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Stability of periodic orbits of coupled-map lattices
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We consider the stability properties of spatial and temporal periodic orbits of one-dimensional

coupled-map lattices. The stability matrices for them are of the block-circulant form. This helps us to
reduce the problem of stability of spatially periodic orbits to the smaller orbits corresponding to the

building blocks of spatial periodicity, enabling us to obtain the conditions for stability in terms of those

for smaller orbits.

Spatially extended nonlinear dynamical systems have
recently attracted considerable attention [1-3]. This is
because of their wide range of applications such as tur-
bulence, pattern formation in natural systems, solitons,
etc. They also exhibit a very rich phenomenology includ-
ing a wide variety of both spatial as well as temporal
periodic structures, intermittency, chaos, domain walls,
kink dynamics, etc.

In this Rapid Communication we address the problem
of stability of spatial and temporal periodic structures.
We specifically consider coupled-map lattices with
nearest-neighbor couplings. Detailed numerical studies
show that the coupled-map lattices give rise to a variety of
rich spatial and temporal structures [ll. Consider follow-
ing the general model:

x, + )(i) = hpfp(x, (i))+h (f)(x, (i+ I ))
+h,f, (x, (t —1)),

where x, (i) is the variable associated with the ith lattice
point at time t taking values in a suitably bounded phase
space. The maps fp, f~, f ~ are maps, such as a logistic
map, that describe the evolution of an otherwise isolated
system. The parameters ho, h], and h —] represent the

I

coupling strengths and are chosen so that x, + ~ (i) lies in

the same phase space (e.g. , [0,1] for the logistic map
f(x) =Itx(1 —x), 0~ p ~ 4). Henceforth, we assume
that hp, h ~, h —] are positive. However, almost all our re-
sults are valid even otherwise.

Let C~ denote a closed chain of N lattice points in
which the right-hand neighbor of the Nth point is the first
lattice point. We note that for N =1 the chain C ~

consists
of a single point which is to be understood as a neighbor of
itself. Let R, = (x, (1), . . . , x, (N ) ) denote the state of the
system for the chain CJv at time t Let S, (.N, 1) denote a
solution of Eq. (1) with temporal periodicity r for the
chain C~, i.e., S, (N, 1) =[R~,Rz, . . . , R„R~,Rz, . . . j.
Now consider a closed chain of twice the length, i.e.,
C zz =—C z, &. Obviously the spatially periodic sequence

S,(N, 2) =[(R)R))z,(RzRz)z, . . . , (R,R, )z, tR)Rf)z, .

built from the states [R,j as the building blocks is a solu-
tion of Eq. (1) for the closed chain Pz Jv with temporal
periodicity r Here. the ordered pair (R,R, ) rzepre-

sents the state (x, (1), . . . , x, (N), . . . , X, (2N) ), with

x, (N+i) =x, (i), i =1,2, . . . , N, which is made up of two
replicas of the state R, . In general, the sequence

S, (N, k) =[(R)R(, . . . , R()k, . . . , (R„.. . , R„)t„(R),. . . , R()t„. . . j

represents a solution of Eq. (1) for the closed chain Ct,
with temporal periodicity r. Here the ordered pair
(R, R, )k represents a state made up of k replicas of
the state R, . We call S,(N, k) the k replica solution of
S,(N, 1). The problem we address concerns the stability
properties of such spatially and temporally periodic solu-
tions S,(N, k), from the analysis of the stability matrices
for S,(N, 1) of the building blocks. In other words, we

question what the effect is of enlargement of phase space
and the couplings on the stability of the replica solutions.

