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Electron-phonon interaction is considered within the framework of the fluctuating
valence of Cu atoms. Anderson’s lattice Hamiltonian is suitably modified to take this into
account. Using Green’s function technique the possible quasiparticle excitations arc
determined. The quantity 2A,{0) / ka7, is caiculated for 7. = 40 K. The calculated values
are in good sgreement with the experimental results.

The recent discovery of superconducting transition at high temperature in
ceramic oxides'? necessitates reconsideration of the conventional theoretical
framework of superconductivity. The microscopic theory of BCS® with phonons
plays the role of exchange particle cannot explain superconducting transition at
temperatures as high as 40 K or 90 K.** Experiments show nearly the absence of
isotope effect in these ceramic oxides.® The La,_,Sr,CuO, and YBa,Cu;0;_5
group of materials have Cu-O layers which are the conducting planes of the
crystal.™® There is strong anisotropy in these materials.>'® By substituting Sr
atoms with the La atoms of the parent compound La,CuQO,, we can introduce
holes into the oxygen 2p bands of the Cu-O planes.!! In YBa,CuyO,_; the
introduction of oxygen vacancies affects the number of holes in the oxygen 2p
bands of the Cu-O planes.'? It is found that T, in these materials have a strong
dependence on hole concentration.'>

Various theoretical models have been suggested to explain superconductivity
in these ceramic oxides. Some of these theories assume a model system where the
role of the 2p bands is not appropriately taken into account. Hubbard model
Hamiltonian with the hopping term and the on site repulsive term are considered
to contain the essential interactions to describe the superconducting transition.
The RVB theory approaches the situation along these lines.}4 We are of the view
that RVB description is correct in the insulating limit where antiferromagnetic

PACS Nos.: 74.20-2, 74.60-w, 74,90 + n.
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correlation of the Cu spins is possible. When the matenal is doped, it leads to the
creation of holes in the oxygen 2p bands unfavorably affecting super-exchange
interaction between Cu spins. The Copper 3d° electrons hybridizes with the
oxygen 2p bands when there are holes in the 2p bands. The strength of this
hybridization depends on the doping concentration. In this framework we are
taking into account the interaction of the 2p band electrons with the lattice.
Double occupancy of the Cu sites is energy-wise made unfavorable by the
Hubbard on site repulsive term.!’ These requirements are satisfied by Andersons
lattice Hamiltonian'® with a few additional terms.

We assume that the electron-electron repulsive interaction is only of the on site
Hubbard type and the effective electron phonon interaction can be replaced by
a Frohlich type electron-electron interaction term.!”

Under the above conditions, the Hamiltonian for the system takes the form

H - Zska,Ck, + EOZa,,a,, + zrlwqb'b + U/ZZ a,,,a‘,,af,aa,.,

ieo

+ ¥ / \/ﬁ Z {o-kAi a,'_, Cio + R C;c,a aiof

ko

+ EVZ(Q) (Cltfq.o Ck,abq + bt)CIZ,a Cluq.a} > (1)
aka
where ¢, is the band energy with wave vector k. Cl,and Cy , are the fermion
creation and annihilation operators for electrons in oxygen 2p bands. £y is the
orbitally nondegenerate 3d° energy level of Cu atom. a{, and g;, are the Fermi
creation and annihilation operators for electrons at site i in Cu 342 orbital.
bt, and b, are the phonon creation and annihilation operators. hay, is the energy
of the phonons in the gth mode. ¥, is the strength of hybndlzatlon between
localized and band states. V3(g) is the strength of the electron phonon interaction.
The energy levels ¢ and E; are measured from the chemical potential and
hence their values depend on the doping strength.
The Hamiltonian is brought from the site representation to the wave vector
representation by defining the following relations

al, = l/\/]T/Zaipe“"‘R"
x

2)
o =~ UVN D, 6%
4

After substituting and replacing the electron-phonon interaction terms with the
Frohlich type electron-electron interaction term, the Hamiltonian becomes
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b t
H = Zﬁk Ck,aCk,c + Eo Zak,,ak,a
ke ko

+ U/I2N 2 a’k,dq,,d 02-&.,,0' i, o Q0

akg”f"ﬁi’
+ ¥ Z[aL, Cios + CL, .|
ko
+ 2 Va (k,k"Q)Cltu Py Ck?'v‘ Cr, 2.0" Ck,a - 3)
&
Now consider the retarded Green’s functions'3

Gy = (Cho 1:Cew (M = Bt - 1) ([Cho (0,Cir 4O )
Gr= (ko (0:Ch . (M = &Kt - ) ([AaD:Ciar Y .+ ()

The equation of motion for G, and G, will be

i G, « it~ )LD, Cuw (N + K[CL), H CaltW (6)

i 6, - i) 1, Cow ) + K Label) HE CrattW - (D

When the commutators [Cf,‘,,(t),H] and [ai_,,(t),H] are evaluated and substituted in
Egs. (6) and (7), we find that they contain terms with higher order Green's
functions in addition to the terms with the lower order Green’s functions G, and
G,. These higher order Green’s functions are decoupled by writing them as the
product of correlation function and a lower order Green’s function G, or G
Thus Egs. (6) and (7) become

ig—tGl - i&(t—t')J,, ék,y + PG, - VG, (8)
.a

l-Gz - P|Gz - V|G| s (9)
at

where
Py = — [Ey+ UIN + UIN D (a0 a] (10)
['3
Pr= ~lee+2 2 Valk - )(Cho Coo - (n
ko
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In obtarming the two equations of motion standard decoupling and approxima-
tion methods are adopted at the higher stage. The Fourier transform of the two
equations of motion are found. Solving them, G,(E) and G(E) are found.

