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Electron-pbonon inlerllction is considered within the fmmeworit of the fluctuating 
valence of Cu atoms. Andcrson's lattice Hamiltonian is suitably modified to taIcc this into 
account. UsillB Green's function technique tbe possible quasiparticle excitatioos' an: 
determined. The quantity 2oMO) I k.T. is calculated for T. - 40 K. The calculated values 
are iD good agreement with the experimental results. 

The recent discovery of superconducting transition at high temperature in 
ceramic oxides l

,2 necessitates reconsideration of the conventional theoretical 
framework of superconductivity. The microscopic theory of BCS) with phonons 
plays the role of exchange particle cannot explain superconducting transition at 
temperatures as high as 40 K or 90 K. 4,5 Experiments show nearly the absence of 
isotope effect in these ceramic oxides.6 The La2 _))r"Cu04 and YBa2Cu)07_6 
group of materials have Cu-O layers which are the conducting planes of the 
crystal.7

•
B There is strong anisotropy in these materials.9

•
IO By substituting Sr 

atoms with the La atoms of the parent compound La2CuO •• we can introduce 
holes into the oxygen 2p bands of the Cu-O planes. II In YBa2Cu)~ _ 6 the 
introduction of oxygen vacancies affects the number of holes in the oxygen 2p 
bands of the Cu-O planes}2 It is found that Te in these materials have a strong 
dependence on hole concentration. I) 

Various theoretical models have been suggested to explain superconductivity 
in these ceramic oxides. Some of these theories assume a model system where the 
role of the 2p bands is not appropriately taken into account. Hubbard model 
Hamiltonian with the hopping term and the on site repulsive term are considered 
to contain the essential interactions to describe the superconducting transition. 
The RVB theory approaches the situation along these lines. 14 We are of the view 
that RVB description is correct in the insulating limit where antiferromagnetic 

PACS Nos.: 74.20-z, 74.60-w, 74.90+ n. 
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correlation of the eu spins is possible. When the material is doped, it leads to the 
creation of holes in the oxygen 2p bands unfavorably affecting super-exchange 
interaction between Cu spins. The Copper 3d 9 electrons hybridizes with the 
oxygen 2p bands when there are holes in the 2p bands. The strength of this 
hybridization depends on the doping concentration. In this framework we are 
taking into account the interaction of the Zp band electrons with the lattice. 
Double occupancy of the Cu sites is energy-wise made uofavorable by the 
Hubbard 00 site repulsive term. I S These requirements are satisfied by Ande~ns 
lattice Hamiltonian l6 with a few additional tenus. 

We assume that the electron-electron repulsive interaction is only of the on site 
Hubbard type and the effective electron phonon interaction can be replaced by 
a Frohlich type electron-electron interaction term. 11 

Under the above conditions, the Hamiltonian for the system takes the form 

H = I tk d.a Ck•a + Eo I ata ai." + I "Wq tJq bq + U/2 I' alp Qi.,D atO" ai,a' 
le,,, i,a q i,a,O" 

V / T.;N" { - ileRi t C -'1eR1 d }. + I "IV L e ai." k,a + t:- k,,,ai,D 
i.Jc,,, 

(1) 

where tk is the band energy with wave vector k. CJ.aand Ck,a are the fermion 
creation and annihilation operators for electrons in oxygen 2p bands. Eo is the 
oroiudIY nondegenerate 3d9 energy level of eu atom. at" and a;,1I are the Fermi 
creation and annihilation operators for electrons at site i in eu 3d9 orbital. 
zt and bq are the phonon creation and annihilation operators. "w

tI 
is the energy 

of the phonons in the q th mode. VI is the strength of hybridization between 
localized and band states. V2(q) is the strength of the electron phonon interaction. 

The energy levels tic and Eo are measured from the chemical potential and 
hence their values depend on the doping strength. 

The Hamiltonian is brought from the site representation to the wave vector 
representation by defining the following relations 

al,a = 11 IN I atp e- ileRi 

It 

(2) 

After substituting and replacing the electron-phonon interaction terms with the 
Frohlicb type electron-e1ectron interaction term, the Hamiltonian becomes 
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+ VI L [at .. Ck,a + cta Ok ... ] 

le." 

+ L V2 (k,k',q)CL q."c1, . ." C/c'+q.tJ' Ck,t1 • 

q':J.;" 
(3) 

Now consider the retarded Green's functions lS 

The equation of motion for GI and G2 will be 

i~ Gt s it5(t - t') ([ct..(t), C" . ." (t')]} + ({ [Ct..(t), HJ; Ck, .... (t'») (6) 

i~ G2 - it5(t - 1/) ([o1...(t), c" . ." (t')J) + « [aL.<t), H]; Ck, .... (t')}} . (7) 

When the commutators [d,.,(I),H] and [al,.,(t),H] are evaluated and substituted in 
Eqs. (6) and (7), we find that they contain terms with higher order Green's 
functions in addition to the terms with the lower order Green's functions G1 and 
G2• These higher order Green's functions are decoupled by writing them as the 
product of correlation function and a lower order Green's function G1 or G2• 

Thus Eqs. (6) and (7) become 

(8) 

(9) 

where 

PI ,. - [Eo + UlN + UlN L <at." ak, ... ,} ] (10) 
k, 

Pz - - [e" + 2 L V2(k' - k)(C~,t1' C/c' .... }] . (11) 
k' ..... 
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In obtaining the two equations of motion standard decoupling and approxima­
tion methods are adopted at the higher stage. The Fourier transform of the two 
equations of motion are found. Solving them, G1 (E) and Gz(E) are found. 

