
Neural Network based studies on 

Spectroscopic Analysis 

and 

Image Processing 

Saritha M 

International School of Photonics 

Cochin University of Science and Technology 

Kochi- 682022, Kerala, India 

Ph. D. Thesis submitted to 

Cochin University of Science and Technology 

in partial fulfillment of the requirements for the 

Degree of Doctor of Philosophy 

February, 2010 



Neural Network based studies on Spectroscopic Analysis and 
Image Processing 
Ph. D. Thesis 

Author: 
Saritha M 

Research Fellow, International School of Photonies 

Cochin University of Science and Technology 

Kochi - 682 022, India 

Email: saritha _ madhu@rediffmail.eom 

Research Advisors: 
Dr. V M Nandakumaran 

Professor, International School of Photonics 

Coehin University of Science and Technology 

Kochi - 682 022, India 

Email: nandak@cusat.ac.in 

Dr. V P N Nampoori 

Professor, International School of Photonics 

Cochin University of Science and Technology 

Kochi - 682 022, India 

Email: vpnnampoori@cusat.ac.in 

International School of Photonics, 

Cochin University of Science and Technology 

Kochi - 682 022, India 

URL:www.photonics.cusat.edu 

February, 2010. 
Cover design: Praveen N, Arun S Nair 



CERTIFICATE 

Certified that the work presented in the thesis entitled "Neural 

Network based studies on Spectroscopic Analysis and Image 

Processing" is based on tb:e ()Jjgjnal work done by Mrs. Saritha M 

under my guidance and -supervision at . the International School of 

Photonics, Cochin Univ~ity of Science and Technology, Kochi-22, 

India and has not been included in any other thesis submitted 

previously for the award of any degree. 

Kochi - 682022 

5th February 2010. 

. . ........ ~! 

' ..;: 

\'''-, ./ .'.), 

'--- ./ 
----~ 

1r'1' !U'~f U"''-:~f' 
Prof. V M Nandakumaran 

(Supervising Guide) 



DECLARATION 

Certified that the work presented in the thesis entitled "Neural 

Network based studies on Spectroscopic Analysis and Image 

Processing" is based on the original work done by me under the 

guidance of Dr. V M Nandakumaran, Professor, International School 

of Photonies, Cochin University of Science and Technology, Kochi-

22, India and the co-guidance of Dr. V P N Nampoori, Professor, 

International School of Photonics, Cochin University of Science and 

Technology, Kochi-22, India and it has not been included in any other 

thesis submitted previously for the award of any degree. 

Kochi - 682 022 

5th February 2010 

r") 

!J~ 
Saritha M 



Acknowledgements 

I express my gratitude and heartfelt thanks to Prof. V M Nandakumaran 

and V P N Nampoori for the supervision, guidance and support, without 

which I could not have completed this work. I sincerely thank them for 

their valuable suggestions and encouragement given to me. 

I am grateful to Prof. P Radhakrishnan for encouraging me throughout the 

period of my research 

I also thank Mr. Kailasnath M for his valuable support and inspiration. 

I thank Dr. Dann V J, Manu Punnen John and Lyjo Joseph for the timely 

help extended to me throughout my research period. 

I am extremely thankful to all my friends in ISP for their invaluable help 

extended to me. Without their help it would not have been possible for me 

to complete the work in time 

I have 110 words to express my gratitude to my family whose 

encouragement and support helped me in the successful completion of this 

work. I bow my head to my mother, the real source of inspiration. 

Thanks to all and everyone around me 

Saritha M 



Preface 

Artificial Neural Networks (ANNs) are computational modeling 

tools that have found extensive acceptance in many disciplines for 

modeling complex real-world problems. ANNs may be defined as 

structures comprised of densely interconnected adaptive simple 

proce~sing elements (called artificial neurons or nodes) that are capable of 

performing massively parallel computations for data processing and 

knowledge representation. Although ANNs are drastic abstractions of the 

biological counterparts, the idea of ANNs is not to replicate the operation 

of the biological systems but to make use of what is known about the 

functionality of the biological networks for solving complex problems. 

The attractiveness of ANNs comes from the remarkable infonnation 

processing cbaracteristi.esQf the ~91Qgicalsystem such as nonlinearity, 

high parallelism, robustness, fault and failure tolerance, learning 

capability, ability to handle imprecise and fuzzy infonnation, and their 

ability to generalize. One of the recently emerged applications of ANN is 

digital image processing. Interest in digital image processing stems from 

two principal application areas: improvement of pictorial information for 

human interpretation; and processing of image data for storage, 

transmission, and representation for autonomous machine perception. 

Chapter 1 gives the introduction to artificial neural network and 

digital image processing. In this chapter, the definition of neural network, 

the comparison of ANN with human brain, the infinite of neural networks, 

the various activation functions used, the different learning processes, a 

brief history and the various learning algorithms like perceptron and 

backpropagation algorithms are dealt with. TIlis chapter also gives a brier 



introduction to image processing also. Here a definition of the digital 

image is given. Also the two-dimensional DFT and its inverse is discussed 

as a tool for digital image processing and the various interpolation 

techniques like nearest neighbor, bilinear interpolation, bicubic and spline 

techniques are introduced. 

Chapter 2 gives an idea about the development of a successful 

artificial neural network. It gives a detailed discussion of the six phases of 

development of a ANN project ranging from the problem definition to the 

implementation of the network. Also here a discussion is done on the 

general issues of ANN development like the data size and partitioning, 

data preprocessing, data normalization, input/output representation, 

network weight initialization, determination of parameters like learning 

rate, momentum coefficient and transfer function, the convergence 

criteria, number of training cycles, hiddelllayer size etc. 

Chapter 3 gives an application of the neural network. Here a 

technique to automate the spectrum identification is given. The different 

modeling issues are dealt. Also a system is developed to identify elements 

like Ca, Cd, Fe, Li, Hg, K and Sr in a given sample. After the successful 

development of such a system, attempt is done to automate the spectrum 

identification. For that a system is developed to identify elements like Ti, 

Ca, Al and Sn. The system was able to identify the elements present in the 

spectrum obtained using a CCD camera coupled to a spectrol:,'raph having 

a grating blazed at 750nm with 1200grooves/mm and using the 

fundamental emission ofNd:YAG laser having IOns pulse width. 

Chapter 4 gives another application of neural network. Here 

neural network is employed in the digital image processing field. The 

super resolution of binary image with discrete cosine transfonn (DCT) is 



~~.~ with ANN. An introduction to DCT is done. In this chapter a 

discussion is done on the variation of the neural network output with the 

number of hidden layer neurons, the input weight initialization and the 

number of iterations is discussed. A neural network is trained to super­

ftIiiolvc a 16x16 binary image to a 32x32 binary image. The binary images 

.. aNIIidcred are images of numbers ranging from 0-9. The output of the 

neural network is compared to the output obtained using the existing 

methods. 

Chapter 5 gives a discussion on the restoration of gray level 

images with DCT. Here the variation of neural network output with 

variations in the activation function, the selection in the input data given 

for training, the selection of proper training algorithms etc are discussed. 

An ANN is trained to enlarge a 128x128 image to 256x256. The 

performance of the network is appreciable. The same network was used to 

enlarge a 256x256 image to 512x512 with good performance. 

Chapter 6 gives a discussion on the various noises affecting the 

digital image. It also gives an introduction to the noise immunity 

capability of the ANNs. The network developed to restore the binary 

images and the gray level images are tested with the various noises like 

Gaussian noise and impulse noise. The perfonnances of these systems 

with the existing methods are evaluated. 

Chapter 7 gives a brief discussion on the future scope of ANNs. 
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CHAPTERl 

IP'fR0DUCTION 

~NETWORKS AND DIGITAL 
':fiiAGE PROCESSING 

IJ Introduction 

Artificial Neural Networks (ANNs) are computational modeling 

tOols- that have found extensive acceptance in many disciplines for 

mocieling complex real-world problems. ANNs may be defined as 

~_ comprised of densely interconnected adaptive simple 

.~"I::::fi:::::::r ;o~:~~ha;~:,:::~I::: 
tMWiedge representation. Although ANNs are drastic abstractions of the 

biological counterparts, the idea of ANNs is not to replicate the operation 

of the biological systems but to make use of what is known about the 

functionality of the biological networks for solving complex problems. 

The attractiveness of ANNs comes from the remarkable information 

processing characteristics of the biological system such as nonlinearity, 

high parallelism, robustness, fault and failure tolerance, learning 

capability, ability to handle imprecise and fuzzy infonnation, and their 

ability to generalize. Artificial models possessing such characteristics are 

desirable because (i) nonlinearity allows better fit to the data, (ii) noise­

insensitivity provides accurate prediction in the presence of uncertain data 
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and measurement errors, (iii) high parallelism implies fast processing and 

hardware failure-tolerance, (iv) learning and adaptivity allow the system 

to update (modify) its internal structure in response to changing 

environment, and (v) generalization enables application of the model to 

unlearned data. The main objective of ANN-based computing 

(neurocomputing) is to develop mathematical algorithms that will enable 

ANNs to learn by mimicking information processing and knowledge 

acquisition in the human brain. ANN-based models are empirical in 

nature, however they can provide practically accurate solutions for 

precisely or imprecisely formulated problems and for phenomena that are 

only understood through experimental data and field observations. In 

microbiology, ANNs have been utilized in a variety of applications 

ranging from mode ling, classification, pattern recognition, and 

multivariate data analysis (Basheer and Hajmeer,2000). 

One of the recently emerged applications of ANN is digital image 

processing. Interest in digital image processing stems from two principal 

application areas: improvement of pictorial information for human 

interpretation; and processing of image data for storage, transmission, and 

representation for autonomous machine perception. An image may be 

defined as a two dimensional function, j(x,y), where x and y are spatial 

coordinates, and the amplitude off at any pair of coordinates (x, y) is 

called the intensity or gray level of the image at that point. When (x,y) and 

the amplitude values off are all finite, discrete quantities, it is called as a 

digital image. The field of digital image processing refers to processing 

digital images by means of a digital computer. A digital image is 

composed of a finite number of elements each having a particular location 

2 
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and value. These elements are referred to as picture elements, image 

olements, pels and pixels. The areas of application of digital image 

~g are wide and varied (Gonzalez and Woods, 2002). 

U What is a Neural Network? 

Work on artificial neural networks has been motivated right from 

its inception by the recognition that the human brain computes in an 

entirely different way from the conventional digital computer. The brain is 

a highly complex, nonlinear and parallel information processing system. It 

has the capability to organize its structural constituents, known as 

neurons, so as to perform certain computations many times faster than the 

best digital computer in existence today. At birth, a brain has great 

iIi.-riiii'iiftd tbe ability to build its own rules through experience. One of 

~'~~amples is the acquiring of specific natural language as the 

rit~d.er tongue. Indeed, experience is built up over time, with the most 

dramatic development of the human brain taking place during the first two 

years from birth; the development continues well beyond that stage 

(Haykin,2003). 

A developing neuron IS synonymous with a plastic brain: 

Plasticity permits the developing nervous system to adapt to its 

surrounding environment. Just as plasticity appears to be essential to the 

functioning of neurons as information-processing units in the human 

brain, so it is with neural networks made up of artificial neurons. In its 

most general form, neural network is a machine that is designed to model 

the way in which the brain performs a particular task or function of 

interest; the network is usually implemented by using electronic 

3 
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components or is simulated in software on a digital computer. To achieve 

good performance, neural networks employ a massive interconnection of 

simple computing cells referred to as neurons or processing units. A 

neural network can be considered as a massively distributed processor 

made up of simple processing units, which has a natural propensity for 

storing experiential knowledge and making it available for use. It 

resembles the brain in two respects: 

." Knowledge is acquired by the network from its environment through a 

learning process 

jo> Interneuron connection strengths, known as synaptic weights, are used 

to store acquired knowledge (Haykin, 2003). 

It is apparent that a neural network derives its computing power 

through, (i) its massively parallel distributed structure and (ii) its ability to 

learn and therefore to generalize. Generalization refers to the neural 

network producing reasonable outputs for inputs not encountered during 

training (learning). These two information processing capabilities make it 

possible for neural networks to solve complex problems that are currently 

intractable (Haykin,2003). 

The use of neural networks offers the following properties and 

capabilities (Hagan et. aI., 2002). An artificial neuron can be linear or 

nonlinear. A neural network, made up of an interconnection of non linear 

neurons, is itself non linear. Another capability of the neural network is its 

input-output mapping property (Haykin, 2003). The neural network learns 

from the examples by constructing an input-output mapping for the 

problem. Neural networks have a built in capability to adapt their synaptic 

weights to change in the surrounding environment. In particular, a neural 

4 
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apod: trained to operate in a specific environment can easily be 

retrained to deal with minor changes in the operating environmental 

c:oaditions. Another property of neural network is its evidential response. 

lacdre context of pattern classification, a neural network can be designed 

~ infonnation not only about which particular pattern to select, 

1MIt also about the confidence in the decision made. This latter information 

May be used to reject ambiguous patterns and thereby improve the 

classification performance of the network (Haykin,2003). 

Knowledge is represented by the very structure and activation 

state of a neural network. Every neuron in the network is potentially 

aft'ected by the global activity of all other neurons in the network. 

c..equcntly, contextual information is dealt with naturally by a neural 

•• ..., •• ,,.. iDdicated earlier, a neural network, implemented in hardware 

"cFs .. ,"'1be potential to be inherently fauIt tolerant, or capable of robust 
$.J;4j,. .•.• , . 

eemputatkm, in the sense that its performance degrades gracefully under 

adverse operating conditions. For example, if a neuron or its connecting 

links are damaged, recall of a stored pattern is impaired in quality. 

However, due to the distributed nature of information stored in the 

network, the damage has to be extensive before the overall response of the 

network is degraded seriously. Thus in principle, a neural network 

exjtibits a graceful degradation in performance rather than catastrophic 

failure. The massively parallel nature of a neural network makes it 

potentially fast for the computation of certain tasks. This feature makes a 

neural network well suited for implementation using very-large-scale­

integrated (YLSI) technology (Haykin, 2003). An important property of 

neural network is its uniformity of analysis and design. The same notation 

5 
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is used in all domains involving the application of neural networks. This 

feature manifests itself in different ways. 

» Neuron in one form or another, represent an ingredient common 

to all neural networks 

This commonality makes it possible to share theories and learning 

algorithms in different applications of neural network. 

Modular networks can be built through a seamless integration of 

modules. 

The design of a neural network is motivated by analogy with the brain, 

which is the living proof that fault to learnt parallel processing is not only 

physically possible but also sufficiently fast and powerful (Haykin, 2003). 

1.2.1 Human Brain 

The human nervous system may be viewed as a three-stage 

system as shown in Fig.l. I. Central to the system is the brain, represented 

by the neural net, which continually receives information, perceives it and 

make appropriate decisions. Two sets of arrows are shown in the Fig.ure. 

Those pointing from the left to right indicate the forward transmission of 

information-bearing signals through the system. 

t--~.;N'~l 

W~l 

Fig. 1.1 Block diagram represenllltion of nervous system. 

6 
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The arrows pointing from right to left signify the presence of 

feed-back in the system. The receptors convert stimuli from the human 

body or the external environment into electrical impulse that convey 

information to the neural net. The effectors convert electrical impulse 

generated by the neural net into discernible responses as system outputs. 

The human nervous system consists of billions of neurons of various types 

and lengths relevant to their location in the body (Schalkoff. 1997). The 

struggle to understand the brain has made easier because of the pioneering 

work of Ramon y Cajal, who introduced the idea of neurons as structural 

constituents of brain (Haykin, 2003). Typically, neurons are five to six 

orders of magnitude slower than silicon logic gates. However, the brain 

makes up for the relatively slow rate of operation of a neuron by having a 

truly staggering number of neurons with massive interconnections 

between them. It is estimated that there are approximately 10 billion 

neurons in the human cortex, and 60 trillion synapses or connections. The 

net result is that the brain is an enormously efficient structure. A neuron 

has three principal components: the dendrite, the cell body and the axon. 

The dendrites are tree-like receptive networks of nerve fibres that carry 

electrical signals into the cell body as in Fig.1 .2. The cell body has a 

nucleus that contains inforn1ation about heredity traits, and a plasma that 

holds the molecular equipment used for producing the material needed by 

the neuron (Jain et. al., 1996). The dendrites receive signals from other 

neurons and pass them over to the cell body. The total receiving area of 

the dendrites of a typical neuron is approximately 0.25 mm2 (Zupan and 

Gasteiger, 1993). The cell body effectively sums and thresholds these 

incoming signals. The axon is a single long fibre that carries the signal 

7 
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from the cell body out to other neurons. The point of contact between an 

aXOn of one cell and a dendrite of another cell is called a synapse. It is the 

arrangement of neurons and the strengths of the individual synapses, 

determined by a complex chemical process that establishes the function of 

the neural network (Haykin, 2003). 

Fig. 1.2 The Pyramidal Cell 

8 
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Synapses are elementary structural and functional units that 

mediate the interaction between neurons. The most common kind of 

synapse is a chemical synapse, which operates as follows: A presynaptic 

process liberates a transmitter substance that diffuses across the synaptic 

junction between neurons and then acts on a post synaptic process. Thus a 

synapse converts a presynaptic electrical signal into a chemical signal and 

then back into a post synaptic electrical signal. In traditional descriptions 

of neural organization, it is assumed that a synapse is a simple connection 

that can impose excitation or inhibition, but not both simultaneously on 

the receptive neuron. In an adult brain, plasticity may be accounted for by 

two mechanisms: the creation of new synaptic connections between 

neurons, and the modification of existing synapses. Axons, the 

transmission lines and dendrites which is the receptive zones, constitute 

two types of cell filaments that are distinguished on morphological 

grounds; an axon which has a smoother surface, fewer branches, and 

greater length, whereas a dendrite has an irregular surface and more 

branches. Neurons come in a wide variety of shapes and sizes in different 

parts of the brain. Fig. 1.2 illustrates the shape of a pyramidal cell, which 

is one of the most common types of cortical neurons. Like many other 

types of neurons, it receives mQSt of the inputs through dendritic spines. 

The pyramidal cell can receive 10,000 or more synaptic contacts and it 

can project onto thousands of target cells. 

The axon, which branches into collaterals, receives signals from 

the cell body and carries them away through the synapse (a microscopic 

gap) to the dendrites of neigh boring neurons. A schematic illustration of 

the signal transfer between two neurons through the synapse is shown in 

9 
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Fig.1.3b. An impulse, in the fonn of an electric signal, travels within the 

dendrites and through the cell body towards the pre-synaptic membrane of 

the synapse. 

Fig. 1.3 (a) Schematic of biological neuron. (b) Mechanism of signal 

transfer between two biological neuron 

10 
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Upon arrival at the membrane, neurotransmitters (chemical like) are 

released from the vesicles in quantities proportional to the strength of the 

incoming signal. The neurotransmitters diffuse within thesynaptic gap 

towards the post-synaptic membrane, and eventually into the dendrites of 

neighbouring neurons, thus forcing them (depending on the threshold of 

the receiving neuron) to generate a new electrical signal.The generated 

signal passes through the second neuron(s) in a manner identical to that 

just described. 

The amount of signal that passes through a receiving neuron 

depends on the intensity of the signal emanating from each of the feeding 

neurons. their synaptic strengths, and the threshold of the receiving 

neuron. Because a neuron has a large number of dendrites /synapses, it 

can receive and transfer many signals simultaneously. These signals may 

either assist (excite) or inhibit the firing of the neuron depending on the 

type of neurotransmitters are released from the tip of the axons. This 

simplified mechanism of signal transfer constituted the fundamental step 

of early neurocomputing development (e.g., the binary threshold unit of 

McCulloh and Pitts. 1943) and the operation of the building unit of 

ANNs. 

The crude analogy between artificial neuron and biological 

neuron is that the connections between nodes represent the axons and 

dendrites. the connection weights represent the synapses, and the 

threshold approximates the activity in the soma (Jain et. aI., 1996). 

Fig. 1.4 illustrates n biological neurons with various signals of intensity x 

and synaptic strength w feeding into a neuron with a threshold of band , 
the equivalent artificial neurons system. Both the biological network and 
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ANN learn by incrementally adjust ing the magnitudes of the weights or 

synaptic strengths (Zupan and Gasteiger. 1993). 

, 
I.' 

Fig. 1.4 Slgnm interaction from n neurons and analogy to signal summing in 

an arlifrcild neuron comprising the single layer puuptron 

1.3. Models of a Neuron 

In 1958, Rosenblatt introduced the mechanics of the s ingle 

artificial neuron and introduced the ' Perceptron ' to so lve problems in the 

area of character recognition (Hechl-Nielsen, \990). Basic findings from 

the biological neuron operation enabled early researchers (e.g .. McCulloh 

and Pius, 1943) to model the operation of simple artificial neurons. An 

artificial processing neuron receives inputs as stimuli from the 

12 
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environment, combines them in a special way to form a 'net' input, passes 

that over through a linear threshold gate, and transmits the (output, y) 

signal forward to another neuron or the environment, as shown in Fig. lA. 

Only when the net input exceeds (i.e., is stronger than) the neuron's 

threshold limit (also called bias, b). will the neuron fire (i.e, becomes 

activated). Commonly, linear neuron dynamics are assumed for 

calculating net input (Haykin. 2003). The net input is computed as the 

inner (dot) product of the input signals (x) impinging on the neuron and 

their strengths (IV) (Basheer and Hajmeer, 2000). 

In the context of computation, a neuron is pictured as an 

information-processing unit that is fundamental to the operation of a 

neural network. The block diagram sketched in Fig.I.5 represents the 

model of a neuron, which forms the basis for designing artificial neural 

networks. There are three basic elements in the neuronal model: 

1II __ ---.( 

.. ~. 

Fig. 1.5 Block diaaram ~ . h 
.. epresentmg t e Nonlinear model of a neuron 
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. - Xl 
Input signal X = .. weight factor W = 

Net output for the /I" neuron is: 

(1.1 ) 

~ A set of synapses or connecting links, each of which is 

characterized by a weight or strength of its own. Specifically, a 

signal Xi at the input of synapse j connected to neuron k is 

multiplied by the synaptic weight Wkj 

An adder for summing the input signals, weighted by the 

respective synapses of the neuron; the operations described here 

constitutes a linear combiner. 

An activation function for limiting the amplitude of the neuron 

output. The activation is also referred to as a squashing function 

or limiting function in that it squashes (limits) the permissible 

amplitude range of the output signal to some finite value. 

Typically, the normalized amplitude range of the output of a 

neuron is written as the closed unit interval [0, I] or alternatively 

[-1,1] representing unipolar and bipolar cases respectively. 

The neuron model of Fig.l.5 also includes an externally applied bias, 

denoted by bA •. The bias bk has the effect of increasing or lowering the net 
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input of the activation function. depending on whether it is positive or 

negative respectively. 

~ In mathematical temlS, we may describe a neuron k by writing the 

following pair of equations: 

III 

uk = L w~JXj ( 1.2) 

1;1 

and 

( 1.3) 

where x /. x] • ..... , .. ,X,.. are the input signals; Wk!. W,t.:' •••..••.••••• Wkm are the 

synaplic weights of neuron k; Uk is the linear combiner output due to the 

input signals; b. is the bias; 1ft (.) is the activation function; and Yk is the 

output signal of the neuron. The use of the bias b.l; has the effect of 

applying an affine transformation to the output Uk of the linear combiner 

in the model of Fig. 1.5 as shown by 

( lA) 

In particular, depending on whether the bias bk is positive or negative, the 

relationship between the induced local field or activation potential Vk of 

neuron k and the linear combiner output Uk is modified in the manner 

illustrated in Fig.l.6. The bias bk is an external parameter of artificial 

neuron k and is an important parameter in describing the dynamics of the 

neuron. 
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mdi1ced 
~.c;~, 
field. Vi 

li~ellr cornt>in;er's 
oufput. ftt 

Fig. 1.6 Affllle transformation produced by the presence of Q billS 

ned input 
lib = +.1 

S~e~.pls 
(iotl~hla') 

Fig. 1.7 Another NonJinear model of a neuron including the effect of billS 

accounted as a input signal fIXed at +1. 
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Combinations of Eqs. ( 1.2) and (1.4) as follows: 

III 

v~ = L WIy'Xj 
( 1.5) 

,~O 

and 
( 1.6) 

In Eq.( 1.4) a new synapse is added. Its input is 

XII = +1 ( 1.7) 

and its weight is 

(1.8) 

Therefore the modeJ"ofthe neuron k is reformulated as in Fig. 1.7. In this 

Fig.ure, the effect of the bias is accounted as: adding a new input signal 

fixed at + J. and adding a new synaptic weight equal to the bias bk 

1.4 Types of activation functions 

The activation function may be a linear or a non linear function. 

The activation function, denoted by <p(v), defines the output of a neuron in 

terms of the induced local field v. The activation function generates either 

unipolar or bipolar signals. In the following sections various types of 

function used for activating the neuron activities are described. 

1.4.1 A step function 

It is a unipolar function and is also referred to as a threshold 

function. This function is shown in Fig. 1.8(a) and is defined as: 
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(fv?O 

if V < 0 
(1.9) 

In engineering literature, this is a threshold function referred to as 

Heaviside function. Correspondingly, the output of neuron k employing 

such a threshold function is expressed as 

if ". ~ 0 
if vk < 0 

where v* is the induced local field of the neuron; so that 

HI 

v. = LWkjXj +b. 
j-I 

(1. 10) 

(1.11 ) 

Eqn.I.11 represents a neuron referred to in the literature as the 

McCulloch-Pitts model, in recognition of the pioneering work done by 

McCulloch and Pitls (1943). In this model, the output of the neuron takes 

on the value of I if the induced local field of that neuron is non negative, 

and 0 otherwise. This statement describes the all-or-none property of the 

McCulloch-Pitts model. 

1.4.2 Piecewise-Linear Function 

This is also a unipolar function. The piecewise-linear function 

described in Fig.1.8(b) is defined as: 
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I, 
I 

vz+-
2 

1 I 
(1.12) ~(v) = v, +->v>--

2 2 
1 

0, vs--
2 

where the amplification factor inside the linear region of operation is 

assumed to be unity. The following two situations may be viewed as 

special fonn of the piecewise-linear function: 

;.. A linear combiner arises if the linear region of operation is 

maintained without running into saturation 

~ The piecewise-linear function reduces to a threshold function if 

the amplification factor of the linear region is made infinitely 

large. 

1.4.3 Sigmoid Function 

The sigmoid function, whose graph is S shaped, is also a 

unipolar function and is the most common form of activation function 

used in the construction of artificial neural networks. It is defined as a 

strictly increasing function that exhibits a graceful balance between linear 

and non linear behaviour. An example of the sigmoid function is the 

logistic function, defined by 

9'{v) = 1 
1 + exp{-av) (l.I3) 
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Pig. 1.8 YII,iDUS types of IIctiWllion functiDns (a) step function (b) pjece~.,."ise 

Hnellr function (c) sigmoUl function 
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where (J is the slope parameter of the of the sigmoid. function . . . 
By varying the parameter a, 'si~oid fUtJcti~ns of different slopes 

are obtained. as illustrated in Fig.1.8(c). In fact, the slope at the origin 

equals a14. In the limit, as the slope parameter approaches infinity, the 

sigmoid function becomes simply a threshold function. Whereas a 

threshold function assumes the value of 0 or 1, a sigmoid function 

assumes a continuous range of values from 0 to t. Moreover the sigmoid 

function is differentiable. unlike in the case of other threshold functions. 

Differentiability is an important feature of neural network theory. 

All the above mentioned activation functions are unipolar, which 

are varying between 0 and 1. It is sometimes desirable to have the 

activation function range from -1 to +1, in which case the activation 

function assumes an antisymmetric fonn with respect to the origin; that is, 

the activation function is an odd function of the induced local field. 

Specifically. the threshold function ofEq.(1.9) is now defined as 

{

I, if v> 0 

tp(v) = 0, ~r v = 0 

-1, if v < 0 
(1.14) 

which is commonly referred to as the signum function. For the 

corresponding fonn of the sigmoid function, the hyperbolic tangent 

function is used, which is defined by: 

9'{v) = tanh{v) (l.I5) 
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1.5 Perceptrons 

The perceptron (Fig. 1. 7) can be trained on a set of examples using 

a special learning rule (Hecht-Nielsen, 1990). The perceptron weights 

(including the threshold) are changed in proportion to the difference 

(error) between the target (correct) output, Y, and the perceptron solution, 

y, for each example. The error is a function of all the weights and forms 

an irregular multidimensional complex hyperplane with many peaks, 

saddle points, and minima. Using a specialized search technique, the 

learning process strives to obtain the set of weights that corresponds to the 

global minimum. Rosenblatt (1962) derived the perceptron rule that will 

yield an optimal weight vector in a finite number of iterations, regardless 

of the initial values of the weights. 

This rule, however, can perform accurately with any linearly 

separable classes (Hecht-Nielsen, 1990), in which a linear hyperplane can 

place one class of objects on one side of the plane and the other class on 

the other side. Fig. 1.9 (a) shows linearly and nonlinearly separable two­

object classification problems. In order to cope with nonlinearly separable 

problems, additional layer(s) of neurons placed between the input layer 

containing input nodes) and the output neuron are needed leading to the 

multilayer perceptron (MLP) architecture (Hecht-Nielsen, 1990), as 

shown in Fig. 1.9 (b). Since these intermediate layers do not interact with 

the external environment, they are called hidden layers and their nodes 

called hidden nodes. The addition of intermediate layers revived the 

perceptron model by extending its ability to solve nonlinear classification 

problems. Using similar neuron dynamics, the hidden neurons process the 
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. . d f m the input nodes and pass them over to output 
information receIve ro 

layer. 

r~ ~~y~ f~~t:W¥lJ~~eW~f~" 

-~)' 

Fig. 1.9. (a) Linear vs. nonlinear separability. (b) Multi/ayer perceptron 

showing input, hidden, and output layers "lid nodes with !eed!orward links. 

