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Chapter 1 

 

Introduction 

 

 

1.1 The Univariate Pareto Distribution 

 The Pareto distribution is named after the Italian economist Vilfredo 

Pareto. Pareto (1897) originally used this distribution to describe the allocation of 

wealth among individuals since it seemed to show rather well the way that a large 

portion of wealth of any society is owned by a smaller percentage of the people in 

that society. The classical Pareto distribution called the Pareto I distribution with 

survival function [ ]( ) = ≥F x P X x  is given by 

( ) ; , 0
x

F x x
α

σ σ
σ

−
 

= > > 
 

     (1.1) 

where α  is the shape parameter and σ  is the scale parameter. This model with 

its heavy tail soon became an accepted model for income. The parameter α  is 

referred to as Pareto’s index of inequality. 

 In much of the literature the standard Pareto distribution is permitted to 

have an additional location parameter. It is called the Pareto II distribution or 

Lomax distribution and its survival function is given by 
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( ) 1 ;
x

F x x
α

µ
µ

σ

−
− 

= + > 
 

     (1.2) 

where µ  the location parameter, is real, with 0σ >  and 0.α >  This model finds 

application in reliability studies as a model to incorporate environmental 

influence on a system having exponential lifetime (Marshall (1975)). 

 An alternative variation on the Pareto theme, which provides tail 

behaviour similar to (1.2), is provided by the Pareto III family with survival 

function 
1

1

( ) 1 ;
x

F x x
γµ

µ
σ

−
 

−  = + >   
 

    (1.3) 

where µ  is real, 0σ >  and 0γ > , is called the inequality parameter. 

 This distribution is further generalized by introducing a shape parameter, 

to arrive at the Pareto IV family, 

1

( ) 1 ;
x

F x x

α

γµ
µ

σ

−
 

−  = + >   
 

    (1.4) 

where µ  is real, 0σ > , 0α >  and 0γ > .  

 Feller (1971, p. 49) defined a Pareto distribution in a some what different 

manner. Let Y  has a beta distribution with parameters 1γ  and 2γ , that is  

( )

( )

21
11

1 2

1
( ) ; 0 1

,

y y
f y y

B

γγ

γ γ

−−
−

= < <     (1.5) 

and define 1 1X Y −= − . Then X  has what Feller called a Pareto distribution 

given by 

( )

( )

1 22 1

1 2

1
( ) ; 0.

,

x x
f x x

B

γ γγ

γ γ

− −−
+

= >     (1.6) 

This family represents a generalization of the Pareto IV family. 

 Here we restrict our studies to the extensions of Pareto I and Pareto II 

distributions. 
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Lot of work has appeared in literature with modification, application, 

generalization and inference of these models. Krishnaji (1970) has assumed that 

the reporting errors are multiplicative and obtained characterization results of 

Pareto I distribution. Ahsanullah and Kabir (1973) studied the model (1.1) using 

order statistics. Revankar et al. (1974) assumed that the under reporting errors are 

additive and showed that, for constant , 0,α β >  

[ ]|E U X y yα β> = +  

where ,X Y  and U  denote the actual income, reported income and under 

reporting error, is necessary and sufficient condition for the random variable X  

to follow Pareto I distribution. Talwaker (1980) introduced the concept of 

dullness of distribution defined as follows. 

An income distribution of  X  is said to be dull at a point t , i.e. incapable 

of utilizing the information about the reported income t , whenever 

[ ] [ ]|P X st X t P X s≥ ≥ = ≥  for all 1s ≥ and given 1t ≥ . (1.7) 

The distribution of  X  will be called totally dull, if equation (1.7) holds 

true for all 1s ≥  and all 1t m≥ >  where m is some fixed real number. Talwaker 

also obtained characterization for the model (1.1) using this property. Cuadras et 

al. (2006) expanded Pareto distribution as a series of principal components and 

made a comparison with exponential distribution. Also he obtained the 

asymptotic distribution. Nadarajah (2005) has given an exponential Pareto model. 

Nadarajah and Gupta (2008) obtained a product Pareto distribution and discussed 

its properties. The generalized Pareto distribution was introduced by Pickands 

(1975). Davison and Smith (1990) pointed out that the generalized Pareto might 

form the basis of a broad modeling approach to high level exceedances.  

Estimation of parameters of the models has been undertaken by several 

researchers. One of the earlier works related to estimation of a Pareto model is by 

Quandt (1966). In his paper ‘old and new method of estimation of Pareto 

distribution’, the traditional method of estimation is discussed in detail and he 
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formulated a new method of estimation by minimization of the criterion function. 

Later on lots of work has appeared in these lines. Recently, Somesh Kumar and 

Bandhyopadhyay (2005) obtained UMVUE for the scale parameter of the model 

when the shape parameters are assumed to be equal. Srivastava and Gupta (2005) 

obtained a modified Pitman estimator for the ordered scale parameters of two 

Pareto distributions and showed that they improve up on Pitman estimators using 

simulation study. Garren et al. (2007) obtained improved estimate of the Pareto’s 

location parameter under the squared error loss function. Several variants and 

properties of the Pareto distribution are discussed in Arnold (1983) and Johnson 

et al. (1994). 

These distributions have been extended to the bivariate and multivariate 

set up. The approach of extending to multivariate set up has either been that of 

generalizing univariate distributional properties, univariate notions and obtaining 

models for which univariate marginals belong to that family. Before looking into 

some popular generalization of Pareto I and Pareto II distributions, we overview 

some basic concepts and notions that are been used directly or indirectly in 

developing these multivariate models. We also include the concepts that will be 

used through out this thesis. 

 

1.2 Basics 

Let X  be a non-negative random variable defined on a probability space 

( ), ,A PΩ  with distribution function [ ]( )F x P X x= < . The random variable X  

could represent the income from a source or the length of life of a device, 

measured in units of time.  

 

1.2.1 Survival Function 

The function 

[ ]( )F x P X x= ≥      (1.8) 
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is called survival function or reliability function. ( )F x is a non-increasing 

continuous function with (0) 1F =  and lim ( ) 0
x

F x
→∞

= . For an absolutely 

continuous ( )F x , the probability density function of X  is 

( )
( )

dF x
f x

dx
= − . 

 

1.2.2 Failure Rate 

Lifetime distributions are usually characterized using the concept of 

failure rate ( )xλ , defined as 

[ ]
0

|
( ) lim

x

P x X x x X x
x

x
λ

→

≤ < + >
=
�

�

�
.   (1.9) 

When ( )f x  is the probability density function of X , (1.9) can be equivalently 

written as  

( )
( )

( )

f x
x

F x
λ =  

         log ( )
d

F x
dx
 = −  .     (1.10) 

The failure rate ( ),xλ  measures the instantaneous rate of failure or death at time 

x , given that an individual survives up to time x . The failure rate is also known 

as conditional failure rate in reliability, the hazard rate in survival analysis, the 

force of mortality in demography, the age-specific failure rate in epidemiology. 

In extreme-value theory, it is known as the intensity rate and its reciprocal is 

termed as Mill’s ratio in economics.  

When X  is non-negative and has a distribution function absolutely 

continuous with respect to the Lebesgue measure, (1.10) provides 

0

( ) exp ( )

x

F x t dtλ
 

= − 
 
 
∫ .     (1.11) 

Equation (1.11) indicates that ( )xλ  is a non-negative function with 

0
( )

x
t dtλ < ∞∫ , for some 0x >  and 

0
( )t dtλ

∞
= ∞∫ . From equation (1.11), it can be 
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noted that ( )xλ  uniquely determines the distribution. It is shown that constancy 

of ( )xλ is the characteristic property of the exponential distribution (Galambos 

and Kotz (1978)). 

 

1.2.3 Mean Residual Life Function (MRLF)  

The mean residual life function ( )m x , for a random variable X  defined 

on the real line with [ ]E X < ∞ , is given by (Swartz (1973)) 

[ ]( ) |m x E X x X x= − ≥      (1.12) 

for all x . The mean residual life function ( )m x , represents the average lifetime 

remaining for a component, which has already survived up to time x . When 

( )F x  is absolutely continuous with respect to Lebesgue measure, (1.12) becomes 

1
( ) ( ) .

( )

∞

= ∫
x

m x F t dt
F x

     (1.13) 

 A function ( )m x  is a mean residual life function of some random variable 

with an absolutely continuous distribution function if only if ( )m x  satisfies the 

following properties. 

(i) 0 ( ) , 0.m x x≤ < ∞ ≥  

(ii) (0) 0.m >  

(iii) ( )m x  is continuous in .x  

(iv) ( )m x + x  is increasing on R+ , where [ ]{ }| 0,R x x+ = ∈ ∞ .  

(v) When there exist an 0x  such that 0( ) 0m x =  then ( ) 0m x =  for 0x x≥    

otherwise, there does not exist such an 0x  with 0( ) 0m x = , then 

1

0
( )m x dx

∞ − = ∞∫ .  

Further ( )m x  uniquely determine the underlying distribution through the 

expression, 

0

(0)
( ) exp

( ) ( )

x
m dt

F x
m x m t

 
= − 

 
 
∫ .     (1.14) 
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Also the MRLF is related to the failure rate by 

1 ( )

( )
( )

d
m x

dxx
m x

λ
+

= .      (1.15) 

 

1.2.4 Vitality Function  

The vitality function ( ),v x  of a random variable X  admitting an 

absolutely continuous distribution function ( )F x , with respect to Lebesgue – 

Stieljes measure on real line is given by (Kupka and Loo (1989)) 

 

[ ]( ) |

1
( ).

( )
x

v x E X X x

tdF t
F x

∞

= ≥

= ∫
       (1.16) 

The vitality function satisfies the following properties. 

(i)    ( )v x  is non-decreasing and left continuous on ( ), L−∞ , where  

        { }inf : ( ) 1 .L x F x= =  

 (ii)   ( )v x x>  for all x L< . 

 (iii) lim ( ) .
x L

v x L
−→

=  

 (iv) [ ]lim ( ) .
x

v x E X
→−∞

=  

Moreover, ( )v x is related to ( )m x through the relationship  

( ) ( )v x m x x= +       (1.17) 

and 

( ) ( ) ( )
d

v x m x x
dx

λ= .      (1.18) 

 

1.2.5 Geometric Vitality Function  

Let X  be a non-negative random variable admitting an absolutely 

continuous distribution function ( )F x  on ( )0, L , where  

{ }inf : ( ) 1L x F x= =  
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 with [ ]E X < ∞ . The geometric vitality function ( )GV t , for 0t >  is defined as 

(Nair and Rajesh (2000)) 

[ ]log ( ) log |GV t E X X t= >  

                
1

log ( )
( )

t

x f x dx
F t

∞

= ∫ .    (1.19) 

i.e. 

1 ( )
log ( )

( )
t

F x
GV t dx

F t x

∞

= ∫ .     (1.20) 

In the reliability context, if X  represents the life length of a component, 

( )GV t  represents the geometric mean of lifetime of the components which has 

survived up to time .t   

The geometric vitality function satisfies 

 (i)   log ( )GV t  is non-decreasing in .t  

 (ii) [ ]
0

lim log ( ) log .
t

GV t E X
→

=  

 (iii) ( ) log ( ),v t GV t≥  for all 0.t >  

 (iv) If 
( )

( )
( )

f t
t

F t
λ =  is the failure rate of  T , then 

log ( )

( )
( )

log

d
GV t

dtt
GV t

t

λ =
 
  

. 

1.3 Bivariate Notions 

Let ( )1 2,X X  be a non-negative random vector on ( ) ( )2 0, 0,R + = ∞ × ∞  

with a bivariate distribution function ( )1 2,F x x . Then the bivariate survival 

function of ( )1 2,X X , denoted by ( )1 2,F x x  is defined as 

( ) [ ]1 2 1 1 2 2, ,F x x P X x X x= > > , 

which is related to ( )1 2,F x x  as 

( ) ( ) ( ) ( )1 2 1 2 1 2, 1 , , ,F x x F x F x F x x= − ∞ − ∞ + . 

If  ( )1 2,F x x  is absolutely continuous and if the second order derivative exists, 

then  
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( )
( ) ( )2 2

1 2 1 2
1 2

1 2 1 2

, ,
,

F x x F x x
f x x

x x x x

∂ ∂
= =

∂ ∂ ∂ ∂
. 

 

1.3.1 Bivariate Failure Rate 

In the bivariate case, the failure rate can be defined in more than one way. 

One definition of bivariate failure rate was given by Basu (1971) as 

( )
( )

( )
1 2

1 2
1 2

,
, .

,

f x x
r x x

F x x
=      (1.21) 

Unlike the univariate case, ( )1 2,r x x , in general does not determine the bivariate 

distribution uniquely. 

Another definition proposed is the bivariate failure rate by Cox (1972) 

defined as a vector 

( ) ( ) ( ) ( )( )12 1 2 21 2 1, | , |x x x x x xλ λ λ λ=    (1.22) 

where 

( ) ( ) ( )10 20x x xλ λ λ= + , 

( )
[ ]1 2

0
0

| ,
lim , 1,2,

i
i

x

P x X x x x X x X
x i

x
λ

+→

≤ < + ≤ ≤
= =
�

�

�
 

( )
[ ]

1

1 1 1 1 1 1 2 2
12 1 2 2 1

0 1

| ,
| lim ,

x

P x X x x x X X x
x x x x

x
λ

+→

≤ < + ≤ =
= <
�

�

�
 

and 

( )
[ ]

2

2 2 2 2 2 2 1 1
21 2 1 1 2

0 2

| ,
| lim ,

x

P x X x x x X X x
x x x x

x
λ

+→

≤ < + ≤ =
= <
�

�

�
. 

Note that if ( )1 2,F x x  admits a density function then, 

( )
( )

,
( )

Z

z

f x
x

F x
λ = where ( )1 2,Z min X X= . 

Also,  

( ) ( )0 ,i ix p xλ λ=  where [ ]3 , 1, 2,i i ip P X X i−= < =  
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( )

( )

( )

2
1 2

1 2

12 1 2 2 1

1 2

2

,

| ,
,

F x x

x x
x x x x

F x x

x

λ

 ∂
 

∂ ∂  = <
 ∂
− 

∂ 

 

and 

( )

( )

( )

2
1 2

1 2

21 2 1 1 2

1 2

1

,

| , .
,

F x x

x x
x x x x

F x x

x

λ

 ∂
 

∂ ∂  = <
 ∂
− 

∂ 

 

The probability density function 1 2( , )f x x in terms of ( )xλ  is given by (Cox 

(1972)) 

( )

( ) ( ) ( )

( ) ( ) ( )

1 2

1

2 1

2

0 0

21 1 10 1 21 2 1

0 0

1 2
1 2

0 0

12 2 20 1 12 1 2

0 0

2 1

exp ( ) | |

;
,

exp ( ) | |

;

x x

x

x x

x

u du u x du x x x

x x
f x x

u du u x du x x x

x x

λ λ λ λ

λ λ λ λ

− −

+

− −

+

  
  − −

 
 

 <
= 

 
 − −
   


<

∫ ∫

∫ ∫

. (1.23) 

Johnson and Kotz (1975) defined bivariate failure rate as a vector given by 

( ) ( ) ( )( )1 2 1 1 2 2 1 2, , , ,h x x h x x h x x=     (1.24) 

where 

( ) 1 2
1 2

log ( , )
, , 1, 2i

i

F x x
h x x i

x

∂
= − =

∂
 

is the instantaneous failure of iX  at time ix  given that iX  was alive at time ix  

and that 3 iX −  survived beyond time 3 ix − . The Johnson and Kotz (1975) vector 

failure rate uniquely determine the distribution through the expression. 

( ) ( ) ( )
1 2

1 2 1 2 1

0 0

, exp ,0 ,

x x

F x x h u du h x u du
 
 = − −
  
∫ ∫    (1.25) 

or 
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( ) ( ) ( )
1 2

1 2 1 2 2

0 0

, exp , 0,

x x

F x x h u x du h u du
 

= − − 
  
∫ ∫ .   (1.26) 

Marshall (1975), Shaked and Shanthikumar (1987), Basu and Sun (1997), 

Finkelstein (2003) have also discussed different versions of failure rate in 

bivariate setup. Shaked and Shanthikumar (1987) has given the total hazard 

accumulation of the random variable for a bivariate random variable and 

extended it to the multivariate case. Finkelstein (2003) considered two 

conditional hazards associated with ( )1 2,F x x  and exponential representations for 

the survival function in terms of the conditional hazard rates were also obtained. 

 

1.3.2 Bivariate Mean Residual Life Function  

Buchanan and Singpurwalla (1977) defined the bivariate mean residual 

life function (BMRLF) as a direct extension of the univariate case as 

( )

[ ]

( )

1 1 1 2 2 2

0 0
1 2

1 2

,

, , 0, 1,2.
,

i

P X x t X x t

m x x x i
F x x

∞ ∞

> + > +

= > =

∫ ∫
  (1.27) 

Although ( )1 2,m x x  is a direct extension, it does not uniquely determines the 

underlying distribution. 

Another definition for the bivariate mean residual life function is provided 

independently by Shanbag and Kotz (1987) and Arnold and Zahedi (1988). For a 

bivariate random vector defined on 2R +  with joint distribution function 

( )1 2, ,F x x  ( )1 2,L L L=  be a vector of extended real numbers such that 

{ }inf | ( ) 1i i iL x F x= =  where ( )i iF x  is the distribution function of , 1, 2.iX i =  

Further let [ ] , 1, 2.iE X i< ∞ =  The vector valued Borel-measurable function 

( )1 2,m x x  on 2R +  is defined as 

( ) [ ]1 2, |m x x E X x X x= − ≥  

   ( ) ( )( )1 1 2 2 1 2, , ,m x x m x x=     (1.28) 
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for all ( )1 2 2, , , 1, 2,i ix x x R x L i+= ∈ < =  such that [ ] 0P X x> >  and X x≥  

implies , 1, 2i iX x i≥ =  is called the bivariate mean residual life function. When 

( )1 2,X X  is continuous and non-negative the components of bivariate mean 

residual life function is given by 

( ) [ ]

( )
( )

1

1 1 2 1 1 1 1 2 2

2
1 2

, | ,

1
,

,
x

m x x E X x X x X x

F t x dt
F x x

∞

= − ≥ ≥

= ∫
 

and  

( ) [ ]

( )
( )

2

2 1 2 2 2 1 1 2 2

1
1 2

, | ,

1
, .

,
x

m x x E X x X x X x

F x t dt
F x x

∞

= − ≥ ≥

= ∫
 

It is established that ( )1 2,m x x  determine the distribution of ( )1 2,X X X=  

uniquely. The unique expression of the survival function in terms of ( )1 2,m x x  is 

provided by Nair and Nair (1988) as  

( )
( ) ( )

( ) ( ) ( ) ( )

1 2

1 2 1
1 2

1 1 2 1 2 1 2 10 0

0,0 ,0
, exp

,0 , ,0 ,

x x
m m x dt dt

F x x
m x m x x m t m x t

 
 = − −
  
∫ ∫  (1.29) 

or alternatively 

( )
( ) ( )

( ) ( ) ( ) ( )

2 1

1 2 2
1 2

1 1 2 2 2 2 1 20 0

0, 0,0
, exp

, 0, 0, ,

x x
m x m dt dt

F x x
m x x m x m t m t x

 
 = − −
  
∫ ∫ . (1.30) 

The bivariate mean residual life function in (1.28) is related to the 

bivariate failure rate in (1.24) through the relationship 

( )
( )

( )

1 2

1 2
1 2

1 ,

, , 1,2.
,

i
i

i
i

m x x
x

h x x i
m x x

∂
+

∂
= =    (1.31) 

Shaked and Shanthikumar (1991) has defined the bivariate conditional 

mean residual life function corresponding to the Cox’s failure rate as  

( ) [ ]1 2| , , 1, 2, 0i im x E X x X x X x i x= − > > = ≥  

( ) [ ]1 2 1 1 2 2| | , , 0m x x E X x X x X x x x= − > = ≥ ≥    (1.32) 
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and 

( ) [ ]2 1 2 1 2 1| | , , 0.m x x E X x X x X x x x= − = > ≥ ≥     

The function defined in (1.32) predict the remaining life of the surviving 

components by the appropriate expectations, conditioned on the observed past up 

to time t . Shaked and Shanthikumar (1991) also extended the mean residual life 

function to the multivariate case. 

Another definition closely related to above bivariate mean residual life 

function proposed is (Asha and Jagathnath (2008))  

( )12 1 2 21 2 1( ) ( ), ( | ), ( | )m x m x m x x m x x=    (1.33) 

where 

1
( ) ( ) ( ) , 0

( )
Z

Z x

m x t x f t dt x
F x

∞

= − >∫ , 

[ ]0 3( ) ( ), , 1,2i i i i im x p m x p P X X i−= = < = , 

1

1

1 2

12 1 2 1 2

2

( ) ( , )

( | ) , 

( , )

x

x

t x f t x dt

m x x x x

f t x dt

∞

∞

−

= >

∫

∫

 

and 

2

2

2 1

21 2 1 1 2

1

( ) ( , )

( | ) , .

( , )

x

x

t x f x t dt

m x x x x

f x t dt

∞

∞

−

= <

∫

∫

 

The unique expression for the joint density function in terms of mean residual life 

function is given by 
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( )
( )

1 2

1

1 1 21 2 1
21 1 1 1 2

1 21 2 1 1 1

1 2
21 10

1 2

2 2
12 2 2 2

2 12 1 2 2

( ) 1 ( | )
(0) ( | )

( ) ( | ) ( ) ( )

1 1
exp ;

( ) |

,

( )
(0) ( | )

( ) ( | ) ( )

x x

x

d
p m x m x x

m m x x dx x

m x m x x m x m x

du du x x
m u m u x

f x x
d

p m x
m m x x dx

m x m x x m x

∂  
+ +  ∂

  
  
  
  

 
 − − <
 
 

=
 

+ 
 
 

 

∫ ∫

( )

2 1

2

12 1 2
1

2

2 1
12 20

1 ( | )

( )

1 1
exp ;

( ) |

x x

x

m x x
x

m x

du du x x
m u m u x













∂  +  ∂
 
     


 
 − − <
   
∫ ∫

.(1.34) 

The bivariate mean residual life function is related to Cox’s failure rate by the 

relationships 

       ( )
( )

( )

1

, 0

d
m x

dxx x
m x

λ
+

= > , 

12 1 2
1

12 1 2 1 2
12 1 2

1 ( | )

( | ) , 
( | )

m x x
x

x x x x
m x x

λ

∂
+

∂
= >  

and 

21 2 1
2

21 2 1 2 1
21 2 1

1 ( | )

( | ) , .
( | )

m x x
x

x x x x
m x x

λ

∂
+

∂
= >    (1.35) 

 

1.3.3 Bivariate Vitality Function 

Sankaran and Nair (1991) defined the bivariate vitality function of a 

random variable ( )1 2,X X  defined on 2R +  as the vector 

( ) ( ) ( )( )1 2 1 1 2 2 1 2, , , ,v x x v x x v x x=     (1.36) 

where 

( ) [ ]1 2 1 1 2 2, | , , 1, 2.i iv x x E X X x X x i= ≥ ≥ =  
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The bivariate vitality function is related to the mean residual life function by the 

relationship 

( ) ( )1 2 1 2, , , 1, 2.= + =i i iv x x x m x x i       

We propose another extension of vitality function, which is useful to 

measure the total life span of a two-component parallel system, by 

( )12 1 2 21 2 1( ) ( ), ( | ), ( | )v x v x v x x v x x=     (1.37) 

where 

[ ]
1

( ) | ( ) ;  0
( )

Z
Z x

v x E X X x t f t dt x
F x

∞

= > = >∫ , 

[ ]0 3( ) ( ), , 1,2i i i i iv x p v x p P X X i−= = < = , 

1

1

2

12 1 2 1 2

2

( , )

( | ) ;  

( , )

x

x

t f t x dt

v x x x x

f t x dt

∞

∞
= >

∫

∫

 

and 

2

2

1

21 2 1 2 1

1

( , )

( | ) ;  

( , )

x

x

t f x t dt

v x x x x

f x t dt

∞

∞
= >

∫

∫

 . 

The bivariate vitality ( )v x  measures the expected life span of the system 

using the information about the current age of the components. The first element 

in the vector gives the expected lifetime of the system using the information that 

both the component has survived beyond ‘ x ’. The second element gives the 

expected life span of the first component given that it has survived to an age 1x  

and the other has failed at 2x . Similar argument holds for the third element. 

The bivariate mean residual life function ( )m x  is related to the bivariate 

vitality function ( )v x  through the relationships 

( ) ( )v x x m x= + , 
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12 1 2 1 12 1 2( | ) ( | )v x x x m x x= +  

and 

21 2 1 2 21 2 1( | ) ( | ).v x x x m x x= +     (1.38) 

 

1.3.4 Bivariate Geometric Vitality Function 

Sathar (2002) has extended the concept of geometric vitality function to 

the bivariate setup. The bivariate geometric vitality function is defined as  

( )1 2 1 1 2 2 1 2log ( , ) log ( , ), log ( , )GV t t GV t t GV t t=   (1.39) 

where 

( )
( )

1

1 1 2 1 1 2 2 1
1 2 2

1
log ( , ) log |

|
t

GV t t x f x X t dx
F t X t

∞

= ≥
≥ ∫  

and  

( )
( )

2

2 1 2 2 2 1 1 2
2 1 1

1
log ( , ) log |

|
t

GV t t x f x X t dx
F t X t

∞

= ≥
≥ ∫ ,  (1.40) 

which can be equivalently written as 

( )

( )

1

1 2 21 1 2
1

1 1 2 2 1

|( , ) 1
log

|
t

F x X tGV t t
dx

t F t X t x

∞
≥ 

= 
≥ 

∫  

and  

( )

( )

2

2 1 1
2 1 2 2

2 1 1 2

|1
log ( , )

|
t

F x X t
GV t t dx

F t X t x

∞
≥

=
≥ ∫ .   (1.41) 

Corresponding to the bivariate failure rate in equation (1.22) we propose 

an extension of the geometric vitality function for ( )1 2,F x x  with 

[ ]log , 1,2< ∞ =iE X i  is given by 

( )
( )

1
log ( ) log , 0Z

Z t

GV t x f x dx t
F t

∞

= >∫ , 

( )

( )
1

2

12 1 2 1 1 2 1 1 2
1 2

1 2
2

1
log ( | ) log , ,

, t

GV t t x F x t dx t t
x t

F t t
t

∞  ∂
= > 

∂ ∂ ∂   
 
∂ 

∫  
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and  

( )
( )

2

2

21 2 1 2 1 2 2 2 1
1 2

1 2
1

1
log ( | ) log , , .

, t

GV t t x F t x dx t t
t x

F t t
t

∞  ∂
= > 

∂ ∂ ∂   
 
∂ 

∫  (1.42) 

This can be equivalently written as 

 
( )

( )( ) 1
log , 0,

∞
 

= >  
∫

Z

Z t

F xGV t
dx t

t F t x
 

( )

( )

1

1 2
212 1 2

1 1 2
1 1

1 2
2

,
( | ) 1

log ,

, t

F x t
tGV t t

dx t t
t x

F t t
t

∞

 ∂
 
∂   

= > 
 ∂ 
 
∂ 

∫  

and  

( )

( )

2

1 2
121 2 1

2 2 1
2 2

1 2
1

,
( | ) 1

log , .

, t

F t x
tGV t t

dx t t
t x

F t t
t

∞

 ∂
 
∂   

= > 
 ∂ 
 
∂ 

∫  (1.43) 

The bivariate geometric vitality function is related to the Cox’s failure rate 

through the relation, 

( )log ( )

( )
( )

log

d
GV t

dtt
GV t

t

λ =
 
  

, 

[ ]12 1 2
1

12 1 2

12 1 2

1

log ( | )

( | )
( | )

log

GV t t
t

t t
GV t t

t

λ

∂

∂
=

 
 
 

 

and 

[ ]21 2 1
2

21 2 1

21 2 1

2

log ( | )

( | ) .
( | )

log

GV t t
t

t t
GV t t

t

λ

∂

∂
=

 
 
 

    (1.44) 
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1.4 Information Measures 

The development idea of entropy by Shannon (1948) provided the 

beginning of a separate branch of learning namely the ‘Theory of Information’. 

Even though an axiomatic foundation to this concept was laid down by Shannon, 

this measure was independently developed by Wiener (1948). Initial works 

related to Shannon’s entropy was centered on characterization of different 

models. 

 

1.4.1 Entropy Function 

The concept of entropy is extensively used in literature as a quantitative 

measure of uncertainty associated with random phenomena. Some of the 

commonly used measures to characterize or to compare the aging process of the 

units are the failure rate and mean residual life function. Various characteristic 

properties of these functions can be seen in Swartz (1973), Esary and Marshall 

(1974), Buchanan and Singpurwalla (1977), Mukherjee and Roy (1986), Guess 

and Proschan (1988), Ruiz and Navarro (1994), Tan et al. (1999), Asadi (1999), 

Lin (2003), Gupta and Kirmani (2004). But highly uncertain components or 

systems are inherently not reliable. One measure of this uncertainty is the 

Shannon’s (1948) information measure defined as 

[ ]
0

( ) ( ) log ( ) log ( )H f f x f x dx E f X
∞

= − = −∫  .  (1.45) 

Low entropy distributions are more concentrated and hence more 

informative than high entropy distributions. The concept of entropy has been 

extended to bivariate and multivariate case by several authors (see Cover and 

Thomas (1991), Darbellay and Vajda (2000), Nadarajah and Zografos (2005), 

Zografos and Nadarajah (2005)). 

The Shannon’s entropy finds applications in diverse fields. In 

communication theory an aspect of interest is the flow of transmission in some 
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network where information is carried from a transmitter to receiver. This may be 

sending of messages by telegraph, flow of electricity, and visual communications 

from artist to viewers etc. 

 

1.4.2 Residual Entropy Function 

In many reliability and survival analysis problems the current age of an 

item under study must be taken in to account by information measures of the 

lifetime distribution. It is common knowledge that highly uncertain components 

or systems are inherently not reliable. At the stage of designing a system, when 

there is enough information regarding the deterioration, wear of a component 

parts, factors and levels are prepared based on this information. This type of 

information was usually obtained through hazard rate function or mean residual 

life function. However, in order to have a better design the stability of the 

component parts should also be taken into account together with deterioration. 

Capturing effects of the age t  of an individual or an item under study on the 

information about the remaining lifetime is important in many applications. 

As an example consider the case where X  is the age at death of an 

insured person who purchases the policy at age t . The length of time between X  

and t , together with the age at which insurance is purchased, is crucial for pricing 

life insurance products for individuals in various age groups. 

Ebrahimi and Pellery (1995) and Ebrahimi (1996) has modified the 

Shannon’s (1948) entropy function by taking the age into account, which 

measures the expected uncertainty contained in the conditional density of X t−  

given X t>  about the predictability of the remaining lifetime of the component 

is defined as 

( ) ( )
( , ) log

( ) ( )
t

f x f x
H f t dx

F t F t

∞
 

= −  
 

∫ .    (1.46) 

Which is equivalent to 
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[ ] [ ] [ ] ( )( ) log ( ) 1 ( ) log 1 ( ) 1 ( ) ,

t

f x f x dx F t F t F t H f t
∞

= − − − −∫ . (1.47) 

Differentiating with respect to t , we obtain 

( ) [ ] [ ] ( )( ) log ( ) ( ) 1 , log 1 ( ) 1 ( ) ,
d

f t f t f t H f t F t F t H f t
dt

= − + − + −   . 

The failure rate (1.10) verifies 

( ) ( )( ) , 1 log ( ) ,
d

t H f t t H f t
dt

λ λ− + =   .    (1.48) 

Under the assumption that ( ),H f t  is a non-decreasing function, Belzunce et al. 

