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Preface

Carbon nanotubes (CNTs) have been widely considered as attractive candidates for use

as fillers in composite materials due to their distinctly superior mechanical, thermal,

electrical and electronic properties. The CNT can be thought of as the ultimate carbon

fiber with breaking strengths reported as high as 200 GPa, and elastic modulii in the

I TPa range. This, coupled with their enormous surface area per gram and large aspect

ratios, has triggered a revolution in using CNTs as a reinforcing phase for polymer

matrices.

The current research investigates the possibility of using single walled carbon

nanotubes (SWNTs) as filler in polymers to impart several properties to the matrix

polymer. SWNTs in a polymer matrix like poly(ethylene terephthalate) induce

nucleation in its melt crystallization, provide effective reinforcement and impart

electrical conductivity. We adopt a simple melt compounding technique for

incorporating the nanotubes into the polymer matrix. For attaining a better dispersion

of the filler, an ultrasound assisted dissolution-evaporation method has also been tried.

The resulting enhancement in the materials properties indicates an improved

disentanglement of the nanotube ropes, which in turn provides effective matrix-filler

interaction. PET-SWNT nanocomposite fibers prepared through melt spinning

followed by subsequent drawing are also found to have significantly higher mechanical

propertiesas compared to pristine PET fiber.

SWNTs also find applications in composites based on elastomers such as natural

rubberas they can impart electrical conductivity with simultaneous improvement in the

mechanical properties.

This thesis is divided into seven chapters:

Chapter I presents a concise introduction to the subject. Carbon nanotubes, their

synthesis, growth mechanism, structure, properties and applications are briefly

reviewed. The state-of-art research in polymer-carbon nanotube nanocomposites is

discussed. The principal objectives of the work are mentioned at the end ofthe chapter.
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Preface

Chapter 2 deals with the preparation and crystallization characteristics of nanocomposites

of poly(ethylene terephthalate) and single walled carbon nanotubes. The composites

have been prepared by a simple melt compounding technique and their crystallization

characteristics have been investigated using differential scanning calorimetry and wide

angle X-ray diffraction analysis.

Chapter 3 includes the evaluation of mechanical propertiesof PET-SWNT nanocomposites.

The viscoelastic characteristics of the nanocomposites are presented here. Thermal and

dimensional stability as well as electrical conducting properties are also investigated.

Chapter 4 presents the method of preparing nanocomposites through ultrasound

assisted dissolution-evaporation. Crystallization, mechanical, dynamic mechanical,

thermal and electrical properties of these nanocomposite samples are studied.

Chapter 5 comprises the fabrication of PET-SWNT nanocomposite fibers through melt

spinning. The effect of floor formation conditions on the development of their

mechanical properties is studied.

Chapter 6 deals with the preparation and characterization of nanocomposites based on

natural rubber with carbon nanotubes. The nanotubes have been incorporated into the

elastomer matrix through conventional mill mixing as well as latex stage mixing. The

mechanical, electrical, thermal and ageing characteristics of NR-SWNT

nanocomposites are presented in this chapter.

Chapter 7 presents summary and conclusions of the investigations.
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Chapter 1

General introduction

Our ability to engineer novel structures has led to unprecedented opportunities in

materials design. It has fueled rapid development in nanoscience and nanotechnology

for the past one decade leading to the creation of new materials with interesting

nanoscale features. In the framework of this rapid development, the domain of

nanocomposite materials is attracting more and more researchers; both academic and

industrial. The field of nanocomposites involves the study of multiphase materials

where atleast one of the constituent phases has atleast one dimension of the order of

nanometers.' The use of these nanoscale fillers to augment the properties of polymers

has provided a radical alternative to conventional composites and modified polymers.

The promise of nanocomposites lies in their multifunctionality, the possibility of

realising unique combinations of properties unachievable with traditional materials.

The current research aims to investigate the possibility of use of carbon nanotubes for

fabricating polymer-based nanocomposites and thereby imparting several properties to

the matrix polymer. In this chapter, a concise introduction to the subject is presented.