(2) 

and 

(13) 

Diagonaiizing the set of coupled Fourier transform of the equations of motion, 
we get 

with energies 

E. = [P2 + PI + "';(PI - P2)2 + 4vf] , 

where Uk and Vk are given by 

V
k 

_ ll..{i [1 _ (P2 - PI) ]112 
...j(P2 - P I)2 -+ 4vl 

(14) 

(I 5) 

(16) 

(17) 

The system can be described as an assembly of noninteracting quasi particles 
belonging to two different species, characterized by excitation energies E:t:. and 
the corresponding creation operators are 

t k t A a±.J.. ) = UIclllr.,tJ ± VkLk,a . 
(18) 

Thus we are making a canonical transformation from the original set to a new set. 
The various terms of the Hamiltonian are expressed in terms of the 

quasiparticie operators. By doing this, we intend to diagonalize the Hamiltonian. 
Expressing the original operators in terms of the new operators, we have 
substituted for various operators the combination of new operators. As expected, 
the Hamiltonian is not in the diagonal form. It contains off-diagonal terms of the 
form at .a(k}a _ .,,(k} and a~ ... (k)a + .a(k). It also contains terms which involve four 
operators which do not satisfy the conservation of quasiparticle species. Such 
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terms are neglected. Those fourth order terms which conserve quasi particle 
species are combined and their coefficient is equal to zero. Simplifying we get 

Vik,k') = - Ul2N[VIVl,IUlul,] . (19) 

At 0 K very few quasiparticles are· excited and hence the number operators for 
quasiparticles m + ,17 (k), m -,IS (k) etc. have vanisbingly small expectation values. 
Therefore off-diagonal terms and fourth order terms containing number operators 
are neglected. 

Equating the coefficient of off-diagonal terms to zero, after simplification, we 
have 

EoVi/UI - tk • - I V2(k,k') . 
le' 

By using Eq. (19) for V2(k,k'), Eq. (20) leads to 

Eo vI _ Ek Z u/2N [ ViI UI] I Vi,1 ul, 
Ul le' 

putting Uk "" (1/2 + X0112 and Vk - (112 - XJII2 • 

By substituting Uk and Vk and then putting 

,,[(112 -XIe')] 
UI2N f. (112 + XA:') - ~k (0) 

we obtain 

1/2(Eo - ~.d - ,*,/2 
Xl'S -------

(Eo + tie' - AIc-) 

Substituting for Xl' in the equation for At, the energy gap at 0 K leads to 

'" tk' ~t<0) - Ul2N LEO)} . 
le' { 0 - ~Ie'( 

(20) 

(21) 

(22) 

(23) 

(24) 

Assuming ~k as-slowly varying with k and introducing D(£0 as the density of 
localized states per eu atom, we get 

~t<0) u fo'" D(tt-)t", de", , 
'" . 2{Eo - ~tCO)} 

(25) 

where tk" is the upper bound of the hybridized 2p bands, and D(ek) is the density 
of localized states per eu atom. For each value of EA: there are two values of 
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wand hence we have to sum the two density of states corresponding to E + and 
E _ . Linear relations are assumed to hold between the doping strength x and the 
parameters Eo, Eko and VI. 

Since the Fermi level decreases linearly with doping, the relationship between 
Eo and the doping strength x will be Eo ,. RI X + 05. In the undoped case x = 0, 
the localized Cu state and the narrow 2p band of oxygen atoms are of nearly 
equal energy. This justifies the introduction of the small energy difference 0.5 
between the upper bound of the 2p band and the Cu 3d9 level. Eko is the top 
most level of the 2p band as measured from the Fermi level and hence the 
relation t"" - R2x holds. The hybridization parameter VI should change with the 
overlapping integral which in turn has a linear dependence on the concentration 
of the dopants in the out ofthe plane sites. Therefore we choose VI - VIO + R)X, 
where V IO stands for the residual mixing parameter. 

We have assigned the following numerical values. Rh R2, and R3 are given the 
values 2.0, 2.0, and 0.2, respectively. VIO '" 0.05, V2 - - 0.056 eV, U ., 6.0 eV 
and the density of band states per Cu atom '" 1.0. 

The set of equations for the Green's functions are solved and the correlation 
functions in PI and P2 are found by iterative computation. For x - 0.19, the 
computed values are 

2 L V2 (eta Ck,td - - 0.8866886 x 10-$ and 
k 

IIN I (aL,. ale'.a') '" 0.7841363 x 10- 4 
• 

le' 

The density of localized states is calculated using Green's function technique 
with the help of a digital computer. Substituting for the density of states, 
the integration is performed and hence aiO) is calculated. Corresponding 
to x '" 0.19, aiO) has the value 6.4326 x 10- 3 eV and 2.1(0)/kBT" - 3.739 for a 
To ,. 40 K. 

Detailed calculation of the variation of energy gap with doping strength and 
temperature will be published elsewhere. The mixing parameter is determined by 
the overlap integral of the band states with the localized states of Cu atom. This 
integral is determined by the ordering of the out of the plane dopants, which have 
a quasi periodic character. 
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