(2004) showed that ( )tλ  is unique positive solution of the equation 

( ) ( )( ) , 1 log ( ) , 0
d

g y y H f t t H f t
dt

λ= − + − =   .   (1.49) 

Thus a non-decreasing ( ),H f t  uniquely determines the underlying distribution. 

In particular if ( ), 0
d

H f t
dt

=  then solving (1.49), we have 

( )1 ,
( )

H f t
t eλ

−
=  which characterizes the exponential distribution. For further 

characteristic properties of  ( ),H f t , we refer to Ebrahimi (1996), Nair and 

Rajesh (1998), Sankaran and Gupta (1999), Asadi and Ebrahimi (2000), Belzunce 

et al. (2004). A dynamic generalized information measure is given in Asadi et al. 

(2005). 

 

1.4.3 Bivariate Residual Entropy Function 

Now if  ( )1 2,X X  represents the lifetime of the components or system, 

then the joint residual lifetime distribution at ages 1 2, 0t t ≥  is the conditional 

(truncated) distribution denoted by 

( ) [ ]1 2 1 2 1 1 2 2 1 1 2 2, , , , | ,F x x t t P X x X x X t X t= ≤ ≤ > > .  (1.50) 

The residual density function will be denoted by 

( )
( )

( )
1 2

1 2 1 2
1 2

,
, , ,

,

f x x
f x x t t

F t t
=  for 1 1 2 2,x t x t> > .   (1.51) 

 The residual entropy function has been extended to the bivariate case by 

Ebrahimi et al. (2007) for an absolutely continuous distribution function as 
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( ) ( )1 2 1 2 1 2 1 2, , , , , ,H X X t t H f x x t t=     

                  ( ) ( )
2 1

1 2 1 2 1 2 1 2 1 2, , , log , , ,

t t

f x x t t f x x t t dx dx
∞ ∞

= −   ∫ ∫  (1.52) 

                  ( ) ( )
2 1

1 2 1 2 1 2 1 2
1 2

1
log ( , ) , log ,

( , )
t t

F t t f x x f x x dx dx
F t t

∞ ∞

= − ∫ ∫ . 

The residual entropy (1.52) measures the uncertainty of the remaining lifetime 

when the ages of components are 1t  and 2t  respectively. 

A representation of the residual entropy corresponding to the equation 

(1.52) in terms of marginal and conditional entropies is obtained as  

( ) ( ) ( )1 2 1 2 1 2 1 2, , , , , | , , , 1, 2,= + ≠ =i j iH X X t t H X t t H X X t t i j  

where ( )1 2, ,iH X t t  is the marginal entropy which measures the uncertainty of 

the marginal residual density of iX  given 1 1 2 2,X t X t> >  and ( )1 2| , ,j iH X X t t  

is the conditional residual life entropy which quantifies the uncertainty about jX  

on average when we know , .iX i j≠  

If 1 2
1 2

1 2

( , )
( , )

( , )

f x x
r x x

F x x
= , denote the Basu’s (1971) bivariate failure rate, 

then  

( ) ( ) ( )
2 1

1 2 1 2 1 2 1 2 1 2
1 2

1
, , , , log ,

( , )
t t

H X X t t f x x r x x dx dx
F t t

∞ ∞

= − ∫ ∫  (1.53) 

which doesn’t uniquely determine the distribution unless the conditional 

entropies are given. 

 

1.5. Measures of Inequality 

As is customary in most statistical analysis, extend of variation in income 

is represented in terms of certain summary measures. A measure of income 

inequality is designed to provide an index that can abridge the variations 

prevailing among the units in a population. The population measures are Lorenz 

function and Gini index. The concepts and ideas from reliability theory have been 
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extensively used to study measures of inequality. Chandra and Singpurwalla 

(1981) pointed out a few relationships between some notions that are common to 

reliability theory and economics in the context of measuring inequality. These 

aspects were further carried out by Klefsjo (1984). 

 

1.5.1. The Lorenz Curve 

Although there had been many attempts to provide measures of income 

inequality in the nineteenth century, the first major development in this area can 

be attributed to the work of M.O. Lorenz in 1905. The Lorenz curve is an 

important tool for the measurement of income inequality. To compare the 

distribution of income of a country at different periods of time or of different 

countries at the same time, the Lorenz curve, takes into account the changes in 

income and population. 

Let X  be a non-negative random variable admitting an absolutely 

continuous distribution function ( )F x , with finite mean µ . The Lorenz curve 

( )L p  of  X  is defined in terms of two parametric equations in x  namely 

0

( ) ( )

x

p F x f t dt= = ∫       (1.54) 

and 

1

0

1
( ) ( ) ( )

x

L p F x t f t dt
µ

= = ∫ .      (1.55) 

( )L p  determined by (1.55) is called ‘standard Lorenz curve’. p can be 

interpreted as the proportion of individuals having income less than or equal to 

x . It follows from (1.55) that the Lorenz curve is the first moment distribution 

function of  p . It may be noticed that both p  and ( )L p  lies between zero and 

one, and the Lorenz curve being the graphical representation of incomes by 

plotting a curve with co-ordinates ( ), ( )p L p  in the unit square. ( )L p  can be 
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interpreted as the proportion of the total wealth owned by the poorest thp  fraction 

of the population. One can easily verify the following properties. 

(i) (0) 0, (1) 1, ( )L L L p= = is continuous and strictly increasing in (0,1) , as   

     
1

( )L p x
µ

′ = , which is greater than zero. 

(ii) ( )L p  is twice differentiable and is strictly convex on (0,1)  as   

      
1

( ) 0
( )

L p
f xµ

′′ = > . 

Gastwirth (1971) relaxed the assumption that the distribution function ( )F x  is 

absolutely continuous and defined the Lorenz curve  ( )L p  by 

0

1
( ) ( ) , 0 1

p

L p Q t dt p
µ

= ≤ ≤∫     (1.56) 

where 

{ }( ) inf : ( )Q x x F x x= ≥  

is the quantile function. When ( )F x  is absolutely continuous, ( )Q x  is the inverse 

function of ( )F x  and (1.56) is the solution for ( )L p  obtained from (1.54) and 

(1.55). 

For statistical or administrative reasons, many surveys of income are 

truncated at the lower end of the income range. Much of the data on income 

comes from income tax returns and most countries have a threshold below which 

no tax is levied. Someone known or suggested to have a low income is much 

unlikely to file a tax return than a person with high earnings. Hence the 

importance of studying inequality measures of truncated distribution upon the 

various measures of income inequality had been a theme of interest among 

researchers. Bhattacharya (1963) showed that the Lorenz curve of a left truncated 

distribution is Pareto. The right truncated case was studied by Moothathu (1986), 

who showed that Lorenz curve is independent of the point of truncation if and 

only if the distribution is a power function distribution. Ord et al. (1983) 

examined the effects of truncation upon some derived measures of inequality and 
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it is shown that only for the Pareto distribution, the measures are invariant with 

respect to truncation. 

The truncation form of the Lorenz curve for a non-negative random 

variable T  admitting an absolutely continuous distribution function with 

[ ]E X < ∞  is defined by 

1
( ) ( )

( )

t

x

x

p t dF y
F x

= ∫       (1.57) 

and 

( )

( ( )) ,

( )

t

x
x

x

y dF y

L p t x t

y dF y
∞

= >

∫

∫

      (1.58) 

where x  is the truncation point. Then the plot of  ( )( ), ( ( ))x xp t L p t  gives the 

graphical representation of incomes beyond the truncation point x  in the unit 

square. 

Many authors have extended the concept of Lorenz curve to higher 

dimensions. Taguchi (1972 a) defined the concentration surface of a two 

dimensional random vector ( )1 2,X X  having a continuous density function 

1 2( , )f x x  and having non-zero finite mean values 1µ  and 2µ  for 1X  and 2X  

respectively, by the following implicit function. 

( )1 2 3, , 0L p p p =       (1.59) 

where 

2 1

1 ( , )

x x

p f u v dudv
−∞ −∞

= ∫ ∫ , 

2 1

2
1

1
( , )

x x

p u f u v dudv
µ

−∞ −∞

= ∫ ∫  

and 

2 1

3
2

1
( , )

x x

p v f u v dudv
µ

−∞ −∞

= ∫ ∫ .     (1.60) 
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He proved that the transformation (1.60) provides a one-to-one correspondence 

between ( )1 2,X X  and ( )1 2 3, ,p p p . Hence the concentration surface defined by 

(1.59) can always be expressed as a single valued explicit function.  

( )3 1 2,p L p p= .      (1.61) 

Taguchi (1972 b) extended the notions of concentration surface to complete 

surface, which he called as the Lorenz manifold.  In Arnold (1983) a parametric 

representation of the Lorenz curve is given as  

( )

( )

[ ]

1 2

12

0 0

1 2

,

,

x x

f d d

L u v
E X X

ξη ξ η ξ η

=

∫ ∫
    (1.62) 

where 12f  denotes the joint income density and , 1, 2if i =  denotes the marginals 

corresponding to the non-negative random variables 1X  and 
2X  respectively. 

Here 
1

1

0

( )

x

U f dξ ξ= ∫  and 
2

2

0

( ) .

x

V f dη η= ∫  Koshevoy (1995) provides a definition 

in higher dimensions in terms of the Lorenz zonoids and the inequality measures 

for multivariate distributions are given in Koshevoy and Mosler (1996), Arnold 

(2005). 

 

 1.5.2. The Gini Index 

The Gini index is another popular inequality measure defined in terms of 

geometric features of the Lorenz curve. For a non-negative random variable with 

distribution function ( )F x  and a finite mean µ , the Gini index (Gini (1912)) is 

defined in terms of mean difference as  

1
( ) ( )

2
G x y dF x dF y

µ
= −∫ ∫ .    (1.63) 

As a function of Lorenz curve it can also be defined as (Frosini (1988)) twice the 

area between the Lorenz curve and the diagonal segment joining the points 

( )0,0 and ( )1,1 . That is  
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1

0

1 2 ( )G L p dp= − ∫      (1.64) 

or 

1

0

1 2 ( ) ( )G F x dF x
∞

= − ∫ .    (1.65) 

The line segment joining the points ( )0,0 and ( )1,1  is known as line of 

equal distribution or egalitarian line. The value of G  lies between 0 and 1, with 

0G =  representing perfect equality and 1G =  representing perfect inequality. 

The Gini index is also referred to literature under the name coefficient of 

concentration, Lorenz concentration ratio and Gini coefficient. 

Chakrabarthy (1982) points out that the analysis and criticism of Gini-

index and Lorenz curve constitute a major part of the growing literature on 

inequality. He also stated that Lorenz curve and Gini index has remained the 

most powerful tool in the analysis of size distribution of income, both empirical 

and theoretical.  

 The truncation form of the Gini index was considered by several authors. 

For a non-negative continuous random variable X  admitting an absolutely 

continuous distribution function with [ ]E X < ∞ , Ord et al. (1983) considered the 

truncated form of  Gini index defined by 

1( ) 2 ( , ) ( , ) 1

t

G t F x t dF x t
∞

= −∫      (1.66) 

where ( , )F x t  is the distribution function of 1( ) |X t X X t= >  and 1( , )F x t is the 

first moment distribution given by 

1

( )

( )
( , )

( )

( )

x

t

t

y f y
dy

F t
F x t

y f y
dy

F t

∞
=

∫

∫

. 

It is established that (1.66) is truncation invariant if and only if X  follows 

the Pareto type I distribution. The Gini index has also been extended to higher 
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dimensions. Mosler (2002) extended it as the volume of the Lorenz zoniod and 

call it the Gini zonoid index. Weymark (2004) describes parameterized family of 

multivariate generalized Gini indeces. Multivariate extension of Gini index can 

also be seen in Koshevoy and Mosler (1997). A Gini index for truncated bivariate 

distribution was proposed by Sathar et al. (2007) which was consistent with that 

of Ord et al. (1983) for the univariate case and is defined as follows. 

For a non-negative random vector ( )1 2,X X  admitting an absolutely 

continuous distribution function, the bivariate Gini index for the truncated 

distribution is defined as the vector 

( ) ( ) ( )( )1 2 1 1 2 2 1 2, , , ,G t t G t t G t t=     (1.67) 

where 

( ) ( ) ( )
1

1 1 2 1 1 2 1 1 1 2, 2 , , , , 1

t

G t t F x t t dF x t t
∞

= −∫    (1.68) 

and 

( ) ( ) ( )
2

2 1 2 2 1 2 2 2 1 2, 2 , , , , 1

t

G t t F x t t dF x t t
∞

= −∫ .   (1.69) 

where 

  ( )
( )

( )

1

1

1 2 2
1 1 2 1

1 2 2

|
, ,

|

x

t

f y X t
F x t t dy

F t X t

>
=

>∫ , 

( )
( )

( )

2

2

2 1 1
2 1 2 2

2 1 1

|
, ,

|

x

t

f y X t
F x t t dy

F t X t

>
=

>∫ , 

( )

( )
( )

( )
( )

1

1

1

1 2 2
1 1

1 2 2

1 1 1 2

1 2 2
1 1

1 2 2

|

|
, ,

|

|

x

t

t

f y X t
y dy

F t X t
F x t t

f y X t
y dy

F t X t

∞

>

>
=

>

>

∫

∫

 

and 
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( )

( )
( )

( )
( )

2

2

2

2 1 1
2 2

2 1 1

2 2 1 2

2 1 1
2 2

2 1 1

|

|
, ,

|

|

x

t

t

f y X t
y dy

F t X t
F x t t

f y X t
y dy

F t X t

∞

>

>
=

>

>

∫

∫

. 

Recently, in connection with their study on ordering and asymptotic 

properties of residual income distribution, Belzunce et al. (1998) introduced a 

measure of income gap ratio among the rich, defined by 

[ ]
( ) 1

|

t
t

E X X t
β = −

>
 

         1
( )

t

v t
= − .      (1.70) 

or  

( )
( )

( )

m t
t

t m t
β =

+
.      (1.71) 

where ( )m t  and ( )v t  are defined in (1.13) and (1.16) respectively. 

 

1.6 Multivariate Pareto Distributions 

Multivariate extensions of the Pareto models were basically approached 

so that important characteristics of the univariate Pareto, such as appropriate 

density shapes, univariate marginals, appropriate dependence structure and 

characteristic properties are extended to higher dimensions. 

It is also well known that multivariate generalizations of univariate 

distributions may lead to various functional forms for the survival function. The 

multivariate extension of the univariate Pareto distribution first appeared in 

Mardia (1962). In this paper he has given the mathematical formulation of the 

bivariate Pareto distribution. Mardia’s bivariate Pareto I and II distribution are 

given by 
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( ) ( ) ( )
1 ( 2)

1 2 1 2 2 1 1 2 1 2

1 1 2 2

, ( 1) ;

0, 0, 0

a a
f x x a a x x

x x a

θ θ θ θ θ θ

θ θ

+ − +
= + + −

≥ > ≥ > >
 (1.72) 

and  

( )
( )

( )

( )

21 2

1
1

1 2 1 2
1 2 2

1 21 2

1 2
1 2

1 2
0 1 1 2 22

, ,
1

2 log log

; , .
1

a a
a a

f x x
x xx x

x x
a a

I x x

ρθ θ

ρ

ρ
θ θ

θ θ
ρ

−     
=     

−      

    
    
    

≥ ≥ 
− 

 
 

 (1.73) 

These models have been extensively used. Jupp and Mardia (1982) 

obtained characterization  results for the bivariate Pareto model and showed that 

every multivariate distributions whose mean exists is determined by its mean 

residual life time. Krishnan (1985) has used the bivariate Pareto distribution 

given in (1.72) to model the crude birth rate and crude death/infant mortality rate, 

thus revealing its usefulness in demographic studies. Characteristic properties of 

the models can be seen in Mardia (1962), Malik and Trudel (1985), Xekalaki and 

Dimaki (2004).  

Arnold (1983) has pointed three basic methods of generating a bivariate 

Pareto distribution of the fourth kind. The first one is from the mixture of Weibull 

and gamma distribution. The second method is by using the transformation of 

exponential distribution and the third is the method of trivariate reduction. The 

survival functions of the bivariate Pareto distribution corresponding to Arnold 

(1983) are as follows. 
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1 2

1 2

1 1

1 1 2 2
1 2

1 2

1 1

1 1 2 2
1 1 2 2

1 2

( , ) 1

max , ; , .

x x
F x x

x x
x x

γ γ

α
γ γ

µ µ

σ σ

µ µ
λ µ µ

σ σ

−

    − −
= + + +   
    

    − −  ≥ ≥    
     

 (1.74) 

and 

( )
3 1

2

1 1
1 2 1

1 2

1

2
1 2

max ,
( , ) 1

; , .

x x x
F x x

x
x x

α αγ γ

α
γ

µ µ

σ σ

µ
µ µ

σ

− −

−

   −  −    
= +      

        

 −  
≥ ≥  

   

  (1.75) 

Arnold (1983) further studied the properties of these models and Yeh (1994) 

obtained characterization results for the bivariate Pareto IV distributions. 

Now if the conditional densities ( )1 2|f x x  and ( )2 1|f x x  be members of 

Pareto II family of distributions, then the joint density of the conditionally 

specified bivariate Pareto distribution (Arnold (1987, 1989)) is  

( ) ( )
( )1

1 2 0 1 1 2 2 3 1 2 1 2, ; 0, 0f x x x x x x x x
α

λ λ λ λ
− +

∝ + + + > > ,  (1.76) 

0 1 20, , 0λ λ λ> >  and 3 0λ ≥ . 

The case 3 0λ =  leads to Mardia’s bivariate Pareto distribution of second 

kind with 1α > . Clearly (1.76) represents a general density for which both 

conditional densities are Pareto II. Also Arnold et al. (1992) have further 

generalized the conditionally specified bivariate Pareto distribution of second 

kind in (1.76) by specifying that both ( )1 2|f x x  and ( )2 1|f x x  be beta density 

of second kind leading to the bivariate density function, 

( )
( )( )

1 1
1 2

1 2 1 2

0 1 1 2 2 3 1 2

0 1 2 3

, ; , 0,

, 0, , , 0, 0.

a a

a b

x x
f x x x x

x x x x

a b

λ λ λ λ

λ λ λ λ

− −

+
∝ >

+ + +

> > ≥

 (1.77) 

Arnold et al. (1993) have provided a three dimensional plots and contour 

plots for the joint probability density function. The characteristic properties of 
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this model are discussed in Arnold et al. (1993), Wesolowski (1994) and Arnold 

(1995). 

Lindley and Singpurwalla (1986) considered a two component system 

where for a given environment, the component lifetimes 1X  and 2X  are 

independently distributed as exponential. Assuming the environment effect to be 

modeled by a gamma distribution, they obtained a bivariate Pareto distribution as  

 
( ) ( )

3( 1)
1 2 1 2 1 1 2 2, ( 1)( 2) ;

aaf x x a a b x x bλ λ λ λ
++= + + + +   (1.78) 

        1 2 1 2, 0, , 0, , 0x x a b λ λ> > > . 

Nayak (1987) generalized Lindley and Singpurwalla’s (1986) model to the 

multivariate case, studied their properties and has shown its usefulness in 

reliability theory. Bandhyopadhyay and Basu (1990) have considered a two 

component system which operates in a test environment consisting of shocks that 

leads to Marshall-Olkin type dependent bivariate Pareto model, 

 

( )

[ ]

*

( 2)
*

1 2

3
1 2( 1)

*
3 1 2 3

( 1)
; 0

1
,

; 0
1

, 1,2,3; , 1,2; .

i j
i ja

i i j j

a

i
i j j

a a
x x

x x
f x x

a
x x x

x

i j
b

θ θ

θ θ

θ

θ

λ
θ θ θ θ θ θ θ θ

+

+

 +
< <

 + + = 


< = =
+

= = = + = = + +

 

Muliere and Scarcini (1987) proposed a bivariate Pareto distribution with joint 

survival function 

( ) ( )
01 2

1 2 1 2
1 2 1 2, max , ; min ,

x x x x
F x x x x

λλ λ

β
β β β β

−− −
      

= ≤ < ∞      
      

. (1.79) 

This model shows similarity with Marshall-Olkin (1967) bivariate 

exponential distribution. Also characterization results for the model (1.79) can be 

seen in Veenus and Nair (1994). 
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In constructing (1.78), Lindley and Singpurwalla (1986) assumed 

independent exponential distribution. But in most of the real life situation, the 

independence assumption is not valid, because in many systems the component 

life length has a well-defined dependence structure. Sankaran and Nair (1993) has 

given a bivariate Pareto model by assuming the Gumbel (1960) bivariate 

exponential distribution instead of independent exponential as,  

( ) ( )( )( )

( )

1 2 1 2 2 1 1 2

2

1 1 2 2 1 2 1 2

,

1 ; , 0,
p

f x x p p a bx a bx a a b

a x a x bx x x x
− −

= + + + −

+ + + >
 

where the parameters satisfy the conditions 1 2, , 0p a a >  and 1 20 ( 1)b p a a≤ ≤ + . 

They also obtained characterization results and showed the application of the 

model in reliability studies. Hanagal (1996) has given characterization results for 

the bivariate Pareto model (1.79), also extended the concept of dullness property 

to the bivariate case. He obtained the maximum likelihood estimates of the 

parameters and their asymptotic multivariate normal distributions. Yeh (2004 a) 

and Yeh (2004 b) has developed multivariate generalized Pareto distributions 

corresponding to Marshall-Olkin (1967) exponential distribution. The survival 

function of the generalized Marshall-Olkin type multivariate Pareto IV (Yeh 

(2004 a)) is given by  

1

( ) 1
1

X

irim xi iF x
i i

α
µ

σ

−
  − 

= +∏    =    

1
1

max 1
1 2

irim m xi i

i j i

α
µ

σ

−  −  −  +∏ ∏     = < =      

              (1.80) 

                                 

1 1

1 . . . max 1
1

i ir ri ix xi i i i
i mi i

α α
µ µ

σ σ

− −       − −    + +          ≤ ≤           

      

for , 0 ,x µ σ µ> < ≤ < ∞ where , , 0i i irσ α > , 1 2
( , ,..., )mX X X X= , 

1 2( , ,..., )mσ σ σ σ=   
1 2, ( , ..., )i i mx σ µ µ µ µ≥ = . The Marshall – Olkin type I 

multivariate Pareto, ( ) ( )mGMOP I is given as  
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1
( ) max , . . .

1 1 2X

i ji xm m mx x ji iF x
i i ji i j

α αα

σ σ σ

− −−   −      = ∏ ∏ ∏         = = < <         

;max
1

ixi

i m i

α

σ

−
 
  

≤ ≤  

x σ> .

           (1.81) 

These distributions are termed as generalized Marshall-Olkin type Pareto 

distribution since they are obtained from transformed multivariate Marshall-

Olkin (1967) exponential distribution. The bivariate and multivariate Pareto 

distributions proposed by Muliere and Scarcini (1987), Veenus and Nair (1994), 

Hanagal (1996) are special cases of (1.80). In Yeh (2004 a, b), Asha and 

Jagathnath (2006) several characterization of the generalized Marshall-Olkin type 

Pareto are obtained. 

Nadarajah (2008) has developed a bivariate Pareto distribution to model 

the drought durations and drought intensity. He also derived explicit expressions 

for the probability density function, cumulative density functions and the 

moments for the sums, product and ratios of the bivariate random variables, 

which are highly applicable in drought modeling. Navarro et al. (2008) modeled 

the life lengths of the units in a system as a symmetric bivariate Pareto II 

distribution. The survival function of the model is given by 

   ( ) ( )2
1 2 1 2 1 2 1 2, 1 ; , 0, , 0, 0 1

c
F x x ax ax ba x x x x a c b c

−
= + + + ≥ > ≤ ≤ + . (1.82) 

The basic reliability properties for the series and parallel systems for the 

model (1.82) are carried out. Chiragiev and Landsman (2009) introduced two 

multivariate models whose marginals have different shape parameters and a more 

flexible dependence structure. They also discussed regression and a measure of 

dependence for their models. 

Even though the Pareto distribution was developed as a model of income 

distribution, the literature review itself reveals the significance of the model in 

other areas. The application of the model is wide spread. It is identified as a 

useful distribution in modeling social, economic, financial, actuarial, 
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demographic, survival, reliability and hydrological data. A more detailed review 

on Pareto distributions can be seen in Arnold (1983) and Kotz et al. (2000).  

 

1.7 Present Study 

 Usually in statistical modeling, one comes up with a model taking into 

consideration the physical aspects of the situation. In the present study we 

consider a physical situation similar to the one mentioned in Freund (1961). In 

Freund (1961) a load sharing dependence in considered. Though load sharing 

dependence is popular in reliability studies this dependence is common in socio-

economic situations also.  

The earliest work on load sharing models is due to Daniels (1945) and 

Rosen (1964). They observed that yarns and cables in a bundle fail only when the 

last fibre (wire) in the bundle breaks. A bundle of fibres can be considered as a 

parallel system subject to a constant tensile load. After one fibre breaks yarn 

bundles or the remaining unbroken fibres gets extra load. This is the equal load 

share rule under which the load of the failed component is distributed equally 

among the remaining working components. 

Apart from textile industry such models arises in manufacturing where a 

part can be considered failed only when the entire set of welded joints that holds 

the part together fails. However, the failure of one or two joints can increase the 

stress on remaining joints. 

Freund (1961) has designed a bivariate exponential model for the life 

testing of a two component parallel system which incorporates the above said 

load-sharing dependence. Lindley and Singpurwalla (1986) proposed a bivariate 

Pareto for two component system with independent exponential lifetime that 

could accommodate changes in the common operating environment. However if 

the operating environment affects both the components differently, then assuming 

a gamma distribution to model the environment, the above system reduces to 

assuming two independent Pareto II distribution instead of exponential 
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distribution. Taking into consideration these assumptions we develop a new 

model which is also same as a transformed Freund bivariate exponential 

distribution. 

After the introductory chapter, where we have pointed out the relevance 

and scope of the study along with review of literature, the remaining chapters are 

devoted to some new results. The present work is organized into six chapters. In 

Chapter two, a bivariate Pareto model is derived which is applicable for a two 

component parallel system that could accommodate changes in the test 

environment. The genesis and properties of the model is discussed. The 

estimation of the parameters in the model is obtained using three methods 

namely, maximum likelihood estimation, principle of maximum entropy, and 

method of moments. A simulation study is carried out and comparison of the 

three methods is done. The model is fitted for a real data set using bivariate 

Kolmogorov-Smirnov test. 

Characterization results for the bivariate Pareto model introduced in the 

previous chapter are obtained and are discussed in Chapter three. A general class 

of bivariate Pareto minima is introduced. Characterizations using the bivariate 

dullness property and its variants, truncation equivalent to rescaling and 

truncation invariant property, which are meaningful in income distribution 

context, are obtained. However when considering the reliability characteristics in 

the bivariate case we need to understand that they are extended to the bivariate or 

multivariate cases in more than one way. Thus there is a need to choose an 

appropriate extension which reflects the ageing characteristics of the bivariate 

distribution. This choice depends on the dependency enjoyed by the distribution. 

In this study the bivariate failure rate of Cox (1972) is an apt choice as it reflects 

the ageing characteristics of the distribution by taking into consideration the load 

sharing features present. The mean residual life function associated with the Cox 

failure rate is the dynamic mean residual life function (Shaked and Shanthikumar 
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(1991)). This chapter concludes with the section which presents characterizations 

of bivariate Pareto II ( )( )1 2 1 2 , , , , ,BP II µ σ α α α α′ ′  and bivariate Pareto I 

( )( )1 2 1 2 , , , ,BP I σ α α α α′ ′  distributions based on these measures. 

In the previous chapter we advocated the use of Cox’s failure rate for 

model’s exhibiting a load sharing dependence. Similar arguments form a 

reasonable motivation to formulate a definition of information measure for the 

residual life distribution corresponding to a bivariate distribution with load 

sharing dependence. Accordingly in the fourth chapter we propose a new measure 

of bivariate residual entropy function. The properties of the bivariate residual 

entropy function are discussed. How the bivariate dullness property and its 

variant, the bivariate lack of memory property manifest on bivariate residual 

entropy function is explored. Characterizations of lifetime models using this 

measure are carried out.  

In Chapter Five, bivariate inequality measures such as Lorenz function 

and Gini index are introduced. The properties of the measures and their 

importance in income related studies are established. Chandra and Singpurwalla 

(1981) have given an interpretation of Lorenz curve and Gini index for lifetime 

data, which extended the application of these measures in reliability studies. 

Motivated by this, in this Chapter, the relationship of the Lorenz function and 

Gini index with bivariate mean residual life function is also established. Further 

characterization results for bivariate lifetime models are also obtained. Illustration 

of Lorenz curve is made by using the real data set given in Kim and Kvam 

(2004).    

In Chapter six, we have given a uniform representation of the Freund 

bivariate exponential distribution (1961) and its transformation. We showed how 

this representation can be used to infer on the total failure rate of each 

distribution having this representation, once we know their uniform translates. 

We also characterize this uniform representation by what we define as general 
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dullness property. It is further shown that this property implies the bivariate lack 

of memory property (Marshall and Olkin (1967)) for the Freund’s bivariate 

exponential distribution. It implies the bivariate dullness property (Veenus and 

Nair (1994), Hanagal (1996), Yeh (2004 a,b)) for the ( )1 2 1 21, , , ,BP I α α α α′ ′  

distribution. It also implies a characterization for the bivariate Weibull 

distribution. This thesis concludes after discussing few open problems for the 

future course of work. 

 

 

 



 

 

 
Some results in this chapter is published in Asha and Jagathnath (2008). 

 

 

 

 

 

 

 

Chapter 2 

 

A Bivariate Pareto Model  

 

2.1 Introduction 

In the previous chapter, several bivariate Pareto distributions were 

discussed. A more appealing and realistic form of dependence is exhibited when 

performance of a functioning component is affected by how the other 

components within the system are operating. Real examples of such dependent 

system include software and hardware systems, power plants, automobiles and 

material subject to failure due to crack growth (Hollander and Pena (1995), Kvam 

and Pena (2005)). Such systems studied in engineering and the physical sciences 

are typically based on load-share models. Load-share models dictate that 

component failure rates are defined on the operating status of the other system 

components and the effective system structure function. Daniels (1945) originally 

adopted this model to describe how the strain on yarn fibres increases as 

individual fibres within a bundle break. Freund (1961) formalized the probability 

theory for a bivariate exponential load-share model. Drummond et al. (2000) 

carried out a study in a vertebrate species showing that selective deaths due to 
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food shortage result in surviving offspring receiving an increased share of an 

undiminished food supply. They observed that littermates of domestic rabbit after 

individual pups died, the total daily milk weight obtained by the litter continued 

to be the same. 
An important element of the load-share model is the rule that governs 

how failure rate changes after some component in the system fail. An equal load-

share rule implies the existence of a constant system load distributed equally 

among working components. In the local load-sharing rule a failed components 

load is transferred to adjacent components. A general monotone load-sharing rule 

assumes only that load or any individual component is non-decreasing as other 

items fail. Lynch (1999) characterized some relationship between failure rates 

and the load-share rule based on monotone load-share. Apart from physical 

sciences and engineering sciences, this load-sharing dependence is found in 

economic data too.  

