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CHAPTER 1

Introduction

The purpose of this thesis is to combine several concepts from queuing theory and

inventory and use them in modelling and analysis. Until 1947 it was assumed, while

analyzing problems in queues with finite capacity, when the buffer is full any further

arrival is lost. However this is not the case in reality. A customer who could not get

admission into the system may keep trying until he succeeds or quits because a time

reaches when he does not derive any benefit out of the service, whichever occurs first.

This type of queueing problem was first analyzed by Kosten [27] in 1947 and such

type of queues are referred to as retrial queues. Retrial queues arise in a natural way

in communication systems, at enquiry counters attached with offices, in hospitals and

so on. Multiserver retrial queues are complex compared to single server queue. Still

more complex is the retrial multiserver queues where the servers are separated, which

arises as follows. Suppose there arec servers who are separated so that neither a server

nor an arriving customer knows the status of the rest of thec − 1 servers. Thus if the

present arrival to a particular server finds that server busy then he has to retry to access

even other servers. This type of situation arises in, for example, at reception counters

where there are a few telephones with distinct numbers. This problem is analyzed in

Mushkov, Jacob, Ramakrishnan, Krishnamoorthy and Dudin [50] in 2006.

Inventory system was formally investigated in the most simple situation by Harris

in 1915 which was subsequently analysed independently by Wilson in 1918 and the

famous Harris-Wilson EOQ formula was realized. Most of the initial work in inventory

theory were on deterministic models. Realizing the importance of uncertainty of the

demand process and of the lead time, probabilistic models started getting investigated.

Nevertheless the basic assumption in all these was that the time required to serve the

item(s) was negligible. So in case item is available at demand epoch it is instantly
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served. Else a queue gets formed, provided backlog is permitted. Krishnamoorthy and

Raju in a series of papers [39, 41], analyzed inventory with local purchase during stock

out period, whenever a demand occurs, to earn customer good-will. However these

were also restricted to the case of negligible service time. In practice a positive duration

of service, deterministic or random, is needed to serve the item(s). Thus Berman, Kim

and Shimshack in 1993, came up with the notion of inventory with positive service time.

Since then there are several developments in the analysis of such inventory models.

In this thesis we combine models in classical/retrial queues with inventory involv-

ing positive service time. In some cases we introduce local purchase during stock out

period, to improve the reliability of the system. This local purchase is assumed to be

instantly done so that customers are not lost on account of lack of availability of the

item. We also introduce disaster that removes all inventoried items instantly.

Next we provide a brief account of queues and inventory. In the sequel we also

provide a brief account of the matrix geometric solution. Then we proceed to provide

a brief review of the work that were done in the direction of the problems discussed in

this thesis.

1.1. Classical and Retrial Queues

Lining up for some form of service is a common phenomenon, be it visible or in-

visible, by human beings or by inanimate objects. It is more organized or, sometimes,

is made to be so in the modern world and therefore a systematic study of a line up or

equivalently a queueing process is instinctively more rewarding academically. A clas-

sical queueing system can be described as customers arriving for service, waiting for

service if service is not immediate and if having waited for service, leaving the system

after being served.

A queue is formed when either there is positive service time or there are no sufficient

servers for the arriving customers. Some examples of a queue are customers arriving at

a bank and aeroplanes waiting for their turn to land in busy airports.

Queueing systems in which arriving customers find all servers and waiting positions

(if any) occupied, may retry for service after a period of time. Such queues are called
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retrial queues or queues with repeated attempts. One of the most obvious example is

provided by a person who desires to make a phone call. If the line is busy, then he

cannot queue up, but can try sometime later.

Retrial queues are a type of networking with reserving after blocking. The classical

queueing models do not take into account the phenomenon of retrials and therefore

cannot be applied in solving a number of practically important problems. Retrial queues

have been introduced to solve this deficiency.

1.2. Inventory Systems

In all business firms the system must keep a minimum amount of inventory at the

time of order placing of inventory for the smooth and efficient running of the firm.

The importance of inventory management for the quality of service of today’s service

systems is generally accepted and optimization of systems in order to maximize quality

of service is therefore an important topic.

There are several factors affecting the inventory. They are demand, life time of items

stored, damage due to external disaster, production rate, the time lag between order and

supply, availability of space in the store etc. If all these parameters are known before

hand, then the inventory model is called deterministic inventory model. If some or all

of these parameters are not known with certainty then we consider them as random

variables with some probability distribution and the resulting inventory model is then

called stochastic inventory model.

Efficient management of inventory system is done by finding out optimal values of

the decision variables. The important decision variables in inventory system are max-

imum capacity of the inventory, reordering point and order quantity. Several policies

may be used to control an inventory system. Of these, the most important policy is

the(s, S) policy. An inventory system may be based on periodic review (e.g., ordering

every week or every month), in which new orders are placed at the start of each pe-

riod. Alternatively the system may be based on continuous review where a new order

is placed when the inventory level drops to a certain level, called the reorder point. An

example of periodic review occurs in gas stations where new deliveries arrive at the start
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of each week. Continuous review occurs in retail stores whereitems (such as cosmetics)

are replenished only when their level on the shelf drops to the reorder point.

The time elapsed between an order and its physical materialization is termed as lead

time. If the replenishment is instantaneous then lead time is zero, otherwise the system

is said to have positive lead time.

Inventory models have a wide range of applications in the decision making of gov-

ernment military organization, industries, hospitals, banks, educational institutions etc.

Study and research in this fast growing field of applied mathematics, taking models

from practical situations, contributes significantly to the progress and development of

human society.

In most of the analysis of inventory systems the decay and disaster factors are ig-

nored. But in several practical situations these factors play an important role in decision

making.Examples are electronic equipments stored and exhibited on a sales counter,

perishable goods like food stuffs, chemicals, crops vulnerable to insects and natural

calamities like earth quake, rains, storms etc.

1.2.1. Inventory with positive service time. In all works reported in inventory

prior to 1993 it was assumed that the time required to serve the item to the customer is

negligible. As a consequence if the item is available at a demand epoch, the customer

need not have to wait; a queue can be formed only when the inventory level becomes

zero and lead time is positive.

We come across several real life situations where the service time is not negligible.

In this case a queue will be formed even when the item is available. Thus the problem

in inventory with service time may appear as a problem in queue. Nevertheless, this is

not the case. The server stays idle even when there are customers in the system in the

absence of inventoried items for processing.

Shortages of inventory occur in systems with positive lead time, in systems with

negative reordering points or in multi commodity inventory system in which an order

is placed only when the inventory level of at least two commodities fall to or below

than the reorder level. Shortage cost is the penalty incurred when we run out of stock.

It includes potential loss of income and moreover subjective cost of loss in customer’s
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goodwill. There are different methods to tackle the stock outperiods of the inventory.

One of the method is to consider the demands during dry periods as ‘lost sales’. The

other is partial or full backlogging of the demands.Lost sale causes a loss in the profit

and back logging results in the increase in the waiting time of the customer. In order to

avoid these two possibilities in this thesis we adopt the notion of local purchase. If a

customer enters for service when the inventory level is zero we make a local purchase

of the item at a higher cost. Thus we can decrease the waiting time of the customer and

thereby holding cost of the customer. Local purchases are made to improve the good

will of the customers with the system especially in a newly opened shop or where there

is a competition between near by shops.

1.2.2. Quasi-Birth and Death process (QBD).Consider a continuous time Markov

chain on the two-dimensional state space{(0, j), 1 ≤ j ≤ m′} ∪ {(n, j), n ≥ 1, 1 ≤

j ≤ m}. The first co-ordinaten is called the level and the second co-ordinatej is called

the phase of the state(n, j). The Markov process is called a QBD if one-step transition

from a state are restricted to states in the same level or in the two adjacent levels: it is

possible to move in one step from(n, j) to (n′, j′) only if n′ = n, n+ 1 or n− 1 (in the

last casen ≥ 1). If the transition rate from(n, j) to (n′j′) does not depend onn andn′,

but only onn′ − n then the Markov process is called a Level Independent Quasi-Birth

Death (LIQBD) process and the infinitesimal generatorQ is given by

Q =





















B1 B0 0 0 · · · · · ·

B2 A1 A0 0 · · · · · ·

0 A2 A1 A0 · · · · · ·

0 0 A2 A1 · · · · · ·
...

...
...

...





















whereB1 is a square matrix of orderm′,B0 is anm′ ×m, B2 is anm×m′ andA0, A1

andA2 are square matrices of orderm.

If the transition rates depend on the level then the Markov Process is called a Level

Dependent Quasi Birth Death (LDQBD) Process and the infinitesimal generatorQ is
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then given by

Q =





















A10 A00 0 0 0 0 · · ·

A21 A11 A01 0 0 0 · · ·

0 A22 A12 A02 0 0 · · ·

0 0 A23 A13 A03 0 · · ·
...

...
...

...





















. (1.2.1)

All models discussed in this thesis are either LIQBD or LDQBD

1.2.3. Matrix analytic method. A matrix analytic approach to stochastic mod-

els was introduced by Neuts [53] to provide an algorithmic analysis forM |G|1 and

GI|M |1 type of queueing models. Matrix analytic methods constitute a success story,

illustrating the enrichment of science, applied probability by a technology, that of digital

computers.

The following theorem gives a brief description of Matrix Analytic Method applied

for solving Quasi-Birth Death Process (QBD).

THEOREM 1.2.1. A continuous time QBD with infinitesimal generatorQ of the

form (1.2.1)is positive recurrent if and only if the minimal non-negative solutionR to

the matrix quadratic equation

R2A2 +RA1 + A0 = 0 (1.2.2)

has spectral radius less than 1 and the finite systems of equations

x0A10 + x1A21 = 0

xi−1A0,i−1 + xiA1i + xi+1A2,i+1 = 0 (1 ≤ i ≤ N − 2)

xN−2A0,N−2 + xN−1(A1,N−1 +RA2) = 0

has a unique solution forx0, . . . , xN−1. If the matrixA = A0+A1+A2 whereA0i = A0,

A1i = A1 for i ≥ N is irreducible, thensp(R) < 1 if and only ifπA0e < πA2e whereπ

is the stationary probability vector of the generator matrixA and satisfies the equation

πA = 0 andπe = 1 wheree = (1, . . . , 1)′.
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If x = (x0, x1, . . .) is the stationary probability vector ofQ thenxi’s (i ≥ N) are

given by

xN+r−1 = xN−1R
r for r ≥ 1.

To find the minimal solution of (1.2.2) we can use the iterative formula given by

Rn+1 = −(R2
nA2 + A0)A

−1
1 , n = 0, 1, 2, . . . with R0 = 0

1.3. Review of Related Work

1.3.1. Works on inventory. In 1915 Harris [24] started the mathematical mod-

elling of inventory problems and derived the famous EOQ formula that was popularized

by Wilson. A systematic analysis of the(s, S) inventory system using renewal theoretic

arguments is provided in Arrow, Karlin and Scarf [2]. Hadley and Whitin [23] gave

several applications of different inventory models. Gross and Harris [21] considered

the inventory systems with state dependent lead times. Sivazlian [63] analyzed the con-

tinuous review(s, S) inventory system with general inter arrival times and unit demand

in which he shows that the limiting distribution of the position inventory is uniform

and independent of the inter arrival time distribution. Sahin [60] analyzed continuous

review(s, S) inventory with continuous state space and constant lead time. Srinivasan

[64] discussed an(s, S) inventory problem with arbitrarily distributed interarrival times

and lead times.

Manoharan et.al. [47] discussed the case of non-identically distributed interarrival

times. Krishnamoorthy and Lakshmi [35] analyzed problems with Markov dependent

re-ordering levels and Markov dependent replenishment quantities. Krishnamoorthy

and Manoharan [46] modelled an inventory system with varying reorder levels and ran-

dom lead time. Krishnamoorthy and Varghese [44] considered a two commodity in-

ventory problem with Markov shift in demand for the commodity. Krishnamoorthy and

Raju [39] introducedN-policy to the(s, S) inventory system with positive lead time

and local purchase when the inventory level is zero

Berman, Kim and Shimshack [13] introduced positive service time in inventory

in which the service time is assumed to be constant. They determined optimal order

quantityQ that minimizes the total cost rate using dynamic programing technique.
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Subsequently, Berman and Kim [12] extended that model to random service time.

Parthasarathy and Vijayalakshmi [57] discussed transient analysis of an(S − 1, S)

inventory model with deteriorating items and obtained the solution using continued

fraction.

Viswanath et.al [66] studied an(s, S) inventory policy with service time by con-

sidering vacation to server and correlated lead time. They considered quite general

distribution for interarrival time, duration of service time and duration of a vacation.

Server goes on vacation whenever there is either no customer left behind in the system

at departure epoch or when the inventory level drops to zero or both occur simultane-

ously. Schwarz et.al [61] discussedM |M |1 queueing systems with inventory where the

lead times are exponentially distributed. They analyzed the problem for both(r, Q) and

(r, S) inventory policies and derived stationary distribution of joint queue length and in-

ventory level in explicit product form. Also they discussed the problem of order place-

ments any where on the set{0, 1, . . . , s} according to a given probability distribution.

Krishnamoorthy et.al. [38] introduced theN-policy for commencement of service, once

the server is switched off in the absence of customers in the system. Here the service

time is positive and lead time is zero. They obtained analytical solution to this model.

They establish a product form solution to the system state and thus produce a decom-

position of the state space. Murthy and Ramanarayan [49] discussed(s, S) inventory

system with defective items in the replenished items, where the lead time is positive

with arbitrary distribution. Krishnamoorthy and Varghese [43] analyzed an inventory

model where the items are damaged due to decay and disaster. They assumed that the

lead time is zero and the service time is negligible. A detailed survey on inventory with

positive service time is given in Krishnamoorthy et.al [36].

1.3.2. Works on retrial queue and retrial inventory. Retrial queues or queues

with repeated attempts have been extensively investigated (See the survey papers by

Yang and Templeton [67], Falin [18] and the book by Falin and Templeton [19]). Sub-

sequent development on retrial queues can be found in Artalejo [3]. The latest addition

to books on retrial queues is authored by Artalejo and Gomez-Correl [6]. In this they

discussed the algorithmic approach. Artalejo, Krishnamoorthy and Lopez-Herrero [9]
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were the first to study inventory policies with positive lead time coupled with retrial

of unsatisfied customers and their approach turns out to be algorithmic. Ushakumari

[65] obtained analytical solution to the above problem in 2006. Krishnamoorthy and

Mohammad Ekramol Islam [31] analyzed an(s, S) inventory system with retrial of

customers. Here the lead time and inter-retrial times are assumed to be exponentially

distributed.

Krishnamoorthy and Jose [33] compared three(s, S) inventory system with retrial

of customers where the service time and lead time are positive. They investigated these

systems to obtain performance measures and construct suitable cost functions for the

three cases. In 2002 Artelajo et.al [8] discussed anM |G|1 retrial queue where the

server goes for an orbital search, when he is free. Thus the system can decrease the

idle time of the server as well as the waiting time of the customer. Neuts and Rao

[55] discussed anM |M |c retrial queue in which the model is LDQBD process and they

suggested a truncation procedure, the idea is to make retrial rate to be constant when

the number of customers in the orbit exceeds some level.

1.4. An Outline of the Work in this Thesis

This thesis is divided into six chapters including this introductory chapter. Second

chapter contains investigation of two models. In the first model we consider a single

item, continuous review(s, S) inventory model with one server. Arrival of customers

form a Poisson process with rateλ and service times of customers are exponentially

distributed random variables with parameterµ, one unit of item is needed for each

customer. Lead time is assumed to be zero. An arriving customer, who finds the server

busy, proceed to an orbit of infinite capacity and makes successive repeated attempts

until it finds the server free. The inter retrial times have an exponential distribution with

parameteriθ when there arei customers in the orbit. Here we get an analytical solution

to the model. We construct a cost function and numerical examples are given. In the

second model we consider a more general set up involving arbitrarily distributed service

time. All other assumptions are same as that in the first model. We consider the number
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of customers in the orbit and the inventory level at the departure epoch of a customer.

Thus we have an embedded Markov chain. Here also we analyze a cost function.

In chapter 3, we consider five distinct inventory models with positive service time

and positive lead time.In all these it is assumed that customers arrive to a single server

system according to a Poisson process with rateλ and service times are exponentially

distributed random variables with parameterµ. Each customer require one unit of in-

ventory. We follow an(s, S) inventory policy. When the inventory level depletes tos

we place an order forQ = S − s quantity of inventory. The distribution of lead time is

exponential with parameterβ. In model 1 customers do not join the system when the

inventory level is zero. In model 2 customers join the system even when the inventory

level is zero. In model 3 and 4 we make a local purchase of one ands units of items

respectively, whenever a customer arrives to find the inventory level zero, at an extra

cost. In model 5 under the same situation we make a local purchase ofS units, thus

cancelling the existing order for procurement of inventory as the maximum capacity of

inventory isS. Numerical examples are given to compare performance of these models

in terms of appropriate cost functions.

In chapter 4 we introduce retrial of unsatisfied customers into the models discussed

in chapter 3, with the assumption that there is no waiting space for the customers at the

service station other than to the one who is being served. An arriving customer who

finds the server busy, proceeds to an orbit of infinite capacity and makes successive

repeated attempts until it finds the server free. The inter retrial times can be modelled

according to different disciplines depending on each particular application.In telephone

systems the repeated attempts are made individually by each blocked customer follow-

ing an exponential law of rateθ. This is the classical retrial policy where the rate isiθ

when there arei ≥ 0 customers in the orbit. Another retrial policy is the constant retrial

policy in which the probability of repeated attempts is independent of the number of

customers in the orbit. Here we assume that the inter retrial times have an exponen-

tial distribution with constant rateθ. Here also we compare the cost functions through

numerical investigations.
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In chapter 5 we consider(s, S) inventory systems with the possibility of destruction

of inventoried items due to disasters.Here we discuss two models. Customers arrive to

a single server system according to a Poisson process with parameterλ where service

times are exponentially distributed random variables with parameterµ. We assume

that disaster destroys all the inventoried items but not the customers. For example, in

godowns food items are destroyed by natural calamities. Here we assume the inter

disaster times to be exponentially distributed with parameterδ.It is assumed that lead

time is also exponentially distributed random variables with parameterβ. In Model I we

assume further that customers do not join the system when the inventory level is zero.

