coefficients corresponding to a specific value of g(kpk2) , 

(5.85) 

In the following, only a few of the possible values of g(kpk2) are considered in detail since the 

analysis is similar for the remaining values. Similarly, for a specific value of g(kI ,k2 ), analysis is 

done only for a few possible values of k2 in order to avoid repeating similar steps. 

To begin with, let g(kpk2) = 1. 

When k2 = 1, from (5.57), the number of unique MRT coefficients is given by 

(5.86) 

For k2 = r2, from (5.55), 

A(l r ) = U(l r ) N = ,peN) ---.L N 
'2 '2 2 -12 r2 "i 

Thus, in general, for k2 == r;"" , 

And for k2 =rt, 

A(l ra,) = U(l ra,) N = ,peN) ~ N 
, 2 , 2 2 ra,-l(r -1) r: -1 2 

2 2 I 

(5.87) 

Similarly, when k2 = rI, 

A(1 r:)=U(l r:)N = ,peN) ~ N (5.88) 
, I ' I 2 -1 2 "i rz 

(5.89) 
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.·.A(Ir.w'r W')=U(Ir.w'r\!',)N=tf;(N)N 1< < 1 1< < 1 'l 2 'l 2 ,-Wl - a l -, - W2 - a2 -2 r;~irw, 2 
1 2 

A(1 r,fl, r a,) - U(I ra, r a,) N _ tf;(N) N 
'12- '12 2-'ia,-I('i-I)r2a,-I(r2-1)2 

The summation of A(l, k2) over all possible values of k2 gives 

C =d.(N)N[[~~+~~+l-.-~+ 1 rl 1 1 Y' 2 •••• a-] 
2 r. -I r -1 r r. -1 r r. -1 r 2 (r -I) r. -1 1 2 2 1 ,I 2 2 1 

[_I_~ _I_~ _1_l-.- 1 1 1 +....... + + + .... ra,-I r -I ra,-I r ra,-I r2 ra,-I ra,-l (r -I) 
I 2 I 2 1 1 I 2 2 

(5.90) 

=tf;(N) N[_rl_+.l+~+ .... a-I 1 1[-r2-+~+~+ .... -a-'--:-I-I--l 
2 'i -1 'i 1j r,' (r] -I) r2 -I r2 r2 r, - (r2 -1) 

(5.91) 

Next, the case of g(kl ,k2) = r2 is considered. For k2 = r2, the number of unique MRT coefficients 

IS 

(5.92) 

(5.93) 

Generalizing, 
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(5.93a) 

(5.94) 

(5.95) 

Generalizing, 

(5.96) 

Generalizing, 

A(r r,a'rW,) - (J(N) !i 2 
2' I 2 - a,-I( _1)'w, 2' !5:w2 !5:a2 -1 

'I 'i '2 rz 

A(r raira,) - (J(N) N 1!5: W
I 

!5:a}-l 
2" 2 - w, a,-Ic- -1)2 ' 'I r2 '2 r2 

A(r r.a, ra,) - (JCN) !i 
2" 2 - a,-I C -1) a,-' (- -1) 2 -'i r, rZ '2 '2 

Summing the terms A (rz, k2) for all possible values of k2, 

er, =(J(N)!i[[~~~+~~+~~+ .... + a,-} 1 ~] 
2rz 'i -1 r2 -1 r2 r, 'i -1 r, 'i -1 r, - (r2 -1) 'i- 1 

+[_1 ___ r2_+_1_
2 

+_1-3 + .... + 1 0.-' 1 ] 
r,r2 r2 -I 'ir, 'ir, 'i r, - (r2-1) 

+[_1 ___ r2_+_1_+_1_+ +~~_l __ ] 
r2r r) -1 r2r2 ,.2,.3 .... ,.2 ra,-l(r -1) 

I 2 - I 2 I': I ~ 2 
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+ ....... [~~l+ a
1

_1 ~+~~+ .... + }-I a-I 
1 

] 
ra, r -1 r r' r ra, r r' r' (r -1) 

1 2 2 I 2 I:: 1 2 2 

+[ 1 r2 l+ 1 1 + 1 ~+ .... + __ 1__ 1 ]J 
ra,-I (r. -1) r -1 r ra,-I (r -1) rl ra,-I (r. -1) r3 rG,-1 (r. -1) ra,-I (r -1) 
, I 2 2 I I , I I, I I , 1 

(5.97) 

=r/J(N)~l[~][r2 +1] 
2r2 r2 'i -1 r2 -1 

(5.98) 

In (5.98), the term N12r2 corresponds to the value of g(kl'k2) and the term (Ifr2) corresponds to 

l(g(kJ, k2»' Thus, in general, if g(kl ,k2) = 'i"' rt and N = 'ia'r2
a, , and if UI < at, U2 < a2, the number 

of unique MRT coefficients corresponding to this value of g(kl, k2 ) is given by 

C = "'(N) ~ _1_ 'i + 1 r2 + 1 U < a u < a 
r,"r;~ 'If 2 ", 11, ", ,/, 1 l' I P 2 2 " 'i r2"'i r2-'i- r2 -

(5.99) 

Similarly, when g(kl ,k2) = rt' , the number of unique MRT coefficients is 

(5.100) 

And, wheng(kl,k2) = r.,rt, this is given by 

C ="'(N)~ 1 rl +1 
ri,' Of' 2 Q, a,-I ( 1) 1 '" 'i r2" 'i r2" r2 - 'i-

(5.101) 

Since N is even, either rl = 2, or r2 = 2. Assume rl = 2. 

(5.102) 

Summing the tenns corresponding to all the possible values of g(kl'k2)' the total number of 

unique MRT coefficients, defined by C, can be obtained as 
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:.C=tft(N)N 1j +1 r2 +1+ tftCN) N
2

1j+lr2 +1+ tft(N) N
4

1j+lr2 +1 
2 r. - 1 r. -1 2r r. -1 r. -1 2r r. - 1 r. - 1 1 2 ,I 2 , I 2 

(5.1 03) 

N 1j+lr2+1 N 1j+lr2+1 
+·········tft(N) 2r.(a1-1)' r. -1 r. -1 + tft(N) 2r.(a1-1}' .. 2 r. -1 r. -1 

1 I 2 1'2 1 2 

+ .... tft(N) N, 1 1j + 1 
2r. (a1-1)" y,"' y,a,-I (y, -1) r. -1 

I 2 2 2 I 

1 1j + 1 [r2 + 1 [ 1 1 1 1 r2 1]1 + ..... --, -- -- 1+-+-+ ..... --, +----, 
,;(01-1,- r. -1 r -1 ,.2 r4 r(a,-I)' r. -1 ra; 
1 1 2 " , 2, 

(5.104) 
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(5.105) 

(5.106) 

C=~(~N[[ ~;.: :[1 + ~+ :,. + ... r,('~lr ]\~ r, ~ 1][ (r, ~)r,~ [(r{: = :~r, + Ill] 
= ~(N)N[[ Ij Q' [(lj2Q

1 

-1)'i + 1]][ r2 , [(r2
2a2 

-I)r2 + 1]11 
(r! -1)1"1 1 2(1j -1) (rz -1)r,a, (r2 -1) 

= ~(N)N[[ Ij , [(r,.ZQ1 -I)'i + l]l[ rZ 2 [(rz
2a

, -1)r2 + I]ll 
(Ii -1)I;aj 2(1'j -1) (r2 -1)r,a, (r2 -1) 

(5.107) 

~(N)N = N(1j -1)(1"2 -1) N = IjQ1
' r2Q; (Ij -I)(r2 -1) (5.108) 

Ij~ r,.~ 

(5.109) 

(5.110) 

This analysis, extended along similar lines, to N that has q prime factors would give, 

for N = IT fjQ, , 

i=1 

c = [(r/ Q1
. -1)1j + I]Ii[(fjZQ' -1)'1 + 1] 

2(/1 -1) ;=2 (fj -1) 

Since, r! = 2, the tenn! I + 1 reduces to 22Q1 
, so that (5.111) can be re-written as [

(r.
2a1 

-1)r. 1 
2(1j -1) 
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(5.112) 

Example 5.9: 

This example illustrates how to calculate the number of unique MRT coefficients for a given 

value of N, and N is chosen as 6. Since the divisors of 6 are 1, 2, 3 & 6, the possible values of 

g(kJ. k2) = 1,2,3,6. 

For g(kl,k1) = 1, the possible values of k2 = 1,2,3,6. 

From (5.36) & (5.72a), U(1,I) = 6, A(1,I) = (U(1,I))(3) = 18 

From (5.37) & (5.72b), U(1,2) = 3, A(1,2) = (U(1,2))(3) = 9 

U(1,3) = 2, A(1,3) = (U(1,3))(3) = 6 

U(1,6) = 1, 

Thus, 

A(I,6) = (U(l,6))(3) = 3 

Cl = A(1, 1) + A(1 ,2) + A(1 ,3) + A(l ,6) = 36, which can be verified using (5.91) or (5.99). 

