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Preface

Artificial Neural Networks (ANNs) are computational modeling
tools that have found extensive acceptance in many disciplines for
modeling complex real-world problems. ANNs may be defined as
structures comprised of densely interconnected adaptive simple
processing elements (called artificial neurons or nodes) that are capable of
performing massively parallel computations for data processing and
knowledge representation. Although ANNSs are drastic abstractions of the
biological counterparts, the idea of ANNS is not to replicate the operation
of the biological systems but to make use of what is known about the
functionality of the biological networks for solving complex problems.
The attractiveness of ANNs comes from the remarkable information
processing characteristics of the biological system such as nonlinearity,
high parallelism, robustness, fault and failure tolerance, learning
capability, ability to handle imprecise and fuzzy information, and their
ability to generalize. One of the recently emerged applications of ANN is
digital image processing. Interest in digital image processing stems from
two principal application areas: improvement of pictorial information for
human interpretation; and processing of image data for storage,
transmission, and representation for autonomous machine perception.

Chapter 1 gives the introduction to artificial neural network and
digital image processing. In this chapter, the definition of neural network,
the comparison of ANN with human brain, the infinite of neural networks,
the various activation functions used, the different learning processes, a
brief history and the various learning algonthms like perceptron and

backpropagation algorithms are dealt with. This chapter also gives a brief



introduction to image processing also. Here a definition of the digital
image is given. Also the two-dimensional DFT and its inverse is discussed
as a tool for digital image processing and the various interpolation
techniques like nearest neighbor, bilinear interpolation, bicubic and spline
techniques are introduced.

Chapter 2 gives an idea about the development of a successful
artificial neural network. It gives a detailed discussion of the six phascs of
development of a ANN project ranging from the problem definition to the
implementation of the network. Also here a discussion is done on the
general issues of ANN development like the data size and partitioning,
data preprocessing, data normalization, input/output representation,
network weight initialization, determination of parameters like learning
rate, momentum coefficient and transfer function, the convergence
criteria, number of training cycles, hidden layer size etc.

Chapter 3 gives an application of the neural network. Here a
technique to automate the spectrum identification is given. The different
modeling issues are dealt. Also a system is developed to identify elements
like Ca, Cd, Fe, Li, Hg, K and Sr in a given sample. After the successful
development of such a system, attempt is done to automate the spectrum
identification. For that a system is developed to identify elements like Ti,
Ca, Al and Sn. The system was able to identify the elements present in the
spectrum obtained using a CCD camera coupled to a spectrograph having
a grating blazed at 750mm with 1200grooves/mm and using the
fundamental emission of Nd:YAG laser having 10ns pulse width.

Chapter 4 gives another application of neural network. Here
neural network is employed in the digital image processing field. The

super resolution of binary image with discrete cosine transform (DCT) is



‘one with ANN. An introduction to DCT is done. In this chapter a
discussion is done on the variation of the neural network output with the
aumber of hidden layer neurons, the input weight initialization and the
pumber of iterations is discussed. A neural network is trained to super-
tedolve a 16x16 binary image to a 32x32 binary image. The binary images
- copaidered are images of numbers ranging from 0-9. The output of the
neural network is compared to the output obtained using the existing
methods.

Chapter 5 gives a discussion on the restoration of gray level
images with DCT. Here the variation of neural network output with
variations in the activation function, the selection in the input data given
for training, the selection of proper training algorithms etc are discussed.
An ANN is trained to enlarge a 128x128 image to 256x256. The
performance of the network is appreciable. The same network was used to
enlarge a 256x256 image to 512x512 with good performance.

Chapter 6 gives a discussion on the various noises affecting the
digital image. It also gives an introduction to the noise immunity
capability of the ANNs. The network developed to restore the binary
images and the gray level images are tested with the various noises like
Gaussian noise and impulse noise. The performances of these systems

with the existing methods are evaluated.

Chapter 7 gives a brief discussion on the future scope of ANNS.
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CHAPTER 1
INTRODUCTION

RAL NETWORKS AND DIGITAL
GE PROCESSING

i l Introduction

Artificial Neural Networks (ANNs) are computational modeling
tools- that have found extensive acceptance in many disciplines for
modeling complex real-world problems. ANNs may be defined as
m comprised of densely interconnected adaptive simple
e g elements (called artificial neurons or nodes) that are capable of
massively parallel computations for data processing and
Wledge representation. Although ANNs are drastic abstractions of the
biological counterparts, the idea of ANNSs is not to replicate the operation

of the biological systems but to make use of what is known about the
functionality of the biological networks for solving complex problems.
The attractiveness of ANNs comes from the remarkable information
processing characteristics of the biological system such as nonlinearity,
high parallelism, robustness, fault and failure tolerance, learning
capability, ability to handle imprecise and fuzzy information, and their
ability to generalize. Artificial models possessing such characteristics are
desirable because (i) nonlinearity allows better fit to the data, (ii) noise-

Insensitivity provides accurate prediction in the presence of uncertain data
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and measurement errors, (iii) high parallelism implies fast processing and
hardware failure-tolerance, (iv) learning and adaptivity allow the system
to update (modify) its internal structure in response to changing
environment, and (v) generalization enables application of the model to
unlearned data. The main objective of ANN-based computing
(neurocomputing) is to develop mathematical algorithms that wiil enable
ANNs to learn by mimicking information processing and knowledge
acquisition in the human brain. ANN-based models are empirical in
nature, however they can provide practically accurate solutions for
precisely or imprecisely formulated problems and for phenomena that are
only understood through experimental data and field observations. In
microbiology, ANNs have been utilized in a variety of applications
ranging from modeling, classification, pattern recognition, and
multivariate data analysis (Basheer and Hajmeer,2000).

One of the recently emerged applications of ANN is digital image
processing. Interest in digital image processing stems from two principal
application areas: improvement of pictorial information for human
interpretation; and processing of image data for storage, transmission, and
representation for autonomous machine perception. An image may be
defined as a two dimensional function, f{x,y), where x and y are spatial
coordinates, and the amplitude of f at any pair of coordinates (x, y) is
called the intensity or gray level of the image at that point. When (x,y) and
the amplitude values of f are all finite, discrete quantities, it is called as a
digital image. The field of digital image processing refers to processing
digital images by means of a digital computer. A digital image is

composed of a finite number of elements each having a particular location
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and value. These elements are referred to as picture elements, image
elements, pels and pixels. The areas of application of digital image
processing are wide and varied (Gonzalez and Woods, 2002).

1.2 What is a Neural Network?

Work on artificial neural networks has been motivated right from
its inception by the recognition that the human brain computes in an
entirely different way from the conventional digital computer. The brain is
a highly complex, nonlinear and parailel information processing system. It
has the capability to organize its structural constituents, known as
neurons, so as to perform certain computations many times faster than the
fastest digital computer in existence today. At birth, a brain has great
Wmd the ability to build its own rules through experience. One of
. 3 gxamples is the acquiring of specific natural language as the
mothcr tongue. Indeed, experience is built up over time, with the most
dramatic development of the human brain taking place during the first two
years from birth; the development continues well beyond that stage
(Haykin,2003).

A developing neuron is synonymous with a plastic brain:
Plasticity permits the developing nervous system to adapt to its
surrounding environment. Just as plasticity appears to be essential to the
functioning of neurons as information-processing units in the human
brain, so it is with neural networks made up of artificial neurons. In its
most general form, neural network is a machine that is designed to model
the way in which the brain performs a particular task or function of

Interest; the network is usually implemented by using electronic

3
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components or is simulated in software on a digital computer. To achieve

good performance, neural networks employ a massive interconnection of

simple computing cells referred to as neurons or processing units. A

neural network can be considered as a massively distributed processor

made up of simple processing units, which has a natural propensity for

storing experiential knowledge and making it available for use. It

resembles the brain in two respects:

» Knowledge is acquired by the network from its environment through a
learning process

» Interneuron connection strengths, known as synaptic weights, are used
to store acquired knowledge (Haykin, 2003).

It is apparent that a neural network derives its computing power
through, (i) its massively parallel distributed structure and (ii} its ability to
learn and therefore to generalize. Generalization refers to the neural
network producing reasonable outputs for inputs not encountered during
training (learning). These two information processing capabilities make it
possible for neural networks to solve complex problems that are currently
intractable (Haykin,2003).

The use of neural networks offers the following properties and
capabilities (Hagan et. al.,, 2002). An artificial neuron can be linear or
nonlinear. A neural network, made up of an interconnection of nonlinear
neurons, is itself nonlinear. Another capability of the neural network is its
input-cutput mapping property (Haykin, 2003). The neural network learns
from the examples by constructing an input-output mapping for the
problem. Neural networks have a built in capabiiity to adapt their synaptic

weights to change in the surrounding environment. In particular, a neural
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aetwork trained to operate in a specific environment can easily be
retrained to deal with minor changes in the operating environmental
conditions. Another property of neural network is its evidential response.
fn-the context of pattern classification, a neural network can be designed
tpiprovide information not only about which particular pattern to select,
Hut also about the confidence in the decision made. This latter information
may be used to reject ambiguous patterns and thereby improve the
classification performance of the network (Haykin,2003).

Knowledge is represented by the very structure and activation
state of a neural network. Every neuron in the network is potentially
affected by the global activity of all other neurons in the network.
Consequently, contextual information is dealt with naturally by a neural
. Weliwosk.. As indicated earlier, a neural network, implemented in hardware
Mﬁe potential to be inherently fault tolerant, or capable of robust
%ﬁiﬁm, in the sense that its performance degrades gracefully under
adverse operating conditions. For example, if a neuron or its connecting
links are damaged, recall of a stored pattern is impaired in quality.
However, due to the distributed nature of information stored in the
network, the damage has to be extensive before the overall response of the
network is degraded seriously. Thus in principle, a neural network
exhibits a graceful degradation in performance rather than catastrophic
failure. The massively parallel nature of a neural network makes it
potentially fast for the computation of certain tasks. This feature makes a
neural network well suited for implementation using very-large-scale-
integrated (VLSI) technology (Haykin, 2003). An important property of

neural network is its uniformity of analysis and design. The same notation
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is used in all domains involving the application of neural networks. This

feature manifests itself in different ways.

» Neuron in one form or another, represent an ingredient common
to all neural networks

» This commonality makes it possible to share theories and learning
algorithms in different applications of neural network.

> Modular networks can be built through a seamless integration of
modules.

The design of a neural network is motivated by analogy with the brain,

which is the living proof that fault to learnt paralle! processing is not only

physically possible but also sufficiently fast and powerful (Haykin, 2003).

1.2.1 Human Brain

The human nervous system may be viewed as a three-stage
system as shown in Fig.1.1. Central to the system is the brain, represented
by the neural net, which continually receives information, perceives it and
make appropriate decisions. Two sets of arrows are shown in the Fig.ure,
Those pointing from the left to right indicate the forward transmission of

information-bearing signals through the system.

Regeptors e Edtirors -

Stimdlus

Fig. 1.1 Block diagram representation of nervous system.



NEURAL NETWORK BASED STUDIES ON SPECTROSCOPIC ANALYSIS AND IMAGE FROCESSING

The arrows pointing from right to left signify the presence of

feed-back in the system. The receptors convert stimuli from the human

body or the external environment i
information to the neural net. The effectors convert electrical impulse

nto electrical impulse that convey

generated by the neural net into discernible responses as system outputs.

The human nervous system consists of billiens of neurons of various types
and lengths relevant to their location in the body (Schalkoff, 1997). The
struggle to understand the brain has made easier because of the pioneering
work of Ramon y Cajal, who introduced the idea of neurons as structural
constituents of brain (Haykin, 2003). Typically, neurons are five to six
orders of magnitude slower than silicon logic gates. However, the brain
makes up for the relatively slow rate of operation of a neuron by having a
trulv staggering number of neurons with massive interconnections
between them. It is estimated that there are approximately 10 billion
neurons in the human cortex, and 60 trillion synapses or connections. The
net result is that the brain is an enormously efficient structure. A neuron
has three principal components: the dendrite, the cell body and the axon.
The dendrites are tree-like receptive networks of nerve fibres that carry
electrical signals into the cell body as in Fig.1.2. The cell body has a
nucleus that contains information about heredity traits, and a plasma that
holds the molecular equipment used for producing the material needed by
the neuron (Jain et. al., 1996). The dendrites receive signals from other
neurons and pass them over to the cell body. The total receiving area of
the dendrites of a typical neuron is approximately 0.25 mm’ (Zupan and
Gasteiger, 1993). The cell body effectively sums and threshoids these

incoming signals. The axon is a single long fibre that carries the signal
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from the cell body out to other neurons. The point of contact between an
axon of one cell and a dendrite of another cell is called a synapse. It is the
arrangement of neurons and the strengths of the individual synapses,

determined by a complex chemical process that establishes the function of

the neural network (Haykin, 2003).

Fig. 1.2 The Pyramidal Cell
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Synapses are elementary structural and functional units that
mediate the interaction between neurons. The most common kind of
synapse is a chemical synapse, which operates as follows: A presynaptic
process liberates a transmitter substance that diffuses across the synaptic

junction between neurons and then acts on a post synaptic process. Thus a
synapse converts a presynaptic electrical signal into a chemical signal and
then back into a post synaptic electrical signal. In traditional descriptions
of neural organization, it is assumed that a synapse is a simple connection
that can impose excitation or inhibition, but not both simuitaneously on
the receptive neuron. In an adult brain, plasticity may be accounted for by
two mechanisms: the creation of new synaptic connections between
neurons, and the modification of existing synapses. Axons, the
transmission lines and dendrites which is the receptive zones, constitute
two types of cell filaments that are distinguished on morphological
grounds; an axon which has a smoother surface, fewer branches, and
greater length, whereas a dendrite has an irregular surface and more
branches. Neurons come in a wide variety of shapes and sizes in different
parts of the brain. Fig. 1.2 illustrates the shape of a pyramidal cell, which
is one of the most common types of cortical neurons. Like many other
types of neurons, it receives mast of the inputs through dendritic spines.
The pyramidal cell can receive 10,000 or more synaptic contacts and it
can project onto thousands of target cells.

The axon, which branches into collaterals, receives signals from
the cell body and carries them away through the synapse (a microscopic
gap) to the dendrites of neighboring neurons. A schematic illustration of

the signal transfer between two neurons through the synapse is shown in
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Fig.1.3b. An impulse, in the form of an electric signal, travels within the

dendrites and through the cell body towards the pre-synaptic membrane of

the synapse.

(b) M-i-l

Fig. 1.3 (a) Schematic of biological neuron. (b) Mechanism of signal

transfer between two biological neuron

10
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Upon arrival at the membrane, neurotransmitters (chemical like) are

released from the vesi
incoming signal. The neurotransmitters diffuse within thesynaptic gap

cles in quantities proportional to the strength of the

towards the post-synaptic membrane, and eventually into the dendrites of

neighbouring neurons, thus forcing them (depending on the threshold of

the receiving neuron) to generate a new electrical signal.The generated

signal passes through the second neuron(s) in a manner identical to that
just described.

The amount of signal that passes through a receiving neuron
depends on the intensity of the signal emanating from each of the feeding
neurons. their synaptic strengths, and the threshold of the receiving
neuron. Because a neuron has a large number of dendrites /synapses, it
can receive and transfer many signals simultaneously. These signals may
either assist (excite) or inhibit the firing of the neuron depending on the
type of neurotransmitters are released from the tip of the axons. This
simplified mechanism of signal transfer constituted the fundamental step
of early neurocomputing development (e.g., the binary threshold unit of
McCulloh and Pitts, 1943) and the operation of the building unit of
ANNGs.

The crude analogy between artificial neuron and biological
neuron is that the connections between nodes represent the axons and
dendrites, the connection weights represent the synapses, and the
threshold approximates the activity in the soma (Jain et. al., 1996).
Fig.1.4 illustrates n biological neurons with various signals of intensity x
and synaptic strength w feeding into a neuron with a threshold of b, and

the equivalent artificial neurons system. Both the biological network and

11
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ANN learn by incrementally adjusting the magnitudes of the weights or

synaptic strengths (Zupan and Gasteiger, 1993).

Fig. 1.4 Signal interaction from n neurons and analogy to signal summing in

an artificial neuron comprising the single layer perceptron

1.3. Models of a Neuron

In 1958, Rosenblatt introduced the mechanics of the single
artificial neuron and introduced the ‘Perceptron’ to solve problems in the
area of character recognition (Hecht-Nielsen, 1990). Basic findings from
the biological neuron operation enabled early researchers (e.g., McCulloh
and Pitts, 1943) to model the operation of simple artificial neurons. An

artificial processing neuron receives inputs as stimuli from the

12
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environment, combines them in a special way to form a ‘net’ input, passes
that over through a linear threshold gate, and transmits the (output, y)
signal forward to another neuron or the environment, as shown in Fig. 1.4.
Only when the net input exceeds (i.e., is stronger than) the neuron’s
threshold limit (also called bias, »). will the neuron fire (i.e, becomes
activated). Commonly, linear neuron dynamics are assumed for
calculating net input (Haykin, 2003). The net input is computed as the
inner (dot) product of the input signals (x) impinging on the neuron and
their strengths (w) (Basheer and Hajmeer, 2000).

In the context of computation, a neuron is pictured as an
information-processing unit that is fundamental to the operation of a
neural network. The block diagram sketched in Fig.1.5 represents the
model of a neuron, which forms the basis for designing artificial neural

networks. There are three basic elements in the neuronal model:

S

s
&
M
-Astivenon.
Ioput 2 function
vty
®w
e Sibes »
v SynRpHE gk T — >

Fig. 1.5 Block diagram representing the Nonlinear model of a neuron
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X Wi
X3 Wiz
: & _| % . 7 _| Wes
Input signal X =| ~ weight factor W =[ ©
xn W‘Im
Net output for the " neuron is:
=XTW=x,W, + X, Wy + X Wy toeeeeees +X, W, (a.n

A set of synapses or connecting links, each of which is
characterized by a weight or strength of its own. Specifically, a
signal x; at the input of synapse j connected to neuron k is
multiplied by the synaptic weight wy;

An adder for summing the input signals, weighted by the
respective synapses of the neuron; the operations described here
constitutes a linear combiner.

An activation function for limiting the amplitude of the neuron
output. The activation is also referred to as a squashing function
or limiting function in that it squashes (limits) the permissible
amplitude range of the output signal to some finite value.
Typically, the normalized amplitude range of the output of a
neuron is written as the closed unit interval [0,1] or altermatively

[-1,1] representing unipolar and bipolar cases respectively.

The neuron model of Fig.1.5 also includes an externally applied bias,

denoted by b;. The bias b, has the effect of increasing or lowering the net

14
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input of the activation function. depending on whether it is positive or

negative respectively.
In mathematical terms, we may describe a neuron & by writing the

following pair of equations:

u, = z W‘.U.X’/ (1.2)
i=1
and
v, =g +b) (1.3)
where x;, X3, ........Xn are the input signals; Wi, Wez ...... ..., Wen are the

synaptic weights of neuron k; u, is the linear combiner output due to the
input signals; b, is the bias; ¢ () is the activation function; and y; is the
output signal of the neuron. The use of the bias b; has the effect of
applying an affine transformation to the output u; of the linear combiner

in the model of Fig. 1.5 as shown by
v, =u, +b (1.9)

In particular, depending on whether the bias &, is positive or negative, the
relationship between the induced local field or activation potential v, of
neuron 4 and the linear combiner output u; is modified in the manner
illustrated in Fig.1.6. The bias by is an external parameter of artificial

neuron 4 and is an important parameter in describing the dynamics of the
neuron.

15
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Fig. 1.7 Another Nonlinear model of a neuron including the effect of bias

accounted as a input signal fixed at +1.
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Combinations of Egs. (1.2) and (1.4) as follows:

"m

V,\ = Z W‘;l'xj (]5)
=0

and
¥, = (/;(\;A ) (1.6)

In Eq.(1.4) a new synapse is added. Its input is

xp=+1 (1.7)

and its weight is
wip = by (1.8)

Therefore the model of the neuron & is reformulated as in Fig. 1.7. In this
Fig.ure, the effect of the bias is accounted as: adding a new input signal

fixed at +1, and adding a new synaptic weight equal to the bias b;

1.4 Types of activation functions

The activation function may be a linear or a nonlinear function.
The activation function, denoted by ¢fv), defines the output of a neuron in
terms of the induced local field v. The activation function generates either
unipolar or bipolar signals. In the following sections various types of

function used for activating the neuron activities are described.

1.4.1 A step function

It is a unipolar function and is also referred to as a threshold
function. This function is shown in Fig. 1.8(a) and is defined as:

17
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1 ifv20

o(v) ={ (1.9)

0 ifv<0

In engineering literature, this is a threshold function referred to as
Heaviside function. Correspondingly, the output of neuron & employing

such a threshold function is expressed as

1 ifv, 20
k)= f * (1.10)
0 if v, <0
where v, is the induced local field of the neuron; so that
Vi =D WX, +b (1.11)

J=l

Eqn.l1.11 represents a neuron referred to in the literature as the
McCulloch-Pitts model, in recognition of the pioneering work done by
McCulloch and Pitts (1943). In this model, the output of the neuron takes
on the value of | if the induced local field of that neuron is nonnegative,
and 0 otherwise. This statement describes the all-or-none property of the

McCulloch-Pitts model.

1.4.2 Piecewise-Linear Function

This is also a unipolar function. The piecewise-linear function

described in Fig.1.8(b) is defined as:

18
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1, v2+l
2
= +1>v>—l (1.12)
p(v) =V, > 5 :
0, vs-l
2

where the amplification factor inside the linear region of operation is
assumed to be unity. The following two situations may be viewed as

special form of the piecewise-linear function:

g A linear combiner arises if the linear region of operation is
maintained without running into saturation

» The piecewise-linear function reduces to a threshold function if
the amplification factor of the linear region is made infinitely

large.

1.4.3 Sigmoid Function

The sigmoid function, whose graph is S shaped, is also a
unipolar function and is the most common form of activation function
used in the construction of artificial neural networks. It is defined as a
strictly increasing function that exhibits a graceful balance between linear

and nonlinear behaviour. An example of the sigmoid function is the

logistic function, defined by

o(v)=

“TrewCa) 19
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Fig. 1.8 Various types of activation functions (a) step function (b) piece-wise
linear function (c) sigmoid function
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where a is the slope parameter of thé of the éigrpoid,function.

By varying the paraméter a, 'signoid furictiqhs of different slopes
are obtained. as illustrated in Fig.1.8(c). In fact, the slope at the origin
cquals a/4. In the limit, as the slope parameter approaches infinity, the
sigmoid function becomes simply a threshold function. Whereas a
threshold function assumes the value of 0 or 1, a sigmoid function
assumes a continuous range of values from 0 tol. Moreover the sigmoid
function is differentiable, unlike in the case of other threshold functions.
Differentiability is an important feature of neural network theory.

All the above mentioned activation functions are unipolar, which
are varying between 0 and 1. It is sometimes desirable to have the
activation function range from -1 to +1, in which case the activation
function assumes an antisymmetric form with respect to the origin; that is,
the activation function is an odd function of the induced local field.
Specifically, the threshold function of Eq.(1.9) is now defined as

I, if v>0
p(v) =3 0, if v=0 (1.14)
-1, i v<0

which is commonly referred to as the signum function. For the

corresponding form of the sigmoid function, the hyperbolic tangent
function is used, which is defined by:

@(v) = tanh(v) (1.15)
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1.5 Perceptrons

The perceptron (Fig.1.7) can be trained on a set of examples using
a special leaming rule (Hecht-Nielsen, 1990). The perceptron weights
(including the threshold) are changed in proportion to the difference
(error) between the target (correct) output, Y, and the perceptron solution,
y, for each example. The error is a function of all the weights and forms
an irregular multidimensional complex hyperplane with many peaks,
saddle points, and minima. Using a specialized search technique, the
learning process strives to obtain the set of weights that corresponds to the
global minimum. Rosenblatt (1962) derived the perceptron rule that will
yield an optimal weight vector in a finite number of iterations, regardless
of the initial values of the weights.

This rule, however, can perform accurately with any linearly
separable classes (Hecht-Nielsen, 1990), in which a linear hyperplane can
place one class of objects on one side of the plane and the other class on
the other side. Fig. 1.9 (a) shows linearly and nonlinearly separable two-
object classification problems. In order to cope with nonlinearly separable
problems, additional layer(s) of neurons placed between the input layer
containing input nodes) and the output neuron are needed leading to the
multilayer perceptron (MLP) architecture (Hecht-Nielsen, 1990), as
shown in Fig. 1.9 (b). Since these intermediate layers do not interact with
the extemnal environment, they are called hidden layers and their nodes
called hidden nodes. The addition of intermediate layers revived the
perceptron model by extending its ability to solve nonlinear classification

problems. Using similar neuron dynamics, the hidden neurons process the
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information received from the input nodes and pass them over to outpu

layer.
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Fig. 1.9. (a) Linear vs. nonlinear separability. (b) Multilayer perceptron

showing input, hidden, and output layers and nodes with JSeedforward links.

The learning of MLP is not as direct as that of the simple perceptron. For
example, the backpropagation network (Rumelhart et al., 1986) is one
type of MLP trained by the delta learning rule (Zupan and Gasisteiger,
1993). However, the learning procedure is an extension of the simple

perceptron algorithm so as to handle the weights connected to the hidden
nodes (Hecht-Nielsen, 1990).
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1.6 Learning Processes

Learning is a process by which the free parameters of a neural
network are adapted through a process of simulation by the environment
in which the network is embedded. The type of learning is determined by
the manner in which the parameter changes take place. The above

definition of learning process implies the following sequence of events:

» The neural network is stimulated by an environment,

> The neural network undergoes changes in its free parameters as a
result of this simulation.

> The neural network responds in a new way to the environment

because of the changes that have occurred in its internal structure.