The learning of MLP is not as direct as that of the simple perceptron. For 

example, the backpropagation network (Rumelhart et aI., 1986) is one 

type of MLP trained by the delta learning rule (Zupan and Gasisteiger, 

1993). However, the learning procedure is an extension of the simple 

perceptron algorithm so as to handle the weights connected to the hidden 

nodes (Hecht-Nielsen, 1990). 
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1.6 Learning Processes 

Learning is a process by which the free parameters of a neural 

network are adapted through a process of simulation by the environment 

in which the network is embedded. The type of learning is detennined by 

the manner in which the parameter changes take place. The above 

definition of learning process implies the following sequence of events: 

~ The neural network is stimulated by an environment. 

~ The neural network undergoes changes in its free parameters as a 

result of this simulation. 

The neural network responds in a new way to the environment 

because of the changes that have occurred in its internal structure. 

A prescribed set of well-defined rules for the solution of a 

learning problem is called learning algorithm. As one would expect, there 

is no unique learning algorithm for the design of neural networks. Rather, 

there is kit of tools represented by a diverse variety of learning algorithms, 

each of which offers advantages of its own. Basically, learning algorithms 

differ from each other in the way in which the adjustment to a synaptic 

weight of a neuron is formulated. Another factor to be considered is the 

manner in which a neural network, made up of a set of interconnected 

neurons, relates to its environment. 

Hebb's postulate of learning is the oldest and the most famous of 

all learning rules; it is named in honour of the neuropsychologist Hebb 

(1949). His postulate states that: 
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When an axon qf cell A is near enough to excite a cell Band 

repeatedly or persistently takes part in firing it. some growth 

process or metabolic changes take place in one or both cells such 

that A's efficiency, as one (?flhe cel/sfiring B. is increased. 

Hebb proposed this change as a basis of associative learning which would 

result in an endW'ing modification in the activity pattern of a spatially 

distributed assembly of nerve cells. 

The Hebb's postulate can be expanded and rephrased as a two-

part rule: 

);i. If two neurons on either side of a synapse are activated 

simultaneously, then the strength of that synapse is selectively 

increased. 

If two neurons on either side of a synapse are activated 

asynchronously, then that synapse is selectively weakened or 

eliminated. 

Such a synapse is called a Hebbian synapse. More precisely, a Hebbian 

synapse is a synapse that uses a time-dependent, highly local and strongly 

interactive mechanism to increase synaptic efficiency as a function of the 

correlation between the presynaptic and postsynaptic activities. 

1.7 A Brief History 

In this section, in order to make the thesis se1fcontained an overview 

of the historical evolution of ANNs and neurocomputing is briefly 

presented. Anderson and Rosenfeld (1988) provide a detailed history 
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along with a collection of the many major classic papers that affected 

ANNs evolution. Nelson and IIlingworth (1990) divide 100 years of 

history into six notable phases: (1) Conception, 1890-1949; (2) Gestation 

and Birth, 1950s; (3) Early Infancy, late 1950s and the 1960s; (4) Stunted 

Growth, 1961-1981; (5) Late Infancy 1,1982-1985; and (6) Late Infancy 

n, 1986--present. The era of conception includes the first development in 

brain studies and the understanding of brain mathematics. It is believed 

that the year 1890 was the beginning of the neurocomputing age in which 

the first work on brain activity was published by William lames (Nelson 

and lllingwortb, 1990). Many (e.g., Hecht-Nielsen, 1990) believe that real 

neurocomputing started in 1943 after McCulloh and Pius (1943) paper on 

the ability of simple neural networks to compute arithmetic and logical 

functions. This era ended with the book 'The Organization of Behavior' 

by Donald Hebb in which he presented his learning Jaw for the biological 

neurons' synapses (Hebb, 1949). The work of Hebb is believed to have 

paved the road for the advent of neurocomputing (Hecht- Nielsen, 1990). 

The gestation and birth era began following the advances in hardware/ 

software technology which made computer simulations possible and 

easier. In this era, the first neurocomputer (the Snark) was built and tested 

by Minsky at Princeton University in 1951, but it experienced many 

limitations (Hecht-Nielsen, 1990). This era ended by the development of 

the Dartmouth Artificial Intelligence (AI) research project which laid the 

foundations for extensive neurocomputing research (Nelson and 

lllingworth, 1990). 

The era of early infancy began with John von Neuman's work whiclt 

was published a year after his death in a book entitled 'The Computer and 
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NEURAL .". 
as 
the Brain' (von Neuman, 1958). In the same year, Frank Rosenblatt at 

Cornell University introduced the first successful neurocomputer (the 

Mark I perceptron), designed for character recognition which is 

considered nowadays the oldest ANN hardware (Nelson and llIingworth, 

1990). Although the Rosenblatt perceptron was a linear system, it was 

efficient in solving many problems and led to what is known as the 1960s 

ANNs hype. In this era, Rosenblatt also published his book 'Principles of 

Neurodynamics' (Rosenblatt, 1962). The neurocomputing hype, however, 

did not last long due to a campaign led by Minsky and Pappert (1969) 

aimed at discrediting ANNs research to redirect funding back to AI. 

Minsky and Pappert published their book 'Perceptrons' in 1969 in which 

they over exaggerated the limitations of the Rosenblatt's perceptron as 

being incapable of solving nonlinear classification problems, although 

such a limitation was already known (Hecht-Nielsen, 1990; Wythoff, 

1993). Unfortunately, this campaign achieved its planned goal, and by the 

early 1970s many ANN researchers switched their attention back to AI, 

whereas a few 'stubborn' others continued their research. Hecht-Nielsen 

(1990) refers to this era as the 'quiet years' and the 'quiet research'. 

With the Rosenblatt perceptron and the other ANNs introduced by 

the 'quiet researchers'. the field of neurocomputing gradually began to 

revive and the interest in neurocomputing renewed. Nelson and 

llIingworth (1990) list a few of the most important research studies that 

assisted the rebirth and revitalization of this field, notable of which is the 

introduction of the Hopfield networks (Hopfield, 1984), developed for 

retrieval of complete images from fragments. The year 1986 is regarded a 

comerstone in the ANNs recent history as Rumelhart et a1.(1986) 
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rediscovered the backpropagation learning algorithm after its initial 

development by Werbos (1974). The first physical sign of the revival of 

ANNs was the creation of the Annual IEEE International ANNs 

Conference in 1987, followed by the formation of the International Neural 

Network Society (INNS) and the publishing of the INNS Neural Network 

journal in 1988. It can be seen that the evolution of neurocomputing has 

witnessed many ups and downs, notable among which is the period of 

hibernation due to the perceptron's inability to handle nonlinear 

classification. Since 1986, many ANN societies have been formed, special 

journals published, and annual international conferences organized. At 

present, the field of neurocomputing is blossoming almost daily on both 

the theory and practical application fronts. 

1.8 Learning Rules 

A learning rule is a procedure to modify the weight and biases of 

a network. This is also referred to as a training algorithm. The purpose of 

the learning rule is to train the network to perform some task. There are 

many types of neural network learning rules. They fall into three broad 

categories: supervised learning, unsupervised learning and reinforcement 

learning. 

In supervised learning, the learning rule is provided with a set of 

examples (the training set) of proper network behaviour: 

28 



N
CTWORK BASED STUDIES ON SPECTROSCOPIC ANALYSIS AND IMAGE PROCESSING 

NEURAL c. -
( 1.16) 

where Xq is an input to the network and tq is the corresponding COlTcct 

(target) output. 

Environment 

V tctor describmg 
state oftht 

(a) 

(b) 

Desired 
Resp.)ose 

Error Signal 

Fig. I. 10 (a) Block diagram of learning with a teacher (b) Block Diagram 

of reinforcement leaming 
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As the inputs are applied to the network, the network outputs are 

compared to the targets (Hagan et. aI., 2002). The learning rule is then 

used to adjust the weight and biases of the network in order to move the 

network outputs closer to the targets. This kind of learning is also known 

as learning with a teacher. Fig.I.IO (a) shows a block diagram that 

illustrates this fonn of learning. Suppose now that the teacher and the 

neural network are both exposed to a training vector drawn from the 

environment. By the virtue of built-in-knowledge, the teacher is able to 

provide the neural network with a desired response for that training 

vector. Indeed, the desired response represents the optimum action to be 

performed by the neural network. The network parameters are adjusted 

under the combined influence of the training vector and the error signal. 

The error signal is defined as the difference between the desired signal 

and the actual response of the network. This adjustment is carried out 

iteratively in a step-by-step fashion with the aim of eventually making the 

neural network emulate the teacher; the emulation is presumed to be 

optimum in some statistical sense. In this way knowledge of the 

environment available to the teacher is transferred to the neural network 

through training as fully as possible. When this condition is reached, the 

teacher is the dispensed with and let the neural network deal with the 

environment completely by itself. 

In supervised learning, the process takes place under the tutelage of 

a teacher. But, in the paradigm known as learning without a teacher, there 

is no teacher to oversee the learning process. That is to say, there are no 

labelled examples of the function to be learned by the network. Under this 
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paradigm, two subdivisions are identified: one is the reinforcement 

learning and the other unsupervised learning 

In reinforcement learning, the learning of an input-output 

mapping is performed through continued interaction with the environment 

in order to minimize the scalar index of performance. Fig. 1.10 (b) shows 

the block diagram of one form of a reinforcement learning system built 

around a critic that converts a primary reinforcement signal received from 

the environment into a higher quality reinforcement signal called the 

heuristic reinforcement signal, both of which are scalar inputs. The system 

is designed to learn under delayed reinforcement, which means that the 

system observes a temporal sequence of state vectors also received from 

the environment, which eventually result in the generation of the heuristic 

reinforcement signal. The goal of learning is to minimize a cost-to-go 

function, defined as the expectation of the cumulative cost of actions 

taken over a sequenc(' of steps instead of simply the immediate cost. It 

may turn out that certain actions taken earlier in that sequence of time 

steps are in fact the best determinants of overall system behaviour. The 

function of the learning machine, which constitutes the second component 

of the system, is to discover these actions and to feed them back to the 

environment. 

In unsupervised learning or self- organized learning there is no 

external teacher or critic to oversee the learning process, as indicated in 

Fig. 1.11. Rather, provision is made for a task independent measure of the 

quality of representation that the network is required to learn, and the free 

parameters of the network are optimized with respect to that measure. 

Once the network has become tuned to the statistical regularities of the 
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input data, it develops the ability to form internal representations for 

encoding features of the input and thereby to create new classes 

automatically. To perform unsupervised learning, a competitive learning 

rule is used. For that a neural network consisting of two layers- an input 

layer and a competitive layer are employed. The input layer receives the 

available data. The competitive layer consists of neurons that compete 

with each other (in accordance with a learning rule) for the opportunity to 

respond to features contained in the input data. In its simplest form, the 

network operates in accordance with a winner-takes-all strategy. 

Vectors desuibmg state of 
the environment 

Environment --.. ~ 
Fig. 1.11 Block diagram of unsupervised leami"g 

1.9 Learning Algorithms 

Learning 
System 

In the fonnative years of the neural network (1943-1958), several 

researchers stand out for their pioneering contributions: 

~ McCulloch and Pitts (1943) for introducing the idea of neural 

network as computing machines. 

Hebb (1949) for postulating the first rule for self-organised 

learning. 

Rosenblatt (1958) for proposing the perceptron as the first model 

for supervised learning. 
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In the present research work only supervised learning is used. 

Therefore in the following sections only supervised learning algorithms 

are dealt with. The perceptron is the simplest form of a neural network 

used for the classification of patterns which are said to be linearly 

separable. Basically, it consists of a single neuron with adjustable synaptic 

weights and bias. Indeed, Rosenblatt proved that if the patterns used to 

train the perceptron are drawn from two linearly separable classes, then 

the perceptron algorithm ~onverges and positions the decision surface in 

the form of a hyper plane between the two classes (Rosenblatt, 1962). The 

proof of convergence of the algorithm is known as the perceptron 

convergence theorem. The perceptron built around a single neuron is 

limited to performing pattern classification with only two classes. In the 

following sections the Perceptron algorithm and the backpropagation 

algorithms are given. 

1.9.1 The Perceptron Algorithm 

The Perceptron, an invention of Rosenblatt (1962), was one of the 

earliest neural network models. A perceptron models a neuron by taking a 

weighted sum of the inputs and sending the output I if the sum is greater 

than some adjustable threshold value (otherwise it sends 0). Fig. 1.12 

shows the device. 

The inputs (Xl, X2. X3, ....... xn) and connection weights (Wl. W2, 

W3, ..... wn) in the Fig.ure are typically real values, both positive and 

negative. If the presence of some feature Xi tends to cause the perceptron 

to fire, the weight Wi will be positive; if the feature Xi inhibits the 

perceptron, the weight Wi will be negative. The perceptron itself consists 
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of the weights, the summation processor, and the adjustable threshold 

processor. Learning is a process of modifYing the values of the weights 

and the thresholds (bias). It is convenient to implement the bias as just 

another weight wo. This weight can be thought of as the propensity of the 

perceptron to fire irrespective of its inputs (Rich and Knight, 1994). 

Step 0 

Step I 

Step 2 

Step 3 

Step 4 

Step 5 

Set up tire neural network model as shown in Fig.l.12 

Initialize the weights and bias. 

Set learning rate, ,,(0 < 11 < 1) 

Set minimum error value for stopping. 

While the stopping condition is false, do steps 2 - 6 

For each training pair u:t do steps 3 - 5 

Set activations of input units: Xi = Uj, i = 1,2,3 .. ... n 

Compute the response of output unit: 

Fig. I.n A Perceptron neuron model 

Update weights and bias 
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Step 6 

w, (new) = wi (old) + 1] (t - s) Xi 

b (new) = b(old) + 17 (t - s) 

i = 1,2,3 ... .. n 

Testfor stopping condition: 

(I. I 8) 

If the largest weight change tltat occurrell in step is 

smaller than a specified tolerance, then stop; else 

continue. 

1.9.2 The Backpropagation Algorithm 

Fig. I. 13 shows a fully connected, layered, feed forward network. 

In this Fig.ure, weights on connections between the input and hidden 

layers are denoted by wi, while weights on connections between the 

hidden and output layers are denoted by who This network has three 

layers, although it is possible and sometimes useful to have more. Each 

unit in one layer is connected in the forward direction to every unit in the 

next layer. Activations flow from the input layer through the hidden layer 

and then on to the output layer. The knowledge of the network is encoded 

in the weights on connection between units. The existence of hidden units 

allows the network to develop complex feature detectors, or internal 

representations. 

The units 10 a backpropagation network require a slightly 

different activation function from the perceptron. A backpropagation unit 

will sums up its weighted inputs, but unlike the perceptron, it produces a 

real value between 0 and I as output based on a sigmoid function, which 

is continuous and differentiable, as required by the backpropagation 
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algorithm. Like a pcrceptron , a backpropagalion network typica lly stans 

out with a random set of weigh IS (Rich and Knight, 1994). 

I 

" p 
U 
T 

L 
A 
Y 

• • 

HIDDEN LAYER 

o 
u , 
p 
U 
T 

L 
A 
Y 

• • 

Fig. 1.13 A feed forward neural network wi is tht weight of tht input laytr to 

tht Mddtn layer, K'h is the _ight of the hidden layer to tile output IDyer. 

Given: A set of input -output (x:y) vector pairs. 

Compute: A set of weights for a three layer network that maps inputs 

onto corresponding outpulS. (wi is tile weight of the input 

layer to the hidden fayer, wh ;s the weight of the hidden 

layer to the output layer) 

Step I 

Step} 

Let A be the number of units in the input layer, B be the 

number of units in the /ridden layer. C be the number of 

units in the oUlput (oyer. 

wi'J "" random(-O.J, 0.1) for all; '= 0 ..... .... A , j "'" I .......... B 
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Step 3 

Step 4 

Step 5 

Step 6 

Step 7 

Step 8 

Step 9 

WhiJ = random (-0. 1, 0.1) for all i = O ......... B,j = 1.. ....... C 

Initialize the activation of the threshold units. The values of 

tire threshold units should never change. Set the learning 

rate, T/ 

Choose an input-output pair. Assign activatiOll levels to tire 

input units. 

Propagate the activations from the units in the input layer 

to the units in the hidden layer using tire activation 

function 

hi =---.,--
-Lnii_r"j 

for allj = 1.. .... B (1.19) 

1 +e ,.(, 

Propagate the activations from the units in the Iridden layer 

to the units in tire output layer 

O. = ----::---
j /I 

-LH"hr!h. 
l+e ,.(, 

for aUj = 1 ...... C (1.20) 

Compute tire errors of the units in the output layer, ~j 

52j = Oj (1- Oj xYJ - oJ) 
for all j = 1.. .... C (1.21) 

Compute the errors of the units in the hidden layer, t5/j 

;=1 

for all j = 1.. .. .... B 

Adjust the weights wi and wh 
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Step 10 

t1whjj = 1702jhj 

for all i = O ........ B, j = 1 ...... C (l.23) 

for all i = 0 ......... A, j = 1 ........ B (/.24) 

Go to step 4 and repeat. When all the input-output pairs 

have been presented to the network, one epoch has been 

completed. Repeat steps 4 to 10 for as many epochs as 

desired. 

The algorithm generalizes straightforwardly to networks of more than 

three layers. For each extra hidden layer, insert a forward propagation step 

between steps 6 and 7, an error computation step between steps 8 and 9, 

and a weight adjusnnent step between steps \ 0 and 11. Error computation 

for hidden units should use the equation in step 8, but with i ranging over 

the units in the next layer, not necessarily the output layer (Rich and 

Knight, \994). 

1.10 Digital Image Processing: 

1.10.1 Image Representation, Sampling, 
Quantization 

An image may be defined as a two-dimensional function, f(x,y), 

where x and y are spatial coordinates, and the amplitude of fat any pair 

of coordinates (x,y) is caJ1ed the intensity or gray level of the image at that 

point. When x,y and the amplitude values of f are all finite, discrete 

quantities, it is called as a digital image. The field of digital image 
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processing refers to processing digital images by a digital computer. A 

digital image is composed of a finite number of elements, each of which 

has a particular location and value. These elements are referred to as 

picture elements, image elements, pels and pixels. In general, the 

fundamental steps in digital image processing consist of components like 

image acquisition, image enhancement, image restoration etc 

Image acquisition is the first process. Note that acquisition could 

be as simple as being given an image that is already in digital form. 

Generally, the image acquisition stage involves preprocessing, such as 

scaling. The types of images in which we are interested are generated by 

the combination of an illumination source and the reflection or absorption 

of energy from that source by the elements of the scene being imaged. 

When an image is generated from a physical process, its values 

are proportional to energy radiated by a physical source. As a 

consequence, f(x,y) must be nonzero and finite; that is, 

0< f(x,y) < 00 (1.25) 

The function j(x,y) may be characterized by two components: (\) the 

amount of source illumination incident on the scene being viewed, and (2) 

the amount of illumination reflected by the objects in the scene. 

Appropriately, these are the illumination and reflectance components and 

are denoted by i(x,y) and r(x,y) respectively. The two functions combine as 

a product to formj(x,y): 

f{x,y) = i{x,y)r{x,y) ( 1.26) 
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where 

0< ;(X,y) < ex) (1.27) 

and 

Fig. 1.14 An example of tha digital image acquisition process. 

0< r(x,y) < 1 (1.28) 

Eq. (1.28) indicates that reflectance is bounded by 0 (total absorption) and 

1 (total reflectance). The nature of i(x,y) is determined by the illumination 

source, and r(x,y) is determined by the characteristics of the imaged 

objects. 

The intensity of a monochrome image at any coordinates (Xn, Yn) 

determines the gray level (/) of the image at that point. That is. 
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(1.29) 

From Eqs. (1.26) through (1.29), it is evident that flies in the range 

( 1.30) 

In theory, the only requirement on Lmm is that it be positive, and on Lmax 

that it be finite. In practice, L min '" imin rmin and Lmay '" imax rma.y . The 

interval [Lmin, LmarJ is called the gray scale. Common practice is to shift 

this interval numerically to the interval [0, L-I], where I = 0 is considered 

black and I = L-I is considered white on the gray scale. All the 

intermediate values are shades of gray varying from black to white. 

The output of most sensors is a continuous voltage waveform 

whose amplitude and spatial behaviour are related to the physical 

phenomenon to be sensed. To create digital image, the continuous sensed 

data should be converted to digital form. This involves two processes: 

sampling and quantization. The basic idea behind sampling and 

quantization is illustrated in Fig. 1.15. Fig. 1.15 (a) shows a continuous 

image, f(x,y), that is to be converted to digital form. An image may be 

continuous with respect to the x- and y- coordinates, and also in 

amplitude. To convert to digital form, the function has to be sampled in 

both coordinates and in amplitude. Digitizing the coordinate values is 

called sampling. Digitizing the amplitude values is called quantization. 

The one-dimensional function shown in Fig. 1.15 (b) is a plot of 

amplitude values (gray level) of the continuous image along the line 

segment AB in Fig. 1.15 (a). The random variations are due to image 
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B 

(h) 

(a ) 

..... W~f ''':''' '' ''' ' .. '' ' '''''' ~ 1 ""::' " '''' '' ~~ , : :'' ' ,. 
t :ampliitg (c) (d) 

Fig.l.J5 Gen~,ating oil digitDI imDg~. (a) Continuous image (b) A scan line 

from A to B in [hI' continuous image (c) sampling alld quanti:atitm (11) digital 

scan line 

noise. To sample this function, equally spaced samples along line AB as 

shown in Fig. 1. 15(c) are taken. The location of each sample is given by a 

vertical tick mark in the bottom part of the Fig.ure. The samples are 

shown as small white squares superimposed on the function. The set of 

these discrete locations gives the sampled function. However, the values 

of the samples still span (vertically) a continuous range of gray-level 

values. In order to fonn a digital function, the gray level values also must 

be converted (quantized) into discrete quantities. The right side of 

Fig.1.I5(c) shows the gray-level scale divided into eight discrete levels, 
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ranging from black to white. The vertical tick marks indicate the specific 

value assigned to each of the eight gray levels. The continuous gray levels 

quantized simply by assigning one of the eight discrete gray levels to each 

sample. The assignment is made depending on the vertical proximity of a 

sample to a vertical tick mark. The digital samples resulting from both 

sampling and quantization are shown in Fig.I.15 (d). Starting at the top of 

the image and carrying out this procedure line by line produces a two­

dimensional digital image. 

The result of sampling and quantization is a matrix of real 

numbers. Assume that an image j(x.y) is sampled so that the resulting 

digital image has M rows and N columns. The values of the coordinates 

(x,y) now become discrete quantities. The complete M X N digital image 

can be written in a compact matrix form as: 

f 

f(O.O} 

f (x.y)= f(~,O} 

f(M -1.0) 

f(O.l) 
f(l,I) 

f(M -1.1) 

f(O, N -I} j 
f(I.N-I) 

f(M-l.N-I) 

(1.3\) 

The right side of the equation is by definition is a digital image. Each 

element of this matrix array is called an image element, picture element, 

pixel or pe\. 

The digitization process requires decision about the values of M, 

N, and for the number, L, of discrete gray levels allowed for each pixeJ. 

There are no requirements on M and N other than that they have to be 

positive integers. However, due to processing, storage, sampling and 

hardware considerations, the number of gray levels typically is an integer 

power of2: 
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( 1.32) 

It is assumed that the discrete levels are equally spaced and that they are 

integers in the interval [0, L-l]. Sometimes the range of value spanned by 

the gray scale is called the dynamic range of the image, and the images 

whose gray levels span a sign ificant portion of the gray scale are referred 

to as those having high dynamic range. When an appreciable number of 

pixels exhibit this property, the image will have high contrast. Conversely, 

an image with low dynamic range tends to have a dull washed out gray 

look. 

The number, b, of bits required to store a digitized image is 

b=MNk (1.33 ) 

When M = N, this equation becomes 

( 1.34) 

Sampling is the principal factor determining the spatial resolution 

of an image. Basically, spatial resolution is the smallest discernible detail 

in an image. Gray-level resolution refers to the smallest discernible 

change in gray level (Gonzalez and Woods, 2002). 

1.11 Various tools for Digital Image Processing 

1.11.1 The Two-Dimensional DFT and its Inverse 

Image enhancement is among the simplest and most appealing 

areas of digital image processing. Basically, the idea behind enhancement 
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techniques is to bring out detail that is obscured, or simply to highlight 

feature's of interest in an image. The main objective of enhancement is to 

process an image so that the result is more suitable than the original image 

for a specific application. Image enhancement techniques fall into two 

broad categories: spatial domain methods and frequency domain methods. 

The term spatial domain refers to the image plane itself, and approaches in 

this category are based on direct manipulation of pixels in an image. 

Frequency domain processing techniques are based on modifying the 

Fourier transform of an image. 

In the present research work, frequency domain spatial 

enhancement techniques are dealt with. Hence the focus is mostly on a 

discrete formulation of the Fourier transform. The discrete Fourier 

transform of a function (image) f (x,y) of size M X N is given by the 

equation 

I ,1/-1.\'-1 

F() "" f( ) -j2!f(ux
i
.lf +"I"X) U, v 0= -- L..JL..J. x,y e . 

MN .I~O r~O 
(1.35) 

This expression is computed for values of u == 0, I, 2, ...... M-I, and also 

for v = 0, I, 2 ..... N-l. The inverse Fourier transform is given by the 

expression: 

M-1N-) 

f(x,y) = IIF(u, v)e j2 •7 (U,·df+I:I'.N) ( \.36) 
u=O \'=0 

For x = 0, 1,2 ....... M-I and y == 0, 1,2, ........ N-1. Equations (1.35) and 

(1.36) comprise the two-dimensional, Discrete Fourier Transform pair. 
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The variables u and v are the transform or frequency variables, and x and y 

are the spatial or image variables. The location of JIMN constant in 

Eqn.I.34 is not important. Sometimes it is located in front of the 

transform. Other times it is found split into two equal terms of t/.J MN 

multiplying the transform and its inverse. 

The Fourier spectrum, phase angle, and power spectrum are 

detined as': 

( 1.37) 

( 1.38) 

and 

p(/I, v} = IF(/I, vf = R2(U, v} + J 2 {/I, v} ( 1.39) 

where R (u, v) and J (u, v) are the real and imaginary parts of F(u, v), 

respective ly. 

It is common practice to multiply the input image function by 

{-I)'+>' prior to computing the Fourier transform. Due to the properties of 

exponentials it can be proved that: 

( 1.40) 
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where 3[.] denotes the Fourier transform of the argument. This equation 

states that the origin of the Fourier transform of .f (x, y)( -\ y+Y is 

located at u = MI2 and v = N12. In other words, multiplying! (.:r,y) by 

(-I t Y shifts the origin of F (u, v) to frequency coordinates (MI2, NI2), 

which is the centre of the M X N area occupied by the 2-D OFT. This area 

of the frequency domain is referred to as the frequency rectangle. It 

extends from u = 0 to u = M-I, and from l' = 0 to v = N-I. In order to 

guarantee that these shifted coordinates are integers, usually M and N are 

taken to be even integers. When implementing the Fourier transform in a 

computer, the limit of summations are from u = 1 to M and l' = I to N. 

The actual centre of the transform will then be at u = (MI2)+ I and 

v = (NI2) + I.The value of the transform at (u,v) = ( 0,0) is, from 

Eq.(1.35): 

1 .H -I ,v-I 

F(O,O)= -LLf(x,y) 
MN >=0 )=0 

(1.41) 

which is the average of! (x,y). In other words, if! (x,y) is an image, the 

value of the Fourier transform at the origin is equal to the average gray 

level of the image. Because both frequencies are zero at the origin, F (0,0) 

sometimes is called the dc component of the spectrum. If!(x,y) is real, its 

Fourier transform is conjugate symmetric; that is, 

F (u, v)=F' (-u, - v) ( 1.42) 

where "',, indicates the standard conjugate operation on a complex 

number. From this, it follows that 
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IF(u,v~ ::::IF(-u,-v~ (1.43) 

which says that the spectrum of the Fourier transform is symmetric 

(Gonzalez and Woods, 2002). 

1.12 Image Interpolation techniques 

1.12.1 Nearest Neighbour Interpolation 

Nearest-neighbour interpolation (also known as proximal 

interpolation or point sampling in some contexts) is a simple method of 

multivariate_interpolation in I or more dimensions. Interpolation is the 

problem of approximating the value for a non-given point in some space, 

when given some values of points around that point. The nearest 

neighbour algorithm simply selects the value of the nearest point, and 

does not consider the values of other neighbouring points at all, yielding a 

piecewise-constant interpolant. The algorithm is very simple to 

implement, and is commonly used In real-time 3DJendering to select 

colour values for a textured surface. 

1.12.2 Bilinear Interpolation 

In mathematics, bilinear interpolation is an extension of linear 

interpolation for interpolating functions of two variables on a regular grid. 

