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Control of bistability in a directly modulated semiconductor laser using
delayed optoelectronic feedback
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Abstract

We show numerically that direct delayed optoelectronic feedback can suppress hysteresis and bistability in a directly modulated semiconductor
laser. The simulation of a laser with feedback is performed for a considerable range of feedback strengths and delays and the corresponding values
for the areas of the hysteresis loops are calculated. It is shown that the hysteresis loop completely vanishes for certain combinations of these
parameters. The regimes for the disappearance of bistability are classified globally. Different dynamical states of the laser are characterized using
bifurcation diagrams and time series plots.
c© 2005 Elsevier B.V. All rights reserved.

Keywords: Directly modulated feedback; Bistability; Delayed optoelectronic feedback
1. Introduction

Semiconductor lasers are widely used as the coherent light
sources for technological applications such as high capacity
optical transmission and ultra fast optical processing. They
are preferable to any other types of lasers in the field of
optical communications because of their compactness, low
cost and convenience of operation. Another advantage of
semiconductor lasers is the opportunity for direct modulation,
i.e., they can be modulated by varying their injection current.
The modulation is usually performed in the GHz frequency
domain. It is well known that semiconductor lasers show highly
complex phenomena such as sub-harmonic generation, chaos
and multistability under strong modulation in this frequency
range [1]. A clear understanding of such phenomena would be
helpful in the design of optical communication systems using
directly modulated laser diodes. Further, it may help us in
employing suitable control schemes for such lasers.

The modulation response of lasers has been investigated
by several groups in the last two decades [2–9]. For small
signal modulation, semiconductor lasers show regular behavior
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even if the frequency of modulation is of the order of a
few GHz (of the order of their relaxation oscillations) [10].
However, if the strength of the modulating signal is increased,
the laser follows a period-doubling route to chaos [2–8].
Another important dynamical behavior shown by the laser
under direct modulation is multistability [8]. The coexistence of
two or more stable states for a dynamical system is commonly
referred to as multistability. In this case, the asymptotic state
of the system is critically determined by its initial conditions.
The attractors corresponding to the different dynamical states
(such as chaotic and periodic states) can coexist. This
phenomenon is referred to as generalized multistability [11]
and has been reported in various nonlinear systems such as
lasers [11–14], Duffing oscillators [15], electronic circuits [16]
and biological systems [17,18]. In modulated semiconductor
lasers, multistability is usually associated with the hysteresis
effect [19]. The coexistence of two distinct states is very
common and is referred to as bistability of the laser [1].

Since the laser is expected to operate in a regular and
unique dynamical state, chaos and bistability should be
eliminated from the laser. Recently, we have shown that a direct
delayed optoelectronic feedback can suppress the sub-harmonic
generation and chaos in directly modulated laser diodes [20].
Bidirectional coupling of lasers is also found to be efficient in
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suppressing chaos in these lasers [21,22]. Further, if two states
are stable, noise induced switching is possible between these
states [23]. For these reasons, investigations of the control of
bistability in lasers also deserve considerable attention.

Many attempts have been reported for suppressing
multistability in various nonlinear dynamical systems [24–32].
A common technique for controlling generalized multistability
is the annihilation of unwanted stable states by applying small
harmonic modulation with a properly chosen frequency and
amplitude to a system parameter. The control of multistability
using periodic perturbation has been investigated in different
theoretical models such as the Hénon map [24–28], laser
models [24,28], coupled Duffing oscillators [29] and a delayed
logistic map [28,30]. This method has been demonstrated
experimentally using a cavity loss modulated CO2 laser [24]
and an erbium doped fiber laser [31]. Recently, Pisarchik
and Kuntsevich have shown that the method of periodic
perturbations can also be applied for controlling multistability
in a directly modulated semiconductor laser [32]. Another way
of annihilating coexisting attractors is to add noise. The stable
fixed points of the Lorenz system have been found to be
annihilated when noise is added to the system [33].

In this paper, we propose a method for controlling
bistability in directly modulated laser diodes without applying
perturbation from an additional modulating source. We show
numerically that a direct delayed optolectronic feedback
with suitable delay and feedback strength can effectively
suppress the hysteresis and bistability in directly modulated
semiconductor lasers. One of our interesting results is that the
delay, as well as the feedback strength, plays a very important
role in the suppression of bistability.

