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Preface 

It is therefore possible that the greatest luminous 

bodies in the Universe are on this very account invisible. 

Pierre-Simon Laplace, 1795. 

Gravity never eludes us and it is synonymous with a black hole. 

Black hole may be defined as a region of spacetime, enclosed by a 

closed one-way membrane created by the spacetime curvature, into 

which material particles and light can enter but cannot come out. 

The curved spacetime somehow contrives to create an enclosure with 

no exit. It is called event horizon. The event horizon is not a solid 

surface, and does not obstruct or slow down matter or radiation that 

is traveling towards the region within the event horizon. Perhaps, 

it is because of its intriguing name that so many people are enticed 

into working on the physics of the black holes. The study of it is an 

amusing topic and a lot of contemplating brains have been drawing 

into its fascinating aura since its inception. The idea of black hole 

was conceived in 1795 by Pierre-Simon Laplace. He thought of a 

star 250 times bigger than the sun which would hold back all light 

rays and thereby being invisible. Laplace computed the radius of a 
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star whose escape velocity is equal to speed of light and found to be 

equal to 2~f1, where M is the mass of star. 

It appears to be inevitable that black holes are formed as a result 

of gravitational collapse of stars. Black holes, as currently under­

stood, are described by Einstein's general theory of relativity, which 

he developed in 1915. This theory predicts that when a large enough 

amount of mass is present in a sufficiently small region of space, all 

paths through space are warped inwards towards the centre of the 

volume, preventing all matter and radiation within it from escaping. 

General relativity describes a black hole as a region of empty space 

with a pointlike singularity at the centre and an event horizon at the 

outer edge. 

The mathematician Karl Schwarzschild went for an exact solution 

of Einstein's famous field equation, G/lV = 87rT,w. At the time of 

inception of his solution, no one identified, to what kind of object 

the solution was referring and only later on the scientific community 

came to know that it was indeed a star which holds back everything 

including light. In 1963, Roy Kerr found solution to Einstein's field 

equation describing spinning star and later on named as Kerr black 

hole. In 1964, the world witnessed the first evidence of a black hole 

and named as Cygnus X-I and only after long ten years had the 

scientific community agreed that what they had witnessed was really 

a black hole. 

When Wheeler coined the name black hole in 1967, there was no 

solid evidence to prove its presence, since black hole theory tells us 

that there are only three secrets a black hole divulges: its mass, its 

angular momentum and its electric charge. Almost all galaxies har­

bour black holes. Hidden deep in the hearts of most of the galaxies 
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lurk gigantic black holes, each brooding in anticipation of an unsus­

pecting star that may stray into their ambit of terminal attraction 

and having captured one, they shred and swallow it, growing larger 

in size. Our neighboring galaxy Andromeda is said to have a black 

hole of mass ten million solar mass. Another galaxy M87 has a black 

hole of mass three billion solar mass. Despite its interior being in­

visible, a black hole may reveal its presence through an interaction 

with matter that lies in orbit outside its event horizon. Alternatively, 

one may observe gas (from a nearby star, for instance) that has been 

drawn into the black hole. The gas spirals inward, heating up to very 

high temperatures and emitting large amounts of radiation that can 

be detected from earthbound and earth-orbiting telescopes. 

Black hole can be said to be a testing ground for various dis­

ciplines such as thermodynamics, quantum field theory, quantum 

gravity, to name a few. The mystery of a black hole is so tempting 

that everyone will be drawn into its mystic aura of singularity. The 

singularity that generally happens only in mathematics is physically 

exhibited in a black hole eventhough hidden behind the horizon. At 

the origin, there is a real singularity where spacetime curvature be­

comes infinite and Einstein's equation breaks down. 

Ever since my school days I was fascinated and bewildered by the 

hugeness and complexity of this Universe. Later on, I came to know 

about the black holes, which made me more curious about nature, 

since it is assumed to be the door or exit to a new world. This thesis 

is an attempt to give attention to the tempting call of black hole, to 

lie on its lap and to hear some of the mysteries of the universe which 

will be told by it. 

This thesis presents a study of thermodynamics and no-hair the-
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orem in black hole spacetime. In Chapter 1, first we give the evolu­

tion of a black hole, concept of event horizon, how to detect a black 

hole, etc. Then we describe the spacetime structure, its symmetry, 

Killing horizon, etc. We have then explained how the spacetime of 

a black hole naturally exhibits temperature by using the U nruh ef­

fect. The similarity between black hole physics and ordinary laws 

of thermodynamics have been explained thereafter. We then discuss 

Hawking effect, information loss paradox, area theorem and gener­

alized second law. The famous Wheeler's no-hair theorem of black 

holes which stood against the test of time has been examined subse­

quently. Sequel to that we briefly describe the validity of the state 

equation of thermal radiation near the horizon. We then give an idea 

about a self gravitating radiation systems and the Bekenstein upper 

bound on entropy. 

In Chapter 2, we discuss thermodynamical aspects and back 

reaction in a black hole. The cornerstone of the relationship between 

gravitation, thermodynamics and quantum theory is the black hole 

mechanics, where it appears that certain laws of black hole mechanics 

are, in fact, simply the ordinary laws of thermodynamics applied 

to a system containing a black hole. The fields other than gravity 

perturbs the metric of a black hole and the perturbed metric in 

turn change many of the physical properties of the black hole, like 

entropy and effective potential of the spacetime. The back reaction 

problem is then to solve the semiclassical Einstein's equation GJ.LV = 

87r[TJ.Lv +T1LV(W)], where, T1LV(W) represents the quantum source. The 

quantum fluctuation in the metric, 6.gJ.LV, gives the measure of back 

reaction. The back reaction can be measured indirectly by noting the 

entropy change. In this chapter, the back reaction is determined by 
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solving the Einstein's field equation and by solving thermodynamical 

equations for an extremal anti-de Sitter-Schwarzschild black hole. 

In Chapter 3, we discuss the back reaction in a Schwarzschild 

de Sitter black hole dipped in a mass less quantum field. Here we 

have solved the Einstein's semi-classical field equation to calculate 

the entropy change which is a measure of back reaction. We assume 

that the black hole is situated inside a highly reflecting cavity having 

many physical properties such as entropy, surface tension, thermo­

dynamic potential, etc. Inside the cavity the quantum field and the 

Hawking radiation are in thermal equilibrium. vVhen a metric is 

perturbed by a scalar field, the effective potential of the spacetime 

around the black hole will be modified. We have investigated the 

effective potential of the spacetime with and with out back reaction. 

The Hamilton-Jacobi approach has been employed in calculating the 

effective potential. We have found that the perturbed spacetime 

modifies the stable and unstable orbits of massive and mass less par­

ticles. The change in effective potential will then be a measure of 

back reaction. Knowing the effective potential, we can determine the 

positions of stable and unstable orbits. The results are in agreement 

with standard ones. 

General state equations of thermal radiation are not universal 

laws and hence must have affected by gravity, i.e., equations must 

have a form different from the asymptotic form, near the horizon of 

a black hole. But there are laws which are universally true such as 

generalized second law and upper bound on the entropy. How the 

equations of radiation are modified near the horizon of a Reissner­

Nordstrom black hole have been discussed in Chapter 4. We have 

introduced a gedanken experiment to verify the conservation of gen-
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erolized second law (GSL). Since the GSL is a universal law, it must 

be conserved in all situations. The conservation is realized only by 

validating the equations of radiation near the horizon. We have 

shown that the GSL is violated when the asymptotic equations of 

radiation are employed in the calculations, but with modified equa­

tions of radiation, the GSL is conserved. The upper bound on the 

entropy of thermal radiation has been verified and found to be similar 

to the upper bound proposed by Bekenstein. 

In Chapter 5, we have discussed various gravitating spacetimes, 

such as, Euclidean, Rindler, Schwarzschild and have shown that how 

the temperature implicitly generate at the horizons. Subsequently 

the temperature of a scalar field in the vicinity of a Rindler like 

spacetime and the trajectory of a test particle in that spacetime 

have been determined. We then discuss the solution to the scalar 

field equation near the Rindler spacetime. Subsequent to that, we 

have explored the possible temperature of the scalar field near the 

horizon. We have discussed the thermodynamics and entropy of self 

gravitating radiation systems (SGRS) thereafter. The best example 

for an (SGRS) is a collapsing star. We then discuss the transit of a 

scalar field across the horizon as if it is collapsed and calculate the 

entropy of the scalar field and the entropy bound. 

Black holes have no-hair is referred to the theory that there are 

only three parameters that can be measured by an outside observer 

relating to a black hole: mass, electric charge and angular momen­

tum. We discuss the evidence of weak scalar hair in an AdS black 

hole (BTZ - Bananas - Teitelboim - Zanelli) and in Reissner­

Nordstrom black hole in Chapter 6. We have derived the scalar 

field solutions in both cases and have showed the connection between 
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the mass of hairy black hole and non-hairy black hole. Whether the 

mass of a hairy black hole would blow up or not is a serious question 

that one needs to examine in the investigation of hair in a black hole. 

We have studied the stability of a black hole with hair for 1st and 

2nd order perturbations. The hair of a black hole will be stable only 

if the scalar solution is stable against perturbations. 

Strong interpretation of scalar hair is always a challenge to the 

physicists because getting a non-trivial solution and a proper metric 

simultaneously is always cumbersome. We discuss the evidence of 

strong hair in a static (3+1) black hole in Chapter 7. A strong 

hair demands non-trivial solution as well as a proper metric with a 

new conserved quantity. A proper metric is proposed with a radius 

and temperature and entropy. We have calculated the temperatures 

of different black holes by the Hamilton-Jacobi method. We have 

also calculated the entropy of the black hole dressed with a massive 

scalar field and that of a naked black hole. 

In Chapter 8, we present the various results and conclusions of 

this thesis. The scope of the present work and the future plans are 

also discussed in this chapter. 

Part of the results of the thesis have been published in journals 

and presented in conferences. 
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Chapter 1 

Introduction and thesis 

outline 

Spacetime grip mass, telling it how to move; 

And mass grips space time, telling it how to curve 

John Archibald Wheeler. 

We believe that the Universe began with a mighty explosion 

referred to as a Big Bang which occurred about 15 billion years 

ago. A few minutes after the Universe was born, it was assumed 

to be filled almost entirely with hydrogen. In course of time, blobs 

of gas formed in this hydrogen atmosphere, which then began to 

shrink under the influence of its own gravity. As the shrinking 

continued, a stage then came when the core of the gas became 

so hot as to trigger a nuclear reaction. That was the birth of a 

star. In a star under equilibrium, the outward thermal pressure of 

the nuclear reaction balances the inward gravity. This equilibrium 

continues until almost all the hydrogen is used for the nuclear 
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reaction. As the star runs out of hydrogen, the gas pressure starts 

coming down. Gravity now gains the upper hand and the star starts 

shrinking again. The core keeps on shrinking and becomes hot and 

a stage comes when a new thermonuclear cycle starts operating, this 

time involving helium. Each burning cycle involves several steps, 

essentially leading to the conversion of light elements into slightly 

heavier ones. When the element feeding a particular fusion reaction 

is nearly exhausted, the burning ceases and the core of the star 

begins to shrink under gravity. The collapse is stopped when the 

next cycle of thermonuclear reaction gets triggered. This process 

goes on repeatedly till the core becomes iron. 

But all the stars may not start off from the hydrogen cycle and 

go through all the nuclear burn cycles ending up finally with an iron 

core. It all depends on the initial mass and the composition of star. 

The important fact is that all stars at some stage, for some reason 

or other may quit the thermonuclear process before it reaches the 

end point (iron core). If the initial mass of star is ::; 1.4M0, after 

exhaustion of the fuel, the shrinking of the star continues until a 

new pressure called electron degeneracy pressure arrests it. Hence 

such stars do not shrink endlessly to disappear into a point but the 

shrinking stops much earlier to become a White dwarf. The limit 

1.4M0 is called Chandrasekhar limit. 

If the initial mass of the star is more than 1.4M0' the electron 

degeneracy pressure is no longer sufficient to win over the gravity. 

So the collapse continues. As the protons and electrons come closer 

to become neutrons, resulting in the out ward pressure called neu­

tron degeneracy pressure, the gravitational collapse is arrested, thus 

creating a Neutron star. 
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As the thermonuclear fuel in a massive star (> 5M0 ) is ex­

hausted, the contraction of the star can't be arrested either at the 

white dwarf stage or at the stage of neutron star. This situation 

triggers a gravitational collapse which will make the star close in 

on itself. Such a star then destines towards its ultimate fate, i.e., a 

black hole in the universe. Black hole is the inevitable outcome of 

Einstein's general theory of relativity which says that matter warps 

spacetime. When a large enough amount of mass is present in a suf­

ficiently small region of spacetime, all paths through the spacetime 

are warped towards the centre of that volume, preventing all matter 

and radiation within it from escaping. Thus a black hole is a re­

gion of spacetime in which the gravitational field is so powerful that 

nothing, not even light, can escape its pull after having fallen past 

its event horizon (outer edge of black hole). Thus black hole may 

be referred to a surface called event horizon which encloses a space 

including the singularity at the centre. In a spherically symmetric 

gravitational collapse all matter fall through a fictitious spherical 

surface called event horizon whose radius depends on the features of 

black hole. On the other hand, a black hole exerts the same force 

on something far away from it as any other object of the same mass 

would. For example, if our Sun were crushed until it was about 2 km 

in size, it would become a black hole, but the Earth would remain 

in its same orbit. The term black hole comes from the fact that the 

hole's interior is invisible to an external observer, since everything is 

hidden behind the horizon. 

Black holes manifest themselves in many different ways such as 

swallow everything that comes near by, emit thermal radiation, scat­

ter waves, etc. There must be a plenty of physical phenomena go-
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ing on around the black hole that differ from other celestial bodies. 

General relativity says that mass deforms the structure of spacetime. 

Light cones have a slope ±1 far from a star but their slope tends to 

±oo as they approach the star. This means that they become more 

vertical: the cone closes up (Fig. 1.1). As the cone closes up, its 

velocity decreases and finally becomes zero at a point. The surface 

upon which such points lie is defined as the event horizon. There 

arises a question that how does the speed of light change against the 

concept of special theory of relativity? The answer is that gravita­

tional field changes the geometry of spacetime and the speed of light 

is fundamentally tied to the nature of the spacetime geometry the 

light is passing through. 

According to general theory of relativity, gravity manifests as the 

bending and stretching of spacetime, caused by matter, energy and 

pressure. Light rays follow geodesics through this bent, stretched or 

compressed spacetime. The warping of spacetime wrap the paths of 

the light rays. Relative to an observer at rest far away from a black 

hole, space is compressed (contracted) and time is stretched out 

(dilated) near the event horizon, i.e., each unit of space is shorter 

and each unit of time is longer near the horizon. The collapse of 

a star is not a quick process, since infinite time would be elapsed 

before completing the collapse as far a distant observer is concerned. 

The collapse takes place across the event horizon which will hide 

the black hole from becoming naked. 
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1.0.1 Event horizon 

popular accounts commonly try to explain the black hole phe­

nomenon by using the concept of escape velocity, the speed needed 

for a body starting at the surface of a massive object to completely 

clear the object's gravitational field. It follows from Newton's law of 

gravity that a sufficiently dense object's escape velocity can be equal 

to or even exceed the speed of light depending upon the mass and 

radius of the object. Thus event horizon may also be defined as the 

surface on which the escape velocity is equal to the speed of light. 

Event horizon is characterized by three properties. First, it is a static 

v V 

Figure 1.1: Light cones drawn in black hole spacetime close up near 
the horizon. 

limit, i.e., no one can remain static on the event horizon because of 

the immense gravitational pull of black hole. As we cross the event 

horizon, time becomes spacelike and space becomes timelike. Since 

time can only flow forward and singularity lies in the future, falling 

inward to the singularity is inevitable. 

Second, it is an infinite redshift surface, i.e., the wavelength of the 

radiation received by a distant observer is greater than the original 
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wavelength of the source near the horizon. As the source is placed 

nearer and nearer to the black hole surface, the redshift keeps in­

creasing, tending to an infinite value in the limit, eventually making 

the emitted radiation not to be observed at all. This is the essence 

of the invisibility of a black hole. In strong gravitational field the 

clock runs slow and on the horizon time stands still. 

Third, it is a one-way membrane, i.e., matter can fall into it but 

cannot come out. Spacetime curvature in the vicinity of a black hole 

manifests as tidal force. In a freely falling frame, we can get rid 

of gravity, but we are still stuck with tidal forces, which depends 

inversely on the cube of distance. Since surface like event horizon in 

spacetime is tangential to a light cone, it cannot be recrossed again, 

Le., it acts as a one-way membrane. 

The event horizon is analogous to a light wavefront, i.e., like a 

geometric surface traveling with the speed of light under the action of 

gravity. As we have seen, gravity can slow down the propagation of 

electromagnetic waves and hence the wavefront. If the gravitational 

field is increased steadily, as we move towards the gravitating source, 

there comes a critical point where gravity can hold this geometric 

surface fixed in space. We may cross it in one direction and go in, but 

can never re-cross it and come out. In short, the black hole is nothing 

but a light wave front, shorn of its electromagnetism but retaining 

its geometric properties, held in position by gravity and frozen in 

spacetime. The event horizon, which is a sphere, is represented by 

a circle drawn out in time. So it looks like a cylinder with time as 

its axis (Fig. 1.2). If light is emitted here, the inward ray crosses 

the event horizon and travels ultimately to hit the singularity and 

the outgoing ray gets stuck at one point, i.e., light never comes out. 
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Figure 1.2: A (1+1) dimensional black hole showing the collapse and 
singularity. 
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What the distant observer sees is the surface of the star appearing 

progressively redder and fainter, inching towards the horizon slower 

and slower, but never reaching it. As an adventurous astronomer 

falls towards the event horizon, since the gravitational force acting 

on his feet is greater than on his head, he himself stretches out of 

proportion. According to general relativity, a black hole's mass is 

entirely compressed into a region with zero volume, which means its 

density and gravitational pull are infinite, and so is the curvature of 

spacetime that it causes. These infinite values cause most physical 

equations, including those of general relativity, to stop working at the 

centre of a black hole. So physicists call the zero-volume, infinitely 

dense region that represents the black hole, a singularity (Fig. 1.3). 

The singularity in a non-rotating black hole is a point, in other words, 

it has zero length, width and height. The singularity of a rotating 
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Figure 1.3: Warping of spacetime in the neighbourhood of a. black 
hole and pinching of spacetime a.t the singularity. 

black hole is smeared out to form a. ring shape lying in the plane of 

rota.tion. The ring still has no thickness and hence no volume. 

1.0.2 Detection of black holes 

Classical gravity says that black hole is an object with temperature 

absolute zero so that nothing comes out of it. This makes the black 

hole inaccessible to the outer world. A black hole may be perceived 

by tracking the movement of a group of stars that orbit with the 

company of a black hole. Suppose a star moves as if there is an 

invisible partner to it so that they move about a common centre of 

mass. This invisible partner could be a black hole. The spectrum of 

the visible star may then be investigated. The spectrum oscillates 

about a mean value, i.e., swings between red and blue shift. From 

doppler formula we can find the velocity of rotation and period of 

revolution of the visible star. The mass of visible star can be deduced 

from the brightness. Considering the equation of motion of two stars 

(one is invisible black hole) about their common centre of mass and 
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fceding the parameters of visible star, we will be able to get the lTIeu:;s 

of the invisible star. If the mass thlls obtained is greater than five 

solar mass, it could he a black hole. The mass of the first detected 

hlack hole (Cygnus X-I) is seven times the solar mass (Fig. 1.4) . 

The black holes interact with matter that lie in the orbit out side 

the event horizon. The matter like gas, iipi rals inward, heating up to 

very high temperatures and emitting large amounts of radiation that 

can be dett.'Ctcd from earthbound and earth-orbiting telescopes[1J. 

Perturbation in the black hole spacetime can be evaluated by adding 

Figure 1.4: Photo courtesy Nasa/cxc; X-ray image of CY,iI;nus X-I 
taken from orbi tinl!; Chamlra X-ray observatory. 

relevant tenllS to t.he metric funct.ioll and f(!cd them int.o Einstein 's 

fie ld equation Ilnd get the solut.ion t.hat governs the b<,haviour of 

the pert urbat ions. Onc important problem t.hn.l. Wll.'" handll'd 11.\· 
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the perturbation theory was the stability of the black hole. If the 

perturbation dies or oscillates, then the black hole is stable. If the 

perturbation grows with time and blows up, then the black hole is 

unstable. Perturbation formalism revealed the existence of quasi­

normal modes of the black hole vibrations, which carry the imprint 

of the black hole. The quasi-normal modes generally appear during 

the formation of a black hole by the gravitational collapse and when 

two black holes coalesce. These quasi-normal modes show up in the 

process of gravitational wave scattering. It is like pelting somebody 

in the dark and identify the location by noting the direction from 

where the screaming sound comes. A part of the wave packet directed 

to the black hole is scattered off the black hole and we can observe the 

out-coming wave form. As the black hole is disturbed, it vibrates, 

generating a decaying wave at a characteristic frequency. It has 

come to be known as the quasi-normal mode of the black hole. The 

quasi-normal mode by itself reveals the existence of black hole and 

frequency gives the information on the black hole parameter, namely 

the mass. 

Gravitational radiation is yet another tool to detect a black hole. 

Radiations are ripples in the fabric of spacetime. A binary system, 

Eagle (in the constellation Aquila) demonstrated the existence of 

gravitational radiation. These binary stars revolve in close orbits 

with break-neck speed. The gravitational field at such a close sep­

aration is quite high. The system sends out gravitational radiation 

by shredding its own energy, associated with diminishing radius of 

orbit. When the binary stars are far apart, the wave is essentially a 

regular sine wave. The frequency increases slowly at first as the orbit 

of the black hole shrinks due to emission of gravitational waves. As 
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the two black holes come close to each other gravitational waves are 

emitted with increasing amplitude and frequency. This wave pattern 

is called a chirp, which carries the unmistakable signature of black 

hole. 

