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PREFACE 

 Computational biology is an area of study that applies the techniques of 

computer science, applied mathematics and statistics to address biological problems.  

Sequence analysis, which forms an integral part of this highly interdisciplinary field, 

deals with the computational examination of nucleotide or aminoacid sequences, 

considering them plainly as strings of characters.  Various algorithms and statistical 

techniques are employed to interpret and understand these huge rapidly increasing 

datasets of biological sequences.  The aims of these techniques are multifaceted and 

include gene finding, gene structure prediction, functional annotation of genes, 

identifying Single Nucleotide Polymorphisms, reconstructing evolutionary 

relationships, determination of functional regions in sequences, prediction of gene 

expression, etc.  Chaos Game Representation (CGR) is one such algorithm, originally 

proposed by Jeffrey (1990) as a technique for studying the "non-randomness" of 

genomic sequences.  This iterated function system method has remarkable potential 

and this thesis entitled: “Chaos Game Representation for genome sequence analysis”, 

reports our efforts to exploit this technique further, particularly to analyze large 

nucleotide sequences.  

 The Chaos Game is an algorithm which produces pictures of fractal structures 

for fairly large nucleotide sequences.  CGR is mathematically an iterative mapping 

technique that processes sequences such as nucleotides, in order to find the 

coordinates for their position in a continuous space. This distribution of positions has 

two properties: it is unique, and the source sequence can be recovered from the 

coordinates such that distance between positions measures similarity between the 

corresponding sequences. These properties, suggest the possibility to employ CGR as 

a sequence alignment and comparison tool.   
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 Frequency Chaos Game Representation (FCGR) is a special form of CGR in 

which the CGR plot is discretized using a grid. FCGR has the property that the 

numbers of different oligonucleotides in the sequence can be quickly counted. This 

straight away makes FCGR, a handy tool to evaluate “genomic signature”, which is 

essentially the oligonucleotide frequency profile of the sequence.   In this work, 

techniques based on CGR for nucleotide sequence analysis are conceived, which 

include a fast algorithm for identifying all local alignments between two large DNA 

sequences and a tool for phylogenetic analysis based on genomic signature. 

 The first chapter of the thesis gives an overview of CGR.  In a CGR for a 

particular oligonucleotide of length k (k-mer), its CGR co-ordinates will always be 

contained in a specific square with side length 2-k.  Thus counting the points in the 

square give the frequency of that k-mer and that gives rise to the matrix representation 

called Frequency Chaos Game Representation. The construction of FCGR of a given 

sequence is also described in detail.  The concept of genomic signature, which is 

based on the observance that subsequences of a genome exhibit an oligonucleotide 

frequency profile that is characteristic of the whole genome, is explained.  Previous 

works which deals with various applications of CGR and genome signature are 

reviewed in this chapter. 

 The potential of CGR for making alignment-based comparisons of whole 

genome sequences is being exploited in the second chapter.  An algorithm for 

identifying all local alignments between two long DNA sequences using the sequence 

information contained in CGR points is presented.   Since determination of distance 

between all pairs of CGR points, is costly in time (complexity O(N x M), N and M 

being the length of the two sequences) , we speed up the program by using an 

anchored alignment approach similar to that used in other programs such as FASTA.  
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The local alignments thus obtained are chained together at the same time allowing 

mismatches.  The method is demonstrated through comparison of whole genomes of 

several microbial species. 

 Chapter three describes the exploration of the phylogenetic signal contained in 

genomic signature represented by the Frequency Chaos Game Representation.  A 

statistical measure of dissimilarity between two sequences is discussed which 

ultimately leads to the construction of phylogenetic trees based on FCGR.  The 

phylogenetic signal in FCGR is validated by the evolutionary trees thus obtained.  

Further, the effect of varying the order of the FCGR on the reconstructed trees is 

discussed.  In addition to it, this alignment free technique also gives rise to a 

chromosome wise comparison, which cannot be done using a traditional alignment 

based method, and the results are discussed in this chapter.   

The fourth chapter deals with the application of FCGR as a tool to investigate 

a specific problem namely, the evolutionary origin of the eukaryotic organelles, 

mitochondria and chloroplasts. These organelles are believed to have originated from 

two bacterial ancestors, an alpha proteobacterium being the ancestor of mitochondria 

and a cyanobacterium being the ancestor of chloroplasts.  