Carbon nanotubes, their synthesis, growth mechanism, structure, properties and

applications are briefly reviewed. The state-of-art research in polymer-carbon nanotube

nanocomposites is also discussed. An outline of the principal objectives of the work is

given at the end of the chapter.
~

1.1 Carbon nanotubes

The ground breaking discovery of carbon nanotubes (CNTs), in 1991 followed by the

realisation of their amazing properties led scientists all over the world to focus their

research efforts on these fascinating structures. Carbon nanotubes (also known as

bucky tubes) are long thin cylinders of carbon that are unique for their size, shape, and



Chapter 1

remarkable physical and electrical properties.i? They can be thought ofas layers of the

conventional graphite structure rolled up into a cylinder such that the lattice of carbon

atoms remains continuous around the circumference. Their name is derived from their

size, since the diameter of a nanotube is of the order of a few nanometers

(approximately 50,000 times smaller than the width of a human hair), while they can

be upto several micrometres in length.

The number of carbon shells in CNTs varies from one to as many as fifty, the former

being single walled carbon nanotubes- SWNTs and the latter, multi walled carbon

nanotubes- MWNTs. These intriguing structures have sparked much excitement in

recent years and a large amount of research has been dedicated to their understanding.t"

They are potentially useful in a wide variety of applications in nanotechnology,

electronics, optics, and other fields of materials science.9•
14

1.1.1 The discovery

The discovery of carbon nanotubes dates back to the 1985-legendary sequence of

experiments by Harry Kroto, of the University of Sussex, and Richard Smalley, of Rice

University, Houston.P:" During the vaporisation of graphite, Kroto and Smalley were

struck by a surprising outcome: in the distribution of the resulted gas-phase carbon

cluster, detected by mass spectroscopy, C60 was by far the most dominant species.

Later they realised that a closed cluster containing precisely 60 carbon atoms would

have a structure of unique stability and symmetry, as shown in figure 1.1. Although

they had no direct evidence to support this structure, subsequent work has proved them

correct. The discovery of C60 published in Nature in November 1985, had an impact,

which extended the way beyond the confines of academic chemical physics, and

marked the beginning of a new era in carbon science.17
•
18

In the beginning, however, the progress was slow mainly because of the small quantity

of C60 produced in the Kroto-Srnalley experiments. Eventually, more than a

laboratory curiosity, the bulk production of C60 was achieved by a technique developed

by Wolfgang Kratschmer of the Max Planck Institute at Heidelberg, and Donald

Huffinan ofthe University of Arizona. They used a simple carbon arc to vaporize graphite

2



General introduction

Fig. 1.1 C60: Buckminster Fullerene

in an atmosphere of helium and collected the soot, which settled on the walls of the

vessel. Dispersing the soot in benzene produced a red solution, which could be dried

down to produce beautiful plate like crystals of 'fullerite': 90 %, C60 and 10 %, C70.

This report appeared in Nature in 1990.19

Sumio Iijima of the NEe laboratories in Japan, was fascinated by the Kratschmer

Huffman Nature paper, and decided to embark on a detailed study of the soot produced

by their technique. The initial High-Resolution Transmission Electron Microscopic

(HRTEM) studies were disappointing: the soot collected from the walls of the arc

evaporation vessel appeared almost completely amorphous, with little obvious long

range structures.

Eventually, Iijima turned his attention to the hard cylindrical deposit, which formed on

the graphite cathode after arc evaporation. This cathodic soot contained a whole range

of novel graphitic structures, the most striking of which were hollow fibers, finer and

more perfect than any previously seen. Iijima's beautiful images of carbon nanotubes,

shown first at a meeting at Richmond, Virginia in October 1991, and published in

Nature a month later (figure 1.2).20

3
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1.1.2.1 Arc discharge

The carbon arc discharge method, initially used for producing C60 fullerenes, is the

most common and perhaps the easiest way to produce carbon nanotubes as it is rather

simple to undertake. However, it is a technique that produces a mixture of

components and requires separating nanotubes from the soot and the catalytic metals

present in the crude product.