In the present study we propose a bivariate Pareto distribution which is 

designed in particular for load-sharing dependence. No particular load-sharing 

rule is assumed here. The proposed model is different from all the models 

existing in the literature in the sense that they do not have Pareto marginal but 

have mixture of Pareto distribution as marginals. However, this distribution 

enjoys the bivariate extensions of several properties of the univariate Pareto that 

justifies it being called a bivariate Pareto. Unlike the other bivariate Paretos, a 

multivariate extension of the proposed distribution is not straightforward. Every 

extension would need an explicit definition of dependency among the 

components. In the section that follows the mathematical formulation of the 

model is proposed. The model obtained is same as the one obtained by 

transforming the Freund (1961) bivariate exponential distribution. In the third 

section, the distributional properties of the proposed distribution are considered. 
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In the fourth section its relationship with some well known distributions is 

discussed. In the fifth section, the estimation of parameters of the model is 

considered. In the last section we illustrate the model by using a data given in 

Kim and Kvam (2004). 

 

2.2 Model and its Properties  

Mathematically the model can be formulated as follows. Let 1T  and 2T  be 

two independent random variables with density function conditioned on , iη λ  

given as  

( | , ) ,  0, , 0, 1, 2.
ηλη λ ηλ η λ−

= > > =i it
i i i i i if t e t i         (2.1) 

Typically one can think of iT ’s to be component lifetimes of a parallel 

system comprising of two components. Here η  is the effect of the operating 

environment. Assume that this system operates in an environment, which does 

not change over time but may be different from the test environment. Also 

assume that the environment of the system influences both the components 

independently and when one of the components fails the other work with a 

change in parameter.  

Let the effect of the operating environment be described by the 

distribution function ( )G η , then  

( | ) ( ) , 0, 0, 1, 2,i it
i i i i i if t e g d t iηλλ ηλ η η λ−

= > > =∫   (2.2) 

where 
( )

( )
dG

g
d

η
η

η
= . 

An easily flexible and analytically tractable model for ( )G η  is the gamma 

distribution with density  

1( ) ; 0,  0
p

m pm
g e m p

p

ηη η− −= > > .                           (2.3)             

It is well known and requires only simple calculations to reveal that 
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 1

0

( ) i i

p
t m pi

i i
m

f t e e d
p

ηλ ηηλ
η η

∞
− − −

= ∫     

  

( 1)

1 ;  0,  0, 0, 0

p
i i i

i i
p t

m p t
m m

λ λ
λ

− +
 

= + > > > > 
 

, (2.4) 

is the Pareto II distribution. This distribution was used by Lomax (1954) to fit 

data in business failure. This distribution has been identified by Pickands (1975) 

as one of the distributions that can approximate residual life distributions. 

So now let 1T  and 2T  be two independent Pareto type II random variables 

with survival function ( )i iF t  specified by 

( ) 1 ;  ,  1, 2
i

i
i i i

t
F t t i

α
µ

µ
σ

−
− 

= + > = 
 

                      

where ,µ the location parameter, is real and σ  is positive. 

Assume that the first component fails at 1 1,T t=  then the time until the 

subsequent failure of the second component is given by the random variable 2T ′  

which now follows a Pareto model with renewed parameter 2α ′  for some 2 0α ′ >  

with 2 1T t′ > . Similarly if the second component fails first, then the random 

variable 1T ′  represents the remaining life of the first component. The random 

variable 1T ′  now follows a Pareto model with renewed parameter 1α ′  for some 

1 0α ′ >  with 1 2.T t′ >   If  ( )1 2,X X  denote the component lifetime of the system, 

then 

1 1X T= , 2 1 2X T T′= +   if 1 2T T<  

1 1 2X T T ′= + , 2 2X T=  if 1 2T T> . 

Then the joint density of ( )1 2,X X  is now derived from 

( ) 1 1 2 2 1 2 1 1 2
1 2

2 1 2 1 2 1 2 2 1

( ) [ ] ( | , );  0
,

( ) [ ] ( | , );  0

Z

Z

f x P X X f x Z x X X x x
f x x

f x P X X f x Z x X X x x

< = > < <
= 

> = > < <
  (2.5) 

where (.)Zf  is the density of 1 2( , )Z min X X= . 

Here,  
( )1 2

( ) 1Z

d x
f x

dx

α α
µ

σ

− +
− 

= − + 
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( ) ( )1 2 1
1 2

( ) 1Z

x
f x

α αα α µ

σ σ

− + +
+ − 

= + 
 

. 

Also, 

   [ ] [ ] [ ]1 2 1 2 2 2 2 2 2|P X X P X x X x P X x dx
µ

∞

> = > = =∫   

   

( )1 2 1

2 2 2
21 1

x x
dx

α α

µ

µ α µ

σ σ σ

− − +∞
− −   

= + +   
   
∫  

2

1 2

α

α α
=

+
. 

Similarly, 

  [ ] 1
1 2

1 2

P X X
α

α α
< =

+
. 

And 

( )1

1

1

1 1

1 2 1 2

2

1

( | , )

1

x

f x Z x X X
x

α

α

α µ

σ σ

µ

σ

′

′

− +

−

′ − 
+ 

 
= > =

− 
+ 

 

 

  
( )1 11

1 1 2
2 11 1 ;

x x
x x

α α
α µ µ

σ σ σ

′ ′− +′ − −   
= + + <   

   
. 

Similarly, 

( )2 21

2 2 1
2 1 2 1 1 2( | , ) 1 1 ;

x x
f x Z x X X x x

α α
α µ µ

σ σ σ

′ ′− + −′ − −   
= > = + + <   

   
. 

Thus the joint density is obtained as 

 

( ) ( )

( ) ( )

1 2 2 2

1 2 1 1

1 1

1 2 1 2
1 22

1 2
1 1

2 1 2 1
2 12

1 1 ;  

( , )

1 1 ;  

x x
x x

f x x
x x

x x

α α α α

α α α α

α α µ µ
µ

σ σσ

α α µ µ
µ

σ σσ

′ ′− + − + − +

′ ′− + − + − +

 ′ − −   
 + + < <   
    

= 
′ − −   

+ + < <    
   

  (2.6)  

1 20,  , 0,  ,  1, 2i i i iσ α α α α α′ ′> > + ≠ =  and real µ . 
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In our discussion we consider 0.µ >  Ruling out simultaneous failures, the 

random variables 1X  and 2X  are now no longer independent, the dependency 

between 1X  and 2X  is essentially such that the failure of one of the component 

changes the shape parameter of the other. In the rest of the paper we denote the 

bivariate Pareto in equation (2.6) as ( )1 2 1 2 , , , , , .BP II µ σ α α α α′ ′  When ,µ σ=  the 

distribution reduces to  

( )
( ) ( )

( )
( ) ( )

1 2 2 2

1 2

1 2 1 1

1 2

1 11 2
1 2 1 2

1 2
1 12 1

2 1 2 1

;  

( , )

;  

x x x x

f x x

x x x x

α α α α

α α

α α α α

α α

α α
σ

σ

α α
σ

σ

′ ′− + − + − +

− +

′ ′− + − + − +

− +

′
< <


= 

′ < <


    (2.7) 

1 2 0,  , 0, ,  1, 2.i i i iσ α α α α α′ ′> > + ≠ =  

The distribution (2.7) will be referred to as bivariate Pareto I 

( )( )1 2 1 2 , , , ,BP I σ α α α α′ ′  distribution here after. 

The graphical representation of the model ( )1 2 1 2 , , , , ,BP II µ σ α α α α′ ′  is 

shown in the following figure. 

 

Figure 2.1 Plot of the bivariate survival function of a BP II distribution with 

2,µ =  3,σ =  1 2,α =  2 2.5,α =  1 4α ′ =  and 2 5α ′ = . 
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Unlike the other bivariate Paretos discussed in Chapter one, these 

bivariate Paretos exhibits marginals, which are mixture of Pareto distribution. 

They are obtained as 

( )

( )

( )( )

( )

( )1 2

1
3

1 2

1
1 2

1 2

( ) 1

1 ;

                                                                                          

i
i i i

i i
i

i i i

i

x
f x

x

α

α α

α α µ

α α α σ σ

α α α α µ

α α α σ σ

′− +
−

− + +

′ − 
= + + ′+ −  

′− + − 
+ ′+ −  

  1 2  0 , 0,  , 0,  ,  1, 2.i i i ix iµ σ α α α α α′ ′< < > > + ≠ =   (2.8) 

and  

[ ]
( ) ( )

( )
( )

3

1 21 2
11

i i
i

i

i i

E X
α αασ

µ
α αα α α α

−

 ′−
 

= + + + −′ ′+ − −  

   (2.9) 

which is finite whenever 1iα ′ >  and 1 2 1 21, ,  1, 2.i iα α α α α ′+ > + ≠ =  

The survival function of ( )1 2,X X  is obtained as  

 

( )

( )

( )

( )

( )

( )

( )

( )

1 2 2 2

1 2

1 2 1 1

1 1 2

1 2 2

2 2 2
1 2

1 2 2

1 2
2 2 1

1 2 1

1 1

1 1

              1 ;  

( , )
1 1

                       

+

x x

x
x x

F x x x x

α α α α

α α

α α α α

α µ µ

α α α σ σ

α α µ
µ

α α α σ

α µ µ

α α α σ σ

α α

α

′ ′− + − −

− +

′ ′− + − −

− −   
+ +   

′+ −    

′− − 
+ + ≤ ≤ ′+ −  

= − −   
+ +   ′+ −    

′−

( )

( )1 2

1
2 1

1 2 1

1 ;  
x

x x
α α

µ
µ

α α σ

− +













 −  + ≤ ≤ ′+ −  

 (2.10) 

1 20,  , 0,  ,  1, 2.i i i iσ α α α α α′ ′> > + ≠ =  

and the marginal survival function is obtained as 
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( )

( )1 2

3 3

1 21 2

( ) 1 1 1 ;

                                                                                          

i
i i i i

i i

ii

x x
F x

α α α
α µ α µ

σ σα α αα α α

′− − +
− −

 − −   
= + + − +    

′′     + −+ −    

1 2, 0,  , 0,  ,  1, 2.i i i ix iµ σ α α α α α′ ′≤ > > + ≠ =  

The representation for the product moment 1 2
r sE X X 

   is obtained in the 

following theorem. 

 

Theorem 2.1 If  
1 2( , )X X  has a joint density function ( )1 2 1 2 , , , , ,BP II µ σ α α α α′ ′  

and if 1 2,  ir s α α α ′< + − and , , 1,2ir s iα ′< = , then 

                
( ) ( )

( ) ( )

1 2 1 1 2 2 2 1 2 2

1 1 2 1 2 1 2 1

, , , , , , , ,

, , , , , , , ,

r sE X X H H

G G

µ σ α α α µ σ α α α

µ σ α α α µ σ α α α

  ′ ′= − 

′ ′+ −
 

for all ,  1r s ≥ , where 
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1 2 1 2 2 2

1 1 2 2 2 2
201 2 2 2
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1 2 20

2 1
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! 1
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! 1
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j j

j j
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j j
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H
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1 2 22

2
1 2 2

2 1 2 2

1 2 2 1 2 2

1 2 20

2 2
2 2

2

21

1

, , , ,

1

! 1
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H
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and 

 

( )

( ) ( ) ( ) ( ) ( )
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( )
( )

1 2 11

1
1 2 1

2 1 2 1

1 2 1 1 2 1

1 2 10

1 1
1 1
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=

∞
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′− +
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Proof 

 From equation (2.6), we have 
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∫ ∫
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  Making use of Gauss hypergeometric function and equation 3.194.2
*
 in 

Gradshteyn et al. (1994), we get the following 
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Hence the result. 

 

Corollary 2.1 If  1 2( , )X X  has a joint density function ( )1 2 1 2 , , , ,BP I σ α α α α′ ′ , 

then 
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Corollary 2.2 If  1 2( , )X X  has a joint density function 

( )1 2 1 2 , , , , ,BP II µ σ α α α α′ ′  then for 1r s= = ,  
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(2.11) 

 

Corollary 2.3 If 1 2( , )X X  has a joint probability density function 

( )1 2 1 2 , , , ,BP I σ α α α α′ ′  then for 1r s= = ,  
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( ) ( ) ( )

2
1 2 1 2

1 2
1 2 2 1

2 1 1
E X X

α α α ασ

α α α α

 
′ ′ 

= + + − ′ ′− −  

. 

Further, 

[ ]
( ) ( ) ( ) ( )( )

( )
( )

( ) ( )( )
( )

( )( )

2

3 3

1 2 1 2 1 2

3

1 2
1 2 1 2 1 2

2

1 1 12

22
   , 1,2,

2 1 1

α αα ασ

α α α α α α α α α αα

α αα

α α α α α α α α α α α

− −

−

   ′−  
= − +  ′ ′ ′ ′+ − − + − − + −′ −   

 ′−  
− − = + − ′ ′ ′+ − − + − + −   

i i
i i

i

i i i ii

i i
i

i i i

V X

i

                                                                                               

(2.12) 
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from which 

( )
( ) ( ) ( )

( )( ) ( ) ( ) ( )

( )( ) ( )( )

( )( )

1 2
1 2

1 2 1 2 2 1 2 1

1 2 2 1

1 2 1 2 1 2 1 2 11 2 2

2
1 2

1 2 1 2 1 2 2 1 2 2

2
2 1

1 2 1 1 2 1 1

,
1

2

1 2

1 2 1

1

Cov X X
α αµσ

α α α α α α α α

α α α ασ σ
µ

α α α α α α α α αα α α

α ασ

α α α α α α α α α α

α α σ

α α α α α α α

 
 

= + − + − ′ ′+ − + −  

 
  ′ ′ 

+ +   ′+ + − + − + −′+ −    

 ′
− +

′ ′+ − + − + − + − −

′
−

′ ′+ − + − −  ( )( )

( )

( )

( ) ( )

( )

( )

( )

( )

( )
( )

( )

2 1 1 2 2

2 2 1 11 2

2 1 2 1 1 2

1 1 2 2

1 2 1 2 2 1 2 1

1 1 1 1

.
1

α α α α α

α α α αα α

α α α α α α

α α α αµσ

α α α α α α α α

′ ′+ − + −

   ′ ′− −
+ +   

′ ′− + − − + −   

 
′ ′− − 

− + + − ′ ′+ − + −  
  

          (2.13) 

Evidently as ,  1, 2,i i iα α ′→ =  1 2 ( , ) 0.Cov X X →  

The correlation coefficient of the bivariate Pareto models discussed in 

chapter one, namely, Mardia’s (1962) bivariate Pareto of first kind, Mardia’s  

(1962) bivariate Pareto of second kind, the conditionally specified bivariate 

Pareto have positive correlation and Arnold et al. (1993) Model II  yield non-

positive correlation, while the correlation coefficient for the model 

( )1 2 1 2 , , , , ,BP II µ σ α α α α′ ′  admits both positive and negative correlations. 

When 1 2α α α= =  and 1 2 0α α′ ′= =  and 1,µ σ= =  the correlation 

coefficient ρ  is given by 

                                     
[ ]

1

1

1 2 (1 )
ρ

α α
−

= −
− −

.                                           (2.14) 

The expression for [ ]3| −i iE X x  is generally non-linear and is obtained as 
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[ ]
( ) ( )

( )

( )

( )

3

1 2

( 1)

3 3
3

3 3 1 2 3

1

3 3

1 2 3

3
3

1 2 3

1
| 1

1
                         + 1

1

                               

i
i i i

i i
i i i

i i

i

i i
i

i

x
E X x

f x

x x

α

α α

α α µ

α α α σ

µµ

σ α α α σ σ

α α
α

α α α

−′− +

− −
−

− − −

− + +

− −

−

−
−

−

 ′ −  
= +  ′+ −  

  − 
+ +    ′+ − −   

 ′
−

′+ −

( )

( ) ( )( )

1 2

3

3 3

1 2 3 1 2 3

1

                                    .
1 1

i

i i i

i i i

x
α α

µ

σ

α α α

α α α α α α α

− +

−

− −

− −

 − 
+ +       

 ′ 
−  ′ ′ ′− + − + − −  

  (2.15) 

 

Evidently for ,  1, 2i i iα α′ = = , [ ]3|
1

i i
i

E X x
σ

µ
α

−

 
= + 

− 
. 
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x2
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Figure 2.2 Plot of regression line of 1X  given 2X  of a 

( )1 2 1 2 , , , , ,BP II µ σ α α α α′ ′  distribution with 2.5,µ =  3,σ =  1 5,α =  2 6,α =  

1 5.5α ′ =  and 2 4α ′ = . 

 

Further if 1 2( , )X X  has ( )1 2 1 2 , , , , ,BP II µ σ α α α α′ ′  distribution then 

1 2( , )Z min X X=  is a univariate Pareto given by 

 
( ) ( )1 2 1

1 2( ) 1 ;  .
z

f z z
α αα α µ

µ
σ σ

− + −
+ − 

= + > 
 

                       (2.16) 
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It should be noted that the Marhall-Olkin type bivariate Pareto 

distribution (Muliere and Scarsini (1987), Veenus and Nair (1994), Hanagal 

(1996) and Yeh (2004 a,b)) also satisfies this property. In fact we can show that 

the absolute continuous part of the Marshal-Olkin type bivariate Pareto 

distribution (1.79) given by   

              

( )

( )

1 12 2

2 12 2

1 2 12 1
2 1

1 2 1 2
1 2

2 1 12 2
1 2

1 2 1 2

;  

( , )

;  

a

x x x
x x

F x x
x x x

x x

λ λ λ λ

λ λ λ λ

λλ
σ

λ λ σ σ λ λ σ

λλ
σ

λ λ σ σ λ λ σ

− + − −

− + − −

      
− < <      

+ +     
= 
      

− < <     
+ +     

  (2.17) 

 

where 1 2 12λ λ λ λ= + +  is a particular case of the survival function of 

( )1 2 1 2 , , , ,BP I σ α α α α′ ′ . To see this observe that when 1 1 2 2 ,λ α α α ′= + −  

2 1 2 1 ,λ α α α ′= + − 1 2 ,λ α α= + 1 12 1λ λ α ′+ =  and 2 12 2λ λ α ′+ = , the absolute 

continuous part of  the survival function specified in (2.17) reduces to that of 

( )1 2 1 2 , , , ,BP I σ α α α α′ ′ .  

 

2.3 Sums and Ratios for ( )1 2 1 2 , , , ,BP I σ α α α α′ ′  Distribution 

The statistics literature has seen many developments in the theory and 

applications of linear combinations and ratios of random variables (see Gupta and 

Nadarajah (2006)). In this section, we consider the distribution of 1 2R X X= +  

and 1

1 2

X
W

X X
=

+
 when 1X  and 2X  are Pareto variables with the joint 

probability density function given by ( )1 2 1 2 1, , , ,BP I α α α α′ ′ , 

                

( ) ( )

( ) ( )

1 2 2 2

1 2 1 1

1 1
1 2 1 2 1 2

1 2
1 1

2 1 2 1 2 1

;  1
( , )

;  1

x x x x
f x x

x x x x

α α α α

α α α α

α α

α α

′ ′− + − + − +

′ ′− + − + − +

 ′ < <
= 

′ < <

.                 (2.18) 

1 2, 0, ,  1, 2.i i i iα α α α α′ ′> + ≠ =  
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Theorem 2.2 If 1 2( , )X X  are jointly distributed as (2.18) and 1 2R X X= + , 

1

1 2

X
W

X X
=

+
 then  

( )
[ ] ( ) ( )

[ ] ( )1 2 1 2
1 2 2 10,1/ 2 1/ 2,1

3 3
( ) ,1 1 ,Rf r r w w r w wI I

α α α α
α α α α

− + + − + +′ ′= − + −  

where  

[ ] ( )
( )

( ) ( )1 2 2
2

1/ 2

0, 1/ 2

0

1 1
,1 1w w w w dwI

α α α α
′− + − + ′− +

− = −∫ , 

            [ ] ( )
( ) ( )1 2 1 1

1

1/ 2, 1

1/ 2

1 1
1 , (1 )w w w w dwI

α α α α′ ′− + − + − +
− = −∫  

and   

            

( )

( )
( ) ( )

( )

( )
( ) ( )

1 2

1 2 2 2

1 2

1 2 1 1

2
1 11 2 1

2
1 2

2
1 12 1 1

2
1 2

2
(1 ) ;  0

2
( ) .

2
(1 ) ;  1

2

W

w w w

f w

w w w

α α
α α α α

α α
α α α α

α α

α α

α α

α α

− + +
′ ′− + − + − +

− + +
′ ′− + − + − +

 ′
− < <

+ +
= 

′
− < <

+ +

 

1 2, 0, ,  1, 2.i i i iα α α α α′ ′> + ≠ =  

Proof 

Let 1 2( , )X X  follows a ( )1 2 1 2 1, , , ,BP I α α α α′ ′  distribution specified as in 

(2.18). Consider the transformations, 1 2R X X= +  and 1

1 2

X
W

X X
=

+
, then the 

corresponding Jacobian of transformation is obtained as 
1

J
r

= . 

Now the joint density of ( ),R W  is obtained as 

( ) ( ) ( )

( ) ( ) ( )

1 2 1 2 2 2

1 2 1 2 1 1

3 1 1 1
1 2 2

3 1 1 1
2 1 2

(1 ) ;  0
( , )

(1 ) ;  1

r w w w
f r w

r w w w

α α α α α α

α α α α α α

α α

α α

′ ′− + + − + − + − +

′ ′− + + − + − + − +

 ′ − < <
= 

′ − < <

 (2.19) 

       and 2 r< < ∞ . 

The marginal density function for the random variable R  is given by 
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( ) ( )
( ) ( )

( ) ( ) ( )

1 2 21 2 2

1 2 1 11 2
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1/ 2

13 1
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(1 ) .
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α α α αα α

α α

α α

′− + − + ′− + + − +

′ ′− + − + − +− + +

′= − +

′ −

∫

∫

 

i.e., 

( )
[ ] ( ) ( )

[ ] ( )1 2 1 2
1 2 2 10,1/ 2 1/ 2,1

3 3
( ) ,1 1 ,Rf r r w w r w wI I

α α α α
α α α α

− + + − + +′ ′= − + − . 

Now the marginal density for the random variable W  follows from (2.19) by 

integrating with respect to ,r  

 

( ) ( )

( ) ( )

1 2 2 2 1 2

1 2 1 1 1 2

1 1 ( 3)
1 2

2

1 1 ( 3)
2 1

2

(1 ) ;  0 1/ 2

( ) .

(1 ) ;  1/ 2 1
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w w r dr w
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α α α α α α

α α α α α α

α α

α α

∞
′ ′− + − + − + − + +

∞
′ ′− + − + − + − + +


′ − < <
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′ − < <


∫

∫

 

Thus we obtain the marginal density function of W  as  

( )
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( ) ( )

( )
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( ) ( )
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1 2 2 2

1 2

1 2 1 1

2
1 11 2
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− + +
′ ′− + − + − +

− + +
′ ′− + − + − +

 ′
− < <

+ +
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′
− < <

+ +

. 

 

2.4 Transformed Exponential Variates 

It is quite intuitive to recognize the relationship of 

( )1 2 1 2 , , , , ,BP II µ σ α α α α′ ′  distribution and the Freund bivariate exponential 

distribution. Consider the transformation 1 ii rYX
e

µ

σ

− 
+ = 

 
 for ,  ,  0.rσ µ >  

The corresponding Jacobian of transformation is  

2 2 1 2

1

1 1

J
x x

r
µ µ

σ
σ σ

=
− −  

+ +  
  

. 

Then density of ( )1 2,Y Y  is obtained as 
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( )

( )

2 2 1 2 2 1

1 1 1 2 1 2

1 2 1 2
1 2

2 1 2 1

 ; 0
( , )

 ; 0

y y

y y

e y y
f y y

e y y

β β β β

β β β β

β β

β β

′ ′− − + −

′ ′− − + −

 ′ < <
= 
 ′ < <

; ,  0,  1, 2i i iβ β ′ > =  (2.20) 

which is the Freund bivariate exponential distribution with 

,  ,  1, 2.i i i ir r iβ α β α′ ′= = =   

Conversely it is quite straightforward to observe that if ( )1 2,Y Y  is 

distributed as (2.20) then 1 2( , )X X  has ( )1 2 1 2 , , , , ,BP II µ σ α α α α′ ′  with 

,i
i

r

β
α =  ,  1, 2.i

i i
r

β
α

′
′ = =  Hence, we have the following theorem. 

 

Theorem 2.3 Let 1 2( , )X X  be a random vector with 1 ii rYX
e

µ

σ

− 
+ = 

 
 for 

, , 0.rσ µ >  Then 1 2( , )X X  is distributed as in (2.6) if and only if  ( )1 2,Y Y  is 

distributed as Freund bivariate exponential distribution specified by (2.20) with 

,  ,  1, 2.i i
i i i

r r

β β
α α

′
′= = =  

 

Corollary 2.4 Let 1 2( , )X X  be a random vector with .ii rYX
e

σ
=  Then 1 2( , )X X  

is distributed as ( )1 2 1 2 , , , ,BP I σ α α α α′ ′  if and only if ( )1 2,Y Y  has Freund 

bivariate exponential distribution specified by (2.20) with 

,  ,  1, 2.i i
i i i

r r

β β
α α

′
′= = =  

 

Corollary 2.5 Let 1Y  and 2Y  be two independent standard exponential 

distributions, if 
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and 

  

( )2 2 12

2 2 1

2
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2 1 1 2
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1
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; 

          ;  
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α σ
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 ′
 

 
  
 

′−
− +

′

+




<
= 

 <

   (2.21) 

then the joint density of 1 2( , )X X  is obtained as given in (2.7). 

Proof 

The joint density function for the independent standard exponential 

random variables 1Y  and 2Y  is given by 

  ( ) 1 2
1 2 1 2, , , 0

y yf y y e y y− −
= > . 

Now consider the transformation given in (2.21), and then the corresponding 

Jacobian of transformation is given by 

1 2
1 2

1 2

2 1
2 1

1 2

;

.

;

x x
x x

J

x x
x x

α α

α α

 ′
<


= 

′
<



 

Thus the joint density function for the bivariate random variable 1 2( , )X X  is now  
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( )

1 2 1
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2 1 1 1

ln ln ln
1 2

1 2
1 2

1 2
ln ln ln
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σ
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′
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′ < <


 

the ( )1 2 1 2 , , , ,BP I σ α α α α′ ′  distribution specified as in (2.7). 
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2.5 Estimation of Parameters  

 To complete our discussion on the ( )1 2 1 2 , , , ,BP I σ α α α α′ ′  and 

( )1 2 1 2 , , , , ,BP II µ σ α α α α′ ′  distributions, we consider briefly the problem of 

estimation of parameters of the distributions. We confine our study to the method 

of maximum likelihood. Here we consider a two stage procedure where the scale 

parameter σ  is estimated from the distribution of  1 2( , )min X X  which is a 

univariate Pareto distribution. Making use of this estimate of σ  we estimate for 

1 2 1, ,α α α ′  and 2α ′ .  Apart from considering the maximum likelihood estimate of 

σ , we consider alternative methods of estimation for σ  namely, method of 

moments and method based on principle of maximum entropy (POME). It is seen 

that generally the maximum likelihood estimate is more efficient than the method 

of moments and method based on POME. This is seen to reflect on the estimates 

of 1 2 1, ,α α α ′  and 2α ′ . 

 

2.5.1 Estimation of Parameters of a ( )1 2 1 2 , , , , ,BP II µ σ α α α α′ ′  Distribution 

In this section the estimation of the parameters in the bivariate Pareto II 

( )1 2 1 2 , , , , ,BP II µ σ α α α α′ ′  model is considered for known σ . The density 

function is given by 

( ) ( )

( ) ( )

1 2 2 2

1 2 1 1

1 1

1 2 1 2
1 22

1 2
1 1

2 1 2 1
2 12

1 1 ;  

( , )

1 1 ;  

x x
x x

f x x
x x

x x

α α α α

α α α α

α α µ µ
µ

σ σσ

α α µ µ
µ

σ σσ

′ ′− + − + − +

′ ′− + − + − +

 ′ − −   
 + + < <   
    

= 
′ − −   

+ + < <    
   

. 

1 20,  , 0,  ,  1,2i i i iσ α α α α α′ ′> > + ≠ = and 0.µ >  

 Now consider a random sample of size n from a 

( )1 2 1 2 , , , , ,BP II µ σ α α α α′ ′  distribution with density function specified above. 

Then the likelihood function is given by  
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( ) ( )

( ) ( )
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α α α α

µ µ
α α α α σ
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−
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− −   ′ ′= + +   
   

− −   
+ +   

   

∏

∏

          (2.22) 

where in = number of 3 ,  1, 2i ix x i−< =  and 1 2n n n= + . 

Observe 1 2( , )Z min X X=  has a univariate Pareto II distribution specified 

by  

( ) 1 21 ; , 0, 0.Z
x

f x x
α

α µ
µ α α α σ

σ σ

−
− 

= + < = + > > 
 

 

Proceeding now as in the univariate case, for a fixed α  the maximum 

likelihood estimate for µ  is obtained from the distribution of Z  as 

ˆ ( ),  1, 2,  1, ... ,ij
i j

min min X i j nµ = = = . Substituting this µ̂  in (2.22) and for a 

known σ , the likelihood is now becomes 
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−
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+ +   

   

∏

∏

 

The estimates of the shape parameters are now obtained by taking the 

derivatives of the log-likelihood function with respect to the corresponding 

parameters and equating to zero. Thus we obtain, 

1 2

1
1

1 2

1 1

ˆ ,
ˆ ˆ

log 1 log 1
n n

i i

i i

n

x x
α

µ µ

σ σ= =

=
− −   

+ + +   
   

∑ ∑
  (2.23) 

1 2

2
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1 2

1 1

ˆ ,
ˆ ˆ

log 1 log 1
n n

i i

i i

n

x x
α

µ µ

σ σ= =

=
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+ + +   
   

∑ ∑
  (2.24) 
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2 2

2
1

1 2

1 1

ˆ
ˆ ˆ

log 1 log 1

α
µ µ

σ σ= =

′ =
− −   

+ − +   
   

∑ ∑
n n

i i

i i

n

x x
  (2.25) 

and 

2 1

1
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2 1

1 1

ˆ .
ˆ ˆ

log 1 log 1
n n

i i

i i

n

x x
α

µ µ

σ σ= =

′ =
− −   

+ − +   
   

∑ ∑
  (2.26) 

 

Remark 2.1 For a known µ  and σ , the density function given in (2.6) belongs 

to an exponential family. Hence  

 

1
1

1

log 1 ,

n
i

i

x µ
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 − 
+    

∑
1

2

1

log 1 ,

n
i

i

x µ

σ=

− 
+ 

 
∑

2
1

1

log 1 ,

n
i

i

x µ

σ=

− 
+ 

 
∑   

        
2

2

1

log 1

n
i

i

x µ

σ=

− 
+   

∑  

 are jointly sufficient for ( )1 2 1 2, , ,α α α α′ ′ . 

A simulation study is conducted and is given as follows. 

 

2.5.2 Simulation Study for ( )1 2 1 2 , , , , ,BP II µ σ α α α α′ ′  Distribution 

The estimates of the Bivariate Pareto II distributions are obtained 

numerically. Random samples of sizes 25, 50 and 100 were generated using 

Theorem 2.3. The estimate of the parameters obtained using equations (2.23) to 

(2.26) are given in Table 2.1.  
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Table 2.1 MLE of a ( )1 2 1 2 , , , , ,BP II µ σ α α α α′ ′  when 1α =2, 2α =1.5, 1α ′ =1.75, 

2α ′ =1.3, µ =3 and σ =3.5. 