The key idea is to perform linear interpolation first in one direction, and 

then again in the other direction. 

Suppose that we want to find the value of the unknown function f 

at the point P == (x, y). It is assumed that we know the value offal the four 
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points QJ J = (x), Yl), QJ2 = (Xl, Y2), Q2J = (X2, Yl), and Qn = (X2' Y2) First 

do linear interpolation in the x-direction. This yields 

Q12. R2 022 
'12 , •.• , ....... , •.• , •.•• ,., •.•.• ,., •.• ,. 

"I" I I 

I i i 
i • i 
i i i 
i i P i 

y ······_+·_·········e:"_·_········-f·--·_· i . I 

I 

! 
! 
I ! 
! I 
, i , , . 
. ! RI . 

'11 .• , •.• , •.•..• , .................. ,., ...... . 

Qni ! ! Q2i 
I I I 

,: i ! 
Xi 

Fig. I. 16 The four poillts (Qu. Ql11 Q21.Qn) slrow the data poillt alld po;"t P is 

tire poillt at which the data is to be illtepo[ated 

( 1.44) 

where Rl = (x,yJJ. (1.45) 
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We proceed by interpolating in the y-direction. 

This gives us the desired estimate of.f{x, y). 

(1.47) 

]fwe choose a coordinate system in which the four points wheref 

is known are (0, 0), (0, 1), (I, 0), and (1, I), then the interpolation formula 

simplifies to 

f{x,y) "" f(O, OXl-xXl- y)+ f(l, 0}x(1- y)+ /(0, lXI- x)y+ /(1, l}xy 

(J .48) 

Or equivalently, in matrix operations: 

xl [/(0, 0) /(O,l)][l-Y] 
/(1,0) /(1,1) Y 

( 1.49) 

Contrary to what the name suggests, the interpolant is not linear. Instead, 
it is of the form 

( 1.50) 
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so that it is a product of two linear functions. Alternatively, the interpolant 

can be written as 

where 

b, =/(0,0) 
b2 = /(1, 0)- /(0,0) 
b} = /(0, 1)- /(0,0) 
b4 = /(0, 0)- /(1,0)- /(0,1)+ /(1, I) 

(1.51 ) 

( 1.52) 

In both cases, the number of constants (four) corresponds to the number of 

data points where.f is given. The interpolant is linear along lines parallel 

to either the x or the y direction, equivalently if x or y is set constant. 

Along any other straight line, the interpolant is quadratic. The result of 

bilinear interpolation is independent of the order of interpolation. If we 

had first performed the linear interpolation in the y-direction and then in 

the x-direction, the resulting approximation would be the same. 

In computer vision and image processing, bilinear interpolation is 

one of the basic resampling techniques. It is a texture mapping technique 

that produces a reasonably realistic image, also known as bilinear filtering 

or bilinear texture mapping. An algorithm is used to map a screen pixel 

location to a corresponding point on the texture map. A weighted average 

of the attributes (colour, alpha, etc.) of the four surrounding texels is 
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computed and applied to the screen pixel. This process is repeated for 

each pixel forming the object being textured. 

When an image needs to be scaled-up, each pixel of the original 

image needs to be moved in certain direction based on scale constant. 

However, in scaling up an image, there are pixels (i.e. Hole) that are not 

assigned to appropriate pixel values. In this case, those holes should be 

assigned to appropriate image values so that the output image does not 

have non-value pixels. 

Typically bilinear interpolation can be used where perfect image 

transformation, matching and imaging is impossible so that it can 

calculate and assign appropriate image values to pixels. Unlike other 

interpolation techniques such as nearest neighbour interpolation and 

bicubic interpolation (described below), bilinear interpolation uses the 

four nearest pixel values which are located in diagonal direction from that 

specific pixel in order to find the appropriate calor intensity value of a 

desired pixel. 

1.12.3 Bicubic Interpolation 

In mathematics, bicubic interpolation IS an extension of cubic 

interpolation for interpolation of data points on a two dimensional regular 

grid. The interpolated surface is smoother than corresponding surfaces 

obtained by bilinear or nearest neighbour interpolation. Bicubic 

interpolation can be accomplished using Lagrange polynomials, cubic 

splines or cubic convolution algorithm. 

In image processing, bicubic interpolation IS often chosen over 

bilinear interpolation or nearest neighbor in image resampling, when 
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speed is not an issue. Images resampled with bicubic interpolation are 

smoother and have fewer interpolation artifacts 

1.12.3a Bicubic spline interpolation 

Suppose that the function values.f and the derivatives f., /, and f.). are 

known at the four corners (0,0), (1,0), (0, I), and (1, I) of the unit square. 

The interpolated surface can then be written 

3 J 

p{x,y) = L2:>!/Y' (1.53) 
,=0 j=O 

The interpolation problem consists of determining the 16 coefficients ai). 

Matching p(x,y) with the function values yields four equations, 

I. j{0,0) = p(O,O) = aoo 

2. j{1,O) =p(1 ,0) = Qoo + alO + Q20 + a30 

3. j{0,1) = p(O,I) = QOO + aOI + a02 + aO} ( 1.54) 

J 3 

4. f{l, 1)= p{l, 1)= LLuij 
,=0 j=O 

Likewise, eight equations for the derivatives in the x-direction and the y­

direction 

I. f,(O,O) = p,(O,O) = alO 

2. h(l,O) = P,(l,D) = QIO + 2Q20 + 3a30 

3. h(O,I) = Px(O,I) = QIO + all + al2 + G13 

3 3 

4. f)l, 1)= Px(l, 1)= LLa'ji (1.55) 
1=1 j=O 
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5. ,(.,(0,0) = P!,(O,O) = aOI 

6, ,(..(1,0) = p,.(I,O) = aOI + all + a21 + a31 

7 . (,(O, 1) = Plea, I) = aOI + 2a02 + 3a03 

J J 

8. f,(I, 1)= P,O, 1)= IIauj 
;=0 (=1 

And the following four equations represent the cross derivative 

I, .f.,,(O,O) = p,,(O,O) = all 

2. ,(,,( I ,0) = PX\.(J,O) = all + 2a21 + 30;1 

3. h,(O, 1) = PriG, 1) = a" + 2al2 + 3013 

J 3 

4. !,,(I, 1)= Px!,(I, 1)= LLa;/i 
H j=i 

The expressions above have used the following identities, 

J 3 

p, (x, y) = I I aijixi-l yi 
i=1 j=O 

3 J 

p,(X,y)= IIaijxi/yi- 1 

;=0 j=1 

1 3 

P "J' (x, y) = L L aijix i
-

i jy J-I 

i=1 j=1 

(1.56) 

( 1.57) 

This procedure yields a surface p(x,y) on the unit square [0, 1] x [0,1] 

which is continuous and with continuous derivatives. Bicubic 

interpolation on an arbitrarily sized regular grid can then be accomplished 

by patching together such bicubic surfaces, ensuring that the derivatives 

match on the boundaries. 
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If the derivatives are unknown, they are typically approximated 

from the function values at points neighbouring the corners of the unit 

square, ie. using finite differences. 

1.12.3b Bicubic convolution algorithm 

Bicubic spline interpolation requires the solution of the linear 

system described above for each grid cell. An interpolator with similar 

properties can be obtained by applying convolution with the kernel in both 

dimensions: 

I 

W(x)= (a+2)lxl' -(a+3)lxI2 +1 
a Ixi' - 5 a Ixl) + g a Ixl- 4a 

o 

for x = 0 

forO < Ixl < 1 

for 1< Ixl < 2 
otherwise 

(1.58) 

where a is usually set to -0.5 or -0.75. Note that W(O) = I and Wen) = 0 for 

all nonzero integers n. 

This approach was proposed by Keys who showed that a = - 0.5 

(which corresponds to cubic Hermite spline) produces the best 

approximation of the original function. If we use the matrix notation for 

the common case a = - 0.5, we can express the equation in a friendlier 

manner: 

0 2 0 0 a_I 

p{t) = .!. [1 [2 t3 
] 

-\ 0 0 ao 
[ ( 1.59) 

2 2 -5 4 -\ Qt 

-\ 3 -3 a2 
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for t between 0 and I for one dimension. For two dimensions first applied 

once in x and again in y: 

b_1 = p(t,-, a(-i.-I)' a(o. _I)' a(1. _I)' a(2. _I)) 

bo = p(t" a{_I.Q}' a(Ool' a(l.O),a(2.0)) 

hi = p(t,-, a(_I.I)' a(o.I)' a(1. lj,a(2.IJ 

b2 = pk, a(-I.2}' a(o. 2)' a(1.2)' a(uJ 

( 1.60) 

The bicubic algorithm is frequently used for scaling images and video for 

display. It preserves fine detail better than the common bilinear algorithm. 

1.12.4 Spline Interpolation 

In the mathematical field of numerical analysis, spline 

interpolation is a form of interpolation where the interpolant is a special 

type of piecewise polynomial called a spline. Spline interpolation is 

preferred over polynomial interpolation because the interpolation error 

can be made small even when using low degree polynomials for the 

spline. Using polynomial interpolation, the polynomial of degree n which 

interpolates the data set is uniquely defined by the data points. The spline 

of degree n which interpolates the same data set is not un iquely defined, 

and we have to fill in n-J additional degrees of freedom to construct a 

unique spline interpolant. 

Linear spline interpolation IS the simplest fonn of spline 

interpolation and is equivalent to linear interpolation. The data points are 

graphically connected by straight lines. The resultant spline would be a 
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polygon if the end point is connected to the initial points. Algebraically, 

each S, is a linear function constructed as: 

S,(X) = y, + Y'+I - y, (x-x,) (1.61 ) 
Xi+1 -x, 

The spline must be continuous at each data point, that is 

S'_I (x, ) = s, (x, ), i = I, ..... n-l ( 1.62) 

This is the case as we can easily see 

S ( ) y, - Y,-I ( ) 
f-I x, = Yi- I + x, - Xi_I = y, (1.63 ) 

x, - xf-I 

S () Y'+I - Yi ( ) 
i Xi = Y, + X,+I -Xi = Yi +1 (1.64 ) 

X i+1 -Xi 

Commonly, magnification is accomplished through convolution 

of the image samples with a single kernel-typically the bilinear, bicubic 

(Netravali, 1995) or cubic B-spline kernel (Unser M et.al., 1991) . The 

mitigation of aliasing by this type of linear filtering is very limited. 

Magnification techniques based on a priori assumed knowledge are the 

subject of current research. Directional methods (Bayrakeri and 

Mersereau, 1995 and Jensen and Anastassiou, 1995) examine an image's 

local edge content and interpolate in the low frequency direction (along 

the edge) rather than in the high-frequency direction (across the edge). 
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Multiple kernel methods typically select between a few ad hoc 

interpolation kernels (Darwish and Bedair, 1996). Orthogonal transform 

methods focus on the use of the discrete cosine transform (DCT) 

(Martucci, 1995 and Shinbori and Takagi, 1994) and the wavelet 

transform (Chang et. al., 1995). Variational methods formulate the 

interpolation problem as the constrained minimization of a function 

(Karayiannis and Venetsanopoulos, 1991 and Schultz and Stevenson, 

1994). It should be noted that these techniques make explicit assumptions 

regarding the character of the analog image. 

With the rapid increase in available computing power, coupled 

with great strides in image feature analysis, model-based, often highly 

non linear interpolative techniques have become a viable alternative to 

classic linear methods and have received increasing attention recently. 

Several examples of model-based approaches to spatial image 

interpolation can be found in Jensen and Anastassiou (1995), Jensen and 

Anastassiou (1990), Martinez and Lim (1989), Wang and Mitra (1991). 

Each of these papers utilizes the concept of an edge in a different fashion 

to enhance interpolation results. Artificial neural network based 

interpolation of image processing is still in its infancy stage (Davila and 

Hunt, 2000). Hence it was thought worthwhile to pursuit this technique 

for image processing applications. 

Summary 

An introduction to neural networks and digital image processing 

is given in this chapter. Neural network can be viewed as a computational 

tool for solving complex real world problems. The advantage of using 
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neural network is that most of the computational complexities are 

encountered in the training phase itself. When implemented for a real 

world problem, the output obtained for the given inputs is only a mapping 

between the input and the output. The various tools for image processing 

is also introduced. The various available interpolation techniques are also 

discussed. 
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CHAPTER 2 

DEVELOPMENT OF A SUCCESSFUL 
ARTIFICIAL NEURAL NETWORK 

2.1 Introduction 

Even though Artificial Neural Network, ANN, based models 

are empirical in nature, they can provide practically accurate 

solutions for precisely or imprecisely formulated problems and for 

phenomena that are only understood through experimental data and 

field observations. ANNs have been utilized in a variety of 

applications ranging from modeling, classification, pattern 

recognition, and multivariate data analysis. An attempt is made here 

to provide a preliminary understanding of the modeling 

methodologies, design considerations, applications of ANN to real 

world problems. Such understanding of ANN is essential for 

making efficient use of their features. 

2.2 Backpropagation networks 

These networks are the most widely used type of networks 

and are considered the workhorse of ANNs. A back propagation 

(BP) network is a multilayer Perceptron, MLP, consisting of (i) an 

input layer with nodes representing input variables to the problem, 

(ii) an output layer with nodes representing the dependent variables 
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(i.e., what is being modeled), and (iii) one or more hidden layers 

containing nodes to help capture the non linearity in the data. Using 

supervised learning, these networks can learn the mapping from one 

data space to another lIsing examples. The tenn back propagation 

refers to the way the error computed at the output side is propagated 

backward from the output layer, to the hidden layer, and finally to 

the input layer. In BPANNs, the data are fed forward into the 

network without feedback (i.e., all links are unidirectional and there 

are no same layer neuron-to-neuron connections). The neurons in 

BPANNs can be fully or partially interconnected. These networks 

are so versatile and can be used for data modeling, classification, 

forecasting, control, data and image compression, and pattern 

recognition (Hausson, 1995). 

To extend the understanding of ANNs from the level of 

identifying what these systems are and to know how to design them, 

it is imperative to become familiar with ANN computation and 

design. For this objective, the BPANNs are discussed in more 

detail, considering their popularity, and their flexibility and 

adaptability in modeling a wide spectrum of problems in many 

application areas. 

The feedforward error-backpropagation learning algorithm 

is the most famous procedure for training ANNs. BP is based on 

searching an error surface (error as a function of ANN weights) 

using gradient descent for point(s) with minimum error. Each 
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iteration in BP constitutes two sweeps: forward activation to 

produce a solution, and a backward propagation of the computed 

error to modifY the weights. In an initialized ANN (i.e., an ANN 

with assumed initial weights), the forward sweep involves 

presenting the network with one training example. This starts at the 

input layer where each input node transmits the value received 

forward to each hidden node in the hidden layer. The collective 

effect on each of the hidden nodes is summed up by performing the 

dot product of all values of input nodes and their corresponding 

interconnection weights. Once the net effect at one hidden node is 

determined, the activation at that node is calculated using a transfer 

function (e.g., sigmoidal function) to yield an output between 0 and 

+ I or -1 and + I. The amount of activation obtained represents the 

new signal that is to be transferred forward to the subsequent layer 

(e.g., either hidden or output layer). The same procedure of 

calculating the net effect is repeated for each hidden node and for 

all hidden layers. The net effect(s) calculated at the output node(s) 

is consequently transformed into activation(s) using a transfer 

function. The activation(s) just calculated at the output node(s) 

represents the ANN solution of the fed example, which may deviate 

considerably from the target solution due to the arbitrary selection 

of interconnection weights. In the backward sweep, the difference 

(i.e., error) between the ANN and target outputs is used to adjust the 

interconnection weights, starting from the output layer, through all 
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hidden layers, to the input layer. The forward and backward sweeps 

are performed repeatedly until the ANN solution agrees with the 

target value within a prespecified tolerance. The BP learning 

algorithm provides the needed weight adjustments in the backward 

sweep (Basheer and Hajmeer, 2000). 

2.3 BP Algorithm 

Because of its importance and simplicity, the BP algorithm 

will be presented here in its final fonn. Detailed derivation of the 

algorithm is found elsewhere (eg. Haykin, 2003; Hagan et. aI., 

2002; Zupan and Gasteiger, 1993). In order to be able to run the 

algorithm, it is essential to define the interlayer as the gap between 

two successive layers that encloses the connection weights and 

contains only the neurons of the upper layer, as shown in Fig. 2.1 

(assuming that all layers are positioned above the input layer). 

Consider an MLP network with L interlayers. For interlayer lE 

{1,2, ... ,L} there are N nodes and N, X N,_, connection links with 

weights W ERN I X NI_I ,where NI and NI_I are the number of 

nodes (including thresholds) in interlayers I and 1-1, respectively 

(Fig.2.1). A connection weight is denoted by wj; if it resides in 

interlayer / and connects node j of interlayer I with node i of lower 

(preceding) internode layer /-1 (node i is the source node and node} 

is the destination node). 
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Layer 

Fig.2.l Notatiolls ami index labelblg u.~e(1 ill buckpropagatioll ANNS 

In any interlayer I, a typical neuron j integrates the signals, X, , 

impinging onto it,and produces a net effect, C;j , according to linear 

neuron dynamics: 

.\',-. 

C;; = L W~·i x:-i (2.1 ) 
i==1 

The corresponding activation, Xi, of tile neuron is determined using 

a transfer function, cr, that converts the total signal into a real 

number from a bounded interval: 
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One popular function used in BP is the basic continuous sigmoid: 

1 a(;)=-_c 
1+ e > 

(2.3) 

where -Cf) < S < C1J andO.OS:aS:1.0. Eqs. (2.1}--(2.3) are lIsed for all 

nodes to calculate the activation. For the input nodes the activation 

is simply the raw input. In any interlayer, an arbitrary weight W'ii at 

iteration (I) will be updated from its previous state (t-I) value 

according to 

(2.4) 

where LlW'ji is the (+/-) incremental change in the weight. The 

weight change is determined via the modified delta rule which can 

be written as 

Llw' .. =n6'xl-l +llt:J.w'(PreI';olls) (2.5) 
p '/ J 1 r fl 

where 11 is the learning rate controlling the update step size, /..l is the 

momentum coefficient, and X/I is the input from the 1-1th 

interlayer. The first part of the right-hand side of Eq. (2.5) is the 

original delta rule. The added momentum term helps to direct the 

search on the error hyperspace to the global minimum by allowing a 

portion of the previous updating (magnitude and direction) to be 

added to the current updating step. Note that Eq. (2.5) can also be 
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applied to any neuron threshold (bias) which can be assumed as a 

link, with weight equal to the threshold value, for an imaginary 

neuron whose activation is fixed at 1.0. The weight change can also 

be determined using a gradient descent written in generalized form 

for an interlayer I: 

~Wl= (~l jl K , 
OWj; 

(2.6) 

Therefore, in order to determine the incremental changes for the Ith 

interlayer, the main task is to quantify the error gradient 

(OE:' /O~, ). Using Eqs. (2.5) and (2.6), the required weight change 

can be derived with different expressions depending on whether the 

considered neuron is in the output layer or in a hidden layer. If the 

neuron is in the output layer, then I=L in Eq. (2.5), with 

calculated from 

8: ==(x~ - Yj )x~ (1- x~ ) (2.7) 

If the neuron is in a hidden layer, the weight change IS also 

calculated using Eq. (2.5) with 5'; determined from 

(2.8) 

where 5/+1 is calculated for a given non-output layer (I ) beginning 

with a layer one level up (1+ 1) and moving down layer by layer. 

That is, for the last (uppermost) hidden layer in a network, 5 j is 
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determined via §k I+/of the output layer calculated llsing Eq. (2.7). 

The above delta equations (Eqs. (2.7) and (2.8» are based on the 

sigmoid transfer function given in Eq. (2.3). For a different 

function, the terms x~ (1-< ) and x~ (1- X;) in Eqs. (2.7) and (2.8), 

respectively, should be replaced with the relevant first derivative of 

the used function. This technique of distributing backward the 

errors starting from the output layer down through the hidden layer 

gives the method the name backpropagation of error with the 

modified delta rule (Rumelhart et. al., 1986) . The standard BP have 

been modified in several ways to achieve a better search and 

accelerate and stabilize the training process (Hagan et. al., 2002; 

Looney, 1996; Masters, 1994). 

2.4 ANN Development Project 

1 he development of a successful ANN project constitutes a cycle 

of six phases, as illustrated in Fig .. 2.2. The problem definition and 

fonnulation (phase 1) relies heavily on an adequate understanding 

of the problem, particularly the 'cause-effect' relationships. The 

benefits of ANNs over other techniques (if available) should be 

evaluated before final selection of the modeling technique. System 

design (phase 2) is the first step in the actual ANN design in which 

the type of ANN is determined along with the learning rule that fit 

the problem. This phase also involves data collection, data 
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preprocessing to fit the type of ANN used, statistical analysis of 

data, and partitioning the data into three distinct subsets (training, 

test, and validation subsets). 

ff •• •• •• 

Fig. 2.2 Various phases of ANN development project 

System realization (phase 3) involves training of the network 

utilizing the training and test subsets, and simultaneously assessing 

the network performance by analyzing the prediction error. Optimal 

selection of the various parameters (e.g., network size, learning 

rate, number of training cycles, acceptable error, etc.) can affect the 

design and performance of the final network. Splitting the problem 

into smaller sub-problems, if possible, and designing an ensemble 

of networks could enhance the overall system accuracy. This takes 
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us back to phase 2. In system verification (phase 4), although 

network development includes ANN testing against the test data 

while training is in progress, it is good practice (if data permit) that 

the 'best' network be examined for its generalization capability 

using the validation subset. Veritication is intended to confirm the 

capability of the ANN-based model to respond accurately to 

examples never lIsed in network development. This phase also 

includes comparing the performance of the ANN-based model to 

those of other approaches (if available) such as statistical regression 

and expert systems. System implementation (phase 5) includes 

embedding the obtained network in an appropriate working system 

such as hardware controller or computer program. Final testing of 

the integrated system should also be carried out before its release to 

the end lIser. System maintenance (phase 6) involves updating the 

developed system as changes in the environment or the system 

variables occur (e.g., new data), which involves a new development 

cycle. 

2.5 General issues in ANN development 

A number of issues should be addressed before initiation of any 

network training. Some of the following issues are only relevant to 

BP ANNs while others are applicable to the design of all ANN 

types. 
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2.5.1 Database size and partitioning 

Models developed from data generally depend on database 

size. ANNs, like other empirical models, may be obtained from 

databases of any size, however generalization of these models to 

data from outside the model development domain will be adversely 

affected. Since ANNs are required to generalize for unseen cases, 

they must be used as interpolators. Data to be used for training 

should be sufficiently large to cover the possible known variation in 

the problem domain. 

The development of an ANN requires partitioning of the 

parent database into three subsets: training, test, and validation. The 

training subset should include all the data belonging to the problem 

domain and is used in the training phase to update the weights of 

the network. The test subset is used during the learning process to 

check the network response for untrained data. The data used in the 

test subset should be distinct from those used in the training; 

however they should lie within the training data boundaries. Based 

on the performance of the ANN on the test subset, the architecture 

may be changed and/or more training cycles be applied. The third 

portion of the data is the validation subset which should include 

examples different from those in the other two subsets. This subset 

is used after selecting the best network to further examine the 

network or confirm its accuracy before being implemented in the 

neural system and/or delivered to the end user. 
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Currently, there are no mathematical rules for the 

detennination of the required sizes of the various data subsets. Only 

some ru les of thumb derived from experience and analogy between 

ANNs and statistical regression exist. Ballln and Haussler (1989) 

propose the minimum size of the training subset to be equal to the 

number of weights in the network times the inverse of the minimum 

target error. Dowla and Rogers (1995) and Haykin (1994) suggest 

an example-to-weight ratio (EWR) > 10, while Masters (1994) 

suggests EWR > 4. For database partitioning, a large test subset 

may highlight the generalization capability better; however, the 

remaining smaller training subset may not be adequate to train the 

network satisfactorily. Looney (1996) recommends 65% of the 

parent database to be used for training, 25% for testing, and 10% 

for validation, whereas Swingler (1996) proposes 20% for testing 

and Nelson and lIIingworth (1990) suggest 20-30%. 

2.5.2 Data preprocessing, balancing, and enrichment 

Several preprocessing techniques are usually applied before 

the data can be used for training to accelerate convergence. Among 

these are noise removal, reducing input dimensionality, and data 

transfonnation (Dowla and Rodgers, 1995; Swingler, 1996), 

treatment of non-normally distributed data, data inspection, and 

deletion of outliers (Masers,1994; Stein, 1993). Balancing of data is 

especially important in classification problems. It is desired that the 
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training data be distributed nearly evenly between the various 

classes to prevent the network from being biased to the over­

represented classes. To balance a database, some of the over­

represented classes may be removed or extra examples pertaining to 

the under-represented class added. Another way is by duplicating 

the under-represented input! output examples and adding random 

noise to their input data (while keeping the output class unchanged). 

Swingler (1996) suggests the use of information theory to measure 

the degree of balance of the training database. 

Small database size poses another problem in ANN 

development because of the inability to partition the database into 

fairly-sized subsets for training, test, and validation. To expand the 

size of the database, the trivial way is to get new data (if possible) 

or introduce random noise in the available examples to generate 

new ones. Noise addition nonnally enhances the ANN robustness 

against measurement error (e.g., noise = ± Instrument sensitivity). If 

data enrichment is not possible, the leave-one-out method (or leave­

k-out method) may be used for developing a network (Hecht -

Nielsen, 1990; Rizzo and Dougherty, 1994). With M exemplars 

available, a network is trained on M-I (or M-k) exemplars, and 

tested on the one (or k) unused exemplar(s). The procedure is 

repeated M times, each with a new set of randomly initialized 

weights. The solutions of the M networks are then averaged to 

obtain a representative solution to the problem. Other techniques to 
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train and validate networks with limited data include grouped cross­

validation, grouped jackknife, and bootstrap (Twomey and Smith, 

1997). 

2.5.3 Data normalization 

Normalization (scaling) of data within a uniform range (e.g., 

0-1) is essential (i) to prevent larger numbers from overriding 

smaller ones, and (ii) to prevent premature saturation of hidden 

nodes, which impedes the learning process. This is especially true 

when actual input data take large values. There is no unique 

standard procedure for normalizing inputs and outputs. One way is 

to scale input and output variables (Zi) in interval P"I, 1...2 ] 

corresponding to the range of the transfer fUllction: 

(

mm ) x. = A + A -A Zj -Z; 
I 1 (2 J tn8" 111 In 

Z; -Z; 
(2.9) 

where Xl is the normalized value of Zi , and z/"ax and Z/"ill are the 

maximum and minimum values of z in the database. It is 

recommended that the data be normalized between slightly offset 

values such as 0.' and 0.9 rather than between 0 and I to avoid 

saturation of the sigmoid function leading to slow or no learning 

(Haussoun, 1995; Masters, '994). Other more computationally 

involved techniques are given by Masters (1994), Swingler (1996), 

and Dowla and Rogers (1995). Masters (1994) indicates that more 

complicated techniques may not produce any better solution than 
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that obtained using linear nonnaJization (Eg. (2.9». For parameters 

with an exceptionally large range, it may be beneficial to take the 

logarithm of data prior to normalization [if data contain zeros, 

log(zi + 1) may be used). 

2.5.4 Input /output representation 

Proper data representation also plays a role in the design of a 

successful ANN (Masters, 1994). The data inputs and outputs can 

be continuous, discrete, or a mixture of both. For example, in a 

classification problem where each of the input variable belongs to 

one of several classes and the output is also a class, all the inputs 

and outputs may be represented by binary numbers such as 0 and J 

(or 0.1 and 0.9 to prevent saturation). If two inputs (A and B) are to 

be assigned to four levels of activation (e.g., low, medium, high, 

and very high), then each input may be represented by two binary 

numbers such as 00, 01, 10, and 11 to indicate the four levels. 

Another representation may assign four binary numbers to each 

input such as 000 J, 00 I 0, 0 I 00, and 1000 where the location of I 

determines the type of activation of the input variable. Similar 

treatment applies to the output variables. This representation 

Increases the dimensionality of the input vector (the two-digit 

representation converts the input vector into four inputs and the 

four-digit representation into eight inputs). Binary inputs and 

outputs are very useful in extracting rules from a trained network. 
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For this purpose, a continuous variable may be replaced by binary 

numbers by partitioning its range into a number of intervals, each 

assigned to a unique class. Specialized algorithms for discretizing 

variables based on their distribution also exist (Kerber, 1992). 

2.5.5 Network weight initialization 

Initialization of a network involves assigning initial values 

for the weights (and thresholds) of all connections links. Some 

researchers (eg., Li et. al., 1993; Schmidt et. al., 1993) indicate that 

weights initialization can have an effect on network convergence. 

Hassoun (1995) explained that if the initial weight vector is 

stationed in a flat of the error surface the convergence may become 

extremely slow. Other studies (eg., Fahlman, 1988) have shown that 

initialization has an insignificant effect on both the convergence and 

final network architecture. Typically, weights and thresholds are 

initialized uniformly in a relatively small range with zero-mean 

random numbers. However, an extremely small range can lead to 

very small error gradients which may slow down the initialleaming 

process. The choice of small numbers is very essential to reduce the 

likelihood of premature neurons saturation. ASCE (2000) 

recommends that weights and thresholds be assigned initial small 

random values between -0.30 and +0.30. Weight initialization can 

also be performed on a neuron-by-neuron basis by assigning values 

uniformly sampled from the range (-r/ ~ ,+rl ~. ), where r is a real 
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number depending on the neuron activation function, and ~ is the 

number of connections feeding into neuron j. Wessels and Barnard 

(1992) use zero-mean and unit standard deviation for links feeding 

neurons with weights sampled from [_3M 1
/
2 

• + 3MI12 
), where M is 

the number of weights in a given interJayer. Nguyen and Widrow 

(1990) initialize the weight vector so that each input exemplar is 

likely to force a hidden unit to learn efficiently. 