This method creates nanotubes through arc-vaporisation of two carbon rods placed

end to end, separated by approximately I mm, in an enclosure that is usually filled

with an inert gas (He, Ar) at low pressure (between 50 and 700 mbar). Recent

investigations have shown that it is also possible to create nanotubes with the arc

method in liquid nitrogen." A direct current of 50 to 100 A driven by approximately

20 V creates a high temperature discharge between the two electrodes. The discharge

vaporises one of the carbon rods and forms a small rod shaped deposit on the other

rod. Producing nanotubes in high yield depends on the uniformity of the plasma arc

and the temperature of the deposit form on the carbon electrode.f

Depending on the exact technique, it is possible to selectively grow SWNTs or

MWNTs, which is shown in figure 1.3. Two distinct methods of synthesis can be

performed with the arc discharge apparatus. If SWNTs are preferable, the anode has

to be doped with metal catalyst, such as Fe, Co, Ni, Y or Mo. A lot of elements and

mixtures of elements have been tested by various authors and it is noted that the

results vary a lot, even though they use the same elements." This is not surprising as

the experimental conditions differ. The quantity and quality of the nanotubes

obtained depend on various parameters such as the metal concentration, inert gas

pressure, kind of gas, the current and system geometry. Usually the diameter is in the

range of 1.2-1.4 nm.

5
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~ Pure graphitet electrode

Graphite anode

Graphite cathode

~ ,......., To pump

i @ D.e. current source

1"""====="'':+--- He atmosphere,
400 mbar

Deposit -6i-"""~,-1

Anode doped ~
with Ni, Co etc. t

SWNTs MWNTs

Fig. 1.3 Experimental set-up ofan arc discharge process

1.1.2.2 Laser ablation

In 1995, SmaJley's group at Rice University reported the synthesis of carbon nanotubes

by laser vaporisation (figure 1.4).24 A pulsed, or continuous laser is used to vaporise a

graphite target in an oven at 1200 QC. The oven is filled with He or Ar gas in order to

keep the pressure at 500 Torr. A very hot vapour plume forms, then expands and cools

rapidly. As the vaporised species cool, small carbon molecules and atoms quickly

condense to form larger clusters, possibly including fullerenes. The catalysts also begin

to condense, but more slowly at first, and attach to carbon clusters and prevent their

closing into cage structures.f Catalysts may even open cage structures when they

attach to them. From these initial clusters, tubular molecules grow into single walled

carbon nanotubes until the catalyst particles become too large, or until conditions have

cooled sufficiently that carbon no longer can diffuse through or over the surface of the

catalyst particles. It is also possible that the particles become that much coated with a

carbon layer that they cannot absorb more and the nanotubes stop growing. The SWNTs

formed are bundled together by van der Waals forces.

Laser ablation is almost similar to arc discharge, since the optimum background gas

and catalyst mix is the same as in the arc discharge process. This might be due to very

similar reaction conditions needed, and the reactions probably occur with the same

mechanism. The condensates obtained by laser ablation are normally contaminated

6
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1.1.2.3 Chemical vapour deposition

Chemical vapour deposition (CYD) synthesis is achieved by putting a carbon source in

the gas phase and using an energy source, such as plasma or a resistively heated coil, to

transfer energy to gaseous carbon source. Commonly used gaseous carbon sources

include CH4, CO and C2H2• The energy is used to 'crack' the molecule into reactive

atomic carbon. Then the carbon diffuses towards the substrate, which is heated and

coated with a catalyst (usually a first row transition metal such as Ni, Fe or Co) where

it will bind. Carbon nanotubes will be formed if the proper parameters are maintained.

Excellent alignment, as well as positional control on nanometer scale, can be achieved

by using CYD.27
•
28 Control over the diameter, as well as the growth rate of the

nanotubes can also be maintained. The appropriate metal catalyst can preferentially

grow single rather than multi walled nanotubes.i"

CYD carbon nanotube synthesis is essentially a two-step process consisting of a

catalyst preparation step followed by the actual synthesis of the nanotubes. The

catalyst is generally prepared by sputtering a transition metal onto a substrate and then

using either chemical etching or thermal annealing to induce catalyst particle

nucleation. Ammonia may be used as the etchant." Thermal annealing results in

cluster formation on the substrate, from which the nanotubes will grow. The

temperatures for the synthesis of nanotubes by CYD are generally within the 650-900

DC ranges." Typical yields of CYD are approximately 30 %. In the last decennia,

different techniques for the carbon nanotubes synthesis with CYD have been

developed, such as plasma enhanced CYD, thermal chemical CYD, alcohol catalytic

CYD, vapour phase growth, aero gel-supported CYD and laser-assisted CYD.

1.1.2.4 CoMoCat process

In this method, SWNTs are grown by CO disproportionation at 700-950 DC. The

technique is based on a unique Co-Mo catalyst formulation that inhibits the sintering of

Co particles and therefore inhibits the formation of undesired forms of carbon that

lower the selectivity.