 

Sample Size Parameters 1α (2) 
2α (1.5) 

1α ′ (1.75) 
2α ′ (1.3) µ (3) 

Estimated Value 2.15077 1.54877 2.00093 1.41604 3.04427 

Bias 0.15077 0.04877 0.25093 0.11604 0.04427 

25 Variance 0.41345 0.24613 0.80046 0.16567 0.00140 

Estimated Value 2.07767 1.56001 1.81442 1.3218 3.02194 

Bias 0.07767 0.06001 0.06442 0.0218 0.02194 

50 Variance 0.17265 0.09889 0.21106 0.05445 0.00036 

Estimated Value 2.04010 1.55793 1.78173 1.30272 3.01002 

Bias -0.04010 0.05793 0.03173 0.00272 0.01002 

100 Variance 0.07494 0.04592 0.07104 0.03096 8.8E-05 

 

2.5.3 Estimation of Parameters of a ( )1 2 1 2 , , , ,BP I σ α α α α′ ′  Distribution 

Consider a random sample of size n  from a population having bivariate 

density function ( )1 2 1 2 , , , ,BP I σ α α α α′ ′ . The likelihood function is 

( ) ( )

( ) ( )

1
1 2 2 21 2 2 1 1 2

2
1 2 1 1

1 1 2 2 1 2

1

2 1

1 1( )

1 1

1

( ) ( )

                                                               

n
n n n n n

i i
i

n

i i
i

L x x

x x

α α α αα α

α α α α

α α α α σ
′ ′− + − + − ++

=

′ ′− + − + − +

=

′ ′= ∏

∏

 

where in = number of 3 ,  1, 2i ix x i−< =  and 1 2n n n= + . Then  

 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1

2 2

1 1 2 1 2 2 1 2 1 2

1 2 2 1 2 2

1 1

1 2 1 2 1 1

1 1

log log log( ) log log( ) ( ) log

                  1 log 1 log

                           1 log 1 log .

n n

i i
i i

n n

i i
i i

L n n n n n

x x

x x

α α α α α α σ

α α α α

α α α α

= =

= =

′ ′= + + + + +

′ ′− + − + − +

′ ′− + − + − +

∑ ∑

∑ ∑

 (2.27) 
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If σ  is known, the procedure to obtain the MLE for ( )1 2 1 2, , ,α α α α α′ ′=  is 

straight forward. However if σ  is unknown we proceed by estimating σ  from 

the distribution of .Z  For fixed ( )1 2 1 2, , ,α α α α α′ ′= , the maximum likelihood 

estimate for σ  is  

ˆ ( ),  1, 2,  1, ..., .ij
i j

min min X i j nσ = = =     (2.28) 

Substitutingσ̂ , we get the MLE of  ( )1 2 1 2, , ,α α α α α′ ′=  as  

( ) ( )
1 2

1
1

1 2

1 1

ˆ ,

ˆlog log log

n n

i i
i i

n

x x n

α

σ
= =

=

+ −∑ ∑
   (2.29) 

( ) ( )
1 2

2
2

1 2

1 1

ˆ ,

ˆlog log log
n n

i i
i i

n

x x n

α

σ
= =

=

+ −∑ ∑
   (2.30) 

( ) ( )
2 2

2
1

1 2

1 1

ˆ

log log
n n

i i
i i

n

x x

α

= =

′ =

−∑ ∑
    (2.31) 

and 

( ) ( )
2 1

1
2

2 1

1 1

ˆ .

log log
n n

i i
i i

n

x x

α

= =

′ =

−∑ ∑
    (2.32) 

 

Remark 2.2 The estimator of 1α ′  and 2α ′  are independent ofσ . 

 

Theorem 2.4 For a given ,σ  ( ) ( )( )1 2 1 2 1 2 1 2
ˆ ˆ ˆ ˆ, , , , , ,

Dn α α α α α α α α′ ′ ′ ′− →  

(0, )N Σ  as ,n → ∞  where 
1

,
I

n
θ

−

Σ = Iθ  is the information matrix given by 
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1
2

1

2
2

2

2
2

1

1
2

2

0 0 0

0 0 0

0 0 0

0 0 0

n

n

I
n

n

θ

α

α

α

α

 
 
 
 
 
 =
 
 

′ 
 
 

′  

 

The proof follows directly from Serfling (1980 p. 145). 

 

Corollary 2.6 For a given ,σ  the estimates of shape parameters 

( )1 2 1 2, , ,α α α α α′ ′=  are independent of each other. 

 

We now consider alternative approaches to estimate .σ  If  

1 2( , )Z min X X= , then  

[ ]1 2( ) ,ZF x P X x X x= > >  

          1 2; ,  0,  0

α

σ α α α σ
σ

−
 

= > = + > > 
 

x
x  

a univariate Pareto distribution given by 
( 1)

1 2( ) ; ,  

α
α

σ α α α
σ σ

− +
 

= > = + 
 

Z

x
f x x , 0.σ >           (2.33) 

In the above approach we estimated σ  using the maximum likelihood method. 

Also as observed in Remark 2.2, the estimates of  1α ′  and 2α ′  does not depend on 

σ . We consider alternative approaches to estimate σ  from (2.33) and investigate 

if it gives better estimates in terms of bias and mean square error than in (2.29) 

and (2.30). 

The two alternative approaches considered to estimate σ  are 

(i) Method of moments and 

(ii) Method using principle of maximum entropy (POME) 



A Bivariate Pareto Model 

 

 

 

64

(i) The method of moments: 

The moment estimates ( , )σ α��  for the parameters σ  and α  are obtained 

by solving 

1

1

( 1)

n

i
i

X
n

ασ

α=

=
−

∑
� �

�
            (2.34) 

and        
2

2

1

1

( 2)

n

i
i

X
n

ασ

α=

=
−

∑
� �

�
.            (2.35) 

 

 (ii) Method using principle of maximum entropy (POME) 

The principle of maximum entropy is employed to estimate σ  from the 

distribution of 1 2( , )Z min X X=  given in (2.33). This method of estimation has 

been discussed in Singh and Guo (1995), Singh and Guo (1997), Singh (1998), 

Singh and Ahmad (2004) and Hao and Singh (2009). In Singh and Guo (1997), 

POME method is used for estimating the parameters of a generalized Pareto 

distribution. They showed that the parameter estimates yielded by POME were 

comparable or better than the maximum likelihood estimates obtained by method 

of moments within certain ranges of sample sizes. This method is detailed as 

follows. 

Shannon (1948) defined entropy as a numerical measure of uncertainty or 

conversely the information content associated with a probability distribution, say 

( ),f x θ  where θ  represents the parameter vector used to describe a random 

variable X . The Shannon’s entropy function ( )H f  for a continuous random 

variable X  is given in (1.45). Accordingly to Jayness (1961), the minimally 

biased distribution of X  is the one which maximizes the entropy function subject 

to given information or which satisfies the principle of maximum entropy. 

Therefore the parameters of the distribution are obtained by achieving maximum 

( )H f . POME is a logical and rational criterion for choosing some specific 
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( )f x  that maximizes ( )H f  and satisfies the given information expressed as 

constraints. In other words, for given information (mean, geometric mean, 

variance, skewness, lower limit, upper limit etc.) the distribution derived by 

POME would best represent X , implicitly this distribution would best represent 

the sample from which the information was derived. Inversely if it is desired to fit 

a particular probability distribution to a sample of data, then POME can uniquely 

specify the constraints (or the information) needed to derive the distribution. The 

distribution parameters are then related to these constraints. 

Given m linearly independent constraints , 1, 2,..., ,iC i m=  in the form 

( ) ( ) , 1, 2, ...,i iC g x f x dx i m= =∫     (2.36) 

where  ( )ig x  are some functions whose averages over ( )f x  are specified, then 

the maximum of  ( )H f  subject to equation (2.36) is given by the distribution 

(Tribus (1969)) 

( ) 0

1

exp ( )
m

i i
i

f x g xλ λ
=

 
= − − 

 
∑     (2.37) 

where , 1, 2, ..., ,i i mλ =  are the Lagrangian multipliers, and can be determined 

from (2.36) and (2.37). Inserting equation (2.37) in (1.45) yields the entropy of  

( )f x  in terms of the constraints and Lagrangian multipliers: 

0

1

( ) .
m

i i
i

H f Cλ λ
=

= +∑       (2.38) 

 Maximization of ( )H f   then establishes the relation between constraints 

and Lagrangian multipliers. Thus, to derive a method using POME for the 

estimation of the parameters α  and σ  in (2.33), three steps are involved: (a) 

specification of the appropriate constraints; (b) derivation of the entropy of the 

distribution; and (c) derivation of the relations between Lagrangian multipliers 

and constraints. 
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(a) Specification of the constraints 

The entropy function of Pareto I distribution can be derived by inserting 

equation (2.33) into equation (1.45) to get  

( )( ) log ( ) 1 log ( ) .
x

H f f x dx f x dx
σ σ

α
α

σ σ

∞ ∞
   

= − + +   
   

∫ ∫  (2.39) 

Comparing equation (2.39) with (2.38), the constraints appropriate for equation 

(2.33) can be written (Kapur (1989)) as  

( ) 1f x dx
σ

∞

=∫                     (2.40) 

and 

log ( ) log
x X

f x dx E
σ

σ σ

∞
    

=    
    

∫      (2.41) 

in which [ ].E  denotes the expectation of the bracketed quantity. The first 

constraint specifies the total probability. The second constraint specifies the 

geometric mean of 
X

σ
. The parameters of the distribution are related to these 

constraints. 

 

(b) Construction of entropy function 

The probability density function of the Pareto I distribution corresponding 

to POME and consistent with equation (2.40) and (2.41) takes the form 

0 1( ) exp log
x

f x λ λ
σ

  
= − −   

  
    (2.42) 

where 0λ and 1λ  are Lagrangian multipliers and ( ) log
x

g x
σ

 
=  

 
. 

By applying equation (2.42) to the total probability condition in equation 

(2.40), one obtains 

  
1

0

log

,

x

e e dx
λ

σλ

σ

  
     

∞ −

= ∫      (2.43) 
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which yields, 

( )
0

1 1
eλ σ

λ
=

−
.      (2.44) 

The zeroth Lagrangian multiplier is now given by 

0
1

log .
1

σ
λ

λ

 
=  

− 
      (2.45) 

Inserting (2.44) in (2.42) yields, 

1

1 1
( )

x
f x

λ
λ

σ σ

−
−  

=  
 

.      (2.46) 

A comparison of equation (2.46) with (2.33), we get 

1 1λ α= + .       (2.47) 

Taking logarithm of equation (2.46) gives 

( )1 1log ( ) log 1 log log
x

f x λ σ λ
σ

 
= − − −  

 
.   (2.48) 

 Therefore, the entropy ( )H f  of the Pareto I distribution follows, 

( )1 1( ) log 1 log log
X

H f Eλ σ λ
σ

  
= − − + +   

  
.  (2.49) 

 

(c ) Relation between distribution parameters and constraints 

 According to Singh and Rajagopal (1986), the relation between 

distribution parameters and constraints is obtained by taking partial derivatives of 

the entropy function ( )H f  with respect to the Lagrangian multipliers (other than 

zeroth) as well as distribution parameter, and then equating the derivatives to 

zero, and making use of the constraints. To that end, taking partial derivatives of 

equation (2.49) with respect to 1λ  and equating to zero yields 

( )1 1

1
( ) log 0

1

X
H f E

λ λ σ

∂   
= − + =  

∂ −   
 

1

1
log

1

X
E

σ λ

  
=  

−  
 .     (2.50) 
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Alternatively, the estimation equation (2.50) can also be obtained by 

differentiating the zeroth Lagrangian multiplier with respect to the Lagrangian 

multiplier 1λ  and equating the derivative to zero. Equation (2.43) is written as  

  
1

0

log

log

x

e dx
σ

λ
σ

λ

 
∞  

 
−

= ∫ .     (2.51) 

Differentiating (2.51) with respect to 1λ , we obtain 

1

0

1 1

log

log

log

x

x

x
e dx

e dx

σ

σ

λ
σ

λ
σ

σλ

λ

 
∞  

 

 
∞  

 

−

−

 
−  

 ∂
=

∂

∫

∫

.    (2.52) 

Using (2.43), equation (2.52) becomes 

0 1
0

1

log

log

σ

λ λ
σλ

λ σ

 
∞  

 
− −∂  

=  
∂  

∫
x

x
e dx .    (2.53) 

Now using (2.42), we get 

0

1

log
X

E
λ

λ σ

∂   
= −   

∂   
.      (2.54) 

Once again differentiating (2.52) with respect to 1λ  and simplifying, we get 

 
2

22 0 1 0 1
0
2

1

log log

log log

σ σ

λ λ λ λ
σ σλ

σ σλ

   
∞ ∞   

   
− − − − 

∂      = −      ∂       
 

∫ ∫
x x

x x
e dx e dx  

i.e. 
222

0

2
1

log log
X X

E E
λ

σ σλ

 ∂       
= −        

∂        
, 

2
0
2

1

log
λ

σλ

∂   
=   

∂   

X
V .      (2.55) 

From equation (2.44), 

  0 1log log( 1)λ σ λ= − − .     (2.56) 
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Differentiating (2.56) with respect to 1λ , 

  0

1 1

1

1

λ

λ λ

∂
= −

∂ −
       (2.57) 

and   

  
( )

2
0

2 2
1 1

1

1

λ

λ λ

∂
=

∂ −
.      (2.58) 

Equating (2.57) to (2.54) and (2.58) to (2.55) leads to 

1

1
log

( 1)

X
E

σ λ

  
=  

−  
     (2.59) 

and 

2
1

1
log

( 1)

X
V

σ λ

  
=  

−  
.     (2.60) 

Equations (2.59) and (2.50) are equivalent. Hence the parametric 

estimation of POME consists of two equations (2.59) and (2.60). Inserting 

1 1λ α= +  from (2.47) into (2.59) and (2.60), we get 

   
1

log
X

E
σ α

  
=  

  
      (2.61) 

and 

2

1
log

σ α

  
=  

  

X
V .      (2.62) 

Equations (2.61) and (2.62) are the POME based estimation equations. 

The POME estimates of the parameters σ  and α  can be obtained by solving the 

equations (2.61) and (2.62) numerically. We denote them as σ ∗  and .α ∗  

Replacing σ̂  by σ ∗  in (2.29) to (2.32), we get another set of estimates as 

1 2 1 2( , , , , )σ α α α α′ ′∗ ∗ ∗ ∗ ∗ . Observe that 1α ′ ∗and 2α ′ ∗  remain the same as 1α̂ ′  and 

2α̂ ′  since their estimates are independent ofσ . 

On substitution of the moment estimate of ,σ  σ�  from the solution of 

(2.34) and (2.35), we get the moment estimates corresponding to σ  and 

( )1 2 1 2, , , .α α α α α′ ′=  
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2.5.4 Simulation for ( )1 2 1 2 , , , ,BP I σ α α α α′ ′  Distribution 

The random samples from ( )1 2 1 2 , , , ,BP I σ α α α α′ ′  distribution are 

generated using Corollary 2.4. For each population, 100 random samples of sizes 

25, 50 and100 were generated and the parameters are estimated in two stages as 

discussed in Section 2.5.3. The bias, variance and efficiency of the estimates 

obtained are given in Table 2.2. 
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Table 2.2 Estimates of parameters 1 2 1 2, , , ,σ α α α α′ ′  of a 

( )1 2 1 2 , , , ,BP I σ α α α α′ ′  distribution. 

 

Efficiency 

N 
Parameter

s 
  POME Moment MLE POME

*MLE 

Moment

*MLE 

Moment

*POME 

Bias 0.1682 0.8358 0.0581 
σ (2) 

Variance 0.0167 19.2961 0.0022 
0.1327 0.00012 0.0009 

Bias 0.4659 7.0022 0.1326 
1α (1.5) 

Variance 0.4747 3745.352 0.2422 
0.5103 0.00006 0.00013 

Bias 0.4755 5.7079 0.1833 
2α (1.25) 

Variance 0.3859 3683.895 0.2113 
0.5475 0.00006 0.0001 

Bias 0.1394 0.1394 0.1394 
1α ′ (1.8) 

Variance 0.4367 0.4367 0.4367 
1 1 1 

Bias 0.0981 0.0981 0.0981 

25 

2α ′ (1.6) 
Variance 0.7166 0.7166 0.7166 

1 1 1 

Bias 0.1235 0.3242 0.0301 
σ (2) 

Variance 0.0106 0.0155 0.0008 
0.0747 0.0511 0.6841 

Bias 0.2954 1.1383 0.0532 
1α (1.5) 

Variance 0.1293 0.5111 0.0807 
0.6245 0.1579 0.2530 

Bias 0.3545 1.1223 0.1355 
2α (1.25) 

Variance 0.1868 0.6770 0.1193 
0.6385 0.6385 0.2759 

Bias 0.0982 0.0982 0.0982 
1α ′ (1.8) 

Variance 0.1343 0.1343 0.1343 
1 1 1 

Bias -0.0167 -0.0167 -0.0167 

50 

2α ′ (1.6) 
Variance 0.5033 0.5033 0.5033 

1 1 1 

Bias 0.0997 0.2790 0.0125 
σ (2) 

Variance 0.0050 0.0083 0.0001 
0.0266 0.0161 0.6037 

Bias 0.2570 0.8971 0.0451 
1α (1.5) 

Variance 0.0671 0.2128 0.0432 
0.6442 0.2128 0.3153 

Bias 0.1849 0.7078 0.0119 
2α (1.25) 

Variance 0.0516 0.1578 0.0339 
0.6581 0.2149 0.3267 

Bias 0.0114 0.0114 0.0114 
1α ′ (1.8) 

Variance 0.0873 0.0873 0.0873 
1 1 1 

Bias -0.2741 -0.2741 -0.2741 

100 

2α ′ (1.6) 
Variance 0.1054 0.1054 0.1054 

1 1 1 
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2.6. Data Analysis 

For the illustration of the bivariate Pareto model, a real data set given in 

Kim and Kvam (2004) is considered. The data set consists of the failure times of 

20 sample units from a system consists of three components. Exponential 

transformation of the data is taken for the illustration the model. The transformed 

observations are given in the Table 2.3.  

 

Table 2.3 Transformed data set 

 

Sl. No. 
 

 

 

 
Sl. No. 

 

 

 

 

1 7.3046 1124.393 11 2.4102 0.818 

2 0.9153 0.9935 12 17.3809 4.0224 

3 8.9994 11.0694 13 5405.896 1.5002 

4 7.0784 7.4593 14 453753.5 2.9878 

5 2.0737 1579.856 15 94.7863 37.5636 

6 1.9326 6034.524 16 36.077 11.5354 

7 2.2236 171.2747 17 3.54E+08 6.9313 

8 1872.675 12.0204 18 159.6718 4.781 

9 4126.667 109.0827 19 32380.1 6034.524 

10 4.1107 0.8536 20 9.7781 3.3759 

 

The Kolmogorov-Smirnov test for the bivariate random variable is made 

as follows (Justel et al. (1997)). 

X Y X Y
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(1) Compute the maximum distance in the observed points, 
1

1,...,
max ( )n n i

i n
D D u+

=
= . 

(2) Compute the maximum and minimum distances in the intersection 

points,  

   { }2

, 1,...,
max ( , ) | ,

in n j i j i j
i j n

D D x y x x y y+

=
= > <   

       and 

    { }3

, 1,...,

2
min ( , ) | ,

in n j i j i j
i j n

D D x y x x y y
n

+

=
= − > < . 

(3) Compute the maximum distance among the projections of the 

observed points on the right unit square border, 

4

1,...,

1
min (1, )n n i

i n
D D y

n
+

=
= − . 

(4) Compute the maximum distance among the projections of the 

observed points on the top unit square border, 

5

1,...,

1
min ( ,1)n n i

i n
D D x

n
+

=
= − . 

(5) Compute the maximum distance, { }1 2 3 4 5max , , , ,n n n n n nD D D D D D= . 

 

Now for the data given in Table 2.3, we observe the Kolmogorov distance as 

follows 

 

1
nD  

2
nD  

3
nD  

4
nD  

5
nD   nD  

0.0975 0.4423 0.0118 0.0359 0.0328  0.4423 

 

From Table 1 (Justel et al. (1997)), the Monte-Carlo approximation to the 

percentiles of the bivariate Kolmogorov-Smirnov Statistic distribution nD  is 

accepted at 0.0025 percentiles for 20n = . Thus the transformed data fits for the 
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bivariate Pareto II distribution given in (2.6) at 0.0025 percentiles. Also the data 

is fitted graphically and is given below. With this we conclude this chapter. 

 

 

        

Figure 2.3: Bivariate Empirical Survival Plot for the data given in Table 2.3. 



 

 

 
Some results in this chapter is published in Asha and Jagathnath (2006, 2008). 

 

 

 

 

 

 

 

Chapter 3 

 

Characterizations of Bivariate Pareto Distributions 

 

 

3.1 Introduction 

The identification of an appropriate model that can describe the properties 

of a particular set of data is a basic problem in analyzing statistical data. 

Characterization problem usually identifies some unique property possessed by a 

distribution and it helps to obtain an exact model followed by the observations 

through the consideration of the physical characteristics that governs the pattern 

of the data. A large volume of work is available in the literature (Galambos and 

Kotz (1978), Azlarov and Volodin (1986)).  As an example, the constancy of the 

failure rate and lack of memory property are the characteristics of an exponential 

distribution. The intimate relationship between the Pareto and exponential 

distributions permits us to obtain analogous characterizations of the former from 

characterizations of the latter. Many characterizations of the exponential are 

translations of the lack of memory property. In fact characterizations of Pareto 

and exponential distributions are in essence variants of the memory less property 
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of the exponential and are essentially reduced to solving a Cauchy type functional 

equation or its integral variants. However, when discussing lack of memory 

property in the higher dimension, it ceases to have a unique extension (See 

Galambos & Kotz (1978)) and each definition manifests itself in a unique way. 

For results based on bivariate lack of memory property, see Roy (2004) and for 

discrete case Sun and Basu (1995), Nair and Asha (1997), Asha et al. (2003) to 

mention a few cases. The variant form of the lack of memory property has been 

referred to as the multivariate dullness property by Veenus and Nair (1994), 

Hanagal (1996), Yeh (2004 a,b). 

This chapter contains three sections. In section 3.2, the 

( )1 2 1 2 , , , ,BP I σ α α α α′ ′  distribution is characterized under certain conditions by 

the bivariate dullness property discussed in Hanagal (1996). Apart from these, 

results based on rescaling and transformations are also discussed. In section 3.3 

we consider characterizations ( )1 2 1 2 , , , ,BP I σ α α α α′ ′  and 

1 2 1 2 ( , , , , , )BP II µ σ α α α α′ ′  distributions based on reliability characteristics.  

 

3.2 Characterizations using Dullness Property and its Variants  

In this section we extend the characterizations results mentioned in 

Chapter one to the bivariate case. These characterizations are meaningful in the 

income distribution context. The extended form of the univariate dullness 

property is given as follows. 

 

Definition 3.1 (Veenus and Nair (1994), Hanagal (1996), Yeh (2004 a,b)) The 

distribution of  ( )1 2,X X  is called dull at the point ( )1 2,t t  whenever 

[ ] [ ]1 1 1 2 2 2 1 1 2 2 1 1 2 2, | , ,P X s t X s t X t X t P X s X s≥ ≥ ≥ ≥ = ≥ ≥  (3.1) 

for all 1 2, 1s s ≥  and 1 2, 1.t t ≥   
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In fact, (3.1) can be equivalently written as 

[ ] [ ] [ ]1 1 1 2 2 2 1 1 2 2 1 1 2 2, , ,P Y y t Y y t P Y y Y y P Y t Y t′ ′ ′ ′≥ + ≥ + = ≥ ≥ ≥ ≥  (3.2) 

where log 0i iY X= >  with log 0i it t′ = > .  

 

From Galambos and Kotz (1978) it follows that ' ,  1, 2iY s i =  are 

independent exponential and so ( )1 2,X X  is a bivariate Pareto with independent 

marginals. Relaxing conditions on (3.1) and defining bivariate dullness property 

as in Veenus and Nair (1994), Hanagal (1996), the distribution of ( )1 2,X X  is 

called dull at the point ( ),t t  where 1,t >  whenever 

[ ] [ ]1 1 2 2 1 2 1 1 2 2, | , ,P X s t X s t X t X t P X s X s≥ ≥ ≥ ≥ = ≥ ≥   (3.3) 

for all 1 2, 1.s s ≥  

The distribution of ( )1 2,X X  is called totally dull if (3.3) holds true for all 

( )1 2,s s  and 1.t >  The equation (3.3) can be equivalently written as 

 [ ] [ ] [ ]1 1 2 2 1 1 2 2 1 2, , ,P Y y t Y y t P Y y Y y P Y t Y t′ ′ ′ ′≥ + ≥ + = ≥ ≥ ≥ ≥  (3.4) 

where log 0, log 0.i iY X t t′= > = >  

If 1 2( , )G y y  denotes the survival function of ( )1 2,Y Y  and  ( )i iG y  denotes 

the marginal survival functions of ,iY  then it follows from Galambos and Kotz 

(1978) that  

( )

( )

1 2 2

1 2 1

1 1 2 2 1
1 2

2 2 1 1 2

( ); 0
( , )

( ); 0

y

y

e G y y y y
G y y

e G y y y y

α α

α α

− +

− +

 − ≤ ≤
= 

− ≤ ≤

   (3.5) 

for some 1 2, 0.α α >  

 

The equations (3.4) and (3.5) are nothing but the bivariate lack of memory 

property (Galambos and Kotz (1978)) and (3.5) is the class of exponential 

minima. Accordingly, we can have a general class of distribution with Pareto 

minima as  
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( )

( )

1 2

1 2

1
2 1 2 1

2

1 2 1 2

2
1 2 1 2

1

;1

( , ) ; 0

;1

x
x F x x

x
F x x

x
x F x x

x

α α

α α

α α

− +

− +

  
≤ ≤  

  
= + >

 
≤ ≤ 

 

.  (3.6) 

That the class specified in (3.6) satisfies the dullness property (3.3). Hence, we 

have the following theorem. 

 

Theorem 3.1 A random vector ( )1 2,X X  with survival function ( )1 2,F x x  in the 

support of ( ) ( )1, 1,∞ × ∞ satisfies (3.3) if and only if ( )1 2,F x x  belongs to the 

class specified by (3.6). 

 

Corollary 3.1 Let ( )1 2,X X  be a bivariate random variable with mixture Pareto 

marginals specified as 

( ) ( )1 23

1 2 1 2

;1 , , 0, 1,2ii i i
i i i i i i i

i i

F x x x x i
α ααα α α

α α
α α α α α α

− +′−−
 ′−

′ = + ≤ > =
 ′ ′+ − + − 

          (3.7) 

then ( )1 2,X X  has a ( )1 2 1 2 , , , ,BP I σ α α α α′ ′  distribution with survival function 

specified by 

( ) ( ) ( )1 21 23
1 2 3 3

1 2 1 2

3

, ;

                                      1  , , 0, 1,2,   

α αα α α αα α α

α α α α α α

α α

+−
− −

−

′− + − −′−
 ′−
 = +
 ′ ′+ − + − 

′≤ ≤ > =

i ii i i
i i i

i i

i i i i

F x x x x x

x x i

 

          (3.8) 

if and only if the distribution of ( )1 2,X X  is totally dull. 

Proof 

 If ( )1 2,X X  is distributed as (3.8), then to prove that 

( ) ( ) ( )1 2 1 2, , ,F x t x t F x x F t t=  for all 1 2, , 1x x t ≥    (3.9) 

is straightforward. 
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Conversely, from (3.6) it follows that  

( )
( )

( )
( )

1 2

1 2

1 2

1 2

1

2

2 1 1 1 1
2

1 2 1 2 1 2 1 2

2 1
1 2

1 2 2 2 2
1

1 2 2 1 1 2 2 1

1 2

;

1
( , )

;

1

x x
x

x x

x x
F x x

x x
x

x x

x x

α α
α α

α α
α α

α

α

α α α

α α α α α α

α α α

α α α α α α

+
− +

+
− +

′− −

′− −

      ′−  +    
′ ′ + − + −      

 ≤ ≤
= 

      ′− +     
′ ′+ − + −       

≤ ≤

. 

From which it follows that, 

 

( ) ( )

( ) ( )

1 2 1 1 21

1 2 2 1 22

2 1 1
1 2 1

1 2 1 1 2 1

2 1
1 2

1 2 2
2 1 2

1 2 2 1 2 2

1 2

;

1
( , )

;

1

x x x

x x
F x x

x x x

x x

α α α α αα

α α α α αα

α α α

α α α α α α

α α α

α α α α α α

′− + − − +′−

′− + − − +′−

   ′−
+   

′ ′+ − + −   
 ≤ ≤

= 
  ′−

+   ′ ′+ − + −  
 ≤ ≤

. 

Hence the result. 

 

Corollary 3.2 Let ( )1 2,X X  be a bivariate random variable with Pareto marginals 

specified by 

( ) 12( )
12;1 , , 0, 1, 2i

i i i i iF x x x iλ λ λ λ− +
= ≤ > =                                        (3.10)  

then ( )1 2,X X  has a Marshall-Olkin type bivariate Pareto I (Muliere and Scarcini 

(1987), Veenus and Nair (1994), Hanagal (1996)) distribution with survival 

function specified by 

( ) ( ){ } 121 2
1 2 1 1 1 2 12, max , ;1 , , 0, 1, 2i iF x x x x x x x i

λλ λ λ λ
−− −

= ≤ > =   (3.11) 

if and only if the distribution of ( )1 2,X X  is totally dull. 

A few bivariate Pareto distributions belong to the class specified in (3.6) 

is given below. 
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Table 3.1 Bivariate Pareto model possessing dullness property 

 

No. Bivariate Survival function 

1. Pareto [Veenus & Nair (1994), Hanagal (1996)], 

( ) ( ) ( ){ }1 21 2
01 2

1 2

1 2

( , ) max , ;

 1,  1,  1, 2., i

F x x x x x x

ix x

αα α

α

−− −
=

≥ > =
 

2. Pareto [Yeh (2004 a)], 

( ) ( ) ( ) ( )( )1 2 1 2 1 21 2( , ) max ,  ;  , 1,  1F x x x x x x x x
α α α α

α
− − −−

= ≥ >  

3. Mixture Pareto, 

1 2 1 1 2 1
1 2 1 21 2 1 2

( ) ( )
( , ) (1 ) ;  , 1,  

                                                           0,  1, 2,  0 1.i

F x x kx x k x x x x

i k

α α α α α α

α

− − − −− −
= + − ≥

> = < <
 

4. Bivariate Pareto [Asha & Jagathnath Krishna (2008)], 

( )
( )

( )
( )

( )

( )
( )

( )

( )
( )

( )
( )

( )

( )
( )

( )

1 2 2 2

1 2

1 2 1 1

1 2

1 2
1 2

1 2 2

2 2

2 1 2

1 2 2

1 2

2 1
2 1

1 2 1

1 1

1 2 1

1 2 1

                   ;  1

( , )

                     ;  1

x x

x x x

F x x

x x

x x x

α α α α

α α

α α α α

α α

α α

α α α

α α

α α α

α α

α α α

α α

α α α

− + − ′ − ′

− +

− + − ′ − ′

− +

′
 ′+ −

 ′−

+ ≤ ≤
′+ −

= 
′

 ′+ −


′−
+ ≤ ≤ ′+ −

 

                                   1 20,  , 0,  ,  1, 2.i i i iσ α α α α α′ ′> > + ≠ =  

 

As typical in the case of lack of memory property, the dullness property 

(3.3) also manifests itself on characterizations of the bivariate Pareto. One such 

characterization is based on rescaling is discussed below. 
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Theorem 3.2 Let  ( )1 2,X X  be a random vector and suppose there exist 

,  ,  0i iσ α α ′ >  such that ,  1,2,ix iσ> =  then the following two statements are 

equivalent. 