2.5.6 BP learning rate (11) 

A high learning rate, ll. will accelerate training (because of 

the large step) by changing the weight vector, W, significantly from 

one cycle to another. However, this may cause the search to 

oscillate on the error surface and never converge, thus increasing 

the risk of overshooting a near-optimal W. In contrast, a small 

learning rate drives the search steadi Iy in the direction of the global 

minimum, though slowly. A constant learning rate may be utilized 

throughout the training process. Wythoff (1993) suggests II = 0.1-

1.0, Zupan and Gasteiger (1993) recommend 1l=0.3-0.6, and Fu 

(1995) recommends 11=0.0-1.0. The adaptive learning rate [11 (t»), 

which varies along the course of training, could also be used and 

can be effective in achieving an optimal weight vector for some 

problems. Generally, larger steps are needed when the search is far 

away from a minimum, and smaller steps as the search approaches a 
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minimum. Since the distance from a minimum cannot be predicted, 

various heuristics have been proposed. 

2.5.7 BP momentum coefficient (~) 

A momentum term is commonly used in weight updating to 

help the search escape local minima and reduce the likelihood of 

search instability. As implied in Eq.(2.5), )..l. accelerates the weight 

updates when there is a need to reduce 11 to avoid oscillation. A 

high J..l will reduce the risk of the network being stuck in local 

minima, but it increases the risk of overshooting the solution as 

does a high learning rate. A J..l > 1.0 yields excessive contributions 

of the weight increments of the previous step and may cause 

instability. Conversely, an extremely small )..l. leads to slow training. 

Both a constant and adaptable momentum can be utilized. Wythoff 

(1993) suggests )..l. = 0.4-0.9, Hassoun (1995) and Fu (1995) suggest 

J..l = 0.0-1.0, Henseler (1995) and Hertz (1991) suggest J..l ::::: 1.0, and 

Zupan and Gasteiger (1993) suggest that 11 + )..l. ::::: I. Swingler (\996) 

uses )..l. = 0.9 and 11 = 0.25 in solving all problems unless a good 

solution could not be obtained. Depending on the problem being 

solved, it seems that the success of training varies with the selected 

)..l., and a trial-and-error procedure is nonnally preferred. Adaptive 

momentum involves varying )..l. with the training cycle [i.e., )..l. et)] in 

which the changes in J..l are made in relation to error gradient 
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information. Other methods relate )l to the adaptive learning rate 11 

such that )l is decreased when learning speeds up. Finally, the 

addition of momentum should be considered with caution because 

of the need of doubling computer space for storing weights of 

current and previous iterations (see Eq. (2.S)). 

2.5.8 Transfer function, cr 

The transfer (activation) function,cr, IS necessary to 

transform the weighted sum of all signals impinging onto a neuron 

so as to determine its firing intensity. Some functions are designed 

to indicate only whether a neuron can fire (step functions) 

regardless of the magnitude of the net excitation (~ ) by comparing 

~ to the neuron threshold. Most applications utilizing BPANNs 

employ a sigmoid function, which possesses the distinctive 

properties of continuity and differentiability 011 (-00, 00) interval, 

essential requirements in BP learning. Moody and Yarvin (1992) 

reported various success rates with different transfer functions in 

relation to data non linearity and noisiness. Hall (1996) use a variant 

logistic function with three adjustable parameters, and each neuron 

is assigned a different set of values for these parameters. The 

advantage of choosing a particular transfer function over another is 

not yet theoretically understood. 
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2.5.9 Convergence criteria 

Three different criteria may be used to stop training: (i) 

training error (p ~ c), (ii) gradient of error (V'p ~ 8), and (iii) cross­

validation, where p is the arbitrary error function, while £ and 8 are 

small real numbers. The third criterion is more reliable; however it 

is computationally more demanding and often requires abundant 

data. Convergence is usually based on the error function, p, 

exhibiting deviation of the predictions from the corresponding 

target output values such as the sum of squares of deviations. 

Training proceeds until p reduces to a desired minimum. The 

function p may also be expressed as the relative error of the 

absolute values of the deviations averaged over the subset. Another 

criterion is the coefficient-of-determination, Rl , representing the 

agreement between the predicted and target outputs. Other more 

involved methods for monitoring network training and 

generalization are based on infonnation theory (Swingler, 1996). 

The most commonly used stopping criteria in neural 

network training is the sum-of-squared-errors (SSE) calculated for 

the training or test subsets as 

(2.10) 

where Opi and tpi are, respectively, the actual and target solution of 

the ith output node on the pth example, N is the number of training 

examples, and M is the number of output nodes. Some SSE criteria 
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incorporate a measure of complexity of the network architecture. 

Generally, the error on training data decreases indefinitely with 

increasing number of hidden nodes or training cycles, as shown in 

Fig.2.3. The initial large drop in error is due to leam ing, but the 

subsequent slow reduction in error may be attributed to (i) network 

memorization resulting from the excessively large number of 

training cycles used, and/or (ii) overfitting due to the use of a large 

number of hidden nodes. During ANN training, the error on test 

subsets is monitored which generally shows an initial reduction and 

a subsequent increase due to memorization and overtraining of the 

trained ANN. The final (optimal) neural network arch itecture IS 

obtained at the onset of the increase in test data error. 

1 

\1 , .. 
~.a 
• 

~ \ 
tn • 

f f \ , 
" .\ '. " ~, '. '. 

Fig.2.3 Criteria of termination of training and selection of optimum network 

architecture 
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Other error metrics may be used and may perfonn equally 

well in terms of optimizing network structure. For classification 

problems (discrete-valued output), the convergence criterion should 

be based on the hit (or miss) rate representing the percentage of 

examples classified correctly (or incorrectly), or confusion matrices 

(Lakshmanan, 1997), rather than the absolute deviation of the 

network classification from the target classification. 

2.5.10 Number of training cycles 

The number of training cycles required for proper 

generalization may be determined by trial and error. For a given 

ANN architecture, the error in both training and test data is 

monitored for each training cycle. Training for so long can result in 

a network that can only serve as a look-up table, a phenomenon 

called overtraining or memorization (Zupan and Gasteiger, 1993; 

Wythoff, 1993). Theoretically, excessive training can result in near­

zero error on predicting the training data (called recall), however 

generalization on test data may degrade significantly (Fig. 2.3). 

Initially, the test subset error continues to decrease with the number 

of training cycles. As the network loses its ability to generalize on 

the test data, the error starts to build up after each epoch. Although 

the error on the test data may not follow a smooth path, the onset of 

a major increase in the error is considered to represent the optimal 

number of cycles for that ANN architecture. 
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2.5.11 Training modes 

Training examples are presented to the network in either one 

or a combination of two modes: (i) example-by-example training 

(EET), and (ii) batch training (BT) (Zupan and Gasteiger, 1993; 

Wythoff, 1993). In EET mode, the weights are updated immediately 

after the presentation of each training example. Here, the first 

example is presented to the network, and the BP learning algorithm 

consisting of feedforward and backward sweeps is applied for either 

a specified number of iterations or until the error drops to the 

desired level. Once the first example is learnt, the second example 

is presented and the procedure is repeated. The advantages of EET 

include the smaller storage requirements for the weights as opposed 

to BT, and the better stochastic search, which prevents entrapment 

in local minima. The disadvantage of EET is associated with the 

fact that learning may become stuck in a first very bad example, 

which may force the search in the wrong direction. Conversely, BT 

requires that weight updating be performed after all training 

examples have been presented to the network. That is, the first 

learning cycle will include the presentation of all the training 

examples, the error is averaged over all the training examples 

(e.g.,Eq. (2.10»), and then backpropagated according to the BP 

learning law. Once done, the second cycle includes' another 

presentation of all examples, and so on. The advantages of the BT 

mode include a better estimate of the error gradient vector and a 
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more representative measurement of the required weight change. 

However, this training mode requires a large storage of weights, 

and is more likely to be trapped in a local minilllum. For a better 

search, the order of presentation of the training examples may be 

randomized between successive training cycles. The effectiveness 

of the two training modes can be problem specific (Hertz et. al., 

1991; Haykin, 2003; Swingler, 1996). 

2.5.12 Hidden layer size 

In most function approximation problems, one hidden layer 

is sufficient to approximate continuous functions (Basheer et. al., 

2000; Hecht-Nielsen, 1990). Generally, two hidden layers may be 

necessary for learning functions with discontinuities. The 

determination of the appropriate number of hidden layers and 

number of hidden nodes (NHN) in each layer is one of the most 

critical tasks in ANN design. Unlike the input and output layers, 

one starts with no prior knowledge as to the number and size of 

hidden layers. As shown in Fig. 2.4, a network with too few hidden 

nodes would be incapable of differentiating between complex 

patterns leading to only a linear estimate of the actual trend. In 

contrast, if the network has too many hidden nodes it will follow the 

noise in the data due to overparameterization leading to poor 

generalization for untrained data (Fig. 2.4). With increasing number 

of hidden nodes, training becomes excessively time-consuming. 
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Fig.2.4 Effect of hiddell layer size 011 lIetwork generalizatioll 

The optimal number of HN essential for network generalization 

may be a function of input / output vector sizes, size of training and 

test subsets, and, more importantly, the problem of non linearity. 

Several rules of thumb are available in the literature which relate 

hidden layer size to the number of nodes in input (NINf' ) and output 

(N OUT) layers. Jadid and Fairbairn (1996) called for an upper bound 

on NHN equal to Nw;, / [R + (NlNP + NOUT )], where NTR.v is the 

number of training patterns and R = 5 - 10. Lachtermacher and 

Fuller (1995) suggest that NHN for a one-output ANN with no 

biases be determined from 0.\ tNTRN sNHN(NfNP + \) ~ 0.30NTRN . 
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Masters (1994) suggests that the ANN architecture should resemble 

a pyramid with NHN ;:::: (NINf' ' NOUT ) . Hecht-Nielsen (1990) used 

the Kolmogrov theorem to prove that NHN s NIx/, + I. Upadhaya 

and Eryureka (1992) related NHN to N1Rx (via the total number of 

weights, Nw) according to Nw = N TRS log2 (NrR,\' ), and Widrow and 

Lehr (1990) according to (N", INoU'T ) s N 1RS ~ (Nw I NOU'T ) log2 (Nw 

1NoUT ). 

Facing exotic problems such as those with high nonlinearity 

and hysteresis normally forces us to try networks with hidden layers 

that may not conform to any of these rules of thumb. The most 

popular approach to find the optimal number of hidden nodes is by 

trial and error with one of the above rules as starting point. Another 

way is to begin with a small number of hidden nodes and build on 

as needed to meet the model accuracy demand. Again, the cross­

validation technique for determining the proper size of the hidden 

layer involves monitoring the error on both the training and test 

subsets in a way similar to that used to stop training (Fig. 2.3). 

Among other popular but more sophisticated techniques of 

optimizing network size are the growing and pruning methods. 

2.5.13 Parameter optimization 

As can be seen, BP training requires a good selection of 

values of several parameters, commonly through trial and error. Six 

parameters should not be set too high (large) or too low (small), and 
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thus should be optimized or carefully selected. Table 2.1 lists these 

parameters and their effect on both learning convergence and 

overall network performance. 

Design 
Too high or too large Too low or too small 

Parameter 
Number of 

Overfitting ANN 
Underfitting (ANN unable to 

hidden nodes. obtain the rules embedded in 
NHN 

(No generalization) 
the data 

Unstable ANN (weights) that 
Learning rute. 11 oscillates about the optimal Slow training 

solution 
Reduces risk of local Suppresses effect of 

Momentum 
minima. Speeds up training. momentum leading to 

coetlicienl, J.! 
Increased risk of increased risk of potential 
overshooting the solution entrapment in local minima. 
(instability) Slows training 
Good recalling ANN (ie .. 

Produces ANN that is 
Number of ANN memorization of data) 

incapable of representing the 
training cycles and bad generalization of 

untrained data 
data 

Size of training ANN with good recalling 
ANN unable to fully explain 
the problem. A NN with 

subset. (NTRN ) and generalization limited or bad generalization 

Size or test Ability to confirm ANN 
Inadequate confirmation of 
ANN generalization 

subset. NTST generalization capability 
capability 

Table 2.1 Effect oJ extreme values of design parameters on training 

cOllvergence and network generalization 

Summary 

The remarkable information processing capabilities of 

ANNs and their ability to learn from examples make them efficient 

problem-solving paradigms. A review of the basic issues pertaining 
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to ANN-based computing and ANN design is discussed. A 

generalized methodology for developing ANN projects from the 

early stages of data acquisition to the latest stages of utilizing the 

model to derive useful information was also proposed and 

discussed. The increased utilization of ANNs is linked to several 

features they possess, namely (i) the ability to recognize and learn 

the underlying relations between input and output without explicit 

physical consideration, regardless of the problem's dimensionality 

and system non linearity, and (ii) the high tolerance to data 

containing nOIse and measurement errors due to distributed 

processing within the network. ANNs also have limitations that 

should not be overlooked. These include (i) ANNs' success depends 

on both the quality and quantity of the data, (ii) a lack of clear rules 

or fixed guidelines for optimal ANN architecture design, (iii) a lack 

of physical concepts and relations, and (iv) the inability to explain 

in a comprehensible form the process through which a given 

decision (answer) was made by the ANN. ANNs are not a panacea 

to all real-world problems; for that, other traditional (non-neural) 

techniques are powerful in their own ways. Hybridizing ANNs with 

conventional approaches such as expert systems can yield stronger 

computational paradigms for solving complex and computationally 

expensive problems. Recently, ANNs have attracted the attention 

of the microbiology community, particularly in the area of pyrolysis 

mass spectrometry and microbial growth in food systems. 
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CHAPTER 3 

IDENTIFICATION OF SPECTRAL 
LINES OF ELEMENTS WITH 
ARTIFICIAL NEURAL NETWORKS 

3.1 Introduction 

Spectra of various compounds and elements are taken for 

spectroscopic studies. In spectroscopic studies, the spectrum of the 

sample, taken using a speetromcter, is plotted as a graph and the various 

photo-peaks are identified. The spectrum of a sample contains the 

characteristic spectral lines of all the elements present. Thus, it is a linear 

superposition of the spectral lines of the elements present, but scaled. 

Even the weak spectral line of a particular clement is obtained if the 

concentration of that element in the sample is high. Also, the strongest 

line of an element becomes unobservable if the concentration of it is very 

low. Under such conditions only persistent lines are obtained. A spectrum 

can be thought of as a linear superposition of all the weak, strong and 

persistent lines of all elements present in the sample. Once the spectrum is 

recorded it becomes a tedious task to identify the various peaks present. 

Spectrum contains spurious peaks as well as real peaks. Spurious peaks 

are due to the noise. Wavelengths corresponding to the peaks are 

identified and they are compared with the data in the data hand-book 

(Sansonetti and Martin, 2005), which is readily available. This is both 

time consuming and often requires manual intervention. It may lead to 
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errors. So they must be avoided as far as possible. Artificial neural 

networks (ANNs) are capable of rejecting noisy data (Haykin, 20003 and 

Hagan et.a!. 2002). The ANN approach employs pattern recognition on 

the entire spectrum. This recognition is performed by a single vector­

matrix multiplication that results in rapid analysis of the elements and can 

be used in automated systems. This helps to identify the elements present 

in the sample and also to test the purity of the elements. In this research 

work, the possibility of using ANNs to tackle such problems has been 

explored. 

ANNs have demonstrated their benefits in analysis of various 

spectral regions. Resin identification was done from near infrared 

spectroscopic data with neural networks (Alam et. al., 1994). Keller and 

Kouzes (1995) have shown that Gamma spectral analysis can be 

successfully done with ANNs. Also the same team has done an 

identification of the nuclear spectrum for waste water handling (1995). 

Olmos with his collegues (1994) has analysed the drift problems in 

gamma ray spectra with ANNs. Olmos and his team (1991) has also 

suggested an automation analysis of radiation spectrum using ANNs. 

Neural network techniques has been applied to gamma spectroscopy by 

Olmos et.al., 1995.Lemer and Lu (1993) have also done spectroscopic 

analysis with neural nctworks. All these research works points to the 

effectiveness of using ANNs for the spectral identification. Wythoff and 

his colleagues (1990) done spectral peak identification and recognition 

with multilayered neural networks. But here all have suggested that the 

ANNs trained can be used for automation of specific types of 

spectrometers. Keller and Kouzes with their collegues (1995, 1993) 
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always used data generated by Monte Carlo simulations and automated 

this type of spectrometer. The spectra used in these investigations showed 

various levels of quality degradation due to calibration, salt build up etc. 

The task for the ANN was to learn the spectra with quality coefficient by 

using the knowledge of a human expert. The input to the ANN is provided 

as the number of channels of the spectrometer without giving any 

specifications to the wavelength of the obtained spectrum. An attempt is 

done here to take into consideration the characteristic spectral lines of 

elements with their wavelength and intensity in the whole visible range. 

The spectral lines in the visible range of Cadmium, Calcium, Iron, 

Lithium, Mercury, Potassium and Strontium are chosen for the project. 

Also the perfonnance of the system for intensity variations and different 

noise levels is evaluated. This technique can be used with any type of 

spectrometer and a method to automate a practical system is also 

discussed. 

3.2 Modelling Issues 

The development of a successful ANN project constitutes a cycle 

of six phases (Basheer and Hajmer, 2000). The first phase is the problem 

definition and fonnulation. In the present case, the problem is to identify 

the spectral lines in the visible range of seven elements namely Cadmium, 

Calcium, Iron, Lithium, Mercury, Potassium and Strontium. Second is the 

system design phase. Usually supervised learning is suitable. Analyzing 

the spectrum of elements taken, from data hand-book, it is evident that the 

spectral lines occur in discrete values at different wavelengths as in 

Fig.3.1. These consist of strong, persistent and weak lines. Spectra of 
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various samples are taken for spectroscopic studies. They consists of 

various photo-peaks which arc characteristic spectral lines of the elements 

which constitute the sample. Also it is not necessary that all characteristic 

lines of each constituent element be found in the spectnllTI. But the 

probability of occun-enee of the persistent lines of the elements is very 

high. Thus the spectrum taken is a linear superposition of the spectra of 

the constituent elements in the sample. Indeed, the photo-peaks do not 

have the same relative intensity as specified in the data handbook. They 

are scaled. 

l~r I I Cd I. 
1~t I I I If 1 

Ca 

~, 1 F~ 
1:Uf I I ] u 

1:
1 11. ,I I ,I 1 Hg, 

1::1 
r K. 

It 

1~111. I J 'Sf 
1-· •• 

401!0 ~~~AU ?o.GO 

Fig.3.1 Spectral lines of elements with (a) al/ lines and (h) persistent lilies 

So, if ei is the spectrum of element i in the sample, then the 

intensity of the characteristic line of the sample S can be given as: 
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(3.1 ) 

where (Xi is the scaling factor of the relative intensity of the spectral lines 

of element i. 

The output has a linear rcsponse with the input. Therefore, the 

classification system should havc a linear response with rcspect to the 

input. An ANN designed to have a linear response employs linear 

activation functions. A feed forward ANN that implements linear 

activation functions can be reduced to a network with a single input layer 

and single output layer. The ANN used in the present application has a 

single input and single output layer as illustrated in Fig.3.2. Two ANN 

paradigms were studied for implementing the linear response: the linear 

perceptron and optimal linear associative memory. Linear perceptron is 

onc of the oldest ANN paradigms. It originally sparked interest in the 

pattern recognition community in the late 1950s and early 1960s 

(Rosenblatt, 1958). However, it was unable to solve pattern recognition 

problems that were not linearly separable. Here, for spectral identification, 

the neural network can be trained using linear perceptron models or using 

optimal linear associative memory (OLAM) algorithms. A linear 

perceptron does not converge to accurate results and OLAM is most 

suited for such applications as shown by Kellcr and Kouzes (1995). 

The optimal linear associative memory (OLAM) approach IS 

based on a simple matrix associative memory model (Kohonen, 1972, 

1989). It was developed in the early 1970s as a content addressable 

memory and is useful in situations where the input consists of linear 

combinations of known patterns. It is an improvement over the original 
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matrix memory approach in that it projects an input pattern onto a set of 

orthogonal vectors where each orthogonal vector represents a unique 

pattcm. With linear activation functions, the training is a straight forward 

matrix olihogonalization process where each pattern from the training set 

is made to project onto a separate, unique orthogonal axis in the output 

space (Keller and Kouzcs, 1995) . 

Cd 
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T Hg 
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Fig.3.2 An ANN to identifY the elements. 

OLAM Weight Specification 

Step 1. Fonn matrices of spectra. Arrange spectra as columns in an n x p 

dimensional matrix X, where n is the number of inputs and p is 

the number of elements and target as columns in an p x p 

dimensional matrix L 
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Step 2. Generate inverse of the spectral matrix X. Since ~ is generally not 

a square matrix, a pseudo-inverse technique is used to generate 

At· 
(t indicates pseudo-inverse) 

Step 3. Form the synaptic weight matrix. 

The third phase of an ANN development project IS system 

realization. The spectral lines data from the handbook for each element is 

as shown in Fig.3.1. In the system realization phase, the number of input 

neurons and the number of output neurons are to be dctermined. The 

problem specification detennincs both (Hagan ct. al., 2002). Usually the 

number of output neurons is taken as the number of problem outputs. 

Since there are seven elements to be identified the number of output 

neurons is taken as seven. Next phase is to determine the number of input 

neurons. In this particular problem the number of input neurons is 

determined by training and testing. Two scts of data arc given for tcsting: 

One, a set of noisy data and other the persistent lines. The probability of 

occurrence of persistent lines (ultimate lines) is thc highest. Therefore, it 

should be identified in any worse condition, even though it is few in 

number. 

The data is scanned with a resolution of 1 A 0. This is to ensure 

discretion with spectral lines which are very close to eaeh other. In the 

nanometre seale they are treated as the same line. There are about 3000 

wavelength points with their intensities. As seen in Fig.3.1, most of these 

points have intensity values of zeroes. To be more precise, consider the 
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element Cadmium with its characteristic spectral lines in the range 400 _ 

500nm, given by Tablc 3.1. 

Relative Wavelength 
lntensit~ inAo 

200 4134.768 
1000 4415.63 
100 4678.149 
150 4799.912 

Table 3.1: The characteristic" speclrallines jor CQ(lmilll1l ill the range 400-

500nm. 

When scanned for a resolution of IAo, up to the wavelength 

4134Ao, the intensity value is zero and at 4135Ao it is 200, then up to 

4415A 0 it is again zero and again at 4416A 0 it is 1000 and so on. When 

most of the data contains very low values or zeroes the learning 

algorithms will not converge to accurate results. So a reduction in data is 

required. The most common method in data reduction is to find the area 

under the curve. Area is taken by considering a polygon. It is to be 

determined the optimum number of wavelength points that is required to 

make the polygon so as to get a better result from the trained ANN. The 

data is divided into equal parts and the area is taken for each segment. As 

an example, consider that the data is segmented into 150 equal parts each 

of 20 wavelength points and their intensities. Area is taken by considering 

polygon with these 20 points. Therefore the data is now reduced from 

3000 data points to 150 data points. The data is then nonnalized, so that 

there are now 150 input nodes with nonnalized data. This kind of data 

reduction is done for each element and is arranged in a matrix form. The 
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s 

50 100 150 200 250 300 

Nurrtler of inputs 

Fig. 3. 3. Error plot to determine the Illlmber o/input Ilode.~ 

matrix, X (as in the OLAM algorithm), is now having ISO rows and 7 

columns, each column specifying an element. Since 7 elements are to be 

identified, the target matrix T is a 7x7 matrix. By taking the pseudo 

inverse of X, it became a 7x ISO matrix. The weight matrix, 7x 150, is 

calculated as per the OLAM algorithm given. Testing of the result is also 

done with the persistent line data and the noisy data. For the persistent 

line and noisy data of each element, the data is again scanned with I An 

resolution and the data is segmented into 150 equal parts and the area is 

taken. The data is normalized. The output is verified for these inputs and 

the error is calculated. This is done for segments of varied lengths. For 

noisy data, the error goes on decreasing as the number input nodes 
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increases. But when the number of input segments is 200, the system has 

minimum error for the identification of persistent lines, shown in Fig.3.3. 

Therefore, the number of inputs to the system is 200. Thus the network is 

ready for training. 

The goal of the training is to learn an association between the 

spectra and the labels representing the spectra. The training process for 

the OLAM is a non-iterative process and it converges very fast. The 

weight matrix is obtained using pseudo-inverse rule. Two types of ANNs 

are trained, onc with all the spectral lines (ANN 1) and the later with the 

persistent lines (ANN2). Only the visible range (400-700nm) of the 

spectrum is considered. The persistent lines are very few in number. For 

elements like potassium there are only two persistent lines in the required 

range,as shown in Fig.3.1, whereas, there are about 44 spectral lines for 

potassium in the visible range. The ANNs are tested with known samples 

and unknown samples. 

3.3 The Results 

Now the system is to be tested. Spectra of mixtures were 

generated by combining spectra of different elements. Random noise is 

also added to the mixture. The data is scanned with a resolution 1 A 0 and is 

segmented into 200 equal parts and area is taken. The data thus got is 

nonnalized and fed to the system. The output got for each ANN for 3 

different mixtures is as shown in Fig.3.4. The first sample is a mixture of 

calcium and iron in pure form without any noise. But the other two 

samples, one a mixture of lithium and strontium and other a combination 
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of mercury and potassium, are noisy data. ANN 1 gives a consistent 

perfonnanee than ANN2 even in noisy environment. This is because the 

number of observable spectral lines in the visible range is very high 

compared to the persistent lines. For the third sample which is a mixture 

mixture of Ca & Fe mixlure of li & Sr mixlure of Hg & K 

~1L~WI~ ~~LLuJ ::~J~~~~~ 
4000 5000 6000 7000 4000 5000 6000 7000 4000 ~oo 6000 7000 

o:[J' O':lill' o:UL' I ANN1 0.6 J D.6 0.6' 1 

:::l ~~.~._J ::: ~ :.: : 
Cd CaFe LI Hg K Sr efT Cd CaFe LI Hg K St tIT Cd CaFe LI Hg K Sf." 

ANN2 :::[J; ::: ::ITJJ 
~ ~ ~ 

~ ~ H 

000 
Cd Cafe U Hg K Se tlf Cd CaFe LI Hg K SI ~ Cd C~F. U Hg Il SI en 

Fig.3.4 OlltPllt of the ANN for different samples 

of Hg and K, ANN! gives more accurate result than ANN2. For K, there 

are only two persistent lines in the visible range and these lines are very 

close to each other also. To identify K with ANN2 is a very tedious task 

and most of the time it leads to errors. ANN! on the other hand gives a 

very consistent result. In this context, the need of enough spectral lines in 

the required range for training is emphasized. 

More results are shown in Table 3.2 also. The identification of Fe 

also gave some errors. From Fig.3.1, the highest relative intensity of Fe is 
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A mixture of Fe & Hg 

Cd Ca Fe Li Hg K Sr error 

ANNI 0 0 I 0 I 0 0 0 

ANN2 0 0.01 I 0 I 0 0.03 0.001 

A mixture of Hg & Sr 

ANNI 0 0 0.01 0 0.99 0 0.99 0.0003 

ANN2 0 0 0 0 I 0.02 0.99 0.0005 

A mixture of Cd & Sr 

ANNI I 0 0.01 0 0.01 0 I 0.0002 

ANN2 0.99 0.02 0 0 0.01 0.03 I 0.0015 

A mixture of Ca & Li 

ANNI 0 I 0 I 0.01 0 0.01 0.0002 

ANN2 0.01 0.99 0.01 I 0.01 0 0.13 0.0173 

A mixture of Li & K 

ANNI 0.01 0 0 I 0 0.8 0.02 0.0405 

ANN2 0.23 0.01 0.11 0.99 0 0.8 0.23 0.1581 

A mixture of Ca (peak reduced to 80%) & Hg (peak reduced to 70%) 

ANN! 0 0.8 0 0 0.69 0 0.01 0.0002 

ANN2 0.01 0.79 0 0 0.73 0 0.1I 0.0132 

Table3.2: OIlIPIII obtained for different samples. Each column represenls 

different elements. RMS error is listed in the right-hand (:o[lImll 
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only 400 when compared to other elements having highest value of 1000. 

In the training phase, since the data is normalized, Fe requires no 

enhancement. But when the spectrum of Fe is combined with that of 

others, the intensity of the spectral lines of Fe becomes very low. So the 

spectrum of Fe is enhanced before combining. 