We note that Wailer and Kapral (Ref. [4]) have con-
sidered a similar problem for some very specific maps and
couplings and for simple homogeneous and small period
solutions. Here we analyze the problem in a very general
way and obtain conditions for the stability of the spatially

extended solution.
We begin with the simplest case of N=l so that R,

consists of a single lattice point x, (1)=x, and conse-
quently we suppress the lattice index. The replica solution
S,(l,k) for the chain Cq =Ct, x~ is a homogeneous solu-
tion with jx,j as building blocks. Now the solution
S,(1,1)= [x ~, xz, . . . ,x„x~, xz, . . . j for the building
block is a stable solution provided

)f'(x / )f'(xz), . . . ,f'(x, )
~

& 1, (2)
where f(x) =hpfp(x)+h ~f~(x)+h ~f ~(x) and f'(x)
=df(x)/dx. For the homogeneous solution S,(l, k), the
stability condition is that all eigenvalues of the k xk sta-
bility matrix J=J~J2 . . J, have magnitude less than
one. Here J, is a k x k Jacobian matrix given by
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hofo h if,' 0 0 h-if' i-
h —if' i —hofo hifI 0

0

hifi

0 0

0

h - if' i-hofo 0 0 0
0

h —if'-i hofo hifi
0 h if '

i hit—fo

(3)

The matrix J, is a circulant matrix whose eigenvalues are
given by [5]

~i, r =(hofo+rorhifi+~r' 'h —if'-i) f'(x, ),
(4)r=1,2, . . . , k,

where ~0„ is the kth root of unity given by co„
=e' " ' . Thus the eigenvalues of the stability ma-
trix J are

r

~, = g ~, , =g [h,f,'(,)+,h,f,'(, )
(=1 (=I

+co," 'h —if'-i(x, )]. (5)
Now Ik„I ( 1, for all r, ensures the stability of the homo-
geneous solution S,(l,k).

Consider the special case when all the maps are the
same, i.e., fo(x) =fi(x) =f i(x). For—a single point,
i.e., the chain C i, this implies that ho+hi+h i =l. As-
suming that condition (2) is satisfied, the homogeneous
solution S,(l,k) for the chain C ~ is stable if

Iho+ro, hi+co„" 'h ii ~ 1. (6)
Condition (6) is satisfied provided Iho+h i+h —iI ~ 1,
which is obviously true since ho+ h i+h —

i
=1. Thus the

stability of the homogeneous solution S,(l, k) is
guaranteed by the stability of the single-point solution
S,(1,1) for the same parameters of the map exhibiting no
effect of enlargement of phase space and the couplings.

As a specific example, for this special case, we take the
logistic map. This map has several stable periodic orbits
depending on the value of p (Ref. [6]). In particular, it
shows a period-doubling structure leading to a period-
doubling attractor [6]. The above analysis shows that for
the coupled logistic map the entire period-doubling struc-
ture and the structure of other periodic windows will be
lifted to the chain Ci for the same values of p together
with the same stability properties for all k.

Our second example is that considered by Wailer and
Kapral [4]. They consider the maps

hitfo(x) =px(1 —x) —2yx, (7a)
hifi(x) =h —if i(x) =yx. - (7b)

Using Eq. (5) for the fixed point and the condition
k=+'1, i.e., the condition for marginal stability, we ob-
tain the boundaries of the stability region of the fixed
point and the periodic solution in the p-y plane. Our re-
sults coincide with those of Ref. [4]. For example, for the
fixed point homogeneous solution for X=O, the stability
criterion using Eq. (5) is given by

p=+ I+y(2 —e"—e "),
where g =2+i/k, i =0, 1,2, . . . , k. This coincides with
Eqs. (2) and (6) of Ref. [4].

Now we turn to the case of higher values of N. Consid-
er the solution S, (N, 1) for the closed chain C iv. Stability
of the solution is determined by the eigenvalue with larg-
est magnitude of N &&N matrix

J =J]J2 ' J.
where j( is the Jacobian matrix given by

j, =A(+8, +C, .