8
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labelled 'tip-growth'. Depending on the size of the catalyst particles, SWNTs or

MWNTs are grown. In arc discharge, if no catalyst is present in the graphite

electrode, MWNTs will be grown on the C2 particles that are formed in the plasma.

1.1.3 Structure and properties

1.1.3.1 Structure of carbon nanotubes

It is the chemical genius of carbon that it can bond in different ways to create

structures with entirely different properties. Graphite and diamond, the two bulk

solid phases of pure carbon, bear testimony to this. The mystery lies in the

different hybridisation that carbon atoms can assume. The four valence electrons in

carbon, when shared equally (Sp3 hybridised), create isotropically strong diamond.

But when only three are shared covalently between neighbours in a plane and the

fourth is allowed to be delocalised among all atoms, the resulting material is

graphite. The latter (Sp2) type of bonding builds a layered structure with strong in

plane bonds and weak out-of-plane bonding of the van der Waals type. Graphite,

hence, is weak normal to its planes and is considered as a soft material due to its

ability to slide along the planes. The story of fullerenes and nanotubes belongs to

the architecture of Sp2 bonded carbon and the subtlety of a certain group of

topological defects that can create unique, closed shell structures out of planar

graphite sheets.38

Graphite is the thermodynamically stable bulk phase of carbon upto very high

temperatures under normal ranges of pressure (diamond is only kinetically stable). It is

now well known that this is not the case when there are only a finite number of carbon

atoms. Simply speaking, this has to do with the high density of dangling bond atoms

when the size of the graphite crystallites becomes small (say, nanosize). At small

sizes, the structure does well energetically by closing onto itself and removing all

the dangling bonds. Preliminary experiments done in the mid 1980s, which served as

the precursor to the fullerene discovery, suggested that when the number of carbon

atoms is smaller than a few hundred, the structures formed correspond to linear

chains, rings, and closed shells.39 The latter, called fullerenes, are closed shell all
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carbon molecules with an even number of atoms (starting at C28) and Sp2 bonding

between adjacent atoms.

To form curved structures (such as fullerenes) from a planar fragment of hexagonal

graphite lattice, certain topological defects have to be included in the structure. To

produce a convex structure, positive curvature has to be introduced into the planar

hexagonal graphite lattice. This is done by creating pentagons. It is a curious

consequence of the Euler's principle that one needs exactly 12 pentagons to provide

the topological curvature necessary to completely close the hexagonal lattice; hence,

in C60 and all the other fullerenes (C2n has (n- to) hexagons) there are many hexagons

but only 12 pentagons. The rule of pentagon numbers will hold, however big the

closed structure may be created out of hexagons and pentagons. One can thus

imagine that a greatly elongated fullerene can be produced with exactly 12 pentagons

and millions of hexagons. This would correspond to a carbon nanotube.l"

The structure of a single walled carbon nanotube (SWNT) can be conceptualized by

wrapping a one-atom-thick layer of graphite (called graphene) into a seamless

cylinder and when concentric cylinders, one inside the other are present, they are

referred to as multi walled carbon nanotubes (MWNTs).41 Most SWNTs have a

diameter of close to I nm, with a tube length that can be many thousands of times

larger (figure 1.8). SWNTs with length upto orders of centimeters have been

produced.
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1.1.3.2 Mechanical, electrical and thermal properties of carbon nanotubes

Carbon nanotubes are one of the strongest materials known to man, both in terms of

tensile strength and elastic modulus.Y The strength results from the covalent Sp2 bonds

formed between the individual carbon atoms. In 2000, a nanotube was tested to have a

tensile strength of 63 OPa. In comparison, high-carbon steel has a tensile strength

of approximately 1.2 OPa. CNTs also have very high elastic modulus, of the order

of I TPa.43 Since carbon nanotubes have a low density for a solid of 1.3-1.4 g/crrr',

its specific strength is the best of known materials.

Under excessive tensile strain, the tubes will undergo plastic deformation, which

means the deformation is permanent. This deformation begins at strains of

approximately 5 % and can increase till the maximum strain the tube undergoes before

fracture by releasing strain energy. CNTs are not nearly as strong under compression.

Due to their hollow structure, they tend to undergo buckling when placed under

compressive, torsional or bending stress.