A prescribed set of well-defined rules for the solution of a
learning problem is called learning algorithm. As one would expect, there
is no unique learning algorithm for the design of neural networks. Rather,
there is kit of tools represented by a diverse variety of leaming algorithms,
each of which offers advantages of its own. Basically, learning algorithms
differ from each other in the way in which the adjustment to a synaptic
weight of a neuron is formulated. Another factor to be considered is the
manner in which a neural network, made up of a set of interconnected
neurons, relates to its environment.

Hebb’s postulate of learning is the oldest and the most famous of
all learning rules; it is named in honour of the neuropsychologist Hebb

(1949). His postulate states that:
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When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic changes take place in one or both cells such

that A's efficiency, as one of the cells firing B, is increased.

Hebb proposed this change as a basis of associative learning which would
result in an enduring modification in the activity pattern of a spatially
distributed assembly of nerve cells.

The Hebb’s postulate can be expanded and rephrased as a two-

part rule:

» If two neurons on either side of a synapse are activated
simultaneously, then the strength of that synapse is selectively
increased.

» If two neurons on either side of a synapse are activated
asynchronously, then that synapse is selectively weakened or

eliminated.

Such a synapse is called a Hebbian synapse. More precisely, a Hebbian
synapse is a synapse that uses a time-dependent, highly local and strongly
interactive mechanism to increase synaptic efficiency as a function of the

correlation between the presynaptic and postsynaptic activities.

1.7 A Brief History

In this section, in order to make the thesis selfcontained an overview
of the historical evolution of ANNs and neurocomputing is briefly

presented. Anderson and Rosenfeld (1988) provide a detailed history
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along with a collection of the many major classic papers that affected
ANNs evolution. Nelson and Illingworth (1990) divide 100 years of
history into six notable phases: (1) Conception, 1890-1949; (2) Gestation
and Birth, 1950s; (3) Early Infancy, late 1950s and the 1960s; (4) Stunted
Growth, 1961 1981; (5) Late Infancy 1, 1982-198S5; and (6) Late Infancy
I1, 1986—present. The era of conception includes the first development in
brain studies and the understanding of brain mathematics. It is believed
that the year 1890 was the beginning of the neurocomputing age in which
the first work on brain activity was published by William James (Nelson
and [llingworth, 1990). Many (e.g., Hecht-Nielsen, 1990) believe that real
neurocomputing started in 1943 after McCulloh and Pitts (1943) paper on
the ability of simple neural networks to compute arithmetic and logical
functions. This era ended with the book ‘The Organization of Behavior’
by Donald Hebb in which he presented his learning law for the biological
neurons’ synapses (Hebb, 1949). The work of Hebb is believed to have
paved the road for the advent of neurocomputing (Hecht- Nielsen, 1990).

The gestation and birth era began following the advances in hardware/
software technology which made computer simulations possible and
easier. In this era, the first neurocomputer (the Snark) was built and tested
by Minsky at Princeton University in 1951, but it experienced many
limitations (Hecht-Nielsen, 1990). This era ended by the development of
the Dartmouth Artificial Intelligence (Al) research project which laid the
foundations for extensive neurocomputing research (Nelson and
Illingworth, 1990).

The era of early infancy began with John von Neuman’s work which

was published a year after his death in a book entitled ‘The Computer and
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the Brain’ (von Neuman, 1958). In the same year, Frank Rosenblatt at
Comell University introduced the first successful neurocomputer (the
Mark [ perceptron), designed for character recognition which is
considered nowadays the oldest ANN hardware (Nelson and Niingworth,
1990). Although the Rosenblatt perceptron was a linear system, it was
efficient in solving many problems and led to what is known as the 1960s
ANNSs hype. In this era, Rosenblatt also published his book ‘Principles of
Neurodynamics’ (Rosenblatt, 1962). The neurocomputing hype, however,
did not last long due to a campaign led by Minsky and Pappert (1969)
aimed at discrediting ANNs research to redirect funding back to AL
Minsky and Pappert published their book ‘Perceptrons’ in 1969 in which
they over exaggerated the limitations of the Rosenblatt’s perceptron as
being incapable of solving nonlinear classification problems, although
such a limitation was already known (Hecht-Nielsen, 1990; Wythoff,
1993). Unfortunately, this campaign achieved its planned goal, and by the
early 1970s many ANN researchers switched their attention back to Al,
whereas a few ‘stubborn’ others continued their research. Hecht-Nielsen
(1990) refers to this era as the ‘quiet years’ and the ‘quiet research’.

With the Rosenblatt perceptron and the other ANNSs introduced by
the ‘quiet researchers’, the field of neurocomputing gradually began to
revive and the interest in neurocomputing renewed. Nelson and
lilingworth (1990) list a few of the most important research studies that
assisted the rebirth and revitalization of this field, notable of which is the
introduction of the Hopfield networks (Hopfield, 1984), developed for
retrieval of complete images from fragments. The year 1986 is regarded a
comerstone in the ANNs recent history as Rumelhart et al.(1986)
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rediscovered the backpropagation leaming algorithm after its initial
development by Werbos (1974). The first physical sign of the revival of
ANNs was the creation of the Annual IEEE International ANNs
Conference in 1987, followed by the formation of the Interational Neural
Network Society (INNS) and the publishing of the INNS Neural Network
journal in 1988. It can be seen that the evolution of neurocomputing has
witnessed many ups and downs, notable among which is the period of
hibernation due to the perceptron’s inability to handle nonlinear
classification. Since 1986, many ANN societies have been formed, special
journals published, and annual international conferences organized. At
present, the field of neurocomputing is blossoming almost daily on both

the theory and practical application fronts.

1.8 Learning Rules

A learning rule is a procedure to modify the weight and biases of
a network. This is also referred to as a training algorithm. The purpose of
the learning rule is to train the network to perform some task. There are
many types of neural network learning rules. They fall into three broad
categories: supervised learning, unsupervised learning and reinforcement
learning.

In supervised learning, the learning rule is provided with a set of

examples (the training set) of proper network behaviour:
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[xi.t] . [X2.t2) o [Xa ta)eeeecnneens [Xq. gl (1.16)

where Xq is an input to the network and t, is the corresponding correct

(target) output.

Vector describing

state of the Desired

vironmen

Response

Teacher

Error Signal

(a)

Primary reinforcement

Heuristic
reinforcement

Actions

(®)

Fig.1.10 (a) Block diagram of learning with a teacher (b) Block Diagram

of reinforcement learning
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As the inputs are applied to the network, the network outputs are
compared to the targets (Hagan et. at., 2002). The learning rule is then
used to adjust the weight and biases of the network in order to move the
network outputs closer to the targets. This kind of learning is also known
as learning with a teacher. Fig.1.10 (a) shows a block diagram that
illustrates this form of learning. Suppose now that the teacher and the
neural network are both exposed to a training vector drawn from the
environment. By the virtue of built-in-knowledge, the teacher is able to
provide the neural network with a desired response for that training
vector. Indeed, the desired response represents the optimum action to be
performed by the neural network. The network parameters are adjusted
under the combined influence of the training vector and the error signal.
The error signal is defined as the difference between the desired signal
and the actual response of the network. This adjustment is carried out
iteratively in a step-by-step fashion with the aim of eventually making the
neural network emulate the teacher; the emulation is presumed to be
optimum in some statistical sense. In this way knowledge of the
environment available to the teacher is transferred to the neural network
through training as fully as possible. When this condition is reached, the
teacher is the dispensed with and let the neural network deal with the
environment completely by itself.

In supervised learning, the process takes place under the tutelage of
a teacher. But, in the paradigm known as learning without a teacher, there
is no teacher to oversee the learning process. That is to say, there are no

labelled examples of the function to be leamned by the network. Under this
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paradigm, two subdivisions are identified: one is the reinforcement
learning and the other unsupervised learning

In reinforcement learning, the learning of an input-output
mapping is performed through continued interaction with the environinent
in order to minimize the scalar index of performance. Fig. 1.10 (b} shows
the block diagram of one form of a reinforcement learning system built
around a critic that converts a primary reinforcement signal received from
the environment into a higher quality reinforcement signal called the
heuristic reinforcement signal, both of which are scalar inputs. The system
is designed to learn under delayed reinforcement, which means that the
system observes a temporal sequence of state vectors also received from
the environment, which eventually result in the generation of the heuristic
reinforcement signal. The goal of learning is to minimize a cost-to-go
function, defined as the expectation of the cumulative cost of actions
taken over a sequence of steps instead of simply the immediate cost. It
may turn out that certain actions taken earlier in that sequence of time
steps are in fact the best determinants of overall system behaviour. The
function of the learning machine, which constitutes the second component
of the system, is to discover these actions and to feed them back to the
environment.

In unsupervised learning or self- organized learning there is no
external teacher or critic to oversee the learning process, as indicated in
Fig. 1.11. Rather, provision is made for a task independent measure of the
quality of representation that the network is required to learn, and the free
parameters of the network are optimized with respect to that measure.

Once the network has become tuned to the statistical regularities of the
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input data, it develops the ability to form intermal representations for
encoding features of the input and thereby to create new classes
automatically. To perform unsupervised learning, a competitive learning
rule is used. For that a neural network consisting of two layers- an input
layer and a competitive layer are employed. The input layer receives the
available data. The competitive layer consists of neurons that compete
with each other (in accordance with a learning rule) for the opportunity to
respond to features contained in the input data. In its simplest form, the

network operates in accordance with a winner-takes-all strategy.

Wettors describing state of
the environment

Learning

Environment System

Fig. 1.11 Block diagram of unsupervised learning

1.9 Learning Algorithms

In the formative years of the neural network (1943-1958), several

researchers stand out for their pioneering contributions:

> McCulloch and Pitts (1943) for introducing the idea of neural
network as computing machines.

> Hebb (1949) for postulating the first rule for self-organised
learning.

> Rosenblatt (1958) for proposing the perceptron as the first model

for supervised learning.
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In the present research work only supervised learning is used.
Therefore in the following sections only supervised learning algorithms
are dealt with. The perceptron is the simplest form of a neural network
used for the classification of patterns which are said to be linearly
separable. Basically, it consists of a single neuron with adjustable synaptic
weights and bias. Indeed, Rosenblatt proved that if the patterns used to
train the perceptron are drawn from two linearly separable classes, then
the perceptron algorithm converges and positions the decision surface in
the form of a hyper plane between the two classes (Rosenblatt, 1962). The
proof of convergence of the algorithm is known as the perceptron
convergence theorem. The perceptron built around a single neuron is
limited to performing pattern classification with only two classes. In the
following sections the Perceptron algorithm and the backpropagation

algorithms are given.
1.9.1 The Perceptron Algorithm

The Perceptron, an invention of Rosenblatt (1962), was one of the
earliest neural network models. A perceptron models a neuron by taking a
weighted sum of the inputs and sending the output 1 if the sum is greater
than some adjustable threshold value (otherwise it sends 0). Fig. 1.12
shows the device.

The inputs (x; x; X3.......x,) and connection weights {(w; w;,
w;,....w,) in the Fig.ure are typically real values, both positive and
negative. If the presence of some feature x, tends to cause the perceptron
to fire, the weight w; will be positive; if the feature x; inhibits the

perceptron, the weight w; will be negative. The perceptron itself consists
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of the weights, the summation processor, and the adjustable threshold
processor. Learning is a process of modifying the values of the weights
and the thresholds (bias). It is convenient to implement the bias as just
another weight w,. This weight can be thought of as the propensity of the

perceptron to fire irrespective of its inputs (Rich and Knight,1994).

Step 0 Set up the neural network model as shown in Fig.1.12
Initialize the weights and bias.
Set learning rate, n (0 <n<1)

Set minimum error value for stopping.

Step 1 While the stopping condition is false, do steps 2 — 6
Step 2 For each training pair u:t do steps 3 — 5§
Step 3 Set activations of input units: x;=u;,i=1,2,3....n
Step 4 Compute the response of output unit:

s=b+ Y xw, (1.17)

Fig. 1.12 A Perceptron neuron model

Step § Update weights and bias
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w, (new) =w, (old)+ n (t - s) X,

1.18
b (new) = b(old) +7 (t —s) (19
i=123..n
Step 6 Test for stopping condition:

If the largest weight change that occurrved in step is
smaller than a specified tolerance, then stop; else

continue.

1.9.2 The Backpropagation Algorithm

Fig. 1.13 shows a fully connected, layered, feedforward network.
In this Fig.ure, weights on connections between the input and hidden
layers are denoted by wi, while weights on connections between the
hidden and output layers are denoted by wh. This network has three
layers, although it is possible and sometimes useful to have more. Each
unit in one layer is connected in the forward direction to every unit in the
next layer. Activations flow from the input layer through the hidden layer
and then on to the output layer. The knowledge of the network is encoded
in the weights on connection between units. The existence of hidden units
allows the network to develop complex feature detectors, or internal
representations.

The units in a backpropagation network require a slightly
different activation function from the perceptron. A backpropagation unit
will sums up its weighted inputs, but unlike the perceptron, it produces a
real value between 0 and 1 as output based on a sigmoid function, which

is continuous and differentiable, as required by the backpropagation
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algorithm. Like a perceptron, a backpropagation network typically starts

out with a random set of weights (Rich and Knight,1994).

HIDDEN LAYER

HoRHOO

PR e e

o

Fig. 1.13 A feed forward neural network wi is the weight of the input layer to
the hidden layer, wh is the weight of the hidden layer to the output layer.

Given: A set of input-output (x:y) vector pairs.

Compute: A set of weights for a three layer network that maps inputs
onto corresponding outputs. ( wi is the weight of the input
layer to the hidden layer, wh is the weight of the hidden
layer to the output layer)

Step 1 Let A be the number of units in the input layer, B be the
number of units in the hidden layer, C be the number of
units in the output layer.

Step 2 wiyy=random(-0.1, 0.1) for all i = 0.........A,j=1..........B
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Step 3

Step 4

Step 5

Step 6

Step 7

Step 8

Step 9

whi; = random(-0.1, 0.1) for alli=0......... B,j=1......... C
Initialize the activation of the threshold units. The values of
the threshold units should never change. Set the learning
rate,n

Choose an input-output pair. Assign activation levels to the
input units.

Propagate the activations from the units in the input layer
to the units in the hidden layer using the activation
function

!
h,=———— forallj=1...... B (1.19)

} .
- n ll', I.\"v
1+e i=0
Propagate the activations from the units in the hidden layer
to the units in the output layer

!
H
—z wh; b

l+e

forallj=1.....C (1.20)

0j=

Compute the errors of the units in the output layer, 6y

521 =0 (1 _ijyj _Oj)
Jorallj=1......C (.21

Compute the errors of the units in the hidden layer, 0y

C
8, =h(=h)> 6,wh,,

i=]
forallj=1.......B (1.22)

Adjust the weights wi and wh
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Awh, , =nd, b,

for alli= 0.......B, j=1...... C (1.23)
Awi, , =nd, X,

foralli=0......... Aj=1....B (1.24)

Step 10 Go to step 4 and repeat. When all the input-output pairs
have been presented to the network, one epoch has been
completed. Repeat steps 4 t0 10 for as many epochs as

desired.

The algorithm generalizes straightforwardly to networks of more than
three layers. For each extra hidden layer, insert a forward propagation step
between steps 6 and 7, an error computation step between steps 8 and 9,
and a weight adjustment step between steps 10 and | 1. Error computation
for hidden units should use the equation in step 8, but with i ranging over
the units in the next layer, not necessarily the output layer (Rich and

Knight,1994).

1.10 Digital Image Processing:

1.10.1 Image Representation, Sampling,
Quantization

An image may be defined as a two-dimensional function, f{x,v),
where x and y are spatial coordinates, and the amplitude of fat any pair
of coordinates (x,y) is called the intensity or gray level of the image at that
point. When x,y and the amplitude values of f are all finite, discrete

quantities, it is called as a digital image. The field of digital image
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processing refers to processing digital images by a digital computer. A
digital image is composed of a finite number of elements, each of which
has a particular location and value. These elements are referred to as
picture elements, image elements, pels and pixels. In general, the
fundamental steps in digital image processing consist of components like
image acquisition, image enhancement, image restoration etc

Image acquisition is the first process. Note that acquisition could
be as simple as being given an image that is already in digital form.
Generally, the image acquisition stage involves preprocessing, such as
scaling. The types of images in which we are interested are generated by
the combination of an illumination source and the reflection or absorption
of energy from that source by the elements of the scene being imaged.

When an image is generated from a physical process, its values
are proportional to energy radiated by a physical source. As a

consequence, f(x,)) must be nonzero and finite; that is,

0< flx,y) <0 (1.25)

The function f{x,y) may be characterized by two components: (1) the
amount of source illumination incident on the scene being viewed, and (2)
the amount of illumination reflected by the objects in the scene.
Appropriately, these are the illumination and reflectance components and
are denoted by i(x,y} and r¢x,y) respectively. The two functions combine as

a product to form f{x,y):

S y)=ilx,y)r(x,y) (1.26)
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where
0 <ix,y) <o (1.27)

and

T1

Fig. 1.14 An example of tha digital image acquisition process.
0<r(x,y)<1 (1.28)

Eq. (1.28) indicates that reflectance is bounded by 0 (total absorption) and
1 (total reflectance). The nature of ifx,y) is determined by the illumination
source, and r(x,y) is determined by the characteristics of the imaged
objects.
The intensity of a monochrome image at any coordinates (x,, y,)
determines the gray level () of the image at that point. That is,
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l:f(xnvyo) (1.29)

From Eqs. (1.26) through (1.29), it is evident that / lies in the range

L. <1</ (1.30)

min max

In theory, the only requirement on L,,, is that it be positive, and on L,
that it be finite. In practice, L = fmin Fmin 800 Ly = Lpgx Fuay - ThE
interval [Lpin, Lna] is called the gray scale. Common practice is to shift
this interval numerically to the interval [0, L-1], where I = 0 is considered
black and / = L-1 is considered white on the gray scale. All the
intermediate values are shades of gray varying from black to white.

The output of most sensors is a continuous voltage waveform
whose amplitude and spatial behaviour are related to the physical
phenomenon to be sensed. To create digital image, the continuous sensed
data should be converted to digital form. This involves two processes:
sampling and quantization. The basic idea behind sampling and
quantization is illustrated in Fig.1.15. Fig. 1.15 (a) shows a continuous
image, f(x,y), that is to be converted to digital form. An image may be
continuous with respect to the x- and y- coordinates, and also in
amplitude. To convert to digital form, the function has to be sampled in
both coordinates and in amplitude. Digitizing the coordinate values is
called sampling. Digitizing the amplitude values is called quantization.
The one-dimensional function shown in Fig. 1.15 (b) is a plot of
amplitude values (gray level) of the continuous image along the line

segment AB in Fig. 1.15 (a). The random variations are due to image
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A B

(b)

(a)

»
&

5 N R

g Lt Bk ksl L

Fig.1.15 Generating a digital image. (a) Continuous image (b) A scan line
from A to B in the continuous image (c) sampling and quantization (d) digital

scan line

noise. To sample this function, equally spaced samples along line AB as
shown in Fig. 1.15(c) are taken. The location of each sample is given by a
vertical tick mark in the bottom part of the Fig.ure. The samples are
shown as small white squares superimposed on the function. The set of
these discrete locations gives the sampled function. However, the values
of the samples still span (vertically) a continuous range of gray-level
values. In order to form a digital function, the gray level values also must
be converted (quantized) into discrete quantities. The right side of

Fig.1.15(c) shows the gray-level scale divided into eight discrete levels,
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ranging from black to white. The vertical tick marks indicate the specific
value assigned to each of the eight gray levels. The continuous gray levels
quantized simply by assigning one of the eight discrete gray levels to each
sample. The assignment is made depending on the vertical proximity of a
sample to a vertical tick mark. The digital samples resulting from both
sampling and quantization are shown in Fig.1.15 (d). Starting at the top of
the image and carrying out this procedure line by line produces a two-
dimensional digital image.

The result of sampling and quantization is a matrix of real
numbers. Assume that an image f{x,y) is sampled so that the resuiting
digital image has M rows and N columns. The values of the coordinates
(x,y) now become discrete quantities. The complete M X N digital image

can be written in a compact matrix form as:

f(0.0) s f(0.N=1)
Fley)=| 0O G FUN-D ) (13D
f(M'— 1.0) f(M.—l.l) fim . LN=1)

The right side of the equation is by definition is a digital image. Each
element of this matrix array is called an image element, picture element,
pixel or pel.

The digitization process requires decision about the values of M,
N, and for the number, L, of discrete gray levels allowed for each pixel.
There are no requirements on M and N other than that they have to be
positive integers. However, due to processing, storage, sampling and
hardware considerations, the number of gray levels typically is an integer

power of 2:
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L=2 (1.32)

It is assumed that the discrete levels are equally spaced and that they are
integers in the interval [0, L-1]. Sometimes the range of value spanned by
the gray scale is called the dynamic range of the image, and the images
whose gray levels span a significant portion of the gray scale are referred
to as those having high dynamic range. When an appreciable number of
pixels exhibit this property, the image will have high contrast. Conversely,
an image with low dynamic range tends to have a dull washed out gray
look.

The number, b, of bits required to store a digitized image is
b=MNKk (1.33)
When M = N, this equation becomes
b=Nk (1.34)

Sampling is the principal factor determining the spatial resolution
of an image. Basically, spatial resolution is the smallest discernible detail
in an image. Gray-level resolution refers to the smallest discernible

change in gray level (Gonzalez and Woods, 2002).

1.11 Various tools for Digital Image Processing

1.11.1 The Two-Dimensional DFT and its Inverse

Image enhancement is among the simplest and most appealing

areas of digital image processing. Basically, the idea behind enhancement
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- - — ]
techniques is to bring out detail that is obscured, or simply to highlight
features of interest in an image. The main objective of enhancement is to
process an image so that the result is more suitable than the original image
for a specific application. Image enhancement techniques fall into two
broad categories: spatial domain methods and frequency domain methods.
The term spatial domain refers to the image plane itself, and approaches in
this category are based on direct manipulation of pixels in an image.
Frequency domain processing techniques are based on modifying the
Fourier transform of an image.

In the present research work, frequency domain spatial
enhancement techniques are dealt with. Hence the focus is mostly on a
discrete formulation of the Fourier transform. The discrete Fourier

transform of a function (image) f (x,y) of size M X N is given by the

equation
(19)= 1= 53 [l )
Flu,v)= flx, y)emramiems (1.35)
MN =0 y=0
This expression is computed for values of u =10, 1, 2,...... M-1, and also

for v =0, I, 2..... N-1. The inverse Fourier transform is given by the

expression:
M-1N—-} . )
f‘(x, y) — ZZF(“yv) ej2,7(u,r/M i N) (l 36)
4=0 v=0
Forx=0,1,2....... M-l andy=0,1, 2, ........N-1. Equations (1.35) and

(1.36) comprise the two-dimensional, Discrete Fourier Transform pair.
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The variables u and v are the transform or frequency variables, and x and y
are the spatial or image variables. The location of I/MN constant in

Eqn.1.34 is not important. Sometimes it is located in front of the

transform. Other times it is found spiit into two equal terms of l/x/MN

multiplying the transform and its inverse.

The Fourier spectrum, phase angle, and power spectrum are

defined as:
|Flu,v) = [Rz(x, y)+ 1 {(x, y)]% (1.37)
o (u,v)= tan"[i((z”?)] (1.38)
and

P(u,v)=|F(u,v)2 = Rz(u,v)+ Iz(u,v) (1.39)

where R (u,v) and [ (u,v) are the real and imaginary parts of F(u,v),
respectively.

It is common practice to muitiply the input image function by

(— l)’”'v prior to computing the Fourier transform. Due to the properties of

exponentials it can be proved that:

Sl y) ) = F e-M/2,0-N2)  (140)
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where 3[] denotes the Fourier transform of the argument. This equation

Yty .

states that the origin of the Fourier transform of f (x,y)(—l) is

located at ¥ = M/2 and v = N/2. In other words, multiplying f (x,y) by

(—I)W shifts the origin of F (u,v) to frequency coordinates (M/2, N/2),

which is the centre of the M X N area occupied by the 2-D DFT. This area
of the frequency domain is referred to as the frequency rectangie. It
extends from u = 0 to u = M-1, and from v = ) to v = N-I. In order to
guarantee that these shifted coordinates are integers, usually M and N are
taken to be even integers. When implementing the Fourier transform in a
computer, the limit of summations are from u=1ltoMandv=1toN.
The actual centre of the transform will then be at ¥« = (M/2)+ 1 and
v = (N/2) + 1.The value of the transform at (x,v) = ¢ 0,0 ) is, from
Eq.(1.35):

1 M-lN-)
F(0,0)= 2.0/ xy) (1.41)
x=0 y=0

which is the average of f (x,). In other words, if f (x,p) is an image, the
value of the Fourier transform at the origin is equal to the average gray
level of the image. Because both frequencies are zero at the origin, F (0,0)
sometimes is called the dc component of the spectrum. If /' (x,y) is real, its

Fourier transform is conjugate symmetric; that is,

F{u,v)=F" (~u,-v) (1.42)

w9

where indicates the standard conjugate operation on a complex

number. From this, it follows that
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lF(u,v] :|F(—u,—vl (1.43)

which says that the spectrum of the Fourier transform is symmetric

(Gonzalez and Woods, 2002).

1.12 Image Interpolation techniques

1.12.1 Nearest Neighbour Interpolation

Nearest-neighbour interpolation (also known as proximal
interpolation or point sampling in some contexts) is a simple method of
multivariate_interpolation in 1 or more dimensions. Interpolation is the
problem of approximating the value for a non-given point in some space,
when given some values of points around that point. The nearest
neighbour algorithm simply selects the value of the nearest point, and
does not consider the values of other neighbouring points at all, yielding a
piecewise-constant interpolant. The algorithm is very simple to
implement, and is commonly used in real-time 3D_rendering to select

colour values for a textured surface.