However in Model II it is assumed that customers join even when the inventory level is

zero. Thus stability in Model II is affected by the lead time parameter. We compare the

two models through numerical examples by constructing suitable cost functions.

In chapter 6 we consider a multi server queue coupled with an inventory following

(s, S) policy and retrial of customers. Customers arrive to the system withc-servers ac-

cording to Poisson process with rateλ. The service times are exponentially distributed

with parameterµ. One item is needed for each customer. An arriving primary customer,

who finds all servers busy, will go to an orbit of infinite capacity and tries again for the

service. Inter retrial time follows exponential distribution with parameterθ. The lead

time follows exponential distribution with rateβ. We assume that customers do not

join the system when the inventory level is zero. A cost function is constructed and

numerically investigated.
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CHAPTER 2

Inventory with Retrial and Service Time

2.1. Introduction

In classical queuing theory it is very often assumed that a customer who cannot

get service immediately on arrival (as the server is busy) either joins the waiting line,

and then is served according to some queue discipline, or leaves the system forever.

However, as a matter of fact, the assumption about the loss of customers who opted to

leave the system is just a first order approximation to a real situation. Usually such a

customer after a random time returns to the system and tries to get service again. Such a

queue is known as retrial queue (or queues with returning customers, repeated attempts

etc.). In retrial queues an arriving customer, who finds the inventory level zero or server

busy, proceeds to an orbit and repeats his attempts. Retrial queues have been used to

model problems in telephone, computer and communication systems. For a detailed

discussion of retrial queues one can refer to Falin [18], Falin and Templeton [19], Yang

and Templeton [67] and Artalejo [3].

In most of the papers on inventory it is assumed that the service time is negligi-

ble.This means that at a demand epoch if the item is available,it is immediately served to

the customer. However,in real life situations this assumption is too restrictive. The first

attempt at analyzing inventory problems with positive service time was due to Berman

et.al [13]. This was essentially a deterministic inventory model. Subsequently, Berman

and Sapna [14], Arivaringan et.al [1], Krishnamoorthy et.al. [38] have discussed inven-

tory with positive service time under various assumptions.

In this chapter we consider two models of inventory with positive service time and

retrial of customers. The difference between these two models is that, in the first we

assume the service times are exponentially distributed with parameterµ and in the sec-

ond model, service times have general distribution with distribution functionG(·). The
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first one is analyzed as a continuous time Markov chain whereasthe second using the

embedded Markov chain technique. The inventory control is governed by the(s, S)

policy. We assume that the lead time is zero. There is no waiting space for customers at

the service station, except for the one undergoing service. If at an epoch at which a cus-

tomer joins for service and if the inventory level turns out to bes, an order is instantly

placed forQ = S − s units which is received immediately. Each demand is exactly

for one item. The system is manned by one server. If an arriving customer finds the

server busy it proceeds to an orbit of infinite capacity and makes repeated attempts until

it finds the server free. Primary customers arrive according to a Poisson process with

rateλ. The inter-retrial times follow exponential distribution with linear rateiθ when

there arei customers in the orbit.

2.2. The Mathematical Model and Analysis of Model I

We consider a single item, continuous review(s, S) inventory model. Arrival of cus-

tomers form a Poisson process with rateλ. Service times of customers are independent

and identically distributed exponential random variables with parameterµ. Arrival and

service process are independent of each other. Service times of customers are mutually

independent. Order is placed and immediately delivered at epoch at which customers

join for service, with the inventory level equal tos (≥ 0). That is, lead time is assumed

to be zero. Further shortage cost is assumed to be infinity. An arriving customer who

finds the server busy, proceeds to an orbit of infinite capacity and makes successive re-

peated attempts until he finds the server free. The inter-retrial times have an exponential

distribution with parameteriθ when there arei customers in the orbit.

Let N(t) be the number of customers in the orbit andI(t) is the corresponding

inventory level at timet. Define

C(t) =











0 if the server is idle at timet

1 if the server is busy at timet.

Now X(t) = {(N(t), C(t), I(t)); t ≥ 0} is a Continuous Time Markov Chain

(CTMC) with state spaceS ′ = ∪∞

i=0l(i) wherel(i) = {(i, 0, j), s ≤ j ≤ S − 1} ∪
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{(i, 1, j), s + 1 ≤ j ≤ S}. Since the demand is exactly for one unit and only one

customer is served at a time, the level (number of customers in the orbit) increases or

decreases by one unit. Therefore it is skip free to the left as well as to the right. Further

the phase representing the inventory level decreases by 1 unit up tos and then goes back

to S. Thus the model is a LDQBD (Level Dependent Quasi-Birth-Death process). The

infinitesimal generator̄Q of the process has the block tridiagonal:

Q̄ =





















A10 A0 0 0 0 · · ·

A21 A11 A0 0 0 · · ·

0 A22 A12 A0 0 · · ·

0 0 A23 A13 A0 · · ·
...

...





















whereA0, A1i (i ≥ 0) andA2i (i ≥ 1) are square matrices of the same order2(S − s)

and they are given by

A1i =





−(λ+ iθ)IS−s λE

µIS−s −(λ+ µ)IS−s



 , A2i =





0 iθE

0 0





A0 =





0 0

0 λIS−s



 , whereE =





0 1

IS−s−1 0





and is of order(S − s) × (S − s). Next we investigate the condition for stability of the

system.

2.2.1. System stability.When the number of customers in the orbit is sufficiently

large, majority of the customers fail to access the server and do not result in significant

change in the number of customers in the orbit. Under this condition, we can find a suf-

ficiently largeN such that the retrial ratesNθ and(N + 1)θ do not differ significantly.

In other words we can findN sufficiently large such thatA1i, A2i can be approximated

by A1i = A1, A2i = A2, respectively wheneveri ≥ N . This results in the difference

between equilibrium probabilities corresponding toQ̄ andQ̂ (given below) turning out

to be minimal. If the number of customers is restricted to an approximately chosen
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numberN , then the change on the equilibrium probability vector is minimal. This trun-

cation (see Neuts and Rao [55]) modifies the infinitesimal generator̄Q to the following

form whereA1i = A1 andA2i = A2 for i ≥ N .

Q̂ =







































A10 A0

A21 A11 A0

A22 A12 A0

. . . . . . . . .

A2N−1 A1N−1 A0

A2 A1 A0

A2 A1 A0

. . . . . . . . .







































.

Define the generatorA asA = A0 + A1 + A2. Then

A =





−(λ+Nθ)IS−s (λ+Nθ)E

µIS−s −µIS−s





. Let π be the steady state probability vector of the generator matrixA. That is

πA = 0 and πe = 1. The vectorπ can be partitioned asπ = (π′,π′′), where

π
′ = (π1, π2, . . . , πS−s) andπ

′′ = (πS−s+1, πS−s+2, . . . , π2(S−s)). It is easily seen that

the solution toπA = 0 with πe = 1 is given by

π
′ =

µ

λ+Nθ + µ
(

1

S − s
,

1

S − s
, . . . ,

1

S − s
)

π
′′ =

λ+Nθ

λ+Nθ + µ
(

1

S − s
,

1

S − s
, ...,

1

S − s
)

This leads to the following

THEOREM 2.2.1. The system is stable if and only ifλ < µ.

PROOF. We have from the well known result (see Neuts [53]) for positive recur-

rence ofQ̂, the rate of drift to the left (in terms of level) has to be higher than that to the

right; i.e.,πA0e < πA2e for stability of the system and vice versa. After some algebra
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this reduces to
λ +Nθ

λ+Nθ + µ
λ <

µ

λ+Nθ + µ
Nθ

which reduces toλ < µ asN → ∞. �

2.3. The Steady State Probability Vector ofQ̂

To get a complete picture of the system it is essential to compute the long run system

state probability vector whenever it exists That is we have to calculate the steady-state

probability vector ofQ̂ under the stability condition. Let the steady-state probability

vectorx of Q̂ be partitioned according to the level asx = (x(0), x(1), x(2), . . .) where

the subvectorsx(i), i ≥ 0, contains2(S − s) elements. These subvectors satisfy the

equations

x(0)A10 + x(1)A21 = 0 (2.3.1)

x(i− 1)A0 + x(i)A1i + x(i+ 1)A2,i+1 = 0; i ≥ 1 (2.3.2)

Again partition the subvectorx(i), i ≥ 0 as

x(i) = (x(i, 0), x(i, 1)) where the subvectorsx(i, j), j = 0, 1

containS − s elements each. That is,x(i, 0) = (yi 0 s, yi,0,s+1 · · · yi,0,S−1) and

x(i, 1) = (yi,1,s+1, yi,1,s+2 . . . yi1S). Equations (2.3.1) and (2.3.2) give rise to the fol-

lowing relations:

− λx(0, 0)IS−s + µx(0, 1)IS−s = 0 (2.3.3)

[λx(0, 0) + θx(1, 0)]E − (λ+ µ)x(0, 1)IS−s = 0 (2.3.4)

− (λ+ iθ)x(i, 0) + µx(i, 1) = 0 (2.3.5)

[λx(i− 1, 1) − (λ+ µ)x(i, 1)]IS−s + [λx(i, 0) + (i+ 1)θx(i+ 1, 0)]E = 0 (2.3.6)
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From equation (2.3.3) we have

x(0, 1) = ρx(0, 0) whereρ =
λ

µ
(2.3.7)

Let x(0, 0) = η(1, 1, . . . , 1). Then equation (2.3.7) givesx(0, 1) = ρη(1, 1, . . . , 1).

From equation (2.3.4) we have,

x(1, 0) = ρ
λ

θ
η(1, 1, . . . , 1).

Equation (2.3.5) givesx(i, 1) = λ+iθ
µ
x(i, 0) for i ≥ 0. Finally, (2.3.6) gives

x(i, 0) =

[

ρi

i!θi

i−1
∏

k=0

(λ+ kθ)

]

η(1, 1, . . . , 1)for i ≥ 0.

Thus

x(i, 1) =

[

ρi+1

i!θi

i
∏

k=1

(λ+ kθ)

]

η(1, 1, . . . , 1) for i ≥ 0.

Now to findη we use the normalizing condition
∑

∞

i=0 x(i)e = 1. Then we get

η = 1
S−s

(1 − ρ)
λ

θ
+1. Hence

x(i, 0) =

[

1

S − s

ρi

i!θi
(1 − ρ)

λ

θ
+1

i−1
∏

k=0

(λ+ kθ)

]

(1, 1, . . . , 1)

That is,

yi0j = (
1

S − s
)

[

ρi

i!θi
(1 − ρ)

λ

θ
+1

i−1
∏

k=0

(λ+ kθ)

]

for s ≤ j ≤ S − 1.

Henceyi0j = P [N = i, C = 0, I = j] = P [N = i, C = 0]P [I = j].

Also we have

x(i, 1) =

[

1

S − s

ρi+1

i!θi
(1 − ρ)

λ

θ
+1

i
∏

k=1

(λ+ kθ)

]

(1, 1, . . . , 1)
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from which we get

yi1j = (
1

S − s
)

[

ρi+1

i!θi
(1 − ρ)

λ

θ
+1

i
∏

k=1

(λ+ kθ)

]

for s+ 1 ≤ j ≤ S.

This tells us that

yi1j = P [N = i, C = 1, I = j] = P [N = i, C = 1]P [I = j].

We sum up these results in the following.

THEOREM 2.3.1. The steady state probability vectorx of Q̂ be partitioned as

x = (x(0), x(1), x(2), . . .) where eachx(i) is again partitioned asx(i) = (x(i, 0), x(i, 1)),

i ≥ 0. Then

x(0, 0) = η(1, 1, . . . , 1)

x(i, 0) =

[

ρi

i!θi

i−1
∏

k=0

(λ+ kθ)

]

η(1, 1, . . . , 1), i ≥ 0

x(i, 1) =

[

ρi+1

i!θi

i
∏

k=1

(λ+ kθ)

]

η(1, 1, . . . , 1), i ≥ 0

where η =
(1 − ρ)

λ

θ
+1

S − s
andρ =

λ

µ

Thus we arrive at a product form solution for the system state distribution. This

naturally leads to the decomposition of the joint generating function.

2.4. System Performance Measures

Let x = (x(0), x(1), x(2), . . . ) be the steady-state probability vector ofQ̂. Each

x(i), i ≥ 0 is partitioned asx(i) = (x(i, 0), x(i, 1)) wherex(i, 0) = (yi, 0, s, yi, 0, s+1,

. . . , yi, 0, S−1) andx(i, 1) = (yi, 1, s+1, yi, 1, s+2 . . . yi, 1, S). Then we have the following

expressions for the performance measures:
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a. Expected number of customers, EC in the orbit is given by

EC =

∞
∑

i=1

ix(i)e =
ρ(λ + ρθ)

(1 − ρ)θ

b. Expected inventory level, EI is given by

EI =
∞

∑

i=0

S−1
∑

j=s

jyi0j +
∞

∑

i=0

S
∑

j=s+1

jyi1j =
S + s− 1

2
+ ρ.

c. Expected re-order rate, ER is given by

ER = λ

∞
∑

i=0

yi0s + θ

∞
∑

i=1

iyi0s =
λ

S − s
.

d. Expected rate of departures, ED after completing service is given by

ED = µ
∞

∑

i=0

S
∑

j=s+1

yi1j = λ

e. Probability that the server is busy

=
∞

∑

i=0

S
∑

j=s+1

yi1j = ρ

f. Over all retrial rate, ORR is given by

ORR= θ

∞
∑

i=1

ixie =
ρ(λ+ ρθ)

1 − ρ

g. Successful retrial rate, SRR is given by

SRR= θ
∞

∑

i=0

i
S−1
∑

j=s

yi0j = ρλ

h. Probability of the number of customers in the orbit exceeding a given number, sayR

is

P [N > R] = (1 − ρ)
λ

θ
+1

∑

i>R

{

ρi

i!θi
[

i−1
∏

k=0

(λ+ kθ) + ρ

i
∏

k=1

(λ+ kθ)]

}
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This measure is of great significance since systems are designed so as to minimize

the expected waiting time of customers.

i. Since there is no queue formed in the orbit where the queue discipline is not first in

first out, it is not easy to compute the waiting time distribution. So we proceed to

compute the expected waiting time of a tagged customer.

Expected waiting time, EWT (excluding service time) of such a customer

=
ρ

1 − ρ

(

1

µ
+

1

θ

)

(see [11])

j. Stochastic decomposition.

We haveE[N ] = E[N∞] + E[N0]
1−ρ

, where

E[N ] = Expected number of customers in the orbit= ρ(λ+ρθ)
θ(1−ρ)

E[N∞] = Expected number of customers in the queue excluding the customer re-

ceiving service,if any in the standard queue= ρ2/1 − ρ.

E[N0] =Expected number of customers in the orbit when the server is idle

=
∑

∞

i=0 ix(i, 0)= ρλ

θ

2.5. Cost Function

To construct the cost function we define the following costs as

C = fixed ordering cost

c1 = procurement cost/unit

c2 = holding cost of inventory/unit/unit time

In terms of these we define the expected total cost function as

ETC = F (s,Q) = [C +Qc1] ER + c2EI

That is

F (s,Q) = [C +Qc1]
λ

Q
+ c2[

Q+ 2s− 1

2
+ ρ].

ThenF (s,Q) is a separable and convex function ofs andQ namelyc1λ+ c2(s+ρ− 1
2
)

and Cλ
Q

+ c2Q

2
. We note thatF is linear ins. Since no shortage is permitted, the optimal

value ofs is zero. Again we notice that the optimal value ofQ is given by
√

2Cλ
c2

. Hence
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the optimal value ofS is also
√

2Cλ
c2

. Thus the expected minimum cost of the system is

√

2Cc2λ+
c2
2

(2ρ− 1) + c1λ.

2.6. The Mathematical Model and Analysis of Model II

We consider a single server queueing system to which primary customers arrive

according to a Poisson process with rateλ. If an arriving customer finds the server

busy, it leaves the service area and joins the orbit to repeat its attempts from there.

The inter retrial time follows an exponential distribution with linear rateiθ when there

are i customers in the orbit. We follow an(s, S) inventory policy. The lead time is

assumed to be zero. Service times are independently and identically distributed with

distribution functionG(·). Let β(z) =
∫

∞

0
e−ztdG(t) be Laplace-Stieltjes transform of

G(t). βk = (−1)kβ(k)(0) be thekth row moment of the service time,ρ = λβ1 is the

system load due to primary calls. The inter arrival times, the interval between repeated

attempts and service times are assumed to be mutually independent.

LetN(t) be the number of customers in the orbit andI(t) be the inventory level at

time t. Let ti be the time at which theith service completion occurs and

Ni = N(ti+) = Number of customers in the orbit immediately after theith departure

andIi be the corresponding inventory level. Thus{(Ni, Ii), i ≥ 1} forms a Markov

chain on the state spaceS ′ = ∪n=0l(n) wherel(n) = {(n, s), (n, s+1), . . . , (n, S−1)},

n ≥ 0.

Letγi = Number of primary customers which arrive to the system during the service

time of theith customer and

kn = P (γi = n) =

∫

∞

0

e−λt (λt)
n

n!
dG(t), n = 0, 1, . . .

whose generating functionK(z) =
∑

∞

n=0 knz
n = β(λ− λz). Its mean value

E(γi) =
∑

∞

n=0 nkn = ρ.

We have

Ni = Ni−1 −Bi + γi (2.6.1)
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where

Bi = 1 if the ith customer is from the orbit

= 0 if the ith customer is a primary customer.