1.0.3 Types of black holes 

The simplest possible black hole is the one that has only mass. These 

black holes are often referred to as Schwarzschild black holes [21 after 

Karl Schwarzschild who discovered this solution in 1916. It was the 

first non-trivial exact solution to the Einstein equations to be discov­

ered and according to Birkhoff's theorem, the only vacuum solution 

that is spherically symmetric. In general relativity, Birkhoff's the­

orem states that any spherically symmetric solution of the vacuum 

field equations must be stationary and asymptotically fiat. Hence 

the popular notion of a black hole sucking in everything in its sur­

roundings is therefore incorrect; the external gravitational field, far 

from the event horizon, is essentially like that of ordinary massive 

bodies. 

More general black hole solutions were discovered later with more 

features for the black holes. The Reissner-Nordstrom solution [3] 

describes a black hole with electric charge, while the Kerr solution 

yields [4] a rotating black hole. The most generally known station­

ary black hole solution having both charge and angular momentum 

is the Kerr-Newman metric [5]. All these general solutions share the 

property that they converge to the Schwarzschild solution at dis­

tances that are large compared to the ratio of charge and angular 

momentum to mass (in natural units). 

How the spacetime around a black hole behaves is of utmost im-
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portance, because of its symmetric properties. The solution of the 

Einstein's field equation, in spherical polar coordinates, to the exte­

rior part of black hole is singular at the horizon and hence needs to 

be modified, since there seems no physical pathology at the horizon. 

1.1 Spacetime structure 

1.1.1 Metric of a black hole 

All physical phenomena, like the geodesic which defines the space­

time structure, gets modified near the black hole. In the Newtonian 

gravity circular orbits of material bodies around a heavy gravitating 

mass, like the sun, can exist at all radius. For a Schwarzschild black 

hole the inner most stable orbit is at 6GM/c2 • Between 6GM/c2 and 

3GM/c2 , the orbits are unstable. The orbit ofradius 3GM/c2 is the 

geodesic of light so that light moves in a circle. The vacuum solu­

tion to a static spherically symmetric black hole in spherical polar 

coordinates is given as [2] 

This solution is singular at r = 2M, i.e., on the event horizon. Since 

the curvature at the horizon is finite, proportional to M/r6 , the sin­

gularity at the horizon is unwarranted. So this singularity is not 

a physical one but only an outcome of a wrong coordinate selec­

tion. To remove this singularity, Eddington-Finkelstein (EF) coor­

dinates, named after Arthur Stanley Eddington and David Finkel­

stein, were introduced [6, 7]. It is a pair of coordinate systems for 

a Schwarzschild geometry which is adapted to radial null geodesics 
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(i.e. the worldlines of photons moving directly towards or away from 

the central mass). The transformation of the type 

v = t + r + 2mlog((r/2M) - 1) 

u = t - l' - 2mlog((1'/2M) -1), 
(1.2) 

would change the usual Schwarzschild metric into a metric in the 

ingoing and outgoing Eddington-Finkelstein coordinates [6, 7J as 

ds2 = (1 - r; )dv2 - 2dvdr - r2(d82 + sin2 ()d<p2) 

ds2 = (1 - r;-)du2 + 2dudr - 1'2(d82 + sin2 8dcjJ2). 
(1.3) 

In both these coordinates the metric is explicitly non-singular at the 

Schwarzschild radius, rs. If rs = 0, the metric represents just a flat 

spacetime, then 47fr2 is the area of sphere of symmetry. For the 

outgoing radial light rays, ds2 = (1 - r;- )dv2 - 2dvdr = O. Hence it 

satisfies, ~~ = ~(1 - rs/r). For r = Ts, ~~ vanishes, so the out going 

light rays remain static at the horizon, i.e., the out going spherical 

wave front has a constant area of 47fr;. This is called event horizon. 

So the event horizon is like a light wave front of radius 1's , but frozen 

in the spacetime. For r < rs the out going light rays are dragged 

inward to decreasing r and eventually reach r = 0, i.e., singularity 

(Fig. 1.5). The singularity is disconnected from the exterior if Ts > 0, 

i.e., if the mass M is positive. Now r8 > 0 implies that there is 

mass hidden behind the horizon, which is the black hole. When 

1'8 < 0, the metric function will be, (1 + rs/r). Since, 1 + rs/r i- 0, 

there is no horizon and at l' = 0, there is a singularity which is 

naked. So, when M > 0, we get a black hole and when M < 0, 

singularity becomes naked [8, 9, 10]. But Cosmic Censorship says 
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that singularity can't be naked, it must be hidden behind the horizon. 

The first two well behaved coordinate systems were introduced by 

2Jf 3.'.1 4M 5M 

v=const. 

Figure 1.5: Diagram of the Positive mass (EF) spacetime, suppressing 
the angular coordinate with constant r surfaces vertical and constant 
v surfaces at 450 

Eddington and Finkelstein. Motivated by these systems, Kruskel 

and Szekeres [11, 12J independently introduced a coordinate system 

known as K rusk el- Szekeres coordinates for the Schwarzschild black 

hole (SBH). They use a dimensionless radial coordinate u and a 

dimensionless time coordinate v related to rand t by 

u = (r/2M - 1)1/2eT
/
4M cosh{t/4M) 

v = (r/2M - 1)1/2eT
/
4M sinh(t/4M), 

for region, r > 2M, and 

u = (1 - r/2M)1/2er / 1M sinh(t/4M) 

v = (1 - r/2M)1/2er / 4M cosh(t/4M), 

(1.4) 

(1.5) 
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for region, r < 2M. The metric of SBH in the Kruskel- Szekeres 

coordinates [11, 12] is given as 

In this metric, the singularity at the horizon is not present, mak­

ing the system well behaved. It is often useful, in visualizing the 

structure of a spacetime, to introduce coordinates that attribute fi­

nite coordinate values to infinity. We can transform the Kruskel­

Szekeres coordinates into new coordinates 'I/),~, e, <p by introducing 

v+u= tan~(1P+~) 

v-u=tan~(1P-~). 

The metric of the S B H in the new system is 

(1.7) 

(1.8) 

The resulting coordinate diagram depicts clearly the connections be­

tween the horizons, the singularities and the various regions of infin­

ity. Penrose had developed [13] a powerful mathematical technique 

for studying asymptotic properties of spacetime near infinity. The 

key to his technique is a conformal transformation of spacetime, 

which brings infinity into a finite radius and converts asymptotic 

calculations into calculations at finite points. These are the various 

infinities proposed by him. 

1+ :: future timelike infinity. 

1- :: past timelike infinity. 

1° :: spacelike infinity 
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J+ == future null infinity 

F == past null infinity 

The Schwarzschild spacetime depicted in ('I/J, ~, (), 4» is shown in Fig. 

(1.6). When a gravitational collapse is spherically symmetric, the 

" " 

" (~----+-----~----+---~ 
11" 

r ,-

Figure 1.6: In the diagram with 1/J, € coordinates, the infinities are 
brought to finite distances. Each of the asymptotically flat regions has 
its own set of infinities j+, j-, 1°,J+';-' 

spacetime around the resulting black hole possess certain symmetric 

properties. The best mathematical tool to describe the symmetry of 

the spacetime is a Killing vector. 

1.1.2 Spacetime symmetry 

The covariant approach to the unraveling of black hole geometry 

is through the spacetime symmetries or Killing vector fields. Let 

the metric function 9J.tv relative to some coordinate basis, be inde­

pendent of t and 1;, then o~t' = 0 and °Zf = O. This implies that 

the spacetime is static and spherically symmetric. Now translate 

an arbitrary curve <:; through an infinitesimal displacement, €t4>' 
to form a new curve <:;', Since °b;// = 0, the curves <:; and <:;' have 
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the same length. Thus the geometry of the black hole spacetime 

is left unchanged by a translation of all points through f. 14>' The 

vector, ~ = 14> provides an infinitesimal description of these length 

preserving translations. This length preserving geometrical operator 

is called a Killing vector. In the case of time translation, the Killing 

vector is %t. The symmetry operation is well depicted in Fig. 

(1.7). The surface on which ~a becomes null (~a~a = 0) is itself 

Q 
Figure 1.7: A doughnut manifold with a symmetry described by a 
Killing vector. 

a null surface, equivalently a one-way surface or an event horizon. 

When the geometry of a black hole spacetime is invariant under 

transitions, t -+ t + 6t and cp -+ cp + 6cp, the coordinates t and cp 
are cyclic, then E and L are conserved in such a spacetime, where 

E and L represent energy and angular momentum of a test particle. 

When the gravitational field is constant the metric function is 

independent of time, i.e., spacetime displays the property of time 

and space symmetry. 
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1.1.3 Killing horizon 

A Killing horizon is a null hypersurface on which there is a null 

Killing vector field. Associated to a Killing horizon there is a geo­

metrical quantity known as surface gravity, 1>,. In order to discuss 

the laws of black hole mechanics, we must introduce the notions of 

stationary, static and axisymmetric black holes as well as the notion 

of a Killing horizon. If an asymptotically flat spacetime (M, gab) con­

tains a black hole B, then B is said to be stationary if there exists a 

one-parameter group of isometries on (M, gab) generated by a Killing 

field t a which is unit timelike at infinity. The black hole is said to 

be static if it is stationary and if, in addition, ta is a hypersurface 

orthogonal to the Killing horizon. 

In a wide variety of cases of interest, the event horizon H of a 

stationary black hole must be a Killing horizon. Carter [14J states 

that for a static black hole the static Killing field ta must be normal 

to the horizon, whereas for a stationary-axisymmetric black hole with 

the t - 1; orthogonality property there exists a Killing field ~a of the 

form 

(1.9) 

which is normal to the event horizon and n is called the angular 

velocity of the horizon. Hawking proved [15, 16J that in vacuum the 

event horizon of any stationary black hole must be a Killing horizon. 

Consequently, if t a fails to be normal to the horizon, then there must 

exist an additional Killing field ~a which is normal to the horizon, 

i.e., a stationary black hole must be non-rotating. 

Now, let l{ be any Killing horizon (not necessarily required to 

be the event horizon H of a black hole), with normal Killing field 
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~o. Since "Va(~a~a) also is normal to K , these vectors must be 

proportional at every point on K. Hence, there exists a function, K, 

on K, known as the surface gravity of K, which is defined by the 

equation 

(1.10) 

It can be shown that [17] 

K, = lim(Va ), (1.11) 

where a is the acceleration of the orbits of ~a in the region of K 

where they are time like, V == (_~a~a)1/2 is the red shift factor of ~a. 

Note that the surface gravity of a black hole is defined only when it 

is in equilibrium, i.e., stationary, so that its event horizon is a Killing 

horizon. There is no notion of the surface gravity of a general, non­

stationary black hole, although the definition of surface gravity can 

be extended to isolated horizons. 

1.1.4 Negative curvature 

We know that a heavy gravitating bodies like a black hole would warp 

the spacetime around it. The spacetime is a curved Riemannian man­

ifold globally and Minkowskian locally. The potential gradient pulls 

free particles towards the gravitating source as the space curvature 

acts in unison with a potential gradient. Consider the motion of a 

particle in a 2-space metric given by ds2 = (1- 2M/r)-ldr2 +r2d<p2, 

which has a negative curvature -M/r3 . It can be embedded into the 

3-Euclidean space by writing z2 = 8M(r - 2M), which is a parabola 

and would generate a paraboloid of revolution (Fig. 1.8). Clearly 

it has a negative curvature which would tend free particle to roll 
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down towards the centre and thus work in unison with the poten~ 

tial gradient [18). Spacetime under gravity have shown remarkable 

z 

Figure 1.8: Figure shows the para boloid of revolution for parabola 
z:l =8r - 16, where r:l = x 2 +'!i 

properties due to quantum effects, giving rise to epoch making dis­

coveries such as Hawking effect and Unruh effect. It can be shown 

that temperature is implicitly present in t he spacetime of a black 

hole. 

1.2 Black hole as a thermodynamic system 

1.2.1 Hawking effect 

A quantum field in the black hole spacctime back ground will have 

vacuum fluctuations that permeates all of the spacetime. Hence, 

t here is always something going on, even in the empty space around 

a black hole. In 1974, Stephen Hawking showed that black holes arc 
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not entirely black but emit thermal radiations [19] with a charac­

teristic temperature. He got this result by applying quantum field 

theory in a static black hole background. The result of his calcula­

tions is that a black hole should emit particles with a characteristic 

temperature distribution. This effect has become known as Hawking 

effect. Since Hawking's result, many others have verified this effect 

through various methods [20]. 

Spontaneous emission from a rotating black hole can be visual­

ized as a pair production of real and virtual photons in the ergoregion 

(Fig. 1.9). The classical field is said to have no temperature, but 

a quantum field, because of its inherent fluctuations, give rise to 

pairs of virtual and real particles. The negative energy photons fall 

across the event horizon and the positive energy photons escape to 

infinity. The temperature of photons as they reach infinity is 8:M 
(for SBH), where M is the mass of black hole. Hawking showed 

that the photons have the spectrum characteristic of a black body 

with a temperature T = 87rZM. Thus Hawking effect has provided 

a remarkable unification of gravity and thermodynamics. From the 

expression of the temperature of black hole, it can be seen that 

large black holes are very cold and emit very little radiation. A 

stellar black hole of 10 solar masses, for example, would have a 

Hawking temperature of several nanokelvin, much less than the 

2.7K produced by the Cosmic Microwave Background. Micro black 

holes on the other hand could be quite bright producing high energy 

gamma rays. Due to low Hawking temperature of stellar black 

holes, Hawking radiation has never been observed at any of the 

black hole candidates. 
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Figure 1.9: The ergosphere in a rotating black hole. In the space 
between horizon a nd the ergosphere particle pairs are formed due to 
quantum phenomenon. 

1.2.2 Unruh effect 

Unruh effect says that the vacuum in the Minkowski space appears 

to be in a thermal state at temperature ~: [21J. when viewed. by 

an observer with acceleration 'a'. Consider a static observer sitting 

at a fixed radius r out side the horizon Rso The acceleration due 

to gravity a (or the surface gravity x:) there is very large and the 

associated time scale is l /a (periodicity is 2tr/a), which is very small 

compared to Rs ' The curvature of spacetime is very small on this 

time scale, so we expect the vacuum fluctuations of quantum field on 

this spacetime to have the usual flat spacetime form, provided the 

quantum field is in a state which is regular near the horizon. Under 

this condition, the observer will e.'(perience the Unruh effect. The ra~ 

tio of the temperatures measured by static observers at two different 

radii is ¥. = ~, where X is the norm of the time translation Killing 
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field. At infinity X2 = XOO = 1. So we have an out going thermal flux 

in the rest frame of the black hole at Hawking temperature [22, 23]. 

Then 

(1.12) 

with aXl = K. Thus temperature of Unruh radiation [21] near the 

horizon is ~; and the temperature of Hawking radiation at infinity is 

~:. For Schwarzschild black hole K = 411' Hence, Too = Tbh = 87r~' 
Thus it can be seen that at the heart of the Hawking effect is the 

Unruh effect. The surface gravity K, or the acceleration due to gravity 

at the event horizon of the black hole can be determined from the 

metric by the relation, 2/r90o Ir=rh' Thus gravity is very naturally 
-900g11 

ferreted out of the spacetime of a black hole and the gravity manifests 

in the curvature. For a SBH, K = c:.¥lr=rw But, c:.¥ is nothing but 

the usual expression for acceleration due to gravity. A black hole with 

a proper metric will have a surface gravity and hence temperature. 

1.2.3 Classical black hole thermodynamics 

Classically, black holes are perfect absorbers but do not emit any­

thing; their physical temperature is absolute zero. However, in quan­

tum theory, black holes emit Hawking radiation with a perfect ther­

mal spectrum. This allows a consistent interpretation of the laws 

of black hole mechanics as physically corresponding to the ordinary 

laws of thermodynamics. The classical laws of black hole mechanics 

together with the formula for the temperature of Hawking radia­

tion allows one to identify a quantity associated with black holes as 

playing the mathematical role of entropy. 
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In comparing the laws of black hole mechanics in general relativ­

ity with the laws of thermodynamics, it should be first noted that the 

black hole uniqueness theorems [24J establish that stationary black 

holes, i.e., black holes in equilibrium, are characterized by a small 

number of parameters, analogous to the state parameters of ordinary 

thermodynamics. In the corresponding laws, the role of energy E is 

played by the mass M of the black hole; the role of temperature T 

is played by a constant times the surface gravity K, of the black hole; 

and the role of entropy S is played by a constant times the area A 

of the black hole. The fact that E and M represent the same phys­

ical quantity provides a strong hint that the mathematical analogy 

between the laws of black hole mechanics and the laws of thermody­

namics might be of physical significance. However, as temperature 

of black hole is zero in general relativity, the physical relationships 

between K, and T; S and A were difficult to evolve [25J. 

1.2.4 Area theorem 

As a classical object with zero temperature it was assumed that 

black holes had zero entropy; if so, the second law of thermody­

namics would be violated by an entropy-laden material entering the 

black hole, resulting in a decrease of the total entropy of the universe. 

Therefore, Jacob Bekenstein [26] proposed that a black hole should 

have an entropy and that it should be proportional to its horizon 

area. Since black holes do not classically emit radiation, the ther­

modynamic viewpoint seems to be simply an analogy, not a physical 

reality. As we shall now see, this situation changes dramatically 

when quantum effects are taken into account. 

Stephen Hawking showed that the total area of the event horizons 
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of any collection of classical black holes can never decrease, even if 

they collide and swallow each other or merge, i.e., ~1 ~ O. For a 

Schwarzschild black hole the area of horizon is 

A = 161rJv12 (1.13) 
1 1 A 

dM = 321rM dA = 87rMd("4). 

Since dM is the change in the hole's total energy E and since 

1/(87rM) is the black hole temperature, we can write Eq. (1.13) 

in the form dE = TdS with 

S = A/4. (1.14) 

Since, by the area theorem, the quantity S in Eq. (1.14) can never 

decrease. So in the area theorem and in Eq. (1.13), we can find the 

first and second laws of thermodynamics as they apply to black holes. 

That is, a black hole behaves in every respect as a thermodynamic 

black body with temperature 87r1M and entropy A/4. This analogy 

had been noticed as soon as the area theorem was discovered, but at 

that time it was thought to be a futile exercise since black hole was 

assumed to have no temperature. But the Hawking effect completed 

the missing link. 

The above universal result can be extended to apply to cosmo­

logical horizons such as de Sitter space. It was later suggested that 

black holes are maximum-entropy objects, meaning that the maxi­

mum possible entropy of a region of space is the entropy of the largest 

black hole that can be fitted into it. The area increase law (Fig. 1.10) 

in black holes implies that the total entropy of black holes never de-
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creases. Let 81 and 82 are the entropies of two black holes respec-

Figure 1.10: When two black holes merge the total entropy would be 
greater than the individual entropies. 

tively and when they coalesce, the new entropy, say, 812 ~ 81 + 8 2 , 

It seems that this resemblance is a superficial one, since the area law 

is a theorem in geometry whereas the second law of thermodynamics 

is understood to have a statistical origin. This resemblance together 

with the idea that information is irretrievably lost when a body falls 

into a black hole led Bekenstein to propose [26, 27) that a suitable 

multiple of the area of the event horizon should be interpreted as its 

entropy, and that a generalized second law (GSL) should hold. 

1.2.5 Generalized second law 

Total entropy of all matter in the universe can never decrease. Sim­

ilarly surface area of event horizon of a black hole never decreases. 

But when matter falls into the black hole and disappear, the entropy 

of the universe decreases, which is contrary to the 2nd law of ther­

modynamics. As Hawking radiation comes out of the black hole, 
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its surface area reduces, which is against area theorem. In order to 

a.void such an unpleasant situation, a new entropy was proposed as 

8' = 8 + ! A, where 8 is the total entropy of all matter and radiation 

in the universe excluding all the black holes and A is the total area 

of all the black holes in the universe. Eventhough 8 and A may 

individually change, 8' never decreases. When matter is swallowed, 

8 is decreased, but at the same time A is increased. Again, emis­

sion of thermal radiation reduces surface area of the horizon but the 

entropy of universe increases. Thus neither the 2nd law of thermo­

dynamics nor the black hole area theorem are satisfied individually, 

but it appears that we have a new law, the generalized second law as 

proposed by Bekenstein, of thermodynamics in which f:::.8' ~ O. 

At nearly the same time as Bekenstein proposed a relationship 

between the area theorem and the second law of thermodynamics, 

Bardeen, Carter, and Hawking [28] provided the general proof of the 

laws of black hole mechanics which are direct mathematical analogs 

of the zeroth and first laws of thermodynamics. These laws of black 

hole mechanics generally apply only to stationary black holes. 

1.2.6 Four laws of black hole thermodynamics 

The laws of black hole mechanics resemble the ordinary laws of ther­

modynamics. The laws of black hole physics are 

Zeroth law 

The surface gravity"" of a black hole is constant everywhere on the 

surface of the event horizon. 

1st law 

When black hole switches from stationary state to another, its mass 

changes by bm = nbJ + <pc5Q + eb8 + oq, where 8J is the change 
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in angular momentum, 8Q is the change in electric charge, 88 is the 

change in entropy, 8q is the change in matter distribution. 

2ndZaw 

In any process, the area of black hole and hence its entropy 8 does 

not decrease, Le., 88 ~ O. 

3Tdlaw 

The temperature of a black hole cannot be reduced to absolute zero 

by a finite number of operations. 

The close mathematical analogy of the zeroth, first, and second 

laws of thermodynamics to corresponding laws of classical black hole 

mechanics is broken by the Planck-Nernst form of the third law of 

thermodynamics, which states that 8 -> 0 (or a universal constant) 

as T -+ O. The analog of this law fails in black hole mechanics, 

although analogs of alternative formulations of the third law do ap­

pear to hold for black holes [29], since there exist extremal black 

holes (i.e., black holes with K, = 0) with finite A. However, there is 

good reason to believe that the Planck-Nernst theorem should not 

be viewed as a fundamental law of thermodynamics [30] but rather 

as a property of the density of states near the ground state in the 

thermodynamic limit, which happens to be valid for commonly stud­

ied materials. Indeed, examples can be given of ordinary quantum 

systems that violate the Planck-Nernst form of the third law in a 

manner very much similar to the violations of the analog of this law 

that occur for black holes [31J. 

