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The density of states and the low temperature specific heat of high-T, superconductors are calculated in a functional integral
formalism using the slave boson technique. The manybody calculation in a saddle point approximation shows that the low cpergy
sector is dominated by a single band. The calculated values of density of states are in good agreement with experimental results.

1. Introduction

High temperature superconductivity in ceramic
oxides raises serious questions regarding the mech-
anism of normal and superconducting state prop-
erties of these systems. Ever since the discovery [1},
various theoretical models have been suggested and
different mechanisms ranging from conventional
weak coupling BCS-like to novel strong coupling for-
mulations have been proposed [2-4]. But still there
is no general consensus on the relevant parameter
regime and the mechanism of superconductivity in
these systems.

It is believed thiat the essential physics of normal
and superconducting states reside in the Cu~O planar
subsystem which is common to the copper oxide
superconductors,

Many theoretical models begin with a two-dimen-
stonal extended Hubbard model or Anderson lattice
model with a strong on-site repulsive interaction [ 5-
71. The introduction of nearest neighbour repulsion
in the extended Hubbard model [8] emphasizes the
relevance of charge degrees of freedom. In the ~J
models and RVB theories the low energy sector of
the problem is dominated by the spin degrees of free-
dom [9,10].

In this paper we analyze the extended model with-
out nearest neighbour repulsion, but with a direct
oxygen-oxygen hopping between the Po orbitals
which brings to the scene, in addition to the spin de-
grees of freedom, the charge degrees of freedom.

These models have been previously studied using §-
mean field scheme [11,12]. We studied this strongly -
correlated problem using a slave boson [13] fusie--
tional integral formalism [14] adopting a uniform
saddle point approximation in the complex variables,

Photo emission studies show that the copper o+
site repulsion is the largest energy scale in the prols-
lem. At half filling, the materials are antiferromag
netically spin ordered insulators. The proximity
being a magnetic insulator makes strong correlation.
relevant to the doped case.

Here we consider 2 model, in which the on-site re-
pulsion imposes 2 double occupancy constraint o
the copper 3d,._,» orbital. We study this usinga large
N expansion technique which is nonperturbative in
the coupling constants. The study is restricted to the
mean field theory {(N=c0). The pariition function
and the free energy are derived in section 2. The
expressions for the specific heat and the density of
states have been derived in section 3. The numerical
computations are presented in section 4. The con-
clusions concerning the renormalized energy bands
and the comparison with experiments are also dis-
cussed in section 4.

2. The model

The model we consider in this paper has three es-
sential bands. As a consequence of the oxygen ligand
environment the copper 3d degeneracy is lifted and
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the orbi:al which is closer to the Fermi energy is the
vopper 3d,:_,2 orbital. The relevant oxygen orbitals
are the p, orbitals of x and y symmetry.

The Hamiltonian for the system can be written as
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where 7, takes values a, and —a, and n, takes values
a, and —a,. The scale is so chosen that their mag-
nitudes are 1. €, and ¢, are the unrenormalized en-
ergy levels. They include the chemical potential.
d!, and d,, are the Fermi creation and annihilation
operators for holes in the filled copper 3d,:_,. or-
bital. pl.,,, .(x) and p;, ., ,(x) are the creation and
annihilation operators for holes in a p, orbital next
to the ith planar copper atom. Similarly the other p
operators correspond to the oxygen p, orbital with y
symmetry. In the low energy sector which is relevant
at low temperatures, the large U limit imposes con-
straints on the hole dynamics.
Using a large N slave boson technique with b} and
b; as the slave boson operators, the Hamiltonian takes
the form
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The partition function for the model in the func-
tional integral formalism takes the form

Z=I D[d]D{p]D[bldA,e~5,

(3)
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where d,, d. Prama X}y PiaqolX)s Biemo(¥)s
Pi+m.o{y) are Grassmann variables corresponding to
Fermi creation and annihilation operators.