Similarly, 

U(2,2) = 3, 

U(2,6) = 1, 

A(2,2) = (U(2,2))(3) = 9 

A(2,6) = (U(2,6))(3) = 3 

C2 = A(2,2) + A(2,6) = 12 

U(3,3) = 2, A(3,3) = (U(3,3))(1) = 2 

U(3,6) = 1, A(3,6) = (U(3,6))(1) = 1 

C3 = A(3,3) + A(3,6) = 3 

U(6,6) = 1, A(6,6) = (U(6,6))(1) = I 

C6 = A(6,6) = 1 

C = Cl + C2 + C3 + C6 = 52, as can be verified using (5.112). 

Table 5.3 shows the total number of MRT coefficients and the corresponding number of unique 

MRT coefficients calculated using (5.112) for various values of N For N a power of 2, there are 

N 2 UMRT coefficients. An expansion factor can be calculated by taking the ratio of the RHS of 

(5.112) to N 2 
• This is defined as E to be 
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q [(r.2ai + r.2a
,-1 + r?a;-2 + ... 1)] q [ 1 1 1 ] 

= TI I I 2a, I = TI 1+-+2+"'~ 
i~2 If i=2 r r r 

(5.112a) 

Table 5.3: Number of unique 2-D MRT coefficients for various values of N 

N Nin Number Number E N N in terms Number of Number E 

terms of ofMRT of of prime MRT of 

prIme coeffici UMRT divisors coefficients UMRT 

divisors cnts coeffici coeffici 

ents ents 

4 2- 32 16 I 42 237 37044 2964 1.68 

6 23 108 52 1.44 60 2- 35 108000 6448 1.79 

8 2J 256 64 1 64 2" 131072 4096 1 

10 25 500 124 1.24 80 24 5 256000 7936 1.24 

12 2-3 864 208 1.44 100 2- 5- 500000 12496 1.25 

14 27 1372 228 1.16 128 2' 1048576 16384 I 

16 2" 2048 256 1 144 2J 3- 1492992 30976 1.49 

18 2 3- 2916 484 1.49 180 2- 3- 5 2916000 60016 1.85 

20 2- 5 4000 496 1.24 200 2J S- 4000000 49984 1.25 

24 2J 3 6912 832 1.44 210 2357 4630500 91884 1.98 

30 235 13500 1612 1.79 256 2~ 8388608 65536 1 

32 2' 16384 1024 1 324 2- 34 17006112 157456 1.5 

36 2- 3- 23328 1936 1.49 500 2- 5J 62500000 312496 1.25 

40 2J 5 32000 1984 1.24 512 2~ 67108864 262144 1 

From Table 5.3, it can be inferred that the expansion factor increases in proportion to the number 

of distinct prime divisors of N. For a given number of prime divisors, there is also an increase in 

expansion factor in proportion to the exponents of the prime divisors, although this increase is 

relatively less rapid when compared to increase of number of prime divisors. 

Thus the number of unique frequencies and the number of unique MRT coefficients 

corresponding to the unique frequencies are identified in section 5.2. 2-D signal can be 

represented in terms of the UMRT coefficients corresponding to the set of unique frequencies by 

removing redundancy and is explained in Section 5.3. 

5.3 Signal representation using 2-D UMRT coefficients 

The number of unique MRT coefficients corresponding to a 2-D signal has been presented in 

section 5.2.6. It was found that when N is a power of 2, the number of unique MRT coefficients is 
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NZ and is same as the number of signal samples. All other 1'v1RT coefficients can be derived from 

this set of NZ coefficients. These coefficients may hence be considered as unique MRT (UMRT) 

representation for 2-D signals, yielding a new, real non-expansive 2-D signal transform. 

5.3.1 Choosing Unique Frequencies 

The number of unique frequencies and the number of UMRT coefficients have been obtained in 

(5.71) and (5.112) respectively. One possible method to obtain the set of unique frequencies is to 

choose all powers of 2 as values for k2 and to find out the possible values of kl for each kz. Let N 

= 2a, k2 = 2w, kl = 2v. To identify the unique frequencies (kl>k2), the following cases are 

considered. 

(1) k2< N, g(kt, k2)<k2: Since g(kpkz) < kz, kl = g(kl,kz), hence l(kl) = I(g(kt, kz»; since k2< N, 

l(k2) = kz. Hence, from (5.20), the number of unique frequencies is given by ~(N) I k2 = NI 2kl , 

since ~(N) = N I 2, for N a power of 2. Thus, out of the ~(N I kl ) elements in the totative set of 

NI kl ' only NI 2kl are required to generate the unique frequencies. Hence, there is redundancy 

relation between elements in totative set of ~(N I kl)w.r.t. column kl . If Z.V!kl and ZN are defined 

as the totative sets of N I kj and N respectively, hi & h2 are two elements in ZNlkt. and h is an 

element of ZN, and if «(h1k1h»N, «kzh)N) = «(hzkl»N, kz) , then the elements hlkl and hlkl are 

redundant w.r.t. column kz. Hence, the condition in which «(h1kjh»N, «k2h»N) = «(h2k1»)N, k2) 

occurs needs to be explored. The element h needs to be a solution of «hk2»N = kz. Solutions are of 

the form h = 1 + tN I k2' 0 :'S t < kl . The other relevant equation is «hlklh»N = «hzkl»N' Let 

h2 =h1 +d. 

«h,kl(1 + tNlkl»)N= «(hI + d)kl»N 

«hlkl + hjk1tNlkz»N = «h1k1+ dkl»N 

«h 1k1tNlk2»,v = «dk'»N 

«k,(d - hltNlkz»)N = 0 

d - hltNlkz = vNlk l 

d = h,tNlkz + vNlkl 

Using Bezout's lemma, 

d = g(N I k2' NI kl) 

Hence, elements hJkJ and hzkJ are redundant W.r.t. kz if d satisfies (5.113). 

The first element in Z;V!kl is 1. Hence, if hI = 1, then h2 = h, + d = 1 + g(N I k2' NI kl). 

125 

(5.113) 



In the present case, g(N / k2, N / kd = N / k2• Hence, if hz = 1 + (N / k2), then there is redundancy 

between k( and «h2k\»N W.r.t. k2. The serial position of h2 = 1 + (N / k2) among the elements of 

ZNJkl can be found from the distribution of co-primes of N that are powers of 2. As seen from 

Table 5.4, when N is a power of 2, every odd integer is co-prime to N, and hence it is possible to 

accurately predict the serial position of any element in Z,v. 

Table 5.4: Totatives for a few integers that are powers of 2 

N 1J (N) M Totatives of N 

4 2 2 1,3 

6 2 3 1,5 

8 4 4 1,3,5,7 

IQ 4 5 1,3,7,9 

12 4 6 1,5,7,11 

16 8 8 1,3,5,7,9,11,13,15 

24 8 12 1,5,7,11,13,17,19,23 

32 16 16 1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,31 

The first co-prime element is 1, and from then on, every second integer belongs in Z,v. The 

element at any serial position ql is thus given by (2qI - 1). Conversely, an element q2 will have a 

serial position (q2 + 1)/2 in ZN. Hence, the serial position of element 112 = 1 + (N / kz) is thus (l + 

(N / kz) + 1)/2 = 1 + (N / 2k2)' The number of unique frequencies (k,k2) in column kz such that 

g(k, N) = k(, is given by N / 2k2. Since the co-prime h2 = 1 + (N / k2), at position 1 + (N / 2k2), is 

redundant W.r.t. hI = 1, none of the co-primes lesser than this value of 112 have a corresponding 

value of hi that is lesser than 1 + (N / k2)' Hence none of them are redundant w.r.t. k2• Also, the 

number of these co-primes is N / 2kz, which is equal to the number of unique frequencies. Hence, 

these N / 2kz co-primes can be used to generate the N / 2k2 elements of gcd kl w.r.t. N that are 

unique in column k2 by multiplying each of them with kl • 

(2) k2< N, g(kt, k1) = k1: Since kz< N, f(kz) = k2. Also, l(g(kJ, k2» = /(kz). When g(kl,k2) = k2' the 

possible values for k( are, k( = k2' 2kz, 4k2 •••• , M, N. Hence, corresponding values for f(k1) are, f(k() 

= k2, 2k2, ••• M, M, since f(N) = f(M) = M. The number of unique frequencies, from (5.20), 

corresponding to each value of kl is hence given by (N / 2kz), (N / 4k2),oo., 1, 1. Using the same 

arguments used in case 1 above, the unique frequencies can be found by multiplying kf with the 

first M / f(k}) elements in Zv. 
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(3) kz = N, g(kh kz) < k2: k\ = g(kl,kJ, l(kI) = l{g{kJ, k2))' l(k2) = f(N) = M. From (5.20), the 

number of unique frequencies is 1. Hence, the unique frequency can be chosen to be k\. 