ANN I correctly identifies most of the elements fed to it. But 

ANN2 had hard times in differentiating potassium with strontium. In 

certain times, ANN I shows presence of mercury, which is not present. Hg 

has only 15 spectral lines in the required range and most of them have 

very low intensity. Certain spectral lines of Hg coincide with the spectral 

lines of elements like K. However, the elTors with ANN I were always 

smaller than the ANN2. 
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Fig.3.5 Error plots/or (a) different intensities (h) noise level 
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The perfonnance of the networks is to be checked. Testing IS 

done with varying relative intensities and noise levels. First the intensities 

of the lines arc reduced. Here, no noise is added and all the spectral lines 

in both data sets are considered but with reduced intensity. With the 

intensity as the original, the outputs of the ANNs were 1. When the 

intensity is reduced, the output also correspondingly reduces. As shown in 

table3.2, when the intensity of the spectral lines of Ca is reduced to 80%, 

ANNs output is only 0.8. The error plot for the output got for different 

intensity levels are shown in Fig.3.5(a). It is evident that the pcrfOlmanccs 

of both the networks are the same when the intensity is reduced. When the 

intensity is reduced below 70% of the original relative intensity value, 

then the network gives errors. Here, it is wOl1hwhile to note that all 

spectral lines in the visible range are considered. 

The networks are now tested with noise. The output for diffcrent 

noise levels are shown in Fig.3.5 (b). Random noise is added to the data 

at different noise levels. The graph shows the average error for 1000 such 

data. Here the performance of ANN I is bctter than ANN2. This can be 

seen in Fig.S also. When the noise levels are vcry low, the networks 

output is not affected. But as the noise levels arc increased, the output of 

the network shows errors. As shown in the Fig.3.5(b), noise levels cannot 

be increased beyond a factor of 7 for both ANNs. Noise levels in practical 

cases will not be very high. From this it is clear that random noise with 

nonnal distribution will not affect the perfonnance of the network. Only if 

the noise amplitude is increased to 7 times its original value, some error 

occurs, which is not a practical case. ANN I is preferred over ANN2. 

110 



NEURAL NETWORK BASED STUDIES ON SPECTROSCOPIC ANALYSIS AND IMAGE PROCESSING 
a 

ANN I is trained with all spectral lines but ANN2 with the persistent lines 

only which may lead to errors. 

The initial results of our research have demonstrated the pattern 

recognition capabilities of the neural networks. It also emphasized the 

need for a large number of spectral lines in the desired range for the 

accurate classification of elements. ANN I, which is trained with more 

number of spectral lines than ANN2, gives a better performance. This is 

because ANNs can easily generalize when data is large. The classification 

is attributed to the orthogonalization process used by the OLAM during 

training. Since this training is a non iterative process, the OLAM offers a 

substantially shorter training time. Onc of the disadvantages of the 

OLAM, is that all the spectral lines of each element, weak, strong and 

persistent within the visible range, are used for training. Good results are 

obtained when all the lines are considered. But in a practical case, it is not 

possible to obtain the whole spectral lines. Further work is directed in this 

direction, to train a network with the characteristic lines of the elements 

and to observe the performance of the network for practical cases. 

3.4 An Automated System 

The success of the identification of spectral peaks with the neural 

network led the approach for the automation of a practical system (Saritha 

and VPN Nampoori, 2009, 2002). It now turns out that a system is set up 

so that when a spectrum is fed to it, it will identify all the elements present 

in the sample by recognizing the elements learnt by it. Preliminary results 

are good enough to consider this method for automating spectral 

identification. Spectrum recorded with a CCD camera coupled to a 
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spectrograph having a grating blazed at 750nm with 1200 grooves/mm 

and using the fundamental emission of Nd: Y AG laser having lOns pulse 

width was employed for the investigations. In the present investigation, 

the characteristic spectral lines of elements with their wavelength and 

intensity in the whole visible range are taken into consideration. 

All lines Petsisteot lines 

TI 

Ca 

AI 

Sn 

wlMllength in ~oms wlMllength in angstroms 

Fig.3.6 Spectral Lines of Elements 

The spectral lines of Titanium, Calcium, Aluminium and Tin in 

the visible region are chosen for the studies. Two simple ANNs are 

trained. One of them is trained with all the characteristic spectral lines of 

elements namely Titanium, Calcium, Aluminium and Tin and the latter 

using the persistent lines of these elements. With the help of these two 

networks, it became possible to identify the elements present in a practical 
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spectrum. Usually supervised learning is suitable. Analyzing the spectrum 

of elements taken, from data hand-book (Sansonetti and Martin, 2005), it 

is evident that the spectral lines occur in discrete values at different 

wavelengths as in Fig.3 .6. These consist of strong, persistent and weak 

lines. 

4 Ti 

0 • 
Ca 

• • P 
AI • 

s s • 
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Fig.3.7 The ANN Model 

The output has a linear response with the input. Therefore, the 

classification system should havc a linear response with respect to the 

input. An ANN designed to have a linear response employs linear 

activation functions. A feed forward ANN that implements linear 

activation functions can be reduced to a network with a single input layer 

and single output layer. The ANN used in the present application has a 

single input and single output layer as illustrated in Fig.3.7. This can be 

trained using linear perceptron models or using optimal linear associative 

memory (OLAM) algorithms. A linear perceptron does not converge to 

accurate results and OLAM is most suited for such applications as shown 

by Keller and Kouzes( 1995) 
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3.5 The Approach 

Now wc will detennine the number of input nodes and the 

number of output nodes for the ANN. Since there are four elements to be 

identified, the number of output nodes is 4. The number of input nodes is 

determined by actual training and testing. For training, the data from the 

handbook is taken. For testing, the persistent line data from the data 

handbook and the data taken by the spectrometcr are used. Spectrum 

taken with a CCD camera coupled to a spectrograph having a grating 

blazed at 750nm with 1200 grooves/mm and using the fundamental 

emission of Nd: Y AG laser having IOns pulse width was taken for the 

studies. 

Relative Wavelength 
Intensity inAo 

400 3900.675 
500 3944.006 
1000 3961.520 

Table 3.3 The characteristic spectra/lines of Alllminimn ill the range 380-

420nm 

The wavelength range 380-740nm is split into 9 spectra each of 

40nm span, since a 40nm grating is used. The example of sueh a spectrum 

extending from 380-420nm is as shown in Fig.3.8. The table3.3 shows the 

characteristic spectral lines for Al in this range. There arc only 3 lines in 

this range out of which 2 are persistent lines. This data is scanned with a 

resolution of lAD. This is to ensure discretion with spectral lines which are 

very close to each other. In the nanometre scale they arc treated as the 
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same line. From the table it can be seen that, when scanned with a 

resolution of lAD, up to 3900Ao the relative intensity is zero and at 

3901Ao, the relative intensity. 
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Fig.3.8 Example of the ~plit spectrum of 40nl11 

is 400. Then up to 3943Ao it is zero and at 3944Ao it is 500 In the range 

380-420run, there are about 400 wavelength points. Of these 400 

wavelength points, most of them have relative intensity zero. ANN 

algorithms do not converge to accurate results when most of the data are 

zeros or very low values. So a reduction in data is required. The easiest 

way of data reduction is to find the area under the curve. The 400 data 

points are divided into 80 equal parts of 5 data each. A polygon is 

considered with each of these 5 data points and the area of the polygon is 
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taken and the data is normalized, so that the number of input nodes for the 

ANN is 80. This process is done to all the 4 elements and to all the 9 

spectra of each clement. 

B 

7 

6 

e 
iD 5 .., 
<D 
jij 
=> 
0' 

'" '-. 

2 

OL---~--~~~--~--~--~~~~~~--~--~ o 30 40 50 60 70 80 90 100 
number of input nodes 

Fig.3.9. Error plot to determine the number ojillpul 1l()c1e.~ 

In certain ranges, there is no characteristic spectral line for a 

particular element. For instance, as shown in Fig.3.8, there is no 

characteristic spectral line for Sn in the range 380-420nm. In such cases, 

that element is discarded in that particular range. This is because the 

relative intensity is zero for all the wavelengths in that range. From the 

OLAM weight specification given, it is required to calculate the 

pseudoinverse of the input matrix X. If one of the columns of the input 

matrix X becomes zero, then it is singular and no inverse exists. This is 

true with the persistent line data also as shown in Fig.3.8. 
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The ANN now has 80 input nodes for each element, X is a 80x4 

matrix, and 4 output nodes, T is a 4x4 matrix. The weight matrix W, a 

4x80 matrix, is determined as per the OLAM weight specification. The 

testing data, the persistent line data and the actual data from the 

spectrometer arc also scanned at a resolution of lA 0 and is segmented into 

80 equal palis. The area of each pm1 is taken by considering a polygon 

with the points and it is nonnalized. This data is given to the trained 

network. The network calculated the output and the mean squared error is 

determined. The same process is repeated with varying number of input 

nodes. As the number of input nodes is increased, the network learnt 

easily but the generalization became poor. As shown in Fig.3.9, the 

performance of the network is better when the number of input nodes is 

40. So for the ANN model it is decided to have 40 input neurons and 4 

output neurons. The network is trained with OLAM weight specification 

and the weight matrix is determined 

3.6 The Output 

The artificial neural network with 40 input neurons and 4 output 

neurons is trained and is now ready to automate the spectra taken with the 

spectrometer. Here, it is to be noted that the ANN is trained with the 

actual data taken from the data handbook (Sansonetti and Martin, 2005). 

No spectrum from any practically obtained spectrometer is given during 

the training phase. It is used only for testing. The spectra of pure 

Titanium, Titanium oxide and Aluminum oxide are taken. 

117 



HIID 

i scoo 

~ 

6.00 
wanlen&t;h in AU woanlencth In AU wanlen&th in AU 

Fig. J./O Sump/r sprclrum of Tillmiltm o:r.idr ,oIeen wiJh Q CCD ,."om('rll 

cOllpled to Q speclFogNlph Jrllving 11 grating bloud 01 750nm w;/h 

1200groons/mm and using the jundllmenla/ emission 0/ Nd: rAG 

Spectrum for the studies is recorded with a CCD camera coupled 

to a spectrograph having a grating blazed at 7S0nm with 1200 

grooves/mm and using the fundamental emission of Nd: Y AG laser 

having IOns pulse width. Fig. 3.10 shows a sample spectrum of titanium 

oxide. Since a 40run grating is used, each spectrum is having a span of 

400 A o. The spectrum shows various photo-peaks. These consist of 

original peaks and spurious peaks. Here the neural network is trained to 

identify only 4 elements, viz., titanium, aluminium. calcium and tin. It is 
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the purpose of the neural network to recognize lhese elements from the 

spectrum shown in Fig.3.10. Here the pattern recognition capability of the 

neural network is made use of. 
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Fig.J.11 SQ"'ple speC""'" o/TitQN .. ", oxide tDien with Q CCD Cfl",UtI with QII 

the Chfl,Qcter;stic speclTilllilles of elements "Qined with the ANN. 

The neural network can recognize patterns even from a noisy background. 

Once the network is trained efficiently. it is robust and reliable at any 

worse ,"onditions of the input, unless the input is highly distorted. The 

trained ANN is now tested wilh a practical data given in Fig.3.I O. 

The sample spectrum of titanium oxide with the occurrence of all 

the characteristic spectral lines of elements trained with the ANN is as 

shown in Fig. 3. 11 . Some photo-peaks of the spectrograph spectrum is 

coinciding with the chamcteriSlic spectral lines of certain elements and 

there are photo-peaks which are spurious also. The spectrum of Titanium 
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ox.ide in the nUlge 4200 - 4600 AO is as shown in Fig.3.12 with the 

characteristic spectral lines of the elements and the persistent lines in 

particular in the same range is also given. In the speeified range AI has no 

characteristic spectral lines. 

All bMS PetslsI8'fIC !win 

W7ie18ngt/l 1fI AU w;r.'9Iengt/l ,n AU 

Fig. 3.12 Sa",p/~ sp« trum of Titaniuln oxid~ 'with the cII.Ta~'uis';c s/H~tr.1 

li" e of elemellts al,d persist~'" lines ill th e nlllge 4200 - 4600 A' 

With the coincidence of certain photo-peaks obtained in a 40nm 

span with the characteristic phOlo-pcaks of certain elements. one cannot 

conclude that a specific e lement is present in the sample. The 

confirmation is obtained from the spectrum taken from other wavelength 

spans and also from thc occurrence of the persistent lines in the obtained 

spectrum. So the spectra for a certain range is required for the 
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• 
conclusions. Here, the whole visible range, with 9 spectra each of 40nm 

span, is considered. Each of the 9 spectra is scanned with a resolution of 

I A o. The scanned data is divided into 40 equal parts and the nonnalized 

area is taken. This data is fed to the trained neural network. 

Within the range as shown in Fig.3.12, there are characteristic 

spectral lines for elements such as Ti, Ca and Sn. 

Output obtained for Titanium Oxide 

380- 420- 460- 500- 540- 580- 620- 660- 700-

nm 420 460 500 540 580 620 660 700 740 

Ti 0.12 0.29 1.00 1.00 0.13 0.31 0.02 0.00 0.00 

Ca 0.77 0.18 0.85 0.29 0.00 0.45 0.02 0.01 0.04 

Al 1.00 0.00 0.27 0.00 1.00 0.34 0.60 0.39 0.00 

Sn 0.40 1.00 0.00 0.43 1.00 0.15 0.00 0.19 0.35 

Output obtained for Pure Titanium 

Ti 0.06 0.21 0.51 0.91 0.07 0.26 0.39 0.00 0.00 

Ca 0.19 0.12 0.50 0.45 0.00 0.20 0.43 0.04 0.85 

Al 0.00 0.00 0.07 0.00 1.00 1.00 1.00 0.09 0.00 

Sn 0.36 0.00 0.00 0.72 1.00 0.12 0.00 0.09 0.25 

Table 3.4 Output obtained from the ANN for the 9 spectra of Titanium oxide 

and pure Tilanillm 

The spurious peaks obtained in the sample arc misclassified as the 

elements which are not present in the sample. But the result was not 

encouraging as shown in Table 3.4. In order to overcome this problem 

another neural network is designed with the persistent lines only. 

Persistent lines of all the elements in the desired range is taken and 
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processed as discussed and the nonnalized area is given as the input to the 

ANN. The weight matrix is detennined using the OLAM weight 

specification. 

Sample spectrum taken with the CCD camera and considering the 

persistent lines only is as shown in Fig.3.13. Literally speaking, one can 

conclude the presence of a particular element in a sample by testing for its 

characteristic spectral lines and also making sure the presence of its 

persistent line in the taken spectrum. With the knowledge of these two 

things only recognition of the elements can be satisfactorily done. Hence, 

two artificial neural networks are made to solve the problem. The two 

artificial neural networks, ANN 1 which is trained with all the spectral 

lines and ANN2 trained with the persistent lines only, are used to 

determine the elements present in the given sample. Processed data from 

each of 40 inputs for the 9 spectra is given to ANN 1. 

The probability of occurrence of an element is detennined from 

the obtained output. For this probability, a threshold is kept. If the 

probability is above this threshold, the second ANN, ANN2, is used to 

check the presence of the persistent lines of the element. If the persistent 

line is also present, then it could be inferred that the element is present in 

the sample. The block diagram is shown in Fig.3.l4. This technique gave 

a good result for the entire sample spectrum fed to it. The 9 spectra 

ranging from 380-740 nm taken using the spectrometer are processed as 

each of 40 inputs and fed to ANN 1. The output is tabulated as in table 3.4. 

From the table, the probability of occurrences of each element is taken. 
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It can be seen that in certain ranges, the probability of occurrence 

of some elements is high. For instance, it is seen that in the range 380-420 
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for Titanium oxide, the neural network shows the presence of Ca and AI. 

This is because some of the spurious photo peaks of the sample coincide 

with the original photo peaks of AI and Ca. Such errors can frequently 

happen and must be avoided. So the existence of persistent lines of Ca 

and AI is tested with ANN2. 

Elements Titanium oxide Pure Titanium Aluminum oxide 

Ti 1 1 0 

Ca 0 0 0 

Al 0 0 I 

Sn 0 0 0 

Table 3.5 The result obtained after testing with ANN! and ANN2 

When tested with ANN2, it gave a result of 0 ruling out the possibi lity of 

occurrence of Ca and AI, showing that a spurious peak is misclassified. 

This is done for every element and the result is verified and is tabulated as 

in table 3.5. 

Summary 

The initial results of our research have demonstrated the 

capability of artificial neural networks to identify elements even from a 

noisy spectrum. With the help of two ANNs, it became possible to 

identify the elements present in the sample from the obtained 

spectrograph. The classification is attributed to the orthogonalization 

process used by the OLAM during training. Since this training is a non 
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iterative process, the OLAM offers a substantially shorter training time. 

One of the disadvantages of the OLAM, is that all the spectral lines of 

each element, weak, strong and persistent within the visible range, are 

used for training. Good results are obtained when all the lines arc 

considered. But in a practical case, it is not possible to obtain the whole 

spectral lines. Another disadvantage of this is that it is limited by the 

grating used. Since a 40nm grating is used, 9 spectra is required to cover 

the whole visible range. But the results are satisfactory to consider this 

tcchnique for automating the spectrum identification. 

References 

[1] Alam M K, S L Stanton and G A Hebner, 1994. Near Infrared 

Spcctroscopy and Neural Networks for Resin Identification, 

Spectroscopy, pp 30-40 

[2] Basheer I A and M Hajmeer, 2000 Al1ificial neural networks: 

fundamentals, computing, design and application, Journal of 

microbiological methods 43 pp. 3-31 

[3] Hagan, Martin T Howard B Demuth and Mark Beale, 2002 

Neural Network Design, first ed., Boston, Thomson Learning 

[4] Haykin, S., 2003. Neural Networks: A Comprehensive 

Foundation. Second Edition, Pearson Education 

[5] Keller, Paul E., and Richard T Kouzcs, 1995 Gamma spectral 

analysis via neural networks, IEEE trans. on Nuclear Science pp. 

341- 345 

[6] Keller, Paul E., Lars J Kangas, Gary L Troycr, Sherif Hashem, 

Richard T Kouzes, 1995 Nuclear spectral analysis via artificial 

125 



NEURAL NETWORK BASED STUDIES ON SPEaROSCOPIC ANALYSIS AND IMAGE PROCESSING 

neural networks for waste handling, IEEE trans. on Nuclear 

Science vol. 42. pp. 709- 715 

[7] Kcller, P E, R T Kouzes and L J Kangas, '993 Applications of 

Neural Networks to Rcal- Time Data Processing at the 

Environmental and Molecular Sciences Laboratory, In conference 

record of the Eighth conference on real-time computer 

applications in Nuclear, Particle and Plasma Physics. Vancouver, 

BC, Canada. pp. 438-440 

[8] Kohonen T, 1972 Correlation Matrix memones, IEEE 

Transactions on Computers, vol. C-21, pp 353 

[9] Kohonen, T Self Organization and Associative Memory, 1989, 

third ed., New York: Springer-Verlag. 

[10] Lerner J M and T Lu, 1993. Practical Neural Networks Aid 

Spectroscopic Analysis, Photonic Spectra, pp. 93-98 

[1 I] Olmos P, J C Diaz, J M Perez, P Aguayo, P Gomez and V 

Rodellar, 1994 Drift Problems in the Automatic Analysis of 

Gamma Ray Spectra Using Associative Memory Algorithms, 

IEEE trans. on Nuclear Science, vo!. 41, pp. 637-641 

[12) Olmos P, J C Diaz. J M Perez, P Gomez, V Rodellar, P Aguayo, 

A Bru, G Garcia-Belmonte, and J L de Pablos ,1991 A New 

Approach to Automatic Radiation Spectrum Analysis ,IEEE 

trans. on Nuclear Science vol. 38. pp. 971- 975 

[13] Olmos P, J C Diaz, J M Perez, G Garcia-Belmonte, P Gomez, and 

V Rodellar, , 1992. Application of Neural Network Techniques in 

Gamma Spectroscopy, Nuclear Instruments and Methods in 

Physics Research, vol. A312, pp 167-173 

126 



NEURAL NETWORK BASED STUDIES ON SPECTROSCOPIC ANALYSIS AND IMAGE PROCESSING 

[14] Rosenblatt F, 1958. Two theorems of statistical separability in the 

Perceptron, in Mechanisation of Thought Process, Proceedings of 

symposium No.l 0, National Physical Laboratory, London, vol I 

pp. 421-456 

[15) Sansonetti J.E and W. C. Martin, 2005 Handbook of Basic 

Atomic Spectroscopic Data, J. Phys. Chem. Ref. Data, Vol. 34, 

No. 4, pp. 1559 -2259 

[16] Saritha M and V.P.N. Nampoori, 2009. Identification of spectral 

lines of elements using artificial neural networks Microchemical 

Journal 91 pp. 170-175 

[17) Saritha M and V. P. N. Nampoori, 2002. Peak Identification in 

Optical Spectrum using Artificial Neural Networks. Proc. of 

DAE BRNS National Laser Symposium, pp. 578-580. 

[18) Wythoff B J, S P Levine, and S A Tomellini, 1990. Spectral Peak 

Verification and Recognition using a Multilayered Neural 

Network, Analytical Chemistry, pp 2702-2709 

127 



NEURAL NETWORK BASED STUDIES ON SPECTROSCOPIC ANALYSIS AND IMAGE PROCESSING 
a 

128 



NEURAL NETWORK BASED STUDIES ON SPEITROSCOPIC ANALYSIS AND IMAGE PROCESSING 

CHAPTER 4 

LEARNING BASED SUPER­
RESOLUTION OF BINARY IMAGES 
WITH DISCRETE COSINE 
TRANSFORMS 

4.1 Introduction 

Super-resolution is the process of obtaining an imagc at a 

resolution higher than that afforded by the physical sensor. Supcr­

resolution has been used in obtaining high quality image prints and has 

found applications in areas such as surveillance and automatic target 

recognition. This chaptcr aims the issue of image magnification (in optical 

images the issue is refcncd as interpolation, zooming, enlargement ete) 

from a finite set of collected data sampled at Nyquis\ rate. 

Cunently, there are many algorithms capable of achicving super­

resolution. The best known super-resolution algorithms is first publishcd 

by Gerchberg (1974) and later by Papoulis (1975). For the reconstruction 

of the image j(x, y), these algorithms rely on the prior knowledge of the 

original object which is the major disadvantage of these algorithms. In 

most of the cases a priori knowledge of the object is not known. 

A different supencsolution algorithm, known as Poisson­

maximum a posteriori ( Poisson-MAP or PMAP), was developed by Hunt 

(1974). It is also an iterative algorithm that constructs the Baycs MAP 

129 



NEURAL NETWORK BASED STUDIES ON SPECTROSCOPIC ANALYSIS AND IMAGE PROCESSING 
a 

estimate of the object, assuming Poisson statistics. Multiframe versions of 

this algorithm have also been developed (Lucy, 1974). 

The fonnulation of PMAP is similar to another iterative Bayesian 

algorithm, developed independently by Richardson (1972) and Lucy 

(1974). The Richardson-Lucy algorithm which is known as the 

expectation maximization algorithm is in the class of maximum likelihood 

estimators. As was with the PMAP algorithm, a Poisson model for the 

image is assumed. Another superresolving algorithm is the maximum 

entropy method which is a popular technique amongst the astronomical 

community (Frieden and Burke, 1972). 

All the above mentioned algorithms are iterative methods. Several 

non iterative algorithms have also been developed such as those by Byrne 

et. al. (1983) and Darling et. al. (1983) which perform regularized 

approximation in a weighted Hilbert space by incorporating a priori 

information. More further efforts include method based on singular value 

decomposition that was developed by Walsh and Niclsen-Dclaney (1994) 

and a variant of a nonlinear interpolative vector quantizer by Sheppard et. 

al.( 1998). 

Candocia and Principc (1999) proposed a method using linear 

associative memory (LAM). They implemented a LAM via vector 

quantization algorithm (VQ) to find the best mapping between the low­

resolution image and high resolution image, thereby capturing the 

information across the scales with the assumption that the information 

embodied in the code book vectors and LAM describes a mapping 

between a low-resolution neighborhoods and its high resolution counter 
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part. However, they ensure no warranty for the analysis that 

mathematically supports their assumption. 

Another nonlinear interpolation scheme IS the sub-pixel edge 

localization developed by Kris Jensen and Dimitris Anastassiou (1995). 

Also T Q Pham and his fellowmen (2006) mention an example-based 

super-resolution in the discrete cosine transform (DeT) domain. All the 

aforementioned algorithms arc iterative algorithms, in which a single 

blurred image is operated on repetitively until an acceptable estimate is 

obtained on the basis of some criterion. These methods arc suited for off 

line processing, but are ill-suited for real-time operation requiring a high 

through-put rate. Thus the search for noniterativc super-resolution 

algorithms is of real practical importance. 

There are only a few works available relating super-resolution of 

images with neural networks. Concerning image restoration most often 

considered architecture is the Hopfield network which is again an iterative 

method like the super-resolution algorithms. In contrast to the 

feedforward architecture of the multi layer perceptron (MLP), this network 

is a single layer network with complete interconnections. The output of 

each node feed backs to every other node in the network, even possibly to 

itself. The Hopfield net is in the class of dynamic networks, in the sensc 

that the node equations are described by differential or difference 

equations (Chen et. aI., 1995, Hopfield, 1982, 1984). 

Perhaps the earliest discussion on the use of a Hopfield network 

for image restoration was by Abbiss et. al. (1988, 1991), who discussed 

the plausibility of this method without presenting any results. The first 

documented results on actual images were presented by Zhou et. al. 
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(1988), who used a Hopfield network to restore a gray scale image 

degraded by a known shift-invariant blur function and signal independent 

white noise. Their basic approach was the same as that outlined by Abbiss 

et. al. (1988, 1991), namely, to define a regularized error function, which 

was mapped term by term to the Hopfield energy function. The energy­

reduction propel1ies of the network were then lIsed to minimize the image 

estimation error. 

This research inspired many others to study the Hopfield net 

under different image-restoration situations and to improve on the original 

Hopfield design. Zhang et. aI., (1991)" proposed using multistate neurons 

to avoid the exploding number of neurons needed when gray levels are 

represented as a simple sum of binary neurons. They demonstrated 

performance against an image degraded by linear motion blur plus 

additive noise. Paik and Katsaggelos (1992) also considered motion blur 

with and without additive Gaussian noise. An improvement on Paik and 

Katsaggelos (1992) method was proposed by Sun et.a!' (1995) who 

presented simulation results showing better artifact suppression and 

higher signal to noise ratio than those obtained with Paik and Katsaggelos. 

The robustness of Hopfield net as an image-restoration tool has 

been demonstrated in many works. Bilgen and Hung (1994) considered a 

random shift-variant blur and Gaussian Noise in restoring onc­

dimensional signals. Pcrry and Guan (1995) also applied shift-variant 

distortions to 20 images. All these researchers used a common strategy 

that of mapping the crror function to be minimized into the Hopfield 

network's energy function to exploit its energy-reduction ability. 

Fig.ueirdo and LeiHio (1994) followed a different approach. They 
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proposed neural implementations of iterative restoration schemes that 

were shown to converge. The so called Gauss-Seidel algorithm and a 

modified Jaeobi algorithm were examples of this approach, both 

implemented in Hopficld type networks of graded elements. 

An architecture that lends itself more naturally to real-time 

operation is the multilayer feed forward neural network. Even though this 

network requires a relatively long training processes, once it is trained, it 

requires only a single, forward pass over the blulTed image to produce a 

restored version. Thus it processes images faster than recursive 

architecture, smaller in size and less complex to implement. 

Multilayer feed forward neural network had considered by 

Sivakumar and Desai (1993) for image restoration. In this algorithm they 

modified the transfer function used by neural network. A multi level 

sigmoidal is defined and is used with a three layer perceptron. Restoration 

is achieved by exploiting the generalization capabilities of the multi layer 

pereeptron network. They considered a shift-invariant blur with and 

without zero-mean white Gaussian noise on both binary and gray level 

images. Nathalie Plaziac (1999) showed that the neural filter outperfonns 

the linear and median filters. The results show that the proposed neural 

network looks very promising for image interpolation, showing superior 

performance under noisy conditions. Moreover, the proposed nonlinear 

filter allows interpolating several pixels at a time, saving time and 

memory storage in the process. For all these reasons neural networks 

should be considered when intending some image interpolation. Davila 

and Hunt (2000) considered multi level feed forward networks for image 

interpolation of both binary and gray level images. Neural networks have 
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been used for solving the super-resolution image reconstruction problem 

by Salari and Zhang, 2003 and Tsagaris et. a1. 2004. 

In this chapter we discuss thc performance of a multilaycr feed 

forward network in the super rcsolution binary images using discrete 

cosine transforms (DCT). The nctwork considered herc is a multilayer 

perceptron trained with Backpropagation algorithm. Although binary 

images are discussed here, this can bc extendcd to gray scale imagcs also 

and is considered in later chapters. 

4.2 Discrete Cosine Transforms 

A discrete cosine transform (OCT) expresses a seqllcnce of 

finitely many data points in tenns of a slim of cosine functions oscillating 

at different frequencies. DCTs arc important to numerous applications in 

science and engineering, from lossy compression of audio and images 

(where small high-frequency components can be discarded), to spectral 

methods for the numerical solution of partial differential equations. The 

use of cosine rather than sine functions is critical in these applications: for 

compression, it turns out that cosine functions arc much more efficient (as 

explained below, fewer are needed to approximate a typical signal), 

whereas for differential equations the cosines express a particular choice 

of boundary conditions. 

In particular, a DCT is a Fourier-related transform similar to the 

discrete Fourier transfonn (OFT), but using only real numbers. DCTs are 

equivalent to DFTs of roughly twice the length, operating on real data 

with even symmetry (since the Fourier transfonn of a real and even 

function is real and even), where in some variants the input and/or output 

134 



NEURAL NETWORK BASED STUDIES ON SPECfROSCOPIC ANALYSIS AND IMAGE PROCESSING 

data are shifted by half a sample. There are eight standard OCT variants, 

of which four are common. 