Then the one step transition probabilities of the Markov chain

rmn = P{Ni = n|Ni−1 = m} are given by the formula

rmn =
λ

λ+mθ
kn−m +

mθ

λ+mθ
kn−m+1, m, n = 0, 1, 2, . . .

andrmn 6= 0 only form = 0, 1, . . . , n+ 1

The transition probability matrix associated with the Markov chain is given by

P =





















A00 A01 A02 · · ·

A10 A11 A12 · · ·

0 A21 A22 · · ·

0 0 A31 · · ·

· · · · · · · · ·





















where

Amn =































(n, s) (n, s+ 1) · · · (n, S − 1)

(m, s) 0 0 · · · 0 ∆

(m, s+ 1) ∆ 0 · · · 0 0

... 0 ∆ · · · 0 0

...

(m,S − 1) 0 0 · · · ∆ 0































and∆ =
λ

λ+mθ
kn−m +

mθ

λ+mθ
kn−m+1
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2.6.1. Ergodicity of{(Ni, Ii)}.

THEOREM 2.6.1. The embedded Markov chain{(Ni, Ii)} is ergodic if and only if

ρ < 1.

PROOF. To investigate the positive recurrence of the Markov chain we shall use

Foster’s criterion which states that an irreducible and aperiodic Markov Chain is pos-

itive recurrent if there exists a non-negative functionf(s′), s′ = (n, j) ∈ S ′, n ≥ 0,

s ≤ j ≤ S − 1, andǫ > 0 such that the mean drift

ηs′ = E[f(Ni+1, Ii+1) − f(Ni, Ii)|(Ni, Ii) = (n, j)]

is finite andηs′ ≤ −ǫ for all s′ ∈ S ′ except perhaps a finite number.

Let f(Ni, Ii) = Ni. Then

ηs′ = E(Ni+1 −Ni|Ni = n)

= E[−Bi+1 + γi+1|Ni = n], from (2.6.1).

=
−nθ

λ+ nθ
+ ρ

Allowing n→ ∞ we getlimn→∞ η(n,j) = −1 + ρ.

The limit is negative if and only ifρ < 1. Thusρ < 1 is sufficient condition for the

positive recurrence of the Markov Chain.

To analyze the non ergodicity we use the Theorem 1 in Sennott et.al. [62]. The

Markov chain{(Ni, Ii)} is non ergodic if the mean drift is bounded below,ηs′ <∞ for

all s′ ∈ S ′ and there exist an indexn0 such thatηs′ ≥ 0 for n ≥ n0. If ρ ≥ 1 it is clear

that ηs′ ≥ 0 for n ≥ 1. Further more, in this model the mean down drift is bounded

below sinceNi+1 −Ni ≥ −1. Hence the proof. �

23



THEOREM 2.6.2. The system state distribution has a product form solution given

by

ynj = lim
i→∞

P (Ni = n, Ii = j)

= yn

1

Q
, n ≥ 0, s ≤ j ≤ S − 1, Q = S − s

whereNi = Number of customers in the orbit immediately after theith service com-

pletion andIi is the corresponding inventory level.yn is the stationary probability that

there aren customers in theM |G|1 retrial queue.

PROOF. Let x = (x(0), x(1), . . .) be the stationary probability vector associated

with the Markov chain wherex(n) = (yns, yn,s+1, . . ., yn,S−1), n ≥ 0. The stationary

probabilities are given by the unique solution tox = xP andxe = 1 wheree is the

column vector with all entries equal to 1. That is

x(0)A00 + x(1)A10 = x(0)

x(0)A01 + x(1)A11 + x(2)A21 = x(1)

x(0)A02 + x(1)A12 + x(2)A22 + x(3)A32 = x(2)

· · · · · ·

(2.6.2)

Substituting x(n) = (yns, yn,s+1, . . . , yn,S−1), n ≥ 0,

= yn(
1

Q
,

1

Q
, . . . ,

1

Q
)

= yn

1

Q
(1, . . . , 1)

= yn

1

Q
e wheree = (1, . . . , 1) in (2.6.2)

we get the solution which turns out to be unique due to normalizing condition. Hereyn,

n ≥ 0 is the stationary probabilities that there aren customers at a departure epoch and

24



hence at arbitrary epoch in anM |G|1 retrial queue. Then the stationary probabilities of

the system at departure epoch is given byynj = yn
1
Q

for n ≥ 0, s ≤ j ≤ S − 1. �

THEOREM 2.6.3. For theM |G|1 retrial queue distribution of the number of cus-

tomers in the orbit at departure epoch is same as that of the number of customers at

arbitrary epoch. Hence we havelimt→∞ P (N(t) = n, I(t) = j) = yn
1
Q

, n ≥ 0,

s ≤ j ≤ S − 1.

2.6.2. Generating function. Let φ(z, x) be the generating function ofynj defined

by

φ(z, x) =
S−1
∑

j=s

∞
∑

n=0

znxjynj

=
1

Q

S−1
∑

j=s

xjφ(z)

whereφ(z) is the generating function of the stationary distributionyn of theM |G|1

retrial queue.

2.7. System Performance Measures

(1) Average inventory size EI is given by

EI =
∞

∑

n=0

S−1
∑

j=s

jynj =
S + s− 1

2

(2) Expected number of customers EC in the orbit is given by

EC =

∞
∑

n=1

nx(n)e =

∞
∑

n=1

nyn

1

Q
e

=
1

Q

∞
∑

n=1

nyn =
1

Q
(Expected number of customers

in theM |G|1 retrial queue).
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(3) Expected cycle length from replenishment to replenishment EG is given by=

E[time forQ services]+ E [duration of time the server is idle in betweenQ

services]

= β1Q+ [
1

λ+ (EC)θ
]Q.

2.8. Cost Function

To construct the cost function we define the costs as follows:

Let c1 = procurement cost/unit

c2 = holding cost of inventory/unit/unit time.

Then expected total cost functionF (s,Q) is

F (s,Q) =
C + c1Q

EG
+ c2EI

=
C + c1Q

[β1 + 1
λ+(EC)θ

]Q
+ c2EI

2.9. Numerical Illustration of Model I

The following tables show the effect of parameters on some performance measures.

Variations in arrival rateλ
λ ORR SRR EWT

2.0 5.333333 1.333333 2.666667
2.1 6.533333 1.470000 3.111111
2.2 8.066667 1.613333 3.666667
2.3 10.076190 1.763333 4.380952
2.4 12.800000 1.920000 5.333333
2.5 16.666667 2.083333 6.666667
2.6 22.533333 2.253333 8.666667
2.7 32.400000 2.430000 12.000000
2.8 52.266667 2.613333 18.666667

TABLE 2.1. µ = 3, θ = 1
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Variations in service rateµ

µ ORR SRR EWT
3.0 5.333333 1.333333 2.666667
3.1 4.809384 1.290323 2.404692
3.2 4.375000 1.250000 2.187500
3.3 4.009324 1.212121 2.004662
3.4 3.697479 1.176471 1.848739
3.5 3.428571 1.142857 1.714286
3.6 3.194444 1.111111 1.597222
3.7 2.988871 1.081081 1.494436
3.8 2.807018 1.052632 1.403509
3.9 2.645074 1.025641 1.322537

TABLE 2.2. λ = 2, θ = 1

Variations in retrial rateθ
θ ORR EWT

1.5 6.000000 2.000000
1.6 6.133333 1.916667
1.7 6.266667 1.843137
1.8 6.400000 1.777778
1.9 6.533333 1.719298
2.0 6.666667 1.666667
2.1 6.800000 1.619048
2.2 6.933333 1.575758
2.3 7.066667 1.536232
2.4 7.200000 1.500000

TABLE 2.3. λ = 2, µ = 3

2.9.1. Interpretations of the numerical results in the tables.In table 2.1, as the

arrival rateλ increases the number of customers in the orbit becomes larger so that the

overall retrial rate, successful retrial rate and expected waiting time increase. As the

service rateµ increases the customers will be served more rapidly so that the number

of customers in the orbit gets decreased and as a consequence the overall retrial rate,

successful retrial rate and expected waiting time will decrease (see table 2.2). Table

2.3 indicates that as the retrial rate increases the overall retrial rate increases and the

expected waiting time decreases.
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Maximum inventory level verses ETC

S
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FIGURE 2.1. λ = 5, µ = 6, C = 1000, c1 = 50, c2 = 25

Arrival rate verses ETC
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FIGURE 2.2. S = 25, C = 1000, c1 = 50, µ = 6, c2 = 25

Service rate verses ETC.
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FIGURE 2.3. S = 25, C = 1000, c1 = 50, λ = 5, c2 = 25
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2.9.2. Interpretation of the Graphs. The average cost per unit time, ETC is shown

in the figure 2.1 for various values ofS and for the given input parameters. The cost

decreases with increasing values ofS, attains a minimum and then increases. Figure

2.2 shows that as the arrival rateλ increases the cost also increases. From figure 2.3 we

conclude that as the service rateµ increases the cost decreases.
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CHAPTER 3

Comparison of Some Inventory Models Involving Positive Service

Time

3.1. Introduction

In the previous chapter we discussed two retrial inventory systems with positive

service time and zero lead time. In this chapter we propose to compare a few classical

queueing models with inventory where the service time and lead time are positive. This

is done by introducing what we call ‘local purchase’ at a demand epoch while stock is

out. In an inventory system if the lead time is positive shortages of item may occur.

At that time the newly arriving customer may or may not join the system. If he joins

his waiting time will increase which increases the holding cost of the customer. If he

leaves it is a loss to the system. In order to minimize the loss we adopt the method

of local purchase at a higher cost, if a customer arrives when the inventory is zero.

Krishnamoorthy and Raju [39] introducedN-policy to the(s, S) inventory system with

positive lead time and local purchase when the inventory level is zero. They assumed

that the service time is negligible.

The assumptions of this chapter are as follows: Arrival of customers to a single

server system form a Poisson process with rateλ and service times are exponentially

distributed with parameterµ. Each customer demands one unit of commodity. When

the inventory level depletes tos we place an order for fixed quantityQ = S − s. The

lead time follows an exponential distribution with parameterβ. In Model I, we assume

that customers do not join the system when the inventory level is zero. In Model II,

customers are assumed to join the system even when the inventory level is zero. In the

following models we make local purchase of the commodity, if a customer arrives when

the inventory level is zero in order to cut short the waiting time of customers. Local

purchases are made at a higher cost. Local purchase is assumed to be instantaneous. In
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models III and 1V local purchases are assumed to be made for oneunit ands units of

inventory, respectively, if a customer enters for service while the inventory level is zero.

Under the same situation in model V we assume that a local purchase ofS units is made

resulting in cancellation of the existing order as the maximum capacity of inventory is

S.

3.2. Mathematical Modelling of Model I

Customers arrive to the single server system according to a Poisson process of

rateλ. Service times are exponentially distributed with parameterµ. We follow an

(s, S) inventory system. The lead time is exponentially distributed with parameter

β. Customers do not join the system when the inventory level is zero. LetN(t)

be the number of customers in the system andI(t) be the corresponding inventory

level at timet. Then{(N(t), I(t)), t ≥ 0} is a LIQBD process with the state space

{(i, j), 0 ≤ j ≤ S : i ≥ 0}. The infinitesimal generatorQ of the process has the

following form.

Q =



























A00 A0 0 0 · · · · · ·

A2 A1 A0 0 · · · · · ·

0 A2 A1 A0 · · · · · ·

0 0 A2 A1 A0 · · ·

. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . .



























(3.2.1)

whereA00,A2, A1, A0 are square matrices of order(S + 1) and they are given by

A0 =





















0 0 0 · · · 0

0 λ 0 · · · 0

0 0 λ · · · 0

· · ·

0 0 0 · · · λ





















, A2 =





















0 0 · · · 0 0

µ 0 · · · 0 0

0 µ · · · 0 0

· · · · · ·

0 0 · · · µ 0
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A00 =









































0 1 · · · s s+ 1 · · · S − s . . . S

0 −β β

1 −(λ+ β) · · ·
...

. . .

s · · · −(λ+ β) β

s+ 1 −λ
...

. . .
...

. . .

S −λ









































A1 =







































0 1 · · · s s+ 1 · · · S − s . . . S

0 −β β

1 −ω · · ·
...

. . .

s · · · −ω β

s+ 1 −Ω
...

.. .
...

. . .

S −Ω







































whereω = λ+ β + µ, Ω = λ+ µ.

3.3. Mathematical Modelling of Model II

The only difference of this model from the first is that customers join the system

even when the inventory level is zero. Here also{(N(t), I(t)), t ≥ 0} is a LIQBD

process on the state space{(i, j), 0 ≤ j ≤ S, i ≥ 0}. Then the generator has the form

(3.2.1) where the blocksA00, A2, A1, A0 are square matrices of the same order(S + 1)

and they are given by

A00 =





−(λ+ β)Is+1 E1

0 −λIS−s



 whereE1 = [0 βIs+1](s+1)×(S−s)
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A0 = λIS+1, A2 =



























0 0 · · · 0 0

µ 0 · · · 0 0

0 µ · · · 0 0

· · · · · · · · ·

· · · · · · · · ·

0 0 · · · µ 0



























A1 =







































0 1 · · · s s+ 1 · · · S − s . . . S

0 −∆ β

1 −ω · · ·
...

. . .

s · · · −ω β

s+ 1 −Ω
...

. . .
...

. . .

S −Ω







































with ω = λ+ β + µ, Ω = λ+ µ, ∆ = λ+ β.

3.4. Analysis of Models I and II

3.4.1. System Stability.Define the generator matrixA (for each model) as

A = A0 + A1 + A2. Let π = (π0, π1, . . . , πS) be the stationary probability vector

associated with the matrixA whereπA = 0 andπe = 1. SolvingπA = 0 we get

πk =











(

µ+β

µ

)k−1
β

µ
π0, k = 1, . . . , s

(

µ+β

µ

)s
β

µ
π0, k = s+ 1, . . . , S − s

πS−s+k =
β

µ

[

(

µ+ β

µ

)s

−

(

µ+ β

µ

)k−1
]

π0, k = 1, . . . , s

π0 can be evaluated from

πe = 1 andπ0 =

[

1 + (S − s)

(

µ+ β

µ

)s
β

µ

]

−1

(3.4.1)
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THEOREM 3.4.1. The system is stable if and only ifλ < µ for model I andλ <

µ(1 − π0) for model II, where(3.4.1)givesπ0.

PROOF. From the well-known result (Neuts [53]) on positive recurrence ofQ, which

states thatπA0e < πA2e, the result follows. �

3.4.2. Computation of the steady-state probability vector ofQ.

LetX = (x(0), x(1), . . .) be the stationary probability vector associated withQ, where

x(i) is the probability vector associated with leveli. ThenXQ̄ = 0 andXe = 1.

It is well known that

x(i) = x(1)Ri−1 for i ≥ 2 (3.4.2)

whereR is the minimal non-negative solution of the matrix equationA0 + RA1 +

R2A2 = 0.

XQ̄ = 0 gives

x(0)A00 + x(1)A2 = 0 (3.4.3)

x(0)A0 + x(1)(A1 +RA2) = 0 (3.4.4)

The vectorsx(0) andx(1) can be obtained by solving the above equations subject to

the normalizing conditionXe = 1.Thenx(i), i ≥ 2 can be obtained from (3.4.2).

3.5. System Performance Measures

Let X = (x(0), x(1), . . .) be the steady-state probability vector ofQ (for each

model) andx(i), i ≥ 0 is partitioned asx(i) = (yi0, yi1, . . . , yiS). Then we have the

following expressions for the performance measures.

(1) Expected number of customers, EC in the system is given by

EC =
∞

∑

i=1

ix(i)e
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(2) Expected inventory level EI is given by

EI =

∞
∑

i=0

S
∑

j=1

jyij

(3) Expected re-order rate ER is given by

ER = µ
∞

∑

i=1

yi,s+1

(4) Expected rate of departure ED after completing service is given by

ED = µ

∞
∑

i=0

S
∑

j=1

yij

Model I

(5) Expected waiting time in the system EW is given by

EW =
EC
λ
.

Model II

(6) Expected waiting time in the system EW is given by

EW =
EC

λ[1 −
∑

∞

i=0 yi0]
.

Model I

(7) Expected number of customers EJ not joining the system when the inventory

level is zero is given by

EJ= λ

∞
∑

i=0

yi0.

3.6. Cost Function

To construct the cost function we define the following costs :

C = fixed ordering cost

C1 = procurement cost/unit

C2 = holding cost of inventory/unit/unit time
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C3 = holding cost of customer/unit/unit time

C4 = cost due to loss of customer/unit/unit time

In terms of these we define the expected total cost function ETC for each model as

follows.

Model I

ETC= [C +QC1]ER+ C2EI + C3EC+ C4EJ

Model II

ETC= [C +QC1]ER+ C2EI + C3EC

3.7. Mathematical Modelling of Model III

In addition to the assumption in second model, here it is assumed that a local pur-

chase of one unit of item is made at a higher cost, if a customer enters for service when

the inventory is zero. LetN(t) be the number of customers in the system andI(t) be

the corresponding inventory level at timet. Then{(N(t), I(t)), t ≥ 0} is a LIQBD

process with the state space{(0, j), 0 ≤ j ≤ S} ∪ {(i, j), 1 ≤ j ≤ S, i ≥ 1}. The

infinitesimal generatorQ of the process has the following form

Q =

















A00 A01 0 0 · · ·

A10 A1 A0 0 · · ·

0 A2 A1 A0 · · ·
...

...

















(3.7.1)

whereA00 is a square matrix of order(S+1). A01 is of order(S+1)×S,A10 of order

S × (S + 1). A0, A1, A2 are square matrices of orderS and they are given by

A00 =





−(λ+ β)Is+1 E1

0 −λIS−s



 whereE1 = [0 βIs+1](s+1)×(S−s)

A01 =





λe1

λIS



 whereej is a row vector with ‘1’ in thejth place and zeros elsewhere.
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A10 = [µIS 0];A1 =





−(λ + β + µ)Is E2

0 −(λ+ µ)IS−s





whereE2 = [0 βIs]s×(S−s); A0 = λIS and

A2 =



























µ 0 . . . 0 0

µ 0 . . . 0 0

0 µ . . . 0 0

· · · · · · · · ·

· · · · · · · · ·

0 0 . . . µ 0



























.