(4) kl = N, g(kh kz) = kz = N: kI = N. l(k\) = l(g(k[, k2))' The number of unique frequencies, from 

(5.20), is 1 and the unique frequency is thus kI = N. 

Example 5.10: 

In this example, cases 1-4 are considered for N = 8. 

(1) k2< N, g(kl'k2 ) < k2: 

k2 = 2, g(kl'k2) = 1, hence k\ = 1, l(k\) = f(g(kI' k2)) = 1, f(k2) = 2. From (5.20), the number of 

unique frequencies (k,k2) in column k2 such that g(k, N) = kI is 2. The number of elements in gcd 

set of k\ = 1 is given by ~(N I k\) = ~(8) = 4. Hence, out of these 4 elements, only 2 are unique in 

column 2. Z8 = {I, 3, 5, 7}. hJ, h2 & h are elements in Zg, and if «(hjklh))N, «k2h))N) = «(h2k())N, 

k2) , then the elements hIkl and h2kl are redundant w.r.t. column k2. Hence, the condition in which 

«(h lh))8,«2h))s) = «(h2))8,2) occurs needs to be explored. The element h needs to be a solution of 

«2h))g = 2. Solutions are of the fonn h = 1 + 4t, 0 ~ t < 2, i.e. h = 1, 5. The other relevant 

equation is «h1h))N= «h2))N. Let h2 = hi + d. 

«hI{l + 4t)))s = «(h\ + d)))8 

«hI + 4h1t)h = «h\+ d))s 

«4h(t))s = «d))s 

«(d - 4h\t)))s = 0 

d - 4h\t= 8v 

d= 4h 1t+ 8v 

Using Bezout's lemma, the smallest value of d is 

d= g(4, 8) = 4 

Hence, elements hI and h2 are redundant W.r.t. 2 if d = 4. 

The first element in Zg is 1. Hence, if hI = 1, then 112 = hI + d = 1 + 4 = 5. 

Hence, there is redundancy between I and 5 W.r.t. 2. The serial position of h2 = 5 among the 

elements of Zs is position 3. The number of unique frequencies (k,k2 ) in column k2 such that 

g(k, N) = k( , is 2. Since the co-prime h2 = 5, at position 3, is redundant W.r. t. hi = 1, none of the 

co-primes lesser than this 5 have a corresponding value of hi that is lesser than 5. Hence none of 

them are redundant W.r.t. k2• Also, the number of the co-primes is leeser than 5 is 2, which is 

equal to the number of unique frequencies. Hence, these 2 co-primes, viz. 1 & 3, can be used to 
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generate the 2 elements of gcd 1 W.r.t. N that are unique in column 2 by multiplying each of them 

with kr = 1. 

(2) k2= 2, g(kr,k2) = 2: Since k2 < 8, l(k2) = 2. Also, l(g(kr, k2)) = l(k2) = 2. When g(kt,kz) = kz, 

the possible values for kr are, kr = 2,4, 8. Hence, corresponding values for l(k j ) are, l(kr) = 2, 4, 4, 

since 1(8) = 1(4) = 4. The number of unique frequencies, from (5.20), corresponding to each value 

of kr is hence given by 2, 1, 1. Using the same arguments used in case 1 above, the unique 

frequencies can be found by mUltiplying k] with the first 4 I l(k]) elements in Z8. 

(3) k2 = 0, g(kr,k2) < 2: kj = 2, l(kr) = l(g(kp k2)) = 2. l(kz) = 4. From (5.20), the number of 

unique frequencies is 1. Hence, the unique frequency can be chosen to be kr• 

(4) kz = 0, g(kpk2) = 0: kr = O. l(k1) = l(kz) = l(g(kl>k2)) = 4. The number of unique frequencies, 

from (5.20), is 1 and the unique frequency is thus kr = O. 

From cases 1-4 studied above, the following procedure can be used to generate the UMRT 

frequencies and the corresponding UMRT coefficients for N a power of 2: 

1) For k2 = 1 to N, 

2) For g(k j , kz) = 1 to k2/2, k, = g(kpkz) and for g(kl>k2)= kz, kr = k2 to N 

3) Calculate number of frequencies w = (J(N)I(g(kl'k2 )) I l(kj )l(k2 ). 

4) Multiply the first w elements of Zv by kr to obtain the UMRT frequencies (k,k2) in 

column k2, such that g(k,N) = kr . 

5) For g(kpk2) < N, the number of valid phase indices is given by M / g(kpk2), and these 

are givenbyp= 0, g(kr,kz),2g(kr,k2), .... M- g(k"kz) and for g(kr,kz) =N,p=O. 

Table 5.5 gives the UMRT frequencies and the corresponding number of UMRT coefficients 

derived using the above procedure for N = 8. k2 takes the values 1, 2, 4 & 8. For a particular 

value of kl, the possible values of g(k1 ,kl) are enumerated. For each such value of g(k1 ,k2), the 

corresponding values of kl are also shown. The UMRT frequencies corresponding to these values 

of k1 and kl are calculated. The total number of unique MRT coefficients is found to be 64. The 

number of redundancies are also found. The total number of all coefficients taking into account 

each UMRT coefficient along with its corresponding redundant MRT coefficients (this can be 

found by summing all elements in the right-most column of Table 5.5) gives a total equal of 216, 

which when added to the number of zero-valued positions (non-existent MRT coefficients), 

which is 36 for N = 8 (as seen in section 3.3) gives the total number of 2-D MRT coefficients for 

N = 8 as 256, which equals N3 /2. 
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Table 5.S: Unique frequencies for N = 8 

k2 g(kJ,k2) k, No. of UMRT No. of No. of No. of 

umque frequencies umque redundancies coefficients 

frequencies coefficients <f (Nlg(kJ,k2» including 

redundancies 

1 1 1 4 (1,1), (3,1), 16 4 64 

(5,1), (7,1) 

2 2 (2,1), (6,1) 8 32 

4 1 (4,1) 4 16 

8 1 (0,1) 4 16 

2 1 1 2 (1,2), (3,2) 8 4 32 

2 2 2 (2,2), (6,2) 4 2 8 

4 1 (4,2) 2 4 

8 1 (0,2) 2 4 

4 1 1 1 (1,4) 4 4 16 

2 2 1 (2,4) 2 2 4 

4 4 1 (4,4) 1 1 1 

8 1 (0,4) 1 1 

8 1 1 1 (1,0) 4 4 16 

2 2 1 (2,0) 2 2 4 

4 4 1 (4,0) 1 1 1 

8 8 I (0,0) 1 1 1 

The basis images corresponding to the UMRT coefficients are shown in Figure 5.1, (a) - (c). The 

corresponding UMRT coefficient is obtained by addition of data elements in white-shaded cells 

and subtraction of data elements in black-shaded cells in the basis images. The data elements 

corresponding to grey-shaded cells are not part of the particular coefficient. The UMRT basis 

images have a spatial-filtering nature, being composed of 1, -1, and o. 
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• ••• (0,0,0) : (1 ,0,0) (1.0.1) (1,0,2) 

••• • (l,0,) (2.0.0) C2.0.2) (4,0,0) 

•••• (0,1 ,0) (0,1,]) (0,1 ) (0,1,3 ) 

•••• (1,1,0) (1,1,1) (1,1,2 ) (1,1,3) 

•••• (2,I,O) (2,1,1) (2, 1,2) (2, 1,3) 

•••• (3,1,0) (3,1,1) (3,1,2) (3,1,3) 

Figure 5.1 (a): Basis images corresponding to the UMRT coefficients for N= 8. identified by (kh k2,p) 
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•••• (4, I,O) (4, 1,1) (4,1) (4,1,3) 

•••• (S,I,O) (5,1,]) (5,1,2) (5, ],3) 

•••• (6, I,O) (6,1,1) (6,1 ,2) (6,1,3) 

•••• (1, I,O) (7,1 ,]) (7,],2) (7,1,3) 

•••• (O),I) (O,2) (1,2,0) (I),I) 

•••• (1,2,2) (1,2 ,3 ) (2.2,0) (2,2,2) 

Figure S.l(b): Basis images corresponding 10 the UMRT coeffici ents for N= 8, identified by (k l • k2.p) 
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•••• (3,2,0) 0,2, 1) (3,2.2) (3,2,3 ) 

•••• (4.1,0) (4,2,2) (6,2,0) (6,2,2 ) 

•••• (0,4 .0) (1 ,4,0) ( 1,4,1) (1,4,2) 

••• • ( 1,4.3 ) (2,4,0) (2,4 ,2 ) (4,4 ,0) 

Figure S.I(c): Basis images corresponding 10 the UMRT coefficient s for N= 8, identified by (k h k2,p) 

5.3.2 N x N Representation of 2-D UMRT 

Two approaches were used to represent the N 2 UMRT coefficients in an N x N matrix. The first 

approach is based on the algorithm given below. 