(i) ( )1 2,X X  has a ( )1 2 1 2 , , , ,BP I σ α α α α′ ′  distribution 

(ii) Let ( )1 2,X X  be a bivariate random vector with marginals specified as in 

(3.7). Then for any , 1, 2,σ < < =iy x i  the bivariate truncation of ( )1 2,X X  is 

equivalent to the bivariate rescaling in the form 

[ ]1 1 2 2 1 2 1 1 2 2

1 1
, | , ,P X x X x X y X y P yX x yX x

σ σ

 
> > > > = > >  

.  (3.12) 

Proof 

Suppose ( )1 2,X X  has a ( )1 2 1 2 , , , ,BP I σ α α α α′ ′  distribution, then for 

any 1 2, ,x x y σ> >  the bivariate truncation of ( )1 2,X X  is  

[ ]
[ ]
[ ]

1 1 2 2
1 1 2 2 1 2

1 2

,
, | ,

,

P X x X x
P X x X x X y X y

P X y X y

> >
> > > > =

> >
  (3.13) 

( )

( )

1 2 3 3 1 2

1 2 3 3 1 2

3 3 3 3

1 2 3 1 2

3 3

1 2 3 1 2

( )

( )

i i

i i

i i i i i i

i i

i i i

i i

x x x

y y y

α α α α α α

α α α α α α

α α α

α α α σ σ α α α σ

α α α

α α α σ σ α α α σ

− −

− −

− − − −

−

− −

−

′ ′− + − − − +

′ ′− + − − − +

   ′−     
+        ′ ′+ − + −        

=
   ′−     

+        
′ ′+ − + −        

          (3.14) 

( )1 2 3 3 1 2
3 3 3 3

1 2 3 1 2

( )i i
i i i i i i

i i

x x x

y y y

α α α α α α
α α α

α α α α α α

− −
− − − −

−

′ ′− + − − − +
   ′     −

= +        
′ ′+ − + −        

 

3 .i ix x yσ −< < < < ∞  

On the other hand, rescaling of ( )1 2,X X  is  

1 2
1 1 2 2 1 2

1 1
, ,

x x
P yX x yX x P X X

y y

σ σ

σ σ

  
> > = > >     

 

( )1 2 3 3 1 2
3 3 3 3

1 2 3 1 2

( )i i
i i i i i i

i i

x x x

y y y

α α α α α α
α α α

α α α α α α

− −
− − − −

−

′ ′− + − − − +
   ′     −

= +        
′ ′+ − + −        

 

3 .i ix x yσ −< < < < ∞  
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Thus proving the first part of the theorem. 

To prove the converse, it follows from 

[ ]1 1 2 2 1 2 1 1 2 2

1 1
, | , ,P X x X x X y X y P yX x yX x

σ σ

 
> > > > = > >  

 

that 

[ ] [ ]1 1 2 2 1 2 1 1 2 2

1 1
, , ,

                                                                             ; , 1,2.i

P X x X x P X y X y P yX x yX x

y x i

σ σ

σ

 
> > = > > > >  

< < < ∞ =

  (3.15) 

Consider the transformation i
i

X
Z

σ

 
=  
 

 and ,i ix w y=  then 1.iw y

σ
>  

Equation (3.15) now becomes 

[ ]1 2
1 2 1 2 1 1 2 2, , ,

w y w y y y
P Z Z P Z Z P Z w Z w

σ σ σ σ

   
> > = > > > >     

 (3.16) 

for all 1, 1.
σ σ

> >iw y y
 

Since iX  has marginals specified as in (3.7) it follows that the marginals of  iZ  

is ( ), 1, 1,2.σ > =i i iF z z i  

Further from equation (3.16) and Corollary 3.2 we obtain the survival 

function of ( )1 2,Z Z  as 

( ) ( )

( ) ( )

1 2

1 2

1
2 1 2 1

2

1 2

2
1 2 1 2

1

;1

( , )

;1

α α

α α

σ

σ

− +

− +

  
≤ ≤  

  
= 

 
≤ ≤ 

 

z
z F z z

z
F z z

z
z F z z

z

. 

Simple transformation enables us to obtain ( )1 2,F x x  as in (i).  

Hence the result. 

 

Theorem 3.3 Let ( )1 2,X X  be a random vector as defined above and suppose 

there exist , , 0,i iσ α α ′ >  such that ,  1, 2ix iσ≥ =  and ( ) ( )1 2 1 2, ,Y Y SX SX=  with 

, 1, 2i iY SX i= =  where S is continuous random variable defined over 0 1,S< <  

and is independent of ( )1 2,X X  then for any ( )1 2, ( , )y y σ σ>  
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[ ] [ ]1 1 2 2 1 2 1 1 2 2, | , ,P Y ty Y tY Y t Y t P X y X yσ σ> > > > = > >   (3.17) 

holds for all 1,t ≥  if and only if ( )1 2,X X  has a ( )1 2 1 2 , , , ,BP I σ α α α α′ ′  

distribution. 

Proof 

 Since ( ) ( )1 2 1 2, ,Y Y SX SX= , S  and ( )1 2,X X  are independent, the joint 

survival function of ( )1 2,Y Y  is derived by total probability rule as for any 

( ) ( )1 2, ,Y Y σ σ>  as 

( ) [ ]1 2 1 1 2 2, ,YF y y P Y y Y y= > >  

[ ]
1

1 1 2 2

0

, | ( )SP SX y SX y S s dF s= > > =∫  

1

1 1 2 2

0

1 1
, ( )SP X y X y dF s

s s

 
= > >  
∫  

1

1 2

0

1 1
, ( )X SF y y dF s

s s

 
=   
∫  

where (.)SF  is the cumulative distribution function of ,S (.),YF (.)XF  denotes 

the survival function of ( )1 2,Y Y  and ( )1 2,X X  respectively so that (3.17) 

becomes 

( ) ( ) ( )

( ) ( )

1 2 1 2

1

1 2 1 2

0

, , ,

          , , ,

Y Y X

X X X S

F ty ty F t t F y y

t t t t
F y y F F y y dF s

s s s s

σ σ

σ σ

−

    
= −    

    
∫

  (3.18) 

for all 1.t ≥  

If ( )1 2,X X  has a ( )1 2 1 2 , , , ,BP I σ α α α α′ ′  distribution, the integrand on the RHS 

of (3.18) becomes zero and hence we have 

( ) ( ) ( )1 2 1 2, , , 0Y Y YF ty ty F t t F y yσ σ− =                (3.19) 

[ ] [ ]1 1 2 2 1 2 1 1 2 2, | , ,P Y ty Y ty Y t Y t P X y X yσ σ> > > > = > > . 

To prove the converse let (3.19) holds for all 1.t ≥  Equivalently (3.19) 

can be written as ( ) ( ) ( )1 2 1 2, , ,Y Y XF ty ty F t t F ty tyσ σ=  for all 1.t ≥  From (3.19) 
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we infer that the integrand on the right hand side of (3.18) is zero almost 

everywhere. Then there exist a subset (0,1),  say ,A  where 

( ) ( ) ( ){ }1 2 1 2| (0,1), | , | , ,X X XA s s F t sy sy F t s s F y yσ σ= ∈ ≠  such that ( ) 0.P A =  

Thus for any given (0,1) \ ,s A∈  the following identity 

[ ]1 1 2 2 1 1 2 2 1 1 2 2, , ,
t t t t

P X y X y P X X P X y X y
s s s s

σ σ
   

> > = > > > >      
 (3.20) 

holds for all 1.t ≥  

In particular, let 1,t =  then (3.20) reduces to  

[ ]1 1 2 2 1 2 1 1 2 2

1 1 1 1
, , ,P X y X y P X X P X y X y

s s s s
σ σ

   
> > = > > > >      

 

or 

1 1 2 2 1 2 1 1 2 2

1 1 1 1 1 1 1 1
, | , , .P X y X y X X P X y X y

s s s s s s s s
σ σ

   
> > > > = > >      

 

(3.21) 

Equation (3.21) says that random vector ( )1 2,X X  has the truncation 

invariant property at level vector ( )( )
1 1

, ,σ σ σ σ
 

> 
 s s

 for any given 

(0,1) \ ,s A∈  then according to Theorem 3.2, this truncation invariant property is 

sufficient condition for ( )1 2,X X  to have ( )1 2 1 2 , , , ,BP I σ α α α α′ ′  distribution. 

Hence the result. 

 

3.3 Characterizations Based on Reliability Concepts  

In the univariate case under the assumption of existence of moments, a 

characterization based on truncation is equivalent to linearity of mean residual 

lifetime (Kotz and Shanbhag (1980)). It is thus interesting to investigate if the 

characterizations based on the truncation reflect on the the reliability concepts 

like failure rate, bivariate mean residual life function. The following theorem 

looks into these aspects. The bivariate failure rate and related concepts like mean 

residual life function (MRL), vitality function plays a crucial role in reliability 
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and survival analysis. This concept is extended to higher dimensions in more 

than one way. When considering the reliability characteristics in the bivariate 

case there is a need to choose an appropriate extension which reflects the ageing 

characteristics of the bivariate distribution. Here we advocate the Cox’s failure 

rate ( )xλ  given in equation (1.22). In the following theorems, the 

( )1 2 1 2 , , , , ,BP II µ σ α α α α′ ′  distribution is characterized using the concepts of 

Cox’s failure rate and bivariate mean residual life. The result for 

( )1 2 1 2 , , , ,BP I σ α α α α′ ′  distribution follows as special case. The next theorem 

discusses the manifestation of the dullness property on the Cox’s failure rate, 

( )xλ . 

  

Theorem 3.4 Let ( )1 2,X X  be a bivariate random variable with survival 

function ( )1 2,F x x . Then ( )1 2,F x x  belongs to the class of distribution specified 

by (3.6) if and only if the Cox’s failure rate satisfies  

( ) ( ) ( )( )
( ) ( ) ( )12 1 2 21 2 1

12 1 2 21 2 1

| |
, | , | , ,

x x x x x
tx tx tx tx tx

t t t

λ λ λ
λ λ λ

 
=  
 

 (3.22) 

for all 1 2, , , 0x x x t > . 

Proof 

If ( )1 2,F x x  belongs to the class of distribution specified by (3.6), then it 

follows that ( )1 2,X X  satisfy (3.3). Then the Cox’s failure rate ( )xλ  is 

evaluated for ( )1 2,F tx tx  as follows. By definition (1.22) for 1 2x x= , 

( )( )( ) log ,x F tx tx
x

λ
∂

=
∂

 

         ( )
( )

log ,
xt

F tx tx
tx x

∂ ∂ 
=  ∂ ∂ 

      

 ( )tx tλ=   

or 
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( )

( )
x

tx
t

λ
λ = .       (3.23) 

Now for 1 2x x> , we have from (3.3) 

( ) ( ) ( )1 2 1 2
2 2

, , ,F x t x t F x x F t t
x x

 ∂ ∂
=  

∂ ∂ 
 

which is equivalent to writing, 

( ) ( ) ( )1 2 1 2
2 2

, , ,F x t x t t F x x F t t
x t x

   ∂ ∂
=   

∂ ∂   
. 

Taking logarithm on both sides, we get 

( ) ( ) ( )1 2 1 2
2 2

log , log log , log ,F x t x t t F x x F t t
x t x

   ∂ ∂
+ = +   

∂ ∂   
 

( ) ( )1 2 1 2
1 2 1 2

log , log ,F x t x t F x x
x x t x x

   ∂ ∂ ∂ ∂
=   

∂ ∂ ∂ ∂   
 

or 

( ) ( )1 2 1 2
1 2 1 2

log , log ,
   ∂ ∂ ∂ ∂

=   
∂ ∂ ∂ ∂   

F x t x t t F x x
x t x t x x

 

giving 

12 1 2
12 1 2

( | )
( | )

x x
x t x t

t

λ
λ = .     (3.24) 

Similarly, 

( )
( )21 2 1

21 2 1

|
| ,

λ
λ =

x x
x t x t

t
 for 1 2x x< .   (3.25) 

Conversely, the general solution of 
1

( ) ( )xt x
t

λ λ=  is 

( )
c

x
x

λ =  for some 0c > . 

Since ( )xλ  denotes the failure rate of the ( )1 2min ,X X , it now follows that the 

class of distribution satisfying (3.6) is a Pareto minima class. Hence 

( ) ( )1 2,F x x x
α α− +

= , for some 1 2 0,α α+ >  1.x >  

 Also observing that (3.24) implies 
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( )

( )

( ) ( )

( ) ( )

2 2
2

1 2 1 2
1 2 1 2

1 2 1 2
2 2

, , ,

, , ,

F x t x t t F x x F t t
x t x t x x

F x t x t t F x x F t t
x t x

   ∂ ∂
      ∂ ∂ ∂ ∂   =

   ∂ ∂
   

∂ ∂   

 

or 

( ) ( ) ( )1 2 1 2
1 2 1 2

log , log , ,F x t x t F x x F t t
x x x x

   ∂ ∂ ∂ ∂
=   

∂ ∂ ∂ ∂   
 

which in turn imply, 

( ) ( ) ( )1 2 1 2 2 1, , , ( ), , 1.F x t x t F x x F t t c t x x t= + ≤ ≥    (3.26) 

For 1 2 1x x= = , it follows ( ) 0,c t =  hence satisfying equation (3.3). 

Similarly proceeding for equation (3.25) we can conclude that  

( ) ( ) ( )1 2 1 2 1 2, , , , , 1.F x t x t F x x F t t x x t= ≤ ≥    (3.27) 

Hence the result. 

Thus we have proved that a bivariate random variable satisfies the 

dullness property if and only if for all 1 2, , , 0,x x x t >  the equation (3.22) holds. 

In particular if we assume Pareto marginals for iX , we have the following 

corollary. 

 

Corollary 3.3 Let ( )1 2,X X  be a bivariate random variable with mixture Pareto 

marginals specified as in (3.7) then ( )1 2,X X  has a ( )1 2 1 2 , , , ,BP I σ α α α α′ ′  

distribution with survival function specified by (3.8), if and only if the 

distribution of ( )1 2,X X  satisfies (3.22). 

 

Corollary 3.5 Let ( )1 2,X X  be a bivariate random variable with Pareto 

marginals specified as in (3.10) then ( )1 2,X X  has a Marshall – Olkin type 

(Muliere and Scarsini (1987), Veenus and Nair (1994), Hanagal (1996)) 

bivariate Pareto distribution with survival function as given in (3.11) if and only 

if the distribution of ( )1 2,X X  satisfies (3.22). 
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The constancy of the product of the mean residual life function and 

failure rate characterizes the univariate Pareto distribution. For the 

1 2 1 2 ( , , , , , )BP II µ σ α α α α′ ′  distribution the Cox’s failure rate ( )xλ  is given by 

 

( )

( ) ( ) ( )
1 2 1 2

1 2

( ) , ,x
x x x

α α α α
λ

σ µ σ µ σ µ

 + ′ ′
=   + − + − + − 

   (3.28) 

and the corresponding bivariate mean residual life function is given by 

 

( )

( )

( )

( )

( )

( )
1 2

1 2 1 2

( ) , , ;
1 1 1

                                                    , ,  , , , 0,  1, 2.i i i

x x x
m x

x x i

σ µ σ µ σ µ

α α α α

µ µ σ α α

 + − + − + −
=   ′ ′+ − − − 

′> > =

 (3.29) 

with 
( )

( )( )
1

10
1 2 1 2

( )
1

x
m x

α σ µ

α α α α

+ −
=

+ − +
, 

( )

( )( )
2

20
1 2 1 2

( ) .
1

x
m x

α σ µ

α α α α

+ −
=

+ − +
 

 

In the next theorem we investigate the component wise product of (3.28) 

and (3.29) and conditions for a possible extension of the univariate 

characterization result. 

 

Theorem 3.5 Let ( )1 2,X X  be bivariate random variable in the support of 

( , ) ( , )µ µ∞ × ∞  for 0.µ >  Let [ ]3 ,  1, 2i i ip P X X i−= < =  be known, then 

1 2

1 2

( ) ( ) , ,
1 1 1

k kk
x m x

k k k
λ

 
=  

− − − 
.    (3.30) 

For constants 1, 1, 1,2> > =ik k i  where ( )λ x is of the form,  

( )1 1 2 2( ) ( ), ( ), ( )x g x g x g xλ =                (3.31) 

and satisfies 

( | ) ( | )( ) ( )

( | ) ( | ) ( | ) ( | )

ij i j i i ij i j

ij i j i i ij i j ji j i j j ji j i

x x k x x xx k x x

x x k x x x x x k x x x

λ λλ λ

λ λ λ λ

−−
= = =

− −
 (3.32) 
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for 1,2,i j≠ =  if and only if ( )1 2,X X  has a 1 2 1 2 ( , , , , , )BP II µ σ α α α α′ ′  

distribution. 

Proof 

Let ( )1 2,X X  be 
1 2 1 2 ( , , , , , )BP II µ σ α α α α′ ′ distribution, then from (3.28) 

and (3.29) it follows that 

( )
1 2 1 2

1 2 1 2

( ) ( ) , , .
1 1 1

x m x
α α α α

λ
α α α α

 ′ ′+
=   ′ ′+ − − − 

 

Conversely assume that 1 2

1 2

( ) ( ) , ,
1 1 1

k kk
x m x

k k k
λ

 
=  

− − − 
. 

Then by using the inter-relationship between Cox’s failure rate and 

BMRL given in (1.35) we have, 

 

10 1 10( ) ( ) ( );λ µ= + >
d

x m x p m x x
dx

     (3.33) 

20 2 20( ) ( ) ( );λ µ= + >
d

x m x p m x x
dx

     (3.34) 

( ) ( ) 1 ( );λ µ= + >
d

x m x m x x
dx

     (3.35) 

12 1 2 12 1 2 12 1 2 1 2
1

( | ) ( | ) 1 ( | );λ µ
∂

= + > >
∂

x x m x x m x x x x
x

  (3.36) 

and 

21 2 1 21 2 1 21 2 1 2 1
2

( | ) ( | ) 1 ( | );λ µ
∂

= + > >
∂

x x m x x m x x x x
x

.  (3.37) 

From (3.35) it follows that 

  1 ( )
1

d k
m x

dx k
+ =

−
. 

Integrating with respect to ,x  

( ) ;
1

µ= + >
−

x
m x c x

k
.     (3.38) 

From (3.35) and (3.37), it follows that 

  1
12 1 2 1 2

1

( | ) ( )
1

x
m x x c x

k
= +

−
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and      

2
21 2 1 2 1

2

( | ) ( )
1

x
m x x c x

k
= +

−
. 

Now from equation (1.35) and (3.31), it follows that 

( )
( 1)

k
x

x k c
λ =

+ −
,      (3.39) 

1
12 1 2

1 1 1 2

( | )
( 1) ( )

k
x x

x k c x
λ =

+ −
    (3.40) 

and 

2
21 2 1

2 2 2 1

( | ) .
( 1) ( )

k
x x

x k c x
λ =

+ −
    (3.41) 

( )xλ  satisfies the condition (3.32) implies that  

1 1 2 2 2 1( 1) ( 1) ( ) ( 1) ( )k c k c x k c x− = − = − . 

Consider the equation (3.38), by putting ,x µ=  we obtain 

( 1) ( 1) ( ) .k c k m µ µ− = − −  

Hence (3.39) becomes, 

  ( )
( 1) ( )

k
x

x k m
λ

µ µ
=

− + −
 

as 1 1 2 2 2 1( 1) ( 1) ( ) ( 1) ( ),k c k c x k c x− = − = −  we have 

  

( ) ( ) ( )
1 2

1 2

( ) , ,
1 ( ) 1 ( ) 1 ( )

k kk
x

x k m x k m x k m
λ

µ µ µ µ µ µ

 
=   − + − − + − − + − 

. (3.42) 

 

The equation (3.42) is the reciprocal linear in 1,x x  and 2x  respectively 

and from equation (3.28), it follows that ( )1 2,X X  has 

1 2 1 2 ( , , , , , )BP II µ σ α α α α′ ′  distribution with 

( 1) ( ),k mσ µ= −  1 1 2 2 1 2,  ,  ,p k p k kα α α α= = + = 1 1 2 2,  k kα α′ ′= = . 

Hence the result. 
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When considering the reliability characteristics in the bivariate case there 

is a need to choose an appropriate extension which reflects the ageing 

characteristics of the bivariate distribution. Thus in this chapter we advocate the 

use of Cox’s failure rate and related reliability concepts for studying models 

exhibiting load sharing dependence. This forms a reasonable motivation to 

formulate a definition of information measure for the residual life distribution 

corresponding to a bivariate distribution with load sharing dependence. 

Accordingly the next chapter deals with this. 



 

 

 
Some results in this chapter is published in Asha, Jagathnath and Nair (2009). 

 

 

 

 

 

 

 

Chapter 4 

 

Residual Measure of Uncertainty for Bivariate 

Distributions with Load Sharing Dependence 

 

 

4.1 Introduction 

In reliability, survival analysis, actuary and many other fields the study of 

duration is a subject of interest. Capturing effects of the age t  of an individual or 

an item under study on the information about the remaining life time is important 

in many applications. The entropy function that takes age into consideration was 

introduced by Ebrahimi (1996) by modifying the information measure defined by 

Shannon (1948). This chapter deals with the uncertainty associated with a two 

component parallel system having load sharing dependence. 

The chapter is organized into three sections. In section 4.2, the concept of 

bivariate residual entropy function is introduced along with the properties, 

monotonicity and uniqueness. Section 4.3 deals with characterizations of life time 

models using the concept of bivariate residual entropy function. The equivalence 

of bivariate dullness property and BLMP in terms of bivariate residual entropy 
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function has also been established. The relationship of the bivariate mean residual 

life function with the proposed measure is also discussed.  

 

4.2 Bivariate Residual Entropy Function  

As previously assumed let ( )1 2,X X  is a vector of non-negative random 

variables. Typically we think of ,  1, 2iX i =  to be the lifetime of a two component 

parallel system. However if we are considering a parallel system where failure of 

the system consists of failure of one of the component first and the eventual 

failure of the other, it is useful to take this knowledge when considering the still 

surviving components residual life. In this case Cox’s (1972) failure rate is an apt 

bivariate failure rate to model the failure times. The underlying probability 

density function can be expressed in terms of Cox’s (1972) failure rate through 

the expression given in (1.23). A suitable measure to model the mean residual life 

of the system is the bivariate mean residual life function defined in (1.33). These 

definitions form a reasonable motivation to formulate a definition of information 

measure for the residual life distributions corresponding to the two stage of 

failure in the system. The first stage corresponds to a state when both the 

components are functioning while the second stage corresponds to a state when 

one of the components has failed. 

Accordingly we propose a new measure of bivariate residual entropy 

vector 

( )1 2 12 1 2 21 1 2( , , , ) ( , ), ( , , ), ( , , )ZH f t t t H f t H f t t H f t t=   

applicable to a two component parallel system. Here ( ),ZH f t  corresponds to the 

first stage while 12 1 2( , , )H f t t   and 21 1 2( , , )H f t t  corresponds to the second stage 

of failure of the system. When the system is in a state of perfect functioning (that 

is both the components are working), 
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1
( , ) 1 ( ) ( ) log ( ) ;  0

( )
Z Z

Z t

H f t x F x x dx t
F t

λ λ
∞

= − >∫      (4.1) 

measures the uncertainty contained in the conditional density of ( )X t−  given 

that both the component has survived time t . The second stage of the system 

would be when one of the components has failed. The  

21

2

12 1 2 12 1 2 1 12 1 2 1

1

1
( , , ) 1 ( | ) ( , ) log ( | )

( , ) u tt

u t

H f t t x t F x u x t dx
u

F t u
u

λ λ
∞

=

=

∂ 
= −  ∂ ∂   

 ∂ 

∫

        1 2 ; t t>     (4.2) 

measures the expected uncertainty associated with the random variable ( )1 1X t−  

when the first component has survived beyond 1t  and the second component has 

failed at time 2t . Similarly, 

12

1

21 1 2 21 2 1 2 21 2 1 2

2

1
( , , ) 1 ( | ) ( , ) log ( | )

( , ) u tt

u t

H f t t x t F u x x t dx
u

F u t
u

λ λ
∞

=

=

∂ 
= −  ∂ ∂   

 ∂ 

∫

        1 2 ; t t<    (4.3) 

measures the expected uncertainty associated with the random variable ( )2 2X t−  

when the first component has survived beyond 2t  and the second component has 

failed at time 1t . 

Thus bivariate residual entropy function associated with the random 

vector ( ) ( ) ( )( )1 1 1 1 2 2 2 2 2 2 1 1| , | , , | ,X t X t X t X t X t X t X t X t− > − > = − > =  is 

defined as  

( )1 2 12 1 2 21 1 2( , , , ) ( , ), ( , , ), ( , , )ZH f t t t H f t H f t t H f t t= .   (4.4) 

When 1X  and 2X  are independent 1 2( , , , )H f t t t  reduces to 

( )1 1 2 2( , ), ( , ), ( , )ZH f t H f t H f t ,      (4.5) 

where ( ),ZH f t is as defined in (4.1) and ( , )i iH f t  are the marginal entropy of 

iX ’s, 1,2i =  defined in (1.46). Also observe that  
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( ) ( ), ( ) log ( ) ( ) 1 ,Z Z
d

H f t t t t H f t
dt

λ λ λ= − −    

         

( )

( ) log ( ) ( ) log ( ) ( )
( )

Z

t

d
x

dxt t t t F x
x

λ
λ λ λ λ

λ

∞

= − − ∫  

         ( )0≤ ≥ , according as ( ) ( )0.
d

x
dx

λ ≥ ≤  

Similarly, 

( ) ( )12 1 2 12 1 2 12 1 2 12 1 2 12 1 2
1

, , ( | ) log ( | ) ( | ) 1 , ,H f t t t t t t t t H f t t
t

λ λ λ
∂

= − −  ∂
 

   

( )
21

12 1 2 12 1 2 12 1 2 12 1 2

12 1 2
1

1 1
12 1 2

( | ) log ( | ) ( | ) log ( | )

( | )

                                 ,
( | ) u tt

t t t t t t t t

x t
x

F x u dx
x t u

λ λ λ λ

λ

λ

∞

=

= −

∂

∂ ∂ 
−  ∂ 
∫

 

which implies  ( )12 1 2, , ( )0H f t t
t

∂
≤ ≥

∂
 according as ( )12 1 2

1

| ( )0x t
x

λ
∂

≤ ≥
∂

. 

Similar argument holds for ( )21 1 2, ,H f t t . Thus we can say that monotonicity of 

Cox’s failure rate gives sufficient condition for monotonicity of 1 2( , , , )H f t t t . 

It can also be observed that bivariate residual entropy function 

1 2( , , , )H f t t t  is not invariant under non-singular transformations. If ( )Y Xφ=  

and ( ),  1, 2i iY X iφ= =  are one to one transformations, then 

[ ]( , ) ( , ) log ( ) |Y ZH h t H f t E J Y X t= − >       (4.6) 

and 

 
1 2 1 2( , , ) ( , , ) log ( ) | , ,

                                                                           , 1, 2,  

ij ij i i i j jH h t t H f t t E J Y X t X t

i j i j

 = − > = 

= ≠
   (4.7) 

where ( )Yh y  is the density function corresponding to the random variable Y  and 

( )ih y  that of the random variable ,  1, 2.iY i =  
1( )

( ) ,
y

J Y
y

φ −∂
=

∂
 

1( )
( ) ,  1, 2i i

i

y
J Y i

y

φ −∂
= =

∂
 are the Jacobian of transformation and the expectation 

of (4.6) is taken with respect to the residual distribution of X  and that 
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corresponding to (4.7) is with respect to the residual distribution of iX  given jX  

has failed at jt . 

One of the attractive features of residual entropy was that it uniquely 

determines the underlying distribution function (Belzunce et al. (2004)). It is now 

natural to ask if the bivariate residual entropy enjoys this property. As such it 

does not uniquely determine the underlying distribution; however under certain 

conditions it is possible to get a unique representation. The following theorem 

discusses the condition under which such a representation can be obtained. 

 

Theorem 4.1 If  ( )1 2,X X  has an absolutely continuous distribution ( )1 2,F x x  

with ,  , 1, 2,  ,i i jp P X X i j i j = < = ≠   known and ( ),ZH f t  non decreasing in 

t , ( )12 1 2, ,H f t t  non decreasing in 1t  and ( )21 1 2, ,H f t t  non decreasing in 2t , 

then 1 2( , , , )H f t t t  uniquely determine the underlying distribution. 

Proof 

From definition of bivariate residual entropy function, we have, 

( )( ) ( ) log ( ) ( ) 1 ,Z Z Z

t

x F x x dx F t H f tλ λ
∞

= −  ∫ , 

( )
21

2

1 1
12 1 2 12 1 2 1 12 1 2

( , ) ( , )
( | ) log ( | ) 1 , ,

u tt u t

F x u F x u
x t x t dx H f t t

u u
λ λ

∞

==

   ∂ ∂
= −      ∂ ∂   

∫ , 

( )
12

1

2 2
21 2 1 21 2 1 2 21 1 2

( , ) ( , )
( | ) log ( | ) 1 , , .λ λ

∞

==

   ∂ ∂
= −      ∂ ∂   

∫
u tt u t

F u x F u x
x t x t dx H f t t

u u

Differentiating the above equations with respect to t , 1t  and 2t , we obtain  

   ( ) ( ), ( ) , log ( ) 1Z Z
d

H f t x H f t t
dt

λ λ= + −   ,             (4.8) 

( ) ( )12 1 2 12 1 2 12 1 2 12 1 2
1

, , ( | ) , , log ( | ) 1H f t t t t H f t t t t
t

λ λ
∂

= + −  ∂
,        (4.9) 

( ) ( )21 1 2 21 2 1 21 1 2 21 2 1
2

, , ( | ) , , log ( | ) 1H f t t t t H f t t t t
t

λ λ
∂

= + −  ∂
.      (4.10) 
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Considering equation (4.8), and proceeding in similar lines as in Belzunce 

et al. (2004), for a fixed 0,  ( )t tλ>  is a positive solution of the equation,  

  ( ) ( )( ) , log 1 , 0Z Z
d

g y y H f t y H f t
dt

= + − − =       (4.11) 

since  ( )(0) , 0,  ( )Z
d

g H f t g
dt

= − ≤ +∞ = +∞  and ( ) ( ), log .Z

d
g y H f t y

dy
= +  

Now considering (4.9) and (4.10), for 1 2 12 1 2, 0,  ( | )t t t tλ>  and 21 2 1( | )t tλ  are 

respectively the positive solution of the following equations 

[ ]1 1 12 1 2 1 12 1 2
1

( ) ( , , ) log 1 ( , , ) 0g y y H f t t y H f t t
t

∂
= − − − =

∂
   (4.12) 

and 

[ ]2 2 21 1 2 2 21 1 2
2

( ) ( , , ) log 1 ( , , ) 0g y y H f t t y H f t t
t

∂
= − − − =

∂
.  (4.13) 

Proceeding in similar arguments as in equation (4.11), equations (4.12) 

and (4.13) has positive solution 12 1 2( | )t tλ  and 21 2 1( | )t tλ  respectively for all 1t  

and 2t . Thus when ,  1, 2ip i =  is known the distribution recovered using unique 

expression of Cox’s failure rate given in equation (1.23). 

 

In particular if  1 2( , , , )H f t t t  is of the form ( )1 2 2 1, ( ), ( )k k t k t  where k  is 

some constant and ( ),  1, 2,  i jk t i i j= ≠  are functions of ,  1, 2jt j =  then solving 

(4.11), (4.12) and (4.13) we have 

( )1 2 2 11 ( ) 1 ( )1
( ) , ,

k t k tkt e e eλ − −−
= . 

Few distributions belonging to this class are given in Table 4.2. 