127 B e B

G -
B =& Py - Vi - Py}

(12)

and

~ 2R Sy x0 85y VIE - P)
GoE) = : . (13)
1B = S E Py - VIKE - P

Diagonalizing the set of coupled Fourier transform of the equations of motion,
we get

Gz = UGk, k', E) ¥ ViGi(k, k', E) (14)

with energies

Ez ~ [P+ PLF (P - P + 4V}, (15)

where Uy and V), are given by

P, - P 12
U - 1/&[1 B i et ] (16)

\/(Pz - Py + a1}

P, - P m
Vk-llﬁ[l- - A ] (17

N SOTZ

The system can be described as an assembly of noninteracting quasiparticles
belonging to two different species, characterized by excitation energies E, and
the corresponding creation operators are

dL k) = Uik = VG, . e
Thus we are making a canonical transformation from the original set to a new set.

The various terms of the Hamiltonian are expressed in terms of the
quasiparticle operators. By doing this, we intend to diagonalize the Hamiltonian.
Expressing the original operators in terms of the new operators, we have
substituted for various operators the combination of new operators. As expected,
the Hamiltonian is not in the diagonal form. It contains off-diagonal terms of the
form a', ,(k)a . ,(k) and a' ,(k)a, ,(k). It also contains terms which involve four
operators which do not satisfy the conservation of quasiparticle species. Such
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terms are neglected. Those fourth order terms which conserve quasiparticle
species are combined and their coefficient is equal to zero. Simplifying we get

Valk,k'y = - URN[VIVEIURUR] . (19)

At 0 K very few quasiparticles are excited and hence the number operators for
quasiparticles m, ,(k), m_ , (k) etc. have vanishingly small expectation values.
Therefore off-diagonal terms and fourth order terms containing number operators
are neglected.

Equating the coefficient of off-diagonal terms to zero, after simplification, we
have

EVHUE - & = - 2. ValkK') . (20)
g
By using Eq. (19) for Va(k,k’), Eq. (20) leads to

E°—U?- - & = URN[VHIUR) Y, VRIUE 2y
k

putting Uc = (112 + x' and Vi, = (172 - x'?.
By substituting Uy and ¥ and then putting

(172 - x)
hRt A S 22
UIZNkZ[ s Xk’)] A (0) (22)
we obtain
1/2 - - &
X - (Eo - Ar) - &/2 . @3)
(Ey + & - Ay)

Substituting for x; in the equation for A¢, the energy gap at 0 K leads to

&
AO) = URN ) ——— . (24)
H0) - U & {Eo - Ac(0)}

Assuming A, as-slowly varying with & and introducing D{(&) as the density of
localized states per Cu atom, we get

S A . dew 25
80 = e fo Diew)ese dex , (25)

where & is the upper bound of the hybridized 2p bands, and D(g) is the density
of localized states per Cu atom. For each value of ¢ there are two values of
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@ and hence we have to sum the two density of states corresponding to E, and
E_ . Linear relations are assumed to hold between the doping strength x and the
parameters Eg, & and V).

Since the Fermi level decreases linearly with doping, the relationship between
E, and the doping strength x will be Eg = R, x + 0.5, In the undoped case x = 0,
the localized Cu state and the narrow 2p band of oxygen atoms are of nearly
equal energy. This justifies the introduction of the small energy difference 0.5
between the upper bound of the 2p band and the Cu 34° level. &, is the top
most level of the 2p band as measured from the Fermi level and hence the
relation & = Ryx holds. The hybridization parameter ¥, should change with the
overlapping integral which in tumn has a linear dependence on the concentration
of the dopants in the out of the plane sites. Therefore we choose ¥V, = Vio + Ryx,
where V) stands for the residual mixing parameter.

We have assigned the following numerical values. R, R;, and R; are given the
values 2.0, 2.0, and 0.2, respectively. Vjp = 0.05, V3 = - 0.056¢V, U = 6.0¢V
and the density of band states per Cu atom = 1.0.

The set of equations for the Green’s functions are solved and the correlation
functions in P, and P, are found by iterative computation. For x = 0.19, the
computed values are

2D V3(CloCio) = - 0.8866886x 10~ and
k

UN ) (@ ar.2) = 0.7841363x 10~ .
k

The density of localized states is calculated using Green’s function technique
with the help of a digital computer. Substituting for the density of states,
the integration is performed and hence A(0) is calculated. Corresponding
to x = 0.19, A(O) has the value 6.4326 x 10~ eV and 2A(0)/kpT. = 3.739 for a
T. = 40K

Detailed calculation of the variation of energy gap with doping strength and
temperature will be published elsewhere. The mixing parameter is determined by
the overlap integral of the band states with the localized states of Cu atom. This
integral is determined by the ordering of the out of the plane dopants, which have
a quasi periodic character.
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