Placement algorithm: 

Initialize yl (N. log,N.M) ~ 0, Y(N.N) ~ 0, 
k ~ [0, I, 2, 4, 8, .. M j, q ~ [I , 2. 4 .. N14 j, i ~ 1 
For h = 0 to lo~N. increment by log.;N 
For}. = 0 to IOSlN 
Forp = OtoM - l 
include = 0, count = 0 
Forn1 = OtoN - 1 
Forn2=O to N - 1 
z = «nl"-'(M + n2k(h)))N 
Ifz=p 
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include = 1, count = count + 1 
yl(k(M,h, p) = yl(k(jl),h, p) + A(nl, 112) 
elseif z = p + M 
include = 1, count = count + 1 
yl{kUI),h, p) = yJ (k(M,h, p) - A(nb 112) 
If include = 1 
il = round«i - l)/N), i2 = i - il(N - 1) 
y(it. i2) = yJ (k(jJ),j2J p) 
klindex(it. i2) = k(j\) 
k2index(ij, i2) = k(j2), pindex(it. i2) = P 
elementcount(il, i2) = count 
i = i + 1 
ForJz = 0 to log2N - 2 
maxrange = log2Q(j2), bottomofrange = 0 
For numberq[ranges = ° to maxrange 
topofrange = N/(2maxrange- numberofrallges), 
klstep = 2(numberofrallges) 
For k, = bottomofrange to 
topofrange - kistep, increment by klstep 
For p = 0 to M-I 
include = 0, count = 0 
For nl = 0 to N - 1 
For n2 = 0 to N - 1 
z = «n\kl + n2q(j2)))N 
Ifz= p 
include = 1, count = count + 1 
yJ(k],j2J p) = yl(k],Jz, p) + A(n(, n2) 
elseif z = p + M 
include = 1, count = count + 1 
yJ (kl.h, p) = y1 (k],jz, p) - A(n\. n2) 
If include = 1 
;( = round«i - l)/N), i2 = i - i l (N - 1) 
y(i], iz)=y1 (k(,jz,p) 
klindex (i], i 2) = k, 
k2index (il, i2) = q(j2). pindex (il, i 2) = P 
elementcount(i(, i2) = count 
i = i + 1 
y(il, i2) = y(i" iz)lelementcount(i l, i2) 

In the algorithm above, klindex (il, i2), k2index (il, i2) and pindex (il, i2) Upiz ) give the values of 

kl' k2 and p of the UMRT coefficient that will be placed in the N x N array at position (il ,i2 ) . The 

placement ofUMRT coefficients for N= 8 in an 8 x 8 array according to the algorithm is shown 

in Figure 5.2. 
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i, 

• 

i I j 
0,0,0 1,0,0 1,0,1 1,0,2 1,0,3 2,0,0 2,0,2 4,0,0 

0,4,0 1,4,0 1,4,1 1,4,2 1,4,3 2,4,0 2,4,2 4,4,0 

0,1,0 0,1,1 0,1,2 0,1,3 1,1,0 1,1,1 1,1,2 1,1,3 

2,1,0 2,1,1 2,1,2 2,1,3 3,1,0 3,1,1 3,1,2 3,1,3 

4,1,0 4,1,1 4,1,2 4,1,3 5,10 5,1,1 5,1,2 5,1,3 

6,1,0 6,1,1 6,1,2 6,1,3 7,1,0 7,1,1 7,1,2 7,1,3 

0,2,0 0,2,2 1,2,0 1,2,1 1,2,2 1,2,3 2,2,0 2,2,2 

3,2,0 3,2,1 3,2,2 3,2,3 4,2,0 4,2,2 6,2,0 6,2,2 
~-. 

Figure 5.2: Positional details of 8 x 8 2-D UMRT matrix formed by placement algorithm, specified by 
values of(kb k2,p) 

From Figure 5.2, it is seen that the algorithm accommodates all UMRT coefficients 

corresponding to k2 = 0, & 4 in the topmost 2 rows. The next 4 rows hold coefficients 

corresponding to k2 = 1, and the last 2 rows containing k2 = 2. This approach is is somewhat 

arbitrary and mechanical since there are no appropriate mathematical relations linking the 

positions with the UMRT indices. To remove this shortcoming, the following method is proposed 

for representing the N 2 UMRT coefficients in an N x N matrix and vice versa when N is a power 

of 2. (u, v) represents the index of the UMRT coefficient Y*~:l, in the proposed N x N matrix. 

1) (kpkz,p) -Hu, v) 

If k2 c= 0 

u c= k, + 2p 

vc=N-l 

If k2 ;t 0 

U c= k, + N«P»)k, I kz 

v c= N - N / k2 + Lp I k2 J 
2) (It, v) ~ (k"k2' p) 

If V= N-) 

k\ = «u »2g(II.N) 
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(5.114b) 

(5.115) 

(5.116) 

(5.117) 



k2 =0 

p=(u-kt )/2 

If v;t: N-l 

kl = «u»Ng(tl,N)Jk, 

k = {1,2,4,8,16, ... M} 

k2=k if N-(Nlk)5.v<N-(NI2k) 

p = (u -k1)(k2 IN) +k2(v- N + (N I k2» 

(5.118) 

(5.119) 

(5.120) 

(5.121) 

(5.122) 

The placement ofUMRT coefficients for N= 8 in an 8 x 8 array, according to (5.114) - (5.116) is 

shown in Figure 5.3. 

v 

0,1,0 0,1,1 0,1,2 0,1,3 0,2,0 0,2,2 0,4,0 0,0,0 

1,1,0 1,1,1 1,1,2 1,1,3 1,2,0 1,2,2 1,4,0 1,0,0 

2,1,0 2,1,1 2,1,2 2,1,3 2,2,0 2,2,2 2,4,0 2,0,0 

3,1,0 3,1,1 3,1,2 3,1,3 3,2,0 3,2,2 1,4,1 1,0,1 

4,1,0 4,1,1 4,1,2 4,1,3 4,20 4,2,2 4,4,0 4,0,0 

5,1,0 5,1,1 5,1,2 5,1,3 1,2,1 1,2,3 1,4,2 1,0,2 

6,1,0 6,1,1 6,1,2 6,1,3 6,2,0 6,2,2 2,4,2 2,0,2 

7,1,0 7,1,1 7,1,2 7,1,3 3,2,1 3,2,3 1,4,3 1,0,3 

Figure 5.3: Positional details of 8 x 8 2-D UMRT matrix formed from (5.114) - (5.116), specified by 
values of(k j , k2>p) 

5.3.3 Inverse 2-D UMRT 

From (3-45) in section 3.7, the formula for inverse 2-D MRT is 

Every data element xn,.n, is involved in fonnation of N 2 MRT coefficients, and these N 2 MRT 

coefficients are used to obtain the data element in the inverse process. However, from section 

5.2.4, an MRT coefficient Yk;~), is completely redundant with tjJ(N I g(kpk2,N)) MRT 

coefficients. In other words, there are tjJ(N I g(kl , k2 , N» MRT coefficients that have the same 

composition of data elements. Hence, in the inverse transform for any of these common data 
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elements, all these ~(N! g(kl> k2 , N) MRT coefficients need to be used. Hence, when these 

~(N! g(kp k2,N)MRT coefficients are added together, the sum IS equal 

to~(N! g(kl,k2,N»Yk~:i,. Hence, SInce there are only N 2 UMRT coefficients, only these 

N 2 coefficients need be used In the inverse transform, provided they are weighted by the 

Hence, the inverse 2-D UMRT can be obtained as follows: 

1) For each data element xn n 
J'1: 

2) Initialize, s = O. 

3) For each UMRT frequency (k., kz), 

4) Calculate q = ~(N / g(kpkz,N)) 

5) Calculate z = «n1k1+ n2k2)N. 

6) If 0 < z < M s = s + q y:(z) else s = s _ q y:(=-M) 
-, k"kl ' kl,k2 

In this way, the methods for generating the NZ UMRT coefficients of an N x N image and also 

for reconstructing the N x N image from the N 2 UMRT coefficients have been presented. In this 

context, a notable feature is that while the input is two-dimensional, the output is three­

dimensional since the MRT coefficient has three variables. This could be an impediment in 

practical use of the 2-D UMRT. Hence, if a method can be developed to represent the NZ UMRT 

coefficients in the form of an N x N matrix just like the input image is represented, then this 

would make use of the MRT representation easier. 