3.8. Mathematical Modelling of Model IV

Apart from the third model here we make a local purchase ofs units as a new

customer arrives for service when the inventory is zero.{(N(t), I(t)); t ≥ 0} is a

LIQBD process on the state space{(0, j), 0 ≤ j ≤ S} ∪ {(i, j), 1 ≤ j ≤ S, i ≥ 1}.

The infinitesimal generatorQ of the process has the form (3.7.1) where,A00, A10,

A1 ,A0 are the same as in Model III, andA01 andA2 are given byA01 =





λes

λIS



 where

ej is a row vector with ‘1’ in thejth place and zeros elsewhere, and

A2 =





















1 2 · · · s · · · S − 1 S

1 0 0 · · · µ · · · 0 0

2 µ 0 · · · 0 · · · 0 0

3 0 µ · · · 0 · · · 0 0
... · · · · · · · · ·

S 0 0 · · · 0 · · · µ 0





















.

3.9. Mathematical Modelling of Model V

The main difference of this model from those indicated in III, IV is that, in the

present one we make a local purchase to bring the level back toS, whenever a cus-

tomer arrives to an idle server with no inventory or at an epoch of departure of a
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customer resulting in zero inventory, but one or more customers in the queue. The

existing replenishment order is cancelled. This is done so as to ensure that replen-

ishment does not take place until the inventory on hand again goes down tos, as

otherwise the on hand inventory may exceed the maximum permissible. Here also

{(N(t), I(t)), t ≥ 0} is a Level Independent Quasi-Birth Death process on the state

space{(0, j), 0 ≤ j ≤ S} ∪ {(i, j), 1 ≤ j ≤ S, i ≥ 1}. The infinitesimal generatorQ

of the process has the form of (3.7.1) where all the matrices exceptA01 andA2 have the

same form as in Model III.

A01 =





λeS

λIS



 whereej is a row vector with ‘1’ in thejth place and zeros else-

where, andA2 =



























0 0 · · · 0 µ

µ 0 · · · 0 0

0 µ · · · 0 0

· · · · · · · · ·

· · · · · · · · ·

0 0 · · · µ 0



























S×S

.

3.10. Mathematical Analysis of Models III, IV and V

3.10.1. System Stability.Define the generator matrix (for each model)A as

A = A0 + A1 + A2, whereA0, A1, A2 are the corresponding matrices of each model.

Let π = (π1, π2, . . . , πS) be the stationary probability vector associated withA. Then

we haveπA = 0 andπe = 1. SolvingπA = 0 we get the following values for each

model.

Model III.

πk =











(

µ+β

µ

)k−2
β

µ
π1, k = 2, . . . , s

(

µ+β

µ

)s−1
β

µ
π1, k = s+ 1, . . . , Q+ 1

πQ+k =
β

µ

[

(

µ+ β

µ

)s−1

−

(

µ+ β

µ

)k−2
]

π1, k = 2, 3, . . . , s
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Model IV.

πk =











(

µ+β

µ

)k−1

π1, k = 1, 2, . . . , s
[(

µ+β

µ

)s

− 1
]

π1, k = s+ 1, . . . , Q+ 1

πQ+k =

[

(

µ+ β

µ

)s

−

(

µ+ β

µ

)k−1
]

π1, k = 2, 3, . . . , s

Model V.

πk =











(

µ+β

µ

)k−1

π1, k = 1, 2, . . . , s
(

µ+β

µ

)s

π1, k = s+ 1, . . . , Q+ 1

πQ+k =

[

(

µ+ β

µ

)s

−
β

µ

k−2
∑

m=0

(

µ+ β

µ

)m
]

π1, k = 2, . . . , s

Using the noramlising conditionπe = 1 we getπ1 and henceπ2, π3 . . . , πS. Here

Q = S − s

THEOREM 3.10.1.The system in each model is stable if and only ifλ < µ.

PROOF. For the positive recurrence ofQ we have the well known results of Neuts

(see [53]) which states thatπA0e < πA2e; simplifying we getλ < µ. �

3.10.2. Computation of the steady-state probability vectors ofQ.

LetX = (x(0), x(1), . . .) be the stationary probability vector associated withQ where

x(i) is the probability vector associated with leveli. ThenXQ = 0 andXe = 1. It is

well known that

x(i) = x(1)Ri−1 for i ≥ 2 (3.10.1)

whereR is the minimal non-negative solution of the matrix equationA0 + RA1 +

R2A2 = 0. x(0) andx(1) are calculated from the equations

x(0)A00 + x(1)A10 = 0 (3.10.2)

x(0)A01 + x(1)(A1 +RA2) = 0 (3.10.3)
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with the normalizing conditionXe = 1.

That is,x(0)e+ x(1)(1 −R)−1 = 1. Thenx(i), (i ≥ 2) can be found from (3.10.1)

3.11. System Performance Measures

Let X = (x(0), x(1), . . .) be the steady-state probability vector ofQ (for each

model) andx(i), i ≥ 0, be partitioned asx(i) = (yi0, yi1, . . . , yiS). Then we have

the following expressions for the performance measures.

(1) Expected number of customers, EC in the system is given by

EC =

∞
∑

i=1

ix(i)e

(2) Expected inventory level EI is given by

EI =
∞

∑

i=0

S
∑

j=1

jyij

(3) Expected re-order rate ER is given by

ER = µ

∞
∑

i=1

yi,s+1

(4) Expected rate of departure ED after completing service is given by

ED = µ
∞

∑

i=0

S
∑

j=1

yij

(5) Expected waiting time in the system EW is given by

EW =
EC
λ
.

(6) Expected rate of local purchase EL is given by

EL = λy00 + µ
∞

∑

i=2

yi1.
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In expressions under (1) to (6) above, it may be noted that the actual values differ for

the three models.

3.12. Cost Function and Numerical Examples

To construct the cost function we define the following costs :

C = fixed ordering cost

C1 = procurement cost/unit

C2 = holding cost of inventory/unit/unit time

C3 = holding cost of customer/unit/unit time

(1 + k)C1zEL=total local purchase cost ofz units of inventory with a hike ofk times

C1/unit.

In model V as we make a local purchase ofS units and thus cancelling the existing

order,the system losses the ordering cost already paid and(ER − EL)=the remaining

rate of ordering inventory.

In terms of these we define the expected total cost function ETC for each model as

follows.

Model III

ETC= [C +QC1]ER+ C2EI + C3EC+ (1 + l)C1EL

Model IV

ETC= [C +QC1]ER+ C2EI + C3EC+ (1 +m)s× C1EL

Model V

ETC= C ER+QC1[ER−EL]+C2EI+C3EC+(1+n)S×C1×EL wherel,m, n are

proper fractions andl > m > n > 0, as we know that when we make local purchase in

large quantities, the hike in price decreases.
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EC EI EW ER
Models

S I II I II I II I II
25 9.0 19.5869 14.4906 13.1847 2.0 4.5294 0.3189 0.2918
27 9.0 17.3797 15.5136 14.4835 2.0 4.0023 0.2827 0.2653
29 9.0 15.9311 16.5310 15.6790 2.0 3.6558 0.2539 0.2419
31 9.0 14.9078 17.5442 16.8153 2.0 3.4108 0.2304 0.2218
33 9.0 14.1473 18.5545 17.9147 2.0 3.2288 0.2108 0.2045
35 9.0 13.5599 19.5624 18.9896 2.0 3.0881 0.1944 0.1895
37 9.0 13.0926 20.5685 20.0476 2.0 2.9763 0.1803 0.1765
39 9.0 12.7120 21.5732 21.0934 2.0 2.8852 0.1681 0.1650

EC EI ER
Models

S III IV V III IV V III IV V
25 9.0 9.0 9.0 12.1954 12.6673 13.16070.2847 0.2709 0.2757
27 9.0 9.0 9.0 13.1151 13.5736 14.07450.2527 0.2417 0.2456
29 9.0 9.0 9.0 14.0299 14.4779 14.98560.2270 0.2181 0.2215
31 9.0 9.0 9.0 14.9412 15.3806 15.89480.2061 0.1988 0.2016
33 9.0 9.0 9.0 15.8498 16.2821 16.80240.1887 0.1825 0.1850
35 9.0 9.0 9.0 16.7563 17.1826 17.70880.1740 0.1688 0.1709
37 9.0 9.0 9.0 17.6591 18.0825 18.61440.1615 0.1569 0.1589
39 9.0 9.0 9.0 18.5628 18.9817 19.51920.1506 0.1467 0.1484

TABLE 3.1. Variations in maximum inventory levelS. λ = 4.5, µ = 5,
β = 1, s = 10

EC EI EW ER
Models

s I II I II I II I II
5 9.0 16.8534 25.1432 23.6914 2.0 3.8814 0.1067 0.1019
7 9.0 13.7409 25.8429 25.0709 2.0 3.1328 0.1128 0.1104
9 9.0 12.0304 26.6504 26.1997 2.0 2.7224 0.1192 0.1178
11 9.0 11.0033 27.5284 27.2480 2.0 2.4767 0.1260 0.1251
13 9.0 10.3537 28.4517 28.2692 2.0 2.3217 0.1333 0.1327
15 9.0 9.9293 29.4039 29.2809 2.0 2.2206 0.1413 0.1409
17 9.0 9.6456 30.3741 30.2889 2.0 2.1532 0.1501 0.1498
19 9.0 9.4529 31.3555 31.2950 2.0 2.1074 0.1600 0.1598

EI EL ER
Models

s III IV V III IV V III IV V
5 21.8936 22.3451 23.42590.1886 0.0532 0.03460.0953 0.0936 0.0962
7 22.4611 22.9327 23.77080.1338 0.0316 0.02430.1010 0.0990 0.1007
9 23.1466 23.5784 24.22340.0948 0.0202 0.01710.1069 0.1048 0.1060
11 23.9098 24.2756 24.77410.0671 0.0135 0.01210.1131 0.1110 0.1120
13 24.7234 25.0170 25.40820.0476 0.0092 0.00860.1197 0.1178 0.1186
15 25.5693 25.7953 26.11020.0338 0.0064 0.00610.1269 0.1252 0.1260
17 26.4354 26.6033 26.86560.0240 0.0045 0.00430.1349 0.1334 0.1341
19 27.3138 27.4348 27.66170.0172 0.0032 0.00320.1439 0.1425 0.1433

TABLE 3.2. Variations in reorder levels. λ = 4.5, µ = 5, β = 1, S = 50
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EC EI EW EJ
Models

β I II I II I II I
1.6 9.0 14.4953 13.8410 13.3544 2.0 3.3229 0.1335
1.8 9.0 12.6046 14.0933 13.8111 2.0 2.8681 0.1017
2.0 9.0 11.5167 14.3020 14.1217 2.0 2.6063 0.0787
2.2 9.0 10.8326 14.4773 14.3543 2.0 2.4416 0.0617
2.4 9.0 10.3754 14.6266 14.5387 2.0 2.3316 0.0490
2.6 9.0 10.0565 14.7551 14.6901 2.0 2.2548 0.0393
2.8 9.0 9.8266 14.8670 14.8175 2.0 2.1995 0.0318
3.0 9.0 9.6567 14.9650 14.9267 2.0 2.1585 0.0260

EI EL EW
Models

β III IV V III IV V III IV V
1.6 11.6532 11.9495 12.41310.1744 0.0570 0.04542.0 2.0 2.0
1.8 11.8616 12.1112 12.48650.1371 0.0470 0.03892.0 2.0 2.0
2.0 12.0350 12.2468 12.56100.1094 0.0392 0.03342.0 2.0 2.0
2.2 12.1815 12.3624 12.62770.0883 0.0330 0.02882.0 2.0 2.0
2.4 12.3069 12.4623 12.68980.0721 0.0280 0.02492.0 2.0 2.0
2.6 12.4154 12.5495 12.74760.0594 0.0239 0.02162.0 2.0 2.0
2.8 12.5102 12.6267 12.80140.0494 0.0205 0.01892.0 2.0 2.0
3.0 12.5937 12.6952 12.85140.0414 0.0178 0.01652.0 2.0 2.0

TABLE 3.3. Variations in replenishment rateβ. λ = 4.5, µ = 5, s = 5,
S = 25

EC EW EI ER
Models

µ I II I II I II I II
5.5 4.5000 6.3838 1.0000 1.4731 13.7573 13.6536 0.2655 0.2662
6.0 3.0000 4.0148 0.6667 0.9264 13.7578 13.6630 0.2896 0.2916
6.5 2.2500 2.9435 0.5000 0.6791 13.7578 13.6612 0.3138 0.3167
7.0 1.8000 2.3330 0.4000 0.5382 13.7578 13.6590 0.3379 0.3418
7.5 1.5000 1.9385 0.3333 0.4472 13.7578 13.6567 0.3621 0.3669
8.0 1.2857 1.6628 0.2857 0.3835 13.7578 13.6543 0.3863 0.3921
8.5 1.1250 1.4592 0.2500 0.3365 13.7578 13.6520 0.4104 0.4172
9.0 1.0000 1.3027 0.2222 0.3004 13.7578 13.6498 0.4345 0.4423

EC EL EW
Models

µ III IV V III IV V III IV V
5.5 4.5000 4.5000 4.5000 0.1949 0.0622 0.04821.0000 1.0000 1.0000
6.0 3.0000 3.0000 3.0000 0.1916 0.0611 0.04740.6667 0.6667 0.6667
6.5 2.2500 2.2500 2.2500 0.1888 0.0603 0.04670.5000 0.5000 0.5000
7.0 1.8000 1.8000 1.8000 0.1864 0.0595 0.04610.4000 0.4000 0.4000
7.5 1.5000 1.5000 1.5000 0.1843 0.0589 0.04560.3333 0.3333 0.3333
8.0 1.2857 1.2857 1.2857 0.1825 0.0583 0.04520.2857 0.2857 0.2857
8.5 1.1250 1.1250 1.1250 0.1808 0.0578 0.04480.2500 0.2500 0.2500
9.0 1.0000 1.0000 1.0000 0.1794 0.0573 0.04440.2222 0.2222 0.2222

TABLE 3.4. Variations in service rateµ. λ = 4.5, β = 1.5, s = 5, S = 25
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Variations in arrival rateλ
EC EI ED EW

Models
λ I II I II I II I II
4.4 1.6923 2.1562 13.8099 13.7164 4.4000 4.3999 0.3846 0.5077
4.6 1.9166 2.5298 13.7060 13.6016 4.5999 4.5999 0.4166 0.5720
4.8 2.1818 2.9996 13.6038 13.4875 4.7999 4.7999 0.4545 0.6527
5.0 2.4999 3.6059 13.5031 13.3738 4.9999 4.9997 0.4999 0.7565
5.2 2.8888 4.4155 13.4041 13.2597 5.2000 5.1991 0.5555 0.8948
5.4 3.3750 5.5469 13.3065 13.1419 5.3999 5.3963 0.6250 1.0876
5.6 3.9999 7.2323 13.2103 13.0063 5.5999 5.5843 0.7142 1.3739
5.8 4.8333 9.9987 13.1150 12.7930 5.7995 5.7330 0.8333 1.8419

EC EL EW
Models

λ III IV V III IV V III IV V
4.4 1.6923 1.6923 1.6923 0.1735 0.0559 0.04360.3846 0.3846 0.3846
4.6 1.9166 1.9166 1.9166 0.1997 0.0632 0.04860.4166 0.4166 0.4166
4.8 2.1818 2.1818 2.1818 0.2279 0.0709 0.05370.4545 0.4545 0.4545
5.0 2.4999 2.4999 2.4999 0.2583 0.0792 0.05910.4999 0.4999 0.4999
5.2 2.8888 2.8888 2.8888 0.2908 0.0878 0.06460.5555 0.5555 0.5555
5.4 3.3750 3.3750 3.3750 0.3254 0.0970 0.07030.6250 0.6250 0.6250
5.6 3.9999 3.99998 3.9999 0.3622 0.1065 0.07620.7142 0.7142 0.7142
5.8 4.8333 4.8333 4.8333 0.4010 0.1165 0.08220.8333 0.8333 0.8333

TABLE 3.5. µ = 7, β = 1.5, s = 5, S = 25

3.12.1. Numerical interpretation of the tables.

1. Effect of the maximum inventory levelS on various performance measures.

Table 3.1 shows that asS increases inventory level increases in all models. Due to

the presence of more inventory the number of customers and hence the waiting time,

decreases in Model II. Number of customers and waiting time is same in Model I

as customers do not join when the inventory level is zero. In Models III, IV and V,

due to local purchase there is no change in the number of customers. In all models

the time interval to reach the reorder point increases due to more inventory and thus

reorder rate decreases.

2. Effect of the reorder levels on various performance measures.

From table 3.2 we realise that the behaviour of the system performance measures

ass increases is similar to that corresponding toS, except that the reorder rate in-

creases, the time interval to reach the reorder point decreases and so more orders are
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placed. The rate of local purchase in models III, IV and V decrease whens increases

due to the availability of more inventory with the system.

3. Effect of the replenishment rateβ on various performance measures.

Whenβ increases as we expect the inventory level increases in all models. In

model II the number of customers and the waiting time decrease as inventory is

available more quickly. In model I no change for number of customers and waiting

time, while the number of customers do not join when the inventory level is zero

decreases due to the availability of more inventory with the system. The same rea-

soning can be given for the decrease in the rate of local purchase in models III, IV

and V. In model III, IV and V, the waiting time is not affected by the replenishment

rate, as we make local purchase if a customer arrives when the inventory is zero (see

table 3.3).

4. Effect of the service rateµ on various performance measures.

Table 3.4 shows that as the service rate increases the number of customers and

their waiting time decreases in all models. Re-order rate increases and the inventory

level does not change in models I and II. Local purchase decreases in models III, IV

and V.

5. Effect of the arrival rateλ on various performance measures.

As the arrival rate increases the number of customers and their waiting time in-

crease in all models. Inventory level decreases and the expected number of departure

increases asλ increases in models I and II. Expected number of local purchase in-

creases in models III, IV and V due to increased arrival (see table 3.5)
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Maximum inventory level verses ETC.
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FIGURE 3.1. λ = 4.5, µ = 5, β = 1, s = 10, C = 100, C1 = 20,
C2 = 1, C3 = 3, C4 = 7

3.12.2. Interpretation of the graphs. The objective is to compare the five mod-

els and identify the one which is more profitable. For this, we compute the expected

total cost per unit time by varying the parameters one at a time, keeping others fixed.