1.2.7 Information and naked singularity 

The information from a black hole is available only when the black 

hole area remains unchanged and in less efficient processes the area 
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alwa.ys increases. The future event horizon of an asymptotically flat 

black hole spacetime is defined as the boundary of the past of future 

null infinity, i.e., the boundary of the set of points that can communi­

ca.te with the remote regions of the spacetime to the future. Hawking 

proved that if Rabkakb ~ 0, and if there is no naked singularity (i.e., 

Cosmic censorship holds), the cross sectional area of future horizon 

can not be decreasing anywhere [32,33,34]' where, ka is the tangent 

vector to the geodesic and Rab is the llicci tensor. In Fig. (1.11), it 

is shown that the circumference of the horizon cross-section increases 

with the elapse of time. That is, getting information from behind the 

horizon is difficult if the area of horizon increases. Hawking showed 

Figure 1.11: Portion of an event horizon with some converging gener­
ators that reach a crossing point. The generators of the boundary of the 
future of the deformation also reach a crossing point. The impossibility 
of this crossing point is used in proving the area theorem. 

that the convergence of the horizon generators does imply existence 

of naked singularity. The basic idea is to deform the horizon cross­

section outward a bit from the point where the null generators are 

assumed to be converging and to consider the boundary of the fu­

ture of the part of the deformed cross-section that lies outside the 
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horizon. If the deformation is sufficiently small, all of the generators 

of this boundary are initially converging and therefore reach a cross­

ing point. The crossing of generators implies that the horizon area 

shrinks and hence the singularity would become naked, i.e., informa­

tion could be retrieved from such a black hole. Thus unraveling of 

naked singularity leads to the retrieval of information that have lost 

when the matter fell through the horizon. 

1.2.8 Membrane paradigm 

We can regard the entropy Sbh of a black hole as Boltzmann's con­

stant kB times the logarithm of the total number Nbh of quantum 

mechanically distinct ways that the black hole could have been made, 

that is 

(1.15) 

It was shown that the entropy of a baryon system with spherical 

symmetry has only entropy 1020 times less than a black hole of same 

mass [35, 36J. This suggests that the gravitational collapse provides 

huge entropy production. The knowledge about the reason behind 

the entropy production in the gravitational collapse would lead us to 

the ultimate theory, i.e., quantum gravity. A black hole in a box at 

fixed energy would have a short wavelength cut off at the box but, 

it has no long wavelength cut off at the box [37]. The reason is that 

the horizon is an infinite redshift surface. 

Black hole entropy is also said to be a measure of the information 

hidden in correlation between the degree of freedom on either side of 

the horizon. For instance, although the full state of a quantum field 

may be pure, the reduced density metrix Pext will be mixed. The 
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-
associated entropy, Sentanglement = -Trpext logPext, should perhaps 

thus be part of the black hole entropy. This is called an entanglement 

entropy or geometric entropy. Sentangiement is identical to the thermal 

entropy of the quantum field out side the horizon [38, 39]. 

1.3 Semi-classical back reaction program 

When there is a field other than gravity in the black hole spacetime 

it would perturb the metric of the black hole. This quantum field 

which is characterized by a renormalized stress-energy tensor will be 

in thermal equilibrium with the Hawking radiation. The heat bath 

around the black hole could be composed of the quanta of the field in 

the black hole geometry. The expectation value of the renormalized 

stress-energy tensor in an appropriate vacuum state is regarded as 

the source in the Einstein semi classical field equation GJll/ = 81fTJlv 

and this equation will be solved self consistently for the metric. This 

is called the back reaction program. Such tensors are constructed 

by using renormalization techniques on the real Euclidean section of 

the black hole geometry with its Euclidean time coordinate identified 

with period f30 so as to eliminate singularity at r = rh. The procedure 

of back reaction analysis is given here. The interaction of gravity 

with other fields can be described at three different levels. 

1. Classical gravitational field (g) plus other classical fields (J) obey 

classical equations. 

2. In a full quantum description of both 9 and f, by means of a wave 

function \J!(g, I), which obeys the Wheeler-DeWitt equation. 
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3. 9 is a perturbed metric such that 

(1.16) 

where, gJf.V is a classical field and 'l! Jf.V represents the effect of quantum 

fluctuation of the metric. The quantum field f is quantized in the 

field 9 and is described by some wave function X(g, J). According 

to York [40, 41, 42], the back reaction program is as follows. 

1. Let a curved back ground spacetime with metric g,w be Ricd flat, 

so that 

(1.17) 

2. Let there be an external non-gravitational field <I> on the back 

ground spacetime and <I> is in a vacuum state, i.e., 

< <I> >= o. 
(1.18) 

< <1>2 ># 0, 

for quantum fluctuations of <1>. The expectation value of a renormal­

ized symmetric stress-energy tensor < TJf.v >ren of <I> satisfies 

(1.19) 

where V Jf. represents the covariant derivative w.r.t. gJf.V 

3. In Eq. (1.16), 'l! Jf.V represents the effect of quantum fluctuation of 

the metric, so that 

< w>=O 
(1.20) 
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The effective stress-energy tensor T J.LV of 111 satisfies 

(1.21) 

4. The back reaction problem is then to solve the Einstein equation 

(1.22) 

for a classical metric 

(1.23) 

5. To ignore T!J.v, consider an ideal massless perfectly reflecting spher­

ical wall of area 41fTij that encloses the black hole so that the micro­

canonical boundary condition envisages the total effective energy at 

TO 

m(TO) = M + Erad(TO), (1.24) 

where Erad is the energy of radiation. 

6. Now the equilibrium temperature distribution is given as 

(1.25) 

where the surface gravity at the event horizon is 

- 1 [1 11, (Ko+12] 
K, - 4M + M'I 384011" ' (1.26) 

and Ko is a constant. The back reaction defines the extend to which 

the physical properties of a black hole changes. It can be calculated 

by Solving the Einstein' equation and the same will be manifested 
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in terms of, like change in entropy of black hole and of change in 

effective potential of the black hole spacetime. 

In chapters 2 and 3, we discuss the semi-classical back reaction 

in an extremal anti-de Sitter-Schwarzschild black hole dipped in spin-

2 quantum field and de Sitter-Schwarzschild black hole immersed in 

a mass less quantum field respectively. 

1.4 State equation of thermal radiation 

The state equations of thermal radiation in the asymptotic limit are 

given as p = a.T~; s = 1a.T;. Are they universally valid? Unruh 

and Wald said that one could not go near the horizon of a black hole 

because of the immense buoyancy pressure of the Hawking radiation 

near the horizon [43, 44]. So we can't test the validity of equation of 

thermal radiation near the horizon. But the infinite value of Hawk­

ing radiation pressure at the horizon is unwarranted, since there is 

no physical pathology at the horizon. So the best possible way of 

presenting the Hawking radiation near the horizon is by means of 

the thermal stress-energy tensor [45, 46, 47], which is finite at the 

horizon. 

Hence it will be possible for the matter in a box to be emptied 

on to the horizon and conduct a gedanken experiment. Since the 

gravity near the horizon is intense, the asymptotic state equations 

of thermal radiation may not be valid there. So the probable answer 

to the above question is, no. Since black hole is a testing ground 

for extreme cases, this equation must be validated near the hori­

zon of a black hole to make it universally acceptable. After all, the 

GSL must be valid in any situation [48]. So one should conduct a 
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gedanken experiment, with the hope of conserving the GSL, to test 

the universality of the equation of radiation. The general equations 

of thermal radiation which are true in any situation have been de­

termined for different black holes [49]. The validity of equation of 

radia.tion can also be performed by verifying the upper bound on 

entropy as suggested by Bekenstein [50]. In chapter 4, we discuss 

the validity of the equation of thermal radiation in the spacetime of 

Reissner-Nordstrom black hole and the upper bound on entropy. We 

ha.ve derived modified expressions which are valid everywhere. 

1.5 Thermodynamics of self gravitating radi­

ation system 

Self gravitating radiation system (SGRS) sees a good example in the 

gravitational collapse of a star to become a black hole. When the 

collapse is symmetric, the entropy of the SGRS of mass M (as the 

only parameter) confined to a spherical box of radius R, is 4n M2. 

This is exactly the entropy of the black hole into which the SGRS 

of mass M collapses. This entropy can be taken as the upper bound 

on the entropy of SGRS of mass M. 

The Rindler frame can mimic gravity, since it is accelerating. 

This frame has many properties of a black hole except the mass. It 

has horizon, surface gravity, temperature, etc. Hence entropy calcu­

lations and entropy bound may be examined in the Rindler frame 

also. In chapter 5, we have discussed the thermodynamics of space­

times Such as that of Schwarzschild, Rindler, etc. The gravitational 

collapse of scalar field, its entropy and upper bound in a Rindler 

spacetime have been also analyzed in this chapter. 
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1.6 No hair theorem 

Physicist John Wheeler [51J once made a famous remark, black 

holes have no hair. This referred to the theory that there are 

only three parameters that can be applied by an outside observer re­

lating to a black hole: mass, electric charge and angular momentum. 

This is because, in all solutions of the Einstein-Maxwell Equations 

in general relativity, all other information about a black hole are 

hidden from observation by the event horizon. This means the no­

hair theorem is essentially a restatement of the Cosmic Censorship 

Hypothesis. Its original form, black holes have no-hair, held that a 

black hole can be dressed only by electromagnetic field which are 

associated with a Gauss-like law. 

In astrophysics, the no-hair theorem states that black holes are 

completely characterized only by the three above said externally ob­

servable parameters. All other information about the matter which 

formed a black hole or falling into it, disappear behind the black-hole 

event horizon and are therefore permanently inaccessible to external 

observers. The statement that black holes have no-hair means, there 

are no features other than mass, charge and angular momentum that 

distinguish one black hole from another. 

If we construct two black holes with the same masses, electrical 

charges, and angular moment a, the first black hole being made out of 

ordinary matter and the second one out of anti-matter, they would be 

completely indistinguishable. None of the pseudo-charges (baryonic, 

leptonic, etc.) is conserved in the black holes. No-hair theorem 

may also be defined as the fact that black holes will emit the same 

radiation regardless of what goes into the black hole. It should be 
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.~ however that, not all theoreticians believe that the no-hair 

holds completely, since some of the information lost at the event 

hOrizon would be recovered during the process of evaporation. 

1.6.1 Information loss paradox 

Classically, the laws of physics are the same run forward or in reverse, 

i.e., if the position and velocity of every particle in the universe were 

measured, we could work backward to discover the history of the 

universe arbitrarily far in the past. In quantum mechanics, this 

corresponds to a vital property called unitarity which has to do with 

the conservation of probability [52]. Black holes, however, might 

violate this rule, i.e., if we throw a pure quantum state into a black 

hole, we will get a mixed state. This runs counter to the rules of 

quantum mechanics and is known as the black hole information loss 

paradox. An open question in fundamental physics is the so-called 

information loss paradox, or black hole unitarity paradox. 

As seen from outside, information is never actually destroyed as 

the matter falling into the black hole takes an infinite time to reach 

and cross the event horizon. Hence, collapse is an infinitely long 

process. For a radially outgoing light, dt/dr approaches infinity near 

the horizon. This is a time dilation effect. Any message sent via 

light signal from near the event horizon to an observer far from the 

black hole will be stretched out. The closer the emitter of the light 

Signal is to the event horizon, the more stretched out the message 

will appear to the far away observer. As the frequency of the light 

signal decreases or redshifts, the ability of the radiation to store 

information (information per unit time) decreases, which will refrain 

us from getting information from the black hole. 
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At a quantum level, is the quantum state of the Hawking ra­

diation uniquely determined by the history of what has fallen into 

the black hole?; or is the history of what has fallen into the black 

hole uniquely determined by the quantum state of the black hole 

and the radiation? This is what determinism and unitarity would 

require. For a long time, Stephen Hawking had opposed such ideas, 

holding to his original position that the Hawking radiation is en­

tirely thermal and therefore entirely random, containing none of the 

information held in material the hole has swallowed in the past; this 

information he reasoned had been lost. 

However, in 2004 he presented a new argument, reversing his pre­

vious position [53]. On this new calculation, the loss of entropy (and 

hence information) associated with the Hawking radiation is difficult 

to conceive, until the black hole completes its evaporation; until then 

it is impossible to relate in a 1:1 way the information in the Hawk­

ing radiation to the initial state of the system. Once the black hole 

evaporates completely, then such an identification can be made, and 

unitarity is preserved. By the time Hawking completed his calcula­

tion, it was already very clear from the AdS/eFT correspondence 

that black holes decay in a unitary way. 

1.6.2 Hair? 

With the developments in particle physics, solutions for black holes 

with various hairs have been found. Among them are black holes 

dressed with Yang-MilIs, Proca-type Yang-Mills, and Skyrme fields 

in various combination with Higgs fields [54, 55, 56]. The first black 

hole solution demonstrating the failure of the no-hair conjecture was 

obtained by Gibbons [57] in 1982 within Einstein-Maxwell (EM)-
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dilaton theory. 

The fact that the Gibbons solution carries no dilatonic 

charge makes it asymptotically indistinguishable from a Reissner­

Nordstrom black hole with the same mass and electric charge. How­

ever, since the latter is not a consistent solution of the EM-dilaton 

equations, one might expect that, within a given matter model, the 

stationary black hole solutions are still characterized by a set of 

global charges (generalized no-hair conjecture). In fact, the Gibbons 

black hole supports the generalized no-hair conjecture; its unique­

ness within EM-dilaton theory was established by Masood-ul-Alam 

in 1992 [58]. However, neither the original nor the generalized no­

hair conjecture are correct. For instance, the latter fails to be valid 

within Einstein-Yang-Mills (EYM) theory: According to the general­

ized version, any static solution of the EYM equations should either 

coincide with the Schwarzschild metric or have some non-vanishing 

Yang-Mills charges [59, 60j. Since these solutions are asymptoti­

cally indistinguishable from the Schwarzschild solution, and since 

the latter is a particular solution of the EYM equations, the non­

Abelian black holes violate the generalized no-hair conjecture. As 

the non-Abelian black holes are not stable [61, 62], one might adopt 

the view that they do not present actual threats to the generalized 

no-hair conjecture. However, during the last years, various authors 

have found stable black holes which are not characterized by a set 

of asymptotic flux integrals: For instance, there exist stable black 

hole solutions with hair to the static, spherically symmetric Einstein­

Skyrme equations [63, 64] and to the EYM equations coupled to a 

Higgs triplet [65]. Hence, the restriction of the generalized no-hair 

Conjecture to stable configurations is not correct either. 
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1.6.3 Weak and strong interpretation

The interpretations of hair are of two types: Weak and Strong. A

weak interpretation of hair means the existence of a non-trivial solu­

tion for a field other than electromagnetic field which obeys gauss-like

law so that in the expression for the field there must have conserved

quantities other than mass, charge and angular momentum. Fig.

(1.12) shows the profile of a scalar field for an AdS Schwarzschild

black hole with a double well potential. The condition that the mass

of hairy black hole, which is greater than the mass of non-hairy black

hole, should not blow up is a major criterion for the existence of hair.

The field equation must not fade out under perturbation so as to as­

certain the stability of hair. Situations of preservation of no-hair

conjecture [51, 66, 67, 68, 69] and its violations [70, 711 had been

reported earlier many times. A possible black hole solution is given

as

(1.27)

where {3 is a constant. The strong interpretation says about the need

of a non-trivial solution of the field as well as a proper metric that

has the trace of a new conserved quantity. A proper metric means

a metric with a well defined horizon that would hide the singularity

and that holds temperature [72]. The major challenge that we face

in the investigation of strong hair is that when the solution is non­

trivial, the singularity would become naked, i.e., the metric would

not have a proper horizon and the metric would be proper only for a

trivial solution [73, 74]. Weak interpretation of scalar hair in a BTZ

and RN black holes are discussed in chapter 6 and in chapter 7,
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Figure 1.12: The configuration of the scalar field <I> in a symmetric 
double well potential. 
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a strong interpretation of scalar hair in a static (3+ 1) black hole has 

been described. In this chapter, a non-trivial solution and a proper 

metric have been obtained. 



Chapter 2

Thermodynamics of static

Einstein spaces-

Back reaction

2.1 Introduction

If it isn't a black hole, it really has to be something exotic !

S. W. Hawking.

Classically, black holes are perfect absorbers but do not emit

anything; their physical temperature is absolute zero. The situation

that black holes swallow everything that comes near by would

adversely affect the validity of second law of thermodynamics, since

the entropy of universe would decrease by means of absorption. If

this amassing of matter continues, the mass of black hole and hence

its surface area increases, which leads to the area theorem ~1 2: o.
In 1974, Stephen Hawking [19] showed that black holes are not
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entirely black but emit thermal radiation. The continuous emission 

of radiation will be resulted in the complete vaporization of black 

holes, which is contrary to the area theorem. But the area theorem 

and second law of thermodynamics are basic laws and hence must be 

protected. So Bekenstein [21] proposed that the black hole should 

possess an entropy and it must be a function of the area of the black 

hole horizon. The temperature and entropy of a black hole are given 

as 8:M (for SBH) and 4 respectively, where M is the mass of the 

black hole and A is the area of the horizon. 

After the advent of Hawking's discovery that a black hole in 

empty space radiates energy with a thermal spectrum[19], it has been 

believed that a black hole can exist in thermal equilibrium with a 

heat bath possessing a characteristic temperature distribution. The 

heat bath around the black hole could be composed of the quanta of 

the field in the black hole geometry. The gravitational effect of the 

heat bath is characterized by its gravitationally induced renormalized 

stress-energy tensor [75]. 

Had no equilibrium been established between black hole and the 

thermal field, black hole would have evaporated. To save the black 

hole from such an unpleasant situation, York [40] considered the 

Schwarzschild black hole and proposed a cavity at the outer event 

horizon to contain the field which results in a back reaction. This 

cavity has some physical properties such as; surface tension, charge 

and temperature. In this model two event horizons are proposed; 

one at r = M, where M is the mass of black hole alone (naked black 

hole) and the other at r = m, where m is the sum of the mass of 

black hole and of radiation surrounding it (dressed black hole). The 

introduction of a cavity of radius ro as an effective boundary at a 
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finite distance is very important since the back reaction problem does 

not have definite solution unless boundary conditions are specified. 

The spacetime geometry inside the cavity has two parameters, such 

88, the mass Mbh of the black hole and the radius ro of the cavity 

containing the thermal radiation. 

The theory of quantum fields in curved spacetime reached a high 

level of development ever since the Hawking's celebrated result that 

black holes radiate energy with a thermal spectrum. The rigorous 

description of the quantum behaviour of a black hole requires the 

back reaction of the emitted radiation on the back ground space­

time. Temperature of a black hole differs from the Hawking's tem­

perature if the back reaction contribution in the form of an energy 

density term is taken into consideration [76]. Hawking's formula of 

temperature of black hole predicts an ever-increasing temperature, 

resulting in the complete evaporation of the hole. But we can check 

the complete evaporation by properly taking the back reaction into 

account. The remnant mass still be much greater than Planck mass. 

The expectation value of the renormalizcd stress-energy tensor 

in an appropriate vacuum state is regarded as the source in the 

Einstein semi-classical field equation and this equation is solved self 

consistently for the metric [77]. This is the back reaction program. 

Such tensors are constructed by using renormalization techniques 

on the real Euclidean section of the black hole geometry with its 

Euclidean time coordinate identified with period f30 so as to eliminate 

singularity at r = rh. 

Huang, Liu, Xu and Zhao proposed a thermodynamical approach 

to tackle the back reaction program [78, 79J. They had used this 

approach to solve the back reaction problem of Schwarzschild black 
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hole and the results agree with the York's one which was obtained 

by solving the Einstein's equation [40j. Lin-Xin Li made use of the 

thermodynamical approach to solve the back reaction of Kerr black 

hole [80]. Using the functional formalism, a generalized Einstein 

equation in the form of a Langevin equation for the description of 

the back reaction of quantum field and their fluctuations on the 

dynamics of curved spacetime had already been investigated [81]. 

A static spacetime is one which has a property that 

(2.1) 

where RJLv is the Blcd tensor of the spacetime and A is the Cos mo­

logical constant. The outline of this chapter is as follows. In section 

2.2, back reaction program is presented. Solution to back reaction is 

discussed in section 2.3. In section 2.4, a thermodynamical approach 

to back reaction is presented. We give conclusion in section 2.5. 

2.2 Back reaction program 

Back reaction manifests itself in the change in the metric of a black 

hole. When metric changes, the radius of event horizon changes, 

thereby changing the surface area and hence entropy. In the present 

context we concentrate on a static black hole, like an anti-de Sitter­

Schwarzschild black hole, its asymptotic region being not far away 

from the horizon. The spacetime would become Lorentzian at 

(6~)1/3. Let the anti-de Sitter-Schwarzschild black hole be placed 

inside an axisymmetric spherical cavity which is being filled with 

Hawking's radiation. The thermodynamical system composed of a 
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black hole and radiation in curved space can be treated as a thermo­

dynamic system composed of a black hole with surface (dressed black 

hole) and radiation in fiat space. The surface tension of surface must 

be negative in order to balance the radiation pressure. Eventhough 

thermal radiation differs from Hawking radiation [45], its influence 

can be absorbed into the properties of the surface at the outer event 

horizon. Suppose a quantum spin-2 field is present around the black 

hole. Now the thermal radiations getting reflected by the surface is 

balanced by the renormalized stress energy tensor of a spin-2 field 

in the static spacetime of the black hole. The total effective mass 

energy inside a cavity of radius 1'0 for static observer is [40] 

m(r) = M + Rrad(ro) = M[l + f(J-t + Q)]' (2.2) 

where € is a constant equal to 27r'lt2 and J-t and e are two position 

dependent variables. In the above equation M represents the mass of 

naked black hole, Erad the mass of radiation surrounding the black 

hole. The interaction between the black hole and spin-2 field in 

thermal equilibrium is incorporated in the surface term M€(J-t + Q). 

The back reaction program is then to solve the Einstein's equation 

(2.3) 

where (TIJ-v) is the renormalized stress-energy tensor of a spin-2 field 

in Einstein static space and GIJ-II is the Einstein's tensor. 
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2.3 Solution of back reaction program 

A Schwarzschild black hole in a spacetime with negative cosmological 

constant is known as the anti-de Sitter-Schwarzschild black hole. 