 

4.3 Characterizations Using Bivariate Residual Entropy Function 

In univariate case the Pareto distribution is characterized by the dullness 

property. The residual information of this distribution is independent of the age of 

the component. Extending this to the bivariate case, if 1X  and 2X  are 
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independent it can be inferred from (3.1) that iX ’s are independent Pareto and is 

characterized by 

1 1 2 2 1 2 1 2( , ) ( , ) ( , )F x t x t F x x F t t=   

for all 1 2 1 2, , , 0.x x t t ≥  Since this model is of no practical use we consider the 

extension of dullness discussed in Hanagal (1996). 

A random vector ( )1 2,X X  with survival function 1 2( , )F x x  in the support 

of (1, ) (1, )∞ × ∞  is said to have bivariate dullness property if  

1 2 1 2( , ) ( , ) ( , )F x t x t F x x F t t=       (4.14) 

for all 1 2,x x  and 0t ≥ . 

A general form of  1 2( , )F x x  having bivariate dullness property (Asha and 

Jagathnath (2006)) is given in (3.6), which is the class of distribution having 

Pareto minima. The next theorem explores the implication of bivariate dullness 

on 1 2( , , , )H f t t t . 

 

Theorem 4.2 A bivariate random vector ( )1 2,X X  with survival function 

1 2( , )F x x  satisfies bivariate dullness property (4.14), if and only if for all 1t′ > . 

( )

( )

12 1 2 21 1 2

12 1 2 21 1 2

( , ), ( , , ), ( , , )

                   = ( , ) log , ( , , ) log , ( , , ) log .

Z

Z

H f tt H f t t t t H f t t t t

H f t t H f t t t H f t t t

′ ′ ′ ′ ′

′ ′ ′+ + +
   (4.15) 

Proof 

The Theorem 3.4 established the equivalence of bivariate dullness 

property in terms of Cox failure rate as 

( ) 12 1 2 21 2 1
12 1 2 21 2 1

( | ) ( | )( )
( ), ( | ), ( | ) , ,

t t t tt
tt t t t t t t t t

t t t

λ λλ
λ λ λ

 
′ ′ ′ ′ ′ =  ′ ′ ′ 

.  (4.16) 

Since ( )tλ  is unique positive solution of (4.11), we have 

( )1 ,
( ) ZH f t
t eλ

−
= ,       (4.17) 

then 

( )1 ,
( ) ZH f tt
tt eλ

′−
′ = .      (4.18) 
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Now from (4.16) it follows that 

( )1 ,( )
ZH f ttt

e
t

λ ′−
=

′
. 

Using (4.17), the above equation can be written as 

( ) ( )1 , 1 ,Z ZH f t H f tt
e t e

′− −
′= . 

Now by taking logarithm on both sides, we get 

( ) ( )1 , log 1 ,Z ZH f t t H f tt= ′ ′− + −  

i.e.  

( ) ( ), , logZ ZH f tt H f t t=′ ′+ .    (4.19) 

Also 12 1 2( | )t tλ  is unique positive solution of (4.12), we have 

( )12 1 21 , ,
12 1 2( | )

H f t t
t t eλ

−
= ,     (4.20) 

 then 

( )12 1 21 , ,
12 1 2( | )

H f t t t t
t t t t eλ

′ ′−
′ ′ = .    (4.21) 

Now from (4.16) it follows that 

( )12 1 21 , ,12 1 2( | ) H f t t t tt t
e

t

λ ′ ′−
=

′
. 

Using (4.20), the above equation can be written as 

( ) ( )12 1 2 12 1 21 , , 1 , ,H f t t H f t t t t
e t e

′ ′− −
′= . 

Now by taking logarithm on both sides, we get 

( ) ( )12 1 2 12 1 21 , , log 1 , ,H f t t t H f t t t t′ ′ ′− = + − . 

i.e.  

( ) ( )12 1 2 12 1 2, , , , log .′ ′ ′= +H f t t t t H f t t t    (4.22) 

Similarly we can obtain 

( ) ( )21 1 2 21 1 2, , , , log .H f t t t t H f t t t′ ′ ′= +    (4.23) 

Thus from (4.19), (4.22) and (4.23), the equation (4.15) follows. Now if 

(4.15) is satisfied then (4.16) holds true and hence the bivariate dullness property 

(4.14) is satisfied. Conversely if (4.14) holds then (4.15) follows in a very straight 

forward manner from (4.1), (4.2) and (4.3). 
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Table 4.1 summaries a few members of the class characterized by Theorem 4.2. 

The intimate relationship between the Pareto and exponential distribution 

permits us to obtain analogous characterization of the former from the latter, thus 

we have the following corollary. 

 

Corollary 4.1 A bivariate random vector with survival function ( )1 2,F x x  

satisfies BLMP 

    1 2 1 2( , ) ( , ) ( , )F x t x t F x x F t t+ + =     (4.24)  

if and only if for all 0t′ > . 

( )

( )

12 1 2 21 1 2

12 1 1 2 21 1 2

( , ), ( , , ), ( , , )

                                                ( , ), ( , , ), ( , , ) .

Z

Z

H f t t H f t t t t H f t t t t

H f t H f t t H f t t

′ ′ ′ ′ ′+ + + + +

=
  (4.25) 

Proof 

Basu and Sun (1997) has established the equivalence of BLMP in terms 

of Cox failure rate as 

         ( ) ( )12 1 2 21 2 1 12 1 2 21 2 1( ), ( | ), ( | ) ( ), ( | ), ( | ) .t t t t t t t t t t t t t t tλ λ λ λ λ λ′ ′ ′ ′ ′+ + + + + =  

(4.26) 

Since ( )tλ  is unique positive solution of (4.11), (4.12) and (4.13) and 

proceeding as in Theorem 4.2, it follows that if (4.25) is satisfied then (4.26) 

holds true and hence the BLMP (4.24) is satisfied. Conversely if (4.24) holds, 

then (4.25) follows in a very straight forward manner from (4.1), (4.2) and (4.3). 

 

Table 4.2 summaries a few members of the class characterized by Corollary 4.1. 

 

Asadi and Ebrahimi (2000) characterized the generalized Pareto 

distribution by the relationship between residual entropy and mean residual life 

function. In the following theorem the extension of this result to the bivariate 

case is investigated. 
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Theorem 4.3 Let ( )1 2,X X  be non-negative random variable admitting an 

absolutely continuous distribution function in the support of ( ) ( ), , ,R Rµ µ×  

0 Rµ≤ < < ∞  with [ ] ,  1, 2,iE X i< ∞ =  then  

  ( ), 1 log ( )ZH f t k m t= − +  for all 0t >  

and 

( )1 2, , 1 log ( | )ij i ij i jH f t t k m t t= − +  for all ,  1, 2.i jt t i j> ≠ =    (4.27) 

only if  

    ( )1 2( ) ( ) , ,
k kkt m t e e eλ =         (4.28) 

for a constant vector ( )1 2, ,k k k k= . 

Proof 

Differentiating equations in (4.27) with respect to 1,t t  and 2t , we get  

( )

( , )
( )

Z

d
m t

d dt
H f t

dt m t

 
 
 

= , 

12 1 2
1

12 1 2
1 12 1 2

( | )

( , , )
( | )

m t t
t

H f t t
t m t t

 ∂
 

∂∂  =
∂

       (4.29) 

and 

21 2 1
2

21 1 2
2 21 2 1

( | )

( , , )
( | )

m t t
t

H f t t
t m t t

 ∂
 

∂∂  =
∂

. 

Substituting (4.29) and (4.27) in (4.8), (4.9) and (4.10), we get  

[ ]( ) ( ) ( ) log ( ) log ( )
d

m t m t t t m t k
dt

λ λ= + − , 

[ ]12 1 2 12 1 2 12 1 2 12 1 2 12 1 2 1
1

( | ) ( | ) ( | ) log ( | ) log ( | )m t t m t t t t t t m t t k
t

λ λ
∂

= + −
∂

 

and 

[ ]21 2 1 21 2 1 21 2 1 21 2 1 21 2 1 2
2

( | ) ( | ) ( | ) log ( | ) log ( | )m t t m t t t t t t m t t k
t

λ λ
∂

= + −
∂

.     (4.30) 
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Using the inter-relationship between Cox failure rate and BMRL given in 

equation (1.35), (4.30) becomes 

[ ]( ) ( ) log ( )c t c t c t k= −  

     [ ]12 1 2 12 1 2 12 1 2 1( | ) ( | ) log ( | )c t t c t t c t t k= −    (4.31) 

[ ]21 2 1 21 2 1 21 2 1 2( | ) ( | ) log ( | )c t t c t t c t t k= − . 

where 

( ) ( ) ( )c t t m tλ=  

12 1 2 12 1 2 12 1 2( | ) ( | ) ( | )c t t t t m t tλ=  

21 2 1 21 2 1 21 2 1( | ) ( | ) ( | ).c t t t t m t tλ=     (4.32) 

Once again differentiating the expressions in (4.31) with respect to 1,t t  and 2t , 

we get 

[ ]( ) log ( ) ( ) ( )
d d d

c t c t k c t c t
dt dt dt

= − +  

[ ]12 1 2 12 1 2 1 12 1 2 12 1 2
1 1 1

( | ) log ( | ) ( | ) ( | )c t t c t t k c t t c t t
t t t

∂ ∂ ∂
= − +

∂ ∂ ∂
 

[ ]21 2 1 21 2 1 2 21 2 1 21 2 1
2 2 2

( | ) log ( | ) ( | ) ( | ).c t t c t t k c t t c t t
t t t

∂ ∂ ∂
= − +

∂ ∂ ∂
 

which implies  

log ( ) ( ) ( )
d d

c t c t k c t
dt dt

=  

Thus we get ( ) kc t e= . 

Similarly, 

1
12 1 2( | ) ,

kc t t e=  

2
21 2 1( | )

kc t t e= . 

Therefore, ( ) ( )1 2
12 1 2 21 2 1( ), ( | ), ( | ) , , .

k kkc t c t t c t t e e e=  

Hence the theorem. 

 

In particular when (0,0,0)k = it follows that ( ) ( ) (1,1,1)t m tλ = . From 

(1.35), we have 
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( )( ) | 0,  1,2,  ij i j
i

d
m t m t t j i j

dt t

∂
= = = ≠

∂
. 

Under the assumption 

 ( ) ( )| 0 |ij i ij i jm t m t t=  for all ,  ,  1, 2,  i jt t i j i j> = ≠   (4.33) 

we have 

  ( ) ( )0m t m=  for all 0t >  

and 

( ) ( )| 0 | 0ij i j ijm t t m=  for all .i jt t>  

Once again from (1.35) it follows that 

12 21

1 1 1
( ) , ,t

m m m
λ

 
=  
 

, 

where m  denotes (0)m  and ijm  denotes (0 | 0)ijm . Given  

i i jp P X X = >        (4.34) 

it follows from unique expression of the Cox’s failure rate and the condition 

1 2 1 2

0 0

( , ) 1f x x dx dx
∞ ∞

=∫ ∫  that  

( )

( )

2 2 1 2 2 1

1 1 1 2 1 2

[ ]
1 2 1 2

1 2
[ ]

2 1 2 1

 e ;  0
( , )

 e ;  0

t t

t t

t t
f t t

t t

α α α α

α α α α

α α

α α

′ ′− − + −

′ ′− − + −

 ′ < <
= 

′ < <

   (4.35) 

where i
i

p

m
α =  and 

1
,  , 1,2,  i

ij

i j i j
m

α ′ = = ≠  which is the Freund (1961) 

bivariate exponential distribution. 

Thus along with Table 4.3 we have proved the following corollary. 

 

Corollary 4.2 Let ( )1 2,X X  be a non-negative random vector admitting an 

absolutely continuous distribution function such that [ ] ,  1, 2.iE X i< ∞ =  Then 

under conditions (4.33) and (4.34), 

( ), 1 log (0)ZH f t m= +  for all 0t >  

( ), , 1 log (0 | 0)ij i j ijH f t t m= +  for all ,  , 1, 2,  .i jt t i j i j> = ≠  
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If and only if ( )1 2,X X  has Freund (1961) bivariate exponential given by (4.35). 

When 1 2, , 0,k k k >  it then follows that ( ) ( ) (1,1,1)t m tλ > . Now let 

1 2( ) ( ) ( , , )t m t a a aλ > , where 1 2, , 1a a a > . Apart from conditions (4.33) and 

(4.34) assume that  

12 21

1 2

.
1 1 1

m mm

a a a
= =

− − −
      (4.36) 

Then from (1.35) it follows that 

1 1 2 2

1 2

| ( 1) | ( 1)| ( 1)
( ) , , .

| ( 1) | ( 1) | ( 1)

a a a aa a
t

t m a t m a t m a
λ

 − −−
=  

+ − + − + − 
 

From the unique expression of Cox failure rate (1.23) and since 

1 2 1 2( , ) 1f x x dx dx
µ µ

∞ ∞

=∫ ∫ , we have  

( ) ( )

( ) ( )

1 2 2 2

1 2 1 1

1 1

1 2 1 2
1 22

1 2
1 1

2 1 2 1
2 12

1 1 ;

( , )

1 1 ;

t t
t t

f t t
t t

t t

α α α α

α α α α

α α µ µ
µ

σ σσ

α α µ µ
µ

σ σσ

′ ′− + − + − +

′ ′− + − + − +

 ′ − −   
+ + < <    

    
= 

′ − −   
+ + < <   

   

  (4.37) 

 where ,  
1 1

i i
i i

i

p a a

a a
α α ′= =

− −
 and ,  1, 2

1

m
i

a
σ µ= + =

−
 which is the bivariate 

Pareto II  distribution (Asha and Jagathnath, 2008). 

A similar argument holds for 1 2, , 0k k k <  or equivalently 1 2, , 1a a a <  and 

the joint density is obtained as  

( ) ( )

( ) ( )

1 2 2 2

1 2 1 1

1 1

1 2 1 2
1 22

1 2
1 1

2 1 2 1
2 12

1 1 ; 0

( , )

1 1 ; 0

t t
t t R

R RR
f t t

t t
t t R

R RR

α α α α

α α α α

α α

α α

′ ′+ − − −

′ ′+ − − −

 ′    
− − < < <    

    
= 

′    
− − < < <   

   

 (4.38) 

 where ,  
1 1

i i
i i

i

p a a

a a
α α ′= =

− −
,  , 0,  1, 2

1

m
R i

a
µ= = =

−
, which is a bivariate 

finite range distribution. 
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Corollary 4.3 Let ( )1 2,X X  be non-negative random variable admitting an 

absolutely continuous distribution function in the support of ( ) ( ), , ,R Rµ µ×  

0 Rµ≤ < < ∞  with [ ] ,  1, 2,iE X i< ∞ =  then under the condition (4.33), (4.34) 

and (4.35) 

  ( ), 1 log ( )ZH f t k m t= − +  for all t o>  

( )1 2, , 1 log ( | )ij i ij i jH f t t k m t t= − +  for all ,  1, 2.i jt t i j> ≠ =    

If and only if  

(i) For 1 2, , 0,k k k > ( )1 2,X X  follows a bivariate Pareto distribution 

specified in (4.37). 

(ii) For 1 2, , 0,k k k < ( )1 2,X X  follows a bivariate finite range distribution 

specified in (4.38). 

 

The next theorem will establish the characteristic property of the bivariate 

Pareto I distribution using the relationship between the bivariate residual entropy 

function and the bivariate geometric vitality function. 

 

Theorem 4.4 Let ( )1 2,X X  be a random vector admitting an absolutely 

continuous distribution function in the support of ( , ) ( , )σ σ∞ × ∞  with bivariate 

geometric vitality function ( )1 2, ,GV t t t  (1.42), bivariate residual entropy 

1 2( , , , )H f t t t  and ,  , 1, 2,  i i jp P X X i j i j = > = ≠   known, then the relation  

( ), log ( ) ,− =ZH f t GV t c  

( )12 1 2 12 1 2 1, , log ( | )H f t t GV t t c− =  

and 

( )21 1 2 21 2 1 2, , log ( | )H f t t GV t t c− =         (4.39) 

where 1 2, ,c c c  are constants holds for all 1 2, , 0t t t > if and only if 
1 2( , )X X  

follows bivariate Pareto I ( 1 2 1 2( , , , , )BPI σ α α α α′ ′ ) distribution specified (2.7) 
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Proof 

Let 1 2 1 2( , , , , )BPI σ α α α α′ ′  as given in (2.7) then from definition of 

bivariate residual entropy function and bivariate geometric vitality function we 

have,  

( ) 1 2 1 2 1 1 2 2
1 2

1 2 1 1 2 2

1 1 1
, , , log , log , logH f t t t

t t t

α α α α α α α α

α α α α

    ′ ′ ′ ′+ + + + + 
= − − −      ′ ′+       

 

and 

( )1 2 1 2
1 2 1 2

1 1 1
log , , log , log , logGV t t t t t t

α α α α

 
= + + + 

′ ′+ 
. 

Then  

( ) 1 2, log ( ) 1 log( )ZH f t GV t α α− = − +  

( )12 1 2 12 1 2 1, , log ( | ) 1 log( )H f t t GV t t α ′− = −   

( )21 1 2 21 2 1 2, , log ( | ) 1 log( )H f t t GV t t α ′− = − .   

Now conversely assume that equation (4.39) holds and using (1.42) and (4.4), we 

will get the following expressions 

( 1) ( ) ( ) ( ) log ( ) ( ) ( ) log .T X X

t t

c F t x F x x dx x F x xdxλ λ λ
∞ ∞

− = − −∫ ∫       (4.40)    

2 21

21

1 1
1 12 1 2 12 1 2 1

1
12 1 2 1 1

( , ) ( , )
( 1) ( | ) log ( | )

( , )
                                                      ( | ) log .

u t u tt

u tt

F t u F x u
c x t x t dx

u u

F x u
x t x dx

u

λ λ

λ

∞

= =

∞

=

   ∂ ∂
− = −   

∂ ∂   

 ∂
−  

∂ 

∫

∫

      (4.41) 

1 12

12

2 2
2 21 2 1 12 2 1 2

2
21 2 1 2 2

( , ) ( , )
( 1) ( | ) log ( | )

( , )
                                                         ( | ) log .

u t u tt

u tt

F u t F u x
c x t x t dx

u u

F u x
x t x dx

u

λ λ

λ

∞

= =

∞

=

   ∂ ∂
− = −   

∂ ∂   

 ∂
−  

∂ 

∫

∫

     (4.42) 

Differentiating (4.40), (4.41) and (4.42) with respect to 1 2, ,t t t , we get 

[ ]log ( ) 1t t cλ = −  

[ ]1 12 1 2 1log ( | ) 1t t t cλ = −  
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[ ]2 21 2 1 2log ( | ) 1 .t t t cλ = −  

i.e.  
1

( )
ce

t
t

λ
−

= , 
11

12 1 2
1

( | )
ce

t t
t

λ
−

= , 
21

21 2 1
2

( | )
ce

t t
t

λ
−

= . 

That is
1 21 11

1 2

( ) , ,
c cce e e

t
t t t

λ
− −− 

=   
 

. 

The Cox’s (1972) total failure rate uniquely determines the distribution 

and ( )λ t  is reciprocal linear in 1 2, ,t t t  respectively characterizes 

( )1 2 1 2, , , ,BPI σ α α α α′ ′  distribution with 1
1 2

ceα α −+ = , 11
1

ceα −′ = , 21
2

ceα −′ = , 

1
1 1

cp eα −=  and 1
2 2

cp eα −= . 

 

The very same arguments that motivated a definition of the bivariate 

residual entropy function makes us seek an appropriate inequality measure for a 

bivariate data form a model with load sharing dependence. Hence in the next 

chapter we look into inequality measures for bivariate distributions with load 

sharing dependence. 
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Table 4.1 Class of distribution possessing bivariate dullness property 

 

Bivariate survival function Bivariate residual entropy function 

Bivariate Pareto I (Asha & Jagathnath (2006)) 

distribution 

( ){

( ) ( )}
( ){

( ) ( )}

1 2 2 2

1 2

1 2 1 1

1 2

1 1 2
1 2 2

2 2 2 1 2

1 2

2 2 1
1 2 1

1 1 1 2 1

1
 

;  1

( , )
1

 

;  1

x x

x x x

F x x

x x

x x x

α α α α

α α

α α α α

α α

α
α α α

α α

α
α α α

α α

′− + − ′−

− +

′− + − ′−

− +


+ ′+ −




′− ≤ ≤
= 
 +
 ′+ −

 ′− ≤ ≤


1 20, 0, , 1, 2.i i i iα α α α α′ ′> > + ≠ =  

1 2 1 2

1 2

1 1

11

2 2

22

1
log ,

1
log ,

1
log

t

t

t

α α α α

α α

α α

α

α α

α

 + + + 
−  

+  

 ′ ′+
 −
 ′  

 ′ ′+
 −

 ′  

 

Mulerie and Scarcini (1987) bivariate Pareto I  

distribution 

( ){ } 01 2
1 2 1 2 1 2 1 2( , ) max , ; , 1F x x x x x x x x

αα α −− −
= ≥  

                     0 1 2, , 0α α α >  

1 2 0 1 2 0

1 2 0

1 0 1 0

1 0 1

2 0 2 0

2 0 2

1
log ,

1
log ,

1
log

t

t

t

α α α α α α

α α α

α α α α

α α

α α α α

α α

 + + + + + 
−  

+ +  

 + + +
−  

+  

 + + +
−  +  

 

Independent Pareto I distribution 

1 2
1 2 1 2 1 2( , ) ; , 1F x x x x x xα α− −= ≥ , 1 2, 0α α >  

1 2 1 2

1 2

1 1 2 2

1 1 2 2

1
log ,

1 1
log , log

t

t t

α α α α

α α

α α α α

α α

 + + + 
−  

+  

   + +
− −    
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Table 4.2 Class of distribution possessing BLMP 

 

Bivariate survival function Bivariate residual entropy 

function 

Freund (1961) bivariate exponential 

 

( ){

( ) ( ) }
( ){

( ) ( ) }

2 2 1 2 2 1

1 2 2

1 1 1 2 1 2

1 2 1

1
1 2 2

2 2 1 2

1 2

2
1 2 1

1 1 2 1

1
 e

e ;  0

( , )
1

 e

e ;  0

α α α α

α α

α α α α

α α

α
α α α

α α

α
α α α

α α

′ ′− − + −

− +

′ ′− − + −

− +


+ ′+ −




′− ≤ ≤
= 
 +
 ′+ −

 ′− ≤ ≤


x x

x

x x

x

x x

F x x

x x

 

               1 20, 0, , 1, 2.i i i iα α α α α′ ′> > + ≠ =  

( )(

)

1 2 1

2

1 log ,1 log ,

1 log

α α α

α

′− + −

′−
 

Marshall and Olkin (1967) bivariate exponential 

 

( )( )

( )( )

1 1 2 12 2

2 2 1 12 1

1 2
1 2

2 1

e ;  0
( , )

e ;  0

λ λ λ

λ λ λ

− − +

− − +


≤ ≤

= 
 ≤ ≤

x x

x x

x x
F x x

x x
 

                       

                                        1 2 12, , 0λ λ λ >  

(

( )

( )

( )

( )

( )

( )

2 1 121

1 2 1 2

1 2 122

1 2 1 2

1 log ,

1 log ,

1 log

λ

λ λ λ λλ λ

λ λ λ λ

λ λ λ λλ λ

λ λ λ λ

−

 +
−   + + 

 +
−   + + 

 

2 1 12λ λ λ λ= + +  

Independent exponential distribution 

 

( )1 1 2 2
1 2 1 2( , ) e ;  , 0

x x
F x x x x

λ λ− −
= ≥ , 1 2, 0λ λ >  

( )(

)

1 2 1

2

1 log ,1 log ,

1 log

λ λ λ

λ

− + −

−
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Table 4.3 Expression for total failure rate, BMRL and bivariate residual entropy 

function. 

 Bivariate density function ( )tλ  ( )m t  1 2( , , , )H f t t t  

Bivariate Freund exponential 

distribution (1961) 

( )

( )

2 2 1 2 2 1

1 1 1 2 1 2

1 2

1 2

1 2

2 1

2 1

( , )

 e ;

 0

 e ;

 0

x x

x x

f x x

x x

x x

α α α α

α α α α

α α

α α

′ ′− − + −

′ ′− − + −

=

 ′


< <


′


< <

 

1 20, 0, , 1, 2.i i i iα α α α α′ ′> > + ≠ =  

(

)
1 2

1 2

,

,

α α

α α

+

′ ′

 

1 2

1 2

1
,

1 1
,

α α

α α




+



′ ′ 

 
(

)
1 2

1 2

1 log( ) ,

1 log ,1 log

α α

α α

− +

′ ′− −
 

Bivariate Pareto II distribution (Asha 

& Jagathnath (2008)) 

( )

( )

( )

( )

1 2 2

2

1 2 1

1

1 2

1
1 2 1

2

1
2

1 2

1
2 1 2

2

1
1

2 1

( , )

1

1 ;

1

1 ;

f x x

x

x
x x

x

x
x x

α α α

α

α α α

α

α α µ

σσ

µ
µ

σ

α α µ

σσ

µ
µ

σ

′− + − +

′− +

′− + − +

′− +

=

 ′ −  + 
  


−  
+ < < 

  

 ′ − 

+  
 


−  + < <   

 

   1 21, 1, , 1, 2.i i i iα α α α α′ ′> > + ≠ =  

1 2

1

1

2

2

,

,

t

t

t

α α

σ µ

α

σ µ

α

σ µ

+


+ −

′

+ −

′

+ − 

 

1 2

1

1

2

2

,
1

,
1

1

t

t

t

σ µ

α α

σ µ

α

σ µ

α

 + −


+ −

+ −

′ −

+ −

′ − 

 

1 2 1 2

1 2

1 1

11

2 2

22

1
log ,

1
log ,

1
log

t

t

t

α α α α

α α σ µ

α α

σ µα

α α

σ µα

 + + + 
−  

+ + − 

 ′ ′+
 −
 + −′  

 ′ ′+
 −

 + −′  

 

Bivariate Finite Range distribution 

( ) ( )

( ) ( )

1 2 2 2

1 2 1 1

1 2

1 1
1 2 1 2

2

1 2

1 1
2 1 2 1

2

2 1

( , )

1 1 ;

0

1 1 ;

0

f x x

x x

R RR

x x R

x x

R RR

x x R

α α α α

α α α α

α α

α α

′ ′+ − − −

′ ′+ − − −

=

 ′     − −   
    
 < < <

 ′    

− −    
   

 < < <

 1 20, 0, , 0, 1, 2.i i i R iα α α α α′ ′> > + ≠ > =  

1 2

1

1

2

2

,

,

R t

R t

R t

α α

α

α

+


−

′

−

′

− 

 

1 2

1

1

2

2

,
1

,
1

1

R t

R t

R t

α α

α

α

 −


+ +

−

′ +

−

′ + 

 

1 2 1 2

1 2

1 1

11

2 2

22

1
log ,

1
log ,

1
log

R t

R t

R t

α α α α

α α

α α

α

α α

α

 + − + 
−  

+ − 

 ′ ′−
 −
 −′  

 ′ ′−
 −

 −′  

 



 

 

 
Some results in this chapter have been communicated in Asha and Jagathnath (2010) 

 

 
 
 
 
 
 

 
Chapter 5 

 

Inequality Measures for Bivariate Distributions with Load 

Sharing Dependence 

 

5.1 Introduction 

In the univariate case inequality measures related to or identical to the 

Lorenz order have gained general acceptance. Another measure of inequality for 

univariate populations which stands out from the rest in terms of acceptance and 

applicability is the Gini index.  

It is only natural to seek appropriate extensions of the Lorenz curves and 

Gini index to higher dimensions. Some early works suggesting these extensions can 

be found in Taguchi (1972 a), Lunetta (1972), De Simoni (1979). Taguchi (1972 a) 

defined the concentration surface of a two dimensional random vector and extended 

the notions of concentration surface to complete surface called the Lorenz 

manifold. In Arnold (1983) a parametric representation of the bivariate Lorenz 

curve is given as  

( )

( )

[ ]

12

0 0

,

,

yx

f d d

L u v
E XY

ξη ξ η ξ η

=

∫ ∫
    (5.1) 
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where 12f  denotes the joint income density and , 1, 2if i =  denotes the marginals 

corresponding to the non-negative random variables X  and Y  respectively. Here 

10
( )ξ ξ= ∫

x
u f d  and 20

( ) .η η= ∫
y

v f d  Koshevoy (1995) provides a definition in 

higher dimensions in terms of the Lorenz zonoids and the inequality measures for 

multivariate distributions are given in Arnold (2005). 

Let X  denote a k-dimensional non-negative vector with positive finite 

expectations. Let ( )k xψ  be a measurable mapping from [ ]0,1 .kR →  Then the 

Lorenz zonoid of X  denoted by ( )L X  is defined by 

( ) ( )
[ ]

( )
[ ]

( )1

1

( )( )
( ) , ,..., , ( )

kk

k

x xx x
L X x dF x dF x dF x k

E X E X

ψψ
ψ ψ ψ

  
= ∈ 
  
∫ ∫ ∫ .   (5.2) 

This definition is consistent with the univariate definition and higher order 

extensions are straight forward. 

The Gini index is another popular inequality measure defined in terms of 

geometric features of the Lorenz curve. It represents twice the area between Lorenz 

curve of X   and the line of equality. The Gini index has also been extended to 

higher dimensions. Mosler (2002) extended it as the volume of the Lorenz zonoid 

and calls it the Gini zonoid index, Weymark (2004) describes parameterized family 

of multivariate generalized Gini indices. A Gini index for truncated multivariate 

distributions was proposed by Sathar et al. (2007) which was consistent with that of 

Ord et al. (1983) for the univariate case. 

However when studying distributions in higher dimensions there is a need 

to choose an appropriate measure that reflect appropriate aggregation aspects of the 

inequality when comparisons are to be made. This choice is very much related to 

the dependency enjoyed by the multivariate distributions. In this chapter we 

consider the load sharing dependence. This dependence finds exclusive use in 

socio-economic problems, where income from multiple sources is considered. To 

take a very simple situation one could envisage a unit with two sources of 

independent income. For example, it could be the income from farming two 
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different crops or income of a couple to the household. Both the source work 

independently till one of the source is unable to generate an income. Then the other 

source has either generates more income or perhaps be affected adversely. Thus the 

income distribution of the surviving source undergoes a parameter change and 

hence a load-sharing model is now apt to model the dependence. The measures 

(5.1) and (5.2) fail to reflect the inequality aspect of the data. A simple and 

effective way to formulate a measure to reflect the aggregate aspects of the 

inequalities in the data is to consider the two different states of the income 

generating source. Firstly, both the sources are generating an income and secondly, 

only one source is functional. Hence it is now more adequate to study the related 

one dimensional distribution 

(i) [ ] ( )ZP Z x F x≥ = , where ( )1 2,Z min X X=  

(ii) [ ]2 1 1

1

| ( , )
u x

P X x X x F u x
u =

∂ 
≥ = = − ∂ 

 

(iii) [ ]1 2 2

2

| ( , )
u x

P X x X x F x u
u =

∂ 
≥ = = − ∂ 

 

together than the bivariate distribution ( )1 2,F x x . In this chapter we study the 

inequality measures specifically, Lorenz function and Gini index of these 

distributions and characterize the original bivariate distribution using these 

measures. 