5.4 Derived Redundancy in 2-D MRT 

Derived redundancy, which was explained for I-D signals in section 4.4.2, has its counterpart in 

2-D signals also. For example, for N= 6, 

y(O) = y,(O) _ y;(l) + y;(2) and 
3.3 l.l 1.1 1,1' 

y:(O) = y;(O) _ y,O) + y;(2) 
3,0 1,2 1,2 1,2 

From these examples, though it can be intuitively stated that odd divisors are responsible for 

derived redundancy, a detailed study of derived redundancy in 2-D MRT and inferences of 

possible differences from the I-D case remain to be explored. For N a power of 2, derived 

redundancy does not exist, which is proved by the fact that there are N 2 UMRT coefficients for 
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such N. However, for N not a power of 2, number of UMRT coefficients is greater than N 2 
• This 

results in an expansive UMRT as shown in table 5.3. However, exploiting derived redundancy, it 

might still be possible to express the 2-D signal using only N 2 UMRT coefficients, though the 

remaining coefficients may have to be re-calculated for perfonning the inverse transfonn for 

signal reconstruction. 

5.5 Conclusion 

In this chapter, complete redundancy in 2-D MRT is analyzed in detail. Redundancy between 

divisor columns and also within divisor columns are analyzed. An expression is obtained for the 

number offrequencies of the fonn (k,k2) in a column k2 such that g(k,N) = k j • The total number 

of unique frequencies, for any even value of N, is calculated over all divisor columns. The 

number ofUMRT coefficients, for any even value of N, is also derived using the expressions for 

the number of unique frequencies. The number of UMRT coefficients is found to be N 2 when N 

is a power of2. Hence, when complete redundancy is removed from 2-D MRT, the resulting 2-D 

UMRT is non-expansive when N is a power of 2, but expansive when N is not a power of 2. A 

method is presented to arrive at the frequency and phase of the N 2 UMRT coefficients when N is 

a power of 2. A method to perform the inverse 2-D UMRT, when N is a power of 2, is also 

presented. Hence, a real, non-expansive transfonn has been developed through UMRT, when N is 

a power of 2. Derived redundancy has not been removed from 2-D MRT yet. Once this is done, 

there is scope for obtaining a non-expansive, non-redundant UMRT when N is not a power of 2. 
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Chapter VI 

APPLICATIONS, DISCUSSION AND CONCLUSION 

6.1 Introduction 

The MRT and the UMRT being general-purpose transforms, they can be applied for signal 

processing tasks of 1-0 and 2-D signals in generaL Also, if extended to higher dimensions, they 

could have applications for higher dimension signals as welL A few applications of 2-D MRT and 

2-D UMRT are attempted to justify its applicability. One application of 2-D MRT - generation of 

image blocks, and two applications of 2-D UMRT - image compression and orientation 

estimation, are presented in this chapter. A few aspects of particular interest related to the MRT 

and UMRT are also discussed in the chapter. Finally, the conclusion is presented along with a few 

directions for further research. 

The 2-D MRT can be used to generate a variety of image blocks from a given image block. The 

idea is to manipulate the MRT matrices of an image block in different ways. 

The main steps involved in image compression are (i) creating of image sub-blocks, (ii) transform 

coding of each sub-block, (iii) quantization and (iv) entropy coding. The 2-D UMRT can be used 

as the inherent transform for image compression problem. 

Many methods have been applied to the task of describing directionality in images. Oriented 

patterns have been described ~y using a flow coordinate system in [101]. Lapped Directional 

Transforms (LOT) unambiguously detect spatial orientations from spatial energy [4], A 

directional filter bank whose pass band regions provide directional information has been proposed 

in [102]. Directional wavelets like curvelets [103] and contourlets [86] have basis functions that 

localize in space and angle. Fingerprints are widely used as biometric identification tools and 

fingerprint recognition is popularly used for automatic personal identification. The pattern of 

ridges and valleys on the surface of a fingertip define the fingerprint. The orientation field of a 

fingerprint is defined as the local orientation of the ridges of the fingerprint. Estimation of the 

orientation field is an important step in the fingerprint identification process. Applications 

requiring knowledge of ridge orientation include enhancement, singular points detection, ridge 

detection, and fingerprint pattern classification. Techniques proposed for orientation detection 

include gradient-based methods [104-105], spatial convolution, polynomial model [106] and 

directional Fourier filtering [107]. 
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6.2 Applications of 2-D MRT/UMRT 

Since a new representation of 2-D signals using 2-D :MRT and 2-D U1v1RT coefficients have been 

obtained, three application scenarios are considered. 

6.2.1 Generation of Image Blocks 

As already seen, the 2-D MRT of an N x N image block has M MRT matrices of size N x N. If 

these M matrices are manipulated suitably and the inverse 2-D :MRT is performed, the resulting N 

x N signal is an image block that is newly generated from the original block. An assumption here 

is that M is prime. The following are a few of the manipulations that were considered. 

1) Sign change: All MRT matrices except Yk~~k, are multiplied by -1, and the inverse MRT is 

done to obtain a new block. 

2) Constant scaling: All MRT matrices except Yk~~i, are multiplied by a constant scaling factor, 

and the inverse MRT gives the new block. Different choices of the scaling factor can be used. 

3) Variable scaling: All MRT matrices except Yk;~k, are multiplied by different scaling factors 

keeping Y~~l, unchanged and the inverse is taken. 

4) Total variable scaling: All MRT matrices are multiplied by different scaling factors, and the 

inverse is taken. 

5) Adjacent exchange: The adjacent MRT matrices, exceptYiol ,are interchanged. For example, 
J. 2 

y:(I) is interchanged with y(2) ,and y:(3) is interchanged with y(4) • 
kJ ,k, kJ .k, kJ ,k, kJ ,k, 

6) Reverse exchange: The MRT matrices except y:ol are exchanged in a reverse order. For 
1- 2 

I 'fN- 10 y'(I)' h d' h v (4) d v(2) • h d' h v (3) examp e, 1 - , kJ,k, 1S exc ange W1t lkJ,k" an lkpk, 1S exc ange WIt lkJ.k,' 

7) Middle exchange: The MRT matrices except Yk~~1, are exchanged along the middle element. 

y:(d) is exchanged with y(d+(M-I)!2). For example, if n = 14, y:(I) is exchanged with y:(4) 
kJ ,k, kJ ,k, kpk, k"k, ' 

and YPl is exchanged with ~(51 . 
I':! ,. 2 

The image blocks generated from a single image block using the manipulations 1-7 separately 

and in combination are shown in Figure 6.1. The numbers above each block identify the 

associated manipulations performed to obtain the block. The top-left block with number I is the 

original block. For example, a block with label '26' has been obtained by computing the MRT of 

the original block and then using a particular value for scaling factor in operation 2 followed by 

operation 6 on the computed MRT, and finally taking the inverse MRT of the manipulated MRT. 
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6.2.2 Image Compression 

An image compression technique using UMRT is proposed in the following steps: 

I. The image to be compressed is divided into sub-images of size 8 x 8 

2. Forward 2-D UMRT is applied to each sub-image block 

1 1 2 2 2 2 2 2 2 2 3 3 3 3 3 

•••• ~ .... ... ... 
3 3 3 • • • • • • • • 5 6 7 12 

~~~. 
,,- -.. ............ ••• 12 12 12 12 12 12 12 13 13 13 13 13 13 13 13 

•••• • r"I~~~ ,. ,. ,. ,. ,. ,. ,. ,. 15 16 17 25 25 25 25 

•• r"I~~"" • ••• 25 25 25 25 26 26 26 26 26 26 26 26 27 27 27 

• iR ••••• Iii! ••• 
27 27 27 27 27 35 35 35 35 35 35 35 35 36 36 

••• IIl •• ia~&.tLL • 
36 36 36 36 36 36 

~~~~i,;; 

Figure 6.1: Image blocks generated using MRT manipulation from a single image block. 

3. Quantization is applied to the UMRT coefficients. Many quantization methods are possible. 

The approach used here is to divide all UMRT coefficients by a positive integer and to round off 

the result. 

• UMRT ffi · y.(O) y.(O) y.") y." ) y.'" y.'o) & y.'" d' 'd d b h If th .. . coe IClents 0,0 , 0,1 • 0,1 • 0,1 • 0,1 '0,2 0,2 are IVl e y a e quantlzahon 

factor used to divide all other coefficients. The mean intensity of the image is represented by Yo~~) . 

The remaining coefficients cited above correspond to vertical structure which is strong in most 

natural images. Typical values for this quantization factor lie in the range from 5 to 50. 

5. The above coefficients are scanned first, followed by the remaining coefficients in sequential 

order from the top row. Long runs of zeros will result for each sub-block as a result of this 

scanning order. 
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6. The coefficient YJ.~) is a DC coefficient. Single-delay DPCM differences are taken for DC 

coefficients. Combinations of non-zero AC coefficients and zero run-lengths are grouped. These 

are then coded using Huffinan tables specified in the sequential mode of the JPEG standard [100]. 