From figure 3.1 we observe that asS increases the expected cost decreases, this can

be attributed to the decrease in reorder rate. Figure 3.2 shows that the cost function is

convex ins for model II, for all other models it increases ass increases. Asβ increases
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Reorder level verses ETC
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FIGURE 3.2. λ = 4.5, µ = 5, β = 1, S = 50, C = 100, C1 = 20,
C2 = 1, C3 = 3, C4 = 7

the expected cost for all models, except model II increases (see figure 3.3). Figure 3.4

shows that as the arrival rate increases the cost also increases in all models.
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Replenishment rate verses ETC.
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FIGURE 3.3. λ = 4.5, µ = 5, s = 5, S = 25, C = 100, C1 = 20,
C2 = 1, C3 = 3, C4 = 7
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Arrival rate verses ETC
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FIGURE 3.4. µ = 7, β = 1.5, s = 5, S = 25, C = 100, C1 = 20,
C2 = 1, C3 = 3, C4 = 7

49



3.13. Conclusion

We can compare the models by checking their total expected cost for different pa-

rameters. Between models I and II the cost of model I is less. That is, it is better not to

allow the customers to join the system, when the inventory level is zero. Among models

III, IV and V, the expected total cost of model IV is least, that is, it is best to make a

local purchase ofs units of inventory if a customer enters for service when the inven-

tory level is zero. Again among all models model IV is more profitable. We compare

all models with the given cost function and for given values of parameters.
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CHAPTER 4

Analysis and Comparison of Some Retrial Inventory Models

4.1. Introduction

Retrial queues (queues with repeated calls, returning customersetc.) are a type

of network with re-servicing after blocking. Inventory systems in which arriving cus-

tomers who find all items are out of stock, may retry for the items after a period of time,

are called retrial inventory. Artalejo, Krishnamoorthy and Lopez-Herrero [9] were the

first to attempt to study inventory policies with positive lead time and retrial of customer

who could not get the items during their earlier attempts. In 2007, Parthasarathy and

Sudheesh [56] obtained transient solution using continued fraction approach to a single

server retrial queue in which arrival and retrial rates are state dependent.

This chapter is an extension of the last chapter. Here we introduce retrial of unsat-

isfied customers into the models discussed in chapter 3, with the assumption that there

is no waiting space for the customers at the service station except the one under going

service. Customers arrive to a single server system according to a Poisson process with

rateλ and service times are exponentially distributed with parameterµ. One unit of

item is demanded by each customer. An order for replenishment ofQ = S− s quantity

of goods is placed when the inventory level depletes tos. The lead time follows an

exponential distribution with parameterβ. An arriving customer who finds the server

busy, proceeds to an orbit of infinite capacity and tries its luck to access the server from

there. The inter-retrial times follow an exponential distribution with constant rateθ. In

Model I, customers do not join the orbit when the inventory level is zero. In Model

II, customers join the orbit even when the inventory level is zero. In Model III and IV

it is assumed that a local purchase of one unit ands units of the item, respectively, at

a higher cost if a customer (orbital customer or primary customer) enters for service

when the inventory level is zero. In Model V, under the same situation a local purchase
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of S units of the item is made cancelling the existing order. The time required to make

a local purchase is assumed to be negligible. Local purchase is made to decrease the

waiting time of the customers thereby earning the goodwill of the customers.

4.2. Mathematical Formulation of Model I

Problem I is described as follows: Arrival of customer to a single server system

forms a Poisson process with rateλ. Service times are identically and independently

distributed exponential random variables with parameterµ. When the inventory level

depletes tos due to demands, an order for replenishment forQ = S − s quantity is

placed whereS is the maximum capacity of the system. The lead time is exponentially

distributed with parameterβ. An arriving customer, who finds the server busy, proceeds

to an orbit of infinite capacity and tries its luck from there. Customers do not join the

orbit when the inventory level is zero. The inter retrial times follow an exponential

distribution with parameterθ.It is assumed that retrial rate is the same,independent of

the number of customers in the orbit. This is possible, for example, by assuming that a

queue of customers is formed in the orbit (see Gomez-Corral [20])

Let N(t) be the number of customers in the orbit,I(t) be the inventory level and

C(t) , the server state at timet.

HereC(t) =











1 if the server is busy

0 if the server is idle

Then{(N(t), C(t), I(t)), t ≥ 0} is a Continuous Time Markov Chain (CTMC) on the

state space{(i, 0, j), 0 ≤ j ≤ S} ∪ {(i, 1, j), 1 ≤ j ≤ S}, i ≥ 0. The above model

can be studied as Linearly Independent Quasi-Birth and Death (LIQBD) process. The

infinitesimal generatorQ of the process has the following form
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Q =





















A10 A0 0 0 0 · · ·

A2 A11 A0 0 0 · · ·

0 A2 A11 A0 0 · · ·

0 0 A2 A11 A0 · · ·
...

...





















(4.2.1)

whereA10, A11, A0, A2 are square matrices of order(2S + 1) and they are given by

A0 =





0 0

0 λIS



,A2 =





0 E1

0 0



 where

E1 =





0

θIS





(S+1)×S

A1i =



























M1 0 M2 M3 0 0

0 M4 0 0 M5 0

0 0 M6 0 0 M7

M8 0 0 M9 0 M10

M11 M12 0 0 M13 0

0 M14 M15 0 0 M16



























i = 0, 1 (4.2.2)

whereM1 is a square matrix of order(s + 1) whose non-zero entries are given by

M1(1, 1) = −β andM1(j, j) = −(λ + β + iθ), j = 2 to s+ 1,

M2 is a square matrix of order(s+1) whose non-zero entries are given byM2(j, j) = β,

j = 1 to s+ 1,

M3 is of order(s + 1) × s whose non-zero entries are given byM3(j + 1, j) = λ, for

j = 1 to s,

M4 is a square matrix of order(S − 2s − 1) where the non-zero entries are given by

M4(j, j) = −(λ + iθ), j = 1 to S − 2s− 1,

M5 is a square matrix of order(S − 2s − 1) whose non-zero entries are given by

M5(j, j) = λ, j = 1 to S − 2s− 1,

M6 is a square matrix of order(s + 1) where the non-zero elements are given by
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M6(j, j) = −(λ + iθ),

M7 is a square matrix of order(s+1) whose non-zero entries are given byM7(j, j) = λ,

M8 is of orders× (s+ 1) whose non-zero elements are given by

M8(j, j) = µ, j = 1 to s,

M9 is a square matrix of orders whose non-zero entries are given by

M9(j, j) = −(λ + µ+ β), j = 1 to s,

M10 is of orders× (s+ 1) where non-zero entries are given by

M10(j, j + 1) = β, j = 1 to s,

M11 is of order(S − 2s− 1) × (s+ 1) whose non-zero entries are given by

M11(1, s+ 1) = µ,

M12 is a square matrix of order(S − 2s− 1) where non-zero elements are given by

M12(j + 1, j) = µ, j = 1 to S − 2s− 2,

M13 is a square matrix of order(S − 2s− 1) whose non-zero entries are given by

M13(j, j) = −(λ+ µ), j = 1 to S − 2s− 1,

M14 is of order(s+ 1) × (S − 2s− 1) where non-zero elements are given by

M14(1, S − 2s− 1) = µ,

M15 is a square matrix of order(s+ 1) whose non-zero entries are given by

M15(j + 1, j) = µ, j = 1 to s,

M16 is a square matrix of order(s+ 1) where non-zero entries are given by

M16(j, j) = −(λ+ µ), j = 1 to s+ 1,.

4.3. Mathematical Formulation of Model II

The only difference of this model from the first one is that customers join the orbit

even when the inventory level is zero. Here also{(N(t), C(t), I(t)), t ≥ 0} is a CTMC

on the state space{(i, 0, j), 0 ≤ j ≤ S} ∪ {(i, 1, j), 1 ≤ j ≤ S},i ≥ 0. Then the

generator has the form (4.2.1) whereA10, A11, A0, A2 are square matrices of order

(2S + 1) and they are given byA0 =





E2 0

0 λIS



 whereE2 =





λe1

0





(S+1)×(S+1)

,

whereej is a row vector with 1 in thejth place and zeros elsewhere.A2 is the same
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as in the problem I, andA1i, i = 0, 1 have the form of (4.2.2) where all the sub-

matrices, exceptM1 is same as in the first model and hereM1(1, 1) = −(λ + β) and

M1(j, j) = −(λ + β + iθ), j = 2 to s+ 1 andM1 is of order(s+ 1) × (s+ 1)

4.4. Analysis of Models I and II

4.4.1. System stability.Define the generator matrixA(for each model)asA = A0+

A11 + A2 andπ = (π(0, 0), π(0, 1), · · · , π(0, S), π(1, 1), π(1, 2), · · · , π(1, S)) where

π is a the steady state probability vector ofA. From the relationπA = 0 we get the

following solution:

π(1, k) =







































(

λ+β+θ

µ

)k−1
(

µ+β

λ+θ

)k−1 β

µ
π(0, 0),

for k = 1, 2, . . . , s
(

λ+β+θ

µ

)s
(

µ+β

λ+θ

)s β

µ
π(0, 0),

for k = s + 1, . . . , Q

π(1, Q+ k) = π(1, Q) − π(1, k), k = 1, 2, . . . , s

π(0, k) =







































(

λ+β+θ

µ

)k−1
(

µ+β

λ+θ

)k β

µ
π(0, 0),

for k = 1, 2, . . . , s
(

λ+β+θ

µ

)s
(

µ+β

λ+θ

)s β

λ+θ
π(0, 0),

for k = s + 1, . . . , Q

π(0, Q+ k) =
µ

λ+ θ
π(1, Q) − π(0, k), k = 1, 2, . . . , s

π(0, 0) can be obtained fromπe = 1

THEOREM 4.4.1. The system in model I is stable if and only ifλ2 < θ(µ− λ). The

system in model II is stable if and only if

λ

(

µ

λ+ β + θ

)s

< Q

(

β + µ

λ+ θ

)s

β

(

θ

λ+ θ
−
λ

µ

)

.
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PROOF. For the positive recurrence ofQ we must haveπA0e < πA2e (see Neuts

[53]). Simplifying this we get the indicated results. �

4.4.2. Steady-state analysis.LetX = (x(0), x(1), . . .) be the steady state proba-

bility vector ofQ. ThenXQ̄ = 0 together withXe = 1 result inx(i) having the matrix

geometric solution:

x(i) = x(1)Ri−1 for i ≥ 2 (4.4.1)

whereR is the minimal non negative solution of the matrix equationA0 + RA11 +

R2A2 = 0. x(0) andx(1) are calculated from the equations

x(0)A10 + x(1)A2 = 0 (4.4.2)

x(0)A0 + x(1)(A11 +RA2) = 0 (4.4.3)

subject to the normalizing conditionXe = 1,

that is,x(0)e+ x(1)(1 − R)−1 = 1.

Having found,x(1) we can findx(i), i ≥ 2 from (4.4.1).

4.5. System Performance Measures

Let X = (x(0), x(1), . . .) be the steady-state probability vector ofQ(for each

model) andx(i), i ≥ 0, be partitioned as

x(i) = (yi00, yi01, . . . , yi0S, yi11, yi12, . . . yi1S).

Then we have the following performance measures.

(1) Expected number of customers in the orbit EC is given by

EC =
∞

∑

i=1

ix(i)e

(2) Expected inventory level EI is given by

EI =
∞

∑

i=1

S
∑

j=1

j(yi0j + yi1j)
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(3) Expected re-order rate ER is given by

ER = µ

∞
∑

i=1

yi,1,s+1

(4) Overall retrial rate OR is given by

OR = θ
∞

∑

i=1

x(i)e

(5) Successful retrial rate SR is given by

SR= θ

∞
∑

i=1

S
∑

j=1

yi,0,j

(6) Probability that the server is busy is given by

P (B) =
∞

∑

i=1

S
∑

j=1

yi1j

Model I

(7) Expected waiting time EW is given by EW =EC
λ

.

Model II

(8) Expected waiting time EW is given by EW

=
EC

λ[1 −
∑

∞

i=0 yi00]
.

Model I

(9) Expected number of customers EJ not joining the orbit when the inventory

level is zero, is given by

EJ= λ
∞

∑

i=0

yi00

4.6. Cost Function

To construct cost function we define the costs as follows:

C = fixed ordering cost
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C1 = procurement cost/unit

C2 = holding cost of inventory/unit/unit time

C3 = shortage cost of inventory/unit/unit time

The total expected cost function ETC is given as follows:

Model I

ETC= [C +QC1]ER+ C2EI + C3EJ

Model II

ETC= [C +QC1]ER+ C2EI

4.7. Mathematical Formulation of Model III

In addition to assumptions in problem II, here a local purchase of one unit of the

commodity is made if a customer enters for service when the inventory level is zero.

LetN(t) be the number of customers in the orbit,I(t) be the inventory level andC(t)

be the server state at timet.

C(t) =











1 if the server is busy

0 if the server is idle

Then{(N(t), C(t), I(t)), t ≥ 0} is a CTMC on the state space.

{(i, 0, j), 0 ≤ j ≤ S} ∪ {(i, 1, j), 1 ≤ j ≤ S}, i ≥ 0.

Then the generator has the form (4.2.1) whereA10, A11, A0, A2 are square matrices of

order(2S + 1) and they are given by

A0 =





0 0

0 λIS



 , A2 =





0 E3

0 0



 , whereE3 =





















θ 0 · · · 0

θ 0 · · · 0

0 θ · · · 0

· · · · · ·

0 0 · · · θ





















(S+1)×S

;
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A1i, i = 0, 1 is given by (4.2.2) in which all the sub-matrices exceptM1 andM3 are

same and they are given as follows:M1 a square matrix of order(s+1) whose non-zero

entries are given byM1(j, j) = −(λ+β+ iθ), j = 1 to s+1; M3 is of order(s+1)×s

where non-zero entries are given byM3(1, 1) = λ andM3(j + 1, j) = λ, j = 1 to s.

4.8. Mathematical Formulation of Model IV

In this model we make a local purchase ofs units of inventory if a customer enters

for service when the inventory level is zero. Here also{(N(t), C(t), I(t)), t ≥ 0} is a

CTMC with the state space

{(i, 0, j), 0 ≤ j ≤ S} ∪ {(i, 1, j), 1 ≤ j ≤ S}, i ≥ 0.

The infinitesimal generatorQ has the form of (4.2.1) whereA10,A11,A0,A2 are square

matrices of order(2S + 1) and they are given by

A0 =





0 0

0 λIS



, A2 =





0 E4

0 0



 where

E4 =

































1 2 · · · s · · · S

0 0 0 · · · θ · · · 0

1 θ 0 · · · 0 · · · 0

2 0 θ · · · 0 · · · 0
...
... · · · · · ·
... · · · · · ·

S 0 0 · · · 0 · · · θ

































(S+1)×S

,

A1i, i = 0, 1 is given by (4.2.2), where all sub-matrices exceptM1 andM3 are same in

the first model and they are given as follows.

M1 is a square matrix of order(s+ 1) whose non zero entries are given by

M1(j, j) = −(λ + β + iθ), j = 1 to s+ 1.
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M3 is of order(s+ 1) × s whose non zero entries are given by

M3(1, s) = λ,M3(j + 1, j) = λ ,j = 1 to s.

4.9. Mathematical Formulations of Model V

The main difference of this model from third and fourth model is that here we make

a local purchase of maximum capacity of inventoryS units, if a customer enters for

service while the inventory is zero, which results in the cancellation of the existing

order,as the maximum capacity of the inventory isS. The infinitesimal generatorQ has

the form of (4.2.1) whereA10, A11, A2, A0 are square matrices of order(2S + 1) they

are given byA0 =





0 0

0 λIS



, A2 =





0 E5

0 0



 where

E5 =



























0 0 · · · θ

θ 0 · · · 0

0 θ · · · 0

· · · · · ·

· · · · · ·

0 0 · · · θ



























(S+1)×S

A0i =



























M1 0 M2 M3 0 M17

0 M4 0 0 M5 0

0 0 M6 0 0 M7

M8 0 0 M9 0 M10

M11 M12 0 0 M13 0

0 M14 M15 0 0 M16



























i = 0, 1.

where all the sub matricesM2 to M16 is same as those in Model I.M1 andM17 are

given as follows:

M1 is a square matrix of order(s+ 1) where the non zero entries are given by

M1(j, j) = −(λ + β + iθ), j = 1 to s+ 1.
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M17 is also a square matrix of order(s + 1) whose only non zero entry is given by

M17(1, s+ 1) = λ.

4.10. Analysis of Models III,IV and V

4.10.1. System stability.Define the generator matrixA (for each model) as

A = A0+A11+A2 andπ = (π(0, 0), π(0, 1), · · · , π(0, S), π(1, 1), π(1, 2), · · · , π(1, S))

whereπ is the steady state probability vector ofA. From the relationπA = 0 we get

the following values for each model.

Model III.

π(1, 1) =
λ+ β + θ

µ
π(0, 0),

π(1, k) =







































(

λ+β+θ

µ

)k−1
(

µ+β

λ+θ

)k−2 [(

µ+β

λ+θ

)(

λ+β+θ

µ

)

− 1
]

π(0, 0),

k = 2, . . . , s
(

λ+β+θ

µ

)s
(

µ+β

λ+θ

)s−1
[

(

µ+β

λ+θ

)

(

λ+β+θ

µ

)

− 1
]

π(0, 0),

k = s+ 1, . . . , Q

π(1, Q+ k) = π(1, Q) +
λ+ θ

µ
π(0, 0) − π(1, k)

k = 1, 2, . . . , s,

π(0, k) =







































(

λ+β+θ

µ

)k−1
(

µ+β

λ+θ

)k−1
[

(

µ+β

λ+θ

)

(

λ+β+θ

µ

)

− 1
]

π(0, 0),

k = 1, 2, . . . , s

(

λ+β+θ

λ+θ

)s
(

µ+β

µ

)s−1 [

(

µ+β

λ+θ

)

(

λ+β+θ

µ

)

− 1
]

π(0, 0),

k = s+ 1, . . . , Q

π(0, Q+ k) =
µ

λ+ θ
π(1, Q) + π(0, 0) − π(0, k), k = 1, 2, . . . , s− 1

π(0, S) =
µ

λ+ θ
π(1, Q) − π(0, s)
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Model IV.