The proposed study is organized into three sections. In the second section, 

we propose the definitions of the income measures, Lorenz curve and Gini index 

which reflect the inequalities in the data taking into account the information 

regarding the two different states of the income generating source. We also study 

the theoretical properties of the inequality measures. In the third section, 

characterizations using these measures are discussed. 
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5.2 Definitions and Relationships 

Let  ( )1 2,X X  be a vector of non-negative random variables admitting 

absolutely continuous distribution function ( )1 2,F x x  and density function 

( )1 2,f x x . Let ( ) [ ]1 2 1 1 2 2, ,F x x P X x X x= ≥ ≥ . Also assume that 

[ ] , 1, 2iE X i< ∞ = , then ( )1 2,X X  could represent income from two different crops 

or income in a household unit from two independent sources. When the income 

from a unit goes below a threshold level say , ,x x R+
∈  then the load of generating 

more income falls on the other source. Assume that the income is reported only if 

at least one of the sources has an income that exceeds .x  Then the possibilities are  

(i) Income from both the sources exceed .x  

(ii) At least one of the sources have an income larger than ,x  while the 

other has an income less than .x  

In the former situation if ( )1 2,Z min X X=  and , ,Z Z ZF f F  denotes the distribution 

function, density function and survival function respectively, associated with Z , 

then the proportion of units when both the sources are generating income greater 

than ,x  and up to t  is given by 

( )

( )
( )

Z

x
Z

t

x

dF y

P t
F x

=

∫
.      (5.3) 

The cumulative income share of this population is given by  

( )( )

( )

, .

y ( )

Z

x

Z

t

x

x

ydF y

L P t x t

dF y
∞= <

∫

∫

    (5.4) 

Thus ( )( )( ), ( )x xP t L P t  represents the inequality in income of the population when 

both the sources generate an income of at least .x  However when the income from 

one source falls below the threshold value ,x  then the above measure ceases to be 

an apt measure. Assume that the income from the second source is 2 2,x x x<  and 

income of the first source is greater than ,x  then 
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2

2

| 2

2

 ( , )

( ) ,

( , )
x x

u x

t

x

f y x dy

P t x x t

F x u
u =

= < <
∂ 

− ∂ 

∫
   (5.5) 

denotes the proportion of population whose first resource has an income greater 

than x  and up to t  while the second source generates an income 2 .x x<  The 

cumulative income share of the population (5.5) is 

( )
2

2

| 2

2

y ( , )

( ) ,

 y ( , )

x x

t

x

x

f y x dy

L P t x x

f y x dy
∞= <

∫

∫

.   (5.6) 

Similar interpretation follows for 

( )
1

1

| 1

1

y ( , )

( ) ,

 y ( , )

x x

t

x

x

f x y dy

L P t x x

f x y dy
∞= <

∫

∫

    (5.7) 

where 

  
1

1

| 1

1

 ( , )

( ) ,

( , )
x x

u x

t

x

f x y dy

P t x x t

F u x
u =

= < <
∂ 

− ∂ 

∫
.   (5.8) 

The three measures namely 

( ) ( )( )( ),x xP t L P t , ( ) ( )( )( )2 2| |,x x x xP t L P t  and ( ) ( )( )( )1 1| |,x x x xP t L P t  (5.9) 

are consistent with the univariate definition of the Lorenz curve and reflect 

inequality in a bivariate income data under specific situations mentioned in (i) and 

(ii). 

 

Note: Since the above definitions can be seen as univariate measures in their 

domains of definition it is not difficult to observe that  
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(i) |( ), ( ), 1, 2
ix x xP t P t i =  are continuous in [ ]0,1 . 

(ii)  ( ) ( )|( ) , ( ) , 1, 2 0(1)
ix x xL P t L P t i = →  according as |( ), ( ) 0(1).

ix x xP t P t →  

(iii) ( ) ( )|( ) , ( ) , 1, 2
ix x xL P t L P t i =  are increasing in x . 

(iv) ( ) ( )|( ) , ( ) , 1, 2
ix x xL P t L P t i =  is convex in |( ), ( )

ix x xP t P t  respectively. 

The Gini index is a popular inequality measure closely related to the Lorenz 

curve, though there are various definitions for the Gini index unrelated to Lorenz 

curve. But it should also be noted the various definitions agree with each other. 

One definition closely associated to the Lorenz function is given by  

( )2 ( ) ( ) 1x x x

x

d
G P t L P t

dt

∞

= −∫ .     (5.10) 

Analogously using the inequality measures in (5.3) to (5.8), we have the 

definition for Gini index as ( )
2 1| |( ) , ,x x x x xG x G G G= , where xG  is defined in (5.10) 

and  

( )| | |2 ( ) ( ) 1, , 1, 2.
i i ix x x x x x i

x

d
G P t L P t x x i

dt

∞

= − < =∫   (5.11) 

We can use the Lorenz curve to obtain a different interpretation of lifetime 

data. Let us illustrate the Lorenz function for a Freund bivariate exponential (refer 

Table 5.2) data (Kim and Kvam (2004)). The data is shown to exhibit a load 

sharing dependence (Deshpande et al. (2007)). The estimates of the parameters are 

obtained as 1 2 10.18, 0.35, 0.22α α α ′= = =  and 2 0.29α ′ = . The values of the 

Lorenz functions are given in Table 5.1. 
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Table 5.1 Values of the Lorenz functions  

 

( )xP t  ( )( )xL P t ( )
2|x xP t  ( )( )

2|x xL P t ( )
1|x xP t  ( )( )

1|x xL P t

0.9275 0.7716 0.1814 0.0471 0.0314 0.0074

0.2354 0.0672 0.2354 0.0672 0.0618 0.0154

0.3240 0.1070 0.3240 0.1070 0.1043 0.0278

0.5646 0.2679 0.4231 0.1629 0.1450 0.0412

0.9833 0.9271 0.5329 0.2415 0.2275 0.0729

0.1814 0.0471 0.5646 0.2679 0.2430 0.0796

0.4231 0.1629 0.7962 0.5305 0.3298 0.1219

0.5329 0.2415 0.8705 0.6535 0.5213 0.2479

0.7962 0.5305 0.9275 0.7716 0.6480 0.3630

0.8705 0.6535 0.9833 0.9271 0.8900 0.7017

 

Figure 5.1 Lorenz curve corresponding to the failure time data 

     

Lorenz curve

0

0.2

0.4

0.6

0.8

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1

p

L
(p

)

 

 ( )( )xL P t        ( )( )
2|x xL P t      ( )( )

1|x xL P t  

From the Figure 5.1, it can be inferred that there is less disparity among the 

samples when both the units have exceeded the truncation point (assumed as unity 

in this case) than the Lorenz curve when one of the components lie below unity.  

As suggested in Chandra and Singpurwalla (1981) it is interesting to use 

certain ideas used in reliability theory to derive the theoretical properties of the 
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Lorenz curve and Gini index. This motivated us to study the relationship between 

the bivariate Lorenz curve and the bivariate mean residual life function, defined as 

( ) ( )( )12 2 21 1( ) ( ), | , |m x m x m x x m x x=    (5.12) 

where  

( )

( )
( )

Z

x

Z

F y dy

m x
F x

∞

=

∫
 

( )
( ) ( ),

| , 1, 2.
( , )

j

j j

x
ij j

u x

y x f y x dy

m x x i j
F x u

u

∞

=

−

= ≠ =
 ∂
− ∂ 

∫
    

The mean residual life function defined above is related to the Cox’s (1972) failure 

rate  ( ) ( )( )12 2 21 1( ) ( ), | , |x x x x x xλ λ λ λ=  by  

1 ( )
( )

( )
( ) ( )

Z

Z

d
m x

f xdx x
m x F x

λ
+

= =  

2

( , )1 ( | )

( | ) , , 3 , 1,2.
( | )

( , )

λ

=

∂∂
+ ∂ ∂∂ = = < = − =

 ∂
− 

∂ 
j

j
ij j

j
ij j j

ij j

u x

F x xm x x x xx x x x x i j j
m x x

F x u
u

 

          (5.13) 

Theorem 5.1 Let ( )1 2,X X  be a bivariate random variable admitting an absolutely 

continuous distribution function and having finite expectations. Further if  

( ) ( ) ( )
2 1| |( ) , ( ) , ( )x x x x xL P t L P t L P t  are differentiable, then 

( )
[ ]

1 ( )

log 1 ( )
( ) ( )

x

d
t m t

d dt
L P t

dt m t t m t

 
+ 

  − − =  +
   (5.14) 

( )
[ ]2

12 2

|
12 2 12 2

1 ( | )

log 1 ( )
( | ) ( | )

x x

t m t x
t

L P t
t m t x t m t x

∂ 
+ ∂ ∂  − − =

 ∂ +
  (5.15) 
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( )
[ ]1

21 1

|
21 1 21 1

1 ( | )

log 1 ( )
( | ) ( | )

x x

t m t x
t

L P t
t m t x t m t x

∂ 
+ ∂ ∂  − − =

 ∂ +
.   (5.16) 

 

Proof 

 From (5.4), we have  

( )

( )

( )

( )

t

Z

x
x

Z

x

ydF y

L P t

ydF y
∞

=

∫

∫

. 

( )

( )

1 ( )

( )

Z

t
x

Z

x

ydF y

L P t

ydF y

∞

∞
− =

∫

∫

 

         

( ) ( )

( )

Z Z

t

Z

tF t F y dy

xµ

∞

+

=

∫
 

where ( ) ( )Z Z

x

x ydF yµ
∞

= ∫ . 

( )( ) 1 ( ) ( ) ( )Z x Z Z

t

x L P t tF t F y dyµ
∞

 − = +  ∫  

From (5.12) the above relation becomes 

[ ] ( ) [ ]( ) ( ) 1 ( ) ( ) ( )Z x ZF x x m x L P t F t t m t + − = +  .    (5.17) 

Note that, since (5.17) represent the cumulative income larger than t , it is only 

natural that right hand side of (5.17) is independent of  x  since t x> . 

Since ( )
[ ]

( )
( )

( ) ( )
x

Z

d t f t
L P t

dt F x x m x
=

+
, we have using (5.17), 

( )
( )

[ ]
1 ( )

( )
1 ( ) ( )

x
x

d t t
L P t

L P t dt t m t

λ 
=  − + 

 

where ( )tλ  is as in (5.13). Substituting for ( )tλ , we have 
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( )
[ ]

1 ( )

log 1 ( )
( ) ( )

x

d
t m t

d dt
L P t

dt m t t m t

 
+ 

  − − =  +
 

Now consider ( )
2| ( )x xL P t  as in (5.6) 

( )
2

2

| 2

2

y ( , )

( ) 1 ,

 y ( , )

x x
t

x

f y x dy

L P t x x

f y x dy

∞

∞= − <

∫

∫

 

or 

( )
2

2

| 2

2

y ( , )

1 ( ) ,

 y ( , )

x x
t

x

f y x dy

L P t x x

f y x dy

∞

∞− = <

∫

∫

 

          2 2

2

( , ) ( , )

( , )

u x u xt

t F t u F y u dy
u u

x xµ

= =

∞
∂ ∂   

+   ∂ ∂   
=

∫
 

where 2 2 2( , )  y ( , ) ,

x

x x f y x dy x xµ
∞

= <∫ . 

So that 

( ) ( )
2

2

2 | 12 2 2( , ) 1 ( ) ( , ) | ,x x
u x

x x L P t F t u t m t x x t
u

µ
=

∂  − = + <     ∂ 
. 

Since ( )
( )

2

2
|

2

,
( )

( , )
x x

t f t x
L P t

u x xµ

∂
=

∂
, we have 

( )( )
( )

( )
2

2

2
|

12 2

,
log 1 )

( , )
|

x x

u x

tf t x
L P t

t F t u
t m t x

u
=

∂  − − =
 ∂  ∂

+    ∂ 

 

( )

( ) ( )

12 2

12 2 12 2

1 |

| |

t m t x
t

m t x t m t x

∂ 
+ ∂ 

=
+  

. 

Proceeding in a similar manner with ( )
1| ( )x xL P t  we can prove that  
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( )( )
( )

( ) ( )1

21 1

|
21 1 21 1

1 |

log 1 )
| |

x x

t m t x
t

L P t
t m t x t m t x

∂ 
+ ∂ ∂  − − =

 ∂ +  
. 

 

Remark 5.1 In equation (5.17), when 0,x =  it reduces to the result of Chandra and 

Singpurwalla (1981). 

  It is natural to investigate if there exist a similar relationship between the 

bivariate Gini index and bivariate mean residual life function. The next theorem 

deals with this. 

 

Theorem 5.2 Under the usual assumptions and conditions specified in Theorem 

5.1, the following relationships hold, 

[ ][ ]
2

2

1
1 ( ) ( )

( )
x Z

Z x

G x m x x F x dt
F x

∞

 − + = +  
  

∫         (5.18) 

[ ]
2

2

2

2

| 12 2 2

1
1 ( | ) ( , )

( , )

x x
u x

u x

x

G x m x x x F t u dt
u

F x u
u

=

=

∞  ∂   − + = +     ∂     ∂  
  ∂   

∫  

  (5.19) 

[ ]
1

1

1

2

| 21 1 2

1
1 ( | ) ( , ) .

( , )

x x
u x

u x

x

G x m x x x F u t dt
u

F u x
u

=

=

∞  ∂   − + = +     ∂     ∂  
  ∂   

∫  

  (5.20) 

Proof 

 From (5.10) it follows that  

( )( )
2 ( ) 1

x
x x

x

dL P t
G P t

dt

∞

= −∫ . 

Which from (5.3) and (5.4) can be rewritten as  
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( ) ( )
2 ( )

( )
1

( )

Z Z
Z

Zx
x

Z

x

F t F x
t f t dt

F x
G

y f y dy

∞

∞

 −
 
 

= −

∫

∫

. 

Which is same as  

( ) ( )
( ) 2 ( ) ( )

( )

Z Z
x Z Z Z

Zx x x

F t F x
G y f y dy t f t dt y f y dy

F x

∞ ∞ ∞ −
= − 

 
∫ ∫ ∫  

or 

2 1 ( )( ) ( )
( ) 2 ( ) ( )

( ) ( )

ZZ Z
x Z Z Z

Z Zx x x x

F xF t t f t
G y f y dy dt t f t dt y f y dy

F x F x

∞ ∞ ∞ ∞ − 
= − −∫ ∫ ∫ ∫  

( ) ( ) 2
2 ( ) 2 ( ) ( )

( ) ( )

Z Z
Z Z Z

Z Zx x x x

F t t f t
dt t f t dt t f t dt y f y dy

F x F x

∞ ∞ ∞ ∞

= − + −∫ ∫ ∫ ∫  

So that  

( ) ( ) 2
( ) 2 ( ) ( ) .

( ) ( )

Z Z
x Z Z Z

Z Zx x x x

F t t f t
G y f y dy dt t f t dt t f t dt

F x F x

∞ ∞ ∞ ∞

= − +∫ ∫ ∫ ∫  

Observing that 

( )

( )
( )

Z

x

Z

y f y dy

x m x
F x

∞

= +

∫
, we have 

[ ] [ ]
2 2

( ) ( ) 2
( ) 2 ( ) ( )

( ) ( )

Z Z
x Z

x xZ Z

F t t f t
G x m x dt t f t dt x m x

F x F x

∞ ∞

+ = − + +
      

∫ ∫  

or 

[ ][ ]
2

2
1 ( ) ( ) ( ) .

( )
x Z Z

xZ

G x m x t f t F t dt
F x

∞

− + =
  

∫    (5.21) 

Consider ( ) ( )Z Z

x

I t f t F t dt
∞

= ∫  

( )( ) ( )Z Z

x

t F t dF t
∞

= −∫  

( ) ( )( ) ( ) ( ) ( ) ( ) ( )Z Z Z Z Z

x x x

t F t dF t t f t dF t dt F t dF t dt
∞ ∞ ∞

 = − + − −  ∫ ∫ ∫ ∫ ∫  
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( )( ) ( ) ( ) ( ) ( ) ( )Z Z Z Z Z

x x x

t F t dF t t f t F t dt F t F t dt
∞ ∞ ∞

   = − − +    ∫ ∫ ∫  

2 2
( ) ( ) ( ) ( )Z Z Z

x x

x F x t f t F t dt F t dt
∞ ∞

   = − +   ∫ ∫ . 

Thus  

2 2
2 ( ) ( )Z Z

x

I x F x F t dt
∞

   = +   ∫  

Substituting for 2I in (5.21) we have the result. 

To prove the second equality, from (5.11), (5.5) and (5.6), it follows that 

( )
2

2 2

|

| |

( )
2 ( ) 1

x x

x x x x

x

dL P t
G P t

dt

∞

= −∫ . 

2 2

2

2

2

( , ) ( , )
2 ( , )

1
( , )

( , )

u x u xx

u x x

F t u F x u
t f t x dt

u u

F x u
y f y x dy

u

∞

= =

∞

=

 ∂ ∂    
−    ∂ ∂     

= −
 ∂
− ∂ 

∫

∫

. 

That is 

2

2

2

2

| 2 2 2

( , )
2 ( , )

( , ) 2 ( , ) ( , ) .
( , )

u xx
x x

x x x

u x

F t u
t f t x dt

u
G y f y x dy t f t x dt y f y x dy

F x u

u

∞

∞ ∞ ∞
=

=

 ∂
− ∂ 

= + −
 ∂
− ∂ 

∫
∫ ∫ ∫

Dividing through out by 

2

( , )

u x

F x u

u
=

 ∂
− 

∂ 
, we get 

2

2

2

2

2 2

2

| 22

2 2

( , )
2 ( , )

( , )
( , )

( , )

2 1
( , ) ( , ) .

( , ) ( , )

x
x x

u xx

u x
u x

x x

u x u x

y f y x dy
F t u

G t f t x dt
uF x u

F x u
u

u

t f t x dt y f y x dy
F x u F x u

u u

∞

∞

=

=
=

∞ ∞

= =

 ∂
= − + 

∂ ∂    ∂−    −∂     ∂   

−
   ∂ ∂
− −   ∂ ∂   

∫
∫

∫ ∫
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From (5.12) we have 

( )

( )

2

2

2

| 12 2 22

12 2

2 ( , )
| ( , )

( , )

| .

x x
u xx

u x

F t u
G x m x x t f t x dt

u
F x u

u

x m x x

∞

=

=

 ∂
+ = −     ∂   ∂ 

−  ∂   

+ +  

∫
 

Thus  

( )
2

2

2

| 12 2 22

2 ( , )
1 | ( , ) .

( , )

x x

u xx

u x

F t u
G x m x x t f t x dt

u
F x u

u

∞

=

=

 − ∂
 − + = −      ∂   ∂ 

−  ∂   

∫  

(5.22) 

Now consider the integral given by 

2 2 2

2

( , ) ( , ) ( , )
( , )

u x u x u xx x

F t u F t u F t u
t f t x dt t

u u t u

∞ ∞

= = =

     ∂ ∂ ∂ ∂
− = − −     

∂ ∂ ∂ ∂     
∫ ∫  

2 2 22

2 2

2( , ) ( , ) ( , ) ( , )

( , ) ( , )

u x u x u xx x u x

u x u xx

F t u F t u F t u F t u
t t dt

u u t u u

F t u F t u
dt

u u

∞ ∞

= = ==

∞

= =

      ∂ ∂ ∂ ∂
= − − − − −      

∂ ∂ ∂ ∂ ∂      

   ∂ ∂
− − −   

∂ ∂   

∫ ∫

∫

 

  
2 22

2

2
2

2

( , ) ( , ) ( , )

( , )

u x u xx u x

u xx

F x u F t u F t u
x t dt

u t u u

F t u
dt

u

∞

= ==

∞

=

      ∂ ∂ ∂ 
= − − + −      

∂ ∂ ∂ ∂      

  ∂ 
− −  

∂   

∫

∫

 

2 2 2

2

2

2

( , ) ( , ) ( , )

( , )

u x u x u xx

u xx

F x u F t u F t u
x t dt

u u t u

F t u
dt

u

∞

= = =

∞

=

      ∂ ∂ ∂ ∂ 
= − − + − −      

∂ ∂ ∂ ∂       

  ∂ 
− −  

∂   

∫

∫

 

i.e. 
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2 2

2 2

2 2

( , ) ( , )
2

( , ) ( , )

u x u xx

u x u xx

F t u F t u
t

u t u

F x u F t u
x dt

u u

∞

= =

∞

= =

   ∂ ∂ ∂
− − =   

∂ ∂ ∂   

      ∂ ∂   
− − − −      

∂ ∂         

∫

∫

 

where  

( )
2

2

( , )
,

u x

F t u
f t x

t u
=

 ∂ ∂
= − 

∂ ∂ 
. 

Substituting the above expression in (5.22), we get (5.19). 

Proceeding in similar arguments with (5.11), (5.7) and (5.8), the third equality can 

be claimed. 

 

5.3 Characterizations 

In the backdrop of Theorem 5.1 and Theorem 5.2 it is of interest to look 

into characterizations based on the Lorenz function and Gini index. One general 

result in this direction is given as follows.  

 

Theorem 5.3 Under the usual notations the relation 

( )1 ( )
, 0

( )

−
= >

+
x

k m x
G x

x m x
     (5.23) 

( )
|

1 ( | )
, 0, 1,2

( | )

−
= > > ≠ =

+j

i ij j
x x j

ij j

k m x x
G x x i j

x m x x
  (5.24) 

holds for a bivariate vector ( )1 2,X X  with 

(i) 1
2, , 1, 2ik k i= =  if and only if ( )1 2,X X  is distributed as Freund bivariate 

exponential distribution. 

(ii) 1
2, , 1, 2ik k i< = if and only if ( )1 2,X X  is distributed as bivariate Pareto I 

distribution. 

(iii) 1
2, , 1, 2ik k i> =  if and only if ( )1 2,X X  is distributed as bivariate finite range 

distribution. 
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Proof 

 The if part of the theorem can be verified from Table 5.2. To prove the 

converse, consider (5.23), the equation becomes 

( ) ( )

( ) ( )
x

m x k m x
G

x m x x m x
= −

+ +
 

     
( )

1
( ) ( )

x k m x

x m x x m x
= − −

+ +
 

( )
1

( )
x

x k m x
G

x m x

+
− =

+
.      (5.25) 

From equation (5.25), the equation (5.18) becomes 

2

2

1
( ) ( ).

( )
Z

xZ

x F t dt x km x
F x

∞

 + = + 
  

∫  

or 

2 2
( ) ( ) ( )Z Z

x

F t dt k m x F x
∞

   =   ∫ .    (5.26) 

Differentiating (5.26) with respect to t, we get 

2 2
( ) 2 ( ) ( ) ( ) ( ) ( )Z Z Z Z

d
F x k m x F x f x k F x m x

dx
   − = − +     

or  

2 ( ) ( )
1 ( )

( )

Z

Z

k m x f x d
k m x

F x dx

−
− = + . 

Now using (5.13), this equation becomes  

[ ]1 2 ( ) ( ) ( ) ( ) 1k m x x k x m xλ λ− = − + −  

or 

1 ( ) ( )k m x x kλ= +  

so that 

   
1

( ) ( ) .λ
−

=
k

m x x
k

      (5.27) 

Once again using (5.13) we have 

1 2
( )

d k
m x

dx k

−
=  

which on integration with respect to x  gives 
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1 2
( )

k
m x x c

k

− 
= + 
 

 

or 

1
( ) .

(1 2 )
λ

−
=

− +

k
x

k x c
      (5.28) 

Now consider the second equation (5.24), which is equivalent to  

|

( | )
1

( | )j

i ij j
x x

ij j

x k m x x
G

x m x x

+
− =

+
.     (5.29) 

Now equation (5.29) implies 

 ( )
2

2

2

1 12 22

1 ( , )
| .

( , ) u xx

u x

F t u
x dt x k m x x

u
F x u

u

∞

=

=

  ∂ 
+ − = +  

∂      ∂ 
−  ∂   

∫  

or 

( )
2 2

2 2

1 12 2

( , ) ( , )
| .

u x u xx

F t u F x u
dt k m x x

u u

∞

= =

      ∂ ∂   
− = −      

∂ ∂         
∫  

Proceeding in the same manner as for (5.26) we will arrive at 

1
12 2 12 2

1

1
( | ) ( | ) .

k
m x x x x

k
λ

−
=  

Using (5.13) we have 

( )
1

12 2 2
1 1

1
( | ) ,

1 2
λ

−
= <

− +

k
x x x x

k x c
.     (5.30) 

Similar arguments hold for  

( )
1

2 21 1
| 1

21 1

1 ( | )
,

( | )

−
= <

+
x x

k m x x
G x x

x m x x
 

to get 

( )
2

21 1 2
2 2

1
( | ) ,

1 2
λ

−
= <

− +

k
x x x x

k x c
.     (5.31) 

Thus from Cox (1972) uniqueness property given in (1.23), we have 



Inequality Measures for Bivariate Distributions with Load Sharing Dependence 

 

 

128

( )

2 21 2

2 2

2 2

2 21

12 1

1

1

12

(1 ) (1 )(1 ) (1 )
(1 2 ) 1 (1 2 )(1 2 ) (1 2 )

1(1 2 ) (1 2 ) 2(1 2 ) (1 2 )0

1 2
1 2

(1 )(1 )
(1 2 )(1 2 )

(1 2 ) (1 2 )0

exp

;
,

exp

k kx xk k
k kk k

c cc c
k kk kx

kx xk
kk

cc
k kx

p
du du

u xu x

x x
f x x

du du
u u

− −− −
− −− −

− −− −

−−
−−

− −

 
 − −

+ ++ + 
 

<
=

 
 − −

+ +
 

∫ ∫

∫ ∫
1

1

1

1

(1 )(1 )
2 (1 2 )(1 2 )

2 (1 2 ) 1 (1 2 )

2 1;

kk
kk

cc
k k

p

x x

x x

−−
−−

− −










+ +


<

. 

          (5.32) 

Which when 
1

, , 1, 2
2

ik k i= = , becomes 

1 2 2 2 1 2 2 1 1 2
1 2

2 1 1 1 1 2 1 2 2 1

exp[ ( ) ]; 0
( , )

exp[ ( ) ]; 0

x x x x
f x x

x x x x

α α α α α α

α α α α α α

′ ′ ′− − + − < < < ∞
= 

′ ′ ′− − + − < < < ∞
  

which is the Freund’s (1961) bivariate exponential distribution with 1 2

1

2c
α α+ = , 

2

i
i

p

c
α =  and 

1
, 1,2.

2
i

i

i
c

α ′ = =    

When 
1

, , 1,2
2

ik k i< =  and , 0,ic c =  it becomes 

1 2 1 2

1 2

1 2 2 1

1 2

( 1) ( 1)1 2
1 2 1 2( )

1 2
( 1) ( 1)2 1

2 1 2 1( )

   ;  

( , )

   ;  

x x x x

f x x

x x x x

α α α α

α α

α α α α

α α

α α
σ

σ

α α
σ

σ

′ ′− + − + − +

− +

′ ′− + − + − +

− +

′
< < < ∞

= 
′ < < < ∞



  

which is the bivariate Pareto I ( )1 2 1 2( , , , , )σ α α α α′ ′BPI  distribution (Asha and 

Jagathnath (2008)) with parameters 

1 2

1

1 2

k

k
α α

−
+ =

−
, 

(1 )

1 2

i
i

p k

k
α

−
=

−
 and 

1
, 1, 2.

1 2

i
i

i

k
i

k
α

−
′ = =

−
   

When 
1

, ,
2

ik k >  and , 1, 2,
1 2 1 2

i

i

cc
i

k k
= =

− −
 it becomes 

1 2 1 2

1 2 2 1

( 1) ( 1)

1 2 1 2
1 22

1 2 ( 1) ( 1)

2 1 2 1
2 12

  
1  1 ; 0

( , )
  

  1  1 ; 0

x x
x x R

R RR
f x x

x x
x x R

R RR

α α α α

α α α α

α α

α α

′ ′+ − − −

′ ′+ − − −

 ′    
− − < < <    

    
= 

′    
− − < < <   
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which is the bivariate finite range distribution with parameters, 1 2

1

2 1

k

k
α α

−
+ =

−
, 

( 1)

2 1

i
i

p k

k
α

−
=

−
,  

1
, 1,2

2 1

i
i

i

k
i

k
α

−′ = =
−

 and 
1 2

c
R

k
=

−
. 

 

Remark 5.2 Under conditions of the Theorem 5.3, equation (5.23) and (5.24) are 

equivalent to stating  

1
( ) ( )λ

− = +
+

x

x k
G

x m x x
 

and  

|1 .
( | ) ( | )j

i
x x

ij j ij j

kx
G

x m x x x xλ
− = +

+
 

 

This result helps us to deduce many results which are analogous to popular 

results in the univariate case. The piecewise constancy of the bivariate Gini index 

can be deduced from Theorem 5.3, which in a way extends the truncation 

invariance property (Ord et. al (1983)) of the univariate Pareto I distribution. 

 

Remark 5.3 Under the conditions in Theorem 3.1, the bivariate Gini index is of the 

form 

( )1 2( ) , ,G x g g g=       (5.33) 

where 0 , 1, 1, 2ig g i< < =  if and only if ( )1 2,X X  has a bivariate Pareto I 

distribution (refer Table 5.2). 

 

Remark 5.4 The quantity 
( )

( )

m x

x m x+
 is referred to as income gap ratio (Belzunce et 

al. (1998)). It measures the proportion of the people, whose income from both the 

sources are greater than the threshold value x . So 
( | )

( | )

ij j

ij j

m x x

x m x x+
 can be used to 
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measure the proportion of the people whose income from one source falls below 

the threshold value x , when jx x> . Thus 

   12 2 21 1

12 2 21 1

( | ) ( | )( )
( ) , ,

( ) ( | ) ( | )

m x x m x xm x
x

x m x x m x x x m x x
β

 
=  

+ + + 
  

can be viewed as a bivariate income gap ratio for the rich. 

 

Corollary 5.1 Under the conditions of Theorem 5.3, the following statements are 

equivalent. 

(i) The bivariate Gini index is of the form (5.33) if and only if the bivariate 

income gap ratio is of the form 

 ( )12 2 21 1
1 2

12 2 21 1

( | ) ( | )( )
, , , ,

( ) ( | ) ( | )

m x x m x xm x

x m x x m x x x m x x
β β β

 
= 

+ + + 
,  

where 1,β β  and 2β  are some constant such that 0 , 1, 1, 2.i iβ β< < =  

(ii) ( )1 2,X X  has a bivariate Pareto I distribution. 
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Chapter 6 

 

A General Representation 

 

 

6.1 Introduction 

 From the study so far we saw that properties enjoyed by the Freund 

bivariate exponential distribution can be translated to other distributions 

transformed from the Freund bivariate exponential distribution. In fact all its 

properties can be translated into a property of an arbitrary bivariate continuous 

distribution. With the aim of doing so in this chapter, we explore the 

representation of the bivariate Pareto distributions in terms of uniform random 

variables. This idea is heavily borrowed from the idea of copulas. A copula is a 

function ( ),C u v  from 2I  to I  where ( ){ }2
1 2, 0 1, 1,2| iI x x x i= < < =  with the 

following properties. 

1. ( ),C u v  is a grounded function. That means for all ,u v  in ,I  

( ,0) 0 (0, )C u C v= = . 

2. ( ,1)C u u= and (1, )C v v=       (6.1) 

3.  For every 1 2 1 2, , ,u u v v  in I  such that 1 2u u≤  and 1 2v v≤ , 

  

                        2 2 2 1 1 2 1 1( , ) ( , ) ( , ) ( , ) 0C u v C u v C u v C u v− − + ≥ . 
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Sklar (1959) proposed a theorem which is central to the theory of copulas 

and is the foundation of many, if not most of the applications of that theory to 

statistics. This theorem elucidates the role that copulas play in the relationship 

between multivariate distribution functions and their univariate marginals. The 

statement is as follows. 