7. At the decoder. the compressed bit-stream is decoded and the coefficients are then re­

arranged using the same scanning order and multiplied by the same quantization matrix used at 

the encoder. 

8. Lastly. inverse MRT is applied to each block to obtain the reconstructed image. 

The results of image compression using UMRT on five commonly used test images is shown in 

Table 6.1. Two examples of a reconstructed image are shown in Figure 6.2. 

(a) Original 

(b) 0.5 bpp. 31.54 dB c) I bpp. 35.55 dB 

Figure 6.2: Original and reconstructed images, ' Lenna ' 
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Table 6.1: Compression results obtained using UMRT on 5 lest images 

PSNR(dB) 

Image 0.25 bpp O.50bpp 0.75 bpp 1.0 bpp 

Lenna 28.34 31.54 33.72 35.55 

Barbara 22.84 25.96 28.27 30.59 

Mandrill 22.28 24 .22 25 .93 27.41 

Goldhill 26.81 29.18 30.41 32.11 

Cameraman 27.98 32.06 34.79 38 .14 

6.2.3 Orientation Estimation 

By orientation of a pattern (assuming that the grey-ceUs indicate a UMRT pattern) is meant the 

angle () between the horizontal axis and the UMRT pattern, as shown in Figure 6.3. Recalling 

from section 3.5, for a given solution nlo solutions to n2 occur at a gap of NI g(kl,N)columns. 

Also, if a data element has the index (n.,nl ) and is present in rtl: , then Y~~11 will contain a data 

element in the row given by n. + g(k!. N)/g(kh kz, N). 

Figure 6.3: Analysis ofUMRT pattern orientation 

The column number of thi s data element is given by nz - v, where v satisfies (3.27). In other 

words. (nl,nZ) and (n. + g(k2' N)/g(kJ. kz• N), n2 - v) belong in Y*~~l,. Using this knowledge, the 

following analysis may be done regarding directionalilY o f certain lllvIRT patterns. Assume kl = 

1. Hcnce, kz = g(k2• N) = 1 and, v = kJ & g(k2' N)/g(k .. k2' N) =; 1. Thus, given (nl,nz)' 

(11. +1 ,112 -v) also belongs in Y4~~; . Also, there is only onc data element in a row. The angle () is 
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calculated as tan-] l/v_ If k] = q, then tan(B) = 1 / q. Also, ((N - q»N = ((-q»N. Hence, if k) = q, v 

= q, and if kl = N - q, v = - q. The magnitude of v is the same, but the direction of the change 

represented by v is opposite to each other. Hence, if B is the angle between the pattern and the 

horizontal axis in the positive direction for kI = q, then if kI = N - q, () is the angle between the 

corresponding pattern and the horizontal axis in the negative direction. Hence, the angle between 

this pattern and the horizontal axis in the positive direction is (180· - B). The pattern angles 

corresponding to a few UMRT frequencies when N = 16 are shown in Table 6.2. 

Table 6.2: Pattern orientations for a few UMRT frequencies, N = 16. 

Frequency index ofUMRT Direction of pattern Frequency index of Direction of pattern 
coefficient (degrees) UMRT coefficient (degrees) 

(1,0) 0 (3,1) 18 
(2,0) 0 (4,1) 14 
(0,11 90 (5,1) 11 
(1,1) 45 (12,1) 166 
(2,1) 27 (13,1) 162 
(14,1) 153 (15,1) 135 
(O,2) 90 0,2) 63 
(7,2) 117 

MRT coefficients form well-defined patterns in the 2-D signal domain that are unique for each 

coefficient. Basis images can be plotted that show how pixel locations in an image combine to 

form each MRT coefficient. Figure 6.4(a) shows basis images corresponding to MRT 

coefficients y;(O} y;(l) y;(2) and Y;)(,I3) respectively for N = 8. The basis images formed by MRT 
1,1 ' 1,1 ' 1,1 

coefficients Y;:~) , Y1:b) , Y1:;) and Y;:~) respectively are shown in Figure 6.4(b). The corresponding 

MKT coefficient is obtained by addi.tion of data elements in white-shaded cells and subtraction of 

data elements in black-shaded cells in the basis images. The grey-shaded cells do not i.nvolve in 

the computation. It is evident from the basis images that MRT coefficients can be vi.ewed as the 

results of performing a spatial-filtering operation on the image block using different spatial 

masks. The nature of each mask is determined by the basis image corresponding to each MRT 

coefficient. 

From (4. S.l), since incongruent solutions to a linear congruence equation form an arithmetic 

progression, solutions to the two linear congruence equations relevant to MRT form 2-D patterns 

in the spatial domain. The constant difference of the arithmetic progression depends on the values 
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• ••• 
Figure 6.4 (a): Basis images corresponding to MRT coefficients Yi(~) ,rSI , r;\2) and yNJ . . , . 

•••• 
Figure 6.4(b) : Basis images corresponding to MRT coefficientsr;(g) ,Yi(~) ,r.(~) and .t;(~) , . . , 

(,) (b) 

Figure 6.5: Global patterns fonned by union of: (a) MRT coefficients with frequency index (1 ,1), (b) 

MRT coefficients with frequency index (1 ,0). 

of kl and k2• Hence, given kl and k2• the basic structure of the spatial pattern associated with all 

MRT coefficients having these frequency indices are the same, irrespective of the value of the 

phase index p. The exact location of the pattern on the image lattice depends on p. Thus, spatial 

patterns of MRT coefficients having common frequency indices kl and k2 but different phase 

indices p are all parallel to each other. Further, the union of all these spatial patterns covers the 

entire image block. This set of all patterns is a pattern in itself and may be called a global pattern 

for the frequency index (kl ,k2). The global pattern is a filter mask that spatially filters the entire 

image block. Figure 6.5(a) shows the global patterns fanned by the union of MRT coefficients 

with frequency index (1 ,1). Thus, the basis images in Figure 6.5(a) fonn the components that 

make up the global pattern in Figure 6.4(a) associated with an 8 x 8 MRT. Similarly. the global 

pattern 
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• ... 

(0, 1) (1,1) (2,1) (3,1) 

r = I • - -- -• - = - - • or • , - - - -- -k iC 
= -(4, 1) (5,1) 

~ 
=s --• i .... 

= - - ----(9, 1) (10,1) 

• ..... ....... 
• • - .. ... 

(12,1) (13,1) (14,1) (15 ,1) 

Figure 6.6 (a): Global patterns fonned by UMRT coefficients for N = 16. (k2=1) 

corresponding to frequency index (1,0), shown in Figure 6.5(b}, have the basis images shown in 

Figure 6.4{b) as its components. 

UMRT coefficients can be used to estimate fingerprint orientation by the following steps: 

1. The input fingerprint image is divided into non-overlapping square blocks of size 16 x 16, 

which is a commonly-used block-size in fingerprint image processing. 

2. The UMRT of each block is computed. 

3. Figure 6.6 shows the global patterns associated with UMRT coefficients for N= 16. 15 sets of 

UMRT coefficients shown in Table 6.2 are used for direction analysis. These coefficients are 

chosen on account of the strong directionality of their associated patterns, and likeness of these 

patterns to the ridge flow in a fingerprint image. For a frequency index (kl .k2 ). the sum of 
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fill 'Ill 
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(4,4) (6,4) (8,4) (12.4) 

Figure 6.6(b): Global patterns formed by UMRT coefficients for N - 16, (t! "" 2, 4) 

absolute values of each UMRT coefficient with index <kit k2• p) for all applicable values ofpbase 

index p is calculated. This value may be called a pattern strength indicator associated with a given 

frequency index (kh k2)' 

PS/ (k"k,) = Lly",1 , 

4. Because of the highly directional nature of ridges in a fingerprint image, blocks other than 

singular points will have a single dominant direction. This dominant direction is identified by the 

frequency index (kl' *2) which gives maximum value for the pattern strength indicator defined 

above. The absolute value of the UMRT coefficients is taken since the present objective is only to 

estimate the strength of a pattern in a particular direction in an image block.. The sign of the 

UMRT coefficient gives information about the relative location of the dark and light areas of the 

pattern and hence it is not relevant to the present application. 
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-
(0,0) (1,0) (2,0) (4 ,0) (8,0) 

m~lIl •••• 
(0,8) (1 ,B) (2,B) (4,8) (8,8) 

Figure 6.6(t): Global patterns fonned by UMRT coefficients for N '" 16, (k2 = 0, 8) 

This method has been used to estimate orientation field of some fingerprint images to study the 

accuracy of orientation estimation. Figure 6.7(a) and Figure 6.7(b) show two examples of the 

results on fingerprint images taken from database DB2 of (l08]. The estimated orientation of 

each 16 x 16 block is indicated by the mark superimposed on each block in the fingerprint image. 