Phylogenetic analysis based on genome signature tree however shows that 

cyanobacteria and chloroplasts are closer to mitochondria than most alpha-

proteobacteria.   An alternate hypothesis is proposed which says that, a single 

endosymbiotic uptake of a cyanobacterium led to the birth of both the organelles, 

mitochondria and chloroplasts.  Arguments from different viewpoints that support this 

new hypothesis are discussed in this chapter.  This chapter underlines the necessity to 

take a re-look at established phylogenetic relationships based solely on amino acid 

sequence similarities. 
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 It may be mentioned that each chapter of the thesis is presented as an 

independent unit and therefore the tables and figures are numbered chapter wise. 

Relevant references are given at the end of each chapter.  A summary of the work and 

future directions are given towards the end of the thesis. 
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Introduction to Chaos Game Representation 
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Introduction to Chaos Game RepresentationIntroduction to Chaos Game RepresentationIntroduction to Chaos Game RepresentationIntroduction to Chaos Game Representation    

 

 

1.1 Introduction 

Computational biology deals with the use of mathematical tools to extract 

useful information from biological data.  Representative problems in computational 

biology range from the assembly of high-quality DNA sequences from fragmentary 

‘shotgun’ DNA sequencing to the prediction of gene regulation with data from mRNA 

micro-arrays and protein chips. Although efforts are continuously being made towards 

understanding the characteristics of genomes, any particular genome is too long and 

too complex for a person to directly comprehend its characteristics.  This chapter 

gives an introduction to one such mathematical technique called Chaos Game 

Representation (CGR).  CGR was originally proposed as a scale-independent 

representation for genomic sequences by Jeffrey in 1990 (Jeffrey, 1990).  The 

technique, formally an iterative function system, can be traced further back to the 

foundations of statistical mechanics, in particular to Chaos theory (Bar-Yam, 1997). 

 



2 

 

Introduction to Chaos Game Representation 

1.2  Introduction to Chaos Game 

The Chaos Game is an algorithm which produces pictures of fractal structures.  In 

mathematics, the term chaos game, as coined by Michael Barnsley (1988), originally 

refers to a method of creating a fractal, using a polygon and a random point inside it.  

In a simple form, it proceeds as follows. 

1. Plot three non-collinear points on a paper.  Label the points as A, B and C.   

2. Plot another point anywhere on the plane.  This is the current point. 

3. Now take a six sided die and roll it.  If the number which appears on top is 1 

or 2, then plot a point mid-way of the current point and A.  If the number is 3 

or 4, then plot the same towards B and if the number is 5 or 6 then plot the 

same towards C.  The point which you have last plotted is the current point. 

4. Again roll the die and repeat step 3, where the current point is the point is the 

point you have plotted last. 

If these steps are repeated many times, one might expect a paper covered with random 

dots or perhaps a triangle filled with random dots.  Such is not the case.  What we 

obtain is seen in the figure, a triangle filled with a sequence of smaller and further 

smaller triangles.  This figure is called the ‘Sierpinski Gasket’ after the mathematician 

who first defined it.  
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Figure 1.1 - Sierpinski's gasket 

With four initial points the result is different.  We will not obtain squares inside 

squares.  What we obtain is a square uniformly filled with points. 

Mathematically the chaos game is represented by an Iterated Function System 

(IFS).  IFS is a finite collection of mappings Fi: X X defined on a metric space X, 

with  

( ) ( )( )∑ −=

i

ii nxFnx 1

.   

Each equation gives the formula for computing the new values of xi. 

1.3  Chaos Game Representation of DNA sequences 

The DNA sequence is composed of four nucleotides Adenine (A), Guanine 

(G), Cytosine (C) and Thymine (T).   For our use, it is treated formally as a simple 

string comprising of the characters A, T, G and C.  Suppose that each nucleotide is 

assigned a point as follows; A is (0, 0), T is (1, 0), G is (1, 1) and C is (0, 1).  Given a 

DNA sequence, it can be visually represented in a CGR as follows.  Plot the initial 

point in the centre of the square (0.5, 0.5) formed by the four points A, T, G and C as 
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its vertices.  The first nucleotide in the sequence is considered.  Plot a point exactly 

midway between the current point and the vertex corresponding to the nucleotide.  For 

the next nucleotide, take this second point as the current point and repeat the same 

procedure.  i.e. The CGR of a nucleotide at position i of a sequence is exactly halfway 

between the previous point and the vertex corresponding to the present nucleotide. 