The metric to the static and spherically symmetric anti-de Sitter­

Schwarzschild black hole is given as 

(2.4) 

where ro is the radius of cavity. Then the linear perturbations to the 

metric result from expanding the metric function in E as 

(2.5) 

Here we impose a condition that 9m2 A = 1. Generally in the ex­

tremal case, the temperature of the black hole is zero. Even though 

in the extremal case, the temperature of the horizon is still not zero 

for an anti-de Sitter situation. At the horizon, 1 - 2~ + 2;:2 = O. 

Solving the equation, the radius of the event horizon is obtained 

as rh ~ 1.8m. Since r is a function of mass only, we can write 

rh = am(ro) where a is a constant. When the region inside the 

cavity is considered, rh = am(r). So that the metric is modified as 

where, W = om;.(r) and am(r) the radius of event horizon. As the 

metric is affected by the quantum field, the radius of the horizon is 



:2.3 Solution of back reaction program 49 

modified as 

rh = aM[l + €(p, + g)], (2.7) 

as the radius of the outer horizon. Now the area of the horizon may 

be written as A = 47l'a2M2[1 + 2f.(p, + g)]. Differentiating A w.r.t. 

M and putting nh = 27T;2M and dM = TbhdSO (So the entropy of 

naked black hole) we get 

d50 = ~dA[l - 2E(p, + e)]. (2.8) 

On integrating Eq. (2.8), we get 

So = tAll - 2E(p, + e)] + c. (2.9) 

As the boundary condition, we have, So = 0, when A = 0. So c = 0. 

Then, Eq. (2.9) is simplified as 

S = So + !€(p, + e)A = So + Ss, (2.10) 

where, 5 = t A is the entropy of dressed black hole, A is the area of 

the outer horizon or the cavity, Ss is the correction to the entropy 

or the surface entropy due to back reaction. 

We have the Einstein's equation as 

(2.11) 

where, Rill! is the Ricci curvature tensor and R is the scalar curvature 

and Tp,v is the stress energy tensor of a spin-2 quantum field in the 

black hole spacetime which acts as a source term in the semi-classical 
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Einstein's equations. The Ricci tensor is given as 

-8r~1I 8
2
(ln A) m rn 8 [1 . ~rn ( ) 

RIlII = a' + a {) + rlln IIm - -8 n v -gJ "11' 2.12 X Z xll XII ,.. xn ,.. 

where, r~1I is the Christoffel symbol, which can be given as 

(2.13) 

The Ricci scalar is given as 

R = Rg + Ri + R~ + R~. (2.14) 

The stress energy tensor of spin-2 quantum field in the static Ein­

stein's spacetime is [46, 82] 

T II '1"1(tr)1I b '1"1'11 '1"1"11 
Il = as..Lp. + s..L1l + Cs..Lp. • (2.15) 

All three tensors are finite at the horizon (rh = am). The first tensor 

TJtr)1I is the only one with nonzero trace at the horizon: 

(2.16) 

where, 
_ 1 Or9tt I 1 

/'i,h - 2 V-gttgrr r=rH= 2a:2M' (2.17) 

is the surface gravity. Defining the constant tensors as, 

(2.18) 
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where, c5t is the usual Kronecker delta function. At the horizon 

(w = 1), only the first tensor in Eq. (2.15) is of interest and the 

coefficient as = a2 = 28~O~2 [82J. The tensor components are then 

given as 

(2.19) 

The components of the Ricci curvature are 

w w' (l-w) , 
R22 = -~ - - + f(! r r r 

R33 = (1 - w) sin2 () - rw' sin2 () - sin2 () + r(l - w) sin2 (}f(!'. 

(2.20) 

The mixed Ricci tensors are given as 

Ro 3" 2'2 1 11 2 ,w' 
0= --w f(! + {I - W)f (! - -w + -(1 - W)f(! - -

2 2 r r , 
I 2 '2 1, , 1 11 W 

RI = (1- W)f (! - -w €(! - -w +-
2 2 r 

2 W w' 1- W , 
R2 = -- - - + --f(! 

r4 r3 r3 , 
3 1-w w 1 l-w, 

R3 = -- - - - - + ~-€(!. (2.21) 
r2 r r2 r 
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The Ricci scalar is 

( ) 2 '2 3(I-w) I " 1 ' R = 2 1 - W £ l? + -r-E(2 - 2w E(2 + ~3wEl? 

(2.22) 
w' w w' I "(I-w) 

-- - :4 - -::r - ::2 - W + . r r r r r2 

Components of Einstein's mixed tensors at the horizon (w = 1) 

o _ 1 ' I 1 /I w' I I w' _ 0 
Go - -"2W El? - 4w - 2r + 2T4 + 2r'1 + 2r3' - 87fTo 

(2.23) 
2 _ I I w' I 1 /I w' 1 _ 2 

G2 - W £(2 - 2r3' - 2T4 + 4W + 2r + 2r2 - 81l'T2 

3 _ ' , 3w' I" 1 1 w' _ 3 
G3 - W £(2 + 2r + 4W - 2r'1 + 2T4 + 2r3' - 81l'T3 , 

where w' = Q'. dm - om and w" = _ 20 dm + 2am. From Eq. (2.23) 
, r dr -;:'T T2"' dr rr 

(2.24) 

We have, m = M[l + E(/-L + g)]. Then, ~r;: = EM{! + :;) and at 

w = 1, we have from Eq. (2.24) 

(2.25) 

On integrating Eq. (2.25), we get 

(2.26) 
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With the boundary condition that c{J.t + (!) = 0 at r = M, we have 

(2.27) 

We have taken an extremal case, 9m2A = 1 and T = 211"~2M' Then 

at r = am, we have 

(2.28) 

where q, C2, C3, C4, C5 are constants. Substituting Eq. (2.28) in Eq. 

(2.10), we get 

8 = 80 + !HJ.t + e)]A::= {3~1/2 - ~ + 3C3Al/2)T + er - c5T2 ]A, 
(2.29) 

where, ~[E(J.t+ e)] A ::= (3~1/2 - ~ + 3C3Al/2)T + ¥- - c5T2]A is called 

the surface entropy, which is a measure of back reaction. A black hole 

immersed in a quantum field and Hawking radiation kept inside a 

cavity is called a dressed black hole. Eq. (2.29), reveals that the back 

reaction depends on temperature, since the surface entropy, which 

is a measure of back reaction, is a function of temperature. Thus 

the entropy of a dressed black hole depends on temperature also. 

An isolated black hole is called a naked black hole, whose entropy 

is a function of area of event horizon only. So a black hole may 

be assumed to be a thermodynamic system (micro canonical) taken 

inside a cavity with a boundary, in which the thermal radiation and 

quantum field do exist in thermal equilibrium. The entropy of the 

field and radiation inside the cavity does not reside in itself, but, get 

transferred to the surface and hence the name surface entropy. 
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2.4 Thermodynamic approach 

Black hole is assumed to be kept inside a cavity of radius ro. The 

surface possess a negative surface tension (j. The negative surface 

tension is proposed to balance the thermal pressure. Semi-classical 

quantum gravity plays a key role in the investigation of thermody­

namics of black hole [83J. Now the thermodynamic potential of the 

black hole with surface is given ru:; (84) 

(2.30) 

where, iI>o and <1>s are respectively the thermodynamic potentials 

of the naked black hole and that of surface. The thermodynamic 

relation reads as 

d<Jl = -SdT + (jdA, (2.31) 

where, S is the total entropy of the black hole. The above equation 

can be expanded as 

d<.Po = -SodT, 

(2.32) 

Then 

S - (~) - (8a) A s-- BT A-- BTA . (2.33) 

Let, V be the volume of radiation surrounding the black hole, Vbh 

the volume of the inner event horizon and Vext the volume of exter­

nal cavity. Then, let the radiation undergoes a change in volume 
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adiabatically, so that 

(2.34) 

By the first law of thermodynamics 

(2.35) 

where, M the mass of naked black hole, MR the mass of radiation, SR 

the entropy of radiation. Here we assume the condition that, (8So + 
6SR) = 0. The reason is that the change in the naked black hole 

entropy is compensated by the change in the entropy of radiation. 

Therefore 

(2.36) 

Then 

(2.37) 

The term, ~aT4 is the thermal pressure. Surface tension (J" always try 

to minimize the surface area of the cavity, hence 6y~h < 0, i.e., the 

back reaction makes the black hole more symmetric. So, as volume 

increases area reduces. Fig. (2.1), shows how the area becomes 

minimum when cavity is symmetric. Considering the condition that 

the back reaction ceases to occur as T ~ 0 and dimensionally, °Yi1.h 
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enit 
y 

Figure 2.1: When the cavity becomes symmet.ric, even though the 
surface area decreases, volume increases. 

is length, a particular form is proposed to °Y1h [85J. Let 

8Vbh _ m m 3 I T + Jl M - ~a~ - 1T4 og T 

(2.38) 
~ __ 0<_ 1 _ ~ 1 + Jl 
- 3A1/2 ~ 27A3/2 T4 T' 

since, 9m2 A = 1 and a, (3, I are dimensionless constants. Then from 

Eq. (2.37) 

--~T2-~1 T+~T3 
(J - 9A1/2 81A3/2 og 3' 

and the surface entropy is given as 

S - _(aU) A - [ 2ao T+ ~.l_ (3T2]A 
s - aT A - 9A1/2 811\3/2 Ta. 

(2.39) 

(2.40) 

The above equation for surface entropy is in agreement with what 

obtained in the Eq. (2.29) by the metric approach. In Eq. (2.40), 

the surface entropy may be assumed to be a linear function of tem-
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perature, the other non-linear terms may be neglected. The surface 

entropy may be then written as 

Ss = aTA. (2.41 ) 

By keeping the average radius constant, a symmetric surface encloses 

more volume with minimum surface area. So with more pressure 

inside the cavity. the cavity becomes more symmetric. Hence the 

pressure is inversely proportional to area of the cavity: So we have 

PSs = aT . (2.42) 

This is just like the gas equation. The graphical presentation of Eq. 

(2.42) is shown in Fig. (2 .2). Each point on the surface in Fig. (2.2), 

gives the values of p. Ss. T at which the black hole system remains 

in equilibrium. 

Entoropy 

Temperature 

Figure 2.2: The surfoce of thermal equilibrium inside the cavity. Each 
point on the surface gives S~, P, T at which equilibrium exists. 
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2.5 Conclusion 

An anti-de Sitter-Schwarzschild black hole surrounded by a spin-

2 quantum field in thermal equilibrium is held captive by a cavity 

of radius TO. Two horizons, one at 1'1 = M and second at 1'2 = 

M[l + E(J.L + l?)] were proposed so that the spin-2 field and thermal 

field coexist in equilibrium in between the two horizons. The change 

of entropy of a black hole which is a measure of back reaction by the 

York and thermodynamical approaches gave identical results. The 

entropy of a dressed black hole (sum of entropy of naked black hole 

and surface entropy) is found to depend on temperature of black hole 

and the area of the event horizon. Generally the entropy of a black 

hole is !A, where A is the horizon's area, but the surface entropy 

which is a measure of back reaction depends on the temperature 

also. The surface entropy or back reaction is due to the quantum 

field other than gravitational field that is present in the vicinity of 

the black hole. The cavity, which has many physical properties such 

as thermodynamic potential and surface tension holds the quantum 

field and the Haw king radiation so as to keep the black hole from 

evaporation into nothing. 



Chapter 3 

Back reaction in a static 

black hole with a mass less 

quantum field 

3.1 Introduction 

A black hole - a tremendous creation. Its physics defies imagination. 

Time and space it can bend. Wow! I can't comprehend the gravity 

of this situation, 

a layman. 

Since a complete and self consistent quantum gravity theory still 

eludes us, the evaporation of black holes can be studied only by using 

a semi-classical approach. One can assume that the expectation 

value of the stress-energy tensor operator of the quantizcd fields in 

a suitably chosen state, acts as a source for the dynamical evolution 

of the back ground spacetime. This theory would correspond to an 
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appropriate limit of a self consistent quantum theory of gravity [86J. 

In this chapter we make use of the stress-energy tensor given 

in Eq. (2.15) in solving the Einstein's semi-classical field equation 

[45, 46J. Since black hole acts as thermodynamic system, a stable 

equilibrium may be achieved by putting the black hole in a cavity 

[78, 79, 80]. There will be stable and unstable orbits in the spacetime 

of a black hole. The stability of an orbit is decided by the nature 

of effective potential of the spacetime. In a perturbed spacetime, 

the effective potential will be altered, which results in the change 

of the stable and unstable orbits of massive and massless particles 

[82, 87, 88}. The order-n fluctuation of gauge fields would act as a 

repulsive gravity and its strength increases as the higher order in the 

back reaction are included [89J. 

Recently it is reported that the cosmological constant is positive 

[90]. This has led to a renewed interest in de Sitter space [91, 92, 93] 

and hectic research is going on in the field of de Sitter space. Ther­

modynamics of de Sitter black hole [94, 95, 96J and its surface gravity 

for different event horizons had already been evaluated [97, 98J. For 

a given observer somewhere in space, the black hole radiation is uni­

directional, but radiation from the cosmological horizon would arrive 

to him from all directions. So, the back reaction problem in the de 

Sitter spacetime has aroused special interest, since the result may 

bring us close to the knowledge about the stability of a black hole. 

In this chapter, back reaction at the cosmic horizon of a 

Schwarzschild-de Sitter black hole in thermal equilibrium with con­

formal mass less quantum field is investigated. Two methods have 

been proposed to measure the back reaction: one by solving Ein­

stein's semi-classical field equation and the result is in agreement 
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with that of the standard results, second by evaluating the perturbed 

potential in the presence of a quantum field using the Hamilton­

Jacobi method and thereby suggesting stable and unstable orbits for 

massive and massless particles. The outline of the chapter.3 is as 

follows. In Sec 3.2, the entropy change is calculated from the change 

in the metric. In Sec 3.3, the theory of back reaction program is 

discussed by solving the Einstein's field equation. In Sec 3.4, the na­

ture of the perturbed spacetime geometry is presented by examining 

the effective potential and orbits of massive and massless particles 

by making use of Hamilton-Jacobi method. In Sec 3.5, we give the 

conclusion explaining the differences in the results of chapter.2 and 

chapter.3. Back reaction at the black hole event horizon can also be 

investigated using similar methods. 

3.2 Entropy change 

Suppose a massless quantum field is present in the vicinity of a black 

hole which is conformally coupled to the spacetime geometry. Back 

reaction can be measured by measuring the entropy change as given 

Eq. (2.1O). Again the perturbed metric conformal with the quan­

tum field changes the effective potential of the black hole spacetime. 

The extent of change in the potential gives a measure of back reac­

tion. The presence of field would change the radii of the stable and 

unstable orbits of massive and massless particles. 

For a given arrangement of a black hole and quantum field in 

thermal equilibrium, the sum of the masses of the naked black hole 

M and radiation Erad is a constant. Then the metric of the static 

and spherically symmetric Schwarzschild-de Sitter black hole of mass 
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m(ro) in vacuum is given as 

(3.1) 

where, ro is the radius of cavity. The horizon surface (here outer 

horizon is at ro) equation of de Sitter black hole is as follows 

2m A 2 
1- - - -r =0. 

r 3 
(3.2) 

The above equation is a unitary cubic equation. When gm 2 A < 1 

is satisfied, it has three different real roots: r - = - 21* cos( ~ -

~); rh = -2/f cos(~ + ~); re = 2/f cos(~), where 

cos ~ = ~[( J9m2A - 1 - 3mv'A)1/3 - (J9m2 A - 1 + 3mv'A)1/3J. 

(3.3) 

Now r_ is a negative root with out a physical meaning; rhis the 

smaller positive root, which is the radius of the black hole event 

horizon; re is the larger positive root corresponding to the cosmic 

horizon. Between the inner horizon (horizon of naked black hole)and 

outer horizon (horizon of dressed black hole or cavity) the mass m 

is a variable so that, mer) = M[l +cJ.l(r)J, in which C is the linearity 

constant equal to 21TtZ and M represents the mass of naked black 

hole. The perturbed metric is given as 

(3.4) 
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In Eq. (3.4), the linear perturbation term can be given by the Eq. 

(2.5). The radius of the cosmic horizon is given as 

re = Jx[h/9m2A - 1- 3mvi\.) 1/3 - (J9m2A -1 + 3mv'A)1/3J. 

(3.5) 

The cosmological radius in terms of A alone is [96J 

(3.6) 

The area of the cosmic horizon is given by 

(3.7) 

We know that, 0 < 9M2 A < 1, then by applying the linearity con­

dition we get Ac :::: 247fm2 :::: 241T M2 (1 + EJL)2. As the area Ac of a 

black hole is a function of mass M, then 

dAc ( ) dM = 481TM 1 + 2EJL . (3.8) 

The temperature range of cosmic horizon is, 2111' VI < Tc < 2~..,fA 
[96J. As an average, Tc ~ 12~M ( with the assumption 24M2A = 1). 

But, dM = TcdSo. Hence from Eq. (2.10), we have 

(3.9) 

In the above equation, ~ Ac = S is the entropy had the entire mass 

m ( including naked mass M and radiation mass Erad) been concen-
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trated as a black hole and So is the entropy of the naked black hole 

and Ss is the entropy of the surface. Therefore the entropy of the 

dressed black hole 

1 
S = So + Ss = So + 2CJl,Ac. (3.10) 

In the above equation, Ss is a measure of back reaction since it 

results from the change in metric. From Eq. (3.10) we can see that 

the entropy of a dressed black hole of mass m is greater than the 

entropy of a naked black hole of mass M by an amount equal to the 

entropy of the surface. 

3.3 Theory of back reaction 

Suppose there is an external non-gravitational free field 7f; with a 

quadratic lagrangian on a curved background spacetime with met­

ric gab and 'l/J is in vacuum state ('l/J) = 0, appropriate to the back 

ground. Quantum fluctuations of'l/J give rise to ('l/J2) =f. 0 and we can 

obtain the expectation value of a renormalized symmetric stress­

energy tensor (Tab). In accordance with current methods [75], we 

assume that the background spacetime is Ricci flat (Rab = 0) and 

Tab satisfies the background conservation law, \lbTab = O. The back­

reaction program is then to solve the semi-classical Einstein equa­

tion G jJ.// = 8Jf[Tab + Tab], where Tab is the stress-energy tensor due to 

quantum fluctuation of the metric. In our present work, we ignore 

Tab, by putting the black hole in a cavity and treating them as a 

micro-canonical ensemble. 

When the Hawking radiation is fully thermal, the thermal pres-
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sure is iaTz~c' where 7loc = J~:oo' But as proposed by Page [45] 

and Frolov. (46], the best method to present a pressure is the stress­

energy tensor of radiation. The stress-energy tensor of radiation is 

a function of black hole temperature Tc(temperature of cosmic hori­

zon), which is the temperature as measured by an observer at flat 

space time and also finite. The back reaction involves solving of 

Einstein's field equation, GIlV + Agllv = Rllv - ~gllvR + AgJLv = 

87rTJLlIo The stress energy tensor of the massless quantum field 

in the static Einstein spacetime is given by the Eq. (2.15) as, 

asT~tr)lI + bsT;: + csT;v [46, 82). The tensors in Eq. (2.15) are 

finite at the horizon. But only the first tensor T~tr)v is with non zero 

trace: 

(3.11) 

h - [h(O)+~h(~)-¥2h(1)1 . b [2h(O)+~h<4)+2h(1)l._ 
were as - (28801t'2) , s === (28801r2) , Cs 

(-..1.h(O)+92h(O)] . . . 
35(28807r2 ) [46]. Here h(s) IS the number of hehclty states for 

the spin s. The second tensor T~v is the one that contributes at far 

distances, and the third is finite at the horizon and vanishes asymp­

totically at infinity as r-3 . The third tensor is important only for 

the region close to horizon. The components of the tensor at the 

horizon w = 1 [82J 

(3.12) 
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where K.c is the surface gravity at the cosmic horizon. We have 

K. - Or9t! I 
c - 2,j-9tt9TT r=rc 

(3.13) 

SO 12;M is the approximate temperature of cosmic horizon. The 

components of Ricci tensor are (with w = 2~ + At) 

(3.14) 

(3.15) 
1 11 1 w' 1 -2w (1 - w)- + r(1- w)- . 

w w' (l-w) I 

R22 = -- - - + Ep . 
r2 r r 

(3.16) 

R33 = (1 - w) sin2 0 - rw' sin2 
() - sin2 0 + r(l - w) sin2 Of p'. (3.17) 

The mixed llied tensors are given as 

o 3, I 2 '2 RO = --w Ep + (1 - W)E P -
2 , 
1 11 2 'w 
-w + -(l-w)fp --
2 r r , 

1 2 '2 1 , , 1 11 W 
RI = f P (1 - w) - -w fP - -w +-

2 2 r 
2 w w' (1 - w) , 

R2 = -- - - + fP ,4,3 ,3 
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(3.18) 

The Ricci scalar is given as 

R = 2(1 - w)£2p'2 + 3(1-W)Ep' _ w' _ ~ 
r r r 

(3.19) 
1 11 2' , (l-w) w' (l-w) , 

-:;=2" - w - w cp + ------rr- - ~ + ~Ep. 

Components of Einstein's mixed tensors are 

(3.20) 
, I 

W + W + 1 + w l-w' 8 T.0 A - 2r 2r4 ~ ~ - 'ir3EP = 1r 0 - . 

1 l' I 3 '3 w' w 
Cl = 2w Ep + 2r(1- w)cp + 2r + 2T4 

(3.21) 
1 w' l-w' l-w _ 1 

+~ + 2r3 - 'ir3EP - 2T2 - 81rT1 - A. 

2 _ l-w I W w' 1 l-w w' 
C2 - ~cp - 2T4 - 2r3 + ~ - 2r2 + 2r 

(3.22) 
3(1 ) , '" 11 - ;;.W Ep - (1 - w)c2p 2 + w Ep + ~ = 81rTi - A. 