1.12.2 Bilinear Interpolation

In mathematics, bilinear interpolation is an extension of linear
interpolation for interpolating functions of two variables on a regular grid.
The key idea is to perform linear interpolation first in one direction, and
then again in the other direction.

Suppose that we want to find the value of the unknown function f

at the point P = (x, y). It is assumed that we know the value of fat the four
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points Qy; = (x1, ¥1), 012 = (x1, ¥2), @21 = (x2, 1), and @ = (x3, y2) First

do linear interpolation in the x-direction. This yields

Quz Ra Qa2
Y2 brwemias ’..- ....... -,.. ............ ‘[n.....
| e a
i i i
i i p i
y I rmememim -._.-’ ............. : ......
? i
i i '.
i i e
i i .5
; e z
) [ ¢
i 1 Ry )
¥ib.-ia Q. ‘- ....... .’ ............. ’.-...—-,
I i : Qa
i i |
X1 x. X3

Fig.1.16 The four points (Q;;, Q12 Q21,022 show the data point and point P is

the point at which the data is to be intepolated

FR) =222 1(0,)+ 2 1(0,,)
X, — X, X, = X,
where R, = (x, y1), (1.44)
fR)= 272 £(,)+ =" 1(0.,)
X, =X X, =X
where R, = (x,,). (1.45)
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We proceed by interpolating in the y-direction.

fP)x L2 p(r)+ 22 f(R) (146)
Yo =W Y= W

This gives us the desired estimate of f{x, y).

oo 2 ety - e ) - 1), )

“"l)(}’z 1)(}’2 ,)
+M,\f -x - +f(# X—x —-
(-"z'-"l)()’z_y:)( »= M=) (Xz _-"n)(}’z‘)’l)(' il ,h)

(1.47)

If we choose a coordinate system in which the four points where f
is known are (0, 0), (0, 1), (1, 0), and (1, 1), then the interpolation formula

simplifies to

fley)= 70,001 -x)1-y)+ £, 011 - y)+ £0, 1 - x)y + £(1, Dhxy

(1.48)

Or equivalently, in matrix operations:

flay)=li-x "]H? f,’)) ff((f}))} [l N } (149

Contrary to what the name suggests, the interpolant is not linear. Instead,
it is of the form

(a,x+a,fa,y+a,) (1.50)
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so that it is a product of two linear functions. Alternatively, the interpolant

can be written as
b +b,x+by+b.xy (1.51)

where

| _f( » )
bz—f(l,o) £0,0)
= £(0,1)- 1(0, 0)
b4 = f(0,0)- s, 0)- £(0, 1)+ (1, 1)

(1.52)

In both cases, the number of constants (four) corresponds to the number of
data points where fis given. The interpolant is linear along lines parallel
to either the x or the y direction, equivalently if x or y is set constant.
Along any other straight line, the interpolant is quadratic. The result of
bilinear interpolation is independent of the order of interpolation. If we
had first performed the linear interpolation in the y-direction and then in
the x-direction, the resulting approximation would be the same.

In computer vision and image processing, bilinear interpolation is
one of the basic resampling techniques. It is a texture mapping technique
that produces a reasonably realistic image, also known as bilinear filtering
or bilinear texture mapping. An algorithm is used to map a screen pixe!
location to a corresponding point on the texture map. A weighted average

of the attributes (colour, aipha, etc.) of the four surrounding texels is
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computed and applied to the screen pixel. This process is repeated for
each pixel forming the object being textured.

When an image needs to be scaled-up, each pixel of the original
image needs to be moved in certain direction based on scale constant.
However, in scaling up an image, there are pixels (i.e. Hole) that are not
assigned to appropriate pixel values. In this case, those holes should be
assigned to appropriate image values so that the output image does not
have non-value pixels.

Typically bilinear interpolation can be used where perfect image
transformation, matching and imaging is impossible so that it can
calculate and assign appropriate image values to pixels. Unlike other
interpolation techniques such as nearest neighbour interpolation and
bicubic interpolation (described below), bilinear interpolation uses the
four nearest pixel values which are located in diagonal direction from that
specific pixel in order to find the appropriate color intensity value of a

desired pixel.

1.12.3 Bicubic Interpolation

In mathematics, bicubic interpolation is an extension of cubic
interpolation for interpolation of data points on a two dimensional regular
grid. The interpolated surface is smoother than corresponding surfaces
obtained by bilinear or nearest neighbour interpolation. Bicubic
interpolation can be accomplished using Lagrange polynomials, cubic
splines or cubic convolution algorithm.

In image processing, bicubic interpolation is often chosen over

bilinear interpolation or nearest neighbor in image resampling, when
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speed is not an issue. lmages resampled with bicubic interpolation are

smoother and have fewer interpolation artifacts

1.12.3a Bicubic spline interpolation

Suppose that the function values f and the derivatives f.. f. and f, are
known at the four corners (0,0), (1,0), (0,1), and {1,1) of the unit square.

The interpolated surface can then be written

3
plxy)= Zza,;,x"y’ (1.53)
=0

The interpolation problem consists of determining the 16 coefficients a;.

Matching p(x,y) with the function values yields four equations,

. £0,0) = p(0,0) = ano

2. A1,0)=p(1,0}=aw+ a0+ aro+ asg

3. L0,1)=p(0,1)=ae + ag +ae2+ a3 (1.54)
303

4. f0,0)=p0,1)=>Yq,
=0 j=0

Likewise, eight equations for the derivatives in the x-direction and the y-

direction

l. f;(0,0) = p,(0,0) =4djo

2. (M1L,0)=p(1,0)=a+ 2ax0+ 3ay

3. MO0 =p(0,1)=ap+a +aptags
3 3

a. f0L1)=p,01)=3>a, (1.55)
=1 j=0
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N

f;(o’o) = pl(Ovo) = 4o
H(1,0)=p,(1,0) = ao + a + ax +ay
£0,1)=p(0,1) = ay) + 2a¢2 + 3ag;

.

=]
~
—
=
[
=
—_
;
=
Il
.M'«J
-
o
<
=

And the following four equations represent the cross derivative

—

f;\(oso) =p.\‘y(030) =4an

2, f;—_‘,(I,O) :P.\-y(l,o) =day + 2a?_l + 3ail

3. fo(01) = pu(0,1) = @y + 2a13 + 3an; (1.56)
3 3

a. f.0,1)=p,01 =ZZanj
I J=1

The expressions above have used the following identities,

3 3
p,(x y)=2 2 a5y’ (157

3 3
Py, y)= 2 2 aix™ jy”

This procedure yields a surface p(x,y) on the unit square [0, 1] x [0,1]
which is continuous and with continuous derivatives. Bicubic
interpolation on an arbitrarily sized regular grid can then be accomplished
by patching together such bicubic surfaces, ensuring that the derivatives

match on the boundaries.
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If the derivatives are unknown, they are typically approximated
from the function values at points neighbouring the corners of the unit

square, ie. using finite differences.

1.12.3b Bicubic convolution algorithm

Bicubic spline interpolation requires the solution of the linear
system described above for each grid cell. An interpolator with similar

properties can be obtained by applying convolution with the kernel in both

dimensions:
1 Jorx=0
W)= (a+2)|xr—(a+3)|xlz+l for 0 <|x| <1 (1.58)
a‘le—S a|x|2 +8alx| - 4a Sor 1<[x] <2
0 otherwise

where a is usually set to -0.5 or -0.75. Note that #(0) = | and W(»n) = 0 for
all nonzero integers #.

This approach was proposed by Keys who showed thata = - 0.5
(which corresponds to cubic Hermite spline} produces the best
approximation of the original function. If we use the matrix notation for
the common case @ = — 0.5, we can express the equation in a friendlier

manner:

-1 0
p(t)=l[] t z3] I Lo a (1.59)
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for t between 0 and | for one dimension. For two dimensions first applied

once in x and again in y:

-l p(t\’a(l 0 o1y A -, nJ
ole., A-10y 40.0)2 411.0)2 A2, v))
p( v Ay Qoo 4y 4 1))
p(t‘ > Ay 2y Ao 2y a(I.Z)’a[’J.Z))

Il

<

(1.60)

N

oo o o
Il

=

The bicubic algorithm is frequently used for scaling images and video for

display. It preserves fine detail better than the common bilinear algorithm.

1.12.4 Spline Interpolation

In the mathematical field of numerical analysis, spline
interpolation is a form of interpolation where the interpolant is a special
type of piecewise polynomial called a spline. Spline interpolation is
preferred over polynomial interpolation because the interpolation error
can be made small even when using low degree polynomials for the
spline. Using polynomial interpolation, the polynomial of degree » which
interpolates the data set is uniquely defined by the data points. The spline
of degree n which interpolates the same data set is not uniquely defined,
and we have to fill in n-1 additional degrees of freedom to construct a
unique spline interpolant.

Linear spline interpolation is the simplest form of spline
interpolation and is equivalent to linear interpolation. The data points are

graphically connected by straight lines. The resultant spline would be a
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polygon if the end point is connected to the initial points. Algebraically,

each S, is a linear function constructed as:

S )=y, + 2 Vi ey (1.61)

S_,(x)=5(x,), i=l.n-1 (1.62)

This is the case as we can easily see

Si—l(x[)=yi—l +Zi——y'i(x,- *X,-_,)=y,- (1.63)
T A
Six)=y + 2 X (x —x)= Viu (1.64)
Xy —X;

Commonly, magnification is accomplished through convolution
of the image samples with a single kernel—typically the bilinear, bicubic
(Netravali, 1995) or cubic B-spline kemel (Unser M et.al.,1991) . The
mitigation of aliasing by this type of linear filtering is very limited.
Magnification techniques based on a priori assumed knowledge are the
subject of current research. Directional methods (Bayrakeri and
Mersereau, 1995 and Jensen and Anastassiou, 1995) examine an image’s
local edge content and interpolate in the low frequency direction (along

the edge) rather than in the high-frequency direction (across the edge).
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Multiple kernel methods typically select between a few ad hoc
interpolation kernels (Darwish and Bedair, 1996). Orthogonal transform
methods focus on the use of the discrete cosine transform (DCT)
{Martucci, 1995 and Shinbori and Takagi, 1994) and the wavelet
transform (Chang et. al,, 1995). Variational methods formulate the
interpolation problem as the constrained minimization of a function
(Karayiannis and Venetsanopoulos, 1991 and Schultz and Stevenson,
1994). It should be noted that these techniques make explicit assumptions
regarding the character of the analog image.

With the rapid increase in available computing power, coupled
with great strides in image feature analysis, model-based, often highly
nonlinear interpolative techniques have become a viable alternative to
classic linear methods and have received increasing attention recently.
Several examples of model-based approaches to spatial image
interpolation can be found in Jensen and Anastassiou (1995), Jensen and
Anastassiou (1990), Martinez and Lim (1989), Wang and Mitra (1991).
Each of these papers utilizes the concept of an edge in a different fashion
to enhance interpolation results. Artificial neural network based
interpolation of image processing is still in its infancy stage (Davila and
Hunt, 2000). Hence it was thought worthwhile to pursuit this technique

for image processing applications.

Summary

An introduction to neural networks and digital image processing
is given in this chapter. Neural network can be viewed as a computational

tool for solving complex real world problems. The advantage of using
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neural network is that most of the computational complexities are

encountered in the training phase itself. When implemented for a real

world problem, the output obtained for the given inputs is only a mapping

between the input and the output. The various tools for image processing

is also introduced. The various available interpolation techniques are also

discussed.
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CHAPTER 2

DEVELOPMENT OF A SUCCESSFUL
ARTIFICIAL NEURAL NETWORK

2.1 Introduction

Even though Artificial Neural Network, ANN, based models
are empirical in nature, they can provide practically accurate
solutions for precisely or imprecisely formulated problems and for
phenomena that are only understood through experimental data and
field observations. ANNs have been utilized in a variety of
applications ranging from modeling, classification, pattern
recognition, and multivariate data analysis. An attempt is made here
to provide a preliminary understanding of the modeling
methodologies, design considerations, applications of ANN to real
world problems. Such understanding of ANN is essential for

making efficient use of their features.

2.2 Backpropagation networks

These networks are the most widely used type of networks
and are considered the workhorse of ANNs. A backpropagation
(BP) network is a multilayer Perceptron, MLP, consisting of (i) an
input layer with nodes representing input variables to the problem,

(ii) an output layer with nodes representing the dependent variables
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(i.e., what is being modeled), and (iit) one or more hidden layers
containing nodes to help capture the nonlinearity in the data. Using
supervised learning, these networks can learn the mapping from one
data space to another using examples. The term backpropagation
refers to the way the error computed at the output side is propagated
backward from the output layer, to the hidden layer, and finally to
the input layer. In BPANNs, the data are fed forward into the
network without feedback (i.e., all links are unidirectional and there
are no same layer neuron-to-neuron connections). The neurons in
BPANNSs can be fully or partially interconnected. These networks
are so versatile and can be used for data modeling, classification,
forecasting, control, data and image compression, and pattern
recognition (Hausson,1995).

To extend the understanding of ANNs from the level of
identifying what these systems are and to know how to design them,
it is imperative to become familiar with ANN computation and
design. For this objective, the BPANNs are discussed in more
detail, considering their popularity, and their flexibility and
adaptability in modeling a wide spectrum of problems in many
application areas.

The feedforward error-backpropagation learning algorithm
is the most famous procedure for training ANNs. BP is based on
searching an error surface (error as a function of ANN weights)

ustng gradient descent for point(s) with minimum error. Each
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iteration in BP constitutes two sweeps: forward activation to
produce a solution, and a backward propagation of the computed
error to modify the weights. In an initialized ANN (i.e.,, an ANN
with assumed initial weights), the forward sweep involves
presenting the network with one training example. This starts at the
input layer where each input node transmits the value received
forward to each hidden node in the hidden layer. The collective
effect on each of the hidden nodes is summed up by performing the
dot product of all values of input nodes and their corresponding
interconnection weights. Once the net effect at one hidden node is
determined, the activation at that node is calculated using a transfer
function (e.g., sigmoidal function) to vield an output between 0 and
+1 or -1 and +1. The amount of activation obtained represents the
new signal that is to be transferred forward to the subsequent layer
(e.g., either hidden or output layer). The same procedure of
calculating the net effect is repeated for each hidden node and for
all hidden layers. The net effect(s) calculated at the output node(s)
is consequently transformed into activation(s) using a transfer
function. The activation(s) just calculated at the output node(s)
represents the ANN solution of the fed example, which may deviate
considerably from the target solution due to the arbitrary selection
of interconnection weights. In the backward sweep, the difference
(i.e., error) between the ANN and target outputs is used to adjust the

interconnection weights, starting from the output layer, through all
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hidden layers, to the input layer. The forward and backward sweeps
are performed repeatedly until the ANN solution agrees with the
target value within a prespecified tolerance. The BP learning
algorithm provides the needed weight adjustments in the backward

sweep (Basheer and Hajmeer, 2000).

2.3 BP Algorithm

Because of its importance and simplicity, the BP algorithm
will be presented here in its final form. Detailed derivation of the
algorithm is found elsewhere (eg. Haykin, 2003; Hagan et. al.,
2002; Zupan and Gasteiger, 1993). In order to be able to run the
algorithm, it is essential to define the interlayer as the gap between
two successive layers that encloses the connection weights and
contains only the neurons of the upper layer, as shown in Fig. 2.1
(assuming that all layers are positioned above the input layer).
Consider an MLP network with L interlayers. For interlayer /e
{1,2,...,L} there are N nodes and N, X N, ; connection links with
weights W € R N, XN, . where N; and N, are the number of
nodes (including thresholds) in interlayers / and /-7, respectively
(Fig.2.1). A connection weight is denoted by W'j,- if it resides in
interlayer / and connects node j of interlayer / with node i of lower
(preceding) internode layer /-1 (node i is the source node and node j

is the destination node).
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Node i

Fig.2.1 Notations and index labeling used in backpropagation ANNS

In any interlayer /, a typical neuron ; integrates the signals, x; ,

impinging onto it,and produces a net effect, & , according to linear

neuron dynamics:
AN
2.1

i=l

The corresponding activation, x;, of the neuron is determined using

a transfer function, G, that converts the total signal into a real

number from a bounded interval:
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Ny,
xi. =0 (9‘,' ): O'[Z wj, x™ ) (2.2)

i=l

One popular function used in BP is the basic continuous sigmoid:

o(E)=—m 23)

N l+e™
where -0 < & <o and0.0<o <1.0. Egs. (2.1}(2.3) are used for all
nodes to calculate the activation. For the input nodes the activation
is simply the raw input. In any interlayer, an arbitrary weight W at
iteration (¢) will be updated from its previous state (z-1) value

according to

()=, = 1)+ A, () 2.4

where Aw'; is the (+/-) incremental change in the weight. The
weight change is determined via the modified delta rule which can

be written as
AW, =08 X +paw e 2.5)

where 7 is the learning rate controlling the update step size, p is the

momentum coefficient, and x/’

is the input from the /-/th
interlayer. The first part of the right-hand side of Eq. (2.5) is the
original delta rule. The added momentum term helps to direct the
search on the error hyperspace to the global minimum by allowing a
portion of the previous updating (magnitude and direction) to be

added to the current updating step. Note that Eq. (2.5) can also be
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applied to any neuron threshold (bias) which can be assumed as a
link, with weight equal to the threshold value, for an imaginary
neuron whose activation is fixed at 1.0. The weight change can also
be determined using a gradient descent written in generalized form

for an interlayer I

!
AW, :x( oc ] 2.6)

Therefore, in order to determine the incremental changes for the /th

interlayer, the main task is to quantify the error gradient
(65'/6 u/,, ). Using Eqs. (2.5) and (2.6), the required weight change
can be derived with different expressions depending on whether the
considered neuron is in the output layer or in a hidden layer. If the
neuron is in the output layer, then /=L in Eq. (2.5), with 5%

calculated from

St=(xt —y, )xt (1-x%) @7

If the neuron is in a hidden layer, the weight change is also

calculated using Eq. (2.5) with &', determined from
st=x 1 -xj{z 51*'@;'} (2.8)
k=1

where &/ is calculated for a given non-output layer (/ ) beginning
with a layer one level up {(/+1) and moving down layer by layer.
That is, for the last (uppermost) hidden layer in a network, 5’j is

69



NEURAL NETWORK BASED STUDIES ON SPECTROSCOPIC ANALYSIS AND IMAGE PROCESSING
e ——— —— ——— ———+

determined via & "'of the output layer calculated using Eq. (2.7).
g Eq. (2.7)

The above delta equations (Eqs. (2.7) and (2.8)) are based on the

sigmoid transfer function given in Eq. (2.3). For a different
function, the termsx_;‘ (1 —x‘;‘) and x"/. (l —xv’,‘) in Egs. (2.7) and (2.8),

respectively, should be replaced with the relevant first derivative of
the used function. This technique of distributing backward the
errors starting from the output layer down through the hidden layer
gives the method the name backpropagation of error with the
modified delta rule (Rumelhart et. al.,1986) . The standard BP have
been modified in several ways to achieve a better search and
accelerate and stabilize the training process (Hagan et. al,, 2002;

Looney, 1996; Masters, 1994).

2.4 ANN Development Project

T he development of a successful ANN project constitutes a cycle
of six phases, as illustrated in Fig..2.2. The problem definition and
formulation (phase 1) relies heavily on an adequate understanding
of the problem, particularly the ‘cause—effect’ relationships. The
benefits of ANNs over other techniques (if available) should be
evaluated before final selection of the modeling technique. System
design (phase 2) is the first step in the actual ANN design in which
the type of ANN is determined along with the learning rule that fit

the problem. This phase also involves data collection, data
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preprocessing to fit the type of ANN used, statistical analysis of
data, and partitioning the data into three distinct subsets (training,

test, and validation subsets).

Problem
definttion
and
formulation

System
* Design SY\StEI.n_
' Realization

System
Maintenance

System
Venfication

Fig. 2.2 Various phases of ANN development project

System realization (phase 3) involves training of the network
utilizing the training and test subsets, and simultaneously assessing
the network performance by analyzing the prediction error. Optimal
selection of the various parameters (e.g., network size, learning
rate, number of training cycles, acceptable error, etc.) can affect the
design and performance of the final network. Splitting the problem
into smaller sub-problems, if possible, and designing an ensemble

of networks could enhance the overall system accuracy. This takes
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us back to phase 2. In system verification (phase 4), although
network development includes ANN testing against the test data
while training is in progress, it is good practice (if data permit) that
the ‘best’ network be examined for its generalization capability
using the validation subset. Verification is intended to confirm the
capability of the ANN-based model to respond accurately to
examples never used in network development. This phase also
includes comparing the performance of the ANN-based model to
those of other approaches (if available) such as statistical regression
and expert systems. System implementation (phase 5) includes
embedding the obtained network in an appropriate working system
such as hardware controller or computer program. Final testing of
the integrated system should also be carried out before its release to
the end user. System maintenance (phase 6) involves updating the
developed system as changes in the environment or the system
variables occur (e.g., new data), which involves a new development

cycle.

2.5 General issues in ANN development

A number of issues should be addressed before initiation of any
network training. Some of the following issues are only relevant to

BP ANNSs while others are applicable to the design of all ANN
types.
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2.5.1 Database size and partitioning

Models developed from data generally depend on database
size. ANNs, like other empirical models, may be obtained from
databases of any size, however generalization of these models to
data from outside the model development domain will be adversely
affected. Since ANNSs are required to generalize for unseen cases,
they must be used as interpolators. Data to be used for training
should be sufficiently large to cover the possible known variation in
the problem domain.

The development of an ANN requires partitioning of the
parent database into three subsets: training, test, and validation. The
training subset should include all the data belonging to the problem
domain and is used in the training phase to update the weights of
the network. The test subset is used during the learning process to
check the network response for untrained data. The data used in the
test subset should be distinct from those used in the training;
however they should lie within the training data boundaries. Based
on the performance of the ANN on the test subset, the architecture
may be changed and/or more training cycles be applied. The third
portion of the data is the validation subset which should include
examples different from those in the other two subsets. This subset
is used after selecting the best network to further examine the
network or confirm its accuracy before being implemented in the

neural system and/or delivered to the end user.
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Currently, there are no mathematical rules for the
determination of the required sizes of the various data subsets. Only
some rules of thumb derived from experience and analogy between
ANNs and statistical regression exist. Baum and Haussler (1989)
propose the minimum size of the training subset to be equal to the
number of weights in the network times the inverse of the minimum
target error. Dowla and Rogers (1995) and Haykin (1994) suggest
an example-to-weight ratio (EWR) > 10, while Masters (1994)
suggests EWR > 4. For database partitioning, a large test subset
may highlight the generalization capability better; however, the
remaining smaller training subset may not be adequate to train the
network satisfactorily. Looney (1996) recommends 65% of the
parent database to be used for training, 25% for testing, and 10%
for validation, whereas Swingler (1996) proposes 20% for testing
and Nelson and lllingworth (1990) suggest 20-30%.

2.5.2 Data preprocessing, balancing, and enrichment

Several preprocessing techniques are usually applied before
the data can be used for training to accelerate convergence. Among
these are noise removal, reducing input dimensionality, and data
transformation (Dowla and Rodgers, 1995; Swingler, 1996),
treatment of non-normally distributed data, data inspection, and
deletion of outliers (Masers,1994; Stein, 1993). Balancing of data is

especially important in classification problems. It is desired that the
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training data be distributed nearly evenly between the various
classes to prevent the network from being biased to the over-
represented classes. To balance a database, some of the over-
represented classes may be removed or extra examples pertaining to
the under-represented class added. Another way is by duplicating
the under-represented input/ output examples and adding random
noise to their input data (while keeping the output class unchanged).
Swingler (1996) suggests the use of information theory to measure
the degree of balance of the training database.

Small database size poses another problem in ANN
development because of the inability to partition the database into
fairly-sized subsets for training, test, and validation. To expand the
size of the database, the trivial way is to get new data (if possible)
or introduce random noise in the available examples to generate
new ones. Noise addition normally enhances the ANN robustness
against measurement error (e.g., noise = * Instrument sensitivity). If
data enrichment is not possible, the leave-one-out method (or leave-
k-out method) may be used for developing a network (Hecht —
Nielsen, 1990; Rizzo and Dougherty, 1994). With M exemplars
available, a network is trained on M-1 (or M-k} exemplars, and
tested on the one {or k) unused exemplar(s). The procedure is
repeated M times, each with a new set of randomly initialized
weights. The solutions of the M networks are then averaged to

obtain a representative solution to the problem. Other techniques to
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train and validate networks with limited data include grouped cross-
validation, grouped jackknife, and bootstrap (Twomey and Smith,
1997).

2.5.3 Data normalization

Normalization (scaling) of data within a uniform range (e.g.,
0-1) is essential (i) to prevent larger numbers from overriding
smaller ones, and (ii) to prevent premature saturation of hidden
nodes, which impedes the learning process. This is especially true
when actual input data take large values. There is no unique
standard procedure for normalizing inputs and outputs. One way is
to scale input and output variables (z;) in interval {A, A; ]
corresponding to the range of the transfer function:

xi = /‘{'l +(Z'2 ~2'1{ ilax— Zi nin ] (2°9)
Z; -2

i i

min

and z"" are the

max

where x; is the normalized value of z; , and z;
maximum and minimum values of z in the database. It is
recommended that the data be normalized between slightly offset
values such as 0.1 and 0.9 rather than between 0 and | to avoid
saturation of the sigmoid function leading to slow or no learning
(Haussoun, 1995; Masters, 1994). Other more computationally
involved techniques are given by Masters (1994), Swingler (1996),
and Dowla and Rogers (1995). Masters (1994) indicates that more

complicated techniques may not produce any better solution than
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that obtained using linear normalization (Eq. (2.9)). For parameters
with an exceptionally large range, it may be beneficial to take the
logarithm of data prior to normalization [if data contain zeros,

log(z; +1) may be used].