The most common variant of discrete COSll1e transform is the 

type-II OCT, which is often refferred to as "the OCT"; its inverse, the 

type-llI OCT, is correspondingly often called "the inverse OCT" or "the 

IOCT". Two related transforms arc the discrete sine transforms (OST), 

which is equivalent to a OFT of real and odd functions, and the modified 

discrete cosine transforms (MOCT), which is based on a OCT of 

overlapping data 

Like any Fourier-related transform, discrete cosme transforms 

(OCTs) express a function or a signal in terms of a sum of sinusoids with 

different frequencics and amplitudes. Like the discrete Fourier transforms 

(DFT), a OCT operates on a function at a finite number of discrete data 

points. The obvious distinction between a DCT and a OFT is that the 

fonner uses only cosine functions, while the latter uses both cosines and 

sines (in the form of complex exponentials). However, this visible 

difference is merely a consequence of a deeper distinction: a OCT implies 

different boundary conditions than the OFT or other related transforms. 

The Fourier-related transfonns that operate on a function over a 

finite domain, such as the OFT or OCT or a Fourier series, can be thought 

of as implicitly defining an extension of that function outside the domain. 

That is, once a function f(x) is written as a sum of sinusoids, one can 

evaluate that sum at any x, even for x where the original f(x) was not 

specified. The OFT, like the Fourier series, implies a periodic extension of 

the original function. A OCT, like a cosine transfonn, implies an even 

extension of the original function. 
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Formally, the discrete cosine transfonn is a linear, invertible 

function F: RN - > RN (where R denotes the set of real numbers), or 

equivalently an invertible N x N square matrix. There arc several variants 

of the OCT with slightly modified definitions. The N real numbers xo, ... , 

X\'_I are transformed into the N real numbers X;" ... , XV_I according to one 

of the formulas: 

DCT-I 

Wc write 

X, = -~() +(- 1) XV_I + Ix" cos --nk 
1 .) ,\' -2 [Jr ] 
2 IT;I N-\ (4.1 ) 

k = 0, I, ...... , N - I 

Some authors fut1her multiply the Xo and XN.I terms by '1/2, and 

correspondingly multiply the Xo and XN-1 terms by 1/'1/2. This makes the 

OCT -J matrix orthogonal, if one further multiplies by an overall scale 

factor of ~2/(N -1), but breaks the direct correspondence with a real­

even OFT. The OCT-J is exactly equivalent (up to an overall scale factor 

of 2), to a DFT of 2N - 2 real numbers with even symmetry. However, 

the OCT -I is not defined for N less than 2. (All other OCT types are 

defined for any positive N). Thus, the DCT-J corresponds to the boundary 

conditions: Xn is even around n=O and even around n=N-l; similarly for 

Xk• 

DCT-Il 

We have 
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X k = IXJ7Cos[Jr(n+~)k] 
,,=0 N 2 (4.2) 

k = O, ........ ·,N-I 

The DCT-1I is probably the most commonly used form, and is 

often simply referred to as "the DCT".This transform is exactly equivalent 

(up to an overall scale factor of 2) to a DFT of 4N real inputs of even 

symmetry where the even-indexed elements are zero. That is, it is half of 

the DFT of the 4N inputs y", where y~1l = 0, y]1l . I = X Il for ° ~ 11 < N , and 

Y4N - 11 = Yn for ° < n < 2N. Some authors further multiply the Xo term by 

1/'1/2 . This makes the DCT-lJ matrix 0I1hogonal, if onc further multiplies 

by an overall scale factor of ~2/ N , but breaks the direct eOlTeSpOndellce 

with a real-even OFT of half-shifted input. The DCT-II implies the 

boundary conditions: XIl is even around n=-1I2 and cven around n=N-1I2; 

Xk is even around k=O and odd around k=N. 

DeT-11I 

In this case, 

X k = -xo + LX" cos -n k +-I .V-I [Jr ( 1)] 
2 11=1 N 2 (4.3) 

k = 0, 1, ...... , N - 1 

Because eqn.( 4.3) is the inverse of DCT -11 this form is sometimes 

simply referred to as "the inverse DCT" ("IDCT"). Some authors further 

multiply the Xo term by '1/2, so that the DCT-U and DCT-IIJ are transposes 
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of one another. This makes the DCT -1II matrix orthogonal, if one further 

multiplies by an overall scale factor of ~2/ N, but breaks the direct 

correspondence with a real-even OFT of half-shifted output. The DCT-I11 

implies the boundary conditions: XIl is even around n=O and odd around 

n=N; Xk is even around k=-J/2 and even around k=N-1/2. 

DCT-IV 

We write, 

X k = IX n cos[~(n+~)(k+~)] 
n=O N 2 2 (4.4) 

k = 0,1. .. · ...... ,N-l 

The DCT -IV matrix becomes orthogonal if one further multiplies 

by an overall scale factor of. J2/ N . A variant of the DCT-IV, where 

data from different transfonns are overlapped, is called the modified 

discrete cosine transform (MDCT). The DCT -IV implies the boundary 

conditions: Xn is even around n=-1/2 and odd around n=N-I/2; similarly 

for Xk• 

DCT V-VIII 

DCT types I-IV are equivalent to real-even OFTs of even order 

(regardless of whether N is even or odd), since the corresponding OFT is 

of length 2(N-l) (for DCT-I) or 4N (for DCT-WIIl) or 8N (for DCT­

VIII). In principle, there are actually four additional types of discrete 

cosine transfonn, corresponding to real-even DFTs of logically odd order, 
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which have factors of N ± 1/2 in the denominators of the cosine 

arguments. 

Equivalently, DCTs of types I-IV imply boundaries that arc 

even/odd around either a data point for both boundaries or halfway 

between two data points for both boundaries. DCTs of types V-Vlll imply 

boundaries that even/odd around a data point for one boundary and 

halfway between two data points for the other boundary. However, these 

variants seem to be rarely used in practice. One reason is that FFT 

algorithms for odd-length OFTs are generally more complicated than FFT 

algorithms for even-length DFTs (e.g. the simplest radix-2 algorithms are 

only for even lengths), and this increased intricacy calTics over to the 

OCTs as described below. (The trivial real-even alTay, a length-one OFT 

(odd length) of a single number a, eOlTesponds to a DCT-V of length 

N=l.) 

Inverse transforms 

Using the normalization conventions above, the inverse of OCT-I 

IS OCT-J multiplied by 2/(N-I). The inverse of OCT-IV is OCT-IV 

multiplied by 21N. The inverse of DCT-lI is OCT-III multiplied by 21N 

and vice versa. Like for the OFT, the normalization factor in front of these 

transfonn definitions is merely a convention and differs between 

treatments. For example, some authors multiply the transforms by ~2/ N 

so that the inverse does not require any additional multiplicative factor. 

Combined with appropriate factors of "2, this can be used to make the 

transform matrix orthogonal. 
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Multidimensional DCTs 

Multidimensional variants of the various DCT types follow from 

the one-dimensional definitions: they are simply a separable product 

(equivalently, a composition) of DCTs along each dimension.For 

example, a two-dimensional DCT -11 of an image or a matrix is the one­

dimensional DCT-II, from above, performed along the rows and then 

along the columns (or vice versa). That is, the 2D DCT-II is given by the 

fonnula (omitting normalization and other scale factors. as above): 

(4.5) 

Technically, computing a two- (or multi-) dimensional DCT by 

sequences of one-dimensional DCTs along each dimension is known as a 

row-coIUIlU1 algorithm (after the two-dimensional case). As with 

multidimensional FFT algorithms, however, there exist other methods to 

compute the same thing while perfonning the computations in a different 

order (i.e. interleaving/combining the algorithms for the different 

dimensions). The inverse of a multi-dimensional DCT is just a separable 

product of the inverse(s) of the corresponding one-dimensional DCT(s), 

e.g. the one-dimensional inverses applied along one dimension at a time in 

a row-column algorithm. 
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4.3 Super Resolution 

In chapter I, the sampling and quantization of images are dealt 

with. Closely related to image sampling and quantization is the zooming 

and shrinking of an image. This is because zooming may be viewed as 

over sampling, while shrinking may be viewed as under sampling. The 

key difference betwccn these two operations and sampling and quantizing 

an original continuous image is that zooming and shrinking arc applied to 

digital image. Enlarging an image is also known as super-resolution 

because when enlarged, it is just extrapolating the band abovc the cut off 

frequency. Zooming requires two steps: the creation of new pixel 

locations, and the assignment of gray levels to those new locations. Image 

shrinking is donc by row-column deletion (Gonzalez and Woods, 2002). 

Super-resolution (SR) is techniques that in some way enhance the 

resolution of an imaging system. There are different views as to what is 

considered an SR-technique: some consider only techniques that break the 

diffraction-limit of systems, while others also consider techniques that 

merely break the limit of the digital imaging sensor as SR. There are both 

single-frame and multiple-frame variants of SR, where multiple-frame arc 

the most useful. Algorithms can also be divided by their domain: 

frequency or space domain. By fusing together several low-resolution 

(LR) images one enhanced-resolution image is formed 

In the most common SR algorithms, the infonnation that was 

gained in the SR-image was embedded in the LR images in the fonn 

of aliasing. This requires that the capturing sensor in the system is 

weak enough so that aliasing is actually happening. A diffraction-
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limited system contains no aliasing, nor does a system where the 

total system Modulation Transfer Function is filtering out high­

frequency content. 

There are also SR techniques that extrapolate the image in 

the frequency domain, by assuming that the object on the image is 

an analytic function, and that we can exactly know the function values 

in some interval. This method is severely limited by the noise that is 

ever-present in digital imaging systems, but it can work for radar, 

astronomy or microscopy. 

4.4 Network Design and Training 

The present problem is the design of a neural network trained 

with backpropagation algorithm for the reconstruction of the binary image 

above a cut off frequency Pc. The binary images of numbers 0 to 9 arc 

chosen for the task. A 32x32 image of each number has been made and 

stored. The neural network used for training has the J-J-K format, where I 

is the number of neurons in the input layer, J, that in the hidden layer and 

K, the number of neurons in the output layer. 

Design of a neural network consists of the determination of 

suitable 1, J and K for a given problem so as to get a better performance 

for the network. Usually 1 and K are determined by the problem itself. The 

image is blurred using a low pass filter (lpt) with filter function given as: 

[

1 1 1 j 
[pi = 1~ 1 8 1 

1 1 1 

(4.6) 
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The image chosen for training is an image of size 32x32. This is blurred 

by the low pass filter given in EqA.6. The image is now down sampled 10 

a size of 16x 16. It is then split into overlapping scctions of 6x6 (36) pixcls 

each as shown in FigA. I. Thi~ is then lexicographical ly arranged to form 

a matrix of size 36x I. The discrete cosine Iransfonn (DCT) oflhis matrix 

is taken and is then fed to input of the neural network. Thus thc number of 

input nodes for the neural network i~ now 36. As shown in Fig.4.1. the in 

between lincs of the cen tre pixels A. B. C. Dare intcrpolated. When these 

lines arc interpolated, the image gets zoomed and the output is as shown. 

Fflm 
EHHE 

, 
DC< 

= 
wcr 
= 

, 
c 

• 
~ 
~ 

Fig.4. J N~lIral n~rwork Ira;ned w;lh backpropagation algorithm with the 

inplll and th~ interpolated OIl1pll' (.f;haded piuls au interpolated) 

The shaded portion in the output is the interpolated pixe\s; the output is 

thus 9. So the number of the output neurons is 9. But the ocr of the 

enlarged image is got. The inverse discrete cosine transfonn (IOcr) is 
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taken and is arranged to get a portion of the image of size 3x). Since 

backpropagation is used the target must be given for training. The original 

32x32 image is now split into overl apping ~eetions of size 3x), and 

kxi cogrClphi eall y arranged to a mat ri x of size 9x I. whi ch is given as the 

target for the network. The number of hidden layer neurons is found by 

actual training and te~ting. The peak s ignal to no ise ratio (PSN R) is IIsed 

as an indicator for the image compari son (Nathalic Plaziac, 1999). 

FigA .2 The trail/i"g ulld tes/illg set for Ihe nellral "etwork. rhe firsl two roW.f 

of data ore IIsed for tra;,rhrg alld 'he lasl row for ,esti"g 

This ratio is described by: 

PSNR = 10 10 
M' 

(47) 
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where m is the number of rows of the image, n is the number of columns 

of the image, M is the maximum value that a pixel can have, and e(iJ) is 

the difference between the two images ( the original image and the 

interpolated image) at pixellocated at position (i./). 

The data set for training and testing of the neural network is as 

shown in Fig.4.2. It is decided to use the numbers from 0-4 for training 

and the numbers 5-9 for testing. When trained and tested with the data, the 

neural network found it difficult to recognize number 7. In order to tackle 

this problem some slanting lines of 

30!) , 4S!) , 60° , 1200
, 1351) and ISO!) are also included for training. As 

indicated in Fig.4.2, the first two rows of data are lIsed for training and the 

last row of data for testing. The number of input neurons and the number 

of output neurons are now fixed to 36 and 9 respectively. There is no 

thumb rule to determine the number of hidden layer neurons. The number 

of hidden layer neurons is found by actual training and testing. For that, 

the number of hidden layer neurons is varied from 2 to 17. 

The number of iterations to be performed with each number of 

hidden layer neuron is fixed to 1000. As the number of hidden layer 

neurons varies, the PSNR of the training set of data and the testing set 

varies. This can be very well appreciated in Fig.4.3 (a) and (b). Fig. 4.3 

(a) and (b) shows the variation in PSNR of the output for the number of 

hidden layer neurons J = 2, J = 5, J = 7, J = 11, J = 15, J = 17. When a 

neural network is set up for a specific task, initially the weight factors 

from the input layer to the hidden layer (wi) and that from the hidden 

layer to the output layer (wh) are randomly selected. This weight factor 

initialization has an important role to play in the neural network 
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o.utput foc dat<t &fv..m for truinlng 

J-=- 2 J = 5 J = 7 

IiI I!I 
PSNR PSNR 
13.53 14.95 

PSNR PSNR 
H'i.l7 16.86 

output fo r data given for test:ina: 

J = 2 J = 5 

~ IiJ ~ Iil 

IiI I!I 
PSNR PSNR 
16.73 16.92 

J = 7 

~ Iil 
PSNR PSNR PSNR PSNR PSNR PSNR 

12.68 ll.92 13.32 13.42 13.13 13.21 

(a) 

. onijut for data given.ror tt:ahung 
iJ .;= 11 .J = 1~ J =!' 17 

I!I I!! l!l I!! 
PSNR ·PSNR PSNR PSNR PSNR PSNR, 
1a:35 16:83 lfi.27 16.61. J65 \16,95 

output fO r data pven fon testinK' 

iJ =ell, . .1.= J~, J" 17 

~ ~ ~~ ~~ 
IJ'SlfR. ;P§1'I1!. 
uJi xtu 

(b) 

Fig. 4.3 (a) and (b) Va riation in the PSNR of tire training and testing.vet of 
data as the number of nellrons in the hidden layer l'aries for J "" Z. J =.5. J = 7, 
J e. 11, J ::t. 15 and J = l7 

146 



convcrgence (Hagan ct. aI., 2002, Haykin. 2q03) . Even if the number of 

input layer neurons, thc hidden layer neurons and the output layer neurons 

arc kcpl constant, the output of the neural network will vary with 

cvcry frcsh training of the network. This duc to the change 10 the 

initialil.ation of the weight fac tors with every frcsh training of the 

network. FigA.4 clearly illustrates the variation of. PSNR for the ncu ral 

network with the 

ou?utfor. the tr.dnin" data J = 11 

I!JI!I 
PSNR PSNR 
16.48 16.90 

I!JI!I 
PSNR PSNR 
16.n 16.80 

I!JI!I 
PSNR PSNR 
16.69 171)6 

output ror the te.tin" data J = 11 

PSNR PS'NR 
13.34 13.39 

(a) 

PSNR PSNR 
13.18 12.98 

(b) 

PSNR PSNR 
12.91 13.22 

(,) 

Fig. 4.4 Variation of PSNRfor different initiuli;.ation IIfweightfactllr ((a), 

(h), (e')) for 'he nllmher of hidden layer neurons, J:: 11. 

number of neurons in the hidden layer, J = 11 for different weight 

initialization. With each number of hidden layer neuron, iterations are 

done for 1000 times for 25 random weight initializations. For eaeh weight 

initialization. the PSNR, as per Eq. 4.27, of each set of data (training and 

testing) is calculated. The average PSNR of these data are fonnulated as 

shown io Table 4.1 (a) and (b) and Table 4.2 (a) and (b). It Can be seen 
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2 3 4 5 6 7 8 9 10 

97.3 112.98 115.89 114.27 118.99 124.29 119.56 117.57 119.23 

93.92 112 116.49 118.77 117.22 117.7 119.11 J 18.15 120.2 

99.24 114.54 116.95 117.74 115.05 116.65 117.2 123.63 117.59 

94.65 111.82 114.5 115.69 117.87 115.81 119.42 119.32 123.65 

106 113.74 116.03 118.46 116.88 122.43 116.46 116.65 120.21 

95.96 113.81 115.44 119.47 116.26 120.08 120.2 116.46 118.12 

102.7 114.2 114.55 117.47 117.11 123.36 120.73 117.95 116.49 

97.03 113.77 115.96 117.02 118.21 116.01 121.76 117.23 116.64 

96.86 111.8 I 115.87 117.29 115.76 118.87 118.63 123.36 120.42 

96.14 112.23 114.1 115.96 117.19 115.97 122.39 119.61 119.62 

. 0.25 111.43 114.38 118.46 117.8 118.15 113.34 120.78 118.94 

96.59 112.07 115.65 114.7 116.54 116.01 123.89 116.62 II!U6 

95.83 114.59 116.88 114.43 114.09 115.64 118.91 120.01 120.69 

97.3 114.29 115.78 117.94 117.89 IIlU2 118.11 116.28 120.53 

95.04 113.15 113.92 118.66 117.76 120.84 118.07 119.13 117.74 

94.05 112.41 114.31 118.2 118.4 120.75 119.6 118.72 118.62 

9636 114.55 113.27 117.88 117.19 119.51 120.43 119.16 120.29 

95.43 113.33 115.07 116.95 113.08 117.27 114.31 117.54 118.33 

97.03 113.58 112.65 114.68 113.71 121.47 118.18 115.8 120.57 

100.67 113.37 113.9 115.12 117.82 119.61 119.26 122.13 124.24 

103.46 113.53 114.62 116.6 116.56 118.84 116.9 118.45 117.59 

99.36 113.09 117.02 114.22 116.75 118.28 120.8 120.44 124.2 

98.21 113.87 115.07 116.42 118.75 117.16 116.69 122.19 117.36 

96.26 113.45 116.42 115.73 115.63 117.92 116.35 120.63 121.55 

101.86 112.6 115.72 116.31 118.49 117.11 117.37 122.92 120.65 

97.9 113.21 11S.22 116.74 116.84 118.72 118.71 119.23 119.67 

Table 4.1(a) Training Data: Determination af /lllmber af hiclclell neurons; 
average PSNR in respect af tire data IIsed for training witlt tlte Ilumber of 
hidden neurons varying from J =2 to 10. Training is done wilh 25 new 
initializations of network weigltts and the netwark is trained for J 000 iterations 
for each initialization. Last row gives tire average PSNR vallles for each Ilumber 
of hidden nodes 
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11 12 13 14 15 16 17 

122.89 118.23 119.29 119.66 119.11 120.65 116.4 

120.28 119.59 121.35 119.36 126.48 119.89 117.83 

121.44 119.98 118.57 118.96 123.29 120.58 117.7 

118.87 118.03 121.9 119.85 118.72 121.51 125.56 

117.07 121.5 125.71 118.91 124.04 125.46 118.88 

118.78 116.65 119.23 119.11 119.39 118.72 124.95 

123.98 119.09 116.14 124.84 121.71 122.47 119.53 

117.83 115.97 121.07 116.46 118.81 116.5 120.68 

118.58 121.5 119.66 121.68 120.29 117.5 118.93 

118.78 119.67 122.17 117.33 121.87 115.46 115.78 

122.86 123.75 118.84 118.08 120.78 118.4 119.73 

116.49 118.01 123.33 118.8 121.H 1 J 16.96 120.31 

117.65 118.51 117.03 120.33 118.88 119.64 121.52 

122.67 121.77 120.73 117.69 118.61 118.82 120.14 

120.32 120.81 119.58 111:L68 117.71 122.2 120.47 

125.19 118.23 119.29 120.07 117.89 122.17 122.73 

125.41 119.48 116.06 121.66 118.2 119.31 118.06 

124.25 118.52 121.43 122.17 123.55 119.22 122.77 

121 118.81 120.15 120.43 117.63 118.25 118.99 

120.55 121.66 122.29 119.83 119.32 120.57 119.75 

121.9 124.9 117.64 119.7 120.69 123.21 120.66 

118.7 121.25 119.67 123.33 120.72 117.59 119.95 

120.58 122.44 120.86 114.97 120.67 125.57 122.14 

122.69 121.54 120.01 119.72 118.13 122.45 119.47 

119.01 125.99 120.33 120.09 120.77 119.85 120.2 

120.71 120.24 120.09 119.67 120.36 120.12 120.13 

Table 4.I(b) Training Data: Determination of nlimber of hidden nellrons; 
average PSNR in respect of the data used for training with the nllmber of 
hidden neurons varying from J = 10 to 17. Training is done with 25 new 
initializations of network weights and the network is trained for 1000 iterations 
for each initialization. Last row gives the average PSNR valllesfor each number 
of hidden nodes 
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2 3 4 5 6 7 8 9 10 

46.18 47.84 47.72 47.8 47.78 49.7 47.16 47.32 47.15 

45.62 47.83 47.117 47.2!l 47.25 47.77 47.84 48.27 47.99 

46.35 4~.08 48.07 48.34 47.74 46.78 4!l.09 49.27 48.21 

45.62 47.73 47.7H 48.04 47.73 47.93 4H.11 46.38 47.56 

45.42 47.92 4!l.01 48.13 47.94 47.96 47.23 47.31 47.65 

46.15 47.9 47.95 48.5 48 4H.02 48.56 47.84 47.95 

44.1 48.0H 48.25 47.83 47.8 49.67 49.09 47.79 46.77 

46.18 47.88 47.86 47.79 48.15 47.66 49.26 47.51 47.29 

46.02 47.9 47.95 47.99 46.84 47.2 48.2 47.1 49.15 

46.15 47.95 47.92 48.1 47.36 46.92 46.83 47.06 47.7 

43.33 48 48 47.6 47.97 48.37 48.24 47.1 47.28 

45.87 48.07 47.87 47.78 47.69 48.08 46.77 47.5 48.25 

45.96 47.91 48.06 47.7 47.65 47.68 47.71 47.44 46.6 

46.21 47.93 47.03 47.98 48.06 48.77 47.63 47.75 47.82 

45.64 47.53 47.96 47.94 48.36 48.19 47.51 47.8 47.8 

45.59 47.84 47.76 46.94 47.99 49.87 48.13 48.09 47.39 

46.04 47.83 47.77 47.47 47.7 48.41 48.28 48.5 48.71 

45.75 48.05 47.86 47.31 47.43 48.06 47.74 47.27 47.72 

46.13 47.87 47.51 47.94 47.1 47.79 48.22 47.36 48.76 

42.79 47.81 47.88 47.9 47.79 48.51 46.76 47.17 47.63 

46.35 47.8 47.58 48.03 47.92 47.93 47.16 47.77 47.84 

46.4 47.99 47.84 48.04 47.95 48.25 48.01 48.34 48.02 

46.26 48.09 48.09 47.98 48.54 47.97 47.94 49.6 46.59 

46.22 47.97 48.04 47.86 47.27 47.8 46.31 47.67 47.41 

46.22 47.78 48.27 47.96 47.71 47.73 47.99 48.16 47.33 

45.7 47.9 47.88 47.85 47.75 48.12 47.79 47.73 47.7 

Table 4.2 (a) Testing Dolo: Determination of number of hiddelJ neurons; 
average PSNR for Ihe data used for testing for the nllmber of hidden Ileurons 
varying from J = 2 to 10. For each of the network weights obtained with the 
traillillg data is L'orrespolldillgly tested. Last row gives the average PSNR. 
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11 12 13 14 15 16 17 

47.97 47.61 48.17 47.61 48.66 46.76 47.22 

47.71 47.49 47.9 47.93 49.49 47.36 47.66 

48.05 47.75 48.08 47.12 47.57 47.18 47.59 

47.11 47.93 48.22 48.19 47.03 48.91 47.35 

46.92 47.13 47.26 47.54 47.8 47.17 48.74 

47.96 47.64 46.32 47.54 47.3 47.8 48.66 

48.41 48.32 47.31 47.61 47.06 47.74 48.31 

47.45 47.54 48.25 47.97 48.13 47.65 47.47 

47.73 46.59 47.94 46.59 47.85 47.45 47.75 

48.26 47.26 47.77 48.08 47.45 48.55 47.82 

49.11 49.29 47.31 47.55 48.74 47.05 48.09 

47.35 48.33 47.27 47.21 47.46 46.74 4R.48 

47.21 46.72 47.38 47.06 47.37 48.39 49.02 

47.54 47.97 47.8 47.5 47.69 47.3 48.7 

46.93 47.41 47.27 47.39 46.93 47.36 47.45 

4R.59 48.73 48.12 47.29 47.64 49.47 48.19 

49.5 47.93 46.91 49.03 48.19 47.48 48.01 

47.4 47.75 47.2 47.45 48.27 47.3 47.75 

47.21 48.66 47.47 48.14 47.98 47.95 46.67 

47.93 47.13 47.3\ 47.1\ 47.63 47.47 47.1 

47.86 48.2 47.73 47.51 47.64 48.03 46.85 

46.92 48.56 47.37 47.72 48.43 47.29 46.98 

46.62 47.9 47.71 47.73 47.16 48.84 46.26 

50.04 47.63 47.32 47.62 47.85 4R.5 47.24 

47.9\ 49.15 4R.24 47.24 47.06 47.46 47.63 

47.83 47.86 47.58 47.59 47.78 47.73 47.72 

Table 4.2 (b) Testing Data: Determination of number of hidden neurons; 
average PSNR for the data used for testing for the number of hidden neurons 
varying from J = 11 to 17. For each of the network weights obtained with the 
training data is correspondingly tested. Last row gives the average PSNR. 
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from table 4.1 (a) and (b), as the number of hidden layer neurons increases 

the performance of the network becomes better and better. With a large 

number of hidden layer neurons, the learning becomes less tedious. But 

the response of the neurn.l network to untrained data will be poor. In short, 

the generalization capability of the network will be first increasing and 

then it shows a decreasing trend with the increase in the number of hidden 

layer neurons. This fact is evident in the table 4.2. Here the PSNR is 

detennined for the test data, for various weight factors obtained for the 

various training of the neural network. The data in table 4.I(a) and (b) and 

table 4.2(a) and (b) is shown in Fig. 4.S.Also as the 

1~r----r----r---~----,---~----,,----r---, 

120 . . ....... • 
110 

-+- training data 
-+- testing data 

70 

60 

50 

402~---4L----6~---L8----1~O----~12----~14----~16~--~18 

Number of hidden Neurons 

Fig.4.5 Plot showing the variation inave,age PSNR fo, the training and testing 
data wiIIt the ,",,,,be, of hidun nell,ons 
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number of hidden layer neurons increases, the hardware requirement of 

the computer also increases. More the number of neurons, the more will 

be the memory requirement. More the number of neurons, the more will 

be computation complexity, the more will be the time taken for 

processing. So it is a trade off between the hardware, computation 

complexity, performance, time etc. With all these considerations, it is 

decided to select the number of hidden layer neurons to be 11 (J = 11). 

Now the neural network is ready for training and further processing with 

the number of input layer neurons, I = 36, hidden layer neurons, J = 11 

and output layer neurons K = 9. 

4.5 The Output 

The neural network in the I-J-K format is trained with random 

initialization. The activation function is so chosen that for the hidden layer 

neurons sigmoid function is used and for the output layer neuron 

purelinear activation function is employed. The neural network is trained 

step by step. Each step consists of a specific number of iterations. At the 

end of each step the PSNR is tested. A neural network cannot be trained 

for a large time or for a large number of iterations as shown in Fig.4.6. 

Initially, as the number of iterations increases, the PSNR also increases. 

After specific number iterations, which have to be found by constant 

testing, the neural network gets saturated. The PSNR for the training set 

of data tend to increase with increasing number of iterations, whereas the 

generalizing capability of the network tends to decrease. When saturation 

is attained, further training will lead the neural network to confusion or it 

is said to be over trained. Hence, it is necessary to stop the training of the 

153 



NEURAL NETWORK BASED STUDIES ON SPECTROSCOPIC ANALYSIS AND IMAGE PROCESSING 

• 
neural network properly. After gelling a proper termination for the ncural 

network training, the network can be saved and can be tested. 

o-Utputl'or-1.he fr:rining clam J = 11 

ofter Iboo + lO,OOO + 1,00.000 
iterations iterations itel'iltions 

PSNR 
16.37 

P~NR. 
13.39 

PSNR> 
16.82 

PSN~ 

17.68 
PSNR 
18.31 

[!]I!I 
PSNR 
19.47 

PSNR 
19.63 

ouljiut ror tile le.ting d;lta J ; n 

j>S~ 
13.32 

PSNR 
13.26 

PSNR 
13.71 

PSNR 
13.29 

PSNR 
13.17 

Fig.4.6 Variation o/the PSNR with the nJlmbu o/i/uatif}ns 

The simulations arc done with the binary image of numbers 0-9. 