Mathematically it is represented by an Iterated Function System, here a pair of linear 

equations  defined by, 

( )( )igxx xii += −15.0  

          (1) 

( )( )igyy yii += −15.0
    

where gx(i) is the x coordinate of the vertex corresponding to the nucleotide at 

position i and gy(i) is the y coordinate of that vertex. 

As an illustration consider the sequence ATGCGAGTGT 
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Figure 1.2  -  CGR of ATGCGAGTGT 

           But if we continue plotting the same way for a genome region, the resulting 

figure is not a square filled with random dots.  The CGRs for the complete genome of 

the bacterium Clostridium Tetani E88 and the mitochondrial genome of the plant 

Arabidopsis Thaliana is given as illustrations.  Observe that the uniformly filled 

square for random probabilities strongly contrasts with the apparent structure 

displayed by the CGR for the DNA sequences.  Also notice the difference between 

the patterns formed. 

 

Figure 1.3  - Clostridium Tetani E88 - Complete Genome 
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Figure 1.4  -  Arabidopsis Thaliana Mitochondrion 

Earlier we have shown that plotting points randomly in a square using Chaos 

Game, give a square randomly filled with dots, that is without any particular patterns.  

But plotting DNA sequences using CGR show visible patterns in the picture.  What 

we see is the attractor formed by the iterated function system.  The pictures have a 

complex structure which varies depending on the input sequence.  H.J. Jeffrey (1990) 

proposed this method and visualised the patterns of different sequences.  Intuitively, 

non-randomness in the picture corresponds to non-randomness in the sequence.  It 

implies that the nucleotide sequences are following some kind of rule.  Jeffrey noted 

that a pattern in one part of the picture was repeated in many places, but in varying 

magnitudes.  The CGR thus exhibits the property of self-similarity which is very 

important in the study of fractals and chaotic dynamics.  He noticed that there is a one 

to one correspondence between the sequence and the points in the CGR.  Hence any 

visible pattern in the CGR corresponds to some pattern in the sequence of bases.  It is 
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to be noted that adjacent nucleotides in the sequence may not be plotted adjacent to 

each other.  He observed that the visible patterns represent global as well as local 

patterns in the sequence. 

1.4  Frequency Chaos Game Representation 

Jeffrey (1990) has observed that each point in the CGR corresponds to exactly 

one subsequence (starting from the first base).  Though he mentioned the one to one 

correspondence, he did not give a method to reconstruct the sequence from the CGR.  

The point in a CGR corresponding to one base of a sequence is plotted in the quadrant 

of the square labelled with that base. This is because each quadrant comprises all 

points that are halfway between one corner and any other point within the square. 

Conversely, all points plotted within a quadrant must correspond to subsequences of 

the DNA sequence that end with the base labelling the corner of that quadrant. For 

example, any base G gives rise to a point in the G (upper-right) quadrant of the 

square; and every point in that quadrant corresponds to a base G in the DNA 

sequence. This association between points and subsequences continues recursively to 

sub-quadrants, sub-sub-quadrants etc.  

A correspondence between the subsequence and the CGR points is described 

as follows.  In a CGR whose side is of length 1, two sequences with suffix of length 

‘k’, are contained within the square with side length 2-k.  i.e. For a particular k-mer, its 

CGR co-ordinates will always be contained in a specific square with side length 2-k.   

In the figure shown below, the CGR point which appears bold in the lower 

right quadrant is used to trace the sequence backwards.  Since the point lies in the 

lower right quadrant the last nucleotide in the sequence is T.  Subdivide this quadrant 
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into four and we can see that our point lies in the upper right quadrant which stands 

for G.  i.e. our sequence ends with GT.  Further subdividing the current quadrant into 

four will make the point fall into the lower right quadrant which stands for A.  Here 

we have divided the CGR square four times to obtain the last four nucleotides which 

is GAGT.  This can be extended to any further resolution as desired.  In theory, it is 

possible to reconstruct the entire sequence from the first base.                     