2.5.4 Input/output representation

Proper data representation also plays a role in the design of a
successful ANN (Masters, 1994). The data inputs and outputs can
be continuous, discrete, or a mixture of both. For example, in a
classification problem where each of the input variable belongs to
one of several classes and the output is also a class, all the inputs
and outputs may be represented by binary numbers such as 0 and 1
{or 0.1 and 0.9 to prevent saturation). If two inputs (A and B) are to
be assigned to four levels of activation (e.g., low, medium, high,
and very high), then each input may be represented by two binary
numbers such as 00, 01, 10, and 11 to indicate the four levels.
Another representation may assign four binary numbers to each
input such as 0001, 0010, 0100, and 1000 where the location of 1
determines the type of activation of the input variable. Similar
treatment applies to the output variables. This representation
increases the dimensionality of the input vector (the two-digit
representation converts the input vector into four inputs and the
four-digit representation into eight inputs). Binary inputs and

outputs are very useful in extracting rules from a trained network.
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For this purpose, a continuous variable may be replaced by binary
numbers by partitioning its range into a number of intervals, each
assigned to a unique class. Specialized algorithms for discretizing

variables based on their distribution also exist (Kerber, 1992),

2.5.5 Network weight initialization

Initialization of a network involves assigning initial values
for the weights (and thresholds) of all connections links. Some
researchers (eg., Li et. al., 1993; Schmidt et. al., 1993) indicate that
weights initialization can have an effect on network convergence.
Hassoun (1995) explained that if the initial weight vector is
stationed in a flat of the error surface the convergence may become
extremely slow. Other studies (eg., Fahlman, 1988) have shown that
initialization has an insignificant effect on both the convergence and
final network architecture. Typically, weights and thresholds are
initialized uniformly in a relatively small range with zero-mean
random numbers. However, an extremely small range can lead to
very small error gradients which may slow down the initial learning
process. The choice of small numbers is very essential to reduce the
likeltihood of premature neurons saturation. ASCE (2000)
recommends that weights and thresholds be assigned initial small
random values between -0.30 and +0.30. Weight initialization can
also be performed on a neuron-by-neuron basis by assigning values

uniformly sampled from the range (-+/ N;,+#/ N; ), where r is a real
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number depending on the neuron activation function, and A; is the
number of connections feeding into neuron j. Wessels and Barnard
(1992) use zero-mean and unit standard deviation for links feeding
neurons with weights sampled from [-3M77 | +3M "7 |, where M is
the number of weights in a given interlayer. Nguyen and Widrow
(1990) imitialize the weight vector so that each input exemplar is

likely to force a hidden unit to lear efficiently.

2.5.6 BP learning rate (n)

A high learning rate, n, will accelerate training (because of
the large step) by changing the weight vector, W, significantly from
one cycle to another. However, this spay cause the search to
oscillate on the error surface and never converge, thus increasing
the risk of overshooting a near-optimal W. In contrast, a small
learning rate drives the search steadily in the direction of the global
minimum, though slowly. A constant Jearning rate may be utilized
throughout the training process. Wythoff (1993) suggests n = 0.1-
1.0, Zupan and Gasteiger (1993) recommend n=0.3-0.6, and Fu
(1995) recommends n=0.0-1.0. The adaptive learning rate [ ()],
which varies along the course of training, could also be used and
can be effective in achieving an optimal weight vector for some
problems, Generally, larger steps are needed when the search is far

away from a minimum, and smaller steps as the search approaches a
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minimum. Since the distance from a minimum cannot be predicted,

various heuristics have been proposed.

2.5.7 BP momentum coefficient (i)

A momentum term is commonly used in weight updating to
help the search escape local minima and reduce the likelihood of
search instability. As implied in Eq.(2.5), 1 accelerates the weight
updates when there is a need to reduce n to avoid osciilation. A
high p will reduce the risk of the network being stuck in local
minima, but it increases the risk of overshooting the solution as
does a high learning rate. A u > 1.0 yields excessive contributions
of the weight increments of the previous step and may cause
instability. Conversely, an extremely small u leads to slow training.
Both a constant and adaptable momentum can be utilized. Wythoff
(1993) suggests p = 0.4-0.9, Hassoun (1995} and Fu (1995) suggest
n = 0.0-1.0, Henseler (1995) and Hertz (1991) suggest n =1.0, and
Zupan and Gasteiger (1993) suggest that ) + p = 1. Swingler (1996)
uses 4 = 0.9 and n = 0.25 in solving all problems unless a good
solution could not be obtained. Depending on the problem being
solved, it seems that the success of training varies with the selected
u, and a trial-and-error procedure is normally preferred. Adaptive
momentum involves varying p with the training cycle [i.e., u (8] in

which the changes in p are made in relation to error gradient
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information. Other methods relate p to the adaptive learning rate n
such that p is decreased when learning speeds up. Finally, the
addition of momentum should be considered with caution because
of the need of doubling computer space for storing weights of

current and previous iterations (see Eq. (2.5)).

2.5.8 Transfer function, o

The transfer (activation) function,s, is necessary to
transform the weighted sum of all signals impinging onto a neuron
so as to determine its firing intensity. Some functions are designed
to indicate only whether a neuron can fire (step functions)
regardless of the magnitude of the net excitation (& ) by comparing
& to the neuron threshold. Most applications utilizing BPANNs
employ a sigmoid function, which possesses the distinctive
properties of continuity and differentiability on (-c0, o) interval,
essential requirements in BP learning. Moody and Yarvin (1992)
reported various success rates with different transfer functions in
relation to data nonlinearity and noisiness. Han (1996) use a variant
logistic function with three adjustable parameters, and each neuron
is assigned a different set of values for these parameters. The
advantage of choosing a particular transfer function over another is

not yet theoretically understood.
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2.5.9 Convergence criteria

Three different criteria may be used to stop training: (i)
training error (p < ¢€), (ii) gradient of error (Vp < ), and (iii) cross-
validation, where p is the arbitrary error function, while € and 8 are
small real numbers. The third criterion is more reliable; however it
is computationally more demanding and often requires abundant
data. Convergence is usually based on the error function, p,
exhibiting deviation of the predictions from the corresponding
target output values such as the sum of squares of deviations.
Training proceeds until p reduces to a desired minimum. The
function p may also be expressed as the relative error of the
absolute values of the deviations averaged over the subset. Another
criterion is the coefficient-of-determination, R’ , representing the
agreement between the predicted and target outputs. Other more
involved methods for monitoring network training and
generalization are based on information theory (Swingler, 1996).

The most commonly used stopping criteria in neural
network training is the sum-of-squared-errors (SSE) calculated for

the training or test subsets as

N oM 2

SSE=+3%(,-0,) (2.10)
N p=1 i=l
where O,; and t,; are, respectively, the actual and target solution of

the ith output node on the pth example, N is the number of training

examples, and M is the number of output nodes. Some SSE criteria
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incorporate a measure of complexity of the network architecture.
Generally, the error on training data decreases indefinitely with
increasing number of hidden nodes or training cycles, as shown in
Fig.2.3. The initial large drop in error is due to learning, but the
subsequent slow reduction in error may be attributed to (i) network
memorization resulting from the excessively large number of
training cycles used, and/or (ii) overfitting due to the use of a large
number of hidden nodes. During ANN training, the error on test
subsets is monitored which generally shows an initial reduction and
a subsequent increase due to memorization and overtraining of the

trained ANN. The final (optimal) neural network architecture is

obtained at the onset of the increase in test data error.

Exror(eg. SSE)

\ OPn.mum P
\. Network. Vi
he »
) \‘\ Lo

-

[ ol

number of hidden neurons OR numbex of tainihg cycles

Fig.2.3 Criteria of termination of training and selection of aptimum network
architecture
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Other error metrics may be used and may perform equally
well in terms of optimizing network structure. For classification
problems (discrete-valued output), the convergence criterion should
be based on the hit (or miss) rate representing the percentage of
examples classified correctly (or incorrectly), or confusion matrices
(Lakshmanan, 1997), rather than the absolute deviation of the

network classification from the target classification.

2.5.10 Number of training cycles

The number of training cycles required for proper
generalization may be determined by trial and error. For a given
ANN architecture, the error in both training and test data is
monitored for each training cycle. Training for so long can result in
a network that can only serve as a look-up table, a phenomenon
called overtraining or memorization (Zupan and Gasteiger, 1993;
Wythoff, 1993). Theoretically, excessive training can resuit in near-
zero error on predicting the training data (called recall), however
generalization on test data may degrade significantly (Fig. 2.3).
Initially, the test subset error continues to decrease with the number
of training cycles. As the network loses its ability to generalize on
the test data, the error starts to build up after each epoch. Although
the error on the test data may not follow a smooth path, the onset of
a major increase in the error is considered to represent the optimal

number of cycles for that ANN architecture.
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2.5.11 Training modes

Training examples are presented to the network in either one
or a combination of two modes: (i) example-by-example training
(EET), and (ii) batch training (BT) (Zupan and Gasteiger, 1993;
Wythoff, 1993). In EET mode, the weights are updated immediately
after the presentation of each training example. Here, the first
example is presented to the network, and the BP learning algorithm
consisting of feedforward and backward sweeps is applied for either
a specified number of iterations or until the error drops to the
desired level. Once the first example is learnt, the second example
is presented and the procedure is repeated. The advantages of EET
include the smalier storage requirements for the weights as opposed
to BT, and the better stochastic search, which prevents entrapment
in local minima. The disadvantage of EET is associated with the
fact that learning may become stuck in a first very bad example,
which may force the search in the wrong direction. Conversely, BT
requires that weight updating be performed after all training
examples have been presented to the network. That is, the first
learning cycle will include the presentation of all the training
examples, the error is averaged over all the training examples
(e.g.,Eq. (2.10)), and then backpropagated according to the BP
learning law. Once done, the second cycle includes another
presentation of all examples, and so on. The advantages of the BT

mode include a better estimate of the error gradient vector and a
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more representative measurement of the required weight change.
However, this training mode requires a large storage of weights,
and is more likely to be trapped in a local minimum. For a better
search, the order of presentation of the training examples may be
randomized between successive training cycles. The effectiveness
of the two training modes can be problem specific (Hertz et. al.,

1991; Haykin, 2003; Swingler, 1996).

2.5.12 Hidden layer size

In most function approximation problems, one hidden layer
is sufficient to approximate continuous functions (Basheer et. al,,
2000; Hecht-Nielsen, 1990). Generally, two hidden layers may be
necessary for learning functions with discontinuities. The
determination of the appropriate number of hidden layers and
number of hidden nodes (NHN) in each layer is one of the most
critical tasks in ANN design. Unlike the input and output layers,
one starts with no prior knowledge as to the number and size of
hidden layers. As shown in Fig. 2.4, a network with too few hidden
nodes would be incapable of differentiating between complex
patterns leading to only a linear estimate of the actual trend. In
contrast, if the network has too many hidden nodes it will follow the
noise in the data due to overparameterization leading to poor
generalization for untrained data (Fig. 2.4). With increasing number

of hidden nodes, training becomes excessively time-consuming.

86



NEURAL NETWORK BASED STUDIES ON SPECTROSCOPIC ANALYSIS AND IMAGE PROCESSING

Dependent vaxiable y=f{x)

}' Training points
A Testing points

" [
J

]
R )
[

[}

)

L)

—= Optimum number of hidden nodes (HN)
---+ .Too many HN and overfitied cuive

— Too few HN and best-fit regression line

>

Independert Variahle, x

Fig.2.4 Effect of hidden layer size on network generalization

The optimal number of HN essential for network generalization
may be a function of input / output vector sizes, size of training and
test subsets, and, more importantly, the problem of nonlinearity.
Several rules of thumb are available in the literature which relate
hidden layer size to the number of nodes in input (N,yp ) and output
(Nour ) layers. Jadid and Fairbairn (1996) called for an upper bound
on NHN equal to Ny / [R + (Nive + Nour )], where Nygy s the
number of training patterns and R = 5 - 10. Lachtermacher and
Fuller (1995) suggest that NHN for a one-output ANN with no
biases be determined from 0.1 1Ny < NHN(Npwp + 1) < 030Ny .
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Masters (1994) suggests that the ANN architecture should resemble
a pyramid with NHN = (N,wp . Noyr )} . Hecht-Nielsen (1990) used
the Kolmogrov theorem to prove that NHN < Njvp» +1. Upadhaya
and Eryureka (1992) related NHN to Nrzy (via the total number of
weights, N,, ) according to N, = Nrzy loga (Nrgy ), and Widrow and
Lehr (1990) according to (N, /Nour ) € Nrrv S (N, /Noyr ) logs (N,
/Nour ).

Facing exotic problems such as those with high nonlinearity
and hysteresis normally forces us to try networks with hidden layers
that may not conform to any of these rules of thumb. The most
popular approach to find the optimal number of hidden nodes is by
trial and error with one of the above rules as starting point. Another
way is to begin with a small number of hidden nodes and build on
as needed to meet the model accuracy demand. Again, the cross-
validation technique for determining the proper size of the hidden
layer involves monitoring the error on both the training and test
subsets in a way similar to that used to stop training (Fig. 2.3).
Among other popular but more sophisticated techniques of

optimizing network size are the growing and pruning methods.

2.5.13 Parameter optimization

As can be seen, BP training requires a good selection of
values of several parameters, commonly through trial and error. Six

parameters should not be set too high (large) or too low (small), and
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thus should be optimized or carefully selected. Table 2.1 lists these
parameters and their effect on both learning convergence and

overall network performance.

]?:ri:rgrllter Too high or too large Too low or too small

Number of - Underfitting (ANN unable to
. Overtfitt .

hidden nodes. (I\}/( ?Igclenier‘r%lﬁi?(l)n) obtain the rules embedded in

NHN the data

Learning rate. n

Momentum
coefficient, p

Number of
training cycles

Size of training
subset. (Ntan)

Size of test
subset. Ngst

Unstable ANN (weights) that
oscillates about the optimal
solution

Reduces risk of local
minima. Speeds up training.
Increased risk of
overshooting the solution
(instability)

Good recalling ANN (ie..
ANN memorization of data)
and bad generalization of
untrained data

ANN with good recalling
and generalization

Ability to confirm ANN
generalization capability

Slow training

Suppresses effect of
momentum leading to
increased risk of potential
entrapment in local minima.
Slows training

Produces ANN that is
incapable of representing the
data

ANN unable to fully explain
the problem. ANN with
limited or bad generalization
Inadequate confirmation of
ANN generalization
capability

Table 2.1 Effect of extreme values of design parameters on training

convergence and network generalization

Summary

The remarkable information processing capabilities of
ANNSs and their ability to learn from examples make them efficient

problem-solving paradigms. A review of the basic issues pertaining
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to ANN-based computing and ANN design is discussed. A
generalized methodology for developing ANN projects from the
early stages of data acquisition to the latest stages of utilizing the
model to derive useful information was also proposed and
discussed. The increased utilization of ANNs is linked to several
features they possess, namely (i) the ability to recognize and learn
the underlying relations between input and output without explicit
physicai consideration, regardless of the problem’s dimensionality
and system nonlinearity, and (it) the high tolerance to data
containing noise and measurement errors due to distributed
processing within the network. ANNs also have limitations that
should not be overlooked. These include (i} ANNSs’ success depends
on both the quality and quantity of the data, (ii} a lack of clear rules
or fixed guidelines for optimal ANN architecture design, (iit) a lack
of physical concepts and relations, and (iv) the inability to explain
in a comprehensible form the process through which a given
decision (answer) was made by the ANN. ANNs are not a panacea
to all real-world problems; for that, other traditional (non-neural)
techniques are powerful in their own ways. Hybridizing ANNs with
conventional approaches such as expert systems can yield stronger
computational paradigms for solving complex and computationally
expensive problems. Recently, ANNs have attracted the attention
of the microbiology community, particularly in the area of pyrolysis

mass spectrometry and microbial growth in food systems.
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CHAPTER 3

IDENTIFICATION OF SPECTRAL
LINES OF ELEMENTS WITH
ARTIFICIAL NEURAL NETWORKS

3.1 Introduction

Spectra of various compounds and clements are taken for
spectroscopic studies. In spectroscopic studics, thc spectrum of the
sample, taken using a spectromcter, is plotted as a graph and the various
photo-peaks are identified. The spectrum of a sample contains the
characteristic spectral lines of all the clements present. Thus, it is a linear
superposition of the spectral lines of the elements present, but scaled.
Even the weak spectral linc of a particular clement is obtained if the
concentration of that element in the sample is high. Also, the strongest
line of an element becomes unobservable if the concentration of it is very
low. Under such conditions only persistent lines are obtained. A spectrum
can be thought of as a linear superposition of all the weak, strong and
persistent lines of all elements present in the sample. Once the spectrum is
recorded it becomes a tedious task to identify the various peaks present.
Spectrum contains spurious peaks as well as real peaks. Spurious peaks
are due to the noise. Wavelengths corresponding to the peaks are
identified and they are compared with the data in the data hand-book
(Sansonetti and Martin, 2005), which is readily available. This is both

time consuming and often requires manual intervention. it may lead to
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errors. So they must be avoided as far as possible. Artificial neural
networks {ANNSs) are capable of rejecting noisy data (Haykin, 20003 and
Hagan et.al. 2002). The ANN approach employs pattern recognition on
the entire spectrum. This recognition is performed by a single vector-
matrix multiplication that results in rapid analysis of the clements and can
be used in automated systems. This helps to wdentify the elements present
in the sample and also to test the purity of the clements. In this research
work, the possibility of using ANNs to tackle such problems has been
explored.

ANNs have demonstrated their benefits in analysis of various
spectral regions. Resin identification was done from ncar infrared
spectroscopic data with neural networks (Alam ct. al., 1994). Keller and
Kouzes (1995) have shown that Gamma spectral analysis can be
successfully done with ANNs. Also the same team has done an
identification of the nuclear spectrum for waste water handling (1995).
Olmos with his collegues (1994) has analysed the drift problems in
gamma ray spectra with ANNs. Olmos and his team (1991) has also
suggested an automation analysis of radiation spectrum using ANNS.
Neural network techniques has been applied to gamma spectroscopy by
Olmos et.al., 1995.Lerner and Lu (1993) have also done spectroscopic
analysis with neural nctworks. All these rcsearch works points to the
effectiveness of using ANNs for the spectral identification. Wythoff and
his colleagues (1990) done spectral peak identification and recognition
with multilayered neural networks. But here all have suggested that the
ANNs trained can be used for automation of specific types of

spectrometers. Keller and Kouzes with their collegues (1995, 1993)
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always used data generated by Monte Carlo simulations and automated
this type of spectrometer. The spectra used in these investigations showed
various levels of quality degradation due to calibration, salt build up ctc.
The task for the ANN was to learn the spectra with quality coefficient by
using the knowledge of a human expert. The input to the ANN is provided
as the number of channels of the spectrometer without giving any
specifications to the wavelength of the obtained spectrum. An attempt is
done here to take into consideration the characteristic spectral lines of
elements with their wavelength and intensity in the whole visible range.
The spectral lines in the visible range of Cadmium, Calcium, Iron,
Lithium, Mcrcury, Potassium and Strontium arc chosen for the project.
Also the performance of the system for intensity variations and different
noisc levels is evaluated. This technique can be used with any type of
spectrometer and a method to automate a practical system is also

discussed.

3.2 Modelling Issues

The development of a successful ANN project constitutes a cycle
of six phases (Basheer and Hajmer, 2000). The first phase is the problem
definition and formulation. In the present case, the problem is to identify
the spectral lines in the visible range of seven elements namely Cadmium,
Calctum, Iron, Lithium, Mercury, Potassium and Strontium. Second is the
system design phase. Usually supervised learning is suitable. Analyzing
the spectrum of elements taken, from data hand-book, it is evident that the
spectral lines occur in discrete values at different wavelengths as in

Fig.3.1. These consist of strong, persistent and weak lines. Spectra of
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various samples are taken for spectroscopic studies. They consists of
various photo-peaks which are characteristic spectral lines of the elements
which constitute the sample. Also it is not necessary that all characteristic
lines of each constitucnt element be found in the spectrum. But the
probability of occurrence of the persistent lines of the elements is very
high. Thus the spectrum taken is a lincar superposition of the spectra of
the constitucnt elements in the sample. Indeed, the photo-pcaks do not

havc the same relative intensity as specified in the data handbook. They

are scaled.
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Fig.3.1 Spectral lines of elements with (a) all lines and (b) persistent lines

So, if e; is the spectrum of element / in the sample, then the

intensity of the characteristic line of the sample S can be given as:
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$=Y ae, (3.1

where o is the scaling factor of the relative intensity of the spectral lines
of element /.

The output has a linear responsc with the input. Therefore, the
classification system should have a lincar response with respect to the
input. An ANN designed to have a linear response employs lincar
activation functions. A feed forward ANN that implements linear
activation functions can be rcduced to a network with a single input layer
and single output layer. The ANN used in the present application has a
single input and single output layer as illustrated in Fig.3.2. Two ANN
paradigms were studied for implementing the linear responsc: the hinear
perceptron and optimal linear associative memory. Linear perceptron is
one of the oldest ANN paradigms. It originally sparked interest in the
pattern rccognition community in the late 1950s and early 1960s
(Rosenblatt, 1958). However, it was unable to solve pattern recognition
problems that werc not linearly separable. Here, for spectral identification,
the neural network can be trained using linear perceptron models or using
optimal lincar associative memory (OLAM) algorithms. A lincar
perceptron does not converge to accurate results and OLAM is most
suited for such applications as shown by Keller and Kouzes (1995).

The optimal lincar associative memory (OLAM) approach is
based on a simple matrix associative memory model (Kohonen, 1972,
1989). 1t was developed in the early 1970s as a content addressable
memory and is useful in situations where the input consists of linear

combinations of known patterns. It is an improvement over the original
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matrix memory approach in that it projects an input pattern onto a set of
orthogonal vectors where each orthogonal vector represents a unique
pattern. With lincar activation functions, the training is a straight forward
matrix orthogonalization proccss where each pattern from the traiming set
is made to projcct onto a separate, unique orthogonal axis in the output

space (Keller and Kouzcs, 1995) .

gz

Fig.3.2 An ANN to identify the elements.

OLAM Weight Specification

Step 1. Form matrices of spectra. Arrange spectra as columns in an n x p
dimensional matrix X, where n is the number of inputs and p is
the number of elements and target as columns in an p x p

dimensional matrix T,
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Step 2. Generate inverse of the spectral matrix X. Since X is generally not
a square matrix, a pseudo-inverse technique is uscd to generatc
X1
(t+ indicates pseudo-inversc)
Step 3. Form the synaptic weight matrix.
W=TXt

The third phasec of an ANN development project is systcm
realization. The spectral lincs data from the handbook for cach element is
as shown in Fig.3.1. In the system realization phase, the number of input
neurons and the number of output neurons are to be determined. The
problem specification determines both (Hagan ct. al., 2002). Usually the
number of output neurons is taken as the number of problem outputs.
Since there are seven elements to be identified the number of output
ncurons is taken as seven. Next phase is to determine the number of input
neurons. In this particular problem thc number of input neurons is
detcrmined by training and testing. Two scts of data are given for testing:
One, a set of noisy data and other the persistent lines. The probability of
occurrcnce of persistent lines (ultimate lines) is the highest. Therefore, it
should be identified in any worse condition, even though it is few in
number.

The data is scanned with a resolution of 1A°. This is to cnsure
discretion with spectral lines which are very close to each other. In the
nanometre scale they are treated as the same line. There are about 3000
wavelength points with their intensities. As seen in Fig.3.1, most of these

points have intensity values of zeroes. To be more precise, consider the
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element Cadmium with its characteristic spectral lines in the range 400 -

500nm, given by Table 3.1.

Relative Wavelength
Intensity in A"
200 4134.768
1000 4415.63
100 4678.149
150 4799.912

Table 3.1: The characteristic spectral lines for Cadmium in the range 400-

500nm.

When scanned for a resolution of 1A", up to thc wavelength
4134A° the intensity value is zero and at 4135A° it is 200, then up to
4415A° it is again zero and again at 4416A° it is 1000 and so on. When
most of the data contains very low values or zeroes thc learning
algorithms will not converge to accurate results. So a reduction in data is
required. The most common method in data reduction is to find thc arca
under the curve. Area is taken by considering a polygon. It is to be
determined the optimurn number of wavelength points that is required to
make the polygon so as to get a better result from the trained ANN. The
data is divided into equal parts and the arca is taken for each segment. As
an example, consider that the data is segmented into 150 equal parts each
of 20 wavelength points and their intensities. Area is taken by considering
polygon with these 20 points. Therefore the data is now reduccd from
3000 data points to 150 data points. The data is then normalized, so that
there are now 150 input nodes with normalized data. This kind of data

reduction is done for each element and is arranged in a matrix form. The
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Fig.3.3. Error plot to determine the number of input nodes

matrix, X (as in the OLAM algorithm), is now having 150 rows and 7
columns, each column specifying an element. Since 7 clements are to be
identified, the target matrix T is a 7x7 matrix. By taking the pseudo
inverse of X, it became a 7x150 matrix. The weight matrix, 7x150, is
calculated as per the OLAM algorithm given. Testing of the result is also
done with the persistent line data and the noisy data. For the persistent
line and noisy data of each element, the data is again scanned with 1A"
resolution and the data is segmented into 150 equal parts and the area is
taken. The data is normalized. The output is verified for these inputs and
the error is calculated. This is done for segments of varied lengths. For

noisy data, the error goes on decreasing as the number input nodes
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increases. But when the number of input segments is 200, the system has
minimum error for the identification of persistent lincs, shown in Fig.3.3,
Therefore, the number of inputs to the system is 200. Thus the network is
ready for training,

The goa! of the training is to lcarn an association bctween the
spectra and the labels representing the spectra. The training process for
the OLAM is a non-iterative process and it converges very fast. The
weight matrix is obtained using pseudo-inversc rulc. Two types of ANNs
are trained, onc with all the spectral lines (ANN1) and the later with the
persistent lines (ANN2). Only the visible range (400-700nm) of the
spectrum is considered. The persistent lines are very few in number. For
elements like potassium there arc only two persistent lines in the required
range,as shown in Fig.3.1, whercas, thecre are about 44 spectral lines for
potassium in the visible range. The ANNs are tested with known samples

and unknown samplcs.