The idea of the delay feedback control of chaos was
originally proposed by Pyragas [34]. Currently this method
is known as Time Delay Auto Synchronization (TDAS) and
has shown to be successful in controlling chaos in various
chaotic systems such as electronic circuits [35–37], glow
discharge [38], magneto-elastic ribbon [39], periodically driven
yttrium iron garnet film [40] and CO2 lasers [41]. Ciofini et al.
have used a suitable implementation of the TDAS method
by means of a tunable washout filter for controlling high-
dimensional chaos in such lasers [42]. The basic criterion of the
TDAS algorithm is to stabilize a particular unstable periodic
orbit (UPO), which is embedded in the chaotic attractor
by applying a time continuous perturbation to an accessible
variable of the system. This perturbation must be proportional
to the difference between the present value of a system variable
and the value of the same variable corresponding to an earlier
state of the system. The delay must be equal to the period of the
specific UPO which is to be stabilized.

The concept of a direct delayed feedback [20] is entirely
different from that of a self-adjusting feedback, which is used
in a TDAS algorithm for stabilizing the unstable periodic orbits.
In direct delayed feedback, a perturbation proportional to the
delayed output signal of the system is added to the input of
the system. For a modulated semiconductor laser, the output is
the optical signal. It should be converted to an electronic signal
using a photo diode, and this signal can be added to the injection
Fig. 1. Schematic diagram of laser with delayed optoelectronic feedback.

current with an appropriate delay. A simple way of producing
the delay is to allow the signal to travel a certain distance before
reaching the photo diode. There is no general rule for selecting
the delay. We can determine the appropriate values of delay
and feedback strength by simulating the system for a range of
values of these parameters. Unlike in the TDAS method, the
perturbation applied to the system need not vanish when control
is achieved. Due to the same reason, the periodic orbit of the
controlled system will differ from the original UPO present in
the phase space of the uncontrolled system. This method will
work even in the absence of a UPO of any specific period in the
attractor since the control does not depend on the stabilization
of any existing UPO. New periodic states replace the chaotic
state when the feedback is applied. An important advantage
of the delayed optoelectronic feedback scheme is that, besides
suppressing chaos and period doubling in a laser, it eliminates
the double peak structure of the original periodic orbits in the
laser diode.

In contrast to the situation described in the control of
chaos, our task is not to stabilize any unstable periodic orbit
associated with the laser. Instead, we have investigated the
possibility of having a single and unique attractor generated
as a result of the delay feedback. Our simulations show that
the newly generated attractor replaces the coexisting attractor
if the delay and feedback strength are chosen properly. In the
method prescribed by Pisarchik and Kuntsevich, the unwanted
stable orbit is selectively destroyed using a resonant periodic
perturbation (perturbation with a frequency which is close to
the characteristic frequency of the specific periodic orbit to be
annihilated, i.e., the imaginary part of complex eigenvalues of
the stable periodic cycle). The method presented in our work
does not require a second modulation, and the perturbation
applied here is simply a delayed feedback of the laser.

2. Model of the laser with feedback

A schematic diagram of the laser diode with the control
set up is given in Fig. 1. The delayed optoelectronic feedback
prescribed in this diagram has been studied widely for different
applications such as the generation of ultra short optical
pulses [43,44] and chaotic signals [45]. In this method, the
light signal from the laser diode (LD) is converted into an
electronic signal using a high-bandwidth photodiode (PD). The
resultant signal is then amplified to the required gain and is
fed back with the input injection current of the laser. A delay
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is also incorporated with the feedback. The required delay can
be provided by the external transit of the light signal by a pre-
determined distance.

The rate equations of a single mode semiconductor laser are
given by [10]

dn

dt
=

I

qV
−

n

τe
− A(n − n0)p, (1)

dp

dt
= Γ A(n − n0)(1 − εNL p)p −

p

τp
+ Γβ

n

τe
, (2)

where n and p are the carrier and photon densities, τe and τp are
the carrier and photon life times, I is the injection current, q is
the electronic charge, V is the volume of the active region, n0 is
the carrier density for transparency (the electron density above
which the lasing gain becomes positive), A is the gain constant,
β is the spontaneous emission factor, Γ is the confinement
factor, and εNL is the constant governing the nonlinear gain
reduction occurring with an increase in p due to the nonlinear
effects such as spectral hole burning.

For the convenience of numerical study, the normalized
carrier density N and the normalized photon density P can be
used. These are defined by [9]

N =
n

nth
, P =

p

p0
, (3)

where nth = n0 + (Γ Aτp)
−1, the threshold carrier density, and

p0 = Γ (τp/τe)nth.
The rate equations then become
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where δ = n0/nth and ε = εNL p0 are two dimensionless
parameters and Ith = qV nth/τe is the threshold current of the
laser.