π(1, k) =







































(

λ+β+θ

µ

)k
(

µ+β

λ+θ

)k−1
π(0, 0),

for k = 1, 2, . . . , s
(

λ+β+θ

µ

) [

(

µ+β

λ+θ

)s
(

λ+β+θ

µ

)s

− 1
]

π(0, 0),

for k = s + 1, . . . , Q

π(1, Q+ k) = π(1, Q) +
λ+ θ

µ
π(0, 0) − π(1, k), for k = 1, . . . , s

π(0, k) =

(

λ+ β + θ

µ

)k (

µ+ β

λ+ θ

)k

π(0, 0), for k = 1, . . . , s− 1

π(0, s) =

[(

(
µ+ β

λ+ θ
)(
λ+ β + θ

µ
)

)s

− 1

]

π(0, 0),

π(0, k) =
λ+ β + θ

λ+ θ
π(0, s), k = s+ 1, . . . , Q

π(0, Q+ k) =
µ

λ+ θ
π(1, Q) + π(0, 0) − π(0, k), k = 1, . . . , s− 1

π(0, S) =
µ

λ+ θ
π(1, Q) − π(0, s)

Model V.

π(1, k) =







































(

λ+β+θ

µ

)k
(

µ+β

λ+θ

)k−1
π(0, 0),

for k = 1, . . . , s
(

λ+β+θ

µ

)s+1
(

µ+β

λ+θ

)s
π(0, 0),

for k = s+ 1, . . . , Q

π(1, Q+ k) = π(1, Q) +
λ+ θ

µ
π(0, 0) − π(1, k), k = 1, . . . , s

π(0, k) =























(

λ+β+θ

µ

)k
(

µ+β

λ+θ

)k
π(0, 0), k = 1, . . . , s

µ

λ+θ

(

λ+β+θ

µ

)s+1
(

µ+β

λ+θ

)s
π(0, 0),

for k = s+ 1, . . . , Q

62



π(0, Q+ k) =
µ

λ+ θ
π(1, Q) + π(0, 0) − π(0, k), k = 1, . . . , s− 1

π(0, S) =
µ

λ+ θ
π(1, Q) − π(0, s)

We can findπ(0, 0) from the equationπe = 1. HereQ = S − s.

THEOREM 4.10.1.The systems in models 3 to 5 are stable if and only if

λ2 < θ(µ− λ).

PROOF. For the positive recurrence ofQ we must haveπA0e < πA2e (see Neuts

[53]). Simplifying this leads to the above condition. �

4.10.2. Steady-state analysis.LetX = (x(0), x(1), . . .) be the steady state prob-

ability vector ofQ(for each model). ThenXQ̄ = 0,Xe = 1 andx(i) are given by

x(i) = x(1)Ri−1 for i ≥ 2 (4.10.1)

whereR is the minimal non negative solution of the matrix equationA0 + RA11 +

R2A2 = 0. x(0) andx(1) are calculated from the equation

x(0)A10 + x(1)A2 = 0 (4.10.2)

x(0)A0 + x(1)(A11 +RA2) = 0 (4.10.3)

subject to the normalizing conditionXe = 1,

That is,x(0)e+ x(1)(1 −R)−1e = 1. Then we can findx(i), i ≥ 2 from (4.10.1)

4.11. System Performance Measures

Let X = (x(0), x(1), . . .) be the steady-state probability vector ofQ(for each

model)andx(i), i ≥ 0 partitioned as

x(i) = (yi00, yi01, . . . , yi0S, yi11, yi12, . . . yi1S).

Then we have the following performance measures:
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(1) Expected number of customers EC in the orbit is given by

EC =

∞
∑

i=1

ix(i)e

(2) Expected inventory level EI is given by

EI =
∞

∑

i=1

S
∑

j=1

j(yi0j + yi1j)

(3) Expected re-order rate ER is given by

ER = µ

∞
∑

i=1

yi,1,s+1

(4) Overall retrial rate OR is given by

OR = θ
∞

∑

i=1

x(i)e

(5) Successful retrial rate SR is given by

SR= θ

∞
∑

i=1

S
∑

j=0

yi0j

(6) Probability that the server is busy is given by

P (B) =

∞
∑

i=1

S
∑

j=1

yi1j

(7) Expected waiting time EW is given by EW =EC
λ

.

(8) Expected rate of local purchase EL is given by

EL = λ
∞

∑

i=0

yi00 + θ
∞

∑

i=1

yi00
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4.12. Cost Function and Numerical Examples

To construct the cost function we define the cost as follows:

C = fixed ordering cost

C1 = procurement cost/unit

C2 = holding cost of inventory/unit/unit time

(1+k)C1zEL=total cost of local purchase ofz units of inventory with a hike ofk times

C1/unit.

In model V as we make a local purchase ofS units and thus cancelling the existing

order,the system losses the ordering cost already paid and(ER − EL)=the remaining

rate of ordering inventory.

The total expected cost function ETC is given as follows.

Model III

ETC= [C +QC1]ER+ C2EI + (1 + l)C1 EL

Model IV

ETC= [C +QC1]ER+ C2EI + (1 +m)C1 × s× EL

Model V

ETC= C ER+QC1[ER−EL]+C2EI+(1+n)C1 ×S× EL, wherel,m, n are proper

fractions andl > m > n > 0, when the local purchase is made in higher quantity the

hike in price decreases.
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EC EI ER EW
Models

S I II I II I II I II
25 3.0796 8.0407 8.3948 12.7346 0.0508 0.0660 3.0796 8.5173
27 3.0774 7.0780 9.0775 13.8438 0.0454 0.0585 3.0774 7.4426
29 3.0750 6.4241 9.7462 14.9201 0.0410 0.0524 3.0750 6.7163
31 3.0729 5.9516 10.4061 15.9766 0.0373 0.0475 3.0728 6.1938
33 3.0710 5.5946 11.0643 17.0200 0.0342 0.0434 3.0709 5.8005
35 3.0694 5.3155 11.7220 18.0544 0.0315 0.0399 3.0693 5.4940
37 3.0680 5.0914 12.3794 19.0821 0.0292 0.0370 3.0679 5.2487

EC EI EL
Models

S III IV V III IV V III IV V
25 3.0481 3.0481 3.0481 8.5524 13.3693 14.01300.0110 0.0440 0.0093
27 3.0481 3.0481 3.0481 9.2298 14.3772 15.01670.0097 0.0391 0.0082
29 3.0481 3.0481 3.0481 9.9033 15.3688 16.01010.0087 0.0352 0.0074
31 3.0481 3.0481 3.0481 10.5737 16.3502 16.99630.0079 0.0320 0.0067
33 3.0481 3.0481 3.0481 11.2420 17.3346 17.98470.0072 0.0293 0.0061
35 3.0481 3.0481 3.0481 11.9085 18.3228 18.97610.0067 0.0270 0.0056
37 3.0481 3.0481 3.0481 12.5738 19.3135 19.96930.0062 0.0251 0.0052

TABLE 4.1. Variations in Maximum inventory levelS. λ = 1, µ = 1.7,
β = .2, θ = 3, s = 10

EC EI EW ER
Models

s I II I II I II I II
4 3.0888 8.9757 12.1534 18.1750 3.0888 9.6208 0.0508 0.0660
6 3.0794 6.8542 12.4594 18.9329 3.0794 7.2119 0.0454 0.0585
8 3.0720 5.6123 12.8708 19.7436 3.0720 5.8246 0.0411 0.0524
10 3.0662 4.8275 13.3651 20.6148 3.0661 4.9606 0.0337 0.0475
12 3.0618 4.3092 13.9257 21.5322 3.0618 4.3962 0.0342 0.0434
14 3.0584 3.9566 14.5391 22.4816 3.0584 4.0154 0.0315 0.0399
16 3.0557 3.7118 15.1721 23.4521 3.0557 3.7528 0.0292 0.0370

EI EL ER
Models

s III IV V III IV V III IV V
4 12.2697 19.0075 20.42610.0549 0.0215 0.01170.0202 0.0203 0.0267
6 12.6075 19.5254 20.65530.0409 0.0125 0.00860.0217 0.0220 0.0283
8 13.0518 20.1237 20.99700.0304 0.0081 0.00630.0235 0.0236 0.0304
10 13.5697 20.8027 21.46160.0201 0.0056 0.00470.0256 0.0254 0.0329
12 14.1375 21.5643 22.05110.0169 0.0040 0.00350.0279 0.0274 0.0359
14 14.7386 22.4107 22.76360.0126 0.0029 0.00270.0304 0.0297 0.0393
16 15.3615 23.2966 23.55390.0095 0.0022 0.00210.0330 0.0323 0.0428

TABLE 4.2. Variations in re-order levels. λ = 1, µ = 1.7, β = .2,
θ = 3, S = 40
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EI EW EJ EC
Models

β I II I II I I II
0.3 9.4650 14.6231 3.0580 3.8882 0.0124 3.0580 3.8286
0.4 10.0335 15.4863 3.0516 3.2780 0.0042 3.0517 3.2615
0.5 10.3793 15.9950 3.0494 3.1256 0.0016 3.0494 3.1198
0.6 10.6103 16.3313 3.0486 3.0774 0.0006 3.0487 3.0751
0.7 10.7755 16.5706 3.0483 3.0601 0.0003 3.0484 3.0591
0.8 10.8995 16.7496 3.0482 3.0533 0.0001 3.0482 3.0529
0.9 10.9960 16.8887 3.0481 3.0504 0.0001 3.0482 3.0503
1.0 11.0733 16.9999 3.0481 3.0492 0.0000 3.0482 3.0491

EL EW EI
Models

β III IV V III IV V III IV V
0.3 0.0138 0.0043 0.0040 3.0481 3.0481 3.04819.5748 14.5876 14.7974
0.4 0.0049 0.0018 0.0018 3.0481 3.0481 3.048110.1216 15.3125 15.3862
0.5 0.0019 0.0008 0.0008 3.0481 3.0481 3.048110.4565 15.7839 15.8117
0.6 0.0008 0.0003 0.0003 3.0481 3.0481 3.048110.6814 16.1110 16.1222
0.7 0.0003 0.0001 0.0001 3.0481 3.0481 3.048110.8427 16.3496 16.3543
0.8 0.0001 0.0000 0.0000 3.0481 3.0481 3.048110.9639 16.5307 16.5328
0.9 0.0000 0.0000 0.0000 3.0481 3.0481 3.048111.0584 16.6727 16.6737
1.0 0.0000 0.0000 0.0000 3.0481 3.0481 3.048111.1341 16.7870 16.7875

TABLE 4.3. Variations in replenishment rateβ. λ = 1, µ = 1.7, θ = 3,
s = 10 S = 25

EC EW ER EJ
Models

λ I II I II I II I
0.4 0.1408 0.1494 0.3522 0.3744 0.0079 0.0266 0.0003
0.5 0.2535 0.2865 0.5083 0.5763 0.0126 0.0333 0.0012
0.6 0.4304 0.5293 0.7215 0.8923 0.0185 0.0400 0.0034
0.7 0.7124 0.9750 1.0291 1.4201 0.0255 0.0466 0.0078
0.8 1.1851 1.8618 1.5101 2.3977 0.0336 0.0533 0.0152
0.9 2.0653 3.9763 2.3646 4.6104 0.0428 0.0599 0.0265
1.0 4.1094 12.3876 4.2925 13.0882 0.0531 0.0645 0.0426

EC EW EL
Models

λ III IV V III IV V III IV V
0.4 0.1401 0.1401 0.1401 0.3503 0.3503 0.35030.0004 0.0004 0.0004
0.5 0.2513 0.2513 0.2513 0.5027 0.5027 0.50270.0014 0.0011 0.0010
0.6 0.4253 0.4253 0.4253 0.7088 0.7088 0.70880.0037 0.0022 0.0020
0.7 0.7027 0.7027 0.7027 1.0038 1.0038 1.00380.0083 0.0038 0.0034
0.8 1.1692 1.1692 1.1692 1.4615 1.4615 1.46150.0161 0.0058 0.0051
0.9 2.0420 2.0420 2.0420 2.2689 2.2689 2.26890.0281 0.0081 0.0071
1.0 4.0784 4.0784 4.0784 4.0784 4.0784 4.07840.0453 0.0107 0.0091
TABLE 4.4. Variations in arrival rateλ. λ = 1, µ = 1.7, β = .2, s = 10
S = 25.
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4.12.1. Interpretations of the Numerical Results.

1. Effect of the maximum inventory levelS on various performance measures:

As S increases in all models considered, expected inventory level increases. The

number of customers and hence the waiting time decrease in model I and II. As more

inventory is with the system the time interval to reach the re-order level increases, so

re-order rate decreases in model I and II. Due to the same reason local purchases in

models III, IV and V decreases. The number of customers in III, IV and V is same

due to local purchase. (see table 4.1)

2. Effect of the re-order levels on various performance measures.

From table 4.2 one may conclude that the behaviour of system performance mea-

sures ass increases, is similar to that ofS, except that the re-order rate increases, the

time interval to reach the re-order point decreases and so more orders are placed.

3. Effect of the replenishment rateβ on various performance measures.

As we expect whenβ increases the inventory level increases in all models. In

models III, IV and V, as replenishment takes place at a higher rate the rate of local

purchase decreases. Due to local purchase the waiting time of customers do not

increase. The number of customers who do not join when the inventory level is zero,

also decreases in model I. The number of customers and their waiting time decreases

in models I and II asβ measures (see table 4.3)

4. Effect of the arrival rateλ on various performance measures.

Table 4.4 shows that when the arrival rate increases the number of customers and

their waiting time increases in all models. Reorder rate increases in models I and

II. The number of customers who do not join when the inventory level is zero also

increases in model I. Due to more arrivals, the rate of local purchase also increases

in models III, IV and V.
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Maximum inventory level versus ETC.
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FIGURE 4.1. λ = 1, µ = 1.7, β = .2, θ = 3, s = 10, C = 100,
C1 = 20, C2 = 1, C3 = 7, l = .75,m = .5, n = .25
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Re-order level versus ETC.
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FIGURE 4.2. λ = 1, µ = 1.7, β = .2, θ = 3, S = 40, C = 100,
C1 = 20, C2 = 1, C3 = 7, l = .75,m = .5, n = .25
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Replenishment rate versus ETC.
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FIGURE 4.3. λ = 1, µ = 1.7, θ = 3, s = 10 S = 25, C = 100,
C1 = 20, C2 = 1, C3 = 7, l = .75,m = .5, n = .25
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Arrival rate versus ETC.
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FIGURE 4.4. λ = 1, µ = 1.7, β = .2, s = 10 S = 25, C = 100,
C1 = 20, C2 = 1, C3 = 7, l = .75,m = .5, n = .25
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4.12.2. Interpretation of the graphs. In order to find the most profitable model,

we compute the expected total cost per unit time for each model by varying the param-

eters one at a time keeping others fixed.

Figure 4.1 shows that as the maximum inventory level increases the total expected

cost increases, this is primarily due to the increase in the holding cost of inventory.

When the re-order level increases then also the cost increases as the inventory level

increases (see 4.2). As the replenishment rate increases, here also cost increases due

to the same reason (see figure 4.3). Figure 4.4 shows that the cost function is directly

propotional to the arrival rate.

4.13. Conclusion

From all the graphs we understand that comparing models I and II, the cost is less

in model I. Comparing models III, IV and V the cost involved in model III is least.

That is local purchase by one unit is profitable. Among all the models the cost is least

for model III. So model III is the best with the given cost function and given values of

parameter. However, the input parameters do influence the total expected cost. Hence

the models are sensitive to input parameters.
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CHAPTER 5

Inventory Systems with Disasters

5.1. Introduction

In all inventory models discussed earlier in this thesis we have not brought in the

role of perishability and disasters.In several practical situations,these factors play im-

portant roles in decision making. For example in a firm where there is a possibility of

occurrence of disaster, it is to be decided about the maximum quantity that can be kept

so that the inventory lost due to disasters is minimum and at the same time efficient

running of the system is ensured.

Krishnamoorthy and Varghese [43] analyzed an inventory model where the items

are damaged due to decay and disasters.They assumed that the lead time is zero and the

service time is negligible. Arivarignan et.al [1] discussed a continuous review(s, S)

inventory system with perishable items, where lead time and life time of items are ex-

ponentially distributed. They obtained both steady state and transient solutions. An

extensive survey on perishable inventory can be seen in Nahmias [52]. Subsequently

there followed several further investigations. Nevertheless these were all on with neg-

ligible service times. Krishnamoorthy and Anbazhagan [30] discussed a system with

finite capacity for waiting space where the inventory is served according to an exponen-

tially distributed time. Further they assume perishability of items on stock.

In this chapter we consider two models of(s, S) inventory systems where the com-

modities are destroyed by disasters. Customers arrive to a single server counter accord-

ing to a Poisson process with rateλ. Service times of customers are independent and

identically distributed exponential random variables with parameterµ. Lead time fol-

lows an exponential distribution with parameterβ. The interval between disasters have

exponential distribution with parameterδ. Each customer requires one unit of item. As

a result of service, when the inventory level reachess we place an order forQ = S − s
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quantity of the item. If disaster occurs when the inventory level is between 0 ands

there is no need to place the order again, and we place an order if the inventory level is

betweens + 1 andS. That is only one existing order is allowed. We assume that cus-

tomers register their names for the product. Since there is a chance of disasters physical

presence of customers at the service station is thus avoided. In Model I we assume that

customers do not join the system when the inventory level is zero: whereas in model II

customers are assumed to join the system even when the inventory level is zero.