Since it is difficult to obtain an objective error measure, the performance of the method has to be 

judged by manual inspection. On observation of the results, it is seen that !v1R.T coefficients can 

be used to obtain a fairly accurate estimate of the orientation field of the fingerprint image. When 

the fingerprint image is of good quality. the method will bave very high accuracy. 
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Figure 6.7(a): Results of fingerprint orientation estimation using MRT coefficients. 

Figure 6.7(b): Results of fingerprint orientation estimation using MRT coefficients. 
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6.3 Discussion 

The overlying theme of the thesis has been to present a new method of digital signal 

representation which is based on a grouping of data based on the value of the exponential kernel 

associated with each data in the DFT context. Further, the symmetry and periodicity of the 

exponential kernels used in the DFT were also exploited. The following issues are considered 

worthy of discussion regarding the new transforms. 

I. Real output: 

The DFf transforms a real input to a complex output. However, the MRT produces real output 

for real input data. This is seen as an advantage in the context of the numerous real-valued 

applications. 

2. Grouping based on angle: 

The MRT is formed by grouping data on the basis of the angular values taken by the exponential 

kernel. Although the data is not multiplied by the twiddle factor, the value of the twiddle factor 

influences the value of the MRT. Due to this, complex-domain analysis can be performed using 

MRT. The DFf can be readily obtained by suitable post-processing of the MRT. 

3. New approach: 

The DFT maps signals from time-domain to frequency-domain. However, it requires N 4 and 

(3/4)N2 10g N complex multiplications in direct DFT and radix-2 vector radix FFT respectively 

for an N x N data. In [8], a modified DFT relation was introduced that requires N 3 12 complex 

multiplications at the final stage. The 2-D MRT presented in Chapter Ill, obtained from the 

modified DFT relation, requires only real additions. The direct computation of 2-D MRT requires 

computation of z for each coefficient and a logical checking which adds complexity to the 

computation. Hence, a closed fonn representation is derived exploiting the patterns present in the 

MRT. The 2-D MRT computation maps an N x N data into M matrices of size N x N, and has 

considerable redundant coefficients. Thus, the 2-D UMRT is developed removing the redundancy 

present in 2-D MRT. Hence, the development of 2-D UMRT gives an Nx Nmatrix from an Nx 

N data using only real additions. DFT gives only global information whereas MRT can be used 

for extracting both global and localized information. Thus, the 2-D UMRT is a compact 

representation of 2-D signals in the frequency domain using only simple real arithmetic. 
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4. Computation: 

The computation of 2-D UMRT involves identification of the frequency and phase indices 

followed by computation of the coefficients using either the direct method or the closed form 

computation. In applications like generation of images, 2-D MRT will be advantageous and can 

be derived from 2-D UMRT by adding the redundancy. 2-D DFT can be derived from 2-D MRT 

by multiplying with the twiddle factors associated with each MRT coefficient. Thus, three 

methods are possible for 2-D MRT computation: (i) Direct computation, (ii) Closed fonn 

computation, and (iii) Computation from 2-D UMRT coefficients. A plot comparing the 

computation times for the three methods is shown in Figure 6.8. In the direct method, the 

computation time is highest. It is reduced when the closed form computation is used. In the 

method using UMRT coefficients, only the UMRT coefficients need to be computed. All the 

remaining MRT coefficients can be computed through complete redundancy from the UMRT 

coefficients. The computation of UMRT coefficients requires knowledge of particular solution 

which could be an overhead in computation. 

5. Frequency indices: 

In the DFT, the frequency indices are directly given by kJ = [0,1,2, N - 1], k2 = [0, 1,2, N - 1]. In 

the UMRT, for N a power of 2, the frequency indices (k], k2) are arrived at using methods based 

on number theory principles. Using the mapping between the frequency and phase indices (kb k2' 

p) and indices (u, v), the indexing of the UMRT coefficients also can be similar to that of the 

DFT. 

6. Orientation: 

In the Fourier domain, the power spectrum of a directional pattern clusters along a line through 

the origin, and the orientation of the pattern is perpendicular to this line. The MRT has orientation 

properties too. The MRT's orientation property provides information about the orientation of a 

pattern as well as the spatial location of the pattern. MRT coefficients are formed by sums and 

differences of data elements along well-defined patterns, and hence can be considered to be 

strength-indicators of spatial patterns in an image. A few MRT coefficients represent highly 

directional patterns and these can be used to identify directional features in images. 

7. Space-frequency transfonn, Separability, Orthogonality: 

The DFT is a frequency transform. The MRT, in contrast, can be considered to be a space/time­

frequency transform, since it has both frequency and phase indices. 2-D MRT can not be 
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implemented by row-column decomposition. The UMRT is an orthogonal transfonn and can be 

verified using examples. It can be made orthonormal by suitably adjusting the scaling factors in 

the forward and inverse transfonns. 

3000====,==-====-·----,-- - -,- - - -.----,- --1 
il - ~- Direct method i i 
11 - -. - Closed form i <> I 
11 1 . . 

2500 ~-><- . UMRT method. 0 .. :' J 
I~ _______ --.J 1 
I P I 
I ~ I 

2000 ~ ~ l 
1 I 
i I 

I 
~ 1500f- l 
.- I I 
I- I I 

I I 
1000 ~ I 

I I 
I I 
1 

500~ 
I ......... 
I .. ~~,,-i\ 
I ~. • •.• ·lf~·~~.x 

I 
1 

A~ A ~,.~~-V ... ••• Jo ...... ~ .• ~'.-·-x." 
o~~~y~~~--.:...-~---L -- - ----
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M 

Figure 6.8: Plot showing 2-D MRT computation time using direct method, closed form method, and 
computation from 2-D UMRT coefficients 

8. Expansive transform: 

As observed in Chapter Ill, the MRT is an expansive transfonn, requiring more memory space 

than the original signal. Although the MRT can be converted into the non-expansive UMRT, the 

indexing of the UMRT is not straight-forward and hence there is an issue of complexity here. The 

presence of the third dimension introduces a certain level of complexity in MRTIUMRT 

representation. The 2-D !v1RT and 2-D UMRT are inherently three-dimensional, although the 

U!v1RT can be mapped into an N x N matrix. Also, the size of the signal N is required to be even. 

9. Relation with other transfonns: 

The relationship of MRT with the DFT is inherent in the very definition of the MRT. Considering 

other transforms, there is a connection between the 1-0 Haar transform and the I-D UMRT, for N 

a power of 2. The basis vector of the I-D Haar transform can be obtained by a modification of the 

151 



basis vector of the 1-D UMRT for N a power of 2 .. The 2-D MRT and 2-D UMRT have 

connections with Radon transforms like the DPRT and the ODPRT that are based on linear 

congruences. A subset of the ODPRT coefficients is seen to have values equal to a subset of 2-D 

UMRT coefficients, i.e. those corresponding to gcd(k" k2) = 1. Two-stage methods being 

composed of a pre-processing stage and a post-processing stage, the MRT can be considered to be 

a pre-processing transfonn. The DFT can be computed by using the MRT as the first stage of 

computation by using suitable post-processing stages. The basis image of the DFPT also is 

composed of 1, -1, and 0, similar to that of the MRT and UMRT. Like the DCT, the UMRT is a 

real and non-expansive transfonn. However, the DCT has the important property of energy 

compaction which has made it a popular transfonn. 

6.4 Conclusion and Further Work 

This thesis has presented work that has been done on the development of a new transfonn, named 

MRT and its simplified version called the UMRT. The motivation for the new transfonn is to 

process data on the basis of associated kernel values while avoiding the multiplication with the 

kernel, and to utilize the symmetry and periodicity properties of the exponential transfonn kernel 

of the DFr, while maintaining the capability for frequency-domain analysis. The MRT expresses 

the data in tenns of simple additions among various data elements. If required, the DFT can be 

obtained from the MRT. Hence, the MRT is a new and simple way of expressing and analyzing 

I-D and 2-D signals. While both the I-D MRT and 2-D MRT are expansive and redundant; the I­

D UMRT is non-expansive and non-redundant for all even values of N. The 2-D UMRT is non­

expansive and non-redundant for N a power of 2, and expansive and non-redundant for N not a 

power of 2. However, there are computational requirements to arrive at the unique frequency 

indices, and indexing issues to represent the UMRT in a matrix. The idea of utilizing transfonn 

kernel symmetries to arrive at simpler signal representations appears to have further potential. A 

few possible directions for further study are presented below: 

1. The concept of derived redundancy has been studied for I-D signals only. Since derived 

redundancy is an important aspect ofMRT theory, it is necessary to explore the occurrence of 

derived redundancy in 2-D signals also. 