3 _ w' l-w' " l-w l-w ' C3 - 2r3 - 2;3EP + W Ep + 2TT - 'i:rEP 

(3.23) 

where W = 2m + Ar2 . w' = ~dm _ 2m + 2Ar and wl/ = _~ddm + 
, r 3' r dr r2 3 r r 

~ +2:. From Eq. (3.21) and Eq. (3.22) and with the linearity 
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condition that {;2 ~ 0, we have at w = 1 (at the horizon) 

1 11 w' 1 w' [} 2J ( ) 4 --2W + - + 4" + 3 = 87r T} -T2 = 87r -288as + 168bs -12cs "'c' 
r r r 

(3.24) 

Substituting as, bs , Cs, W' ! w" in Eq. (3.24), we have 

(3.25) 

where k is a constant. Solution to Eq. (3.25) is 

4 2A 3 
m = (k",c - 15)r + c, (3.26) 

where c is a constant. From the relation m = M(l + Ej..L), we have 

~~ = EM1£ ! then Eq. (3.26) is modified as 

(3.27) 

Applying the boundary condition, Ej..L = 0 at the cosmic horizon, we 

have at the cavity r = ro, 

(3.28) 

where ro is the radius of the cavity. The above result is in agreement 

with the York's approach [40J. Substituting Eq. (3.28) in Eq. (3.9) 

we get 

(3.29) 

Eq. (3.29) shows that the entropy of a naked black hole is less than 

~ Ac. The term Ss is the surface entropy, which is a measure of back 
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reaction. Thus we may conclude that the cavity ensures the entropy 

of the cosmic horizon as ! Ae. The expression for the surface entropy 

depends on the area Ae of the event horizon. This difference between 

the entropy of dressed and naked black holes would appear as the 

surface term. The Eq. (3.29) reveals the stability of the black hole. 

Continuous emission of Hawking radiation would finish off a black 

hole or would reduce the entropy thereby destabilizing the black hole. 

Eq. (3.29) says that any decrease in the entropy of the black hole 

would appear as the entropy of the surface thereby keeping the black 

hole stable. 

In the same way, from Eq. (3.22) and Eq. (3.23) we can find the 

expression for tp which is the term corresponding to the quantum 

field. We have 

dp w' 1 1 1 w' 
t dr = (1 - w) - ~ + (1 - w)r - r 3 (1 _ w) + (1 _ w)r2 ' (3.30) 

Since cosmic horizon re is large, terms such as (l_lw)r' r2(Lw)' 

(1-~)r3 can be neglected. Then we get 

1 
€P = -log(l - w) + '2' 

r 
(3.31) 

The expression for tp can be substituted in the metric equation to 

find the limit of perturbation. In the coming section, the effective 

potential is evaluated in the presence of quantum field. 



Back reaction in a static black hole with a massless 
70 quantum field 

3.4 Effective potential 

The effective potential of the test particles moving in static and 

spherically symmetric back ground geometry is determined based on 

the Hamilton-Jacobi approach. The metric of the Schwarzschild-de 

Sitter black hole in thermal equilibrium with a massless quantum 

field is 

(3.32) 

The trajectory of the particle of mass mo moving in this back ground 

can be obtained by making use of Hamilton-Jacobi equation 

/I as oS 2 
gIL --+mo=O, 

axIL aXil 
(3.33) 

where S denotes the action. Expanding this equation in the black 

hole geometry we get in the equatorial plane(8 = 7f/2), 

Now to determine the H - J function S, we assume that 

S(t, r, cjJ) = -E(T) + A(r) + £cjJ, (3.35) 

where E and £ are the constant energy and angular momentum of 

the test particle. Then substituting the Eq. (3.35) in the H - J 

equation (Eq. (3.34)) we get 

aA £2 
-[1 - wj-1e-2{p(r) E2 + [1 - w](_)2 + 2" + 1 = O. 

or r 
(3.36) 
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From the above equation 

In a time translational symmetry £ is a constant, so 8?. = 15 (a 
aE 

constant). The H - J function is obtained as 

- JT (£2 Cl} + r2) ) 1/2 _ 
S(t, r, cjJ) = -Et + (1 _ w)2e2€p - (1 _ w)r2 + LcjJ, (3.38) 

and therefore, 

as JT (£2 (l} + r2)) -1/2 E 
aE = t5 = -t + (1- w)2e2€p - (1 - w)r2 (1- w)2e2€p· 

(3.39) 

The radial velocity of the test particle is given by 

This equation governs the radii of allowed orbits of test particles in 

the black hole space time geometry. Then the function 

(3.41) 

plays the role of the effective potential with the condition that £2 > 

V(r). Substituting Eq. (2. 2) in Eq.{3.41) we get 
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But €JL = k (kk~ - ;Z )r3 • Substituting this in the above equation 

we get the potential for particle as 

(3.43) 

When photon is considered, the effective potential is 

2M 9A (L2) V2(r) = [1- - - (2kk~ + -)r2](1 + 2cp) 2 . 
r 15 r 

(3.44) 

In the unperturbed situation the expressions for the above potentials 

are V2(r) = [1 - 2~ - ~r2J (~ + 1), V 2(r) = [1 - 2~ - ~r2JS. 
In Fig. (3.1), the unperturbed potentials of quantum particle and 

photon are shown. The graph of particle (bold line) shows a maxi­

mum at r = 3.2M and crosses zero and enters a negative region at 

r = 11.5M. In the graph for photon (narrow line) the maximum is 

at r = 3M and crosses zero at r = 11.5M. In Fig.(3.2), perturbed 

potentials of a particle (bold line) and a photon (narrow line) are 

shown. The maximum potentials for the particle and photon are at 

r = 2.95M and r = 2.9M respectively and cross zero at r = 6.75M. 

The presence of a quantum field has resulted in the increase of at­

traction. With the condition that 54M2A = 1 and £2 = 81M2, in 

the unperturbed situation, the radius of the unstable circular orbit 

for particle and photon are respectively at 

r~3.2M, 

(3.45) 

r=3M. 
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Figure 3.1: Variation of effective potential in the absence of back­
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When a quantum field is present around the black hole, the mass 

M of naked black hole is to be replaced by mass m of dressed black 

hole. In this case, the particle and photon will have the unstable 

circular orbits at 
r = 2.95M, 

(3.46) 

r = 2.9M. 

respectively. Both the graphs show that there are no stable orbits. 

3.5 Conclusion 

Hawking's evaporation eventually finishes off a black hole, but we 

know that black hole is stable. To have such an equilibrium, there 

must be a pair of balancing forces. A cavity is proposed to con­

tain the black hole, so that Hawking radiation and quantum field 

exist in equilibrium by means of surface tension of the cavity. In 

this work, a Schwarzschild-de Sitter black hole with mass M and 
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temperature Tc = 12; M surrounded by a massless quantum field in 

thermal equilibrium is held captive by a cavity of radius ro. The 

quantum field and thermal field coexist in equilibrium in between 

the horizon and cavity. A cavity, enclosing the black hole and field, 

should be there to ensure the exact entropy. It is determined that 

the entropy of the dressed black hole is ! Ac. The solution of EJ.L is 

in agreement with that of York. The change of entropy of a black 

hole is a measure of back reaction. Again the change in the gravita­

tional potential of the black hole space time shows the effect of back 

reaction. The maximum potentials for particle and photon are at 

r = 2.95M and r = 2.9M. Potentials cross zero at r = 6.75M in the 

presence of an external quantum field. The particles and photons are 

easily captured if they possess enough energy to reach r = 2.95M 

and r = 2.9M, otherwise they would have scattered away. 

The surface entropy in anti-de Sitter-Schwarzschild black hole 

depends on temperature and area of horizon whereas in de Sitter­

Schwarzschild case surface entropy is a function of horizon area only. 



Chapter 4 

Generalized second law 

and entropy bound in 

a black hole 

4.1 Introduction 

Things fall apart; the centre cannot hold and more anarchy is loosed 

upon the world. 

W. B. Keats, The Second coming. 

The studies on black holes during the last 30 years have brought 

to light strong hints of a deep and fundamental relationship among 

gravitation, thermodynamics and quantum theory. The cornerstone 

of this relationship is the black hole thermodynamics, where it 

appears that laws of black hole mechanics are, in fact, simply 

the ordinary laws of thermodynamics, at least in a theoretical 

perspective. There is a huge increase, of the order of 1020 , in 
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entropy of a star during its gravitational collapse to become a black 

hole. It is presumably associated with the gravitational microstates 

of the black hole through the number of ways in whkh a black hole 

of a given mass 'm' and area 'A' can be formed. 

It has been proposed that black hole entropy can be due to quan­

tum entanglement between the interior and exterior states of the 

black hole and also that entanglement entropy S is equal to quantum 

corrections of Bekenstein-Hawking entropy, Sbh[99, 100,101, 102J. In 

these arguments, the black hole entropy is related to the entangle­

ment entropy in the QFT in the same spacetime [103, 104J. Even 

now calculations of black hole entropy, GSL and the conditions to 

conserve GSL are live subjects in black hole physics. Appropriate 

vacuum state for the interior of a box with reflecting walls being 

lowered towards a Schwarzschild black hole is the Boulware state, 

which warrants finite but high value for the stress-tensor [105J. In a 

gedanken experiment, Jenson [106J showed that GSL is valid when 

matter with negative gravitating energy is added to a near-extremal 

U(1)-charged static black hole in Einstein-Maxwell theory. 

The analogy between laws of black hole mechanics and classi­

cal statistical mechanics will break down once the GSL is violated. 

Unruh and Wald [43, 44J analyzed this situation by performing a 

gedanken experiment. They considered a thought experiment of 

lowering a box containing matter toward a black hole taking into 

account of the effect of "acceleration radiation" ( the effective radia­

tion a stationary observer near a black hole would observe) [21]. The 

resulting change in entropy of the black hole 6Sbh in the round-trip 

process was shown to be greater than Ss, the original entropy of 

the contents of the box. The existence of Hawking radiation [19J 
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preserves the validity of the GSL because the thermal radiation is 

the state of matter and radiation which maximizes entropy at fixed 

energy and volume[44]. 

In order to make GSL valid, Bekenstein [50, 107] proposed a 

conjecture: There exists a universal upper bound on entropy S for 

an arbitrary system of effective radius R and energy E, which can 

be expressed in Planck units ( c = h = G = kB = 1) as f ~ 2nR. 

If the Hawking radiation were fully thermal, the radiation pres­

sure at the horizon would be infinitely high, since P( r) = ~a ~t)) , 
where x(r) is the red shift factor. This situation refrain us from 

bringing the box in the gedanken experiment to the event horizon. 

The concept that the thermal pressure of Hawking radiation assumes 

infinite value at the horizon is unwarranted as no physical pathol­

ogy is believed to exist at the horizon. To overcome this problem, 

many have [45, 46, 47, 75} proposed stress-energy calculations and 

obtained a finite value for the temporal and radial components of 

stress-energy tensor at the horizon. 

The information loss paradox in a black hole can be resolved by 

treating the Hawking radiation as not exactly thermal [108] and this 

concept will be used in this chapter. This implies that the pressure 

of Hawking radiation will have only a finite value at the horizon 

event hough Boulware vacuum inside the box suggests high value of 

stress energy tensor to explain the thermal radiation. Hence the 

box containing matter can be brought to the horizon. The state 

equations of radiation in asymptotic limit are given as 

(4.1) 
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where, p is the energy density, s is the entropy density, TT is the 

temperature of radiation and a is a constant. The asymptotic state 

equations of radiation when applied in the calculations of gedanken 

experiment, it is obtained that the GSL is violated. As the sanctity 

of GSL cannot be questioned, the state equations of radiation ( Eq. 

(4.1)) need to be modified. 

In a gedanken experiment, a box filled with radiation is lowered 

on to the horizon. For an inertial observer (freely falling), out side 

the box, he sees a Hartle-Hawking vacuum. This vacuum has a finite 

positive energy density value at the horizon. But he sees a vacuum 

inside the box with a negative energy density which blows up at the 

horizon. This vacuum is called the Boulware vacuum. The interior 

of the box which is initially empty will acquire a negative energy 

density through the lowering process. This negative energy density 

is an outcome of Boulware vacuum. So in evaluating the buoyancy 

on the box by the Hawking radiation, the pressures due to the stress­

energies of Boulware vacuum and Hartle-Hawking vacuum must be 

taken into consideration. 

The knowledge that the Hawking radiation near the horizon is not 

fully thermal, leads us to the conjecture that the gravitational field 

near the horizon can influence the equations of state of radiation. 

The state equations of radiation near the Schwarzschild black hole 

were earlier studied [109]. In this chapter we discuss the acceptability 

of general state equations of radiation near the horizon of a Reissner­

Nordstrom (RN) black hole. The spacetime around the RN black 

hole is static and spheric ally symmetric so that the Ricci scalar R 

is zero but Rab -# O. But in a Schwarzschild black hole both Rand 

Rab equal to zero. The scheme of the chapter is as follows. In Sec. 
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4.2, we describe the violation of GSL where ordinary equations of 

radiation are used. In Sec. 4.3, new equations of radiation and the 

upper bound are given. In Sec. 4.4, we give the conclusion. 

4.2 Violation of GSL? 

In a gedanken experiment, a box filled with matter or radiation is 

brought from infinity to the horizon and the bottom lid is opened 

so that the contents are released to the black hole. The box is then 

filled with Hawking radiation and is lifted back to infinity. In this 

process, we can determine the gain of entropy of the black hole as 

matter is swallowed and the loss of entropy as the Hawking radiation 

is lost. So, whether the loss of entropy is greater than the gain of 

entropy is the bone of contention in the study of GSL. 

A RN black hole with mass M and charge Q is situated inside 

a spherical cavity with radius TO greater than rh, negligible mass 

and perfect reflectabi1ity. Let us imagine that the black hole and 

Hawking radiation be in thermal equilibrium in the cavity. We fill a 

rectangular box of volume aA (a the height and A the cross section 

area of the box) with thermal radiation of temperature Tr at infinity. 

Now lower the box (Fig.4.1 ) adiabatically through a hole on the cavity 

to the horizon, release the contents, then slowly raise the box back 

to infinity. In general Tr »nh' The increase in the energy of the 

black hole in the above process is [43, 44] 

(4.2) 

where, Woo is the work delivered to infinity and Er is the rest energy 
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Figure 4.1: Gedankenexperiment: Black hole is kept inside a cavity 
and a box filled with radiation is brought to the horizon. 

of radiation in the box. This increase in the energy of the black hole 

manifests as the increase in the entropy. We have 

Er = aaATr
4 

Woo = W 1 - W 2 , (4.3) 

where, Er is the energy of radiation in the box, Wl is the work 

delivered to infinity on account of the weight of box and radiation and 

W2 the work delivered to the black hole on account of the buoyancy 

force of Hawking radiation. The entropy of radiation inside the box 

is 

(4.4) 

Since the process of lowering and raising the box is adiabatic, Sr 

remains constant, since no heat exchange takes place in an adiabatic 

process. 
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4.2.1 Calculation of Wt 

Wt is the energy delivered to infinity as the box is dropped on to the 

horizon under the action of the gravitational force of the black hole 

and may be given as 

W1 = er - E; 

t+a 
E = A it p{x)x(x)dx. (4.5) 

When the box is brought to the horizon, the bottom lid of the box 

is opened so that the radiation in the box will be in contact with 

the Hawking radiation. Then, E is the energy of the radiation in­

side the box after it has attained the thermal equilibrium with the 

Hawking radiation near the horizon, 1 is the distance from the hori­

zon to the bottom of box, X(x) is the red shift factor and x is the 

proper distance from the horizon to the box. Under thermodynamic 

equilibrium between acceleration radiation and radiation inside the 

box at a height l, the temperature of radiation becomes To(l). Then 

we have 

p(x) = dll~e 
__ 2M ~ 1/2 

X(x) - [1 r(x) + r2(x)1 , (4.6) 

where lloe is the temperature of acceleration radiation locally. Tioe 
is related to the equilibrium temperature To(l) as [110] 

(4.7) 
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On the horizon, To(l = 0) = nh' For l « rh and writing r = rh + x, 

x(x) in Eq. (4.6) may be modified as 

(4.8) 

x(x) will be zero at x = 0, Le., on the horizon. Eq. (4.8) is a rea­

sonably good approximation of the metric function inside the cavity 

in which the black hole is situated. On substituting Eqs. (4.6, 4.8) 

in the expression for E in Eq. (4.5), we get 

(4.9) 

Similarly, the entropy of the contents of the box is 

(4.10) 

But in an adiabatic process entropy never changes. So 

(4.11) 

From (4.10) and (4.11), the equilibrium temperature is obtained as 

(4.12) 

From Eq. (4.9), energy of the radiation after attaining thermal equi­

librium is obtained as 

(4.13) 
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But, Er = aAaTi, which is the energy of thermal radiation in the 

box. So 

(4.14) 

Now work done to infinity on account of gravity is 

(4.15) 

The work W1 depends on the distance l from the horizon to the 

bottom of the box. 

4.2.2 Calculation of W2 

The work done on the black hole on account of the buoyancy of 

Hawking radiation is [43, 44] 

l
l+a 

W2 = A P(x)X(x)dx, 
. I 

(4.16) 

where, P(x) is the pressure of Hawking radiation. If the Hawking 

radiation is fully thermal, then 

(4.17) 

So, at the horizon, P{ x) --7 00. This makes W2 --7 00, which means 

the box cannot be dropped on to the horizon. If the pressure is 

finite, the box can be brought to the horizon. In classical gravity, the 

geometry is treated classically while matter fields are quantized. In 

examining the semiclassical perturbations of the RN metric caused 

by the vacuum energy of the quantized scalar fields, we can treat the 

background electromagnetic field as a classical field. The right hand 
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side of the semiclassical Einstein equations will then contain both 

classical and quantum stress-energy contributions 

G~ = 8Jr[Tt + (Tt)]. (4.18) 

Tt represents the classical stress-energy tensor of scalar field and 

(Tt) is its quantum counterpart. Now consider the situation where 

the black hole is in thermal equilibrium with the quantized field, 

so that the perturbed geometry continues to be static and spheri­

cally symmetric. To first order in E = -itz, the general form of the 

perturbed RN metric may be written as; 

(4.19) 

where, f = (1 - 2mt) + ~) and [1 + 2Ep(r)] represents the pertur­

bation due to the scalar field. In order to save the black hole from 

extinction due to evaporation, the black hole is assumed to be placed 

inside a massless reflecting spherical shell. Inside the shell the quan­

tum field and Hawking radiation are in thermodynamic equilibrium 

and hence the black hole mass function mer) contains classical mass 

and the quantum first-order perturbation. So [111] 

m(r) = M[l + Ep(r)]. (4.20) 

This equation explains the back reaction. The metric perturbation 

functions, per} and per) are determined by solving the semi-classical 

Einstein's equation expanded to first order in E [111J. 

dp = _ 47rr2 (Tf), 
dr ME 
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(4.21) 

The right hand side of Eq. (4.21) is divergent on the horizon unless 

((T;) - (Tf)] vanishes there. Not only that both (T;) and (Tt) must 

be finite at the horizon. The expectation value of stress-energy tensor 

of a quantized massive scalar field in the RN space time is given as 

[111J 

(4.22) 

where, in the mass of scalar field and to = -lb. Rence, a probable 

form of the Hawking pressure at the horizon is given by Eq. (4.22) 

multiplied by a constant a. 

But, it has been shown that [105J, a box which is static on the 

horizon suffers the pressure of acceleration radiation and it induces 

a Boulware state inside box. In particular, the Rartle-Hawking state 

has been used in the computation of the renormalized stress-energy 

tensor in Eq. (4.22) and it is valid only for a freely falling observer 

near the horizon, not for the stationary (that is, accelerating) box. 

Therefore the effect of acceleration radiation also needs to be taken 

into consideration in the calculation of work W2 . 

Let the vacuum state inside the box is Boulware (B - state) and 

that outside is Rartle-Hawking (H - H). Considering the contribu­

tions of radiation pressures on the top and bottom of the box, the 

pressure on each side will be the difference of the pressure of H - H 

vacuum on outside and pressure of B - vacuum on the inside [105J. 
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(4.23) 

The pressure inside the box due to B - vacuum is given as [112] 

(4.24) 

where Ai and Bt are finite tensors and r = (r + + l), where 1 is the 

proper distance of the box from the horizon. Hence Eq. (4.24) is 

modified as 

Tt(B) = k~4 (~)6[At (r + + l)2 + Et] 
t bh r + + 1 t 12 t 

(4.25) 

So the net force to be applied to bring the box to the horizon is 

where, IT and lB are the proper distances of the top and bottom of 

the box from the horizon. By using Eq. (4.16), we now get 

The increase in the energy of the black hole in the gedanken experi-
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ment is obtained from Eqs. (4.2,4.3,4.15,4.27) as 

On the horizon, l ~ 0, for the HH vacuum, but IB "# 0 for the B 

vacuum because of the thickness of the box. Hence 

The increase of the black hole entropy in the gedankenexperiment 

may be given as, 

Since, nh « Tr we find, ~Sbh « Sr. This is a violation of GSL, but 

GSL is more or less a universal law, hence must be conserved. In 
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the above calculations, we took, p = aTz!e and s = ~aTz~e' which are 

not true, near the horizon. These equations don't prevail, unless the 

Hawking radiation is fully thermal. So we would expect a modified 

state equations of radiation under gravity. 