We assume that a sinusoidal modulation is applied to the
laser in the form

I = Ib + Im sin(2π fm t), (6)

where Im and fm is the amplitude and frequency of modulation,
respectively. To represent the delay feedback applied to the
laser, we must add a perturbation term CP(t−τ) to the injection
current given by Eq. (6). This term is proportional to the photon
density of the laser corresponding to the past state of the laser,
where C is the feedback strength and τ is the delay. Then the
injection current can be expressed as

I = Ib + Im sin(2π fm t) + CP(t − τ). (7)

We have numerically solved the dynamical equations (Eqs.
(4), (5) and (7)) of the laser with delay feedback using a fourth
order Runge–Kutta algorithm. The parameters of InGaAsP
semiconductor lasers used for the simulation are given in
Table 1. InGAsP laser diodes are widely used in optical
communications, since they emit light in the wavelength region
Table 1
Parameter values of InGaAsP laser diodes used for simulation

τe 3 ns
τp 6 ps
δ 0.692
ε 10−4

β 5 × 10−5

Ib 26 mA
fm 0.8 GHz

Fig. 2. Bifurcation diagram (maxima of normalized photon density versus
modulation strength) of the modulated laser without feedback obtained by
continuous-time simulation. The modulation depth is varied from 0 to 0.8 and
vice versa.

where the optical fibers yield minimum loss to the transmitted
light [10].

3. Results and discussions

The dynamics of the directly modulated laser have already
been studied in detail [2–9]. However, we start our discussion
by presenting the numerical results regarding the complex
phenomena in a directly modulated laser diode, i.e., the
period-doubling route to chaos and the coexistence of multiple
attractors. It would be helpful to understand the necessity of
controlling these effects. The onset of chaos and hysteresis
in a semiconductor laser modulated by a sinusoidal signal of
frequency fm = 0.8 GHz is demonstrated using the bifurcation
diagram (maxima of the normalized photon density versus
modulation strength m = Im/Ith) given in Fig. 2. It is assumed
that the feedback is not applied to the laser and hence C is taken
to be 0 in the simulation. The advantage of taking maxima is
that it shows the variation of peak power with an increase in the
amplitude of modulation, in addition to showing the variation of
the periodicity of the pulses. We have taken only one maximum
in each cycle instead of taking all maxima. This is because of
the double peaked pulses, and taking all maxima will show a
number of attractor points that is greater than the periodicity of
a particular cycle. In the simulation of the laser, it is assumed
that the modulation begins with a minimum value of amplitude,
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Fig. 3. Bifurcation diagram (maxima of normalized photon density versus
modulation strength) of the laser without feedback plotted using the
continuous-time method. A detailed view of the hysteresis in the periodic
regime is clearly shown.

and that the amplitude is gradually increased up to a maximum
value while the laser is operating. It is supposed to be decreased
gradually to the minimum in the same manner. This method
of constructing a bifurcation diagram is called the continuous
time approach, and the bifurcation diagrams constructed by this
method will show the hysteresis effect correctly [46]. Initial
conditions are given only in the beginning of the simulation,
unlike the usual method called the brute force approach, in
which the initial values are given every time when the parameter
is changed.

For small values of modulation strength, the laser operates
in the period 1 state. Period doubling bifurcations start at m =

0.449 and continue up to about m = 0.55, where the system
is perfectly chaotic. On increasing the strength of modulation
beyond this value, reverse period doubling takes place and the
laser becomes periodic. For a modulation strength greater than
0.639, the laser operates in the period 1 state. Besides showing
the period doubling route to chaos, the bifurcation diagram
given in Fig. 2 clearly presents the hysteresis effect. When
the modulation depth is increased near the point Im = 0.49
and Im = 0.61, the peak photon densities increase though a
particular path. As the modulation strength is decreased again,
the peaks follow a different path. Thus, the graph of the peak
photon densities forms a closed curve — hysteresis loop — in
those regimes. A detailed view of the hysteresis loop formed
between m = 0.6 and m = 0.8 is given in Fig. 3. It shows
that, on increasing the modulation depth from 0.6 to 0.8, the
variation in the peak photon densities takes place through the
lower path in the figure. The modulation depth is assumed to
decrease after reaching the value 0.8. The return path deviates
from the original path at the point m = 0.689, follows another
route over the lower path, and forms the hysteresis loop. The
loop ends at m = 0.631, where the period 2 solution exists. It is
clear from Fig. 3 that there will be two stable solutions for the
laser diode for any value of modulation depth between 0.631
and 0.689, and two types of optical pulses can be obtained.
Fig. 4. Time series plots of the normalized photon density of the laser without
feedback for a modulation strength of 0.65 correspond to the (a) lower and (b)
upper branch of the hysteresis loop.