3.3 The Results

Now the system is to be tested. Spectra of mixtures were
generated by combining spectra of different elements. Random noisc is
also added to the mixture. The data is scanned with a resolution 1A” and is
segmented into 200 cqual parts and area is taken. The data thus got is
normalized and fed to the system. The output got for each ANN for 3
different mixtures is as shown in Fig.3.4. The first sample is a mixture of
calcium and iron in pure form without any noise. But the other two

samples, one a mixture of lithium and strontium and other a combination
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of mercury and potassium, are noisy data. ANN1 gives a consistent
performance than ANN2 cven in noisy environment. This is because the
gumber of observable spectral lines in the visible range is very high

compared to the persistent lincs. For the third sample which is a mixture

mixture of Ca & Fe mixture of Li & Sr mixture of Hg 8 K
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Fig.3.4 Output of the ANN for different samples

of Hg and K, ANN1 gives more accurate result than ANN2. For K, there
are only two persistent lines in the visible range and these lines are very
close to each other also. To identify K with ANN2 is a very tedious task
and most of the time it leads to errors. ANNI1 on the other hand gives a
very consistent result. In this context, the need of enough spectral lines in
the required range for training is emphasized.

More results are shown in Table 3.2 also. The identification of Fe

also gave some errors. From Fig.3.1, the highest relative intensity of Fe is
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A mixture of Fe & Hg

Cd Ca Fe Li Hg K Sr crror

ANN|I 0 0 1 0 1 0 0 0

ANN2 0 0.01 1 0 | 0 0.03 | 0.001

A mixture of Hg & Sr

ANNI 0 0 0.01 0 0.99 0 0.99 | 0.0003

ANN2 0 0 0 0 1 0.02 | 0.99 | 0.0005

A mixture of Cd & Sr

ANNI 1 0 0.01 0 0.01 0 1 0.0002

ANN2 1 099 | 0.02 0 0 001 | 0.03 1 0.0015

A mixture of Ca & Li

ANNI 0 l 0 1 0.01 0 0.01 | 0.0002

ANN2 | 0.01 | 0.99 | 0.0] | 0.01 0 0.13 | 0.0173

A mixture of Li & K

ANNI | 0.01 0 0 1 0 0.8 | 0.02 | 0.0405

ANN2 | 023 | 0.01 | 0.11 | 0.99 0 0.8 0.23 | 0.1581

A mixture of Ca (peak reduced to 80%) & Hg (peak reduced to 70%)

ANN] 0 0.8 0 0 0.69 0 0.01 | 0.0002

ANN2 | 0.01 | 0.79 0 0 0.73 0 0.11 | 0.0132

Table3.2: Output obtained for different samples. Each column represents

different elements. RMS error is listed in the right-hand column
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only 400 when compared to other elements having highest valuc of 1000.
In the training phase, sincc the data is normalized, Fc requires no
enhancement. But when the spectrum of Fe is combined with that of

others, the intensity of the spectral lines of Fe becomes very low. So the

spectrum of Fc 1s enhanced bcfore combining.

ANN2 had hard times in differentiating potassium with strontium. In
certain times, ANNI shows presence of mercury, which is not present. Hg
has only 15 spectral lines in the required range and most of them have
very low intcensity. Certain spectral lines of Hg coincide with the spectral

lines of clements like K. However, the crrors with ANNI1 were always

ANNI correctly identifies most of the elements fed to it. But

smaller than the ANN2,
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Fig.3.5 Error plots for (a) different intensities (b) noise level
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The performance of the networks is to be checked. Testing is
done with varying relative intensities and noise levels. First the intensities
of the lines are reduced. Here, no noisc is added and all the spectral lines
in both data scts are considered but with reduced intensity. With the
intensity as thc original, the outputs of thc ANNs werc I. When the
intensity s reduced, the output also correspondingly reduces. As shown in
table3.2, when the intensity of the spectral lines of Ca is reduced to 80%,
ANNSs output is only 0.8. The error plot for the output got for different
intensity levels are shown in Fig.3.5(a). It is evident that the performances
of both the networks are the same when the intensity is reduced. When the
intensity is reduced below 70% of the original relative intensity value,
then the network gives errors. Here, it is worthwhile to note that all
spectral lines in the visible range are considered.

The networks are now tested with noise. The output for different
noise levels are shown in Fig.3.5 (b). Random noise is added to the data
at different noise levels. The graph shows the avcrage error for 1000 such
data. Here the performance of ANNI is better than ANN2. This can be
seen in Fig.5 also. When the noise levels are very low, the networks
output is not affected. But as the noise levels are increased, the output of
the network shows errors. As shown in the Fig.3.5(b), noise levels cannot
be increased beyond a factor of 7 for both ANNs. Noise levels in practical
cases will not be very high. From this it is clear that random noise with
normal distribution will not affect the performance of the network. Only if
the noise amplitude is increased to 7 times its original value, some error

occurs, which is not a practical case. ANNI is preferred over ANN2.
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ANNI is trained with all spectral lines but ANN2 with the persistent lines
only which may lead to errors.

The initial results of our research have demonstrated the pattcrn
recognition capabilities of the neural networks. It also emphasized the
need for a large number of spectral lincs in the desired range for the
accuratc classification of clements. ANNI, which is traincd with morc
number of spectral lincs than ANN2, gives a better performance. This is
because ANNSs can easily generalize when data is large. The classification
is attributed to the orthogonalization process used by thc OLAM during
training. Since this training is a non itcrative process, the OLAM offers a
substantially shorter training time. One of the disadvantages of the
OLAM, is that all the spectral lines of cach element, weak, strong and
persistent within the visible range, are uscd for training. Good results are
obtaincd when all the lines are considered. But in a practical case, it is not
possible to obtain the whole spectral lines. Further work is directed in this
direction, to train a network with the characteristic lines of the elements

and to observc the performance of the network for practical cases.

3.4 An Automated System

The success of the identification of spectral peaks with the neural
network led the approach for the automation of a practical system (Saritha
and VPN Nampoori, 2009, 2002). It now turns out that a system is set up
so that when a spectrum is fed to it, it will identify all the elements present
in the sample by recognizing the elements learnt by it. Preliminary results
are good enough to consider this method for automating spectral

identification. Spectrum recorded with a CCD camera coupled to a
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spectrograph having a grating blazed at 750nm with 1200 grooves/mm
and using the fundamental emission of Nd: YAG laser having 10ns pulse
width was employed for the investigations. In the prcsent investigation,
the characteristic spectral lines of clements with their wavelength and

intensity in the whole visible range are taken into consideration.
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Fig.3.6 Spectral Lines of Elements

The spectral lines of Titanium, Calcium, Aluminium and Tin in
the visible region are chosen for the studics. Two simple ANNs are
trained. One of them is trained with all the characteristic spectral lines of
elements namely Titanium, Calcium, Aluminium and Tin and the latter
using the persistent lines of these elements. With the help of these two

networks, it became possible to identify the elements present in a practical
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spectrum. Usually supervised learning is suitable. Analyzing the spectrum
of elements taken, from data hand-book (Sansonctti and Martin, 2005), it
is evident that the spectral lines occur in discrete values at different

wavclengths as in Fig.3.6. These consist of strong, persistent and weak

lines.
4 Ti
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Fig.3.7 The ANN Model

The output has a linear response with the input. Therefore, the
classification system should havce a lincar response with respect to the
input. An ANN designed to have a linear response employs linear
activation functions. A feed forward ANN that implements linear
activation functions can be reduced to a network with a single input layer
and single output layer. The ANN used in the present application has a
single input and single output layer as illustrated in Fig.3.7. This can be
trained using linear perceptron models or using optimal linear associative
memory (OLAM) algorithms. A linear perceptron does not converge to
accurate results and OLAM is most suited for such applications as shown

by Keller and Kouzes(1995)
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3.5 The Approach

Now we will dctermine the number of input nodes and the
number of output nodes for thc ANN. Since there are four clements to be
identificd, the number of output nodes is 4. The number of input nodes is
determined by actual training and testing. For training, the data from the
handbook is taken. For testing, the persistent line data from the data
handbook and thc data taken by the spectrometer are uscd. Spectrum
taken with a CCD camera coupled to a spectrograph having a grating
blazed at 750nm with 1200 grooves/mm and using the fundamental

emission of Nd: YAG laser having 10ns pulse width was taken for the

studies.
Relative | Wavelength
Intensit in A
400 3900.675
500 3944.006
1000 3961.520

Table 3.3 The characteristic spectral lines of Aluminium in the range 380-

420nm

The wavelength range 380-740nm is split into 9 spectra cach of
40nm span, since a 40nm grating is used. The example of such a spectrum
extending from 380-420nm is as shown in Fig.3.8. The table3.3 shows the
characteristic spectral lines for Al in this range. There arc only 3 lines in
this range out of which 2 are persistent lines. This data is scanned with a
resolution of 1A°. This is to ensure discretion with spectral lines which are

very close to each other. In the nanometre scale they are treated as the
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same line. From the table it can be seen that, when scanned with a

resolution of 1A°, up to 3900A° the relative intensity is zcro and at

3901A°, the relative intensity.
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Fig.3.8 Example of the split spectrum of 40nm

is 400. Then up to 3943A° it is zero and at 3944A° it is 500 In the range
380-420num, there are about 400 wavelength points. Of these 400
wavelength points, most of them have relative intensity zero. ANN
algorithms do not converge to accurate results when most of the data are
zeros or very low values. So a reduction in data is required. The easiest
way of data reduction is to find the area under the curve. The 400 data
points are divided into 80 equal parts of 5 data cach. A polygon is

considered with each of these 5 data points and the area of the polygon is
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taken and the data is normalized, so that the number of input nodes for the
ANN is 80. This process is done to all the 4 elements and to all the 9

spectra of cach clement.

8 - T — T T —T T

§ T e ]

squared error
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30 40 50 60 70 80 90 100
number of input nodes

Fig.3.9. Error plot to determine the number of input nodes

In certain ranges, there is no characteristic spectral line for a
particular element. For instance, as shown in Fig.3.8, there is no
characteristic spectral line for Sn in the range 380-420nm. In such cases,
that element is discarded in that particular range. This is bccause the
relative intensity is zero for all the wavelengths in that range. From the
OLAM weight specification given, it is required to calculate the
pseudoinverse of the input matrix X. If one of the columns of the input
matrix X becomes zero, then it is singular and no inverse exists. This is

true with the persistent line data also as shown in Fig.3.8.
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The ANN now has 80 input nodes for each element, X is a 80x4
matrix, and 4 output nodes, T is a 4x4 matrix. The weight matrix W, a
4x80 matrix, is determined as per the OLAM weight specification. The
testing data, thc persistent line data and the actual data from the
spectrometcr are also scanned at a resolution of 1A and is segmented into
80 equal parts. The area of each part is taken by considering a polygon
with the points and it is normalized. This data is given to the trained
network. The network calculated the output and the mcan squared error is
determincd. The same process is rcpeated with varying number of input
nodes. As the number of input nodes is increased, the network learnt
easily but the gencralization became poor. As shown in Fig.3.9, the
performance of the network is better when the number of input nodes 1s
40. So for the ANN model it is decided to have 40 input neurons and 4
output neurons. The network is trained with OLAM weight specification

and the weight matrix is determined

3.6 The Output

The artificial neural network with 40 input neurons and 4 output
neurons is trained and is now ready to automate the spectra taken with the
spectrometer. Here, it is to be noted that the ANN is trained with the
actual data taken from the data handbook (Sansonetti and Martin, 2005).
No spectrum from any practically obtained spectrometer is given during
the training phase. It is used only for testing. The spectra of pure

Titanium, Titanium oxide and Aluminum oxide are taken.
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Fig. 3.10 Sample spectrum of Titanium oxide taken with a CCD camera
coupled to a spectrograph having a grating blazed at 750nm with
1200grooves/mm and using the fundamental emission of Nd: YAG

Spectrum for the studies is recorded with a CCD camera coupled
to a spectrograph having a grating blazed at 750nm with 1200
grooves/mm and using the fundamental emission of Nd: YAG laser
having 10ns pulse width. Fig. 3.10 shows a sample spectrum of titanium
oxide. Since a 40nm grating is used, each spectrum is having a span of
400 A°. The spectrum shows various photo-peaks. These consist of
original peaks and spurious peaks. Here the neural network is trained to

identify only 4 elements, viz., titanium, aluminium, calcium and tin. It is
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the purpose of the neural network to recognize these elements from the
spectrum shown in Fig.3.10. Here the pattern recognition capability of the

neural network is made use of.
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Fig.3.11 Sample spectrum of Titanium oxide taken with a CCD camera with ail
the characteristic spectral lines of elements trained with the ANN.

The neural network can recognize patterns even from a noisy background.
Once the network is trained efficiently, it is robust and reliable at any
worse conditions of the input, unless the input is highly distorted. The
trained ANN is now tested with a practical data given in Fig.3.10.

The sample spectrum of titanium oxide with the occurrence of all
the characteristic spectral lines of elements trained with the ANN is as
shown in Fig. 3.11. Some photo-peaks of the spectrograph spectrum is
coinciding with the characteristic spectral lines of certain elements and

there are photo-peaks which are spurious also. The spectrum of Titanium
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oxide in the range 4200 - 4600 A’ is as shown in Fig.3.12 with the
characteristic spectral lines of the elements and the persistent lines in
particular in the same range is also given. In the specified range Al has no
characteristic spectral lines.
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Fig. 3.12 Sample spectrum of Titanium oxide with the characteristic spectral

line of elements and persistent lines in the range 4200 — 4600 A*

With the coincidence of certain photo-peaks obtained in a 40nm
span with the characteristic photo-peaks of certain elements, one cannot
conclude that a specific element is present in the sample. The
confirmation is obtained from the spectrum taken from other wavelength
spans and also from the occurrence of the persistent lines in the obtained

spectrum. So the spectra for a certain range is required for the
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conclusions. Here, the whole visible range, with 9 spectra each of 40nm
span, is considered. Each of the 9 spectra is scanned with a resolution of
1A®. The scanned data is divided into 40 cqual parts and the normalized
area is taken. This data is fed to the trained neural network.

Within the range as shown in Fig.3.12, there are characteristic

spectral lines for elements such as Ti, Ca and Sn.

Output obtained for Titanium Oxide

380- | 420- | 460- | 500- | 540- | 580- | 620- | 660- | 700-
nm | 420 | 460 | 500 | 540 | 580 | 620 | 660 700 | 740

Ti | 012 (029 | 1.00 | 1.00 | 0.13 | 0.31 | 0.02 | 0.00 | 0.00

Ca| 077 | 0.18 [ 0.85 | 0.29 | 0.00 | 045 | 0.02 | 0.01 | 0.04

Al | 1.00 | 000 | 027 [ 0.00 | 1.00 { 0.34 | 0.60 | 0.39 | 0.00

Sn | 040 | 1.00 | 0.00 | 0.43 | 1.00 { 0.15] 0.00 | 0.19 | 0.35

Output obtained for Pure Titanium

Ti | 006 [ 021 ] 051 | 091 0.07 | 0.26 | 0.39 | 0.00 | 0.00

Ca| 019 [ 012 050 | 045 | 0.00 | 0.20 | 0.43 | 0.04 | 0.85

Al } 0.00 | 000 | 007 | 000 | 1.00 | 1.00 | 1.00 | 0.09 | 0.00

Sn | 036 | 0.00 | 000 {072 | 1.00 [ 0.12 | 0.00 | 0.09 | 0.25

Table 3.4 Output obtained from the ANN for the 9 spectra of Titanium oxide

and pure Titanium

The spurious peaks obtained in the sample are misclassified as the
elements which are not present in the sample. But the result was not
encouraging as shown in Table 3.4. In order to overcome this problem
another neural network is designed with the persistent lines only.
Persistent lines of all the elements in the desired range is taken and
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processed as discussed and the normalized area is given as the input to the
ANN. The weight matrix is determined using the OLAM weight
specification.

Sample spectrum taken with the CCD camera and considering the
persistent lines only is as shown in Fig.3.13. Literally speaking, one can
conclude the presence of a particular element in a sample by testing for its
characteristic spectral lines and also making sure the presence of its
persistent line in the taken spectrum. With the knowledge of these two
things only recognition of the elements can be satisfactorily done. Hence,
two artificial neural networks are made to solve the problem. The two
artificial neural networks, ANN! which is trained with all the spectral
lines and ANN2 trained with the persistent lines only, are used to
determine the elements present in the given sample. Processed data from
each of 40 inputs for the 9 spectra is given to ANN1.

The probability of occurrence of an element is determined from
the obtained output. For this probability, a threshold is kept. If the
probability is above this threshold, the second ANN, ANN2, is used to
check the presence of the persistent lines of the element. If the persistent
line is also present, then it could be inferred that the element is present in
the sample. The block diagram is shown in Fig.3.14. This technique gave
a good result for the entire sample spectrum fed to it. The 9 spectra
ranging from 380-740 nm taken using the spectrometer are processed as
each of 40 inputs and fed to ANN1. The output is tabulated as in table 3.4.

From the table, the probability of occurrences of each element is taken.
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Fig.3.13 Sample spectrum of Titanium oxide taken with a CCD camera with
only the persistent spectral lines of elements trained with the ANN
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Fig.3.14. Block diagram showing the spectral line identification

It can be seen that in certain ranges, the probability of occurrence

of some elements is high. For instance, it is seen that in the range 380-420
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for Titanium oxide, the neural network shows the presence of Ca and Al.
This is because some of the spurtous photo peaks of the sample coincide
with the original photo peaks of Al and Ca. Such errors can frequently
happen and must be avoided. So the existence of persistent lines of Ca

and Al is tested with ANN2,

Elements { Titanium oxide Pure Titanium Aluminum oxide
Ti 1 1 0
Ca 0 0 0
Al 0 0 1
Sn 0 0 0

Table 3.5 The result obtained after testing with ANNI and ANN2

When tested with ANN2, it gave a result of 0 ruling out the possibility of
occurrence of Ca and Al, showing that a spurious peak is misclassified.
This is done for every element and the result is verified and is tabulated as

in table 3.5.

Summary

The initial resuits of our research have demonstrated the
capability of artificial neural networks to identify elements even from a
noisy spectrum. With the help of two ANNSs, it became possible to
identify the elements present in the sample from the obtained
spectrograph. The classification is attributed to the orthogonalization

process used by the OLAM during training. Since this training is a non
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iterative process, the OLAM offers a substantially shorter training time.
One of the disadvantages of the OLAM, is that al} the spectral lines of
each element, weak, strong and persistent within the visible range, are
used for traming. Good results are obtained when all the lines are
considered. But in a practical case, it is not possible to obtain the whole
spectral lines. Another disadvantage of this is that it is limited by the
grating used. Since a 40nm grating is used, 9 spectra is required to cover
the whole visible range. But the results are satisfactory to consider this

tcchnique for automating the spectrum identification.
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CHAPTER 4

LEARNING BASED SUPER-
RESOLUTION OF BINARY IMAGES
WITH DISCRETE COSINE
TRANSFORMS

4.1 Introduction

Super-resolution is the process of obtaining an image at a
resolution higher than that afforded by the physical scnsor. Super-
resolution has been used in obtaining high quality image prints and has
found applications in areas such as surveillance and automatic target
recognition. This chapter aims the issue of image magnification (in optical
images the issuc is referred as interpolation, zooming, enlargement etc)
from a finite sct of collected data sampled at Nyquist rate.

Currently, there are many algorithms capable of achicving super-
resolution. The best known super-resolution algorithms is first published

by Gerchberg (1974) and later by Papoulis (1975). For the reconstruction

of the image f(x,y), these algorithms rely on the prior knowledge of the
original object which is the major disadvantage of these algorithms. In
most of the cases a priori knowledge of the object is not known.

A different superresolution algorithm, known as Poisson-
maximum a posteriori ( Poisson-MAP or PMAP), was developed by Hunt

(1974). It is also an iterative algorithm that constructs the Bayes MAP
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estimatc of the object, assuming Poisson statistics. Multiframe versions of
this algorithm have also been developed (Lucy, 1974).

The formulation of PMAP is similar to another itcrative Bayesian
algorithm, devcloped independently by Richardson (1972) and Lucy
(1974). The Richardson-Lucy algorithm which is known as the
cxpectation maximization algorithm is in the class of maximuim likelihood
cstimators. As was with the PMAP algorithm, a Poisson model for the
image is assumcd. Another superrcsolving algorithm is the maximum
entropy method which is a popular technique amongst the astronomical
community (Frieden and Burke, 1972).

All the above mentioned algorithms are itcrative methods. Scveral
noniterative algorithms have also been developed such as those by Byre
et. al. (1983) and Darling et. al. (1983) which perform regularized
approximation in a weighted Hilbert space by incorporating a priori
information. Morc further efforts include method based on singular value
decomposition that was developed by Walsh and Niclsen-Delaney (1994)
and a variant of a nonlinear interpolative vector quantizer by Sheppard et.
al.(1998).

Candocia and Principe (1999) proposed a method using linear
associative memory (LAM). They mmplemented a LAM via vector
quantization algorithm (VQ) to find the best mapping between the low-
resolution image and high resolution image, thereby capturing the
information across the scales with the assumption that the information
embodied in the code book vectors and LAM describes a mapping

between a low-resolution neighborhoods and its high resolution counter
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part. However, they ensure no warranty for the analysis that
mathematically supports their assumption.

Another nonlinear interpolation scheme is the sub-pixel edge
localization devcloped by Kris Jensen and Dimitris Anastassiou (1995).
Also T Q Pham and his fellowmen (2006} mention an example-based
super-resolution in the discrete cosine transform (DCT) domain. All the
aforementioncd algorithms are iterative algorithms, in which a single
blurred image is operated on repetitively until an acceptable cstimate is
obtained on the basis of some criterion. These methods are suited for off
line proccssing, but are ill-suited for real-time operation requiring a high
through-put rate. Thus the scarch for noniterative super-resolution
algorithms is of real practical importance.

There are only a few works available relating super-resolution of
images with neural nctworks. Concerning image restoration most often
considered architecture is the Hopfield network which is again an iterative
method like the super-resolution algorithms. In contrast to the
feedforward architecture of the multilayer perceptron (MLP), this network
is a single layer nctwork with complete interconnections. The output of
each node feed backs to every other node in the nctwork, even possibly to
itself. The Hopfield net is in the class of dynamic networks, in the sensc
that the node equations are described by differential or difference
equations (Chen et. al., 1995, Hopfield, 1982, 1984).

Perhaps the earliest discussion on the use of a Hopfield network
for image restoration was by Abbiss et. al. (1988, 1991), who discussed
the plausibility of this method without presenting any results. The first

documented results on actual images were presented by Zhou et. al.
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(1988), who used a Hopfield network to restore a gray scale image
degraded by a known shift-invariant blur function and signal independent
white noise. Their basic approach was the samc as that outlined by Abbiss
et. al. (1988, 1991), namely, to define a regularized error function, which
was mapped term by term to the Hopficld cnergy function. The cnergy-
reduction properties of the nctwork were then used to minimize the image
cstimation error.

This research inspired many others to study the Hopfield net
under different image-restoration situations and to improve on the original
Hopfield design. Zhang et. al., (1991) proposcd using multistate neurons
to avoid the exploding number of neurons nceded when gray levels are
represented as a simple sum of binary neurons. They demonstrated
performance against an image degraded by lincar motion blur plus
additive noise. Paik and Katsaggelos (1992) also considered motion blur
with and without additive Gaussian noisc. An improvement on Paik and
Katsaggelos (1992) method was proposed by Sun etal. (1995) who
presented simulation results showing better artifact suppression and
higher signal to noisc ratio than those obtained with Paik and Katsaggelos.

The robustness of Hopfield nct as an image-restoration tool has
been demonstrated in many works. Bilgen and Hung (1994) considered a
random shift-variant blur and Gaussian Noise in restoring one-
dimensional signals. Perry and Guan (1995) also applied shift-variant
distortions to 2D images. All these researchers used a common strategy
that of mapping the error function to be minimized into the Hopfield
network’s energy function to exploit its energy-reduction ability.

Fig.ueirdo and Leitdo (1994) followed a different approach. They
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proposed neural implementations of iterative restoration schemes that
were shown to converge. The so called Gauss-Seidel algorithm and a
modificd Jacobi algorithm were examples of this approach, both
implemented in Hopficld typc networks of graded elements.