4.3 State equations of radiation 

As Hawking radiation is not fully thermal, the buoyancy would be 

finite and hence the box can be brought to the horizon. Since the 

gravity is very strong near the horizon, the equations of radiation 

near the horizon would be affected. By the first law of thermody­

namics, we have 

d(p V) = lloeds - pdV, (4.31) 

where, P is the pressure of thermal radiation, p is the energy density, 

s is the entropy density and V is the volume of the box. The local 

temperature of Unruh radiation is Tloe. The above equation yields 

[43} 

p + p = slloe, 

dp = sdTloe. (4.32) 

For a static spacetime, the hydrostatic equilibrium equation, derived 

from ,;a'Tab = 0, for a perfect fluid stress-energy tensor [43J is 

(4.33) 
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where, (a is a static Killing vector field. Since the Hawking radiation 

satisfies the hydrostatic equilibrium, from Eq. (4.31), we have 

d[x~;)pJ = -p{x) d~~), (4.34) 

where, X(x), is the metric function close to the horizon. In the flat 

space situation, the relation connecting p and s is given as 

(4.35) 

The term ~ A is the proportionality term connecting p and s, which 

can be expressed as C( (0). This term is not a constant, but a param­

eter that depends on the distance from horizon and may be expressed 

as C(l), where l is the distance from the horizon to the bottom of 

the box. In the spacetime of black hole, red shift factor also must be 

taken into account. Therefore, we may propose that [109J 

s = C(l)p(x)X(x). (4.36) 

This relation will converge to the flat space situation when there is 

no gravity. Substituting Eq. (4.36) in Eq. (4.32), we get 

p(x) + p = C(l)p(x)x(x)1k = C(l)p(x)To; 

p = p(x)[C(l)To - 1J. (4.37) 

From Eqs. (4.34) and (4.37), we get the expressions of radiation in 

the context of RN black hole as 

~ 
p(x) = PoX(CTO-I) 
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-1 

sex) = C(l)poX(CTO-1}. (4.38) 

Eq. (4.38) represents the modified state equations of radiation and 

are more realistic in explaining the physical situation near the hori­

zon. If Po is the energy density in the asymptotic limit and in the 

asymptotic limit X( (0) = 1, then 

p(oo) = Po 
4 1 

s(oo) = C(oo)Po = "3 Tr Po· (4.39) 

Eq. (4.38) converges to flat spacetime equations (Eq. (4.1)), as 

X( 00 ) -+ 1. The state equation of radiation in the context of 

Schwarzschild black hole had been utilized in calculating the entropy 

of self-gravitating radiation systems [113]. As we approach the hori­

zon, X -+ 0, hence the energy density increases but never becomes 

infinity because of the thickness of the box. From Eq. (4.38) and 

Sr = ~aT:aA, it can be shown that 

-1 4 1 
C(l)X(CTO-l) = --. 

3Tr 
(4.40) 

The R.H.S of Eq. (4.40) is a constant. As l -+ 0, both X and 

CT~-l -+ O. C(l) increases as we approach the horizon and on the 

horizon, C(l -+ 0) = i T!h . 

4.3.1 Generalized second law 

In calculating the entropy change of black hole, we have earlier con­

sidered the flat spacetime equations of radiation. Now we will eval-
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uate Wl with the new equations of radiation. We have 

Wl =Er -E; 

1
1+a 

E=A I p(x)dx 

1
1+a 

= Apo I X-f.dx, (4.41 ) 

where, ~ = (C~~~l)' By substituting Eq. (4.8) and Eq. (4.38) in Eq. 

(4.41), we get 

_ 1 2aApo f. 
E - (2 _~) [4(M2 _ Q2)]f,/4[rH1va] . (4.42) 

The entropy may be calculated as 

1
1+a 1Ha 

Sr = A I sdx = A I C(I)p(x)X(x)dx 

1
1+a 

= AC(l)po I X1-f,dx. (4.43) 

Eq. (4.43) is evaluated using Eq. (4.8) near the horizon as (1« rH) 

But entropy can also be written as, Sr = ~aAaT:. Equating this 

equation with Eq. (4.44) and evaluating for Po, we get 

( 4.45) 

In the asymptotic limit, C( 00) = ~ i". We can calculate the asymp­

totic value of energy density Po by using the relation, ~(oo) = 
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C~!:)+~~I ~ 0, considering the fact that Tr »To. Substituting 

C(oo)and ';(00) in Eq. (4.45), we get 

(4.46) 

But !4(~:!t;P/4 is a dimensionless constant and it may be absorbed 

in ~. Now substitute po in Eq. (4.42) 

3 aT; 2aA r:: HI 
E = 2 (2 _ .;) [4(M2 _ Q2)]CH1)/4 [rh/ y a] . ( 4.47) 

A l 0 C(l 0) 4/(3Tbh)To '" 1 E f d' t' s -+ ,... -+ = (4/(3nh)To-l) - . nergy 0 ra la Ion near 

the horizon is obtained from Eq. (4.47) as 

( 4.48) 

The term [rh/v1ij2 is a dimensionless constant. Had we taken 
[4{MLQ2)J112 

the asymptotic expressions in calculating the energy of radiation near 

the horizon, the value would have been approximately zero. Now in 

Eq. (4.28) 
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The entropy change of the black hole in the round trip process is 

The entropy of thermal radiation is 1aT:. Eq. (4.50) says that the 

increase in the entropy of the black hole is greater than ~T:. So the 

GSL is conserved. 

4.3.2 Upper bound on SjE 

The upper bound on the entropy was identified as a necessary con­

dition to conserve the GSL. Hence it is desirable to look into the 

verification of the upper bound on S / E. We have from Eqs. (4.42, 

4.44) 

(4.51) 

RN Black hole temperature is given as 

(4.52) 

where, M is the mass, Q is the charge and rh is the horizon radius 

of the black hole. From Eq. (4.51) 

(4.53) 
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Near the horizon, C( 1 --+ 0) = ~ T;h' Eq. (4.53) is modified with the 

situation f-:t > 1, as 

1 < E ~ 47ryaTh 
S 3 y'2(M2 - Q2)1/4 

S 4 47ryaTh 
E < 3 y'2(M2 _ Q2)1/4' 

( 4.54) 

Dimensionally, this formula is of the Bekenstein form [107, 50]. The 

Bekenstein upper bound is SIE :::; 27rR. Dimensionally, J:~-Q2 = 

L1/2 == a1/ 2 . Hence Eq. (4.54) may be written as SIE :::; 27ra, where 

a is the dimension of the box. 

4.4 Conclusion 

Generalized second law must be valid in all situations. When eval­

uating the GSL, if the asymptotic state equations of radiation are 

considered, the GSL will be violated. Since the Hawking radiation 

is not fully thermal, the gedanken experiment could be conducted 

close to the horizon, as the buoyancy force of Hawking radiation is 

finite at the horizon. The gravity is so strong near the horizon that 

the state equations of radiation must have been affected by it. Here 

we have obtained the state equation of radiation near the horizon 

of a Reissner-Nordstrom black hole and found that the GSL is con­

served. In the asymptotic limit, the equations converge to the usual 

expressions aT; and ~aT:. The parameter C(l) connecting the en­

tropy and energy density is ~,J; in the asymptotic limit and 13 J-
T 'bl> 

near the horizon. 

In the above calculation, the upper bound on SI E is analogous to 
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the one given by Bekenstein. The upper bound on SI E is a necessary 

condition to have the conservation of GSL. The above procedure 

has a slight disadvantage that the Eq. (4.38), doesn't give the exact 

value of p and s on the horizon because of the wrong coordinate. The 

correct equation will be obtained only in the absence of coordinate 

singularity and will be initiated somewhere else. 



Chapter 5 

Thermodynamics and 

entropy of self gravitating 

radiation systems (SGRS) 

5.1 Introduction 

Symmetry, as wide or as narrow as you may define it, is one idea 

by which man through the ages has tried to comprehend and create 

order, beauty, and perfection. 

Hermann Weyl, Symmetry. 

The theory of classical gravity warps up regions of spacetime 

in the vicinity of a black hole so as to produce surfaces that act as 

one-way membranes called event horizons. The event horizon, which 

is said to be the outer edge of a black hole has a radius that depends 

on the three parameters of the black hole such as mass, charge and 

angular momentum. Cosmic censorship says that the singularity 
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of a black hole should not be naked to an outside observer, Le., 

the horizon should hide the singularity. The event horizon actually 

restricts us from knowing the whereabouts of what had gone 

into the black hole. This constraint compels us to believe that 

there must have some fundamental relationship between gravity, 

horizon and thermodynamics, since thermal radiation carries no 

information because of its random character. The presence of event 

horizon or one way membrane is not necessarily an outcome of 

gravitational collapse since horizons can exist even in Minkowski 

spacetime for an accelerated observer. Rindler frame describes a 

uniformly accelerated frame of reference. Rindler spacetime has 

a non-compact surface as the event horizon, which is coordinate 

dependent. [75, 114J. 

Temperature is implicit in the Rindler spacetime and this leads 

to the study of QFT in this spacetime. The Rindler metric is sym­

metric under time reversal and there exists a natural definition of 

a time symmetric vacuum state. We can associate an entropy with 

such spacetime, since notion of temperature already exists. Having 

a notion of temperature, there are two ways of defining the entropy: 

(1) The partition function Z (f3) of the canonical ensemble of systems 

with temperature f3- 1 , is related to the entropy S and energy E by 

Z(f3) <X eS-(JE. (2) In thermodynamics, we have dS = dEjT(E). 

So the situation that entropy can be determined by the above two 

methods led to the unification of thermodynamics with mechanics. 

In the case of time symmetric vacuum state like Rindler space­

time, there will be no change of entropy dS and the thermodynamic 

method cannot be used to define the entropy. But, we can construct 

a canonical ensemble of a class of spacetimes with fixed value for f3 
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and evaluate the partition function Z(j3). Knowing Z(;3), we can 

calculate S. For the Rindler spacetime with a horizon, the parti­

tion function has the form Z ex eS-(JE, where the entropy per unit 

transverse area turns to be 1/4 while the energy is zero. Mathemat­

ically there is no distinction between the horizons which arise in the 

Schwarzschild, de Sitter, and Rindler spacetimes. Rindler and de 

Sitter spacetimes are natural choices which exhibit temperature and 

entropy [115J. 

In relativistic physics, Rindler coordinate chart is an important 

coordinate chart representing part of flat spacetime, also called the 

Minkowski vacuum. In special relativity, a uniformly accelerating 

particle undergoes hyperbolic motion. For each such particle, a 

Rindler frame can be chosen in which it is at rest. The interest 

in Rindler spacetime lies in its similar geometrical structure with 

the Schwarzschild black hole (SBH) near the horizon and it can 

mimic the gravitational collapse. Unruh effect is at the heart of the 

Hawking effect and the Hawking radiation in the SBH resembles 

with the Unruh radiation in the Rindler spacetime [21, 116, 117]. 

The entropy of SC RS with mass as the only parameter is shown 

to be the entropy of the black hole into which the SGRS of mass 

M would collapse [113]. The motivation for the present work is to 

know the temperature of horizon, by measuring the temperature of 

scalar field in thermal equilibrium with horizon and to study the 

collapse of SG RS in the Rindler frame and hence to calculate the 

entropy and the entropy bound. The SCRS may be assumed to be 

a scalar field in the Rindler spacetime so that it will transit through 

the horizon as if it is collapsed. In Sec. 5.2, the thermodynamics 

of Euclidean, Rindler and Schwarzschild spacetimes are investigated. 
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The temperature of scalar field near the horizon of Rindler horizon 

is also calculated in this section. In Sec. 5.3, the structure of Rindler 

spacetime and how scalar field would behave are given. In Sec. 5.4, 

the entropy of se RS and entropy bound are calculated. In Sec. 5.5, 

we give the conclusion. 

5.2 Thermodynamics of different spacetirnes 

5.2.1 Euclidean spacetime 

The close link between gravity and thermodynamics can be shown 

mathematically based on the relationship between temperature and 

the Euclidean extension of spacetime. The mean value of a dynami­

cal variable f(q) in quantum statistical mechanics can be expressed 

in the form 

< f >= ~ L J c/JECq)f(q)c/JE(q)e- f3E dq, 
E 

(5.1) 

where c/JE(q) is the stationary state eigen function of Hamiltonian 

with Hc/JE(q) = Ec/JE(q), f3 = ~ is the inverse temperature and 

Z(fJ) is the partition function. This expression calculates the mean 

value < ElflE > in a given energy state and then averages over a 

Boltzmann distribution of energy states with the weight age ie-!3E. 

The quantum mechanical kernel giving the probability amplitude for 

the system to go from the state q at time t = 0 to the state q' at 

time t is given by 

K(q', t; q, 0) = L c/JECq')c/JE(q)e-itE . (5.2) 
E 
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Comparing Eqs. (5.1, 5.2), the thermal average in Eq. (5.1) can be 

obtained as 

< f >= ~ / dqK(q', -i{3; q, O)f(q), (5.3) 

in which the following have been done: (1) The time coordinate has 

been analytically continued to imaginary values with it = T. (2) 

The system is assumed to exhibit periodicity in the imaginary time 

T with period {3 in the sense that the state variable q has the same 

values at T = 0 and at T = {3. This can be extended to quantum 

field theory with q denoting the field. 

Spacetime with horizon possesses natural analytic continuation 

from Minkowski signature to the Euclidean signature with t --t T = 
it. If the metric is periodic in T, then a temperature associates natu­

rally with such a spacetime. This is the basis of the thermodynamics 

of a spacetime under gravity. 

5.2.2 Rindler spacetime 

It is possible to introduce coordinate charts in Minkowski spacetime 

such that regions are separated by horizons, an example being the 

coordinate system used by a uniformly accelerated frame (Rindler 

frame) which has a non-compact horizon. The natural coordinate 

system (t,x,y,z) used by an observer moving with a uniform accel­

eration 9 along the x- axis is related to the inertial frame (T, X, Y, Z) 

through the relation [118J 

gT = }1 + 2gxsinh(gt), 

(1 + gX) = }1 + 2gxcosh(gt); Y = y; Z = z. (5.4) 
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The metric in the accelerated frame will be given as 

(5.5) 

where f(x) = (1 + 2gx). This metric has a horizon at x = -2~ 

with the surface gravity K = g and temperature T = irr. Near 

x = XH, f(x) can be expanded in a Taylor series and obtain f(x) = 

B(x - XH) where B = f'(XH). The surface gravity on the horizon, 

K = ~1f'(XH)! = !IBI· Near the horizon, f(x) = 2K(X - XH). By 

introducing the transformation, ~ = [2K-l(x - xH)j1/2, the metric 

near the horizon becomes 

(5.6) 

Wick rotation t -+ T = it leads to 

(5.7) 

which is essentially the metric in the polar coordinates in the T - ~ 

plane. For this metric to be well defined near the origin, KT should 

behave like an angular coordinate () with periodicity 27r. Now the 

periodicity in T is 27r / K. SO the temperature of the Rindler spacetime 

can be written as 

K g 
T=-=-. 

27r 27r 
(5.8) 

This implies that an accelerating frame in a Minkowski space exhibits 

temperature naturally. This is called Unruh effect. 
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5.2.3 Schwarzschild metric near the horizon 

The metric of Schwarzschild black hole near the horizon can be 

written with the assumptions, r = rh + x and dr = dx and 

1_2m=1-~'::::~ as 
r rh+X rh' 

The term, r~(d(P+sin2 8d<jJ2) can be shown to be dx2 +dy2+dz2 and 

dx2 can be neglected in comparison with ::dx2. We now propose a 

transformation of the type 

(5.10) 

So, we get, dp = dxj!i. The metric is then modified as 

(5.11) 

To convert the frame into Euclidean, a 'Wick rotation, t = -iT, is 

applied, so that 

(5.12) 

For this metric to be well-behaved, -2T should behave as if it is an rh 

angular coordinate with periodicity 211". So periodicity in T is given 

as (comparing Eq. (5.7) and Eq. (5.12)) 

(5.13) 
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In the case of Schwarzschild black hole, nh = 87r
1
M' In the Rindler 

spacetime, nh = 47r/2g = i7r' So temperature is implicit in the 

horizon. 

5.3 Scalar field in Rindler frame 

The static Rindler metric in two dimensions can be obtained from 

Eq. (5.5) as 

(5.14) 

Now, introduce the principle of calculus of variation to find the tra­

jectory of the particle so that the function which has the stationary 

value can be given as 

j= 1 12 
1 + 2gx + y , (5.15) 

In Eq. (5.15), y' = dy/dx. We now apply the Euler's equation, 

~ - fx Gf, = 0, to find the expression for trajectory. The equation 

of motion of a particle in the Rindler spacetime is obtained as 

y" + 9 y' = 0 
1 +2gx 

(5.16) 

The solution to Eq. (5.16) is 

~ 
-e 1+2 gx (1 + 2gx)C(1) 

y(x) = + C(2), 
9 

(5.17) 

where, C(l) and C(2) are constants. Fig. (5.1) shows the trajectory 

of a particle in the static two dimensional Rindler space. The graph 
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Figure 5.1: Trajectory of a particle in a static Rindler space with 
C(l) = 2, C(2) = 5 and 9 = 1. 

clearly shows that the horizon is situated at xh = -lg = -!, with 

9 = 1. There is no physical singularity in the Rindler spacetime, 

since at x = 0 , the metric does not blow up. The only singularity 

is the coordinate singularity that appears at the horizon. 

5.3.1 Scalar field solution 

Consider a massless scalar field equation in a Rindler spacetime, so 

that its field equation is given as 

(5.18) 

Introducing the metric ds2 = - £4 22 dt2 + dp2 + dy2 + dz2 and A = 
rh 

7!:;, in the above scalar field equation, the spatial equations of scalar 

field are 

(5. 19) 
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(5.20) 

Put kr + k~ = k2 , k can be called the root and ±i2rhw the order, 

where w represents the frequency of the scalar field. Eq. (5.19) in p 

is of Bessel type. The full solution to the scalar field equation is 

(5.21) 

The solution to Bessel equation is <Pp = hiw( Jkt + k~)p [119). Sup­

pose the frequency w = a + i{3 with a, {3 real and {3 > 0, then 

Liw( Jkt + k~)p goes to infinity exponentially as p ~ 00 and van­

ishes at p = O. On the contrary, I+iw( Jk? + k~)p goes to infinity at 

p = 0 and falls to zero exponentially as p ~ 00 [120j. The boundary 

of the Bessel equation will consist of p = 0, the horizon of the Rindler 

spacetime, and p ~ 00. We must demand that the scalar field func­

tion <P initially well behaved at the boundaries. For the infinity, we 

could require the field <P falling off to zero. So the suitable solution 

must be 

(5.22) 

Now the temperature of scalar field in thermal equilibrium with the 

Unruh radiation can be determined as follows. In Eq. (5.19), the 

term, -4r~w2 = -(167r2r~)/T2. Making T ~ iT = T, we get the 

term as, (167r2r~)/T2. Then the periodicity in T will be the tem­

perature of scalar field, which is also the temperature of horizon. So 
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the temperature of the horizon is given as 

(5.23) 

Thus scalar field is in thermal equilibrium with the horizon. The 

temperatures of the Rindler and Schwarzschild horizons have a com­

mon expression for temperature, since by substituting the respective 

values for rh in Eq. (5.23) the temperatures of these black holes will 

be obtained. 

5.4 Entropy of self gravitating radiation sys­

tem (SGRS) 

Consider a Rindler frame which accelerates in the x-direction so that 

a dense cloud of gravitating particles converge on itself due to grav­

itation, with their centre coinciding with the origin of the Rindler 

frame. Here we study the transit of the matter through the horizon 

of the black hole to which the matter system is going to collapse. 

Because of the acceleration along the x-direction, the dimension of 

the matter along that direction shrinks. As the configurations of 

SGRS approach the horizon, the entropy will become infinite by 

virtue of the asymptotic equation of radiation, such as, p = aT; and 

s = iaT;. The divergence of entropy can be avoided by using the 

modified equation of radiation [109}. 

The entropy of SG RS had been investigated earlier to examine 

the validity of the entropy upper bound and concluded that it is true 

only outside the horizon by one radiation wavelength [121J. The to­

tal entropy of SG RS with spherical symmetry (Schwarzschild black 
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hole) is expressed as 

(5.24) 

in which the asymptotic value of equation of radiation has been used. 

In Eq. (5.24) p represents the energy density of SeRS and c is 

given as c(r) = r - 2m(r) > O. Then c(r) > 0 indicates that each 

configuration of SeRS is outside the corresponding Schwarzschild 

radius 2m(r). The mass of SeRS is given as m(r) = J; 47rT2 pdr. 

The blowing up (e ~ 0) of entropy of SeRS can be avoided by 

considering the configuration with proper distance from their own 

Schwarzschild radius equal to at least one radiation wavelength of 

magnitude, 

R(r) = .;g;;.c = .,;rE 2': -X(r). (5.25) 

But such a prerequisite is not necessary to find the entropy of SeRS 

once we make use of the modified equation of radiation near the 

horizon [113J. 

Here, we discuss the collapse of a massive scalar field across the 

horizon of the black hole to which the matter is going to collapse. 

The gravitational collapse is then studied in the Rindler frame which 

acts in unison with the collapse. The mass of a layer of SeRS in 

the Rindler frame before it takes off is given as dm = 47rpr2dr. The 

matter is then allowed to collapse through the event horizon. Let 

s be the entropy density which can be given as s = C(I)pX [109], 

where C(l) is the term that parameterize the different layers of the 

scalar field that transit through horizon and X is the red-shift factor. 
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The entropy of the SG RS that crosses the event horizon is given as 

In the collapse, matter layer by layer, crosses the event horizon and 

finally converge to the singularity at the origin of the Rindler frame. 

With g11 = (1 - 2mjr)-1 and goo ~ (1 - 2Mjr), we have from Eq. 

(5.26) 

(5.27) 

As SG RS collapses, any data regarding it will be the information 

it holds just before crossing the horizon, once it crosses the horizon, 

information it holds will be lost. So the total entropy of the system 

must depend on the limit values of C(l) and p(l) as I ~ 0, i.e., near 

the horizon. C(l ~ 0) is given as 

4 1 
C(l ~ 0) = --, 

3Tr 
(5.28) 

where, Tr is the temperature ofthe SGRS. As the SGRS approaches 

the horizon, it attains the temperature of horizon (Eq. (5.23)). The 

temperature of the horizon is nh = 2~ = 87r
1
M' Hence, C(l ~ 0) = 

3trrM. The elementary mass of SGRS that has gone through the 

horizon may be given as 

dm(r) = 41T:r2pdr = pdxdydz. (5.29) 

Making a transformation into the Rindler frame (dx = ~; dy = 
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dfj; dz = dz), we get 

dm(r) = pdxJI + 2gxdfjdz 

= 15dxdfjdz, (5.30) 

with, 15 is the new density in the Rindler frame. Therefore in Eq. 

(5.27) 

(5.31) 

where M is the total mass of the SGRS which has collapsed across 

the horizon. So, the entropy of the spherical mass is same as the 

entropy of the black hole into which the collapse is occurred. Be­

cause of the shrinking along the x-direction, the collapse may not be 

symmetric and since the mass remains same, the entropy is still pro­

portional to M2, which is true in the case of a Schwarzschild black 

hole. But when the entropy is written in terms of area, since the 

surface is not fully symmetric, it may not be exactly :tA. 