Multi walled carbon nanotubes, multiple concentric nanotubes precisely nested within

one another, exhibit a striking telescoping property whereby an inner nanotube core

may slide, almost without friction, within its outer nanotube shell thus creating an

atomically perfect linear or rotational bearing. This is one of the first true examples of

molecular nanotechnology, the precise positioning of atoms to create useful machines.

This property has already been utilized to create the world's smallest rotational motor

and a nanorheostat.

Due to the symmetry and unique electronic structure of graphene, the structure of a

nanotube strongly affects "its electrical properties. For a given (n,m) nanotube, if

2n + m = 3q (where q is an integer), then the nanotube is metallic, otherwise the

nanotube is a semiconductor. Thus all armchair (n=m) nanotubes are metallic, and

nanotubes (5,0), (6,4), (9,1), etc. are semiconducting. In theory, metallic nanotubes can

have an electrical current density more than 1,000 times stronger than metals such as

silver and copper.
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All nanotubes are expected to be very good thermal conductors along the tube,

exhibiting a property known as 'ballistic conduction', but good insulators laterally to

the tube axis.

1.1.3.3 Defects in nanotubes

As with any material, the existence of defects affects the nanotube properties. Defects

can occur in the form of atomic vacancies. High levels of such defects can lower the

tensile strength by upto 85 %.44 Another well-known form of defect that occurs in

carbon nanotubes is the Stone Wales defect, which creates a pentagon and heptagon

pair by rearrangement of the bonds. Due to the almost one-dimensional structure of

CNTs, the tensile strength of the tube is dependent on the weakest segment of it in a

similar manner to a chain, where a defect in a single link diminishes the strength of the

entirechain.

The nanotube's electrical properties are also affected by the presence of defects. A

common result is the lowered conductivity through the defective region of the tube.

Some defect formation in armchair-type tubes (which are metallic) can cause the

region surrounding that defect to become semiconducting. Futhermore, single

monoatomic vacancies induce magnetic properties. The thermal properties of the

nanotubesare also heavily affected by defects.

1.1.4 Nanotube research

The method for producing nanotubes described by Iijima in 1991 gave relatively poor

yields, making further research into their structure and properties difficult. A

significant advance came in July 1992 when Thomas Ebbesen and Pulickel Ajayan

made a serendipitous discovery of preparing nanotubes in gram quantities." Further

research made the availability of nanotubes in bulk quantities possible, which in turn

gavean enormous boost to the pace of nanotube research worldwide.f

One area, which attracted early interest, was the idea of using carbon nanotubes as

'molecular containers' .47 A landmark in this field was the demonstration by Ajayan
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and lijima that nanotubes could be filled with molten lead and thus be used as molds

for 'nanowires' .48 Subsequently more controlled methods for opening and filling

nanotubes have been developed, enabling a wide range of materials, including

biological ones, to be placed inside. The resulting opened or filled tubes might have

fascinating properties, with possible applications in catalysis, or as biological sensors.

Filled carbon nanoparticles may also have important applications in areas as diverse as

magnetic recording and nuclear medicine.

Perhaps the largest volume of research into nanotubes has been devoted to their

electronic properties. A short time after the publication of lijima's 1991 letter in

Nature, two other papers appeared on the electronic structure of carbon nanotubes.49
,5o

Noriaki Hamada and colleagues from Iijima's laboratory in Tsukuba carried out band

structure calculations on narrow tubes and demonstrated that the electronic properties

are a function of both tube structure and diameter. These remarkable predictions

stimulated a great deal of interest, but attempts to determine the electronic properties of

nanotubes experimentally presented great difficulties. Since 1996, however,

experimental measurements have been carried out on individual nanotubes, to confirm

the theoretical predictions. The results have prompted speculation that nanotubes might

become components of the future nanoelectronic devices.

SWNTs are the most likely candidates for miniaturizing electronics past the

microelectromechanical scale that is currently the basis of modem electronics. The

most basic building block of these systems is the electric wire, and SWNTs can be

excellent conductors. One useful application of SWNTs is in the development of

intramolecular field effect transistors (FETs).

A variety of other possible applications of nanotubes are currently of exciting interest.

For example, transparent and electrically conductive films of carbon nanotubes have

been developed to replace indium tin oxide (lTO) in LCDs, touch screens, and

photovoltaic devices. Carbon nanotube films are substantially more mechanically

robust than ITO films, making them ideal for high reliability touch screens and flexible

displays. A number of groups are exploring the idea of using nanotubes as tip for
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