For example Fig. 4(a) and (b), respectively, show time series
plots of two different optical pulses obtained for the same value
of modulation strength (m = 0.65). Fig. 4(a) corresponds
to the lower branch and is obtained while the modulation
was increasing from 0.6 to 0.8. The peak power of this pulse
is 4.631 units. The pulse corresponding to the upper branch
(Fig. 4(b)) is obtained when the modulation is decreased again
from 0.8 to 0.6 and its peak power is 7.241 units. Hence, it is
clear that the laser shows bistable behavior for these parameters.

We now consider the effect of delayed optoelectronic
feedback on the bistable behavior of the laser. We have
simulated the modulated semiconductor laser with delay
feedback for a range of values of the feedback strength
and delay. To study quantitatively the effect of feedback on
bistability, we have calculated the area of the hysteresis loop
shown by the laser for different combinations of delay and
feedback strength. The parameter space constituted by the delay
and feedback strength is divided into three regimes, and they
are shown in Fig. 5. The unshaded regions give the values
of parameter for which the hysteresis has not vanished. For
certain combinations of C and τ , the area of the hysteresis
loops becomes very small (below 10−4 units) and hence
negligible. Such combinations are given by the dotted regions
in the diagram. The shaded regions correspond to the values
of parameters for which the hysteresis loop has completely
vanished. It is obvious from Fig. 5 that there are three such
regions in parameter space, and these are covered by the
regions of partial suppression of hysteresis. One of the shaded
portions corresponds to positive feedback. It is clear that, if
we are applying a positive feedback, relatively higher values
of feedback strength are required to suppress the hysteresis
compared to the negative feedback.

The area of the hysteresis loop is plotted as a function
of the absolute value of the feedback strength in Fig. 6
(negative feedback is considered here). The delay is taken
to be a constant value of 0.4 ns. The global classification
diagram given by Fig. 5 suggests that a complete elimination
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Fig. 5. Regimes of delay and feedback strength, where the bistability has
been suppressed. The portions shaded with lines correspond to the complete
disappearance of the hysteresis loop. The dotted portions show the regions
where the area of the loop becomes less than 10−4 units.

Fig. 6. Variation of the area of hysteresis loop versus the absolute value of
feedback strength. Feedback is negative with a delay τ = 0.4 ns. Notice that
the area of the loop becomes almost negligible with a feedback of very low
values of feedback strength.

of hysteresis is possible for this value of delay if we adjust the
feedback strength properly. The area decreases very rapidly as
the feedback strength is increased. The area becomes almost
negligible for very small values of feedback strength around
−6 × 10−3. It vanishes completely for all values of feedback
strength greater than 4 × 10−3 (absolute value).

The vanishing of the hysteresis loop is a consequence of
the disappearance of bistability too. The bifurcation diagram
(Fig. 7) shows the variation of the maxima of the normalized
photon density of the laser with feedback (τ = 0.4 ns and
C = −0.005). The upper and lower branches of the hysteresis
loop exactly coincide with each other. In this case there is
only one unique dynamical state for the laser corresponding
to any particular value of the amplitude of modulation. The
Fig. 7. Variation in the peaks of the normalized photon density of the laser
with an increase in modulation strength. A delayed negative feedback is applied
to the laser. τ = 0.4 ns and C = −0.005. The upper and lower branches
of the hysteresis coincide with each other, showing that the bistability has
disappeared.

Fig. 8. Time series plots of the normalized photon density of the laser with
a delayed negative feedback. m = 0.65, τ = 0.4 ns and C = −0.005. The
pulses obtained while (a) increasing (b) decreasing the modulation strength.
The pulses are similar and they correspond to the new dynamical state produced
by feedback.

time series plot of the pulses generated during an increase and
a decrease in modulation strength for these values of feedback
parameters are given in Fig. 8. The modulation strength is 0.65
for both these pulses. Fig. 8(a) and (b) show the pulse obtained
while increasing and decreasing the amplitude of modulation,
respectively. Peak powers of both of these pulses are the same
(Pmax = 6.149) and it is different from the peak powers of
the pulses corresponding to the lower and upper branches of
the hysteresis loop of the laser without feedback (Fig. 4(a) and
(b)). Hence, it is evident that a new dynamical state has replaced
the multiple dynamical states corresponding to a single value of
modulation strength.
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Fig. 9. (a) Variation in the area of the hysteresis loop with an increase in
delay. (b) The peak region of the area showing delay-induced bistability. The
area of the hysteresis loop is plotted against the inverse of the feedback delay.
C = −0.004.