We make a uniform saddle point approximation
in the slave boson variables and Lagrange multiplier
variables. We denote them as A and b. The functional
integrals over the Grassmann variables are per-

+Di+ rn.a(y)pH m.o(x) 1,
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formed after converting the Grassmann variables
from real space to momentum space and from im-
aginary time to imaginary frequency representation.

The partition function then becomes
Z=e"P",

(7N

where the free energy is given for real degeneracy of
o which is 2:
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where N, is the number of copper sites in the planar
subsystem,

Gl&, iw,) = (€ —iwn) ™", 9
i, are the Matsubara frequencies
iw,=2n+1){(in/B) (10)
and n varies from —« 10 «; and we have
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The saddle point values are determined by
%—I; =0 and {%Fi =0. (1s)

We can write
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A A -B= 0, (16)
where
P(iw,) =ao(iw,)*~2a, (iw,)* +a,(iw,)?
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and ay, a,, a;, 4, 2, stand for
p=1, (18)
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P(iw,) can be wriiten as
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where E(j) are the roots of the polynomial P(iw,).
When frequency sums are performed after simpli-
ficaiions ithe expicssicn for the free energy hecomes
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3. The electronic specific heat capacity and density
of states

The electronic specific heat capacity is given by
the expression

2
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where T is the temperature.

At the low temperaiures of interest to us, we can
set B—~co. The limit is applied after taking the de-
rivatives. We can write
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The summations over k can be replaced by inte-
gration. When this is done the contribution of the
first term vanishes in the f—oo limit since the in-
tegrand is independent of the integration variables.
The second term is simplified and on substitution in
¢q. (27) yields the specific heat capacity per copper
site in the planar structures as

2k} T
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where the quantity enclosed inside the square brack-
ets can be identified as the density of states at the
Fermi surface.

4. Numerical results and conclusions

The saddle point values 4 and b? are determined
numerically using egs. (15) for 8 in the oo limit.
When the numerical integrations over k, and k, are
nerformcd, at each integration step eq. (17) is nu-
merically solved to determine the energy values E(;).
Using the saddle point values, the density of states
calculation is carried out. The variation of density of
states with doping is plotied. The chemical poten-
lials are so chosen that the average number of pai-
ncles is given by
NJH&):-%E, (30)
where & is the doping concentration and g is the
chemical potential.
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The computations are carried out for two sets of
parameter values
(1) 4,==05 eV, ty=—1.5 eV, ,=—4.0, eV,
g=(e,—1.8) eV;

(2) ,=-01 eV, 1,3=-1.5 eV, ,=-4.0t, eV,
e=(€e,~1.8) eV.

The variation of the density of states with J is
shown in fig. 1. For very smal! values of 4 (close to
the half filled case) the saddle point values show large
deviations. The corresponding density of states also
shows an increase. When & is very small the saddle
point values become a poor approximation for the
functional integral in view of the constraint in the
problem. Therefore we are not including the limiting
half filled case in the discussion. In the other domain
the pattern of the variation of the density of states
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Fig. 1. Density of states vs. doping for,= -0.5¢Vand t,=-0.1
ev.

7 delta: 44 - 5ev
st P
i
» 3 /
oy
—J
< 31‘
>
> 2?‘\.\\\ |
W
Z OL —_
_‘ — e —— 4 1 A
0 | ) 2 3

x

Fig. 2. Energy values vs. & in the range O to nt for -k, =0.
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is similar to that of ref. [11]. The renormalized en- that in the low energy domain the physics is gov-
ergy bands are shown in figs. 2 and 3. The two-di- erned by a single band as has been advocated by An-
mensional analogue of the Fermi surface is shown in derson [16].

fig. 4. The calculated values of density of states are We have shown that even for moderately large ¢,

in good agreement with the values deduced by Grilli values and for the parameter regime considered in
et al. [11] from susceptibility measurements [15]. this paper the effective one band description holds.
The renormalized energy bands in figs. 2 and 3 show The calculated values of the density of states are in

good agreement with estimations from experiments.

detta= .44 tp= -5eV
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