 

Figure 1.5 -  Resolving a CGR 

Another way to look at the above picture is that, whenever the pattern ‘GAGT’ 

appears in the sequence, a dot will be plotted somewhere in the corresponding square.  

That is, counting the number of points in the corresponding square will give the 

frequency of appearance of ‘GAGT’ in the sequence.  Thus counting the CGR points 

in the squares of a 2k x 2k grid gives the number of occurrences of all possible k-mers 
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in the sequence.  This type of representation is called a Frequency Chaos Game 

Representation (FCGR).  The structure of FCGR was introduced by Deschavanne et 

al. (1999) and the name FCGR was proposed by Almeida et al. (2001).  Note that 

those points on the grid square lines are not to be counted because they represent the 

length k-1 oligonucleotide at the beginning of the DNA sequence. These k-1 points 

can be omitted as long as the DNA sequence is much longer than k. 

                

            x 1000 bp 

Figure 1.6  -  CGR and FCGR of order 2 

Figure 1.6 shows a CGR and its corresponding FCGR of order 2.  Here the 

CGR is divided into  22 x 22 squares and the number of points in each square is 

written in the corresponding FCGR matrix.   The values in this FCGR gives various 

dimer frequencies (multiplied by 1000) of the given sequence.  

It is also possible to calculate oligonucleotide frequencies of non-integer lengths by 

resolving the CGR using grids of sizes other than powers of two. (Almeida et al, 

2001) 

53 44 29 31 

72 28 44 46 

60 59 74 83 

91 90 92 101 
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Thus CGR, which was primarily meant only to be a visualization technique of 

nucleotide sequences, was shown to give rise to a fast algorithm for computing 

oligonucleotide frequencies of any length.  Instead of being a graphical representation 

like CGR, an FCGR is a numerical matrix.  The method, thus provides a graphical 

representation as well as a storage tool. 

1.5  Review of CGR in sequence analysis 

After its introduction in 1990, the potential of CGR to analyze sequences 

generated much interest among researchers.   The observation, that the visible patterns 

in CGR represent global as well as local patterns in the sequence, was relevant to the 

DNA sequence organization.  This attracted immediate further research (Basu et al, 

1992; Hill et al, 1992 and Oliver et al, 1993).  Hill et al. examined the CGRs of 

coding sequences of 7 human globin genes and 29 relatively conserved alcohol 

dehydrogenase genes from phylogenetically divergent species. The results showed 

that, CGRs of human globin cDNAs were similar to one another and to the entire 

human globin gene complex.  Moreover, Adh CGRs were similar for genes of the 

same or closely related species but were different for relatively conserved Adh genes 

from distantly related species.   The paper suggested that dinucleotide frequencies 

may account for the self-similar pattern that is characteristic of vertebrate CGRs and 

the genome-specific features of CGR patterns.  Three years after the original 

proposition, Goldman (Goldman, 1993) interpreted that the frequency of dots in the 

CGR quadrants was nothing more than the oligonucleotide frequencies. CGR research 

received a setback when he asserted that simple Markov Chain models based solely 

on di-nucleotide and tri-nucleotide frequencies can completely account for the 

complex patterns exhibited in CGRs of DNA sequences.  He concluded that the CGR 
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gives no further insight into the structure of the DNA sequence than is given by the 

dinucleotide and trinucleotide frequencies and unless more complex patterns are 

found in CGRs, there is no justification for ascribing their patterns to anything other 

than the oligonucleotide frequencies. Jeffrey (1990) had earlier plotted CGR of 

Human Beta Globin Region on Human Chromosome 11 and the most noticeable 

feature in it was the repeated (self-similar) pattern of sparse 'double scoop' shaped 

regions, the largest of which is at the top of the G quadrant.  Goldman pointed out that 

the double scoop is nothing more than the relative rarity of CG dinucleotides.   He 

claimed that a four state discrete time Markov Model could easily simulate the 

“double scoop” pattern and other features obtained in the CGR.  According to this 

conclusion, CGR should be relegated to the status of a pictorial representation of 

nucleotide, dinucleotide and trinucleotide frequencies.  These sobering conclusions 

had the effect that CGRs have subsequently been much less studied from this 

perspective.   