5.2. Mathematical Description of Model I

LetN(t) be the number of customers in the system andI(t) be the inventory level at

time t. We assume that disaster destroys all the inventoried items present at that epoch;

however it is assumed that the customers are not affected by disaster. Customers do not

join the system when the inventory level is zero. Those who are already present stays

there. It follows that the{((N(t), I(t)), t ≥ 0} is a LIQBD process on the state space

{(i, j); i ≥ 0, 0 ≤ j ≤ S}. The infinitesimal generatorQ of the process is a block

tridiagonal matrix having the following form:

Q =





















A00 A0 0 0 0 0 · · ·

A2 A1 A0 0 0 0 · · ·

0 A2 A1 A0 0 0 · · ·

0 0 A2 A1 A0 0 · · ·
...

...





















(5.2.1)

where the blocksA00, A0, A1, A2 are square matrices of order(S + 1); they are given

by

A0 =





0 0

0 λIS



 A2 =





0 0

µIS 0
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A00 =







































0 1 · · · s s+ 1 · · · S − s · · · S

0 −β β

1 δ −Ω β
... · · ·

. . . . . .

s δ −Ω · · · β

s+ 1 δ −ω
...

...
. . .

...

S δ −ω







































whereΩ = λ+ β + δ, ω = λ+ δ.

A1 =



































0 1 · · · s s+ 1 · · · S − s · · · S

0 −β β

1 δ −Ω′ β
... · · ·

.. . . . .

s δ −Ω′ · · · β

s+ 1 δ −ω′

...
...

. . .

S δ −ω′



































with Ω′ = λ+ β + δ + µ, ω′ = λ+ δ + µ

5.3. Analysis of Model I

5.3.1. System stability.Define the generator matrixA asA = A0 +A1 +A2. Let

π = (π0, π1, · · · , πS) be the steady state probability vector ofA. Then we haveπA = 0

andπe = 1. SolvingπA = 0 we get

π0 =
µ

β + δ
π1 +

δ

β + δ

πk = (
β + δ + µ

µ
)k−1π1 for k = 2, . . . , s+ 1
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πs+k = (
δ + µ

µ
)k−1(

β + δ + µ

µ
)sπ1 for k = 2, . . . , S − 2s

πQ+k =
δ + µ

µ
πQ+k−1 −

β

µ
πk−1, whereQ = S − s, k = 1, 2, . . . , s,

Hereπ0, π2, . . . , πS are all expressed in terms ofπ1. Fromπe = 1 we can findπ1 and

henceπ0, π2, . . . , πS.

THEOREM 5.3.1. The Markov chain described by the model is stable if and only if

λ < µ.

PROOF. From the well known results (see Neuts [53]) on positive recurrence ofQ

which states thatπA0e < πA2. Simplifying this we getλ < µ �

5.3.2. Steady state analysis.LetX = (x(0), x(1), . . . ) be the steady state proba-

bility vector of the Markov chain. Since the model considered here is a LIQBD process,

its steady state distribution has a matrix-geometric solution to the equationsXQ = 0

andXe = 1. Thenx(i) has the matrix geometric form

x(i) = x(1)Ri−1 for i ≥ 2, (5.3.1)

whereR is the minimal non-negative solution of the matrix equationA0 + RA1 +

R2A2 = 0. XQ = 0 gives

x(0)A00 + x(1)A2 = 0 (5.3.2)

x(0)A0 + x(1)(A1 +RA2) = 0. (5.3.3)

Solving the above equations we can find vectorsx(0) andx(1) subject to the normaliz-

ing conditionXe = 1.

That isx(0)e+ x(1)(1 −R)−1 = 1. Having foundx(1), x(i), i ≥ 2 can be found from

(5.3.1).
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5.4. Performance Measures

Having computed the system state probabilities, we proceed to find out how the

system performs. LetX = (x(0), x(1), . . .) be the steady-state probability vector ofQ

wherex(i) = (yi0, yi1, . . . , yiS).

(1) Expected number of customers, EC in the system is given by

EC =

∞
∑

i=1

ix(i)e

(2) Expected inventory level EI is given by

EI =
∞

∑

i=0

S
∑

j=1

jyij

(3) Expected waiting time in the system EW is given by

EW =
EC
λ
.

(4) Expected re-order rate ER is given by

ER = µ
∞

∑

i=1

yi,s+1 + δ
∞

∑

i=0

S
∑

j=s+1

yij

(5) Expected number of inventory ET, lost due to disaster is given byET = δEI.

(6) Expected number of customers EJ not joining the system when the inventory

level is zero is given by

EJ= λ
∞

∑

i=0

yi0.

(7) Expected rate of departure ED after completing service is given by

ED = µ

∞
∑

i=0

S
∑

j=1

yij
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5.5. Cost Function

To construct the cost function we define the following costs as

C = fixed ordering cost

C1 = procurement cost/unit

C2 = holding cost of inventory/unit/unit time

C3 = revenue from service/unit/unit time

C4 = disaster cost/unit

C5 = shortage cost of inventory/unit/unit time

Then the total expected cost is defined as

ETC= [C +QC1]ER+ C2EI − C3ED + C4ET + C5EJ

5.6. Mathematical Description of Model II

The only difference of this model from the first model is that customers join the sys-

tem even when the inventory level is zero. The infinitesimal generatorQ of the process

has the form of (5.2.1) where the blocksA00, A0, A1, A2 are square matrices of order

(S + 1) and they are given by

A0 = λIS+1, A2 =





0 0

µIS 0



 ,

A00 =



































0 1 · · · s s+ 1 · · · S − s · · · S

0 −∆ β

1 δ −Ω β
...

...
. . . .. .

s δ −Ω · · · β

s+ 1 δ −ω
...

...
. . .

S δ −ω



































with ∆ = λ+ β, Ω = λ+ β + δ, ω = λ+ δ.
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A1 =







































0 1 · · · s s+ 1 · · · S − s · · · S

0 −∆ β

1 δ −Ω′ β
...

...
. . . .. .

s δ −Ω′ · · · β

s+ 1 δ −ω′

...
...

. . .
...

S δ −ω′







































whereΩ′ = λ+ β + δ + µ, ω′ = λ+ δ + µ, ∆ = λ+ β.

5.7. Analysis of Model II

5.7.1. System stability.Define the generator matrixA asA = A0 +A1 +A2. Let

π = (π0, π1, · · · , πS) be the steady state probability vector ofA. Then we haveπA = 0

andπe = 1. SolvingπA = 0 we get

π0 =
µ

β + δ
π1 +

δ

β + δ

πk = (
β + δ + µ

µ
)k−1π1 for k = 2, . . . , s+ 1

πs+k = (
δ + µ

µ
)k−1(

β + δ + µ

µ
)sπ1 for k = 2, . . . , S − 2s

πQ+k =
δ + µ

µ
πQ+k−1 −

β

µ
πk−1, whereQ = S − s, k = 1, 2, . . . , s,

Hereπ0, π2, . . . , πS are all expressed in terms ofπ1. Fromπe = 1 we can findπ1 and

henceπ0, π2, . . . , πS.

THEOREM 5.7.1. The Markov chain is stable if and only ifλ < µ(1 − π0) where

π0 =
δ + µ+ δM

(δ + µ+ β) + (δ + β)M
,
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and

M =
(β + δ + µ

β + δ

)

(xs−1 − 1) +
µ

δ
xs(yS−2s − 1) +

µ

δ

[ β

β + δ
(xs − 1) − (

x

y
)s + 1

]

with x = β+δ+µ

µ
, y = δ+µ

µ

PROOF. From the well known results (see Neuts [53]) on positive recurrence ofQ

which states thatπA0e < πA2e. Simplifying this we getλ < µ(1 − π0)

�

5.7.2. Steady state analysis.LetX = (x(0), x(1), . . . ) be the steady state proba-

bility vector of the Markov chain. Here again the model is a LIQBD process, its steady

state probability distribution has a matrix-geometric solution to the equationsXQ = 0

andXe = 1. Thenx(i) has the matrix geometric form

x(i) = x(1)Ri−1 for i ≥ 2 (5.7.1)

whereR is the minimal non-negative solution of the matrix equation

A0 +RA1 +R2A2 = 0. XQ = 0 gives

x(0)A00 + x(1)A2 = 0 (5.7.2)

x(0)A0 + x(1)(A1 +RA2) = 0 (5.7.3)

Solving the above equations we can find vectorsx(0) andx(1) subject to the normaliz-

ing conditionXe = 1, that isx(0)e+ x(1) (1 − R)−1 = 1, thenx(i), for i ≥ 2, can be

obtained from (5.7.1).

5.8. Performance Measures

Having computed the system state probabilities, we proceed to find out how the

system performs. LetX = (x(0), x(1), . . .) be the steady-state probability vector ofQ

wherex(i) = (yi0, yi1, . . . , yiS).
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(1) Expected number of customers, EC in the system is given by

EC =

∞
∑

i=1

ix(i)e

(2) Expected inventory level EI is given by

EI =
∞

∑

i=0

S
∑

j=1

jyij

(3) Expected waiting time in the system EW is given by

EW =
EC

λ[1 −
∑

∞

i=0 yi0]
.

(4) Expected re-order rate ER is given by

ER = µ
∞

∑

i=1

yi,s+1 + δ
∞

∑

i=0

S
∑

j=s+1

yij

(5) Expected number of inventory, ET lost due to disaster is given by ET= δ EI.

(6) Expected number of departures, ED after completing service is given by

ED = µ
∞

∑

i=0

S
∑

j=1

yij

5.9. Cost Function and Numerical Examples

To construct the cost function we define the following costs as

C = fixed ordering cost

C1 = procurement cost/unit

C2 = holding cost of inventory/unit/unit time

C3 = revenue from service/unit/unit time

C4 = disaster cost/unit

Then the total expected cost is defined as

ETC= [C +QC1]ER+ C2EI − C3ED + C4ET
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EC EI ER ET
Models

S I II I II I II I II
25 2.4999 4.0927 14.6654 14.6998 1.1973 1.3005 1.4665 1.4699
26 2.4999 4.0925 14.9948 15.0375 1.1343 1.2384 1.4994 1.5037
27 2.4999 4.0923 15.3514 15.3956 1.0742 1.1785 1.5351 1.5395
28 2.4999 4.0921 15.7344 15.7743 1.0169 1.1208 1.5734 1.5774
29 2.4999 4.0920 16.1429 16.1739 0.9624 1.0653 1.6142 1.6173
30 2.4999 4.0919 16.5761 16.5941 0.9105 1.0120 1.6576 1.6594
31 2.4999 4.0917 17.0333 17.0349 0.8612 0.9609 1.7033 1.7034

TABLE 5.1. Variations in maximum inventory levelS. λ = 1, µ = 1.4,
β = 1, δ = 0.1, s = 10

EC EI ER ET
Models

s I II I II I II I II
8 2.4999 4.0934 16.36773 16.262790.6888 0.7769 1.6367 1.62628
9 2.4999 4.0925 16.39407 16.354550.7911 0.8864 1.6394 1.63545
10 2.4999 4.0919 16.57617 16.594140.9105 1.0120 1.6576 1.65941
11 2.4999 4.0915 16.93898 16.999601.0495 1.1557 1.6939 1.69996
12 2.4999 4.0913 17.51132 17.589241.2114 1.3194 1.7511 1.75892
13 2.4999 4.0911 18.32643 18.379721.3997 1.5050 1.8326 1.83797
14 2.4999 4.0910 20.33167 19.380101.6186 2.0842 2.0331 1.93801

TABLE 5.2. Variations in reorder levels. λ = 1, µ = 1.4, β = 1,
δ = 0.1, S = 30

EC EI ER EW
Models

µ I II I II I II I II
1.5 2.0000 3.0921 14.6654 14.7139 1.1973 1.3020 2.0000 3.4016
1.6 1.6666 2.4918 14.6654 14.7260 1.1973 1.3033 1.6666 2.7412
1.7 1.4287 2.0916 14.6654 14.7367 1.1973 1.3045 1.4285 2.3009
1.8 1.2500 1.8057 14.6654 14.7461 1.1973 1.3055 1.2500 1.9865
1.9 1.1111 1.5913 14.6654 14.7545 1.1973 1.3065 1.1111 1.7506
2.0 1.0000 1.4246 14.6654 14.7619 1.1973 1.3073 1.0000 1.5672
2.1 0.9090 1.2912 14.6654 14.7686 1.1973 1.3080 1.0000 1.4205

TABLE 5.3. Variations in service rateµ. λ = 1, β = 1, δ = 0.1, s = 10,
S = 25

83



EC ER EW EJ
Models

λ I II I II I II I
1.7 1.3076 2.0780 1.8584 2.0267 0.7692 1.3463 0.1557
1.8 1.5000 2.4432 1.9505 2.1269 0.8333 1.4956 0.1653
1.9 1.7272 2.8995 2.0423 2.2268 0.9090 1.6823 0.1750
2.0 2.0000 3.4860 2.1336 2.3266 0.9999 1.9224 0.1849
2.1 2.3333 4.2672 2.2246 2.4262 1.1110 2.2425 0.1949
2.2 2.7500 5.3596 2.3152 2.5250 1.2500 2.6903 0.2051
2.3 3.2857 6.9943 2.4054 2.6206 1.4285 3.3602 0.2156

TABLE 5.4. Variations in arrival rateλ. µ = 3, β = 1, δ = 0.1, s = 10,
S = 25

EC EI ER ET
Models

δ I II I II I II I II
.05 2.0000 2.4929 15.7786 15.8006 1.1225 1.1735 0.7889 0.7900
.10 2.0000 3.0921 14.6654 14.7139 1.1973 1.3020 1.4665 1.4713
.15 1.9999 3.8463 13.6755 13.7484 1.2297 1.3910 2.0513 2.0622
.20 1.9999 4.8356 12.8101 12.9005 1.2291 1.4485 2.5620 2.5801
.25 2.0000 6.2035 12.0604 12.1556 1.2052 1.4824 3.0151 3.0389
.30 2.0000 8.2363 11.4124 11.4814 1.1670 1.4971 3.4237 3.4444
.35 2.0000 11.6023 10.8508 10.7863 1.1210 1.6471 3.7977 3.7752

TABLE 5.5. Variations in disaster rateδ. λ = 1, µ = 1.5, β = 1,
s = 10, S = 25

EC EI EW EJ
Models

β I II I II I II I
1.1 2.4999 3.8735 14.8726 14.9154 2.4999 4.2258 0.0833
1.3 2.4999 3.5717 15.2012 15.2531 2.4999 3.8465 0.0714
1.5 2.4999 3.3751 15.4498 15.5054 2.4999 3.6001 0.0625
1.7 2.4999 3.2375 15.6446 15.7010 2.4999 3.4280 0.0555
1.9 2.4999 3.1363 15.8013 15.8571 2.4999 3.3014 0.0500
2.1 2.4999 3.0589 15.9300 15.9845 2.4999 3.2046 0.0454
2.3 2.4999 2.9979 16.0377 16.0905 2.4999 3.1283 0.0416

TABLE 5.6. Variations in replenishment rateβ. µ = 1.4, λ = 1, δ =
0.1, s = 10, S = 25

5.9.1. Interpretation of the Numerical results.

1. Effect of the maximum inventory levelS on various performance measures

From table 5.1 we conclude that asS increases, inventory level and thus the

inventory lost due to disaster increase. Due to the availability of more inventory,
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reorder rate decreases as the time interval to reach the reorder level increases. The

number of customers do not change in model I as customers do not join when the

inventory level is zero, while in model II it decreases.

2. Effect of the reorder levels on various performance measures

Table 5.2 shows that the changes on various performance measures ass changes

is similar to that ofS, except the reorder rate. Here whens increase reorder rate

increases as the time interval to reach the reorder level decreases and more orders

are placed.

3. Effect of the service rateµ on various performance measures

When service rate increases as we expect the number of customers and hence the

waiting time of customers decrease in both models. Reorder rate and hence inventory

increase in model II as customers join even when inventory is zero, while in Model

I both remain the same, as customers do not join when inventory level is zero (see

table 5.3).

4. Effect of the arrival rateλ on various performance measures

When arrival rate increases as we expect the number of customers, the waiting

time and the reorder rate increase in both models. The number of customers who do

not join when the inventory level is zero also increases (see table 5.4).

5. Effect of the disaster rateδ on various performance measures

Table 5.5 shows that asδ increases the inventory lost due to disaster increases

and so the inventory decrease in both models. Number of customers and reorder

rate increase in model II as customers join even when the inventory is zero, while in

model I, number of customers is same as customers do not join the system when the

inventory level is zero. In Model I reorder rate increases first and then decreases as

customers do not join when the inventory level zero. (see the formula for ER)

6. Effect of the replenishment rateβ on various performance measures

From table 5.6 we can understand that asβ increases inventory level increases in

both models. The number of customers and hence the waiting time of customers in

model II decrease as the replenishment rate of inventory increase, while in model I

no change as customers do not join the system when the inventory is zero. As more

85



inventory is with the system, in model I, the number of customers who do not join

when the inventory level is zero (EJ) decreases.

Maximum inventory level verses ETC.
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FIGURE 5.1. λ = 1, µ = 1.4, β = 1, δ = 0.1, s = 10, C = 100,
C1 = 20, C2 = 1, C3 = 5, C4 = 27, C5 = 5

Reorder level verses ETC.
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FIGURE 5.2. λ = 1, µ = 1.4, β = 1, δ = 0.1, S = 30, C = 100,
C1 = 20, C2 = 1, C3 = 5, C4 = 27, C5 = 5
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Service rate verses ETC

µ.
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FIGURE 5.3. λ = 1, β = 1, δ = 0.1, s = 10, S = 25 C = 100,
C1 = 20, C2 = 1, C3 = 5, C4 = 27, C5 = 5

Arrival rate verses ETC
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FIGURE 5.4. µ = 3, β = 1, δ = 0.1, s = 10, S = 25, C = 100,
C1 = 20, C2 = 1, C3 = 5, C4 = 27, C5 = 5.
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Disaster rate verses ETC

δ
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FIGURE 5.5. µ = 1.5, β = 1, s = 10, S = 25, C = 100, C1 = 20,
C2 = 1, C3 = 5, C4 = 27, C5 = 5

Replenishment rate verses ETC.
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FIGURE 5.6. µ = 1.4, λ = 1, δ = 0.1, s = 10, S = 25, C = 100,
C1 = 20, C2 = 1, C3 = 5, C4 = 27, C5 = 5.