Let 1 2( , )H x x be a joint distribution function with marginals 1 1( )F x  and 

2 2( )F x , then there exists a copula C  such that for any 1 2,x x R∈ , R  is the 

extended real line [ , ]−∞ ∞ , 

( )1 2 1 1 2 2( , ) ( ), ( )H x x C F x F x= .    (6.2) 

If 1 1( )F x  and 2 2( )F x  are continuous then C  is unique otherwise C  is uniquely 

determined on Range F RangeG× . Conversely if C  is the copula and 1F  and 2F  

are marginals then the function H  defined by (6.2) is the joint distribution 

function. If the function ( ),C u v  satisfies only the properties 1 and 3 in (6.1) then 

it is called a pseudo copula. This was introduced by Fermanian and Wegkamp 

(2004) to study the dynamic dependence structure. It was also shown by the same 

authors that Sklar’s theorem can be extended to pseudo copulas too. 

 A natural question that arises is that is there a relationship between 

univariate and joint survival functions analogous to the one between univariate 

and joint distribution functions as embodied in Sklar’s theorem. This paved way 

to the concept of survival copulas.  

 If  [ ]1 2 1 1 2 2( , ) , ,H x x P X x X x= ≥ ≥  the marginals of ( )1 2,H x x  are 

( )1,H x −∞  and ( )2,H x−∞  which are univariate survival functions 1 1( )F x  and 

2 2( )F x  respectively, then 

( ) ( ) ( )1 2 1 1 2 2 1 2, 1 ( ) ,H x x F x F x H x x= − − +  

         ( ) ( ) ( )( )1 1 2 2 1 1 2 21 ( ),F x F x C F x F x= + − +  

        ( ) ( ) ( )( )1 1 2 2 1 1 2 21 1 ( ),1F x F x C F x F x= + − + − − . 

Denoting Ĉ  as a function from 2I  to I  by 

( )ˆ ( , ) 1 1 ,1C u v u v C u v= + − + − − ,  
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we have   

( ) ( ) ( )( )1 2 1 1 2 2
ˆ, ,H x x C F x F x=     

where ˆ ( , )C u v is referred to as the survival copula of 1X  and 2X . Secondly  

ˆ ( , )C u v  couples the joint survival functions to its univariate marginals in a 

manner completely analogous to the way in which a copula connects the joint 

distribution to its marginals. If ( , )C u v  is the joint survival function for two 

uniform (0,1)  random variables whose joint distribution function is copula 

( , )C u v , then 

( ) ( )ˆ (1 ,1 ) , 1 , .C u v C u v u v C u v− − = = − − +  

It is easy to prove that a survival copula ˆ ( , )C u v  is a copula since  

(i) ˆ ( , )C u v  is a grounded function, that is  

ˆ ˆ( ,0) (0, )C u C v=  

1 (1,1 )u C v= − + −  

1 1u u= − + −  

 0=  

(ii)  For every ,u v  in I ,        (6.3) 

ˆ ( ,1) (1 ,0)C u u C u

u

= + −

=
 

  and 

ˆ (1, )C v v= . 

(iii)  For every 1 2 1 2, , ,u u v v  in I  such that 1 2u u≤  and 1 2v v≤ , 

                                2 2 2 1 1 2 1 1
ˆ ˆ ˆ ˆ( , ) ( , ) ( , ) ( , ) 0.C u v C u v C u v C u v− − + ≥    

 Barnett (1980) gave the survival copula called Gumbel-Barnett copula 

which generalizes the dependence in the Gumbel’s bivariate exponential 

distribution specified by 
( )1 2 1 2

1 2 1 2( , ) ; , 0
x x x x

F x x e x x
θ− + +

= > . The corresponding 

survival copula is given by 

ln( ) ln( )ˆ ( , ) u vC u v uve θ−= . 

The second Gumbel’s exponential distribution specified by  
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( )( ) ( )( )1 21 2
1 2 1 2( , ) 1 1 1 ; , 0

x xx xF x x e e e x xθ
− +− −

= − − + >  

corresponds to the Farlie-Gumbel-Morgenstern copula is given by 

  ( , ) (1 )(1 ); 0 1, 0 1.C u v uv uv u v u vθ= + − − < < < <  

The Marshall-Olkin (1967) bivariate exponential distribution specified by the 

survival function 

( )1 1 2 2 12 1 2,
1 2 1 2 1 2 12( , ) ; , 0, , , 0

x x max x x
F x x e x x

λ λ λ
λ λ λ

− − −
= > >  

has the survival copula given by 

( )1 1ˆ ( , ) min ,C u v u v uvα β− −= .     (6.4) 

This family is known both as the Marshall-Olkin family and the generalized 

Caudras-Auge family. Other copulas related to exponential distribution are 

detailed in Genest and Mackay (1986), Joe and Hu (1996), Joe (1997), Nelsen 

(1999) and Joe and Ma (2000). This now enables a study of the Marshall-Olkin 

type Pareto distributions (Veenus and Nair (1994), Hanagal (1996), Yeh (2004 

a,b)) and other transformed distribution by studying these copulas. 

 But in the case of the Freund bivariate Pareto distribution discussed in this 

thesis, there does not exist an analytical expression of the copula though they 

could be evaluated numerically. This turns out to be a great drawback as an 

analytical expression for the copula helps in providing a very convenient model 

for studying the properties with tools that are scale free. 

 The major advantage of studying a general representation in terms of 

uniform variants is that certain properties are same for all distributions in a 

particular equivalence class. If ( , )H u v  denotes the uniform representation of a 

distribution ( )1 2,F x x  and ( )1 2,G x x  belongs to the same equivalence class if 

( , ) ( , )F GH u v H u v= . 

 This motivates us to give a representation in terms of uniform variates 

which would enable us to study properties of the Freund bivariate exponential 

distribution and its transformation like the ( )1 2 1 2, , , ,BP I σ α α α α′ ′  distributions 
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and ( )1 2 1 2, , , , ,BP II µ σ α α α α′ ′  distribution discussed in this thesis under a 

unified frame work. Accordingly in the next section we give a representation and 

call it the uniform representation. We also give examples of the distributions that 

are derived using this representation. These distributions are the bivariate 

distributions obtained by transforming the Freund bivariate exponential 

distribution by suitable transformations. They include bivariate Weibull 

distribution (Lu (1989)), ( )1 2 1 2, , , ,BP I σ α α α α′ ′   and 

( )1 2 1 2, , , , ,BP II µ σ α α α α′ ′  distributions (Asha and Jagathnath (2008)). In the 

third section, the reliability property particularly, the total failure rate of the 

general representation is given. This expression enables us to directly compute 

the failure rate of the distributions having this representation once we know the 

uniform translate. This is illustrated in Table 6.1. A general property analogous to 

the dullness property is defined for the uniform representation and a 

characterization of this class is discussed. With this chapter we conclude the 

thesis by briefly stating the direction of future course of study. 

 

6.2 The General Representation 

 As in the previous section we adopt the representation U  and V  for 

uniform variates. Obviously ( , )U V  ranges over the unit square. Consider the 

uniform representation 

1 2 2 2 1 2

1 2 1 1 1 2

1 2 2

1 2 2 1 2 2

2 1 1

1 2 1 1 2 1

; 0 1

( , )

; 0 1

u v v u v

h u v

v u u v u

α α α α α α

α α α α α α

α α α

α α α α α α

α α α

α α α α α α

′ ′

′ ′

+ − +

+ − +

 ′−
+ ≤ ≤ ≤

′ ′+ − + −
= 

′−
+ ≤ ≤ ≤

′ ′+ − + −

. (6.5) 

1 2, 0, , 1, 2.i i i iα α α α α′ ′> + ≠ =  

It should be observed that (6.5) is a finite mixture of two pseudo-survival 

copulas. 
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1 2 2 2

1 2 1 1

1

;
( , )

;

u v u v
h u v

v u v u

α α α α

α α α α

′ ′

′ ′

+ −

+ −

 ≤
= 
 ≤

     (6.6) 

and 

( ) 1 2

2 ( , ) max ,h u v u v
α α+

= .      (6.7) 

Hence it follows that ( , )h u v is also a pseudo-survival copula as (i) and (iii) of 

(6.3) are satisfied. The survival function associated with the pseudo-survival 

copula (6.5) is given by 

( , ) (1 ,1 )h u v h u v= − −  

i.e., 

( ) ( ) ( )

( ) ( ) ( )

1 2 2 2 1 2

1 2 1 1 1 2

1 2 2

1 2 2 1 2 2

2 1 1

1 2 1 1 2 1

1 1 1 ;

0 1
( , ) .

1 1 1 ;

0 1

u v v

u v
h u v

v u u

v u

α α α α α α

α α α α α α

α α α

α α α α α α

α α α

α α α α α α

′ ′+ − +

′ ′+ − +

  ′−
 − − + − 

 ′ ′ + − + − 


≤ ≤ ≤
=

 ′ −
− − + −   ′ ′+ − + −  

 ≤ ≤ ≤

          (6.8) 

Since ( , )h u v  is a pseudo-survival copula, evidently not a bivariate 

uniform distribution. Some members belonging to this class are worked out 

below. 

 

1. Freund bivariate exponential distribution (1961). 

 

For, 11
xu e−

− =  and  21 ,
xv e−

− =  

    

1 2 2 1 2 2 1 2 2

1 2 1 2 1 1 1 2 1

( ) ( )1 2 2

1 2 2 1 2 2

1 2
1 2

( ) ( )2 1 1

1 2 1 1 2 2

2 1

;

0
( , )

;

0

x x x

x x x

e e

x x
F x x

e e

x x

α α α α α α

α α α α α α

α α α

α α α α α α

α α α

α α α α α α

′ ′− + − − − +

′ ′− + − − − +

  ′−
 +  

 ′ ′ + − + − 


≤ ≤
=

 ′ −
+    ′ ′+ − + −  

 ≤ ≤

. 
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2. Bivariate Weibull distribution (Lu (1989)). 

 

For,  ( ) 1
11

c
x

u e
−

− =  and    ( ) 2
21 ,

c
x

v e
−

− =   

 

1 2
1 2 2 1 2 2

2
1 2 2 1 2

2 1
1 2 1 2 1 1

1
1 2 1 2 1

( )1

1 2 2

( )2 2
1 2

1 2 2

1 2
( )2

1 2 1

( )1 1
2 1

1 2 2

; 0

( , )

; 0

c c

c

c c

c

x x

x c c

x x

x c c

e

e x x

F x x

e

e x x

α α α α

α α

α α α α

α α

α

α α α

α α

α α α

α

α α α

α α

α α α

′ ′− + − −

− +

′ ′− + − −

− +


+ ′+ −

  ′− ≤ ≤ 
  ′+ −  

=
 +
 ′+ −

  ′−
 ≤ ≤ 

 ′ + − 

. 

 

3. Bivariate Pareto I ( ( )1 2 1 2, , , ,BP I σ α α α α′ ′  ) distribution (Table 4.3). 

 

For, 11

c
x

u
σ

−
 

− = 
 

  and 21 ,

c
x

v
σ

−
 

− = 
 

 

 

1 2 2 2

1 2

1 2 1 1

1 2

( )

1 1 2

1 2 2

( )

2 2 2
1 2

1 2 2

1 2
( )

2 2 1

1 2 1

( )

1 1 1
2

1 2 1

;

( , )

;

c c

c

c c

c

x x

x
x x

F x x

x x

x
x

α α α α

α α

α α α α

α α

α

σ σα α α

α α
σ

σα α α

α

σ σα α α

α α
σ

σα α α

′ ′− + − −

− +

′ ′− + − −

− +

   
+   

′    + −

 ′−  
≤ ≤   ′  + − 

=

   
+   

′    + −

 ′−  
≤   ′  + − 

1x















≤


.       
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4. Bivariate Pareto II ( )( )1 2 1 2, , , , ,BP II µ σ α α α α′ ′ distribution (Table 4.3). 

 

For, 11 1

c
x

u
µ

σ

−
− 

− = + 
 

and 21 1 ,

c
x

v
µ

σ

−
− 

− = + 
 

 

 

1 2 2 2

1 2

1 2 1 1

( )

1 1 2

1 2 2

( )

2 2 2
1 2

1 2 2

1 2
( )

2 2 1

1 2 1

1 1

1 2 1

1 1

1 ;

( , )

1 1

1

c c

c

c c

x x

x
x x

F x x

x x

x

α α α α

α α

α α α α

α µ µ

σ σα α α

α α µ
µ

σα α α

α µ µ

σ σα α α

α α

α α α

′ ′− + − −

− +

′ ′− + − −

− −   
+ + +   

′    + −

 ′− − 
+ ≤ ≤   ′  + − 

=

− −   
+ + +   

′    + −

 ′−
+ 

 ′+ − 

1 2( )

1
2 1;

c

x x
α α

µ
µ

σ

− +














−  
≤ ≤ 

 

. 

 

5.  Bivariate finite range distribution (Table 4.3) 

 

For, 11 1

c
x

u
R

 
− = − 

 
 and 21 1

c
x

v
R

 
− = − 

 
, 

 

1 2 2 2

1 2

1 2 1 1

1

( )

1 1 2 2 2

1 2 2 1 2 2

( )

2
2 1

1 2
( )

2 2 1 1 1

1 2 1 1 2 1

(

1

1 1

1 ; 0

( , )

1 1

1

c c

c

c c

c

x x

R R

x
x x R

R
F x x

x x

R R

x

R

α α α α

α α

α α α α

α

α α α

α α α α α α

α α α

α α α α α α

′ ′+ −

+

′ ′+ −

+

 ′−   
− − +       ′ ′   + − + − 

 
− ≤ ≤ ≤ 

 
=

 ′−   
− − +       ′ ′   + − + − 

 
− 

 

2 )

1 2; 0 x x R
α















≤ ≤ ≤


. 
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6. Bivariate log-logistic distribution. 

 

For, ( )1
1

11 1 ( )
au xλ

−

− = +  and ( )2
1

21 1 ( ) ,
av xλ

−

− = +   

 

( ) ( )

( )

( ) ( )

( )

1 2 2 2
1 2

1 2
2 1 2

1 2 1 1
2 1

1 2
1

( )
1

1 2

1 2 2

( )
2 2

2 1 2

1 2 2

1 2
( )

2
2 1

1 2 1

( )
1 1

1

1 2 1

1 ( ) 1 ( )

1 ( ) ; 0 ( ) ( )

( , )

1 ( ) 1 ( )

1 ( ) ;

a a

a a a

a a

a

x x

x x x

F x x

x x

x

α α α α

α α

α α α α

α α

α
λ λ

α α α

α α
λ λ λ

α α α

α
λ λ

α α α

α α
λ

α α α

′ ′− + − −

− +

′ ′− + − −

− +

+ + +
′+ −

 ′−
+ ≤ ≤ 

 ′+ − 
=

+ + +
′+ −

 ′−
+ 

 ′+ − 

2 1
2 10 ( ) ( )

a ax xλ λ













 ≤ ≤



. 

 

6.3 Failure Rate of the General Class 

 In this section we consider how total failure rate can be related to the 

properties of the general representation given in (6.5) in terms of general 

representation of the total failure rate (Cox (1972)) is defined as 

( )( ) log 1 ,1 Z
Z Z

Z

dud
x h u u

du dx
λ = − − −   , where 1 2( , )Z min X X=  

( )12 1 2 1 2
1

( | ) log 1 ,1 ;
u

x x h u v x x
u u x

λ
∂ ∂ ∂ 

= − − > ∂ ∂ ∂ 
 

( )21 2 1 1 2
2

( | ) log 1 ,1 ;
v

x x h u v x x
u v x

λ
∂ ∂ ∂ 

= − − < ∂ ∂ ∂ 
     (6.9) 

So that for (6.5), ( )xλ  is now 

( ) 1 21 2
1 2

(1 ) (1 )(1 )

( ) , ,
1 1 1

Z

Z

u vd u
x xdxx

u u v

α αα α
λ

∂ − ∂ − − ′ ′− −− + ∂ ∂
 =

− − − 
 
 

. 

Table 6.1 lists the failure rate for distributions defined by representation (6.5). 



A General Representation 

 

 

141

Table 6.1 Total Failure Rate for the Uniform Representation 

 

Distributions 1 u−  1 v−  ( )xλ  

Freund’s bivariate 

exponential distribution 

(1961) 

1xe−
 2xe−  ( )1 2 1 2( ), ,α α α α′ ′+  

Bivariate Weibull 

distribution (Lu (1989)) 
 

1
c

x

e σ

 
− 
   

 

2
c

x

e σ

 
− 
   

1
1 2

1 1
1 1 2 2

( )
,

,

c

c c

c x

c x c x

α α

σ σ

α α

σ σ σ σ

−

− −

 +  
    

′ ′   
        

 

 

( )1 2 1 2, , , ,BP I σ α α α α′ ′  

distribution 

 

1
c

x

σ

−
 
 
 

 

 

2
c

x

σ

−
 
 
 

 
1 2 1 2

1 2

( )
, ,

c c c

x x x

α α α α ′ ′+
 
 
 

 

 

( )1 2 1 2, , , , ,BP II µ σ α α α α′ ′  

distribution 

 

11

c
x µ

σ

−
− 

+ 
 

 

 

21

c
x µ

σ

−
− 

+ 
 

 

1 2 1

2

( )
, ,

c c

x x

c

x

α α α

σ µ σ µ

α

σ µ

 ′+

 + − + −

′

+ − 

 

Bivariate finite range 

distribution (Table 4.3) 

11

c
x

R

 
− 

 
 21

c
x

R

 
− 

 
 

1 2 1

1

2

2

( )
, ,

( ) ( )

( )

c c

R x R x

c

R x

α α α

α

 ′+

 − −

′

− 

 

Bivariate log-logistic 

distribution  

( )1

1

1 ( )axλ+
 

 

( )2

1

1 ( )axλ+

 

1
1 2

1 1
1 1 2 2

1 2

( )
,

1 ( )

,
1 ( ) 1 ( )

a a

a

a a a a

a a

a x

x

a x a x

x x

α α λ

λ

α λ α λ

λ λ

−

− −

 +
 +

′ ′

+ + 

 

 

 Another interesting property that has gained vast attention of the 

researchers is the no-ageing property and its variants like the dullness property. 

As with other reliability concepts there are various extensions to the bivariate 
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case. We consider the extension in (3.3). A uniform representation is said to have 

a bivariate dullness property if it verifies 

( ) ( ) ( )(1 )(1 ),(1 )(1 ) (1 ), (1 ) (1 ), (1 )h t u t v h t t h u v− − − − = − − − −   (6.10) 

for all 0 , , 1.t u v≤ ≤  

The representations that belong to the class (6.10) are characterized in the 

following theorem. 

 

Theorem 6.1 The uniform representation ( , )h u v  where U  and V  are uniform 

variates satisfies (6.10), if and only if ( , )h u v  can be written as  

1
(1 ) 1, ;

1
(1 ,1 ) , 0

1
(1 ) ,1 ;

1

c

c

v
u h u v

u
h u v c

u
v h v u

v

 − 
− ≤ 

−  
− − = >

−  − ≤  − 

.  (6.11) 

Proof  

 Let (6.10) be satisfied. Then for 1 1v u− = − , 

( ) ( ) ( )(1 )(1 ),(1 )(1 ) (1 ), (1 ) (1 ),(1 )h t u t u h t t h u u− − − − = − − − − . 

From Aczel (1966 p.41) and the fact that ( )(1 ), (1 )h u v− −  is a survival function it 

follows thats 

( )(1 ), (1 ) (1 ) ; 0ch t t t c− − = − >  

so that  

( ) ( )(1 )(1 ), (1 )(1 ) (1 ) (1 ), (1 )ch t u t v t h u v− − − − = − − − .  (6.12) 

Now let 1 1 ,v u− ≤ −  then once again from (6.10) it follows that  

( ) ( )
1

(1 ), (1 ) 1 ,1 1,
1

v
h u v h u u h

u

− 
− − = − −  

− 
 

1
(1 ) 1, , 0 1

1

c v
u h u v

u

− 
= − ≤ ≤ ≤ 

− 
 

Similarly, 

  ( )
1

(1 ), (1 ) (1 ) ,1 , 0 1
1

c u
h u v v h v u

v

− 
− − = − ≤ ≤ ≤ 

− 
. 

To prove the converse, if ( )(1 ), (1 )h u v− −  is as given in (6.12) then 
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( ) ( )(1 )(1 ), (1 )(1 ) (1 ) (1 ), (1 )ch t u t v t h u v− − − − = − − −  for all 0 , , 1t u v≤ ≤ . 

That is 

( ) ( ) ( )(1 )(1 ),(1 )(1 ) (1 ),(1 ) (1 ), (1 )h t u t v h t t h u v− − − − = − − − −  

for all 0 , , 1t u v≤ ≤ . 

Hence the theorem. 

 

Corollary 6.1 The uniform representation given in (6.5) belongs to the class of 

distributions verifying (6.12). 

Proof 

 Observe that the uniform representation (6.5) can be written as  

 

( )

( )

2 1 2

1 2

1 1 2

1 2

1 2 2

1 2 2 1 2 2

2 1 1

1 2 1 1 2 1

1 1
1 ;

1 1

0 1
(1 ,1 )

1 1
1 ;

1 1

0 1.

v v
u

u u

u v
h u v

u u
v

v v

v u

α α α
α α

α α α
α α

α α α

α α α α α α

α α α

α α α α α α

′ +
+

′ +
+

  ′−− −     − +     − −′ ′   + − + − 
 ≤ ≤ ≤

− − =
  ′−− −    − +     − −′ ′    + − + − 

≤ ≤ ≤

The proof now follows from Theorem 6.1. 

 

Corollary 6.2 When 11
xu e−

− =  and 21 ,
xv e−

− =  it follows from Corollary 6.1 

that for 1 20 x x≤ ≤ , 

 

( ) ( )1 2 2 1 2 2 1 2 21 2 2

1 2 2 1 2 2

x x x
e e

α α α α α αα α α

α α α α α α

′ ′− + − − − +′−
+

′ ′+ − + −
 

( ) ( ) ( )( )1 2 1 2 2 1 1 2 2 11 2 2

1 2 2 1 2 2

x x x x x
e e e

α α α α αα α α

α α α α α α

′− + − − − + −
 ′−

= + 
 ′ ′+ − + − 

 

( ) ( )1 2 1
1 2 1

x
e F x x

α α− +
= − , 
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where 

 ( ) ( ) ( )( )2 2 1 1 2 2 11 2 2
1 2 1

1 2 2 1 2 2

x x x x
F x x e e

α α αα α α

α α α α α α

′− − − + −
 ′−

− = + 
 ′ ′+ − + − 

. 

Similarly for 2 10 x x≤ ≤ ,  

( ) ( )1 2 1 2 1 1 1 2 12 1 1

1 2 1 1 2 1

x x x
e e

α α α α α αα α α

α α α α α α

′ ′− + − − − +′−
+

′ ′+ − + −
 

( ) ( ) ( )( )1 2 2 1 1 2 1 2 1 22 1 1

1 2 1 1 2 1

x x x x x
e e e

α α α α αα α α

α α α α α α

′− + − − − + −
 ′−

= + 
 ′ ′+ − + − 

 

( ) ( )1 2 2
2 1 2

x
e F x x

α α− +
= − , 

where 

 ( ) ( ) ( )( )1 1 2 1 2 1 22 1 1
2 1 2

1 2 1 1 2 1

x x x x
F x x e e

α α αα α α

α α α α α α

′− − − + −
 ′−

− = + 
 ′ ′+ − + − 

. 

In general by writing  

( ) ( )
( ) ( )

1 2 1

1 2 2

1 2 1 1 2
1 2

2 1 2 2 1

; 0
( , )

;0

x

x

e F x x x x
F x x

e F x x x x

α α

α α

− +

− +

 − ≤ ≤
=

− ≤ ≤

. 

This is the class of exponential minima given in equation (3.5) characterized by 

the bivariate lack of memory property, 

( ) ( ) ( )1 2 1 2, , ,F x t x t F x x F t t+ + =  for 1 2, , 0x x t > . 

 

Corollary 6.3 When  ( )11
c

u x
−

− =  and   ( )21 ,
c

v x
−

− =  it follows from Corollary 

6.1,  

1 2 2 2 1 2( ) ( )1 2 2
1 2 2

1 2 2 1 2 2

c c cx x xα α α α α αα α α

α α α α α α

′ ′− + − − − +
 ′−

+  
 ′ ′+ − + − 

 

2 1 2

1 2

( )

( ) 1 2 2 2 2
1

1 11 2 2 1 2 2

,
c c

c
c c

x x
x

x x

α α α

α α α α α

α α α α α α

′ +
− −

− +

− −

  ′   − 
= +          ′ ′+ − + −      

 1 2( ) 2
1 2 1 2

1

; 1
c x

x F x x
x

α α− +  
= ≤ ≤ 

 
, 
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where 

2 1 2( )

2 1 2 2 2 2
2

1 1 11 2 2 1 2 2

.
c c

c c

x x x
F

x x x

α α α
α α α

α α α α α α

′ +
− −

− −

 ′     −
= +           ′ ′+ − + −      

 

Similarly for 2 11 x x≤ ≤  

1 2 1 1 1 2( ) ( )2 1 1
2 1 1

1 2 1 1 2 1

c c cx x xα α α α α αα α α

α α α α α α

′ ′− + − − − +
 ′−

+  
 ′ ′+ − + − 

 

1 1 2
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2

2 21 2 1 1 2 1

c c
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c c

x x
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x x

α α α

α α α α α

α α α α α α

′ +
− −

− +

− −

  ′   − 
= +          ′ ′+ − + −      

 1 2( ) 1
2 1 2 1

2

;1 ,
c x

x F x x
x

α α− +  
= ≤ ≤ 

   

where 

1 1 2( )

1 2 1 1 1 1
1

2 2 21 2 1 1 2 1

c c

c c

x x x
F

x x x

α α α
α α α

α α α α α α

′ +
− −

− −

 ′     −
= +           ′ ′+ − + −      

. 

In general 

1 2

1 2

( ) 1
2 1 2 1

2

1 2

( ) 2
1 2 1 2

1

;1

( , ) .

;1

c

c

x
x F x x

x
F x x

x
x F x x

x

α α

α α

− +

− +

  
≤ ≤  

  
= 

 
≤ ≤ 

 

 

This is class of Pareto minima given in (3.6) characterized by the bivariate 

dullness property, 

( ) ( ) ( )1 2 1 2, , ,F x t x t F x x F t t=  for 1 2, , 0x x t > . 

 

Corollary 6.4 When ( )11
c

x
u e

−
− = and ( )21

c
x

v e
−

− = , it follows from Corollary 

6.1, 

1 2 2 1 2 2 1 2 2( ) ( )1 2 2

1 2 2 1 2 2

c c cx x xe eα α α α α αα α α

α α α α α α

′ ′− + − − − +
 ′−

+  
 ′ ′+ − + − 
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1 2 1 2 2 1 1 2 2 1( ) ( ) ( )( )1 2 2

1 2 2 1 2 2

;
c c c c cx x x x xe e eα α α α αα α α

α α α α α α

′− + − − − + −
  ′− 

= +    ′ ′+ − + −   

         1 20 x x≤ ≤ . 

Similarly for 2 10 x x≤ ≤ , 

1 2 1 2 1 1 1 2 1( ) ( )2 1 1

1 2 1 1 2 2

c c cx x xe eα α α α α αα α α

α α α α α α

′ ′− + − − − +
 ′−

+  
 ′ ′+ − + − 

 

1 2 2 1 1 2 1 2 1 2( ) ( ) ( )( )2 1 1

1 2 1 1 2 2

c c c c cx x x x xe e eα α α α αα α α

α α α α α α

′− + − − − + −
  ′− 

= +    ′ ′+ − + −   

Thus we have, 

1 2 2 1 2 2

1 2 2

1 2 1 2 1 1
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; 0
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i.e., 
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Hence, ( ) ( ) ( )
1 1

1 2 1 2, ( , ) ,c cF x t x t F t t F x x + + = 
 

, which is the extension of the 

characterization of a univariate Weibull distribution. 
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Corollary 6.5 The Caudras-Auge copula given in (6.4) verifies the property 

(6.10). 

Proof 

 From (6.4) we have  

 

( )
1

1 1

1

;
min ,

;

u v v u
u v uv

uv u v

α β α
α β

β α β

−
− −

−

 ≤
= 

≤
. 

i.e., 

( )

2

1 1

2

;

min ,

;

v
u v u

u
u v uv

u
v u v

v

α β α

α β

β α β

−

− −

−

  
≤ 

  
= 

  ≤   

. 

Hence the result. 

 

6.4 Conclusion 

 In this chapter we have given a uniform representation of the Freund 

(1961) bivariate exponential distribution and its transformation. We showed how 

this representation can be used to infer on the total failure rate of each 

distribution having this representation, once we know their uniform translates. 

We also characterize this uniform representation by what we define as general 

dullness property (6.10). It is further shown that this property implies the 

bivariate lack of memory property (Marshall and Olkin (1967)) for the Freund’s 

bivariate exponential distribution. It implies the bivariate dullness property 

(Veenus and Nair (1994), Hanagal (1996), Yeh (2004 a,b)) for the 

( )1 2 1 21, , , ,BP I α α α α′ ′  distribution. It also implies a characterization for the 

bivariate Weibull distribution. With this we conclude the present thesis, after 

discussing below the future course of work. 
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6.5 Future Work 

In this thesis the bivariate Pareto distributions, ( )1 2 1 21, , , ,BP I α α α α′ ′  and 

( )1 2 1 2, , , , ,BP II µ σ α α α α′ ′  were obtained by transforming the Freund bivariate 

exponential distribution. Many distributional and reliability properties that find 

application in Reliability and Economic studies were considered. As mentioned 

earlier these models do not have a straight forward multivariate extension as in 

the case of Marshall-Olkin (1967) bivariate exponential distribution. An 

extension to this distribution has been discussed in Weimann (1966) under certain 

restrictive conditions. It remains to develop a multivariate distribution and study 

the properties of the same. One generalization is envisaged as follows. Let there 

be n component parallel system, where the components work independently with 

lifetimes 1, 1, ... , .=iX i n  Let ( )1 , 1, ...,i if x i n=  denote the probability density 

function of 1
iX  in the first stage. Assume that there occur no simultaneous failure 

or failure occurs at stages and failed items are not replaced. 

 Once a failure occurs the distribution of the remaining lifetime of the 

other component has same distribution but with possibly changed parameter 

values. Let j
iX  denote the remaining lifetime of the thi  component in the thj  

stage (if it survived). If 
1 2, , ...., nY Y Y  denotes the component lifetime, that is 

1 1

1
i iY X=  

2 1 2

2
i i iY Y X= +  

3 2 3

3
i i iY Y X= +  

. 

. 

. 

1
.

n n n

n
i i iY Y X

−
= +  

Then the distribution of the Freund extension is derived as 

( ) ( ) ( )
1 21 2 .

1 1

, ,... ; ...

∞

= = +

= < < <∏ ∏∫j k k nj k

i j

n n
j j

n i i i i i ii i
j k jy

f y y y f y f y dy y y y  
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It remains to study the properties of this distribution and this will be taken up as a 

continuation of this research. 

 The bivariate residual entropy function which is applicable to a two 

component parallel system is considered in this thesis. Recently the study on the 

past entropy has received much attention among the researchers. Hence the study 

on the bivariate past entropy function for a load sharing dependent models, its 

properties, characterizations and multivariate extensions can be consider for the 

future research. 

 The bivariate inequality measures are introduced in this thesis, which are 

applicable to data that shows a load sharing dependence. Also the income gap 

ratio for the rich in the bivariate situation is discussed here. The extension of 

these inequality measures in the multivariate case as well as the development of 

income gap ratio for the poor is also to be explored. The properties of the 

bivariate uniform representation and the study on its association measures are yet 

to be discussed. 

 These problems will be taken up as a future course of work plan. 
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