2. 2-D UMRT for N a power of 2 has been described in Chapter V. The study of UMRT for N 

that is not a power of 2 remains to be perfonned. It has been found that the number of unique 

coefficients is greater than N2 for N not a power of 2. However, using derived redundancy, an 

attempt could be made to obtain an N x N representation when N is not a power of 2. 
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3. The work on inverse MRT for N not a power of 2, though started, remains to be completed. 

The inverse for the case when M is prime has been obtained. 

4. In Chapter Ill, the properties of the 2-D MRT are described. Further properties of the MRT 

remain to be explored. Also, properties of the 2-D UMRT offer another possible direction for 

further investigation. 

5. New applications can be found for the 2-D UMRT by studying its properties in detail. A few 

potential applications are in image de-noising, image filtering, and pattern analysis etc. 

Methods could be found for optimum use of the transform in applications like image 

compression and orientation analysis. 

6. The directional feature of MRT and its pattern structure has potential applications in areas 

which require a simple tool to describe directionality of images. Although global MRT 

patterns were made use of in this thesis and sign of coefficients ignored, the sign of individual 

MRT coefficients too conveys important information regarding relative location of light and 

dark areas in images. Applications that could take advantage of this feature of the MRT need 

to be identified. The use of MRT in the broad areas of pattern analysis and computer vision 

requires to be further explored. 

7. The MRT approach could be applied to other transform kernels. 

8. The applicability ofMRT in analyzing time-varying signals is to be explored. 
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APPENDIX A 

A.1 Bezout's Lemma: 

For all integers a and b there exist integers sand 1 such that 

gcd(a,b) = sa + tb 

A.2 Linear Diophantine Equation 

Diophantine equations are equations that require integer solutions. The linear Diophantine 

equation ax + by = c has a solution only if gcd(a,b) divides c. In that case, there are infinite 

number of solutions given by: x = Xo + (b / gcd(a,b) )/, y = Yo - (a / gcd(a,b) )/, where (xo,Yo) is a 

solution, t E Z. 

A.3 Theorem on Linear Congruence 

The linear congruence «nk»N == p is solvable if and only if dip, where d = gcd(k. N). If dip then 

it has d incongruent solutions. The linear congruence, when solvable, has the general solution n = 

no + (N/d)t, where 0 :s t < d, and no is a particular solution. 

A.4 Greatest Common Divisor (gcd). 

Definition: Let a,b,c EZ. If a"* 0 or b"* 0, gcd(a,b) is defined to be the largest integer d such 

that d I a and d I b and is denoted as g(a,b) . 

gcd properties: 

1. If e I a then -e I a .. 

2. If a ;;f:. 0 , then the largest positive integer that divides a is lal. 

3. gcd(a,b)= gCd(!al,lbl). 

4. gcd(a,b)= gcd(b,a). 

5. If a"* 0 or b;;f:. 0, then gcd(a,b) exists and satisfies 

0< gcd(a,b) ~ min{lal,lbl}. 

6. gcd(a,b,c) = gcd(gcd (a,b ),c). 

A.5 Euclidean Algorithm, Extended Euclidean Algorithm. 

The Euclidean algorithm is used to detennine the gcd of any two integers. 

Let a,b E Z be such that a ~ b > O. Set ro = a and 'i =:: b . Suppose that 
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ro =1jqI +r2,O::;r2 <Ij 

Ij = r2q2 + r] ,0 ::; r] < rz 

rn-2 = rn-1qn-l + rn ,0::; rn < rn-I 

rn-1 = rnqn· 

Then, gcd( a,b) = rn = (the last non-zero remainder). 

Proof: 

Since ro 2:: 'i > rz > ... , there is an n such that rn = O. Therefore, the algorithm does terminate 

eventually. 

Similarly, 

Therefore, 

gcd (a,b) = gcd (ro, Ij) = gcd (ro - qlIj ,Ij) = gcd (rz,Ij)· 

gcd(rz,fj) = gcd(fj,rz ) = gcd(1j - qzrz,rz ) = gcd{1j,rz ), etc. 

gcd( a,b) = gcd(r2,Ij) = ... = gcd(rn,rn_1) = rn. 

Given positive numbers a and b, the extended Euclidean algorithm computes (d, u, v) such that 

d == gcd(a,b) == au +bv. 

1. Set Q 1 = a, az = b; XI = 1, x2 == 0; Yl == 0, Yz = 1. 

4. If Q 2 > 0 go back to Step 2. 

5. Ifax1-bYl >0 return (d,u,v)==(al>Xl>-Yl)' elseretum (d,u,v)==(ap-x1,Yl). 

A.6 Totative. 

Definition: A totative of N is a positive integer less than or equal to a number N which is also 

relatively prime to N, where 1 is counted as being relatively prime to all numbers. For example, 

there are eight totatives of24, {1, 5,7, 11, l3, 17, 19, 23}. 

A.7 Totient Function. 

Definition: The totient function ~ (N), also called Euler's totient function, is defined as the 

number of positive integers::; N , that are co-prime to (i.e., do not contain any factor other than 1 

in common with) N, where 1 is counted as being co-prime to all numbers. The totient function 

~(N) can be simply defined as the number of totatives of N. For example, <;0(24) ==8 . It is 

mathematically expressed as 
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rp(N) = NI1(l-!) 
rlN r 

A.S Residue Systems 

Complete residue system: A set of m integers such that each element of the set Ai, 1 < i < m, 

produces a unique value for mod(Ai, m) is caned a complete residue system modulo 11l. For 

example, the set {O, 1, 2, 3,4, 5} is a complete residue system modulo 6. 

Reduced residue system: Given a complete residue system modulo m, the subset of a such that 

gcd(A;, m) = 1 is called a reduced residue system modulo m. The size of this set is given by rp(m). 

Theorem: If {A)' ... , A,,(m)} is a reduced residue system modulo m and if gcd(q,m) = 1, then {qA .. 

... , qArp(m)} also is a reduced residue system modulo m. 
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APPENDIXB 

B.I Values of function J(k): 
q 

Let N = TI'iai 
, 

i=! 

i=l 

where Nand k are integers, and ri are prime divisors. 

IT (Ij -1) IT (1j -1) 
:.l(k) = ~(N) == k V;=>a,=ci = IT r,c, _Vi_=>--,-ai=-,-ci __ 

~(N / k) IT 1j ;=1 I IT 1j 

Case (i): N has one prime divisor: 

N=ra 

:. k = rC, c = 0,I,2, ... ,a 

Ifc<a, 

ITCr-I) 
.·.l(k) = r C if a=c C k ----=r = , ':a*c 

ITr 
if a=c 

If c = a, 

IT (r-l) 
:.l(k) = r C if a=c = r c- I (r -1) = N r -1 = rp(N) 

IT r r 
if a=c 

{ 

k, 
:.l(k)= rC-I(r-l), 

k<N 

k=N 

Case (ii): N has two prime divisors: 

N = 'ia'r2
a

, 

:. k = 'ic
, r2

c
" Cl = 0,1,2, ... , a p c2 = 0,1,2, ... , a2 

If Cl < aI' C2 < az , 

IT (1j-l) 

:.l(k) = r/'r
l
c, _V'_"=>--,a,,--=c-,--, -- = 'ic'r

2
C2 = k, .: a

1 
* CpQ

l 
* Cl 

IT 'i 
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:.l(k) = 

Cl < aI' Cz < a2 

Cl = a" Cz < az 
Cl < aI' C2 = az 
c, = G" Cz = az 

B.2 Multiplication Property of function J(k): 

q 

Let N = IT lia, , 

;=1 

q 

and k = IT'iCi 
, 

i=1 

tr (li - 1) tr (li - 1) 
q . 

:.l(k) = k _'11_·~..:..a.!....i=.:..!.ci ___ = IT r.Ci _'11_~--,ai_=c~i --
q 1 q 

IT li i=1 IT li 
Vi'=>a,=c, 

q 

Let t = IT r,d, 1 , 

i=' 

tr (li -1) n (r, -1) 
.'. I ( k ') = k ,_'1_i~_a-,-, =--'e,'----__ = tk '1 i~a, =e, 

q q 

IT li IT 'i 
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Ii (r; -1) 
TiT c.+d. Vi=>a;=c,+d; 

=llr;" q 

i=1 IT r; 

Ii (r; -1) Ii (r; -1) 

Ii c Vi=>a,=c; Ii d. Vi=>a;,~c"a,=c,+d; = r, , r, , ---'--'"-'-----'------'---
'q I q 

;=1 IT r; i=1 IT r; 

~ [ V'~" Il ft,.d, r,d, V,~.,n,.".d, r,d,l V,=,.TI,~, M, (r, -I) } (k) 

~ [ V,=U., .. , r,d, V;~.U,.,.., r,d,-l V;~.U,.,~, (r, -I) } (k) 

If Vi,ai 1= ei , then (B.I) becomes 

I(k 1 ~ [v,~.U.,,,, "d, }(k) ~~ [ D "d, }(k) ~ tl(k) 
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