88



5.9.2. Interpretation of the graphs. Figure 5.1 shows the variation of the cost

(ETC) with the maximum inventory levelS. WhenS increases the cost decreases, it

may be due to the decrease in the reorder rate. The cost increases whens increases

as the reorder rate increases (see figure 5.2). From figure 5.3, we can understand that

service rate does not affect the cost function in model I as the reorder rate and inventory

is same, in model II the cost slightly increases. Total expected cost increases as arrival

rate increases (see figure 5.4). Figure 5.5 shows that when the disaster rate increases in

model II the cost increases as the reorder rate increases. In model I as the reorder rate

first increases and then decreases, the cost function also behaves like that. Figure 5.6

shows that when replenishment rate increases the expected cost increases. This may be

due to the increase in the reorder rate.

5.10. Conclusion

From all the graphs we may conclude that the expected cost of model I is less than

model II. So model I is profitable with the given cost function and parameters. That is

it is better for the system to not allow the customers to join when the inventory is zero.
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CHAPTER 6

Inventory with Positive Service Time—Multi-Server Retrial Model

6.1. Introduction

Compared to single server retrial queue the study of multiserver retrial queue is

more involved and needs much sophisticated tools. Artalejo et.al [4, 5] analyzed both

single server and multiserver retrial queues. Artalejo et.al [7] studied the numerical so-

lution of the multi-server retrial queues where the retrial rate is assumed to be constant.

Krishnakumar et.al [28] discussed a multi-server retrial queue in which the server takes

a Bernoulli vacation and obtained the solution using matrix-geometric technique. In

2002 Artalejo and Pozo [10] modelled a multiserver retrial queue in which inter retrial

times follow an exponential distribution. They introduced a new approximation tech-

nique by assuming that the retrial rate depends on the system state(i, j) wherei denotes

the number of busy servers andj, the number of customers in the orbit.

In this chapter we consider a multiserver inventory model with retrial of customers.

Customers arrive according to a Poisson process with rateλ. There arec identical

servers and service times are exponentially distributed with parameterµ. We follow

(s, S) inventory policy and lead times are exponentially distributed with parameterβ.

When the inventory level depletes tos (≥ 0) we place an order forQ = S − s quantity

of inventory. We assume that there is no waiting space in the system except for those

undergoing service. If an arriving customer finds all servers busy it proceeds to an orbit

and makes repeated attempts until it finds at least one of thec servers idle. We assume

that customers do not join the orbit when the inventory level is zero. The inter retrial

times follow exponential distribution with constant rateθ. Each demand is exactly for

one item of the inventory. The number of serversc is assumed to satisfy the condition

c < s. The purpose is to ensure that at the beginning part of the lead time itself a few

servers should not be forced to be idle for want of item for service.
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6.2. Mathematical Model and Its Analysis

Let

N(t) = number of customers in the orbit at timet

C(t) = number of busy servers at timet.

I(t) = Inventory level at timet.

Then{(N(t), C(t), I(t)); t ≥ 0} is a CTMC on the state space{(i, k, j), i ≥ 0, 0 ≤

k ≤ c, k ≤ j ≤ S}. The system can be studied as a LIQBD. The infinitesimal generator

Q of this Markov chain is a block tri diagonal matrix and it has the following form

Q =





















B0 A0 0 0 0 · · ·

A2 A1 A0 0 0 · · ·

0 A2 A1 A0 0 · · ·

0 0 A2 A1 A0 · · ·
...

...
...

...





















where the blocksB0,A0,A1,A2 are square matrices of orderc+1
2

[{2(S+1)−c}]; these

are given as follows

B0 =



























B10 B00

B21 B11 B01

B22 B12 B02

. . .

B2,c−1 B1,c−1 B0,c−1

B2,c B1,c



























,

A0 =





















0

M1

M2

. . .

Mc





















, A2 =





















0 K0 0 · · · 0

0 0 K1 · · · 0

· · · · · · · · · · · ·

0 0 0 · · · Kc−1

0 0 0 · · · 0





















,
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A1 =



























A10 A00

A21 A11 A01

A22 A12 A02

. . .

A2,c−1 A1,c−1 A0,c−1

A2c A1c



























.

Next we describe the entries in the above matrices

B10 =



































0 1 · · · s s+ 1 · · · S − s · · · S

0 −β β

1 −(λ+ β)
. . .

...

s
. . . −(λ+ β) β

s+ 1 −λ
...

. . .

S −λ



































(S+1)×(S+1)

B1i =





























i · · · s s+ 1 · · · S − s · · · S

i −Ω β
...

. . . . . .

s −Ω β

s+ 1 −ω
...

. . .

S −ω





























(S−i+1)×(S−i+1)

whereΩ = λ+ iµ+ β, ω = λ+ iµ, 1 ≤ i ≤ c.

B0i =





0

λIS−i





(S−i+1)×(S−i)

for 0 ≤ i ≤ c− 1.

B2i = [iµIS−i+1 0](S−i+1)×(S−i+2) for 1 ≤ i ≤ c.
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Mi =





λe1

0





(S−i+1)×(S−i+1)

whereej is a row vector with 1 in thejth place, and zeros

elsewhere, for1 ≤ i ≤ c.

Mc = λIS−c+1.

FurtherKi =





0

θIS−i





(S−i+1)×(S−i)

for 0 ≤ i ≤ c− 1.

A10 =



































0 1 · · · s s+ 1 · · · S − s · · · S

0 −β β

1 −∆
...

. . . . . .

s −∆ · · · β

s+ 1 −ψ
...

.. .

S −ψ



































(S+1)×(S+1)

where∆ = λ+ β + θ, ψ = λ+ θ.

A1i =



































i i+ 1 · · · s s+ 1 · · · S − s · · · S

i −Ω β

i+ 1 −δ
...

. . . . . .

s −δ · · · β

s+ 1 −φ
...

. ..

S −φ



































(S−i+1)×(S−i+1)

for 1 ≤ i ≤ c− 1 with Ω = λ+ iµ+ β, δ = λ+ iµ+ β + θ, φ = λ+ iµ+ θ.
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A1c =



































c c+ 1 · · · s s+ 1 · · · S − s · · · S

c −Ω β

c+ 1 −Ω
...

. . . . . .

s −Ω · · · β

s+ 1 −ω
...

. . .

S −ω



































(S−c+1)×(S−c+1)

whereΩ = λ+ iµ+ β, ω = λ+ iµ.

A2i =
[

iµIS−i+1 0
]

(S−i+1)×(S−i+2)
for 1 ≤ i ≤ c.

A0i =





0

λIS−i





(S−i+1)×(S−i)

for 0 ≤ i ≤ c− 1

6.2.1. Stability condition. The matrixA = A0 + A1 + A2 is the generator matrix

of the Markov chain

Let π = (π(0,0), π(0,1), . . . , π(0,S), π(1,1), . . . , π(1,S), π(2,2) . . . π(2,S) . . . π(c,c) . . . π(c,S))

be the stationary probability vector ofA. By solving the equationπA = 0 andπe = 1

we getπ. The system is stable if and only if it satisfies the drift conditionπA0e < πA2e

(see Neuts [53]). After some calculations this reduces to

λ

[

c
∑

i=1

π(i, i) +

S
∑

j=c+1

π(c, j)

]

< θ

c−1
∑

i=0

S
∑

j=i+1

π(i, j).

LetX = (x(0), x(1), x(2), . . . ) be the steady-state probability vector ofQ such that

XQ = 0 andXe = 1. (6.2.1)

Using the matrix-geometric theorem [53] we have

x(i) = x(0)Ri, i ≥ 1, (6.2.2)
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whereR is the rate matrix which is the minimal non-negative solution ofA0 + RA1 +

R2A2 = 0. Then equation (6.2.1) becomes

x(0)(B0 +RA2) = 0 andx(0)(I − R)−1e = 1. (6.2.3)

R can be obtained using the successive iterative method:

R(n + 1) = −(A0 + R2(n)A2)A
−1
1 , n = 0, 1, 2, . . .; with R(0) = 0 andR(n) are

computed until

max
i,j

[Rij(n+ 1) − Rij(n)] < ǫ

whereǫ > 0 and sufficiently small. Thenx(i), i ≥ 0 can be uniquely determined from

(6.2.2) and (6.2.3).

6.3. System Performance Measures

We partition the stationary probability vectorX ofQ asX = (x(0), x(1), . . .) where

eachx(i) is further partitioned as

x(i) = (yi00, yi01, . . . , yi0S, yi11, . . . , yi1S, yi22, . . . , yi2S, . . . , yicc, . . . , yicS).

Then we have the following performance measures.

(1) Expected number of customers EC in the orbit, is given by

EC =

∞
∑

i=0

ix(i)e.

(2) Expected inventory level EI is given by

EI =
∞

∑

i=0

c
∑

j=0

S
∑

k=j

kyijk

(3) Expected waiting time of a customer in the orbit EW is given by

EW =
EC
λ
.
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(4) Probability that an arriving primary customer goes to orbit

=

∞
∑

i=0

S
∑

k=c

yick

(5) The overall retrial rate OR is given by

OR = θ
∞

∑

i=i

x(i)e.

(6) The successful retrial rate SR a given by

SR= θ

∞
∑

i=1

c−1
∑

j=0

S
∑

k=j+1

yijk.

(7) Probability that all servers are idle

=
∞

∑

i=0

S
∑

k=0

yi0k.

(8) Expected re-order rate ER is given by

ER = cµ
∞

∑

i=0

c
∑

j=1

yi,j,s+1

(9) Expected number of departures ED after completing service, is given by

ED = cµ
∞

∑

i=0

c
∑

j=1

S
∑

k=j

yijk.

(10) Expected number of customers EJ not joining the systems when the inventory

level is zero is given by

EJ= λ
∞

∑

i=0

yi00.

(11) Mean number of busy servers ES is given by

ES=

∞
∑

i=0

c
∑

j=1

S
∑

k=j

jyijk.
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6.4. Cost Function and Numerical Examples

To construct the cost function we define the following cost

C = fixed ordering cost

C1 = procurement cost/unit

C2 = holding cost of inventory/unit/unit time

C3 = revenue from service/unit/unit time

C4 = shortage cost of inventory/unit/unit time

C5 = server cost/unit/unit time

c = the number of servers

The total expected cost ETC is defined as

ETC= [C +QC1]ER+ C2EI − C3ED + C4EJ+ C5c

EC EI ER
S c = 3 c = 4 c = 5 c = 3 c = 4 c = 5 c = 3 c = 4 c = 5
22 2.3064 0.7316 0.50675.2436 1.9675 1.07040.4134 0.2376 0.1861
25 2.0852 0.6142 0.40245.8656 2.0937 1.05830.3200 0.1547 0.0934
28 1.9480 0.5402 0.33656.4989 2.2472 1.07870.2625 0.1165 0.0586
31 1.8547 0.4898 0.29197.1373 2.4132 1.11420.2227 0.0934 0.0409
34 1.7872 0.4532 0.25977.7785 2.5861 1.15750.1934 0.0780 0.0308

TABLE 6.1. Variations in maximum inventory levelS. λ = 6, µ = 4,
β = 1, θ = 4, s = 10

EC ENB EW
µ c = 3 c = 4 c = 5 c = 3 c = 4 c = 5 c = 3 c = 4 c = 5
4.2 9.5283 1.3136 0.83191.0796 0.5328 0.34101.5880 0.2189 0.1386
4.4 5.7130 1.1230 0.74600.9532 0.4626 0.29900.9521 0.1871 0.1243
4.6 3.9978 0.9769 0.67550.8394 0.4044 0.26420.6663 0.1628 0.1125
4.8 3.0301 0.8618 0.61660.7425 0.3557 0.23500.5050 0.1436 0.1027
5.0 2.4126 0.7691 0.56670.6599 0.3147 0.21030.4021 0.1281 0.0944
5.2 1.9868 0.6930 0.52390.5891 0.2799 0.18920.3311 0.1155 0.0873

TABLE 6.2. Variations in service rateµ. λ = 6, β = 1, θ = 2, s = 5,
S = 25
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EC EW EJ
λ c = 3 c = 4 c = 5 c = 3 c = 4 c = 5 c = 3 c = 4 c = 5
5.0 0.9451 0.3118 0.20930.1890 0.0623 0.04180.1810 0.1661 0.1623
5.2 1.1823 0.3756 0.24920.2273 0.0722 0.04790.2136 0.1952 0.1905
5.4 1.4898 0.4506 0.29510.2759 0.0834 0.05460.2499 0.2274 0.2215
5.6 1.8990 0.5387 0.34750.3391 0.0962 0.06200.2901 0.2629 0.2557
5.8 2.4631 0.6425 0.40750.4246 0.1107 0.07020.3343 0.3017 0.2929
6.0 3.2809 0.7654 0.47590.5468 0.1275 0.07930.3827 0.3440 0.3334

TABLE 6.3. Variations in arrival rateλ. µ = 4, β = 1, θ = 3, s = 10,
S = 25

EC EJ EW
β c = 3 c = 4 c = 5 c = 3 c = 4 c = 5 c = 3 c = 4 c = 5
1.0 3.2809 0.7654 0.47590.3827 0.3440 0.33340.5468 0.1275 0.0793
1.2 2.8933 0.6139 0.34610.2378 0.2144 0.20780.4822 0.1023 0.0576
1.4 2.6420 0.5139 0.26070.1515 0.1371 0.13300.4403 0.0856 0.04346
1.6 2.4734 0.4463 0.20310.0987 0.0897 0.08710.4122 0.0743 0.0338
1.8 2.3572 0.3996 0.16350.0655 0.0599 0.05820.3928 0.0666 0.0272
2.0 2.2755 0.3668 0.13570.0443 0.0407 0.03960.3792 0.0611 0.0226

TABLE 6.4. Variations in replenishment rateβ. λ = 6, µ = 4, θ = 3,
s = 10, S = 25

SR EW EC
θ c = 3 c = 4 c = 5 c = 3 c = 4 c = 5 c = 3 c = 4 c = 5
2.0 1.1838 0.5042 0.28381.8608 0.1882 0.106111.1653 1.1295 0.6371
2.1 1.1990 0.5049 0.28401.4708 0.1785 0.10218.8248 1.0715 0.6128
2.2 1.2059 0.5056 0.28411.2207 0.1701 0.09857.3246 1.0207 0.5911
2.3 1.2099 0.5062 0.28421.0468 0.1626 0.09526.2809 0.9758 0.5716
2.4 1.2126 0.5069 0.28440.9188 0.1559 0.09235.5129 0.9358 0.5540
2.5 1.2168 0.5075 0.28450.7430 0.1500 0.08964.4580 0.9000 0.5380

TABLE 6.5. Variations in retrial rateθ. λ = 6, µ = 4, β = 1, s = 10,
S = 25

6.4.1. Interpretation of the Numerical Results.

1. Effect of the maximum inventory levelS on various performance measures.

Table 6.1 shows that asS increases the inventory level increases; it is least when

c = 5 and most inc = 3. The number of customers decreases as the number

of servers increases. WhenS increases the time interval to reach the reorder level

increases and so the reorder rate decreases.
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2. Effect of the service rateµ on various performance measures

Expected number of customers and the waiting time decrease as the service rate

increases. As the service rate increases the number of busy servers decreases (see

table 6.2).

3. Effect of the arrival rateλ on various performance measures

From table 6.3 we can understand that asλ increases the number of customers

and the waiting time increase. When the number of servers increases (fromc = 3 to

c = 5) the number of customers and their waiting time decrease. As the arrival rate

increases the number of customers not joining the orbit when the inventory level is

zero also increases.

4. Effect of the replenishment rateβ on various performance measures

Table 6.4 shows that whenβ increases the number of customers and the waiting

time decreases as the system get the inventory quickly. The number of customers

who do not join when the inventory level is zero, also decreases as the system has

more inventory.

5. Effect of the retrial rateθ on various performance measures

As retrial rate increases successful retrial rate increases, so the number of cus-

tomers and waiting time decreases. When the number of servers increases (c = 3 to

c = 5) the number of customers and their waiting time decreases (see table 6.5)
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Maximum inventory level verses ETC

S
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FIGURE 6.1. λ = 6, µ = 4, β = 1, θ = 4, s = 10, C = 100, C1 = 20,
C2 = 1, C3 = 5, C4 = 5, C5 = 6

Service rate verses ETC
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FIGURE 6.2. λ = 6, β = 1, θ = 2, s = 5, S = 25, C = 100, C1 = 20,
C2 = 1, C3 = 5, C4 = 5, C5 = 6
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Arrival rate verses ETC
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FIGURE 6.3. µ = 4, β = 1, θ = 3, s = 10, S = 25.C = 100, C1 = 20,
C2 = 1, C3 = 5, C4 = 5, C5 = 6

Replenishment rate verses ETC
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FIGURE 6.4. λ = 6, µ = 4, θ = 3, s = 10, S = 25, C = 100, C1 = 20,
C2 = 1, C3 = 5, C4 = 5, C5 = 6
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Retrial rate verses ETC

ETC
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FIGURE 6.5. λ = 6, µ = 4, β = 1, s = 10, S = 25 C = 100, C1 = 20,
C2 = 1, C3 = 5, C4 = 5, C5 = 6

6.4.2. Interpretation of the graphs. Figure 6.1 shows the changes of the total

expected cost (ETC) with the maximum inventory levelS and ETC decreases asS

increases. From figure 6.2 we observe that as the service rateµ increases the total

expected cost decreases. As the arrival rateλ increases the cost increases (see figure

6.3). Figure 6.4 shows that as the replenishment rateβ increase the cost decreases. The

cost decrease when the retrial rate increases (see figure 6.5). From all the figures we

can understand that the total expected cost is minimum when the number of servers is

5 (c = 5), for the given cost function and parameters. So it is better for the system to

have more servers.
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