The results of these simulations arc compared with interpolate techniques 

like nearest neighbour. bi linear, bicubic and the spline interpolation 

methods tbat are avai lable. Tbe peak signal to noise ratio (PSNR) is used 

as an indicator for the image comparison as given in Eq.4.7. The training 

and testing set consist of numbers from 0-9 and lines of different 

inclinations as shown in Fig.4.2. For the multilayer perceptron (MLP) the 

simulation results arc as sbown in Fig.4.7. The simulation result shown in 

Fig.4.7, is for an unseen, new image for the MLP. The MLP is trained 

with numbers 0-4 and some slanting lines. The slanting lines are used 

because it became difficult for the MLP to recognize number 7 as it 
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<)"g,o..1 Sp.,.~ t'urr. 

lil' 
8l utr~d . 
:''(r'''''~;lI r,ol~ d S~· ~(t roJm 

10 2D :JJ 10 2D )) 

~::~i Image R'conslruclBd Image 

Fig.".6 Imag, r,nllt.ftrflct;on don, for nllmb,,7 "'jlh th,ir .~p'ctrQ. 

contai ns incl ined lin~s. Number 8 is not in Ihe training ~el and the MLP is 

able 10 reconstruct the image. This shows the generalization capability of 

the MLP. This can be very well appreciated in Fig.4.8 also. Here the 

reconstruction ofnumbcr 7 is given . The perfonnance of the MLP is 
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Fig. 4. 9(11) Image reclJnstrllction done for n"",tur 8 (6) with udded noise IIs;ng 

"arious ",,,hod.\' like /'1,'eurQI !VerM'oT", l'l,'e(Ue.ft Neighbour. BiJineaT, Bicubic 

and Splint! int4!rpoflltion melhmJl' K'ith their spectrQ. 
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compared with the existing techniques like nearest neighbour, bilinear, 

bicubic and spline interpolation methods. As shown in FigA.9 (a) and (b), 

the perfonnance of the neural network is much better. 

The PSNR related to each technique is calculated and compared. 

Details of comparison arc shown as in table 4.3. Also the average PSNR is 

calculated and it is clear as can be seen that the performance of the neural 

network is comparable 

Numbers Neural Nearest Bilinear Bicublc Spline 
Network Neighbour 

1 14.713 12.256 12.55 12.705 14.824 
2 15.591 10.978 11.396 11.585 13.87 
3 16.808 11.814 11.645 11.941 13.271 
4 18.609 15.651 14.191 14.6 15.189 
5 13.433 9.9562 10.63 10.793 12.981 
6 13.667 10.612 11.136 11.321 13.343 
7 16.026 16.022 14.359 15.009 15.216 
8 14.073 10.609 11.055 11.342 12.573 
9 13.67 10.483 10.755 10.899 13.335 
0 17.915 16.63 13.012 13.556 13.023 

Lines 45u 22.816 13.753 13.963 14.08 16.049 
135" 22.8 15.364 15.087 15.883 15.842 
30° 21.529 15.622 15.262 15.792 16.033 
1500 23.947 15.612 15.251 15.766 16.124 
60" 21.33 15.789 15.687 16.263 16.398 
120" 20.616 14.622 14.502 14.728 16.231 

Average 17.971 13.486 13.155 13.517 14.644 

Table 4.3 The PSNR of tIre nllmbers and lines compared with the variolls 
methods 

Summary 

A neural network in the I-J-K fonnat is set up with the number of 

input layer neuron I = 36, hidden layer neuron J = 11 and output layer 
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neuron K = 9. The neural was able to reconstruct the frequencies above 

the cut off frequency. The performance of the network is evaluated. The 

efficiency of the network is compared with the existing interpolating 

techniques and was found better. 
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CHAPTERS 

RESTORATION OF GRAY LEVEL 
IMAGES WITH DISCRETE COSINE 
TRANSFORMS 

5.1 Introduction 

In the previous chapter with binary image restoration, the 

variation of the neural network output with the number of hidden layer 

neurons, the input weight initialization and number of iterations is 

discussed. These are not only the factors that have to be considered for 

design of an efficient neural network. The perfonnance of the neural 

network is affected by the variation of the activation function, the 

selection of the input data given for training, the selection of proper 

training algorithms etc. Here an attempt is done to illustrate the 

performance variation of the neural network with these parameters. Also 

the capability of the neural network in image restoration with discrete 

cosine transfonn is mentioned. A comparison of the performance of 

neural network with other image interpolation techniques is also done. 

5.2 Shrinking and Zooming of image 

Sampling is the principal factor detennining the spatial resolution 

of an image. Basically, spatial resolution is the smallest discernible detail 

in an image. Gray level resolution refers to the smallest discernible 

change in gray level. There are considerable discretion regarding the 
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number of samples used to generate a digital image, but this is not true for 

the number of gray levels. Due to hardware considerations, the number of 

gray levels is usually an integer power of 2. The most common number is 

8 bits, with 16 bits being used in some applications where enhancement of 

specific gray-level ranges is necessary. When an actual measure of 

physical resolution relating pixels and the level of detail they resolve in 

the original scene are not necessary, it is not uncommon to refer to an L -

level digital image of size M X N as having a spatial resolution of M X N 

pixels and a gray-level resolution of L levels.(Gonzalez and Woods, 2002) 

Fig.ure 5.1 shows an image of size 512 x 512 pixels whose gray 

levels are represented by 8 bits. The other images shown are the results of 

subsampling the 512 x 512 image. The subsampling was accomplished by 

deleting appropriate number of rows and columns from the original 

image. This is also referred as shrinking of the image. These images show 

the dimensional proportions between various sampling densities, but their 

size differences make it difficult to see the effects resulting from a 

reduction in the number of samples. The simplest way is to compare their 

effects is to bring all the subsampled images upto the size 512 x 512 as 

shown in Fig.5.2 

When considering subsampling or shrinking of an image, equal 

importance must be given to enlargement or zooming of images. When 

subsampled, the details of the image were lost. Enlargement or zooming 

focuses on reconstructing this lost details in the image. When this lost 

infonnation is added, a 32 x 32 image can be zoomed to 64 x 64 image. 

Zooming requires two steps: the creation of new pixel locations, and the 

assignment of gray levels to those new locations. 
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Fig. 5.1 A 511 x 511, 8 bit imQge .~ubsompled 10 a siu of 11 x 31 pixeis. The 

number ofQllo~'Qble grQ), leIJe/.f "'tU kepI al 156. 

Fig.S.l ResQmpled imoges. 

There are many methods to perform this kind of assignment. These are 

commonly referred to as the image interpolation techniques. The most 

common interpolation techniques are discussed in chapter 4. The si mplest 

of these technique is the nearest neighbour inlerpolation method. In this 
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method, in order to perform gray-level assignment for any point in the 

overlay, the closest pixel in the original image is considered and assigns 

its gray level to the new pixel in the grid. When this is done with all points 

in the overlay grid, a zoomed image will be obtained (Gonzalez and 

Woods, 2002). 

Although nearest neighbour interpolation is fast, it has the 

undesirable feature that it produces a check board effect that is 

particularly objectionable at high factors of magnification. In computer 

vision and image processing, bilinear interpolation, another method of 

interpolation, is one of the basic resampling techniques. It is a texture 

mapping technique that produces a reasonably realistic image, also known 

as bilinear filtering or bilinear texture mapping. An algorithm is used to 

map a screen pixeJ location to a corresponding point on the texture map. 

A weighted average of the attributes (colour, alpha, etc.) of the four 

surrounding texels is computed and applied to the screen pixel. This 

process is repeated for each pixel forming the object being textured 

(Gonzalez and Woods, 2002). 

Commonly, magnification is accomplished through convolution 

of the image samples with a single kernel-typically the bilinear, bicubic 

(Netravali and Haskell, 1995) or cubic B-spline kernel (Unser M 

et.al.,1991) . The mitigation of aliasing by this type of linear filtering is 

very limited. Magnification techniques based on a priori assumed 

knowledge are the subject of current research. Directional methods 

(Bayrakeri and Mersereau, 1995 and Jensen and Anastassiou, 1995) 

examine an image's local edge content and interpolate in the low 

frequency direction (along the edge) rather than in the high-frequency 
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direction (across the edge). Multiple kernel methods typically select 

between a few ad hoc interpolation kernels (Darwish and Bcdair, 1996). 

Orthogonal transfonn methods focus on the use of the discrete cosine 

transform (DCT) (Martucci, 1995 and Shinbori and Takagi, 1994) and the 

wavelet transfonn (Chang et. aI., \995). Variational methods formulate 

the interpolation problem as the constrained minimization of a function 

(Karayiannis and Venetsanopoulos, 1991 and Schultz and Stevenson, 

1994). It should be noted that these techniques make explicit assumptions 

regarding the character of the analog image. Most of the super resolution 

algorithms arc discussed in chapter 4. 

Another approach of resolution improvement in remotely sensed 

images is that of a fully inter connected NN model (Valdes and Inamura, 

2000). The specific single-hidden-Iayer neural network, being trained by 

the backpropagation algorithm, is required to enhance the resolution of 

di ffraction-limited. binary images. Moreover, a high-resolution, multi­

neural network, based on the local variance is proposed Sekiwa and 

Taguchi, 200 I. This specific network is composed of two neural 

networks. namely the NN for low local variance and the NN for high local 

variance. The weighted sum of the two NN outputs represents the 

enlarged image. A novel image interpolation scheme, using an artificial 

neural network, is described by Pan and Zhang, 2003. A single frame 

interpolation algorithm is joined together with an adaptive, linear, single­

layer neural network that models the residual errors between the 

interpolated image and the respective original one. A novel image 

interpolation algorithm by means of a feedforward neural network, based 

upon classification, is thoroughly considered by Hu et.al. 2004. A HVS-
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oriented, adaptive interpolation scheme for natural images by means of 

neural networks is proposed Pu et. a!. 2003. A Hopfield-network-based 

algorithm, serving for the resolution enhancement of discrete targets 

taking up more space than the sample spacing of an image, is dealt with 

by Collins and Jong, 2004. Multilayer neural networks have also been 

used to perform document resizing by Ahmed et. al. 2001. Moving from a 

high-resolution image to a lowcr-resolution onc, a group of pixels is 

replaced by one pixel. In theory, this replacemcnt is dctermined by the 

scanner characteristics (Craubner, 2002 and Shen and Xin, 2004). A novel 

method of improving the spatial resolution of scanned images, by means 

of neural networks, is presented by Antigoni and Vassilis,2008. 

Typically bilinear interpolation can be used where perfect image 

transformation, matching and imaging is impossible so that it can 

calculate and assign appropriate image valucs to pixels. Unlike other 

interpolation techniques such as nearest neighbour interpolation and 

bicubic interpolation, bilinear interpolation uses the 4 nearest pixel values 

whieh are located in diagonal direction from that specific pi xci in order to 

find the appropriate color intensity value of a desired pixel. 

There are other sophisticated mathematical techniques for image 

interpolation like bicubic interpolation, spline interpolation etc. In image 

processing, bicubic interpolation IS often chosen over bilinear 

interpolation or nearest neighbor in image resampling, when speed is not 

an issue. Images resampled with bicubic intcrpolation are smoother and 

have fewer interpolation artifacts. 

Spline interpolation is preferred over polynomial interpolation 

because the interpolation error can be made small even when using low 
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degree polynomials for the spline. Using polynomial interpolation, the 

polynomial of degree n which interpolates the data set is uniquely defined 

by the data points. The spline of degree n which interpolates the same data 

set is not uniquely defined, and we have to fill in 11-1 additional degrees of 

freedom to construct a unique spline interpolant. 

With the rapid increase in available computing power, coupled 

with great strides in image feature analysis. model-based, often highly 

nonlinear. interpolative techniques have become a viable alternative to 

classic linear mcthods and have received increasing attention recently. 

Several examples of model-baaed approaches to spatial Image 

interpolation can be found in Jensen and Anastassiou (1995), Jenscn and 

Anastassiou (1990), Mm1inez and Lim (1989), Wang and Mitra (1991) 

and Condocia and Principc (1989). Each of these papers utilizes thc 

concept of an edge in a different fashion to enhance interpolation results. 

5.3 Neural Networks and Image Interpolation 

The multilayer perceptron is one of the most common 

feedforward architectures. It consist of at least three layers: an input layer, 

which simply distributes the inputs to the next layer; a hidden layer; and 

an output layer, which collects the hidden layer outputs and computes the 

final output. The many powerful properties of the multi layer pcrceptron 

make it an attractive candidate for the image restoration and super 

resolution problems (Davila and Hunt, 2000, Nathalie Plaziac, 1999). It is 

well known that the multilayer neural networks can be used to 

approximate almost any function, if there are enough neurons in the 

hidden layers. Due to this property of neural networks, they are sometimes 
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regarded as a universal approximator in the sense that it can approximate 

an input-output mapping to any degree of approximation, given a 

sufficient number of hidden units (Hagan, et. aI., 2002). Since it is a 

universal approximator, it can even extrapolate a band-limited signal over 

its pass band. So the neural networks can be used to interpolate a digital 

Image. 

A lot of research has been done in the area of image interpolation. 

Most of the researchers rely on sophisticated mathematical equations for 

the purpose. Very few researchers have directed their vision in the 

direction of neural networks for image interpolation. Of these, most of 

them had directed to Hopficld network or other competitive networks, 

where unsupervised learning is made use of. Few of the researchers are 

oriented towards multi layer perceptron or supcrvised learning algorithms 

and exploited the approximation capability of the neural networks. These 

works are capable of on line processing since most of the computational 

complexities are met in the training phase. In the implementation phase 

only the desired format input is fed to the ncural nctwork and the network 

approximate the function accordingly. 

Here, in this work an attempt is done to interpolate digital image 

with multilayer perceptrons using discrete cosine transforms. In 1975, 

Athanasios Papoulis proposed a method which can be used to extrapolate 

a band-limited function. The algorithm is a simple iteration involving only 

the fast Fourier transform. In the proposed algorithm, the effect of noise 

and the error due to aliasing are determined and it is shown that they can 

be controlled by proper termination of the iteration. 
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5.4 Neural Network Design and Training 

The problem here is to design a neural network trained 

with backpropagation algorithm for the reconstruction of the gray level 

image above a cut off frequency Pc The neural network used for training 

has the I-J-K format, where I is the number of neurons in the input layer, 

1, that in the hidden layer and K, the number of neurons in the output 

layer. Design of a neural network consists of the detennination of suitable 

I, J and K for a given problem so as to get a better performance for the 

nctwork. Usually T and K are determined by the problem itself. The image 

is blurred using a low pass filter (Jpt) with filter function given as: 

I'/' == _1 [; 
PJ 16 

1 

1 I] 
8 1 

I 1 

(5.1 ) 

The image chosen for training is an image of size 256x256. This is blurred 

by the low pass filter given in Eq.5.I. The image is now down sampled to 

a size of 128x 128. It is then split into overlapping sections of 6x6 (36) 

pixels eaeh as shown in Fig.5.3. This is then lexicographically arranged to 

form a matrix of size 36x 1. The discrete cosine transform (DCT) of this 

matrix is taken and is then fed to input of the neural. Thus the number of 

input nodes for the neural network is now 36. As shown in Fig.5.3, the in 

between lines of the eentre pixels A,B, C, D arc interpolated. When these 

lines are interpolated, the image gets zoomed and the output is as shown. 

The shaded portion in the output is the interpolated pixels; the output is 

thus 9. So the number of the output neurons is 9. But the DCT of the 

enlarged image is got. The inverse discrete cosine transfonn (IDeT) is 
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• 
taken and is arranged to get a portion of th e image of size 3x3. Since 

backpropagation is lIsed the targel must be given for training. The original 

256x256 image is now split into overlapping sections of size 3x3. and 

lexicographically arranged to a matrix of size 9:< I. which is given as the 

target for the network . The number of hidden layer neurons is found by 

actual training and testing. The perfonnancc of the neural network IS 

found 10 be better when the number of hidden layer neuron is 4 . 

~ 
EmE3 

= 
= 

• 

Fig.S.J Neural network trained with backpropaglltion algorithm with the input 

and the interpolated OUlput (shaded pi.nls are interpolated) 

Now. the network is set up with 1=36, J=4 and K=9. The images used for 

training and testing is shown in Fig.5.4. The data used for training the 

network is the data derived from the Fig. 5.4 (a) trees. For testing the 

network, data derived from the Fig. 5.4 (b) and (c), cameraman and rice, 

is used. Trees data consist of values varying between 0 and I. where 0 

corresponds to blaek and I corresponds to white. 
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Fig. 5.4 Th~ dala IIs~dfor "aining and lesJing (a) IrU.f (b) cameraman (c) riu 

Trees do not correspond to a binary image, since there are variations of 

value in between 0 and I. But the data of cameraman and rice has values 

varying from 0 to 255, where 0 corresponds to black and 255 to white. As 

illustrated in Fig.5.3. the image should be downsampled and split into 

overlapping sections of 6x6 and the must be ananged lexicographically to 

36xl and the DCT of the pixels are then taken. When this process is done 

with trees image. the value of DCT is varying in between -1.8549 and 6, 

whereas the variation for cameraman is from -399.7156 to 1.1410e+003 

and that for rice is from -305 .6827 to 1.1677e+OO3. 

Now the neural network with 36 input neurons, 4 hidden layer 

neurons and 9 output neurons is set for training and testing. Firstly. the 

selection of the activation function for the network can be encountered. 

Tbe performance of the network is measured as the PSNR given in Eq . 

4.7. Here the .... alue of M in Eq.4.7 is 1 for the tree image and 255 for the 

cameraman and the rice image. The acti vation functions for a problem are 

selected depending upon the data available for the neural network. As 

discussed in chapter I. there are a number of activation functions or 

squashing functions. 
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(a) 

(b) 

Fig. J.J Varitllion 0/ rh(' OUtpUI of Ihe neurDI n,.' .... or/( .... i'h DctivDtinn function 

Dnd ,h" obtain,.d PSNR for ,.uch imag(' after 1000 il,.rations. (a) with 

hyp,.,bolic lan in the hidden ID)'eT and pur,./inear ill the output lay,., (b) ..-ith 

purelinl'ar in both the laJ·er.f. 

The purpose of these functions is to squash the output to the desired level. 

Usually. the sigmoid funr.:tions for data varyi ng positively and hyperbolic 

tangent function for data varying both sides arc selected. The value of 

sigmoid function is varying from 0 to I and that of hyperbolic tan is from 

-1 to 1. But for the problem suggested here. there are wide variation for 

the data as mentioned earli er. Therefore. it was suggested 10 take the 
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hyperbolic tangent for the hidden layer neurons and the linear activation 

function for the output layer. The neural network is trained for 1000 

iterations with data derived from the trees image and tested with that of 

the cameraman image and rice image. The result is illustrated in Fig. 5.5 

(a). The PSNR for the tree image is appreciable whereas for the 

cameraman and rice images the value is very low. This is because the 

variation of data for trees is very small compared to the others. When the 

variation in data is low, it corresponds to a better output than those with 

large variations. Now it is desired to change the activations in order to 

better the result. A linear activation function is recommended for both the 

layers. The network is again trained with the training data and tested with 

the testing data. Fig.5.5(b) shows the result and make the conclusion that 

both layers must have a linear activation function. 

A neural network is well-known for its generalization capability. 

Even though it is trained with a certain set of data, it can give better 

outputs even for unseen inputs. The performance of a neural network is 

measured in terms of its generalization capability. A good neural network 

is one which can identity almost all patterns fed to it irrespective of the 

kind of data. Even if, it is trained with a particular type of data., it must be. 

possible for the network to give better outputs for any kind of data given 

to it. So the selection of input data for training is important. This is is 

illustrated in Fig.5.6. In Fig.5.6 (a), the cameraman image is taken as the 

training input and the trees and rice images are given as test data. The 

neural network is trained for 1000 iterations with purelinear activation 

functions and tested. The generalization of the neural network is poor for 

the trees data. The same happened when trained with rice image also as in 
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Ib) 

Ic) 

Fig. 5.6 VariDdon.< of thr oulp'" of tII~ IIrflraJ nnwork with the seiut;oll of tltt 

training data. (4) training data is tile Cfllrreu""an and the others Ihe us, dlUQ 

(b) rice is the training dllla and (e) tree. the training data. 
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Fig. 5.6 (b). But with the trees data as the training data the generalization 

was very good as shown in Fig.S.6 (c). So the trees data is selected for 

further training. This is because the variation for the values of the trees 

data is smaller and they can catch with the activation functions easily. So 

in the testing phase they can very well adjust to the input fed and produce 

a reasonable output. But in the first two cases the activation functions 

cannot catch up with the input variation and hence the generalization was 

not good. However trees image was chosen for training the network. 

5.5 Variations in Backpropagation 
Algorithms 

The algorithm chosen for training the network IS the 

backpropagation algorithm (Hagan et. aI, 2002, Haykin, 2003). When the 

basic backpropagation algorithm is applied to a practical problem the 

training may take days or weeks of computer time. So variations of 

backpropagation algorithms, which are faster, came. The literature says 

the convergence of these algorithms with the variation of their parameters 

like learning rate, momentum etc. Also, the literature emphasis on the 

need for the careful selection of values for these parameters. Here, a 

discussion is done on the selection of a particular backpropagation 

algorithm for a problem. 

There are different methods to improve the speed of the 

algorithm. One of the simplest technique is the batch mode processing. In 

batch mode the weights and biases of the network are updated only after 

the entire training set has been applied to the network. The faster 

algorithms fall into two main categories. The first category uses heuristic 
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techniques, which were developed from an analysis of the performance of 

the standard steepest descent algorithm. One heuristic modification is the 

momentum technique, more heuristic techniques are: variable learning 

rate backpropagation and resilient backpropagation 

With standard steepest descent, the learning rate is held constant 

throughout training. The performance of the algorithm is very sensitive to 

the proper setting of the learning rate. If the learning rate is set too high, 

the algorithm may oscillate and become unstable. If the learning rate is 

too small, the algorithm will take too long to converge. It is not practical 

to determine the optimal setting for the learning rate before training, and, 

in fact, the optimal learning rate changes during the training process, as 

the algorithm moves across the performance surface. The performance of 

the steepest descent algorithm can be improved if we allow the learning 

rate to change during the training process. An adaptive learning rate will 

attempt to keep the learning step size as large as possible while keeping 

learning stable. The learning rate is made responsive to the complexity of 

the local error surface. An adaptive learning rate requires some changes in 

the training procedure. First, the initial network output and error are 

calculated. At each epoch new weights and biases are calculated using the 

current learning rate. New outputs and errors are then calculated. As with 

momentum, if the new error exceeds the old error by more than a 

predefined ratio (typically 1.04), the new weights and biases are 

discarded. In addition, the learning rate is decreased. Otherwise, the new 

weights, etc., are kept. If the new error is less than the old error, the 

learning rate is increased. This procedure increases the learning rate, but 

only to the extent that the network can learn without large error increases. 
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Thus, a near-optimal learning rate is obtained for the local terrain. When a 

larger learning rate could result in stable learning, the learning rate is 

increased. When the learning rate is too high to guarantee a decrease in 

error, it gets decreased until stable learning resumes. Certain algorithms 

combines adaptive learning rate with momentum training (Hagan et. aL, 

2002). 

Multilayer networks typically use sigmoid transfer functions in 

the hidden layers. These functions are often called "squashing" functions, 

since they compress an infinite input range into a finite output range. 

Sigmoid functions are characterized by the fact that their slope must 

approach zero as the input gets large. This causes a problem when using 

steepest descent to train a multi layer network with sigmoid functions, 

since the gradient can have a very small magnitude; and therefore, cause 

small changes in the weights and biases, even though the weights and 

biases are far from their optimal values. The purpose of the resilient 

backpropagation training algorithm is to eliminate these harmful effects 

of the magnitudes of the partial derivatives. Only the sign of the derivative 

is used to determine the direction of the weight update; the magnitude of 

the derivative has no effect on the weight update. The size of the weight 

change is determined by a separate update value. The update value for 

each weight and bias is increased by a factor whenever the derivative of 

the performance function with respect to that weight has the same sign for 

two successive iterations. The update value is decreased by a factor 

whenever the derivative with respect to that weight changes sign from the 

previous iteration. If the derivative is zero, then the update value remains 

the same. 
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(a) 

Ib) 

Ic) 

Fig. 5. 7 Variation.~ in the PS/VR for thl.' different trainin!; a/gorithm.~. (a) an 

u/xurithm in M,hit·h udaptive learning rute i.f used. (h) an algorithm ""hid, 

combi"e.f both mumentum and the adapth'e learning rale. (c) re.filient 

buckprupagotion traininX algorithm 
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Whenever the weights are oscillating the weight change will be reduced. 

If the weight continues to change in the same direction for several 

iterations, then the magnitude of the weight change will be increased. 

Fig.ure 5.7 illustrates the variation of the output of the neural 

network for the above discussed training algorithms for 1000 iterations of 

each algorithm. Fig.ure 5.7 (a) describes the PSNR of the neural network 

for the train data and test data for the algorithm in which adaptive learning 

rate is employed. For most of the problems, the algorithm which combines 

momentum and adaptive learning rate is suitable as shown in Fig.5.7 (b). 

But for this problem, resilient backpropagation algorithm is found to give 

more performance than the others as seen in Fig.5.7(c). 

5.6 Simulation Results 

The neural network is now set up for training and testing. The 

conFig.uration of the neural network is such that it has 36 input neurons, 

I, 11 hidden layer neurons. J and 9 output layer neurons. K. It is now 

decided to have purelinear functions for the hidden layer and output 

neurons as activation functions. the trees image can be used as the data for 

training and resilient backpropagation algorithm can be used for training. 

Fig.5.8 shows the image used for training and testing the network. Fig.5.8 

(a) is the actual image and Fig. 5.8 (b) is the downsampled image. Fig.5.8 

(b) is split into overlapping sections each of 6x6 pixels size and is 

lexicographically arranged to a 36x 1 matrix, whose DCT is taken and fed 

to the neural network for training as well as for testing. Fig. 5.8 (a) is the 

image which is split into overlapping sections of 3x3 pixels size and is 

arranged to a 9xl matrix. 
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(a) 

(b) 

(c) 

Fig.5.B TJr~ data f or lrtIining and tn /ing fa) actllal diua 156 x 156 imag~ (b) 

dOtt>n SDmpud jtnllg~ 118 x 118 i",ag~. (c) thr rn/or~d i",ag~ 'lSing nell,al 

ne/tf'(},k 
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(f) 

Fig. 5. 9 Various restored images (4) and (c) show 'he restored imoges 

(156x156) of the dOK",S"mpled images (l18x118) 51r0",'" in (b). Similarly (4) 

and (f) show Ihe resttJud images of the dow"slImpled image shown in (e) 

For the trees image which is used for training the 9x I image is used as the 

target image and others are used to find the PSNR of the test image, wbich 

is a measure of the perfonnance of the network. The neural network is 
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now trained for 25 .000 iterations and fo und !o function properly. Fig. S .~ 

(c ) shows the restored image . 

The neural network is now rc.-cly to test with dineren! images. 

Fig. 5.9 illustrates more resu lts . A high PSN R for the untrained dat:1 

shows that the network is funct ioning properly. So far the neural network 

is tested wi th gray level images. A logical image is fcd to the system. ,\ 

logical image is that image having the pixel \ulucs either 0 or I. The 

downsampled image is restored in two ways as shown in Fig. 5.10 . Fig . 

5. 10 (a) shows the dowmsampled image. (b) shows the image restored 

us ing the network trained to restore the digits 0-9 and (c) shows thl' 

restored image us ing the now discussed neural network. 

"1l i ~ 0 ,~ 

~ 
~~ - - = -!i il - - - - = - - -,_ ...... - -............. -... ,"" ... • " " • - - - • - - -1111111111 •• • " " • - - - • - - -.""" ... • - - - ........ . • - - -IU IIIIII •• 0 1111111111 0 • • - 111111111 0 • • -111111111. • • • • 1[111111. • • • • 

1111111111 • • • • 111111111 • • • • 
111111111111 • • • 111111111111 • • • 

P SNR "' '' "0"0 

raj rb) (d 

Fig. 5. / 0 (a) the dOK'ml'umpled image. (118 x J18) (b) thl' image rt'.~tored 

u!iinK the ne",'41rk trained to restorl' the diKit.~ 0-9 and Id the re.m1red imagC' 

u.~ing the noH' dj~'cu_Hed neural nC'",'41rk. (156 x 256) 
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(a) (h) 

(c) (d) 

Fig. 5.1 J (a) IInd (c) are the downsampled image of s;u 256x256 and (b) and 

(d) are 'lie uS/ond image o/size SI2xSll 
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It is now proved that the perfommnce o rlhe network is satisfactory for all 

the 128 x 128 image fed to it. Now it is required to test whether the neural 

network. is able 10 restore a 256 x 256 image to a 512 x 512 image. It is 

worthwhile, to note that the current network is trained 10 restore l2M x 128 

to 256 x 256. The 512 x 512 image is downsampled to 256 x 256 and is 

splil into overlappi ng sections of size 6x6. It is lexicographica lly arranged 

to matrix of 36 x I and DCT is taken and is fed to the neural network . The 

IDeT of the output of the neural network is taken which is a 9 ."\ I matrix 

and is arranged to a 3 x 3 matrix. and the image is restored. The output 

obtained with such a restoration is given in Fig.5 . 11. 

r )(· ' ··'I.~· ",.,t,I ",l 
[I,U:.!" 