An architecture that lends itself more naturally to rcal-time
operation is the multilayer feed forward neural network. Even though this
network requires a relatively long training processcs, once it is trained, it
rcquires only a single, forward pass over the blurred image to produce a
restored version. Thus it processes images faster than recursive
architecture, smaller in size and less complex to implement,

Multilayer fced forward neural network had considered by
Sivakumar and Decsai (1993) for image restoration. In this algorithm they
modified the transfer function used by ncural network. A multilevel
sigmoidal is defined and is used with a three layer perceptron. Restoration
is achieved by exploiting the generalization capabilities of the multilayer
perceptron network. They considercd a shift-invariant blur with and
without zero-mean white Gaussian noise on both binary and gray level
images. Nathalie Plaziac (1999) showed that the neural fiiter outperforms
the linear and median filters. The results show that the proposcd neural
network looks very promising for image interpolation, showing superior
performance under noisy conditions. Moreover, the proposed nonlinear
filter allows interpolating several pixels at a time, saving time and
memory storage in the process. For all these reasons neural networks
should be considered when intending some image interpolation. Davila
and Hunt (2000) considered multilevel feed forward networks for image

interpolation of both binary and gray level images. Neural networks have
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been used for solving the super-resolution image reconstruction problem
by Salari and Zhang, 2003 and Tsagaris et. al. 2004,

In this chapter we discuss the performance of a multilayer feed
forward network in the super rcsolution binary images using discrete
cosine transforms (DCT). The nctwork considered herc is a multilayer
perceptron trained with Backpropagation algorithm. Aithough binary
images are discussed here, this can be extended to gray scale images also

and is considered in later chapters.

4.2 Discrete Cosine Transforms

A discrete cosine transform (DCT) expresses a scquence of
finitely many data points in terms of a sum of cosine functions oscillating
at different frequencies. DCTs are important to numerous applications in
science and engincering, from lossy compression of audio and images
(where small high-frequency components can be discarded), to spectral
methods for the numerical solution of partial differential equations. The
use of cosine rather than sine functions is critical in these applications: for
compression, it turns out that cosine functions are much more efficient (as
explained below, fewer are needed to approximate a typical signal),
whereas for differential cquations the cosincs express a particular choice
of boundary conditions.

In particular, a DCT is a Fouricr-related transform similar to the
discrete Fourier transform (DFT), but using only real numbers. DCTs are
equivalent to DFTs of roughly twice the length, operating on rcal data
with even symmetry (since the Fourier transform of a real and even

function is real and even), where in some variants the input and/or output
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data are shifted by half a sample. There are eight standard DCT variants,
of which four are common.

The most common variant of discrete cosine transform is the
type-11 DCT, which is often refferred to as "thec DCT"; its inversc, the
type-11I DCT, is correspondingly often called "the inversc DCT" or "the
IDCT". Two related transforms arc the discrete sine transforms (DST),
which is equivalent to a DFT of rcal and odd functions, and the modified
discrete cosine transforms (MDCT), which i1s based on a DCT of
overlapping data

Like any Fourier-rclated transform, discrete cosine transforms
(DCTs) express a function or a signal in terms of a sum of sinusoids with
diffcrent frequencics and amplitudes. Like the discrete Fourier transforms
(DFT), a DCT operates on a function at a finite number of discrete data
points. The obvious distinction between a DCT and a DFT is that the
former uses only cosine functions, while the latter uses both cosines and
sines (in thc form of complex exponentials). However, this visible
difference 1s merely a consequence of a decper distinction: a DCT implies
different boundary conditions than the DFT or other related transforms.

The Fourier-related transforms that operate on a function over a
finitc domain, such as the DFT or DCT or a Fourier series, can be thought
of as implicitly defining an extcnsion of that function outside the domain.
That is, oncc a function f(x) is written as a sum of sinusoids, one can
evaluate that sum at any x, even for x where the original f(x) was not
specified. The DFT, like the Fourier series, implies a periodic extension of
the original function. A DCT, like a cosine transform, implies an even

extension of the original function.
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Formally, the discrete cosine transform is a linear, invertible
function F: R" -> R" (where R denotes the set of real numbers), or
cquivalently an invertible N x N square matrix. There arc several variants
of the DCT with slightly modified definitions. The N real numbers x,, ...,

xy.; arc transformed into the N real numbers Xj, ..., Xy, according to one

of the formulas:

DCT-1
We write
1 . = .4
X, :5()((, +(—1)‘ x.\,_l)+ ;x,, cos[N_]nk:I @.n

Some authors further multiply the X, and xy., terms by V2, and
correspondingly multiply the X, and Xy., terms by 1/V2. This makes the

DCT-I matrix orthogonal, if onc further multiplies by an overall scale

factor of 2/ (N —l), but breaks the direct correspondence with a real-

even DFT. The DCT-I is exactly equivalent (up to an overall scale factor
of 2), to a DFT of 2N - 2 real numbers with even symmetry. However,
the DCT-1 is not defined for N less than 2. (All othcr DCT typces are
defined for any positive N). Thus, the DCT-I corresponds to the boundary
conditions: x, is even around n=0 and even around n=N-1; similarly for
Xk

DCT-11

We have
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- b4 1
X, =) x, cos[ﬁ(rwg) k} 42)

n=0

_ The DCT-11 is probably the most commonly used form, and is
often simply referred to as "the DCT".This transform is exactly cquivalent
(up to an overall scale factor of 2) to a DFT of 4N rcal inputs of even
symmetry where the cven-indexed clements are zero. That is, it is half of
the DFT of the 4N inputs y,, where y», =0, y», ., = x, for0 < n < N, and
Yan - n = ¥y for 0 <n < 2N. Some authors further multiply the X, term by

1/V2 . This makes the DCT-1I matrix orthogonal, if onc further multiplics

by an overall scale factor of 4/2/N , but breaks the dircct correspondence

with a real-even DFT of half-shifted input. The DCT-II implies the
boundary conditions: x,, is ecven around n=-1/2 and cven around n=N-1/2;

X, 1s even around k=0 and odd around k=N.
DCT-111
In this case,
N-1 ]
X, = lx(, +Zx,, cos| Zn (k +—j
2 n=1 N 2 (43)
k=01, CN -1

Because eqn.(4.3) is the inverse of DCT-II this form is sometimes
simply referred to as "the inverse DCT" ("IDCT"). Some authors further
multiply the x, term by ¥2, so that the DCT-1I and DCT-III are transposes
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of one another. This makes the DCT-III matrix orthogonal, if one further

multiplies by an overall scale factor of{/2/N, but breaks the direct

correspondence with a rcal-cven DFT of half-shifted output. The DCT-I1]
implies the boundary conditions; x, is even around n=0 and odd around

n=N; X, 1s even around k=-1/2 and even around k=N-1/2.

DCT-1V

We write,
= /4 ] 1
X, = —ln+=1| k+—=
SRPILE COS[N(” 2]( 2)] (4.4)

The DCT-IV matrix becomes orthogonal if onc further multiplies

by an overall scale factor of. \J2/N . A variant of thc DCT-IV, where
data from different transforms arc overlapped, is called the modified
discrete cosine transform (MDCT). The DCT-1V implies the boundary

conditions: x, is even around n=-1/2 and odd around n=N-1/2; similarly

for Xk.

DCT v-vHI

DCT types I-IV arc equivalent to real-even DFTs of cven order
(regardless of whether N is even or odd), since the corresponding DFT is
of length 2(N-1) (for DCT-I) or 4N (for DCT-I/III) or 8N (for DCT-
VIII). In principle, there are actually four additional types of discrete

cosine transform, corresponding to real-even DFTs of logically odd order,
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which have factors of N+1/2 in the denominators of the cosine

arguments.

Equivalently, DCTs of types I-IV imply boundaries that arc
even/odd around cither a data point for both boundarics or halfway
between two data points for both boundaries. DCTs of types V-VIHI imply
boundaries that cven/odd around a data point for onc boundary and
halfway between two data points for the other boundary. However, these
variants secm to be rarely used in practicc. One reason is that FFT
algorithms for odd-length DFTs are gencrally more complicated than FFT
algorithms for even-length DFTs (c.g. the simplest radix-2 algorithms are
only for cven lengths), and this increased intricacy carrics over to the
DCTs as described below. (The trivial real-even array, a length-one DFT
(odd length) of a single number a, corresponds to a DCT-V of length
N=1.)

Inverse transforms

Using the normalization conventions above, the inversc of DCT-I
is DCT-I multiplied by 2/(N-1). The inverse of DCT-IV is DCT-1V
multiplied by 2/N. The inverse of DCT-II is DCT-III multiplied by 2/N
and vice versa. Like for the DFT, the normalization factor in front of these

transform definitions is merely a convention and differs between

treatments. For example, some authors multiply the transforms by \/2/ N

so that the inverse does not require any additional multiplicative factor.
Combined with appropriate factors of V2, this can be used to make the

transform matrix orthogonal.
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Multidimensional DCTs

Multidimensional variants of thc various DCT types follow from
the one-dimensional definitions: they are simply a scparable product
(equivalently, a composition) of DCTs along cach dimension.For
cxample, a two-dimensional DCT-II of an image or a matrix is the one-
dimensional DCT-II, from above, performed along the rows and then
along thc columns (or vice versa). That 1s, the 2D DCT-II is given by the

formula (omitting normalization and other scalc factors, as above):

NI-IX¥2-) J: o 1 T ( 1 )
X, = cos{ —| n, +— |k, |cos| —jn, + =k, (4.5)
kik2 ,;;,;,XHL”Z I:NI ( ! ZJ l} {N: 2 2 2

Technically, computing a two- {(or multi-) dimensional DCT by
scquencces of one-dimensional DCTs along each dimension is known as a
row-column algorithm (after the two-dimensional casc). As with
multidimensional FFT algorithms, howcver, there exist other methods to
compute the samc thing while performing the computations in a different
order (i.c. interleaving/combining the aigorithms for the diffcrent
dimensions). The inverse of a multi-dimensional DCT is just a separable
product of the inverse(s) of the corresponding one-dimensional DCT(s),
e.g. the one-dimensional inverses applied along one dimension at a time in

a row-column algorithm.
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.
4.3 Super Resolution

In chapter |, the sampling and quantization of images are dcalt
with. Closely related to image sampling and quantization is the zooming
and shrinking of an image. This is because zooming may be viewed as
over sampling, whilc shrinking may be viewed as under sampling. The
key differcnce between these two operations and sampling and quantizing
an original continuous image is that zooming and shrinking are applied to
digital image. Enlarging an image is also known as super-resolution
because when enlarged, it is just extrapolating the band above the cut off
frequency. Zooming requires two steps: the creation of new pixel
locations, and the assignment of gray levels to thosc new locations. Image
shrinking is done by row-column deletion (Gonzalez and Woods, 2002).

Super-resolution (SR) is techniques that in some way enhance the
resolution of an imaging system. Therc are different views as to what is
considered an SR-technique: some consider only techniques that break the
diffraction-limit of systems, while others also consider techniques that
merely break the limit of the digital imaging sensor as SR. There are both
single-frame and multiple-frame variants of SR, where multiple-frame are
the most useful. Algorithms can also be divided by their domain:
frequency or space domain. By fusing togethcr several low-resolution
(LR) images one cnhanced-resolution image is formed

In the most common SR algorithms, the information that was
gained in the SR-image was embedded in the LR images in the form
of aliasing. This requires that the capturing sensor in the system is

weak enough so that aliasing is actually happening. A diffraction-
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limited system contains no aliasing, nor does a system where the
total system Modulation Transfer Function is filtering out high-
frequency content.

There are also SR techniques that cxtrapolatc the image in
the frequency domain, by assuming that the object on the image is
an analytic function, and that we can exactly know the function values
in some interval. This method is severely limited by the noise that is
ever-present in digital imaging systems, but it can work for radar,

astronomy Of microscopy.

4.4 Network Design and Training

The present problem is the design of a ncural network trained
with backpropagation algorithm for the reconstruction of the binary image
above a cut off frequency p. The binary images of numbers 0 to 9 are
chosen for the task. A 32x32 image of each number has been made and
stored. The neural network used for training has the I-J-K format, where |
is the number of neurons in the input layer, J, that in the hidden layer and
K, the number of neurons in the output layer.

Design of a neural network consists of the determination of
suitable |, J and K for a given problem so as to get a better performance
for the network. Usually I and K are determined by the problem itself. The

image is blurred using a low pass fiiter (Ipf) with filter function given as:

1111

Iof=—|1 8 1 4.6

pf16 (4.6)
111
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The image chosen for training is an image of size 32x32. This is blurred
by the low pass filter given in Eq.4.6. The image is now down sampled to
a size of 16x16. It is then split into overlapping sections of 6x6 (36) pixels
cach as shown in Fig.4.1. This is then lexicographically arranged to form
a matrix of size 36x 1. The discrete cosine transform (DCT) of this matrix
is taken and is then fed to input of the neural network. Thus the number of
input nodes for the neural network is now 36. As shown in Fig.4.1, the in
between lines of the centre pixels A, B, C, D are interpolated. When these

lines are interpolated, the image gets zoomed and the output is as shown.

Ol

LT T LTt 1T L TTTTTITATTET]

Fig.4.1 Neural network trained with backpropagation algorithm with the
input and the interpolated output (shaded pixels are interpolated)

The shaded portion in the output is the interpolated pixels; the output is
thus 9. So the number of the output neurons is 9. But the DCT of the

enlarged image is got. The inverse discrete cosine transform (IDCT) is

143



NEURAL NETWORK BASED STUDIES ON SPECTROSCOPIC ANALYSIS AND IMAGE PROCESSING

%

taken and is arranged to get a portion of the image of size 3x3. Since
backpropagation is uscd the target must be given for training. The original
32x32 image is now split into overlapping sections of size 3x3. and
lexicographically arranged to a matrix of size 9x1. which is given as the
target for the network. The number of hidden layer neurons is found by

actual training and testing. The peak signal to noisc ratio (PSNR) is used

as an indicator for the image comparison (Nathalie Plaziac, 1999).

N1\

Fig.4.2 The training and testing set for the neural network. The first two rows

of data are used for training and the last row for testing

This ratio is described by:

PSNR =10log| ——- 4.7)

-—I--Zie’z(f,j)

MRy
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where m is the number of rows of the image, # is the number of columns
of the image, M is the maximum value that a pixel can have, and e(i,j) is
the difference between the two images ( the original image and the
interpolated image) at pixel located at position (7,j).

The data set for training and testing of the neural network is as
shown in Fig.4.2. It is decided to use the numbers from 0-4 for training
and the numbers 5-9 for testing. When trained and tested with the data, the
neural network found it difficult to recognize number 7. In order to tackle

this problem some slanting lines of
30°, 45°,60",120°,135" and 150" are also included for training. As

indicated in Fig.4.2, the first two rows of data are used for training and the
last row of data for testing. The number of input neurons and the number
of output neurons are now fixed to 36 and 9 respectively. There is no
thumb rule to determine the number of hidden layer neurons. The number
of hidden layer neurons is found by actual training and testing. For that,
the number of hidden layer neurons is varied from 2 to 17.

The number of iterations to be performed with each number of
hidden layer neuron is fixed to 1000. As the number of hidden layer
neurons varies, the PSNR of the training set of data and the testing set
varies. This can be very well appreciated in Fig.4.3 (a) and (b). Fig. 4.3
(a) and (b) shows the variation in PSNR of the output for the number of
hidden layer neurons J =2,J=5,1J=7,)J=11,J=15,J = 17. When a
neural network is set up for a specific task, initially the weight factors
from the input layer to the hidden layer (wi) and that from the hidden
layer to the output layer (wh) are randomly selected. This weight factor

initialization has an important role to play in the neural network
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output for data given for training

J=3 J=5 J=17
EBE EHN &M®

PSNR PSNR PSNR PSNR PSNR PSNR
1353 14095 16.17 16.86 16.73 1692

output for data given for testing

HE BE BE

PSNR PSNR PSNR PSNR  PSNR PSNR
1268 1292 1332 1342 1313 1321

(a)
‘output for data given for training
J=11 J=18 J=17

EE ENEN E®A

PSNR PSNR  pSNR PSNR  PSNR PSNR
1635 16.83 1627 16.61 165 16.95

output for data given for testing:
J=11, F=15 J - 17
: £ 3 PSNR PSNR  PSNR PSNR
i'f;‘? IEI?; 1332 1327 1322 1335

(b)

Fig. 4.3 (a) and (b) Variation in the PSNR of the training and testing set of
data as the number of neurons in the hidden layer varies for J=2,J=5,J=7,
J=11,J=15and J=17

146






NEURAL NETWORK BASED STUDIES ON SPECTROSCOPIC ANALYSIS AND IMAGE PROCESSING

2 3 4 5 6 7 8 9 10
97.3 11298 ] 115.89 1 114.27 | 118.99 ] 12429 | 119.56 | 117.57 | 119.23
93.92 112 11649 | 11877 | 11722 ) 1177 | 119.01 | 11815 1202
9924 | 11454 | 11695 ] 11774 } 115.05 | 116,65 | 117.2 | 123.63 | 117,59
94.65 | 111.82 1 1145 | 11569 | 117.87 | 11581 | 11942 | 119.32 } 123.65

106 11374 ] 116.03 | 11846 | 116.88 | 122.43 | 116.46 | 116.65 [ 120.21
9596 | 11381 | 11544 | 11947 | 11626 | 120.08 | 120.2 | 11646 | 118.12
102.7 1142 | 11455 111747 § 11701 1 123.36 | 120.73 | 117.95 ] 116.49
97.03 | 113.77 { 11596 ] 117.02 | 11821  116.01 | 121.76 | 117.23 | 116.64
96.86 | 110181 ] 11587 | 117.29 [ 115.76 | 118.87 | 118.63 | 123.36 | 12042
96.14 | 11223 ] 1141 | 11596 | 117.19 ] 11597 1 122.39 | 119.61 | 119.62

© 0.25 11143 § 11438 | 11846 ) 1178 | 118.15 ] 113.34 ] 120.78 | 118.94
96.59 | 112,07 ] 11565 | 114.7 | 11654 | 116.01 | 123.89 ] 116.62 ¢ 118.36
95.83 | 11459 ] 116.88 | 11443 [ 114.09 ] 11564 | 118.91 | 120.0] | 120.69

97.3 11429 J 11578 | 117.94 | 117.89 | 118.32 | 11811 ] 116.28 | 120.53
95.04 | 11315111392 ] 11866 ] 117.76 | 120.84 | 118.07 | 119.13 | 117.74
94.05 | 11241 ] 114311 118.2 1184 1120751 119.6 | 118.72 § 118.62
96.36 | 11455 ) 113.27 | 11788 [ 117.19 ) 119.51 | 120.43 | 119.16 | 120.29
9543 | 11333 ] 11507 [ 11695 | 113.08 | 11727 f 11431 | 117.54 | 118.33
97.03 ] 11358 | 112.65 ) 11468 | 113.71 | 12147 | 118.18 | 1158 | 120.57
100.67 § 11337 { 1139 [ 11512 ] 117.82 § 119.61 | 119.26 | 122.13 | 124.24
103.46 | 11353 | 11462 ] 1166 | 11656 | 118.84 | 1169 | 11845 [ 117.59
99.36 | 113.09 | 117.02 | 11422 ] 11675 | 11828 [ 120.8 [ 12044 | 124.2
98.21 | 113.87 ] 115.07 J 11642 | 11875 ] 117.16 | 116.69 | 122.19 | 117.36
96.26 | 113451 11642 1 11573 | 11563 ] 117.92 ] 116.35 | 120.63 | 121.55
101.86 | 112.6 [ 11572 | 11631 | 11849 | 117.11 | 117.37 | 122.92 | 120.65
97.9 | 113.21 ] 115.22 | 116.74 | 116.84 | 118.72 | 118.71 | 119.23 | 119.67

Table 4.1(a) Training Data: Determination of number of hidden neurons;
average PSNR in respect of the data used for training with the number of
hidden neurons varying from J =2 to 10. Training is done with 25 new
initializations of network weights and the network is trained for 1000 iterations
Jor each initialization. Last row gives the average PSNR values for each number

of hidden nodes
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—
11 12 13 14 15 16 1?7
122.89 118.23 119.29 119.66 119.11 120.65 116.4
120.28 119.59 121.35 119.36 126.48 119.89 117.83
121.44 119.98 118.57 118.96 123.29 120.58 117.7
118.87 118.03 121.9 119.85 118.72 121.51 125.56
117.07 121.5 125.71 118.91 124.04 125.46 118.88
118.78 116.65 119.23 119.11 119.39 118.72 124.95
123.98 119.09 116.14 124.84 121.71 122.47 119.53
117.83 115.97 121.07 116.46 118.81 116.5 120,68
118.58 121.5 119.66 121.68 120.29 117.5 118.93
118.78 119.67 122.17 117.33 121.87 115.46 115.78
122.86 123.75 118.84 118.08 120.78 118.4 119.73
116.49 118.01 123.33 118.8 12181 116.96 120.31
117.65 118.51 117.03 120.33 118.88 119.64 121.52
122.67 121.77 120.73 117.69 118.61 118.82 120.14
120.32 120.81 119.58 118.68 117.71 122.2 120.47
125.19 118.23 119.29 120.07 117.89 122.17 122.73
125.41 119.48 116.06 121.66 118.2 119.31 118.06
124.25 118.52 121.43 122.17 123.55 119.22 122.77

121 118.81 120.15 120.43 117.63 118.25 118.99
120.55 121.66 122.2% 119.83 119.32 120.57 119.75
121.9 124.9 117.64 119.7 120.69 123.21 120.66
118.7 121.25 119.67 123.33 120.72 117.59 119.95
120.58 122.44 120.86 114.97 120.67 125.57 122.14
122.69 121.54 120.01 119.72 118.13 122.45 119.47
119.01 125.99 120.33 120.09 120.77 119.85 120.2
120.71 120.24 120.09 119.67 120.36 120.12 120.13

Table 4.1(b) Training Data: Determination of number of hidden neurons;
average PSNR in respect of the data used for training with the number of
hidden neurons varying from J = 10 to 17. Training is done with 25 new
initializations of network weights and the network is trained for 1000 iterations
Jor each initialization. Last row gives the average PSNR values for each number
of hidden nodes
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2 3 4 5 6 7 8 9 10
46.18 47.84 47.72 478 | 47.78 49.7 | 47.16 47.32 47.15
45.62 47.83 47.87 47.28 47.25 47771 4784 ) 4827 47.99
46.35 48.08 48.07 48.34 47.74 46.78 | 48.09 | 49.27 48.21

45.62 47.73 47.78 48.04 47.73 47.93 48.11 46.38 47.56
45.42 47.92 48.01 48.13 47.94 47.96 47.23 47.31 47.65
46.15 47.9 47.95 48.5 48 48.02 48.56 47.84 47.95

44.1 48.08 48.25 47.83 47.8 49.67 49.09 | 47.79 | 46.77
46.18 47.88 47.86 47.79 48.15 47.66 1 4926 } 47.51 47.29
46.02 47.9 1 4795 4799 | 46.84 47.2 48.2 47.1 49.15
46.15 47.95 47.92 48.1 4736 | 4692 | 46.83 47.06 47.7
43.33 48 48 47.6 47.97 48.37 | 4B8.24 47.1 47.28
45.87 48.07 | 4787 | 4778 47.69 48.08 46.77 47.5 48.25
45.96 4791 48.06 47.7 47.65 47.68 | 47.71 47.44 46.6
46.21 47.93 47.03 1 47981 48.06 48.77 47.63 47.75 47.82
45.64 47.53 4796 | 47.94 48.36 48.19 | 4751 47.8 47.8
45.59 47.84 47.76 | 4694 | 479%| 4987 | 48.3 48.09 | 47.39
46.04 47.83 4777 1 4747 47.7 48.41 48.28 48.5 48.71
45.75 48.05 47.86 47.31 47.43 48.06 | 47.74 | 47.27 47.72
46.13 4787 1 47.5] 47.94 47.1 47.79 48.22 47.36 48.76
42.79 47.81 47.88 47.9 47.79 | 4851 46.76 | 47.17 47.63
46.35 47.8 47.58 48.03 47.92 47.93 47.16 | 47.77 47.84

464 | 4799 | 4784 | 48.04 | 4795 48.25 | 480l 48.34 48.02
46.26 48.09 | 4809} 4798 | 48.54 | 47.97 47.94 49.6 46.59
46.22 4797 | 4804 | 47861 47.27 47.8 1 4631 47.67 4741
46.22 47.78 ) 4827 | 4796 | 41.71 47.73 4799 | 48.16 47.33

45.7 47.9 47.88 | 4785 47.75 48.12 41.79 47.73 47.7

Table 4.2 (a) Testing Data: Determination of number of hidden neurons;
average PSNR for the data used for testing for the number of hidden neurons
varying from J = 2 to 10. For each of the network weights obtained with the
training data is correspondingly tested. Last row gives the average PSNR.
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11 12 13 14 15 16 17
4797 47.6! 48.17 47.61 48.66 46.76 47.22
47.71 4749 47.9 47.93 49.49 47.36 47.66

48.05 47.75 48.08 47.12 47.57 47.18 47.59
47.11 47.93 48.22 48.19 47.03 43.91 47.35

46.92 47.13 47.26 47.54 47.8 47.17 48.74
47.96 47.64 46.32 47.54 473 47.8 48.66
4841 48.32 4731 47.61 47.06 47.74 4831

47.45 47.54 48.25 47.97 48.13 47.65 47.47
47.73 46.59 47.94 46.59 47.85 4745 47.75
48.26 47.26 47.77 48.08 4745 48.55 47.82

49.11 49.29 4731 47.55 48.74 47.05 48.09
4735 48.33 47.27 47.21 4746 46.74 48.48
47.21 46.72 47.38 47.06 47.37 48.39 49.02
47.54 47.97 47.8 47.5 47.69 47.3 48.7
46.93 47.41 47.27 47.39 46.93 47.36 47.45

48.59 48.73 48.12 47.29 47.64 49.47 48.19
49.5 47.93 46.91 49.03 48.19 47.48 48.01

47.4 47.75 47.2 47.45 48.27 473 47.75
47.2) 48.66 47.47 48.14 47.98 4795 46.67
47.93 47.13 47.3% 47.11 47.63 47.47 47.1
47.86 48.2 47.73 47.51 47.64 48.03 46.85
46.92 48.56 47.37 47.72 48.43 47.29 46.98
46.62 479 47.71 47.73 47.16 48.84 46.26
50.04 47.63 47.32 47.62 47.85 48.5 47.24
47.91 49.15 48.24 47.24 47.06 47.46 47.63

47.83 47.86 47.58 47.59 47.78 47.73 47.72

Table 4.2 (b) Testing Data: Determination of number of hidden neurons;
average PSNR for the data used for testing for the number of hidden neurons
varying from J = 11 to 17. For each of the network weights obtained with the
training data is correspondingly tested. Last row gives the average PSNR.
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from table 4.1 (a) and (b), as the number of hidden layer neurons increases
the performance of the network becomes better and better. With a large
number of hidden layer neurons, the learning becomes less tedious. But
the response of the neural network to untrained data will be poor. In short,
the generalization capability of the network will be first increasing and
then it shows a decreasing trend with the increase in the number of hidden
layer neurons. This fact is evident in the table 4.2. Here the PSNR is
determined for the test data, for various weight factors obtained for the
various training of the neural network. The data in table 4.1(a) and (b) and
table 4.2(a) and (b) is shown in Fig. 4.5.Also as the

130 v v T T r T
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& IDU‘/ —4 training data | 4

% —4— testing data
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L y ¢ ¢ ' y ¢ y y y
40 A - 1 A A 1 A
2 4 6 8 10 12 14 16 18

Number of hidden Neurons

Fig.4.5 Piot showing the variation in average PSNR for the training and testing
data with the number of hidden nearons
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number of hidden layer neurons increases, the hardware requirement of
the computer also increases. More the number of neurons, the more will
be the memory requirement. More the number of neurons, the more will
bc computation complexity, the more will be the time taken for
processing. So it is a trade off between the hardware, computation
complexity, performance, time etc. With all these considerations, it is
decided to select the number of hidden layer neurons to be 11 (J = 11).
Now the neural network is ready for training and further processing with
the number of input layer neurons, I = 36, hidden layer neurons, J = 11

and output layer neurons K = 9.