Here A( is a tridigonal matrix given by

(lo)

hofo(x, (1)) h,f,'(x, (2)) 0

Af = h —if' i (x~(1))—hofo(xi(2)) h if i (xi (3))

0 0 0 A 8
8, 0 0 C( 8(

for k & 2. For k =2,
A( 8(+C(

J(=

and for k = 1, J, =A(+ 8, +C( =j, . We note that Jacobi-
an matrices J, [Eqs. (12) and (13)] are block circulant
where each block is an N XN matrix. This observation is
crucial for our analysis of stability properties. A block-
circulant matrix can be put into a block diagonal form by
a unitary transformation [5]. The block diagonal form is

M 0 . 0

0 M( 0
D (14)

(13)

(1 la)
and the matrices 8, and C, have only a single nonzero ele-
ment and are given by

(a, ),, =h,f,'(x, (I))S, a, , (»1)
(C, );, =h if'-i(x, (N))S;i8,iv. (»c)

Let us now consider the solution S,(N, k) of the closed
chain 8& x z which is obtained by k replicas of the solution
S,(N, 1) for Civ. The stability of S,(N, k) is determined
by the eigenvalues of kN x kN stability matrix
J=J]J2. J, where J, is a kN&kN Jacobian matrix
given by

C

C( ~( 8( ' '' 0 0

0 C A . 0 0
(12)
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in the range from (13—473)/32 =0.1392. . . to
(4 —J6)/8=0. 1938. . . . The stability of the k replica
solution Sz(2,k) has been verified numerically using Eq.
(17). For even k, the lower bound shifts to 0.14037. . . .
For odd k, the lower bound approaches this value accord-
ing to the sequence 0.14009. . . for k =3, 0.14026. . . , for
k =5, 0.14031. . . for k =7, etc.

Our next example is the kink-type solutions [3] to Eq.
(18). We have considered several kink-type solutions.
Here we discuss the following solutions for p =3.41: (i)
N=5. Consider the basic unit S2(5, 1) shown in Fig.
l(a). Figure 1(a) also shows the replica solution with
k =10. The basic unit S2(5, 1) is stable in the e range
from 0 to 0.0967. . . . We use Eq. (17) to determine the
stability of the replica solutions. The higher-order solu-
tions are stable in the same range within computational
accuracy. This has been confirmed by actual numerical
simulations for replica solutions with many k values. (ii)
N=7. Consider the basic unit S2(7, 1) shown in Fig.
1(b). Figure 1(b) also shows the replica solution with
k =10. The basic unit S2(7, 1) is stable in the range from
0 to 0.33772. . . . We analyze the stability of replica solu-
tions using Eq. (16). We find that for even k, the stability
range reduces froin e=0 to e=0.33762. . . . For odd k,
the lower limit remains the same, i.e., e =0 and the upper
limit approaches 0.33762. . . by the sequence 0.33766. . .
for k =3, 0.33764. . . for k =5, etc. Again this result has
been confirmed by actual numerical simulations. (iii)
N =6 and 8. We consider the kink solutions, each with an
equal number of consecutive points in the upper and lower
branches, i.e., 3 and 4 points for N =6 and 8, respectively.
The basic unit S2(8, 1) for N =8 and its replica solution
with k =10 are shown in Fig. 1(c). In this case, using Eq.
(17) and actual numerical simulations we find that the

stability of the replica solutions remains unchanged by en-
largement of the phase space.

We have discussed above the conditions that ensure the
stability of spatially and temporally periodic orbits. In
addition, our analysis also leads to the following important
conclusion about unstable periodic orbits. As noted in a
comment after Eq. (16) the matrix j appears as a block of
the matrix D of Eq. (16). Hence, a solution built out of
replicas of unstable periodic orbits will also be unstable.
Enlargement of phase space and the eff'ect of couplings
cannot stabilize an unstable replica solution.

To conclude, we have shown that the stability of spa-
tially and temporally periodic orbits can be analyzed in
terms of smaller orbits made up of building blocks of spa-
tial periodicity. We find that for the homogeneous solu-
tion no further conditions are imposed if fp =f ~

=f—] and
the stable solution for a single point remains stable on the
enlargement of phase space and the introduction of cou-
plings. However, solutions with larger spatial periodicities
require additional conditions for stability. These condi-
tions depend on the stability matrices for the building
block of spatial periodicity and the roots of unity. We also
find that replica solution of unstable periodic orbits
remain unstable. It is clear that these replica solutions
can be used to construct a hierarchy of unstable periodic
orbits based on the orbits for building blocks. This may
help in organization of spatiotemporal chaos on the lines
of arguments in Ref. [8].
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