BlI..tU t' .U ~. I\'rl,,, , 1 

P ~~IK - :' 4S~) 

-':".u 11 ;'l " I\'. ",\: 
P:->f';R - ::= :. ~ $ 

i'i" .11", ~ 1 " .. ,~J.I.""LI 
P:·'I R -, :: ('(I ~ 

Fig. 5.12 fa) r~jtorQtion of ;maK' luing vQrious interpolQt;on teclr"iqu, ... - a 

compor;son 128..- 126 imQg' ;.~ resto"tllQ 256..- 256 imQge 
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J) ("'·II .~mpl.~ ,I 
1I" .l~" 

:';'i" 'U l l ~i .. t\·. "I" 
F" :<"F: "" : ..I I., .. C 

VI' '1lnr ~ 1 ... 1o' ... 1 
I' ''!'' t-~ .., ~~ : S 

:-":!' ·'I ~<t :o.; ~ I!;\.IH"U 

r ,> :-'; F: - : : SJt: 

"1,1n, ,," ' .. .. Iwl'lll".' 
P!,N" " :: :U ~ 

Fig. 5. J 1 (b) r~storD,tion of ;MD,g~ using vD,riolU ;ntupollltion lechn;qu~s - Il 

cOMparison 118 x J 18 iMag~ i.f r~'or~t/ 10 156 x 156 imD,g~ 

The PSNR of the restored image shows that the restoration is better. Also 

it shows that it is possible to restore an image of any size to double its size 

irrespective of the training pattern given to train the neural network. The 

perfonnance of the neural network is compared with the various ex isting 

interpolating methods like nearest neighbour, bilinear. bicubic and spline 

techniques. The downsampled image is restored using the various 

interpolating techniques. Fig.5.12 illustrates a comparison. 

Table 5.1 gives a comparison of the perfonnance of the different 

interpolating techniques to the different downsampJed images. There 

about 8 test images and the results show that the image restoration wi.th 

neural networks is superior to the different techniques available. The 
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Neural Nearest Bilinear Bicubic Spline 
Test Image 

Network Neighbour Method Method Techniques 

Cameraman 24.642 22.838 22.97 1 23.28 22 .503 

Rice 33.536 28.271 28.498 29.105 27.668 

Trees 25.338 22.903 23 .489 23.848 23.5 

Test pattern 13.768 12.133 12. 168 12.1 42 13 .097 

le image 24.0 14 21.535 21.587 22.057 20.664 

Girl )0.349 28.625 28.637 28.94 26.033 

House 28.276 25.776 26.754 27.071 24.942 

Panern 18.899 16.774 16.745 17.086 16.499 

Ttlble 5.1 A ~omparison of the PSNR of different images with the vari(Ju.~ 

;ntupollllio" methods 116 x 116 image is restored to 156 x 156 Image 

Bllnl lO' ."\l [\ i t" tholl 
PSi'lR = : 8,jW 

N ~,u':\J Ne-twOlk 
PSNR .: H ?-ci0 

BI { ubi( !\ 1E>rhOtl 
PSNR = ~o Oo ~ 

N"":t I E'.'O r N .. l g hl' Olll 

PSNR = : 8 ~S ~ 

S pllllf' I \' ( lllUllll l'.'O 

PSNR ::. ~ - -401 

Fig. 5.11 (a) restorQtion of image using various interpolation technique.~- a 

comparison 156x 156 image is re~'lored 10 511::c 511 image 
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Fig. 5. 13 (b) rl'storal;on of image IIsing various interpolation lechnique.{- a 

t"ompari,wm 256 .t" 156 imQge is re.flored to 511 x 511 image 

n.:twork tested was trained to restore an image of size 128 x 128 to 256 x: 

256. 

It is now decided to test the perfonnance of the network to restore 

a 256 x: 256 image to 512 x: 5 12. The same network is used for the 

restorati on , The data is preprocessed as discussed and is fed for 

restoration , When preprocessed the image is spl it inln overlapping 

sections of 36 pix:els each The network restored the.: image and is found to 

be bener in perfonnance compared wi th the other restoring techn iques. 

Fig. 5, 13 gives an illustration of this compari son. 
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Test Neural Nearest Bilinear Bicubic Spline 

Image Network Neighbour Method Method Techniques 

Lenna 31.369 28.382 28.639 29.062 27.401 

Boat 27.812 25.116 25.561 25.946 25.685 

Babboon 22.673 21.467 21.537 21.688 22.179 

Splash 31.727 29.371 30.422 30.677 29.509 

Table 5.2 A "omparison of the PSNR of different images with the various 

interpolllJion methods 256 x 256 image is restored to 512 x 512 image 

The aforementioned results show that the neural network trained is able to 

restore an image to twice its size. The work is now directed to the 

enlargement of the image to four times its original size. When enlarge to 

four times, the image is first doubled to its original, then from the restored 

image of double size is again enlarged to double its size. This technique is 

applied to all the interpolation algorithms. It can be seen that when such 

restoration is done for 2 or 3 times, the quality of the image gets degraded. 

This is true with all interpolation algorithms. The neural network trained 

for interpolating the image to double its size is employed for restoring the 

image to 4 times its original size. When interpolated to 4 times, the quality 

of the image is degraded. Here a 128 x 128 image is restored to 512 x 512 

image. Fig. 5.14 shows the result of this restoration. 

The restoration result with neural network is compared with the 

various available techniques. The PSNR of each is technique is compared 

with that of the neural network. Fig. 5.15 shows the result of this 

comparison. Table 5.3 illustrates the variation of the PSNR of each 

technique. From these results we c{)nciude that restoration done by neural 
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network is superior 10 the commonly used techniques. The nt!ural 

networks can be considered as a candidate for further works in this field . 

(Cl) 

(b) 

Fig. 5.14 (a) and (b) rCilored imagt'.f lu she 5/1 x 511 "';Ib the image)' ofsiZl' 

/18 x /18 und Iht' intermediate imagt' llf.{;:.e Z56x 256. 
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Ne-ural Ne-two!'k 

16.919 

Ne-an st N eiJhbow· 

24.B4-' 

24.949 

21.661 

BiliD.e-:U" 
23.894 

Bicubic 

21.989 

Spline technique-s 

23.806 

Fig. 5./S Rntortltion of j"'4g~ lIS;ng WJr;OIlS jnt~rpol4tion tuhn;'1"f!S. Q 

comparison 128 x 128 j,"Qg~ is reslOud 10 511 x 512 imQg~ with in/~nn~d;4/~ 

i"'4g~ ofsiu 256x 256 
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Test Image Lenna Boat 

Method X2 X4 X2 X4 

Neural Network 26.929 26.265 23.569 22.592 

Nearest Neighbour 24.844 23.662 21.703 20.612 
Bilinear method 24.949 23.894 22.006 21.089 

Bicubic method 25.215 23.989 22.283 21.221 
Spline techniques 23.806 23.573 21.892 21.601 

Table 5.3 A c:ompar;sOl' of the PSIVR of different ;nl(fge.~ with the various 

interpolation methods 118 x 118 image is restored to 511.\" 511 image with the 

PSNR of the intermediate image of size 156 x 156. 

Summary 

A neural network is trained to restore the image to twice its 

original size. The quality of the restored image is comparable with that 

obtained with the existing interpolation methods. The trained neural net 

can be used to restore any image to double its size. irrespective of the size 

of the image used for training. The same network can be used to enlarge 

he image to 4 times its original size. The results of the investigation are 

promising to consider neural networks as candidate for image restoration 

applications. 
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CHAPTER 6 

RECONSTRUCTION OF IMAGES 
FROM NOISE EMBEDDED DATA 

6.1 Introduction 

The principal sources of noise in digital images anse during 

image acquisition (digitization) and/or transmission. The performance of 

imaging sensors is affected by a variety of factors, such as environmental 

conditions during image acquisition, and by the quality of the sensing 

elements themselves. For instance, in acquiring images with a CCD 

camera, light levels and sensor temperature arc major factors affecting the 

amount of noise in the resulting image. Images are corrupted during 

transmission principally due to interference in the channel used for 

transmission. Frequency properties of the noise refer to the frequency 

content in the Fourier sense. When the Fourier spectrum of noise is 

constant, the noise is usually called white noise. Noise may be considered 

as random variations or variables characterized by a probability density 

function (PDF). The following are among the most common PDFs found 

in image processing applications: 

Gaussian Noise 

Because of its mathematical tractability in both the spatial and 

frequency domains, Gaussian (also called normal) noise models are used 
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frequently in practice. The PDF of a Gaussian random variable, z, is given 

by 

(6.1) 

where z represents gray level, f.1 is the mean of average value of z, and a 

is its standard deviation and d is called the variance of z. 

Rayleigh Noise 

The PDF of Rayleigh noise is given by 

{

2( ) -(~-a)'ih - z-a e 
p{z) = b 

o 

for z ~ a 

for z < a 

The mean and variance of this density are given by 

f.1 =a+~Jrb/4 
2 b(4-Jr) 

(j = ---'-----'-
4 

Erlang (Gamma) Noise 

The PDF of Erlang noise is given by 

for z ~ 0 

for z < 0 
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where the parameters are such that a > 0, b is a positive integer. The mean 

and variance of this density are given by 

b 
f1=­

a 
J b 

(j- =-0 
a-

Exponential Noise 

The PDF of exponential noise is given by 

for z ~ 0 

for z < 0 

The mean and variance of this density are given by 

1 
f1=­

a 
J 1 

(j- =-, 
a-

This PDF is a special case of Erlang PDF with b = 1. 

Uniform Noise 

The PDF ofunifonn noise is given by 

ifa '5, z '5, b 

otherwise 
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The mean and variance of this density are given by 

a+b 
11=-

2 

a 1 = (b-aY 
12 

Impulse (salt-and-pepper) Noise 

The PDF of (bipolar) impulse noise is given by 

for z = a 

jor z = b 

otherwise 

(6.9) 

(6.10) 

If b > a, gray-level b will appear as a light dot in the image. Conversely, 

level a will appear like a dark dot. If either Pu or Ph is zero, the impulse 

noise is called unipolar. If neither probability is zero, and especially if 

they are approximately equal, impulse noise values will resemble salt­

and-pepper granules randomly distributed over the image. For this reason, 

bipolar impulse noise is also called salt-and-pepper noise (Gonzalez and 

Woods, 2002). 

As a group, the preceding PDFs provide useful tools for modeling 

a broad range of noise corruption situations found in practice. For 

example, Gaussian noise arises in an image due to factors such as 

electronic circuit noise and sensor noise due to poor illumination and/or 

high temperature. The Rayleigh density is helpful in characterizing noise 

phenomenoa in range imaging. The exponential and gamma densities find 

application in laser imaging. Impulse noise is found in situations where 
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quick transients, suc h as faulty swi((;hing, take place during imllging. The 

unifonn density is perhaps the least descriptive of practical sitUlltions. 

The most common types of noise that arc found affecting the 

digital images arc the G'IUSSlun noise and th e impulse noise (sa lt and 

pepper noise). Thc Gallssian noise is characteri zed by its mean, j.J and 

v'lriance, \'. Ay changing these parameters. the Gaussian distribution is 

changing according to equation (6.1). Usually the menn is assumed 10 be 

zero and the va riance is changed. The variation in the digital image with 

the vuriation of the mean and the variance is as shown in Fig. 6.1. The salt 

and pepper noise is characterized by its density. As the density of the 

noise increuses. the imagc becomes worse . The effect of sa lt and pepper 

noise with varied density on an image is as given in Fig. 6.2. 

Fig. 6./ VQriation in imagt dut to GQussiQn noise of l'QriOIlS meQn Qnd 

vQriQnce 
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IMAGE PROCESSING 

l! "'0,1, 

Fig. 6.1 Variation in image tille 10 .~all allti pepper noise o/l'al'ioIlS densilie.f 

6.2 Noise Immunity of MuItilayer Perceptrons 

Artificial neural networks (ANNs) are not inherently fault tolerant 

(Scgee & Carter, 1994; Pathak & Koren, \995) . In the case of multilayer 

pcrceptrons (MLPs). it can be observed that for a fixed structure (a 

part icular number of layers and neurons per layer), different sets of 

weigh ts may be obtained if the training process is applied by using 

different initial conditions or parameters of the learning rule (Choi & 

Choi, 1992). These solutions may present a similar perfonnance with 

respect to learning (similar mean squared error or classification error) but 

differ with respect to fault tolerance. 10 this way. somc conFig.urations of 

weights present a higher tolerance against weight pcrturbations than 

others. and similar conclusions can be obtained with respect to tolerance 

204 



NEURAL NETWORK BASED STUDIES ON SPEITROSCOPIC ANALYSIS AND IMAGE PROCESSING 

to input noise or the generalization ability of the MLP (Bemier et. al., 

2000). 

Moreover, when the training process 1S carried out in a 

conventional computer and the weights obtained must be mapped onto a 

physical implementation, the differences between the precision used 

during training and the accuracy of the implementation can seriously 

affect the learning performance simulated in the computer. Moreover, in 

the case of analog implementations, the weight values may vary within a 

tolerance margin, which also affects the expected performance (Edwards 

& Murray, 1998). 

It is well knO\\TI that MLPs are robust to noise contamination in 

inputs and/or weights, including the case of quantization. MLPs have 

these properties in two ways: First, the orthogonal property among the 

output values of the hidden nodes reduces the noise effect. It is well 

known that the hidden weight vectors tend to be near orthogonal through 

learning procedure for efficient extraction of input patterns (Xue and Hu, 

1990). Thus, after successful training, the weighted swns to \'lidden nodes 

are much less correlated even when a pattern with correlated noise is 

presented to the input layer. Also, the magnitude of correlation coefficient 

between the weighted swns decreases under sigmoidal transformations. 

Therefore, the correlations among hidden nodes should be very small. As 

a result, the noise effects are averaged out when the hidden output values 

are summed through the output weights (Haykins, 2003, Hagan, et. 

al.,2002). Second, noise immunity of MLPs can be explained in the 

information theoretic point of view (Abu-Mostafa, 1989). It is reported 

that MLPs have hierarchical information extraction capabilities acquired 
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through learning (Lee and Sung. 1993). It is argued the re tha t the input 

pattern set has inteT-class information as well as the intra-t: lass variation. 

The inter-class infonlla tion is the information content that an input patt ern 

belungs to a speci fi c class, and the intra-class variation is a measure or thl! 

average variat ions w ithin the classes including noise contami nations. 

Afte r learning, each layer of MLPs tries to keep the inte r-c lass 

in fonnation and to mini mi ze the intra-c lass variation as possible. When a 

noisy patte rn is presented to the input, MLPs extract the inte r-clas:-. 

infonnation and suppress the noise components. yie lding noise immlmity 

of MLPs (Youngj ik Lee and Sang-Hoon Oh. 1994 ). 

6.3 Effect of Noise on Binary Images 

6.3.1 Effect of Gaussian Noise 

N"" , .. ~ '~.4 ~~~ 
,~.·" .. ;.>o .... .,~ ,.-
..... ne , ......... ·" . 0 · 

Fig. 6.3 /"umber 8 and ;t.~· Four;" .~pe'·trum K,;,h added Gaus.\;an noi.f' of 

mean 0 and "ariance 0.1 
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As we bave already discussed in chapter 4. a neural network is 

trained to supe:rresolve a 16 .It 16 binary images of numbers 0-9 10 a size 

of 32 x: 32. The neural network is trained with some slanting lines and 

numbers 0-4 and is tested with numbers 5-9. It is worthwhile to note here 

that the training images are not contaminated by noise of any kind. They 

are only filtered by a low pass filter. The noise immunity of the neural 

network is tested by adding Gaussian noise of mean = O. and variances 

ranging from 0 to 0.3. When the variance is increased beyond 0.3, the 

Image IS much corrupted and it is difficult to distinguish the original 

Image. 

Founel S pectn;m 

Re<:(H'IStr1JClid Iiii'I 
Image W 

" 10 ., 
BlcublC Mtthod Spl,ne 

Fig. 6.4 Du"'n sllmp/~d image ufnumber 8 in Fig.6-3 aru/ its FOllr;u spectr",," 

and tlu ruonstructt!d jm4K' b)' vluious interpolation techniques anti the 

t"o"t!lpontling Fourier spectra 
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For studying the dl"ect of noise on the neural network p.:rformanccs, 

number X and its spcc tnun is chosen. Fig. 6.3 and h g. 6.5 shm .... ·s the 

number 1:< and its Fourier spectrum for an added Gaussian noise of mean 0 

and variance 0. 1 and variance 0.3 

" ....... :.e. 8 ... ,. • .,.-' " 
G...,. .... ....... o' 
"' • .,,( •• ' · .. ..,.,,"03 

Fix. ri.5 lVumher 8 and il.~· Fourier lpe(·trum "·ith added (iauHian ,wil'e of 

mean 0 and variant'l! 0.3 

The noise added image o f size 32 .It 3~ is downsampled to a size 

of 16 oX 16. It then recons\wcled to a s iz~ of 32 oX 32 by neural networks 

and also hy the various interpolation methods. Fig. 6.4 and Fig. b.6 givcs 

thl! comparison of the results obtained for the interpolation. From these 

Fig.ures, it can concluded easily that the perfonn:lI1ce of the neural 

net work is much hetter than any other techniques. Gaussian noise of 

vanou s vanances ranging from 0 \0 0.34 wilh mean 0 is added to the 

number 0-9 and the average PSNR (peak s ignal to noise ratio) for theSe 

numhers for each interpolating techniques is compared with that of the 

neural network . Fig.6.7 shows the result of th is compa rison . 
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10 20 3J 

Fou".' Spectrum 

fig. 6.6 Do"'" !{amp/I'd imagt' of numbt" 8 in Fig.6.S and it,\' Four;", spt'ctrum 
and the rt'CDrHlruC"fl!d image by .'orious ;m,.,po/alion 1f'('h"iques and the 

corrf'splmding Fllurier spectra 

"--:---------r=~~~~=;] I ..... __ N&u,,,1 t<elwOrt. 
'\ N~"UI N~"'hbQU' " '.. ' .... _ ......... et/inn, Mt1hod 

'. • S>cubrc Me1hod 
_ 5p~n, Tuhn,q",!~ 

" 
" 
'O\---;O"05'--;OC''---~O'c'''-~O~'---;OC3'-COC3;--"''''6 

Fig. 6.7 Plot sholt-ing the variation of the Qw!rage PSNR of number.f 0-9 It'ilh 

variati(ln in ,'urjam'l! IlfGaunian noist' with mea" O. 
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From Fig,6.7. it is clear that Ihe super resolution done with the neural 

network is beller to other interpolation techniques. This result is attributed 

to the noise rejection capabi lity of the neural network. 

6.3.2 Effect of salt and pepper noise 

,,",,-.1>.' ~ .. ,~ .~ I i Pf"l' " N , • 
.,..,~. 4 . ... (~ (11 

F_Spec,....., 

FiR. 6.8 . . lI,'lImb~, 8 and;u Fflurier .\pr,·trum ",ith added .fall a"d pepper noise 

of dt!n.~itJ' 0.1 

The ncur<ll network to super resolve a binary image of 16x 16 size 

to J2xJ2 size, is tested with salt and pepper noise of various densities . 

Fig. 6.X and Fig. 6.10 show number ~ and the corresponding Fourier 

spectrum with added salt and pepper noisc o f density 0.1 and 0.3 

respectively. The noise added images in Fig.6.S and Fig.6. ! 0 arc 

downsampled and reconstructed with the trained neural network and the 

various interpolation techniqucs. Fig. 6.9 and Fig. 6. 11 show the result of 

these comparisons. The neural network is giving a response for a panern 

which is unknown or unscen by it. 

210 



Nf URAl Nf r WORK /lASfOSrUDlfS ON SNClROSCOPIC ANALYSIS AND IM AGE PROCESSING 

10 20 )J 

Founer Sp. ctrum 

10 20 )J 

8i1in.~ Mtlhod 

10 20 )J 

m 
10 20 )) 

Sl l uble Melhod 

" lO 

" 

" lO 

" 

10 20 :J) 

r;J 

Fil:. 6.9 0(11<'" .(, jn/pled imaxe 1'1 number 8 ill Fig.6.8 and ifs Fourier .(pet·lr",m 

and the rl'( ·IIII.\·tru(·ted image bJ I'ario"'.f intt'rptlJatitln It't·hnique.I and tht' 

"llTrt'l"plmdi"X Ftlurier .fpt'clru. 

_. _ ...... _­
"'-,03 

Fig. 6.10. /,'",mbl'r 8 and il~' Fllurier .fpet·lr",m ,,·ilh added SlJIt und pl'ppn noiw 

tlf dl.'n.\ilJ· 0.3 
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10 

20 
lO 

10 

20 

lO 

dllWTl sampled Image Neural Network 

J;1 Reconstructedm 

~ __ 'mageS ti!I 
Fourier spectrum 

10 

20 
lO 

Fourier spectrum 

Blhnear Method 

10 

lO 

lO 

Blcublc Method Splmo;> 

Fig. 6.11 DfJwn .~umpled imaR~ of ,,,,mb,,,r 8 in "-ig.6. 10 and ir.~ Fourier 

spectrum and rh", reconslrul"led imag(' b)· I·ar;ou.f ;"Ierptl/ulioll t('chlliques "lid 

the l"tjrre.~pf}fldi"g Fourier .~pf!clrQ 

It can be l'valu;l1cd from these Fig.ures that the gcnc ralinuion l'apability 

uf the neural network is better, if trained properly. This alsu shows the 

ability of the neural networks to reconstruct the original image from the 

nui se corrupted data . The salt and pepper noise of vari ous den sities are 

added to images o f numbers O-q and are downsarnpted and reconstructed 

with the various inlt:rpolation methods and neural network. The average 

PSN R of these data are taken :md Fig.6. 12 shows the result of these 

i:ompansons. 
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17,-~--~----r=:==::;=;s=.='===il 
-+- Neural Network 

16 

15 

~14 ~ ~ 
a. !"1\ ~ 
~ 13 

• • 
.t 12 

11 

10 

-+- Nearest Neighbour 
-+- Bilinear Method 

Bicubic Method 
-+- Spline Techmque 

Density of salt & pepper Noise 

Fig. 6.1 Z Plot showing th~ vtlriDtion (If tlft' IIvt'ragt' PSNR of """,INn 0-9 with 

vtlr;lllwn in the dms;tm of tire !#llt and pepper noise. 

Results shown in fig. 6.7 and Fig. 6. 12 are obtai ned with a neural network 

trained with the original data. The neural network is nol trained with the 

noisy data. A better resuJt can be obtained it the neural network is trained 

with noisy data. As the number of training patterns increases. the 

generalization capability of the neural network also increases. Smaller the 

size of the training set, the poorer is the generalization capability (Basheer 

and Hajmer, 2000). Better performance can be expected with a neural 

network trained by cons idering all variations in the dala. 
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6.4 Effect of Noise on Gray level Images 

6.4.1 Effect of Gaussian Noise 

As discussed in Chapter 5, a neural network is trained to super 

resolve a gray level image of size 128 x 128 to a size of 256 x 256. The 

performance of the neural network is now h!sted with the addition 

Gaussian (white) noise and salt and pepper (impulse) noise, Before 

testing. a new neural network is trained with the original data (trees 

image) normali zed and also with the trees image comlpted with Gaussian 

noise of variance 0.1 and mean 0 and another noisy image of the same 

image added with Gaussian noise of variance 0.3 and mean O. 

Fig. 6.11 Do",n.~llmpl,d imDg, It'ilh Glluss;on "ois, of lIaria"", 0.01 and m,an 

o Dnd th, "nJnstruct,d imaR' ",ith th, various ;"terpolating techniques. 
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The training of the neural network is done as mentioned in Chapter 5, as 

overlapping segments with the DCT of the seb'll1cnts taken and are 

interpolated. This trained network is tested with the testing images and is 

used for testing the perfonnance of the neural network with added noise. 

Fig.ures 6.13-6.15 shows the comparison of neural network with the 

existing interpolating techniques. These results points out to the fact that a 

properly trained neural network has a bener performance than the various 

interpolating techniques now used. A comparison is also done by 

changing the variance of the Gaussian noise with mean O. Fig.6.16 shows 

the plot for this comparison. 

Fig. 6. 14 DlJwn.fQmp/~d ;mag~ with Gallss;an nois~ ofvariana 0.1 and m~an 0 

and tlte recons""CI~d imug~ witlt 11t~ various int~rpolQting t~cltn;qu~,'i. 
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RK.llllltrlEM buret 
wtdro Nnnl Nu ........ 

witJ,.B io: . iI: 
lout rpebtioul. _o.ob 

Fig. 6. I 5 DownsQmpl~d imQge ",ith GllIlSsian noiu of l'or;onu 0.1 Qnd melm 0 
ond Ihe recomtructed imQge H.,;th the l'ariou.'i ;nterpolQting technique.f. 
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....... N.ur81 n_ .. 
-+ N .... st NtlghbOl.l' 
+ BiliMw \rI!erpoIa\Jor'I 

.... Socubtc InIlrpolJllOn 
_ Spll/lll T.clwllqlM 
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FiR. 6. /6 Plol sho"'ing the l'oriotion of Ihe PS,f\'R for Ihe normQli;ed trees 
image with I'Ur;atiun in varianu of Gaussian noise It';th mean O. 
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6.4.1 EfTect of Salt and Pepper Noise 

~""louce 
sab ....... r_ise.r 
.. .dly-ODI 

Fig. 6. J 7 Do .... ".\·ampll'd j"'"Kt' with soft and pf!pprr floist' of density 0.01 and 

tht' reconstructed imogt' K'ilh 'he l'tlf;OllS intnpolating te,~hnif(lI(,s. 

• ,".1! 
~ , 
-. ., .... 

.... ~, 

• 

Fig. 6.18 D(lK'm"ompft'd image "'it" .falt and P'Ppt'r nu;se of dt'nsit)' 0.1 "nd the 

reconstrlKted imQ1:t' ",'itb Ih ,. ,'IIr;O" !) ;ntnpolllling ,er:hniqu,..~. 
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FiX. 6.19 DO"'/lSllmpled i",ill(t' with salt Ilnd JNPfHT noise of dellS;ty 0.1 and 'he 

"constrllcll'd image with the VIlr;olls ;nlerpolQ/j"g Il'chniqlles.. 

"-~------~~~=c=j] I -+- Ne..nI~ 

22 
~ 

-+- Nt .... rt~ 
- SilinllIllInlIllplllllIOI'I 
- Ikut.c IrtIflMlblIOll 

'" 
_sp...Tec~ 

" • z " ~ 

" .. . . . .. 
" 
" 

Fig. 6.10 Plot _,-/rowing the Wlrilltion of the PSNR lOT 'he IIOI1IIDJi;ed Inn 

i",axe with WIn-lion in demit;e~' of.'iQ/t and tHPtNT no;!>e. 
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The neural network trained is now tested with impulse noise of 

varied densities. The neural network is trained only with added Gaussian 

noise and not with salt and pepper noise. So the image added with salt and 

pepper noise is an unseen image for the neural network. Here again the 

performance of the neural network is evaluated against the various 

interpolating methods. Fig. 6.17-Fig. 6.19 shows the improved 

performance of the neural network. 

The noise rejection capability of the neural network is tested with 

varied densities of the salt and pepper noise and is compared with the 

other interpolation methods. As shown in Fig.6.20. the noise immunity of 

neural networks is much higher. A multilayer perceptron can be trained to 

super resolve binary and gray level imagcs. The advantage of using a 

neural nctwork is that most of the complex computations are encountered 

in the training phase and when an input is presented to the network, it is 

only a mapping between the input and output. Also the noise immunity of 

such a network is very high. 

Summary 

Two neural networks are trained: one to super resolve a binary 

image and another to super resolve a gray level image. The two network 

paradigms are tested with added Gaussian noise and salt and pepper noise. 

A comparison of the neural networks with the available interpolation 

algorithms is done. The performance of the neural network is found to be 

better than the existing interpolation methods. 
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FUTURE SCOPE 

Neural Network is a very effective computational tool. It finds 

applications in almost very field of signal processing. In this thesis, two 

applications of neural network arc dealt with. In the field of spectroseopic 

analysis, neural network is found to be very effective. As a fUliher 

development, a neural network is trained to identify the elements present 

in a sample irrespective of the spectra taken by any type of spectromcter. 

Also a neural network can be trained to find the concentration of the each 

element present in the sample. The number of spectral lines obtained will 

depend on the concentration of each element. Only the persistent lines arc 

obtained with low concentrations. 

Neural network has found applications in image processing also. 

Multilayer pereeptrons arc good function approximators. But they are not 

widely used in super resolution algorithms. Here a neural network trained 

with baekpropagation algorithms are found to be very good in super 

resolving images. As advancement in the studies, networks can be trained 

with wavelet transforms instead of OCT. In image hiding techniques 

artificial neural networks find an extensive applications. Several image 

processing applications like fingerprint identification, face recognition, 

cryptography etc. neural networks can be employed. Future studies are 

directed to these fields to employ neural networks as effective 

computational tools. 
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