5.4.1 Upper bound on SjE 

We know that the GSL must be valid in all situations and the upper 

bound on entropy is a necessary condition to hold the generalized 

second law. So it is advisable to calculate the upper bound in this 

case also. The upper bound on entropy is given as 

SIE = 41l'M ::; 27rR (5.32) 
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where R is the average size of the SGRS which has gone through 

the horizon of radius rh. Since R > rh, we get the inequality in Eq. 

(5.32), which is similar to the Bekenstein upper bound SIE::; 27fR, 

where R is the dimension of the box. 

5.5 Conclusion 

Unruh effect is the basis of Hawking effect. We can treat a gravitat­

ing system as a thermodynamical one if the spacetime of the system 

possess a periodicity in the imaginary time T. We have shown that 

the spacetime close to the event horizon of the Schwarzschild black 

hole is Rindler like. Using the field theory approach, the tempera­

tures of the scalar field near the horizons of Rindler spacetime and 

Schwarzschild spacetime have been determined. The field around a 

black hole is in thermal equilibrium with the horizon. The trajec­

tory of a particle in the static Rindler space has been determined by 

solving the Euler's equation. 

We have investigated the gravitational collapse of SGRS in a 

Rindler space and found that the entropy of the SGRS is the same 

as the entropy of the black hole into which it is collapsed. We have 

also calculated the entropy bound and obtained that it is in unison 

with the Bekenstein upper bound. 



Chapter 6 

Scalar hair for an AdS 

black hole 

6.1 Introduction 

If the facts don't fit the theory, change the facts., 

Albert Einstein. 

The no-hair theorem in general relativity says that in the ex­

terior of black hole the only information available regarding the 

black hole may be that of its mass, charge and angular momentum. 

All other informations about the matter which formed a black hole 

or infalling into it, disappear behind the black hole event horizon 

and are therefore permanently inaccessible to external observers. 

The statement that the black hole has no-hair means, there are 

no features other than mass, charge and angular momentum that 

distinguish a black hole from another one. If we construct two 

black holes with the same mass, charge and angular momentum, 
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the first being made out of ordinary matter and the second out of 

anti-matter, they would be completely indistinguishable. 

Scalar hair in a black hole demands a non-trivial solution for the 

scalar field in the vicinity of a black hole. The profile of the field must 

be Gaussian type, as if a scalar source is present on the black hole. 

But, it is found that the scalar field becomes trivial if one demands a 

regular horizon at a finite distance from the centre [122]. A regular 

horizon means, a horizon which has a radius and temperature so that 

it would hide the singularity. A non-trivial solution seemed possible 

only for a black hole that exhibit naked singularity. 

The question of scalar hair for a static black hole has been a 

matter of debate for quite some time. Situations of preservation of 

no-hair conjecture [123,66,67,68,69] and its violations [70, 71J had 

been reported earlier many times. Saa [73] deduced a theorem which 

shows that the static spherically symmetric exterior solution for the 

gravitational field equations in a wide class of scalar tensor theories 

will essentially reduce to the well known Schwarzschild solutions if 

one has to hide the naked singularity at the centre of a black hole by 

the event horizon [73, 74]. Bocharova and Bekenstein [124, 125J con­

structed solutions with regular horizon for a scalar field conformally 

coupled to Einstein's gravity. They are 

where a = 8~G. Initially, divergence of field at the horizon was con­

sidered as a pathology of the solution. However, further analysis [126] 

suggested that the divergence of <I? on the horizon might be innocu-
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ous. In general, asymptotically fiat, static, spherically symmetric 

nontrivial solutions of scalar field <I> coupled to Einstein's gravity do 

not possess a regular horizon [127]. As a strong interpretation, Bizon 

[128J and Weinberg [72J showed that a theory allows a hairy black 

hole, if there is a need to specify quantities other than the conserved 

charges defined at asymptotic infinity, in order to characterize com­

pletely a stationary black hole solution. Eq. (6.1) is characterized 

by the Arnowitt-Deser-Misner (ADM) mass ro/2 [129J, and scalar 

charge Q = 47froa-l/2. So Eq. (6.1) carries "hair" and violates the 

"no-hair conjecture". 

But the divergence of the scalar field at the horizon is so severe 

that Eq. (6.1) doesn't satisfy Einstein's equation at the horizon, 

hence Eq. (6.1) need not be a black hole solution [69}. As a weak 

interpretation of scalar hair, non-trivial solution in terms of con­

served charges was mooted [72J. Using that ideology, scalar hair 

was reported in asymptotically anti-de Sitter spacetime and asymp­

totically fiat spacetime [70, 71]. There is no regular black hole so­

lution when the scalar field is massless or has a convex potential 

(containing only mass term). Examples of black hole solution, such 

as, <I> rv r-3/ 2 cosCv'4~-9ln r), where j3 is a constant, in the sym­

metric and asymmetric double well potential was reported (70J. This 

unexpected discovery of black hole solutions by considering asymp­

totically AdS, rather than asymptotically flat spacetime were thor­

oughly analyzed [69J. Applying the principle of the conservation of 

the 'r' component of the total energy-momentum tensor (Tf:.JL = 0) 

in Einstein's equation [130], they showed that there were no non­

trivial static and spherically symmetric black hole solutions in the 

asymptotically AdS with true cosmological constant. The asymptot-
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ically AdS region corresponds to one where the effective cosmological 

constant is 

(6.2) 

Eq. (6.2) gives the idea that in the asymptotically flat case we must 

require V to go to 0 at infinity, while in asymptotically AdS case 

any non zero value of Vat infinity can be absorbed into the effective 

cosmological constant. So the argument is that only the change in 

the true cosmological constant makes any sense, not the change in 

effective cosmological constant. 

In this chapter, our aim is to find whether the scalar hair would 

occur in the asymptotically AdS space time with regular horizon 

and we took (2+1) non-rotating Bananas-Teitelboim-Zanelli (BTZ) 

black hole as a model [47, 131J which shares many ofthe features of its 

(3+1) dimensional counterparts and also in the Reissner-Nordstrom 

(RN) black hole. In contrast with (3+1) dimensional general rela­

tivity, the (2+1) dimensional model has only finite physical degrees 

of freedom. As a result, questions about quantum gravity can be ex­

plored in considerable detail [132, 133]. we report non-trivial black 

hole solution showing no divergence at the horizon and asymptoti­

cally falling to the vacuum value. The scheme of the chapter is as 

follows. In Sec. 6.2, non-trivial scalar hair solution is obtained for 

the BT Z and RN black holes by solving the scalar field equations. 

Mass of hairy black hole is also discussed in this section. In Sec. 

6.3, the complete solution to scalar field equation is obtained. In 

Sec. 6.4, stability analysis is described by applying the theory of 

perturbation. In Sec. 6.5, we give the conclusion. 
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6.2 Solution with a minimal coupling 

A non-trivial radial solution of a scalar field, whose source is a mas­

sive double well scalar potential, in the vicinity of the BT Z black 

hole will be discussed here. We will restrict our consideration to the 

minimally coupled case. Consider the action 

(6.3) 

where <P is the real scalar field and V (<p) is the potential. The metric 

of BT Z black hole is 

(6.4) 

Here we propose a regular horizon so that it hides the naked singu­

larity. For the BTZ, f = -m+~, where A = -b, the cosmological 

constant. Let the functions m and <5 depend only on r. The La­

grangian density for the action of Eq. (6.3) can be obtained from 

L = R[l~7r (R - 2A) - ~g~VV tL<PV v<P - V(<p)]. (6.5) 

In Eq. (6.5), <P is a radial function. Using the Euler's equation 

(6.6) 

where <P' = ~~. We get the scalar field equation from Eq. (6.6) and 

8' by varying the action as 

[ -Jj<p'j' -0 dV(<p) re =e r~ 

f/ = - 27r<p'2. (6.7) 
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Eq. (6.7) governs the scalar field in the black hole spacetime and 

perturbation. Whether a non-trivial solution results from Eq. (6.7) 

will be the present investigation. Multiplying both sides of Eq. (6.7) 

by (<I> - <I>o), where <Po is the vacuum value or the asymptotic value 

of <I>, we get: 

r5 " ° dV (<p - <po)[re- J<I> ] = (<p - <po)e- r d<I> 

:r[(<I> - <I>o)(re-O J<I>')] = (<p - <I>o)e-8rd~~iIJ) + e-OrfiIJ
/
2. (6.8) 

Integrating both sides of Eq. (6.8), from rh to r, we have 

(6.9) 

In the asymptotic limit, <I> ---t iIJo and <I>' ---+ o. At r = rh, f = o. 
So the left hand side of Eq. (6.9) vanishes. Therefore 

(6.10) 

We know that J is positive outside the horizon of the AdS black 

hole. If V(cI» represents a convex potential (mass term only), then 

d~<:) > O. So Eq. (6.10) is zero only when cI> = <I>o and cI>' = o. 
That is, the magnitude of field remains constant throughout the 

space. But such a solution is trivial. Since we need a non-trivial 

solution, a double well potential is proposed to act in the Eq. (6.10). 

The double well potential has a mass term and a self interaction 

term with an asymptotic value. The potential function against <I> is 
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shown in Fig. (6.1). The double well potential function is given as 

(6.11) 

where, p is the mass and .x is the self interaction coefficient of scalar 

field. In the double well potential case, d~~if» < 0 in the limit <P 

60 
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:> 30 
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~~2-0------~1~0------0~-----1~0------2~O 

~ 

Figure 6.1: Double well potential against field variable <1>, with p, = 
1, >. = 0.1, <Po = 0.1 

away from <Po, so Eq. (6.10) can become zero even if <P =f:. <Po and 

<p' =f:. O. On substituting Eq. (6.11) and f = .z; - m in Eq. (6.10) 

and putting, <P - <Po = x; d<P = dx; ~ = a, we get 

(6.12) 

Integrating Eq. (6.12) and rearranging we get 

/-l r 
<P = '\ sec h[-plarccosh( -)] + <Po, 

A. rh 
(6.13) 

with rh = lvm· The presence of ' - /-ll' inside the bracket will 

restrict us from getting a well defined solution. So we put, p = - t ' 
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thus defining a negative cosmological constant for the spacetime. 

So <P = X sec h[arc cos h( :J 1 + <Po. At the horizon, <P = X + <Po, 

which is finite and in the asymptotic limit, <P = <Po. The profile of 

Eq. (6.13) is shown in Fig. (6.2), which brings the characteristic of 

scalar field. The bold line is for BT Z black hole and thin line is for 

RN black hole (will be shown in next sub-section). In the figure, 

we put IL = 1,'\ = 0.1, <Po = 0.1. It can be shown that the curve 

drops at the rate l/r2, i.e., the field depends inversely on r. We can 
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Figure 6.2: Variation of field variable against r, with It = 1, A = 
0.1, <Po = 0.1. 

now conclude that scalar hair is possible with a potential function of 

double well type (Fig. (6.1)). The potential is maximum at <P = «Po 

and is zero at <P = ILI'\ + <Po. The effective cosmological constant is 

(6.14) 

Eq. (6.14) reveals that the cosmological constant has an origin in 

the scalar field. The term Aadd may be assumed to be a trace of 

scalar field. 
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6.2.1 Scalar hair in Reissner-Nordstrom black hole 

In the expression, [(<I> - <I>O)d~~<I» + J<I>'2] = 0, substitute, J = 1 -

2~ + ~. Now solve for <I>. We get 

(6.15) 

At the horizon, JQ2 - 2mr + r2 = O. Since, J.tm is negligibly small, 

the field at the horizon is 

(6.16) 

In the asymptotic limit, <I> -+ <I>o. From Eqs. (6.13) and (6.15), we 

can see that the scalar field solutions are expressed in terms of the 

prevailing parameters of the black hole. That shows that the hair 

is weak. To have a strong hair, the solutions must have conserved 

quantities other than mass, charge and angular momentum. 

6.2.2 Mass of hairy black hole 

Mass of hairy black hole must be in general greater than the mass 

of non-hairy black hole. Now let us compare m(rh), the mass of the 

non-trivial static black hole of radius rh, with M(rh), the mass of 

the corresponding naked black hole of the same radius. We have 

(6.17) 

The mass of the non-trivial black hole is [69J 

m(rh) = M(rh) + 27rlr[V(<I» - V(cpoo) + (1/2)J<I>'2Jdr. (6.18) 
rh 
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In the above equation, V(<1» is zero at the horizon and V(<I>oo) = 

iJ.L4/),2. We have, 1 = m( -1 + ~) ; <1>' = -X~ and <1> = ¥?A 
rh r A r 

(as can be shown from Eq. (6.13)). We get, 27rr[V(<I» - V(<1>oo)] = 
42 44 22 2 - 7r~2;h + ;~2;~ and 7rT 1<1>'2 = 7rr2l9' (-~ + ~). On integrating Eq. 

(6.18) we get 

with m(Th) is the mass of black hole with scalar hair and lvI(Th) the 

mass with out scalar hair. From the above assumption, J.L = -t we 

get 

(6.20) 

At the horizon, m(Th) = M(Th)' As the distance from centre in-

1~--~-===============~ 
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Figure 6.3: Variation of mass of hairy black hole up on non-hairy 
black hole against T. 

7rJ.1.4r 2 
creases, m(rh) increases and at infinity, m(Th) = M(rh) - ~. 



6.3 Solution to scalar field equation 123 

From Eq. (6.14), Aeff = A + 21rf14r\2 = A + Aadd, where, 
2 

Aadd = --f-. Therefore, m(rh) = M(rh) + #-. Since tz is posi-
add add 

tive, m(rh) > M(rh). This is an essential condition to have scalar 

hair [69, 130]. It is seen that m(rh) is a function of r. The func­

tion m(rh) in principle diverges, but under condition f1 = -t, the 

mass never blows up. The profile of a mass function for non-trivial 

Schwarzschild black hole was given earlier [130J. The mass function 

of nontrivial BTZ black hole is depicted in Fig. (6.3). 

6.3 Solution to scalar field equation 

The solution to scalar field equation under the action of gravity and 

scalar potential will be now calculated. Defining [131, 134] 

(6.21) 

The metric of BT Z in the tortoise co-ordinate is obtained as 

(6.22) 

with 

(6.23) 

The field equation of massive scalar field under the action of a scalar 

potential coupled to gravity is 

(6.24) 

The mass term and interaction term of the scalar field have been 

included in the potential V(<"P). The scalar curvature, R = -Ft 
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[47, 135J. For minimal coupling, Eq. (6.24) is modified as 

_1_8 [ c-::. p.v 8 ]<1> = dV(<1» R p. y-gg v d<1>' (6.25) 

On expanding Eq. (6.25) we get field equation as 

(6.26) 

For separating the variables, express <1> = T(t)R~(r(r*))Ym(4». The 

radial field equation is 

(6.27) 

h I [PT k2 d 1 [02Y J f32 were - T W = an y a</;2 = . 

The wave function <1> = x~ (as can be shown from Eq. (6.13)) 

and (<J. - <1>0)/<J. ~ 1, (<1> - <1>0)3 /<1> ~ <1>2. So the Eq. (6.27) can be 

modified as 

d2R~ 1 dR~ 2 [e- 2oa2 -2.5 2 fe- 20 p.2r'f. p_ 
d2r(r.)2 + rh) dr(r.) + [k + r(r*)~ + fe J.L - r(r.)2 JRk - O. 

(6.28) 

In Eq. (6.28), R~ represents the radial field equation. The effective 

potential of scalar field from Eq. (6.28) is 

(6.29) 
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At the horizon, f = 0, hence, VefJ = O. FromEq. (6.13), cp' = -X~· 
Substituting the value of <1>' in Eq. (6.7), we get 

(6.30) 

As we go away from the horizon, f "" ~. Substituting the value of 

f and e-2.5 in Eq. (6.29), we get 

(6.31) 

In the above equation, terms with f.L4 have been eliminated, since 

they are negligibly small. The role of f.L and ,\ of the scalar field, 

event hough evident in the calculation of Vel I, may be omitted . 

Then, VefJ = -,f + 27r~~;m ::::: 'S. From Eq. (6.31) it can be shown 

that for values of r > rh, Vel! very soon rises to a positive value and 

then falls and finally reaches the asymptotic value. So for majority 

parts of the spacetime, Vel I is inversely proportional to r2. In the 

deSitter spacetime the effective potential is zero both at the horizon 

and in the asymptotic limit. The Vel f rises only slowly as we go away 

from the horizon, reaches a maximum value and then falls to zero in 

the asymptotic limit[1361. As we approach the horizon, f --t 0 and 

hence Eq. (6.28) reduces to 

(6.32) 

This is a Bessel equation with root k and order zero. As we go 

away from horizon, the potential function drops approximately to 
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the order 1/r2 . So Eq. (6.28) away from the horizon is 

(6.33) 

This is a Bessel equation of root k and order a. So through out the 

spacetime, the radial field can be represented by a Bessel function. 

The above two equations have solutions which are normalizable. 

(6.34) 

Solution to Eq. (6.32) can be represented as 

(6.35) 

Solution to Eq. (6.33) is given as 

(6.36) 

where r is the usual Gamma function. Eq. (6.35) and Eq. (6.36) 

represent the full solution of scalar field which may be normalized 

and hence can be quantized. 

6.4 Stability analysis 

In Sec 6.2 we have found a scalar hair for non-rotating BTZ and 

RN black holes. A mere non-trivial solution is not enough to show 

that there is definite hair, since, no-hair conjecture still holds if the 

solution soon falls out. So we will now consider the stability of the 

scalar field solution. The first order perturbed equation for the scalar 
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field is obtained from the Eq. (6.28) as [69J 

(6.37) 

h d 8 dr d A~ [d2 1 d TT l' H .. were r*=e Tan =- dr(T.)2+r(T.)dr(T.)-veff Isa ermltlan 

operator. If ip is a vector of the Hilbert space, then the inner product 

in the context of BTZ black hole is given as [137J 

(6.38) 

If, (ip, Aip) > 0, then the state function <1> which represents the 

scalar field around the black hole is stable. The solution to scalar 

field equation, [0 + ~Rlip = d~~cf», can be expressed as, ip(t, r, cP) = 

<1>(r)eiktYm(cP), where ip(r) is the radial part of the solution which is 

a Bessel function as given by Eq. (6.36). Using the radial part of the 

scalar field solution and substituting the operator A in Eq. (6.38), 

we get 

(6.39) 

If Rk is positive definite, then Rk" is also positive definite but Rk' 

is negative definite. Then, rRk" is negative definite and '-rVeffRr 

is positive definite in the range 0 to 00. So the net term inside the 

bracket of Eq. (6.39) is negative definite. Again, if Rk is negative 

definite, the net term inside the bracket is positive definite. In both 

cases, the expression (<1>, Aip) :::: O. That means, the scalar field 

equation is stable under the first order perturbation and hence the 

configuration is stable. This shows the existence of a stable hair. 
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As a second order perturbation, we have 

d2R"" 2 
dT(T~~2 + (k - \!eff )Rk = 0 (6.40) 

with smooth real potentials independent of k and of short range. 

If k2 is negative, the perturbations diverge exponentially with time 

and then the solution is unstable [67J. The wave function Rk must 

approach zero at the horizon when the eigenmode is negative [67]. 

But in our case the eigenmode is positive and hence the wave function 

is not zero at the horizon (Eqs. (6.13) and (6.16)). As a result 

solution is stable against radial perturbations and the scalar hair 

does not fall out. 

6.5 Conclusion. 

There is a general feeling that anything that is added to a black hole 

will not induce any trace of it on the black hole except mass, angular 

momentum and charge and hence no-hair conjecture. As a strong 

interpretation, in the presence of a scalar field, black hole should 

possess a trace different from mass, angular momentum and charge 

inorder to have the notion of a scalar hair. The scalar potential at 

infinity acts as an added cosmological constant. That added cos­

mological constant can be treated as a signature of the scalar field, 

and hence scalar hair. But since, only the effective cosmological con­

stant is affected and not the true cosmological constant, the above 

argument did not draw much attention. As a weak interpretation, 

a non-trivial solution in terms of the existing conserved quantities 

is enough to show that there is hair. Saa [73J and Banerjee [74J ar-
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gued that a regular horizon is possible only when the scalar solution 

is trivial and when the solution is non-trivial, the horizon will be a 

surface of singularity. Torii [67] argued that the hair falls out easily, 

since for every non-trivial solution the eigenmode is negative. 

In our case a non-trivial scalar black hole solution is obtained 

with a double well potential as the source, for BT Z black hole and 

RN black hole with regular horizons. The horizon is not singular 

and it hides singularity. Since the eigenmode is positive, the scalar 

field is finite at the horizon and falls to a minimum value in the 

asymptotic limit. The mass of black hole with hair is greater than 

that with out hair with a condition J.L = - t. All these conclusions 

show that scalar hair solution is possible for the BT Z and RN black 

holes. 



Chapter 7 

Scalar hair for a static 

(3+1) black hole 

7.1 Introduction 

I never thought that others would take them so much more seriously 

than I did, 

Albert Einstein. 

No-hair conjecture [123J demands the non existence of any in­

formation other than mass, charge and angular momentum of 

a black hole. In order to prove the no-hair conjecture, no-hair 

theorems had been established by coupling the classical fields with 

the Einstein gravity [138J. It had been shown that the scalar field 

would be trivial if one demands a regular horizon at a finite distance 

from the centre of the black hole and also that stationary black hole 

solutions are hairless in a variety of cases, coupling different classical 

fields to gravity [122, 139, 140, 141J. In Chapter 6, we have noted 
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that the co-existence of non-trivial solution and a proper metric is 

difficult to evolve. 

It is widely believed that black holes with scalar hair generally ex­

ist only when the scalar potential has negative region [70, 71, 72, 142]. 

There is a common belief that there are no static asymptotically fiat 

and asymptotically AdS black holes with spherical scalar hair, if 

the scalar field theory coupled to gravity, satisfies the Positive En­

ergy Theorem [143J. A charged de Sitter black hole in the Einstein­

Maxwell-Scalar-A system possesses only unstable solutions [68]. But 

an unexpected development of scalar hair in AdS black hole with 

minimal (70J as well as nonminimaI [144] coupling of scalar field, 

demanded a heuristic study of scalar hair [69]. 