4.5 The Output

The neural network in the I-J-K format is trained with random
initialization. The activation function is so chosen that for the hidden layer
neurons sigmoid function is used and for the output layer neuron
purelinear activation function is employed. The neural network is trained
step by step. Each step consists of a specific number of iterations. At the
end of each step the PSNR is tested. A neural network cannot be trained
for a large time or for a large number of iterations as shown in Fig.4.6.
Initially, as the number of iterations increases, the PSNR also increases.
After specific number iterations, which have to be found by constant
testing, the neural network gets saturated. The PSNR for the training set
of data tend to increase with increasing number of iterations, whereas the
generalizing capability of the network tends to decrease. When saturation
is attained, further training will lead the neural network to confusion or it

is said to be over trained. Hence, it is necessary to stop the training of the
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neural network properly. After getting a proper termination for the neura)

network training, the network can be saved and can be tested.

outpuf for the training data J = 11

after 1000 + 10,000 + 1,00,000
iterations iterations iterations

[=] ] [se]
PSNR PSNR PSNR PSNR PSNR PSNR
1637 16.82 17.68 18.31 1947 19.63

output for the testing data J=11

BEE BE BE

PSNR  PSNR PSNR. PSNR  pSNR PSNR
1339 1332 1326 13.71 1329 13.17

Fig.4.6 Variation of the PSNR with the number of iterations

The simulations are done with the binary image of numbers 0-9.
The results of these simulations are compared with interpolate techniques
like nearest neighbour, bilinear, bicubic and the spline interpolation
methods that are available. The peak signal to noise ratio (PSNR) is used
as an indicator for the image comparison as given in Eq.4.7. The training
and testing set consist of numbers from 0-9 and lines of different
inclinations as shown in Fig.4.2. For the multilayer perceptron (MLP) the
simulation results are as shown in Fig.4.7. The simulation result shown in
Fig.4.7, is for an unseen, new image for the MLP. The MLP is trained
with numbers 0-4 and some slanting lines. The slanting lines are used

because it became difficult for the MLP to recognize number 7 as it
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Criginal image Biurred Downsampied Imane Reconstructed image
Blurred,

Reconsiructed Spectoum
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Fig.4.7 Image reconstruction done for number 8 with their spectra.
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Fig.4.8 Image reconstruction done for number7 with their spectra.

contains inclined lines. Number § is not in the training set and the MLP is
able to reconstruct the image. This shows the generalization capability of
the MLP. This can be very well appreciated in Fig.4.8 also. Here the

reconstruction of number 7 is given. The performance of the MLP is
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Blarrad, Downsamplan Image 176x° k) Recanstructed Images (3430)
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(a)
Blurred, Downsampled (16x16) Reconstructed Images (32x32)
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20 0 0 2 32

Spectrum of Images

(b)
Fig.4.9(a) Image reconstruction done for number 8 (b) with added noise using
various methods like Neural Network, Nearest Neighbour, Bilinear, Bicubic

and Spline interpolation methods with their spectra.
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compared with the existing techniques like nearest neighbour, bilinear,
bicubic and spline interpolation methods. As shown in Fig.4.9 (a) and (b),
the performance of the neural network is much better.

The PSNR related to each technique is calculated and compared.
Details of comparison are shown as in table 4.3. Also the average PSNR is
calculated and it is clear as can be seen that the performance of the neural

network is comparable

["Numbers Neural Nearest Bilinear | Bicubic | Spline
Network Neighbour

1 14,713 12.256 12.55 12.705 14.824

2 15.591 10.978 11.396 11.585 13.87

3 16.808 11.814 11.645 11.941 13.271

4 18.609 15.651 14.191 14.6 15.189

5 13.433 9.9562 10.63 10.793 12.981

6 13.667 10.612 11.136 11.321 13.343

7 16.026 16.022 14.359 15.009 | 15.216

8 14.073 10.609 11.055 11.342 | 12.573

9 13.67 10.483 10.755 10.899 | 13.335

0 17.915 16.63 13.012 13.556 | 13.023

Lines 45° 22.816 13.753 13.963 14.08 16.049

135" 22.8 15.364 15.087 15.883 15.842

30° 21.529 15.622 15.262 15.792 | 16.033

150" 23.947 15.612 15.251 15.766 | 16.124

60" 21.33 15,789 15.687 16.263 16.398

120" 20.616 14.622 14.502 | 14.728 | 16.231

Average 17.971 13.486 13.155 13.517 | 14.644

Table 4.3 The PSNR of the numbers and lines compared with the various
methods

Summary

A neural network in the I-J-K format is set up with the number of

input layer neuron 1 = 36, hidden layer neuron J = 11 and output layer
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neuron K = 9. The neural was able to reconstruct the frequencies above
the cut off frequency. The performance of the network is evaluated. The
efficiency of thc network is compared with the existing interpolating

techniques and was found better.
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CHAPTER 5§

RESTORATION OF GRAY LEVEL
IMAGES WITH DISCRETE COSINE
TRANSFORMS

5.1 Introduction

In the previous chapter with binary image restoration, the
variation of the neural network output with thc number of hidden layer
ncurons, the input weight initialization and number of iterations is
discussed. These are not only the factors that have to be considered for
design of an efficient neural network. The performance of the neural
network is affected by the variation of the activation function, the
selection of the input data given for training, the sclection of proper
training algorithms ctc. Here an attempt is done to illustrate the
performance variation of the neural network with thesc parameters. Also
the capability of the neural network in image restoration with discrete
cosine transform is mentioned. A comparison of the performance of

neural network with other image interpolation techniques is also done.

5.2 Shrinking and Zooming of image

Sampling is the principal factor determining the spatial resolution
of an image. Basically, spatial resolution is the smallest discernible detail
in an image. Gray level resolution refers to the smallest discemible

change in gray level. There are considerable discretion regarding the
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number of samples used to generate a digital image, but this is not true for
the number of gray levels. Due to hardware considerations, the number of
gray levels is usually an integer power of 2. The most common number is
8 bits, with 16 bits being used in some applications where enhancement of
specific gray-level ranges is necessary. When an actual measure of
physical resolution relating pixels and the level of detail they resolve in
the original scene are not necessary, it is not uncommon to refer to an L -
level digital image of size M X N as having a spatial resolution of M X N
pixels and a gray-level resolution of L levels.(Gonzalez and Woods, 2002)

Fig.ure 5.1 shows an image of size 512 x 512 pixels whose gray
levels are represented by 8 bits. The other images shown are the results of
subsampling the 512 x 512 image. The subsampling was accomplished by
deleting appropriate number of rows and columns from the original
image. This is also referred as shrinking of the image. These images show
the dimensional proportions between various sampling densities, but their
size differences make it difficult to see the effects resulting from a
reduction in the number of samples. The simplest way is to compare their
effects is to bring all the subsampled images upto the size 512 x 512 as
shown in Fig.5.2

When considering subsampling or shrinking of an image, equal
importance must be given to enlargement or zooming of images. When
subsampled, the details of the image were lost. Enlargement or zooming
focuses on reconstructing this lost details in the image. When this lost
information is added, a 32 x 32 image can be zoomed to 64 x 64 image.
Zooming requires two steps: the creation of new pixel locations, and the

assignment of gray levels to those new locations.
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Fig. 5.1 A 512 x 512, 8 bit image subsampled to a size of 32 x 32 pixels. The
number of allowable gray levels was kept at 256.

286 x 256 128 x 128 64 x64

Fig.5.2 Resampled images.

There are many methods to perform this kind of assignment. These are
commonly referred to as the image interpolation techniques. The most
common interpolation techniques are discussed in chapter 4. The simplest

of these technique is the nearest neighbour interpolation method. In this
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method, in order to perform gray-level assignment for any point in the
overlay, the closest pixel in the original image is considered and assigns
its gray level to the new pixel in the grid. When this is done with all points
in the overlay grid, a zoomed image will be obtained (Gonzalez and
Woods, 2002).

Although nearest neighbour interpolation is fast, it has the
undesirable feature that it produces a check board effect that is
particularly objectionable at high factors of magnification. In computer
vision and image processing, bilinear interpolation, another method of
interpolation, is one of the basic resampling techniques. It is a texture
mapping technique that produces a reasonably realistic image, also known
as bilinear filtering or bilinear texture mapping. An algorithm is used to
map a screen pixel location to a comesponding point on the texture map.
A weighted average of the attributes (colour, alpha, etc.) of the four
surrounding texels is computed and applied to the screen pixel. This
process is repeated for each pixel forming the object being textured
{Gonzalez and Woods, 2002).

Commonly, magnification is accomplished through convolution
of the image samples with a single kernel—typically the bilinear, bicubic
(Netravali and Haskell, 1995) or cubic B-spline kernel (Unser M
et.al.,1991) . The mitigation of aliasing by this type of linear filtering is
very limited. Magnification techniques based on a priori assumed
knowledge are the subject of current research. Directional methods
(Bayrakeri and Mersereau, 1995 and Jensen and Anastassiou, 1995)
examine an image’s local edge content and interpolate in the low

frequency direction (along the edge) rather than in the high-frequency
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direction (across the edge). Multiple kernel methods typically select
between a few ad hoc interpolation kernels (Darwish and Bedair, 1996).
Orthogonal transform methods focus on the use of the discrete cosine
transform (DCT) (Martucci, 1995 and Shinbori and Takagi, 1994) and the
wavelet transform (Chang ct. al., 1995). Variational methods formulate
the interpolation problem as the constrained minimization of a function
(Karayiannis and Venetsanopoulos, 1991 and Schultz and Stevenson,
1994). 1t should be noted that these techniques make explicit assumptions
regarding the character of the analog image. Most of the super resolution
algorithms arc discussed in chapter 4.

Another approach of resolution improvement in remotely sensed
images is that of a fully inter connected NN model (Valdes and Inamura,
2000). The specific single-hidden-layer neural network, being trained by
the backpropagation algorithm, is required to cnhance the resolution of
diffraction-limited, binary images. Moreover, a high-resolution, multi-
neural network, bascd on the local variance is proposed Sekiwa and
Taguchi, 2001. This spccific network is composed of two ncural
networks, namely the NN for low local variance and the NN for high local
variance. The weighted sum of the two NN outputs represents the
enlarged image. A novel image interpolation scheme, using an artificial
neural network, is described by Pan and Zhang, 2003. A single frame
interpolation algorithm is joined together with an adaptive, lincar, single-
layer neural network that models the residual errors between the
interpolated image and the respective original one. A novel image
interpolation algorithm by means of a feedforward neural network, based

upon classification, is thoroughly considered by Hu et.al. 2004. A HVS-
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oriented, adaptive interpolation scheme for natural images by means of
neural networks is proposed Pu et. al. 2003. A Hopfield-network-based
algorithm, serving for the resolution enhancement of discrete targets
taking up more space than the sample spacing of an image, is dealt with
by Collins and Jong, 2004. Multilayer neural nctworks have also been
used to perform document resizing by Ahmed ct. al. 2001. Moving from a
high-resolution image to a lower-resolution onc, a group of pixels is
replaccd by one pixel. In theory, this replacement is determined by the
scanner characteristics (Craubner, 2002 and Shen and Xin, 2004). A novel
method of improving the spatial resolution of scanncd images, by means
of neural networks, is presented by Antigoni and Vassilis,2008.

Typically bilinear interpolation can be used where perfect image
transformation, matching and imaging is impossible so that it can
calculate and assign appropriate image valucs to pixels. Unlike other
interpolation techniques such as nearest neighbour interpolation and
bicubic interpolation, bilinear interpolation uses the 4 ncarest pixel values
which are located in diagonal direction from that specific pixel in order to
find the appropriate color intensity value of a desired pixel.

There are other sophisticated mathematical techmques for image
interpolation like bicubic interpolation, spline interpolation etc. In image
processing, bicubic interpolation is often chosen over bilinear
interpolation or ncarest neighbor in image resampling, when speed is not
an issue. Images resampled with bicubic intcrpolation are smoother and
have fewer interpolation artifacts,

Spline interpolation is preferred over polynomial interpolation

because the interpolation error can be made small even when using low
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degrec polynomials for the spline. Using polynomial interpolation, the
polynomial of degree » which interpolates the data set is uniquely defined
by the data points. The spline of degree » which interpolates the same data
set is not uniquely defined, and we have to fill in #-1 additional degrces of
freedom to construct a unique spiine intcrpolant.

With the rapid increase in available computing power, coupled
with great strides in image fcaturc analysis. modcl-based, often highly
nonlincar. interpolative techniques have become a viable alternative to
classic linear methods and have received increasing attention recently.
Scveral cxamples of model-baaed approaches to spatial image
interpolation can be found in Jensen and Anastassiou (1995), Jensen and
Anastassiou {1990), Martinez and Lim (1989), Wang and Mitra (1991)
and Condocia and Principe (1989). Each of these papers utilizes the

concept of an edge in a different fashion to enhance interpolation results.

5.3 Neural Networks and Image Interpolation

The multilayer perceptron is one of thec most common
feedforward architectures. It consist of at least three layers: an input layer,
which simply distributes the inputs to the next layer; a hidden layer; and
an output layer , which collects the hidden layer outputs and computes the
final output. The many powerful properties of the multilayer perceptron
make it an attractive candidate for the image restoration and super
resolution problems (Davila and Hunt, 2000, Nathalie Plaziac, 1999). It is
well known that the multilayer neural networks can be used to
approximate almost any function, if there are enough neurons in the

hidden layers. Due to this property of neural networks, they are sometimes
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regarded as a universal approximator in the sense that it can approximate
an input-output mapping to any degree of approximation, given a
sufficient number of hidden units (Hagan, et. al., 2002). Since it is a
universal approximator, it can even extrapolate a band-limited signal over
its pass band. So the neural networks can be used to interpolate a digital
image.

A lot of research has been donc in the area of image interpolation.
Most of the researchers rely on sophisticated mathematical equations for
the purpose. Very few researchers have directed their vision in the
direction of neural networks for image interpolation. Of these, most of
them had directed to Hopficld network or other compctitive networks,
where unsupervised learning is made use of. Few of the researchers are
oriented towards multilayer perceptron or supervised leaming algorithms
and exploited the approximation capability of the neural networks. These
works arc capable of on line processing since most of the computational
complexities are met in the training phase. In the implementation phase
only the desired format input is fed to the ncural network and the network
approximate the function accordingly.

Here, in this work an attempt is done to interpolate digital image
with multilayer perceptrons using discrete cosine transforms. In 1975,
Athanasios Papoulis proposed a method which can be used to extrapolate
a band-limited function. The algorithm is a simple iteration involving only
the fast Fourier transform. In the proposed algorithm, the effect of noise
and the error due to aliasing are determined and it is shown that they can

be controlled by proper termination of the iteration.
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5.4 Neural Network Design and Training

The problem here is to design a neural network trained
with backpropagation algorithm for the reconstruction of the gray level
image above a cut off frequency p.. The neural network used for training
has the 1-J-K format, where [ is the number of neurons in the input layer,
J. that in the hidden layer and K, the number of ncurons in the output
layer. Design of a ncural nctwork consists of the determination of suitable
I, J and K for a given problem so as to get a better performance for the
nctwork. Usually T and K are determined by the problem itself. The image

is blurred using a low pass filter (Ipf) with filter function given as:

l111
Ipf =—|1 8 1 5.1
pf T (5.1)

1 11

The image chosen for training is an imagc of size 256x256. This is blurred
by the low pass filter given in Eq.5.1. The image is now down sampled to
a size of 128x128. It is then split into overlapping sections of 6x6 (36)
pixels each as shown in Fig.5.3. This is then lexicographically arranged to
form a matrnix of size 36x1. The discrete cosinc transform (DCT) of this
matrix is taken and is then fed to input of the neural. Thus the number of
input nodes for the neural network is now 36. As shown in Fig,5.3, the in
between lines of the centre pixels A,B, C, D are interpolated. When these
lines are interpolated, the image gets zoomed and the output is as shown.
The shaded portion in the output is the interpolated pixels; the output is
thus 9. So the number of the output neurons is 9. But the DCT of the

enlarged image is got. The inverse discrete cosine transform (IDCT) is
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taken and is arranged to get a portion of the image of size 3x3. Since
backpropagation is used the target must be given for training. The original
256x256 image is now split into overlapping sections of size 3x3, and
lexicographically arranged to a matrix of size 9x1, which is given as the
target for the network. The number of hidden layer neurons is found by
actual training and testing. The performance of the neural network is

found to be better when the number of hidden layer neuron is 4.

: A B e
e E NN
CENNED

Fig.5.3 Neural network trained with backpropagation algorithm with the input
and the interpolated output (shaded pixels are interpolated)

Now, the network is set up with I=36, J=4 and K=9. The images used for
training and testing is shown in Fig.5.4. The data used for training the
network is the data derived from the Fig. 5.4 (a) trees. For testing the
network, data derived from the Fig. 5.4 (b) and (c), cameraman and rice,
is used. Trees data consist of values varying between 0 and 1, where 0

corresponds to black and 1 corresponds to white.
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mees [EmPraman rice

Fig. 5.4 The data used for training and testing (a) trees (b) cameraman (c) rice

Trees do not correspond to a binary image, since there are variations of
value in between 0 and 1. But the data of cameraman and rice has values
varying from 0 t0 255, where 0 corresponds to black and 255 to white. As
illustrated in Fig.5.3, the image should be downsampled and split into
overlapping sections of 6x6 and the must be arranged lexicographically to
36x1 and the DCT of the pixels are then taken. When this process is done
with trees image, the value of DCT is varying in between -1.8549 and 6,
whereas the variation for cameraman is from -399.7156 to 1.1410e+003
and that for rice is from -305.6827 to 1.1677e+003.

Now the neural network with 36 input neurons, 4 hidden layer
neurons and 9 output neurons is set for training and testing. Firstly, the
selection of the activation function for the network can be encountered.
The performance of the network is measured as the PSNR given in Eq.
4.7. Here the value of M in Eq.4.7 is | for the tree image and 255 for the
cameraman and the rice image. The activation functions for a problem are
selected depending upon the data available for the neural network. As
discussed in chapter 1, there are a number of activation functions or

squashing functions.

173



NEURAL NETWORK BASED STUDIES ON SPECTROSCOPIC ANALYSIS AND IMAGE PROCESSING

PSNR=124.71 PSNR=£67 PENR =691

7
iz,
ff:'/‘j
/,; s i

F &

%

\l

-\
- -
-

PSNR=242%8 PSNR = 24.12 PSNR =31384

(b)
Fig. 5.5 Variation of the output of the neural network with activation function
and the obtained PSNR for each image after 1000 iterations. (a) with
hyperbolic tan in the hidden layer and purelinear in the output layer (b) with

purelinear in both the layers.

The purpose of these functions is to squash the output to the desired level.
Usually, the sigmoid functions for data varying positively and hyperbolic
tangent function for data varying both sides are selected. The value of
sigmoid function is varying from 0 to 1 and that of hyperbolic tan is from
-1 to 1. But for the problem suggested here, there are wide variation for

the data as mentioned earlier. Therefore, it was suggested to take the
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hyperbolic tangent for the hidden layer neurons and the linear activation
function for the output layer. The neural network is trained for 1000
iterations with data derived from the trees image and tested with that of
the cameraman image and rice image. The result is illustrated in Fig. 5.5
(a). The PSNR for the tree image is appreciable whereas for the
cameraman and rice images the value is very low. This is because the
variation of data for trees is very small compared to the others. When the
variation in data is low, it corresponds to a better output than those with
large variations. Now it is desired to change the activations in order to
better the result. A linear activation function is recommended for both the
layers. The network is again trained with the training data and tested with
the testing data. Fig.5.5(b) shows the result and make the conclusion that
both layers must have a linear activation function.

A neural network is well-known for its generalization capability.
Even though it is trained with a certain set of data, it can give better
outputs even for unseen inputs. The performance of a neural network is
measured in terms of its generalization capability. A good neural network
is one which can identify almost all patterns fed to it irrespective of the
kind of data. Even if, it is trained with a particular type of data, it must be.
possible for the network to give better outputs for any kind of data given
to it. SO the selection of input data for training is important. This is is
illustrated in Fig.5.6. In Fig.5.6 (a), the cameraman image is taken as the
training input and the trees and rice images are given as test data. The
neural network is trained for 1000 iterations with purelinear activation
functions and tested. The generalization of the neural network is poor for

the trees data. The same happened when trained with rice image also as in
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(c)
Fig. 5.6 Variations of the output of the neural network with the selection of the
training data. (a) training data is the cameraman and the others the test data

(b) rice is the training data and (c) tree, the training data.
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Fig. 5.6 (b). But with the trees data as the training data the generalization
was very good as shown in Fig.5.6 (c). So the trees data is selected for
further training. This is because the variation for the values of the trees
data is smaller and they can catch with the activation functions easily. So
in the testing phase they can very well adjust to the input fed and produce
a reasonable output. But in the first two cases the activation functions
cannot catch up with the input variation and hence the generalization was

not good. However trees image was chosen for training the network.

5.5 Variations in Backpropagation
Algorithms

The algorithm chosen for training the network is the
backpropagation algorithm (Hagan et. al, 2002, Haykin, 2003). When the
basic backpropagation algorithm is applied to a practical problem the
training may take days or weeks of computer time. So variations of
backpropagation algorithms, which are faster, came. The literature says
the convergence of these algorithms with the variation of their parameters
like learning rate, momentum etc. Also, the literature emphasis on the
need for the careful selection of values for these parameters. Here, a
discussion is done on the selection of a particular backpropagation
algorithm for a problem.

There are different methods to improve the speed of the
algorithm. One of the simplest technique is the batch mode processing. In
batch mode the weights and biases of the network are updated only after
the entire training set has been applied to the network. The faster

algorithms fall into two main categories. The first category uses heuristic
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techniques, which were developed from an analysis of the performance of
the standard steepest descent algorithm. One heuristic modification is the
momentum technique, more heuristic techniques are: variable learning
rate backpropagation and resilient backpropagation

With standard steepest descent, the leamning rate is held constant
throughout training, The performance of the algorithm is very sensitive to
the proper setting of the learning rate. If the learning rate is set too high,
the algorithm may oscillate and become unstable. If the learning rate is
too small, the algorithm will take too long to converge. It is not practical
to determine the optimal setting for the learning rate before training, and,
in fact, the optimal learning rate changes during the training process, as
the algorithm moves across the performance surface. The performance of
the steepest descent algorithm can be improved if we allow the learning
rate to change during the training process. An adaptive learning rate will
attempt to keep the learning step size as large as possible while keeping
learning stable. The learning rate is made responsive to the complexity of
the local error surface. An adaptive learning rate requires some changes in
the training procedure. First, the initial network output and error are
calculated. At each epoch new weights and biases are calculated using the
current learning rate. New outputs and errors are then calculated. As with
momentum, if the new error exceeds the old error by more than a
predefined ratio (typically 1.04), the new weights and biases are
discarded. In addition, the learning rate is decreased. Otherwise, the new
weights, etc., are kept. If the new error is less than the old error, the
learning rate is increased. This procedure increases the learning rate, but

only to the extent that the network can learn without large error increases.
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Thus, a near-optimal learning rate is obtained for the local terrain. When a
larger learning rate could result in stable learning, the learning rate is
increased. When the learning rate is too high to guarantee a decrease in
error, it gets decreased until stable leamning resumes. Certain algorithms
combines adaptive learning rate with momentum training (Hagan et. al.,
2002).