A very interesting result of our simulation is the dependence
of the suppression of bistability on the delay. It can be seen from
Fig. 5 that the complete elimination of hysteresis is possible
only with a feedback of non-zero delay. Further, there is a
regime of feedback strength where there is no possibility of
even a partial vanishing of the hysteresis loop. The variation
in the area of the hysteresis loop with an increase in delay is
given in Fig. 9(a). The feedback strength is kept to be a constant
−0.004. This feedback strength is sufficient to eliminate the
bistability according to Fig. 5. The area becomes negligible
around τ = 0.02 ns. On further increasing the delay, it will
completely vanish at τ = 0.0235 ns. Considerably large
hysteresis loop is formed for the delays that lie between 1.1
and 1.3 ns. This implies that the feedback induces bistability
in this range of delay. It is interesting to examine how this
frequency range is related to the frequency of the coexisting
periodic orbits. Fig. 9(b) shows a detailed view of the peak
observed in Fig. 9(a). Here, the area of the hysteresis loop
is plotted against the inverse of the feedback delay. The peak
is formed in the range 0.77–0.91 GHz, which is around the
frequency of the coexisting period 1 cycles, i.e., the frequency
of modulation (0.8 GHz). After increasing the delay further, the
area of the loop will vanish again. The above results show that
the elimination of bistability depends on delay.

The suppression of chaos is possible with positive feedback
too. However, the required feedback strength is relatively high
in this case. Fig. 10 gives the variation in the area of the
hysteresis loop with an increase in feedback strength. The
delay is chosen to be equal to 0.05 ns. Fig. 5 shows that the
suppression of bistability using positive feedback is possible for
this value of delay. The area becomes negligibly small around
the value 0.0056, and complete disappearance takes place at
C = 0.0074. There will be no hysteresis for the laser if a
feedback of strength greater than this value is applied. Fig. 11
shows the hysteresis loops corresponding to different values of
feedback strengths (τ = 0.05 ns). For C = 0.0003, the area
of the hysteresis loop (Fig. 11(a) is equal to 0.1437 units. (The
Fig. 10. Variation in the area of the hysteresis loop of the laser with an increase
in feedback strength. Feedback is positive here. τ = 0.05 ns.

area of the loop in the absence of feedback is found to be equal
to 0.1712 units.) The shape of the loop has changed and the
area has reduced to 0.0609 units when a feedback of strength
0.0015 is applied (Fig. 11(b)). The size of the loop has again
decreased, and the area has become 0.0113 when C is increased
to 0.0024 (Fig. 11(c)). Fig. 11(d) shows that the hysteresis
has almost disappeared for C = 0.005. The area of the loop
corresponding to this value of feedback strength is 3.35×10−4.
The upper and lower branches of this loop with extremely small
area cannot be distinguished in the figure. Fig. 12 shows the
complete bifurcation diagram of the laser with a feedback of
delay 0.05 ns and strength 0.008 obtained by the continuous
time approach. The variation in the peak photon density is
smooth and the hysteresis loop has disappeared completely.
All types of bifurcations shown in Fig. 2 are absent here. We
have already shown that this combination of feedback strength
and delay gives a complete elimination of period doubling and
chaos from the laser [20]. The results presented here show that
the same feedback can efficiently suppress the hysteresis too.

4. Conclusion

The effect of delayed optoelectronic feedback on bistable
behavior is demonstrated numerically. We have shown that this
type of feedback is a simple and efficient method for controlling
bistability. The regimes of feedback parameters corresponding
to the complete elimination of hysteresis and bistability are
found out by simulating the system for a range of values
of feedback parameters. It is shown that the elimination of
bistability is possible with feedback of very small strength if
a delayed negative feedback is used. In the practical sense,
direct delayed optoelectronic feedback is a very easy way of
keeping the laser in a unique and regular dynamical state.
The mechanism of destabilization of one of the bistable states
deserves particular attention and can be investigated in detail
in the future. This may reveal more interesting features of the
dynamics of lasers with delayed feedback.
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Fig. 11. Variation in the structure of the hysteresis loops with the increase of feedback strength. A positive feedback is considered here. (a) C = 0.0003,
(b) C = 0.0015, (c) C = 0.0024, (d) C = 0.005.
Fig. 12. Bifurcation diagram showing the peaks of the normalized photon
density of the laser with an increase in modulation depth. A delayed positive
feedback is considered here. C = 0.008 and = 0.05 ns. It is plotted using the
continuous time approach. The coincidence of forward and reverse paths shows
that the bistability is completely eliminated.
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