As a strong interpretation, black hole has hair if there is a need 

to specify quantities other than the conserved charges defined at 

asymptotic infinity in order to characterize completely a stationary 

black hole solution [72, 128J. Efforts were done to reveal strong 

hair [124, 125J and they came up with a scalar solution conformally 

coupled to Einstein's gravity through a metric for extremal case. 

Eventhough innocuous, the solution has a divergence at the horizon. 

It is given as 

-roa-1/ 2 
.p= ----, 

r -ro 
(7.1) 

with a = 8~G. In Eq. {7.1),.p blows up at the horizon, which is 

against the principle that .p shall be finite everywhere [66J. In an­

other attempt, a four dimensional solution of the Einstein equation 

with a positive cosmological constant coupled to a massless self in­

teracting conformal scalar field was put forwarded [135]. The scalar 
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solution in that case is 

(7.2) 

But Eq. (7.2) does not give any information other than mass of black 

hole and the cosmological constant. Hence strong interpretation of 

scalar hair is not guaranteed. The motivation of the present work 

is to know whether a strong interpretation of the scalar hair can 

be possible in a static (3+1) black hole, which requires a nontriv­

ial solution of scalar field in the vicinity of black hole with regular 

horizon. 

In this chapter, we report a nontrivial black hole solution of a 

massive but self interacting scalar field showing no divergence at 

the horizon and asymptotically falling to the vacuum value. The 

proposed metric shows trace of scalar charge. 

Whether a non-trivial scalar solution and a metric with a horizon 

are mutually compatible or not has been the objective of scalar hair 

investigations. Many contend that only when the solution is trivial 

that a metric with a horizon is established and for a non-trivial 

solution, the singularity will become naked. The criterion of scalar 

hair is the co-existence of non-trivial solution and a proper metric 

(having horizon and temperature) that holds the trace of scalar field. 

The scheme of the chapter is as follows. In Sec. 7.2, non-trivial 

scalar hair solution is obtained for a (3+1) static black hole. In 

Sec. 7.3, the metric of the hairy black hole is obtained by solving 

the scalar stress-energy tensor. Entropy and mass of hairy black hole 

are also discussed in this section. Sec. 7.4, discusses thermodynamics 

of black hole. The conclusion is given in section 7.5. 
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7.2 Solution with a conformal coupling 

A non-trivial radial solution of a scalar field, whose source is a scalar 

double well potential, in the vicinity of a static (3+1) black hole will 

be discussed in this section. We will restrict our consideration to the 

conformally coupled case. Consider the action 

(7.3) 

where cP is a massive, self interacting and conform ally coupled scalar 

field. In the static case, cP represents a radial field. For a (3+ i) case, 

.; = i. A double well potential of the type in Eq. (6.11) and Fig. 

(6.1) has been considered in Eq. (7.3). In Fig. (6.1), V has global 

minima at cP = ±~ and a local maximum at cP = CPo. The scalar 

field equation is given by 

where 0 = g/Lv\l /L '\7 v is the Laplace-Beltrami operator and R repre­

sents the Ricci scalar. For the present situation, we do not consider 

cosmological constant. Hence R = O. The stress-energy tensor of 

scalar field under gravity can be given by the relation 

(7.5) 
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with 

(7.6) 

Here V fL represents a covariant derivative in the metric gJl-v, For a 

static and spherically symmetric space time, the t - t component of 

scalar stress energy tensor is given as 

(7.7) 

and the r - r component of stress energy tensor is given as 

(7.8) 

The metric of a static (3+1) black hole may be given as 

In the above metric, ..\ is a function of r only and let v = ..\(r) + f(t). 

Here, f(t) is an arbitrary function of t. There is no loss of generality 

in setting f(t) = 0, since it can be absorbed in the definition of t, 

i.e., by replacing ef(t)dt by dt. With this redefinition of the time 
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coordinate, v = -A. Then 

o lId [ ( 2//)] Go = Cl = 2: -d r 1 - e . 
r r 

(7.10) 

Applying Eq. (7.10) in Einstein's equation Ce - K,Tt = 0, we get 

T3 - Tl = O. (7.11) 

The concept of scalar hair is applicable only to a static black hole, 

since only in that case that we will be able to solve the field equation. 

From Eq. (7.11), we get 

(7.12) 

Eq. (7.12) is a covariant differential equation. In Eq. (7.12), prop­

erties such as mass and self interaction terms of scalar field do not 

come explicitly. In Eq. (7.12), vi<p can be written in the ordinary 

derivative as 

(7.13) 

where r is the usual Christoffel symbol and i runs from 0 --t 3. In 

the above case, all the Christoffel symbols except fil are zeroes and 

rir = )..' = -v'. Now, Eq. (7.12) gets modified as, 

In quest of scalar hair, the general principle is to get a non-trivial 

solution which is compatible with a proper metric that hides singu-
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larity. So we propose a solution of the form 

a 
<P{r) = - + <Po, 

r 
(7.15) 

where <Po is the asymptotic value of scalar field and I a' is a con­

stant which may be derived from the mass of black hole and scalar 

field. Non-trivial solution of scalar field have been proposed by many 

people earlier but never extended it to the concept of scalar hair 

[135, 145}. By substituting Eq. (7.15) in Eq. (7.14), we get 

(7.16) 

From Eq. (7.16), we can determine the metric function which will be 

given in the Sec.7.3. The profile of Eq. (7.15) shows that the field has 

a finite value <Ph at the horizon and then falls to the asymptotic value 

<Po. The variation of <P against r is shown in Fig. (7.1). The field 

has the highest magnitude at the horizon and falls to the asymptotic 

value <Po. The profile of the scalar field shows that a trace of scalar 

field is hidden behind the event horizon. If we get a proper metric 

(a metric with horizon and temperature) in addition to the solution, 

then that shows the existence of a strong hair. 

7.3 Metric of a static (3+1) black hole 

The form of metric, which is compatible with the scalar solution, will 

be now determined. Since gl1 = _e2v , Eq. (7.16) becomes 

(7.17) 
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Figure 7.1: Variation of scalar field against r with a = 1 and <1>0 = 0.1. 

By introducing a transformation of the type [146] 

1 
1/ = 21og(1 + f), (7.18) 

we get from Eq. (7.17) 

(7.19) 

where f is a radial function. Now introduce a gauge transformation 

of the type, <P - <Po = 1>. Then 

(7.20) 

Integrating Eq. (7.20), we get 

- f 
log<p = -2' + Co· (7.21) 



1.3 Metric of a static (3+1) black hole 139 

In the asymptotic limit, l/ = 0 and hence f = O. Putting a new 

value, say ~o, as the asymptotic value of ~ in the new scale, we can 

obtain 
~ f 

log(~) = --. 
<Po 2 

(7.22) 

Since the transformation is only of a gauge type, we get that, ~ = 
"'0 to' Thus from Eqs. (7.18), (7.22), we find 

(7.23) 

Eq. (7.23) represents the metric function which is compatible with 

the scalar solution, <p(r) = ~ +<Po. In the asymptotic limit the metric 

function, 

(7.24) 

coincides with those of Schwarzschild and RN black holes. Denoting 

the field at the horizon as <Ph = <poe1/ 2 , the radius of the horizon can 

be obtained as: 
a 

rh = ----:---:---
<Po ( e1/ 2 - 1)' 

(7.25) 

In Eq. (7.23), log(to ) can be expanded as a series if to :S 2 and it 

is true in the present case. Therefore, 

<P <P 1<p 21<P 3 
log( -) = (- - 1) - - (- - 1) + - (- - 1) .... 

<Po <Po 2 <Po 3 <Po 
(7.26) 

The metric function then may be written as a series as, 

2v <P <P 2 2 <P )3 e = 1 - 2(- -1) + (- - 1) - -(- - 1 .... 
<Po <Po 3 <Po 

(7.27) 
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In Eq. (7.27), let e:o - 1) = <I>~r = ~. The metric function gets 

modified as, 

(7.28) 

The above mentioned metric is in unison with a recent work[147J. 

Eq. (7.28) represents a composite metric which would converge to 

different metrics by truncating appropriate terms. 

7.3.1 Study of metric 

Eq. (7.27) may be written in a concise form as, 

(7.29) 

When n = 1, we have the Schwarzschild like black hole: 

2v q> 2b 
e = 1 - 2(- - 1) = 1 - -. 

Wo r 
(7.30) 

In this case, ~ = ~. The radius of horizon is rh = 2;0 = 2b. 

When n = 2, we have the extremal case similar to extremal RN 

black hole. The metric function is reduced to, 

(7.31) 

In the extremal case, ~ = 2, which gives the maximum value of 

~. The radius of horizon is rh = :0 = b. When n = 3, ~ = ~ 

d - 5 a - 5b 11Th - 4 ~ 17 d 2 a 2b an rh - :3 <1>0 - :3' vv en n - , <Po = 1{) an rh = :3 <Po = :3 . 

It is obtained that the horizon's radius increases and decreases with 
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Figure 7.2: Variations of scalar field <I> against r for different black 
holes, with, <1>0 = 0.1. 

diminishing magnitude as n increases. We can thus introduce more 

types of black holes by putting n = 5,6 .... But as the series progress, 

the series very quickly diminishes. The variation of scalar field ~ 

against r for different black holes are shown in Fig. (7.2). The 

thick line represents the case with n = 1. The normal line graph 

represents the case with n = 2. The dashed line represents the case 

with n = 3 and the dotted line represents the case with n = 4. It 

may be thought that the signature' a' in the scalar solution is derived 

from the mass of the black hole. But,the signature of scalar field in 

the metric is due to the asymptotic value of scalar tensor T8. The 

asymptotic value of T8 is given as (Eq. (7.7)), 

(7.32) 

As cg vanishes in the asymptotic limit we get, 

(7.33) 
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The trace term corresponding to scalar field may be written as, 

(7.34) 

Substituting Eq. (7.33) in Eq. (7.34), we get, 

(7.35) 

Tf of Eq. (7.35) has its contribution in the making of signature of 

scalar field in the metric. 

7.3.2 Stability of field 

There exist a possibility that a transformation of'r' coordinate may 

eliminate the scalar field, making it unstable. The technique to as­

certain the stability of the field is to see whether the field has a finite 

value in a different coordinate at the horizon. With n = 1, the metric 

would become, e2v = 1- 2b/r. So if we define 

dr = dr 
* JI - 2b/r' 

(7.36) 

we get 

..ft(r - 2b) + 2b( v'2b=-r)arctan[~J 
r* = vr _ 2b + Cb (7.37) 

where Cl is a constant integration. At the horizon, r* = Cl' So the 

field at the horizon in the new coordinate is 

(7.38) 
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Figure 7.3: Variation of mass of hairy black hole against r, with, 
a = 1 and 4>0 = 0.1. 
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which is finite. Hence the field can not be eliminated at the horizon 

by a coordinate transformation, Le., the field is stable. Stability of 

field shows that the hair does not fall out. 

7.3.3 Mass of hairy black hole 

Mass of a hairy black hole, in general, must be greater than a non­

hairy black hole. The mass (mrh) of a hairy black hole is related to 

the mass (Mrh ) of a non-hairy black hole [69] through the relation, 

(7.39) 

In Eq. (7.39), V(<I» = 0 at the horizon and V(<I>oo) = ~~. As the 

distance from the center of black hole increases, m(rh) increases, but 

never blows up since it attains a steady value as r increases. The 

variation of m(rh) against r is shown in the Fig. (7.3). 
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7.3.4 Entropy

The black hole with a cavity is called a dressed black hole and with­

out it is called a naked black hole. A black hole dressed with a scalar

field can be stable only inside a cavity, whose entropy may be the

sum of entropy of naked black hole and that of surface. A dressed

black hole results in the phenomenon called back reaction and the

surface entropy is the result of back reaction. Black hole entropy is

nothing but the Noether charge, i.e., 2
K" S = JI: Q, where JI: is the

surface integral and Q is the Noether charge[148]. The entropy of

a stationary black hole can be expressed as 21r f Q over any cross­

section of the horizon [1491. The entropy of a black hole can be

evaluated as a local quantity on the horizon using two dimensional

gravity [150]. Surface gravity of the black hole is given as,

(7.40)

With 9tt = e2v = 1- 2Iog(to ) and <P(r) = ~ + <Po, we get,

(7.41)

Substituting for rh = 0>0(e1/2- 1) in Eq. (7.41), we find the tempera­

ture of black hole as,

(7.42)

The area of the horizon,

(7.43)
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exclusively depends on the parameter 'a'. Following the standard

procedure, we can determine the entropy of black hole in the presence

of scalar field as

(7.44)

On integrating Eq. (7.44),

(7.45)

where c is a constant and 8 the entropy of black hole in the presence

of scalar field. By applying the boundary condition that when <Ph =
0, 8 = 80, the entropy of naked black hole. Then c = 80. But by

Hawking's theory, 8 0 = 6t. So the total entropy is written as,

(7.46)

Eq. (7.46) clearly indicates that the scalar field contributes to the

entropy of a black hole.

7.4 Thermodynamics

When the Hawking radiation is fully thermal, the thermal pressure

is ~",Tl~c' where 1]oc = y'Tog
aa

. A dressed black hole (with e.m field,

dilation field etc) possess a black hole temp, Tbh -<; y'4~Ah [151].

The stress-energy tensor of the radiation is a function of black hole

temperature Tbh. The hairy black hole is a thermodynamical system

with a modified temperature.

The effective potential of the test particles moving in static and

spherically symmetric background geometry is determined by the
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Hamilton-Jacobi approach. By Hamilton-Jacobi equation, 

(7.47) 

where f.L is the mass of scalar field and, 

S(t, r, <f;) = -Et + S(r) + L<f;. (7.48) 

E and L are the constant energy and angular momentum of the test 

particle. Substituting Eq. (7.48) in Eq. (7.47) and simplifying we 

get the action as 

(7.49) 

where f = e2v . From the expression for the action, we can measure 

the temperature of black hole by the following method. 

7.4.1 Temperature of different black holes 

(a). In Eq. (7.29), with n = 1, e2v = 1- 2<':0 - 1) = 1- ~. This is 

SBH like. As r --t rh, S(r) is modified as, 

(7.50) 

with {3 = Erh· Assuming that the scalar field gets reflected at the 

horizon, the scalar field in the neighborhood of the horizon can be 

written as [152]' 

(7.51) 
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with R as the coefficient of reflection. The coefficient of reflection R 

and the probability of reflection by horizon P may be given as, 

(7.52) 

Using the thermodynamical relation, 

(7.53) 

we get, 

E/nh = 4n13, (7.54) 

which gives the black hole temperature as, 

(7.55) 

This is the temperature of Schwarzschild like black hole. Eq. (7.55) 

reveals that the temperature of a black hole is a matter related to 

the radius of horizon. Since, radius of horizon is a function of pa­

rameters, such as mass, charge (vector as well as scalar) and angular 

momentum, it can be seen that black hole temperature depends on 

these parameters. 

(b). In Eq. (7.29), with n = 2, e2v = [1 - (to -1)]2 = [1- ~F. This 

is extremal case in which no black hole temperature is observed. 

(c). In Eq. (7.29), with n = 3, e2v = 1 - 2(to - 1) + (to - I? -
2 ( ~ 1)3 1 2b b2 2 b3 Th . S() . . 3 ~o - = - r + T2" - 3 TJ"' e action r as r -t rh IS gIven 

as, 

(7.56) 
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with, f3 = (rc-r~(t-ro) and (Tc+Th +TO) = -2b; (ThTc+TcTo+rbrO) = 

-b2 ;ThTcTO = _~b2. Now, 

S(r) = =ff3log(T - Th)' (7.57) 

By proceeding as in the previous case, the temperature of the black 

hole can be shown to be, 

(7.58) 

Thus we see that the hairy black hole acts as a thermodynamical 

system with proper horizon and temperature. 

7.5 conclusion 

There is an argument that a regular horizon is possible only when 

the scalar solution is trivial [73, 74J. SO when the solution is non­

trivial, the event horizon will be a surface of singularity and hence 

it will not represent a black hole. A black hole exists only when the 

event horizon hides the naked singularity. 

As a weak interpretation of scalar hair, a non-trivial solution of 

scalar field in terms of the existing conserved quantities is enough to 

show that there is hair [70, 71]. Whether a horizon naturally occurs, 

even when the solution is non-trivial, will be the primary objective of 

strong interpretation of scalar hair. Thus as a strong interpretation, 

in the presence of a scalar field, a black hole would have a signature 

different from mass, angular momentum and vector charge. 

vVe have shown that a non-trivial scalar black hole solution for a 

massive self interacting conformal scalar field would be obtained in 



7.5 conclusion 149 

the case of static (3+ 1) black hole. The metric proposes a horizon 

and temperature for the black hole. The horizon and surface tem­

perature ensure a true black hole. The metric element has a term 

other than the existing conserved quantities. In our case, only a 

particular pair of scalar field and metric are found to be mutually 

compatible. We have also shown that the scalar field never vanishes 

in a transformed coordinate, making it stable. The hair does not fall 

out if the field is stable. 

In the proposed metric, only one parameter, i.e., b has appeared. 

This may invite some criticisms against the strong interpretation of 

scalar hair. But in the standard extremal case, same parameter does 

the job of mass and vector charge. Another argument against b is 

that it may have been originated from the mass of black hole itself. 

But Eq. (7.35) clearly indicates that the origin of the parameter b 

is from scalar field and hence we may conclude that scalar field can 

depict its signature in the proposed metric. 



Chapter 8 

Results and conclusion 

There are grounds for cautious optimism that we may now be near 

the end of the search for the ultimate laws of nature, 

Stephen W. Hawking. 

8.1 Results 

I believe that I have given a vivid profile of my research work in the 

concluded chapters. Now let me summarize the results. 

1. The most important question on black hole evaporation that 

one has to deal is the back reaction problem, i.e., the calculation 

of the effects of the emitted quantum radiation on the spacetime 

geometry of the black hole. Semi-classical Einstein field equations 

have been solved in Chapter 2, in the context of an extremal anti­

de Sitter-Schwarzschild black hole surrounded by a spin-2 quantum 

field in thermal equilibrium with the Hawking radiation. The change 
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of entropy of a black hole, which is a measure of back reaction, 

have been measured using the method of York and thermodynamical 

approach. The surface entropy (or entropy correction) of a dressed 

black hole is found to depend also on temperature of black hole. 

2. In Chapter 3, back reaction in a Schwarzschild-de Sitter 

black hole surrounded by a massless quantum field in thermal equilib­

rium, has been investigated. The change of entropy of the black hole 

has been determined by solving the Einstein's equation. Again the 

change in the effective potential of the black hole spacetime bathed 

in a quantum field shows the effect of back reaction. We have showed 

that there are no stable orbit in this spacetime and the unstable or­

bits situate at r = 2.95M and r = 2.9M respectively for a particle 

and a photon in the presence of back reaction. 

3. The gravity is so strong near the horizon that the asymptotic 

expression of state equations of radiation will be affected by it. In 

Chapter 4, we have obtained the modified state equations of radia­

tion near the horizon of a Reissner-Nordstrom black hole and found 

that both the GSL and Bekenstein's upper bound on entropy are 

conserved in a gedanken experiment. In the asymptotic limit, the 

new equations converge to the asymptotic expressions. 

4. Temperature is implicitly present in a spacetime which is pe­

riodic in the imaginary time T. We have shown in Chapter 5, that 

the spacetime close to the event horizon of the Schwarzschild black 

hole is Rindler like. Using the field theory approach, the temper­

ature of the scalar field near the horizon of Rindler spacetime and 

Schwarzschild spacetime have been determined. The trajectory of 

a particle in a static Rindler space has been determined by solving 

the Euler's equation. We have calculated the entropy of an SGRS 
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and is found to be proportional to the square of mass. We have also 

calculated the entropy bound and obtained that it is similar to the 

Bekenstein upper bound 

5. A weak hair has been observed in Chapter 6 for BT Z and 

RN black holes with regular horizon. The horizon is not singular 

and it hides singularity. The scalar field is stable against the 1st and 

2nd order perturbations. The mass of black hole with hair is greater 

than that with out hair with a condition I-l = - t. All these show 

that there is scalar hair for the BT Z and RN black holes. 

6. Whether a horizon naturally occurs, even when the solution is 

nontrivial, will be the primary objective of strong interpretation of 

scalar hair. We have shown in Chapter 7, that a non-trivial scalar 

black hole solution, for a massive self interacting conformal scalar 

field, would be obtained in the case of static (3+1) black hole. The 

metric proposes horizon and temperature for the black hole. The 

horizon and surface temperature ensure a true black hole. The met­

ric element has a term other than the existing conserved quantities 

such as mass, vector charge and angular momentum. Not only that 

the scalar field is not carried away by a coordinate transformation, 

implies its stability. 

8.2 Future prospects 

A complete description of black hole evaporation and back reaction 

needs a comprehensive theory of quantum gravity. Since quantum 

gravity still eludes us, we have to be content with semi-classical meth­

ods to solve the back reaction program, making it insufficient. So 

quantization of spacetime is still a dream for the physicists. The 
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black hole spacetime may be an ideal one to get quantized, since 

it holds the unique property of singularity. It indicates a situation 

where physical parameters of a theory become untenable by attain­

ing infinite values. The singularity in GR not only marks the end of 

G R but also of everything else. No theory can survive in the absence 

of proper spacetime back ground. So with the advent of a quantum 

gravity we could venture deep into the black hole evaporation and 

back reaction. 

The information loss paradox is related to the fact that whether 

the Hawking radiation is fully thermal or not. If it is fully ther­

mal, information will be lost in the gravitational collapse. If the 

correlations between the inside and outside of the black hole are not 

restored during the evaporation process, then by the time that the 

black hole has evaporated completely, an initial pure state will have 

evolved to a mixed state, i.e., information will be lost. So we need a 

thorough investigation regarding this. The statement that the Black 

holes have no-hair is a bone of contention. Weak interpretation of 

hair is not so rare to occur. But strong interpretation requires a new 

conserved quantity in the metric and proper horizon that hides the 

singularity. What we have obtained in chapter.7, is only a mutu­

ally compatible scalar solution and a metric. Our aim is to evolve an 

independent solution and a metric that contains new information. 
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