Multilayer networks typically use sigmoid transfer functions in
the hidden layers. These functions are often called "squashing" functions,
since they compress an infinite input range into a finite output range.
Sigmoid functions are characterized by the fact that their slope must
approach zero as the input gets large. This causes a problem when using
steepest descent to train a multilayer network with sigmoid functions,
since the gradient can have a very small magnitude; and therefore, cause
small changes in the weights and biases, even though the weights and
biases are far from their optimal values. The purpose of the resilient
backpropagation training algorithm is to eliminate these harmful effects
of the magnitudes of the partial derivatives. Only the sign of the derivative
is used to determine the direction of the weight update; the magnitude of
the derivative has no effect on the weight update. The size of the weight
change is determined by a separate update value. The update value for
each weight and bias is increased by a factor whenever the derivative of
the performance function with respect to that weight has the same sign for
two successive iterations. The update value is decreased by a factor
whenever the derivative with respect to that weight changes sign from the
previous iteration. If the derivative is zero, then the update value remains

the same.
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Fig. 5.7 Variations in the PSNR for the different training algorithms. (a) an
algorithm in which adaptive learning rate is used. (b) an algorithm which
combines both momentum and the adaptive learning rate. (c) resilient

backpropagation training algorithm
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Whenever the weights are oscillating the weight change will be reduced.
If the weight continues to change in the same direction for several
iterations, then the magnitude of the weight change will be increased.
Fig.ure 5.7 illustrates the variation of the output of the neural
network for the above discussed training algorithms for 1000 iterations of
each algorithm. Fig.ure 5.7 (a) describes the PSNR of the neural network
for the train data and test data for the algorithm in which adaptive learning
rate is employed. For most of the problems, the algorithm which combines
momentum and adaptive learning rate is suitable as shown in Fig.5.7 (b).
But for this problem, resilient backpropagation algorithm is found to give

more performance than the others as seen in Fig.5.7(c).

5.6 Simulation Results

The neural network is now set up for training and testing. The
conFig.uration of the neural network is such that it has 36 input neurons,
I, 11 hidden layer neurons, J and 9 output layer neurons, K. It is now
decided to have purelinear functions for the hidden layer and output
neurons as activation functions, the trees image can be used as the data for
training and resilient backpropagation algorithm can be used for training.
Fig.5.8 shows the image used for training and testing the network. Fig.5.8
(a) is the actual image and Fig. 5.8 (b) is the downsampled image. Fig.5.8
(b) is split into overlapping sections each of 6x6 pixels size and is
lexicographically arranged to a 36x1 matrix, whose DCT is taken and fed
to the neural network for training as well as for testing.Fig. 5.8 (a) is the
image which is split into overlapping sections of 3x3 pixels size and is

arranged to a 9x1 matrix.
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fc)
Fig.5.8 The data for training and testing (a) actual data 256 x 256 image (b)
down sampled image 128 x 128 image. (c) the restored image using neural
network
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Fig. 5.9 Various restored images (a) and (c) show the restored images
(256x256) of the downsampled images (128x128) shown in (b). Similarly (d)

and (f) show the restored images of the downsampled image shown in (e)

For the trees image which is used for training the 9x1 image is used as the
target image and others are used to find the PSNR of the test image, which

is a measure of the performance of the network. The neural network is
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now trained for 25.000 iterations and found to function properly. Fig. 5.8
(¢) shows the restored image.

The neural network is now ready to test with different images.
Fig. 5.9 illustrates more results, A high PSNR for the untrained data
shows that the network is functioning properly. So far the neural network
is tested with gray level images. A logical image is fed to the system. A
logical image 1s that image having the pixel values either 0 or 1. The
downsampled image is restored in two ways as shown in Fig. 5.10. Fig,
5.10 (a) shows the dowmsampled image. (b) shows the image restored

using the network trained to restore the digits 0-9 and (c) shows the

restored image using the now discussed neural network.

- == =
E Sy - . — e
-_— — - . — —
— — RilREREwm - - -— —
. ANNIEEREE WM = =
H = IMMHIIEE B =W =
HE = MHMIIIE R N W
HE N guiiniiieel W
PSNR = 11 4451 PSNR =13 070
(a) (h) (c)

Fig. 5.10 (a) the dowmsampled image, (128 x 128) (b) the image restored
using the network trained to restore the digits 0-9 and (c¢) the restored image

using the now discussed neural network, (256 x 256)
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PENR = 31 %90

(a) (b)

PSNR - 27812

(c) (d)

Fig. 5.11 (a) and (c) are the downsampled image of size 256x256 and (b) and
(d) are the restored image of size 512x512
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It is now proved that the performance of the network is satisfactory for all
the 128 x 128 image fed to it. Now it is required to test whether the neural
network is able to restore a 256 x 256 image to a 512 x 512 image. It is
worthwhile, to note that the current network is trained to restore 128 x 128
to 256 x 256. The 512 x 512 image is downsampled to 256 x 256 and is
split into overlapping sections of size 6x6. It is lexicographically arranged
to matrix of 36 x 1 and DCT is taken and is fed to the neural network. The
IDCT of the output of the neural network is taken which is a 9 x 1 matrix
and is arranged to a 3 x 3 matrix and the image is restored. The output

obtained with such a restoration is given in Fig.5.11.

Dhovnsatnplesd Newmwl Neraoml Nearest Nexgchhow
[mage PRMNE = 2% 028 PLUE = 22002

Bronubie Methnd

Bilinea MMethal
PYNK - 23 41u PRNE = 13 845 N S

Sprhmee o laugques

Fig. 5.12 (a) restoration of image using various interpolation techniques- a

comparison 128 x 128 image is restored to 256 x 256 image
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Diovwenenpled Hew ] Nenvworkh
linage PaNE = 24 042
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PsNR=2207] PSNE = 2328 PANE = 22 7002

Fig. 5.12 (b) restoration of image using various interpolation techniques - a

comparison 128 x 128 image is restored to 256 x 256 image

The PSNR of the restored image shows that the restoration is better. Also
it shows that it is possible to restore an image of any size to double its size
irrespective of the training pattern given to train the neural network. The
performance of the neural network is compared with the various existing
interpolating methods like nearest neighbour, bilinear, bicubic and spline
techniques. The downsamplt;.d image is restored using the various
interpolating techniques. Fig.5.12 illustrates a comparison.

Table 5.1 gives a comparison of the performance of the different
interpolating techniques to the different downsampled images. There
about 8 test images and the results show that the image restoration with

neural networks is superior to the different techniques available. The
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Neural Nearest | Bilincar | Bicubic Spline
Network | Neighbour | Method | Method | Techniques
Cameraman | 24.642 22.838 22971 | 23.28 22.503

Test Image

Rice 33.536 28.271 28.498 | 29.105 27.668
Trees 25.338 22.903 23.489 | 23.848 235
Test patten | 13.768 12.133 12.168 | 12.142 13.097
IC image 24.014 21.535 21.587 | 22.057 20.664
Girl 30.349 28.625 28.637 28.94 26.033

House 28.276 25.776 26.754 | 27.071 24.942
Pattern 18.899 16.774 16.745 | 17.086 16.499

Table 5.1 A comparison of the PSNR of different images with the various
interpolation methods 128 x 128 image is restored to 256 x 256 image

Dovwnsampled Newral Network Ne:u est Neighliom
lIage PSNE = 31 300 PSNE = 28 18?

Bilmen Mlethod Bicubic Method Splue redlunques
PSNR = 28 030 PSNE = 20 (g2 PSNE = 27 401

Fig. 5.13 (a) restoration of image using various interpolation technigques- a

comparison 256 x 256 image is restored to 512 x 512 image
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Dovasaapled Memal Nenwarl; Neatest Nersldiom
II{I..'I'__“.‘ PiNRE=31"21" | SR R R |

Bilmiear Merhod Bioubyy Merhod Sphne tecuogques

PSNE = %0 422 PSNE = 301077 PSNR = 10 200
(b)

Fig. 5.13 (b) restoration of image using various interpolation technigues- a

comparison 256 x 256 image is restored to 512 x 512 image

network tested was trained to restore an image of size 128 x 128 to 256 x
256.

It is now decided to test the performance of the network to restore
a 256 x 256 image to 512 x 512. The same network is used for the
restoration. The data is preprocessed as discussed and is fed for
restoration. When preprocessed the image is split into overlapping
sections of 36 pixels each The network restored the image and is found to
be better in performance compared with the other restoring techniques.

Fig. 5.13 gives an illustration of this comparison.
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Test Neural Nearest Bilinear Bicubic Spline

Image Network Neighbour Method Method Techniques

Lenna 31.369 28.382 28.639 29.062 27401 |
Boat 27.812 25.116 25.561 25.946 25.685
Babboon 22673 21.467 21.537 21.688 22.179
Splash 31.727 29.371 30.422 30.677 29.509

Table 5.2 A comparison of the PSNR of different images with the various
interpolation methods 256 x 256 image is restored to 512 x 512 image

The aforementioned results show that the neural network trained is able to
restore an image to twice its size. The work is now directed to the
enlargement of the image to four times its original size. When enlarge to
four times, the image is first doubled to its original, then from the restored
image of double size is again enlarged to double its size. This technique is
applied to all the interpolation algorithms. It can be seen that when such
restoration is done for 2 or 3 times, the quality of the image gets degraded.
This is true with all interpolation algorithms. The neural network trained
for interpolating the image to double its size is employed for restoring the
image to 4 times its original size. When interpolated to 4 times, the quality
of the image is degraded. Here a 128 x 128 image is restored to 512 x 512
image. Fig. 5.14 shows the result of this restoration.

The restoration result with neural network is compared with the
various available techniques. The PSNR of each is technique is compared
with that of the neural network. Fig. 5.15 shows the result of this
comparison. Table 5.3 illustrates the variation of the PSNR of each

technique. From these results we conclude that restoration done by neural
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network is superior to the commonly used techniques. The neural

networks can be considered as a candidate for further works in this field.

(b)
Fig. 5.14 (a) and (b) restored images to size 512 x 512 with the images of size

128 x 128 and the intermediate image of size 256 x 256,
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Neural Network
26929 26.265

Nearest Neighbour
24844 23.662

24949

23.806

Fig. 5.15 Restoration of image using various interpolation techniques- a
comparison 128 x 128 image is restored to 512 x 512 image with intermediate
image of size 256 x 256
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Test Image Lenna Boat
Method X2 X4 X2 X4
Neural Network 26.929 26.265 23.569 22.592
Nearest Neighbour 24.844 23,662 21.703 20.612
Bilinear method 24.949 23.894 22.006 21.089
Bicubic method 25.215 23.989 22.283 21.221%
Spline techniques 23.806 23.573 21.892 21.601

Table 5.3 A comparison of the PSNR of different images with the various
interpolation methods 128 x 128 image is restored to 512 x 512 image with the
PSNR of the intermediate image of size 256 x 256.

Summary

A ncural network is trained to restore the image to twice its
original size. The quality of the restored image is comparable with that
obtained with the existing interpolation methods. The trained neural net
can be used to restore any image to double its size, irrespective of the size
of the image used for training. The same network can be used to enlarge
he image to 4 times its original size. The results of the investigation are
promising to consider neural networks as candidate for image restoration

applications.
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CHAPTER 6

RECONSTRUCTION OF IMAGES
FROM NOISE EMBEDDED DATA

6.1 Introduction

The principal sources of noise in digital images arise during
image acquisition (digitization) and/or transmission. The performance of
imaging sensors is affected by a variety of factors, such as environinental
conditions during image acquisition, and by the quality of the sensing
elcments themselves. For instance, in acquiring images with a CCD
camera, light levels and sensor temperature are major factors affecting the
amount of noise in the resulting image. Images are corrupted during
transmission principally due to interference in the channcl used for
transmission. Frequency properties of the noise refer to the frequency
content in the Fourier sense, When the Fourier spectrum of noise is
constant, the noise is usually called white noise. Noisc may be considered
as random variations or variables characterized by a probability density
function (PDF). The following are among the most common PDFs found

in image processing applications:
Gaussian Noise
Because of its mathematical tractability in both the spatial and

frequency domains, Gaussian (also called normal) noise models are used
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frequently in practice. The PDF of a Gaussian random variable, z, is given

by

,0(2)= e—(:—;/):-"w1 (6.1)

where z represents gray level, 4 is the mean of average value of z, and o

is its standard deviation and & is called the variance of z.

Rayleigh Notse

The PDF of Rayleigh noise is given by

E _ ~(z-a)ip >
plz)=1b (- -a)e forzza (6.2)
0 for z<a

The mean and variance of this density are given by

U=a+ b/

o _b(4—7t) (6.3)
4
Erlang (Gamma) Noise

The PDF of Erlang noise is given by
ah Zb—]
—e for z20

p{z)=1{6-1) (6.4)
0 for z<0
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where the parameters are such that a > 0, b is a positive integer. The mean

and varnance of this density are given by

b
H=—

a (6.5)
ol =—

P

Exponential Noise

The PDF of exponential noise is given by

ae™ " forz=>20
plz)= (6.6)
0 Jorz<0
The mean and variance of this density are given by
|
H=—
a 6.7)
, 1
o =—
a’

This PDF is a special case of Erlang PDF with b = /.

Uniform Noise

The PDF of uniform noise is given by

] < <
—, WYaszs<b (6.8)

plz)=4b
0 otherwise
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The mean and variance of this density are given by

_a+b
: (6.9)
2 (b - a)2 ‘
12
Impulse (salt-and-pepper) Noise
The PDF of (bipolar) impulse noise is given by
P, Jorz=a
p(z)= P, forz=»5 (6.10)
0 otherwise

If b > a, gray-level b will appear as a light dot in the image. Conversely,
level a will appear like a dark dot. If either P, or P, is zero, the impulse
noise is called unipolar. If neither probability is zero, and espccially if
they are approximately equal, impulse noise values will resemble salt-
and-pepper granules randomly distributed over the image. For this reason,
bipolar impulse noise is also called salt-and-pepper noise (Gonzalez and
Woods, 2002).

As a group, the preceding PDFs provide useful tools for modeling
a broad range of noise corruption situations found in practice. For
example, Gaussian noise arises in an image due to factors such as
electronic circuit noise and sensor noise due to poor illumination and/or
high temperature. The Rayleigh density is helpful in characterizing noise
phenomenoa in range imaging. The exponential and gamma densities find

application in laser imaging. Impulse noise is found in situations where
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quick transients, such as faulty switching, take place during imaging. The
uniform density is perhaps the least descriptive of practical situations.

The most common types of noise that are found affecting the
digital images are the Gaussian noisc and the impulse noise (salt and
pepper noise). The Gaussian noise is characterized by its mean, 4 and
variance, v. By changing these parameters, the Gaussian distribution is
changing according to equation (6.1). Usually the mean is assumed to be
zero and the variance is changed. The variation in the digital image with
the variation of the mean and the variance is as shown in Fig. 6.1. The salt
and pepper noisc is characterized by its density. As the density of the
noise increases, the image becomes worse. The effect of salt and pepper

noise with varied density on an image is as given in Fig. 6.2.

Fig. 6.1 Variation in image due to Gaussian noise of various mean and

variance
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g=01, d=03

Fig. 6.2 Variation in image due 1o salt and pepper noise of various densities

6.2 Noise Immunity of Multilayer Perceptrons

Artificial ncural networks (ANNs) are not inherently fault tolerant
(Segee & Carter, 1994; Pathak & Koren, 1995). In the case of multilayer
perceptrons (MLPs), it can be observed that for a fixed structure (a
particular number of layers and neurons per layer), different sets of
weights may be obtained if the training process is applied by using
different initial conditions or parameters of the learning rule (Choi &
Choi, 1992). These solutions may present a similar performance with
respect to learning (similar mean squared error or classification error) but
differ with respect to fault tolerance. In this way, some conFig.urations of
weights present a higher tolerance against weight perturbations than

others, and similar conclusions can be obtained with respect to tolerance
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to input noise or the generalization ability of the MLP (Bernier et. al.,
2000).

Moreover, when the training process is carried out in a
conventional computer and the weights obtained must be mapped onto a
physical implementation, the differences between the precision used
during training and the accuracy of the implementation can seriously
affect the learning performance simulated in the computer. Moreover, in
the case of analog implementations, the weight values may vary within a
tolerance margin, which also affects the expected performance (Edwards
& Murray, 1998).

It is well known that MLPs are robust to noise contamination in
inputs and/or weights, including the case of quantization. MLPs have
these properties in two ways: First, the orthogonal property among the
output values of the hidden nodes reduces the noise effect. It is well
known that the hidden weight vectors tend to be near orthogonal through
learning procedure for efficient extraction of input patterns (Xue and Hu,
1990). Thus, after successful training, the weighted sums to hidden nodes
are much less correlated even when a pattern with correlated noise is
presented to the input layer. Also, the magnitude of correlation coefficient
between the weighted sums decreases under sigmoidal transformations.
Therefore, the correlations among hidden nodes should be very small. As
a result, the noise effects are averaged out when the hidden output values
are summed through the output weights (Haykins, 2003, Hagan, et.
al.,2002). Second, noise immunity of MLPs can be explained in the
information theoretic point of view (Abu-Mostafa, 1989). It is reported

that MLPs have hierarchical information extraction capabilities acquired
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As we have already discussed in chapter 4, a neural network is
trained to superresolve a 16 x 16 binary images of numbers 0-9 to a size
of 32 x 32. The neural network is trained with some slanting lines and
numbers 0-4 and is tested with numbers 5-9. It is worthwhile to note here
that the training images are not contaminated by noise of any kind. They
are only filtered by a low pass filter. The noise immunity of the neural
network is tested by adding Gaussian noise of mean = 0, and variances
ranging from 0 to 0.3. When the variance is increased beyond 0.3, the
image is much corrupted and it is difficult to distinguish the original
image.

Down Sampled Image Naural Network MNearast Nemghbour

Reconstructed
image B

&8 38

10 20 30

Founer Spectrum

1

(=1

==

10 20 30 0 B0 3 0 2 ;0
Bilinear Method Bicubic Mathod Spline

Fig. 6.4 Down sampled image of number 8 in Fig.6.3 and its Fourier spectrum
and the reconstructed image by various interpolation techniques and the

corresponding Fourier spectra
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Fig. 6.6 Down sampled image of number 8 in Fig.6.5 and its Fourier spectrum
and the reconstructed image by various interpolation technigues and the
corresponding Fourier spectra
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Fig. 6.7 Plot showing the variation of the average PSNR of numbers 0-9 with
variation in variance of Gaussian noise with mean 0.
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From Fig.6.7, it is clear that the super resolution done with the neural
network is better to other interpolation techniques. This result is attributed

to the noise rejection capability of the neural network.

6.3.2 Effect of salt and pepper noise

MNumbier 8 wib sail & peoger ro-se
witk densiy 01

=]

10 .1 30

Fourier Spectrum

Fig. 6.8. Number 8 and its Fourier spectrum with added salt and pepper noise
of density 0.1

The neural network to super resolve a binary image of 16x16 size
to 32x32 size, is tested with salt and pepper noise of various densities.
Fig. 6.8 and Fig. 6.10 show number 8 and the corresponding Fourier
spectrum with added salt and pepper noise of density 0.1 and 0.3
respectively. The noise added images in Fig.6.8 and Fig.6.10 are
downsampled and reconstructed with the trained neural network and the
various interpolation techniques. Fig. 6.9 and Fig. 6.11 show the result of
these comparisons. The neural network is giving a response for a pattern

which 1s unknown or unscen by it.
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Fig. 6.9 Down sampled image of number 8 in Fig.6.8 and its Fourier spectrum
and the reconstructed image by various interpolation techniques and the

corresponding Fourier spectra.
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Fig. 6.10. Number 8 and its Fourier spectrum with added salt and pepper noise

of density 0.3
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Fig. 6.11 Down sampled image of number 8 in Fig.6.10 and its Fourier

spectrum and the reconstructed image by various interpolation technigues and

the corresponding Fourier spectra

It can be evaluated from these Fig.ures that the generalization capability

of the neural network is better, if trained properly. This also shows the

ability of the neural networks to reconstruct the original image from the

noise corrupted data. The salt and pepper noise of various densities are

added to images of numbers 0-9 and are downsampled and reconstructed

with the various interpolation methods and neural network. The average

PSNR of these data are taken and Fig.6.12 shows the result of these

comparisons.
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Fig. 6.12 Plot showing the variation of the average PSNR of numbers 0-9 with

variation in the densities of the salt and pepper noise.

Results shown in Fig. 6.7 and Fig. 6.12 are obtained with a neural network
trained with the original data. The neural network is not trained with the
noisy data. A better result can be obtained it the neural network is trained
with noisy data. As the number of training patterns increases, the
generalization capability of the neural network also increases. Smaller the
size of the training set, the poorer is the generalization capability (Basheer
and Hajmer, 2000). Better performance can be expected with a neural

network trained by considering all variations in the data.
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6.4 Effect of Noise on Gray level Images

6.4.1 Effect of Gaussian Noise

As discussed in Chapter 5, a neural network is trained to super
resolve a gray level image of size 128 x 128 10 a size of 256 x 256. The
performance of the neural network is now tested with the addition
Gaussian (white) noise and salt and pepper (impulse) noise. Before
testing, a new neural network is trained with the original data (trees
image) normalized and also with the trees image corrupted with Gaussian
noise of variance 0.1 and mean 0 and another noisy image of the same

image added with Gaussian noise of variance 0.3 and mean 0.

Reconstructed Image
with Neural Network

with Bilinear with Bicwbic with Spline technigques
Interpolation method Imiexpelation

Fig. 6.13 Downsampled image with Gaussian noise of variance 0.01 and mean
0 and the reconstructed image with the various interpolating techniques.
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The training of the neural network is done as mentioned in Chapter 5, as
overlapping segments with the DCT of the segments taken and are
interpolated. This trained network is tested with the testing images and is
used for testing the performance of the neural network with added noise.
Fig.ures 6.13-6.15 shows the comparison of neural network with the
existing interpolating techniques. These results points out to the fact that a
properly trained neural network has a better performance than the various
interpolating techniques now used. A comparison is also done by
changing the variance of the Gaussian noise with mean 0. Fig.6.16 shows

the plot for this comparison.

Ixterpelation

with Bilinear with Bicubic with Splime
Interpolation methed Drierpelation Methods techuiques

Fig. 6.14 Downsampled image with Gaussian noise of variance 0.1 and mean 0

and the reconstructed image with the various interpolating techniques.
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with Bilinear with Bicuhic with Spline techniques
Interpolation Interpolation methods

Fig. 6.15 Downsampled image with Gaussian noise of variance 0.3 and mean 0
and the reconstructed image with the various interpolating techniques.

2

—a— Neural Network
—&— Nearest Neighbour

20" <4 Bilinear Interpolation H
-2~ Bicubic Interpolation
¥ —w— Spline Technique
18} T 1

PSNR

Eitl 005 01 015 02 0.25 03 035
Variance of Gaussian Noise with mean=0

Fig. 6.16 Plot showing the variation of the PSNR for the normalized trees
image with variation in variance of Gaussian noise with mean 0.
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6.4.1 Effect of Salt and Pepper Noise

Dewnsampled Image
salt & pepper nsise of
density =001

with Bilimear
Interpolation Interpelation

Fig. 6.17 Downsampled image with salt and pepper noise of density 0.01 and

the reconstructed image with the various interpolating techniques.

Dewnsangpled brage
with salt & pepper
wmoige of demsity = 0.1

Interpelation Methed

with Bilimear wihth Bicwhic with Spline techniques
Interpolation Interpolation

Fig. 6.18 Downsampled image with salt and pepper noise of density 0.1 and the

reconstructed image with the various interpolating technigues.
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Dewnsawgpled mage
with salt & pepper
meise of demsity = 03

with Bilimear
Interpeiation Methed

Fig. 6.19 Downsampled image with salt and pepper noise of density 0.3 and the

reconstructed image with the various interpolating techniques.

24 T T v - - o
—4— Neural Network
—&— Nearest Neighbour
+- Bilinear interpolation ||
—=— Bicubic Interpolation
—=— Spline Techrigues

PSNR

% 005 01 015 02 02 03 0%

Vanation n densties of salt & pepper noise

Fig. 6.20 Plot showing the variation of the PSNR for the normalized trees

image with variation in densities of salt and pepper noise.
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The neural network trained is now tested with impulse noise of
varied densities. The neural network is trained only with added Gaussian
noise and not with salt and pepper noise. So the image added with salt and
pepper noise is an unseen image for the neural network. Here again the
performance of the neural nctwork is evaluated against the various
interpolating methods. Fig. 6.17-Fig. 6.19 shows the improved
performance of the neural network.

The noise rejection capability of the neural network is tested with
varied densities of the salt and pepper noise and is compared with the
other interpolation methods. As shown in Fig.6.20, the noise immunity of
neural networks is much higher. A multilayer perceptron can be trained to
super resolve binary and gray level images. The advantage of using a
neural network is that most of the complex computations are encountered
in the training phase and when an input is presented to the network, it is
only a mapping between the input and output. Also the noise immunity of

such a network is very high.

Summary

Two neural networks arc trained: one to super resolve a binary
image and another to super resolve a gray level image. The two network
paradigms are tested with added Gaussian noise and salt and pepper noise.
A comparison of the neural networks with the available interpolation
algorithms is done. The performance of the neural network is found to be

better than the existing interpolation methods.
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FUTURE SCOPE

Neural Network is a very effective computational tool. It finds
applications in almost very ficld of signal processing. In this thesis, two
applications of neural network are dealt with. In the field of spectroscopic
analysis, ncural network is found to be very effective. As a further
devclopment, a neural network is trained to identify the clements present
in a sample irrespective of the spectra taken by any type of spectrometer.
Also a ncural network can be trained to find the concentration of the cach
element present in the sample. The number of spectral lincs obtained will
depcend on the concentration of each element. Only the persistent lines are
obtained with low concentrations.

Neural network has found applications in image processing also.
Multilayer perceptrons arc good function approximators. But they are not
widely used in super resolution algorithms. Here a neural network trained
with backpropagation algorithms are found to be very good in super
resolving images. As advancement in the studies, networks can be trained
with wavelet transforms instcad of DCT. In image hiding techniques
artificial ncural networks find an extensive applications. Several image
processing applications like fingerprint identification, face recognition,
cryptography etc. neural networks can be employed. Future studies are
directed to these fields to employ neural nctworks as effective

computational tools.
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