The use of CGR for the study of the entropy of genomic sequences was noted 

by Roman-Ronald et al (1994) and Oliver et al (1993).   Oliver et al divided the 

square into 4n smaller squares as in the case of an FCGR and counted the point 

density in each square.  A histogram of the densities was prepared after determining 

appropriate intervals.  Shannon’s formula was applied to the probability distribution 

histogram, thus obtaining an entropic estimate of the DNA sequence.   The entropic 

profile of the sequence was drawn by considering entropies at various resolution 

levels.   Oliver et al. showed that the entropic profiles clearly discriminate between 

random and natural DNA sequences.  The paper also illustrates that the entropic 

profile show a different degree of variability within the genome and between 
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genomes.  The paper observes that vertebrate nuclear genomes show more variable 

entropic profiles than bacterial and mitochondrial ones.      

The original proposition of CGR was meant for genomic sequences only. In 

later works it was more generalized and was shown to represent other biological 

sequences such as proteins (Basu et al., 1997; Pleißner et al., 1997)  and also 

sequences of arbitrary finite number of symbols (Tino, 1999).   Basu et al. used 

concatenated amino acid sequences of proteins belonging to a particular family.  A 

new method of CGR was used with a 12 sided polygon in place of the CGR square.  

Each vertex of the polygon represented a group of amino acid residues leading to 

conservative substitutions.  The CGR was partitioned into grids, and an estimation of 

the percentages of points plotted in the different segments allowed quantification of 

the nonrandomness of the CGR patterns generated. The CGRs of different protein 

families exhibited distinct visually identifiable patterns.     

Deshavanne et al (1999) showed that subsequences of a genome exhibit the 

main characteristics of the whole genome, attesting to the validity of a genomic 

signature concept.   The short oligonucleotide composition of a particular genome is 

more or less same throughout the entire genome.  This property of the nucleotide 

sequence of an organism is known as the genome signature of that particular 

organism.  His experiments showed that variation between CGR images along a 

genome was smaller than variation among genomes. He claimed that these facts 

strongly support the concept of genomic signature and qualify the CGR as a powerful 

tool to unveil it. 

The measure generated on the attractor of the CGR (which is an Iterated 

Function System) provides more information on the sequence ( Guiterrez et al, 1998; 
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Hao, 2000).   Guitierrez et al. (Guitierrez et al, 2001) mapped a DNA symbolic 

sequence onto a singular measure on the attractor of a particular Iterated Function 

System model.  A multifractal analysis of this measure is performed and singularities 

were interpreted in terms of mutual information and statistical dependency among 

subsequence symbols.   

It was Almeida et al. (Almeida et al, 2001) who demonstrated that CGR may 

be upgraded from a mere representation technique to a sequence modeling tool.  He 

showed that the distribution of points in the CGR has two properties: it is unique, and 

the source sequence can be recovered from the coordinates such that distance between 

positions measures similarity between the corresponding sequences.  The frequency 

of various oligonucleotide combinations, the ‘genomic signature’, can be determined 

by dividing the CGR space with a grid of appropriate size and counting occurrence in 

each quadrant. In order to obtain the frequency matrix of oligonucleotide length n, a 

2n
 × 2n

 grid must be used.  Almeida et al showed that Markov chain models are in fact 

particular cases of CGRs contrary to the claim by Goldman (Goldman, 1993).  The 

frequency matrices extracted from CGR is called a Frequency Chaos Game 

Representation (FCGR) and can now be reordered in the more useful Markov Chain 

model (MCM) format (Goldman, 1993; Almagor, 1983; Avery, 1987).   Almeida 

showed that the conversion from FCGR to MCM is straight forward only if the 

number of quadrants k satisfy the condition, k = 22n, where n  1 is an integer.  i.e. 

The FCGR represents an MCM only when,  k = 22n is satisfied.  In other words, they 

showed that the distribution of points in CGR is a generalization of Markov chain 

probability tables that accommodates non-integer orders.  Unlike MCM, FCGR is not 

constrained to represent sequences with an integer number of bases. This fundamental 
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characteristic of CGR is illustrated by Almeida et al. for E.coli thrA where the 

frequency of oligonucleotides with a fractionary length has been computed by 

dividing the CGR plane with a 10 × 10 grid (k = 100 violates condition in the above 

equation).  Almeida et al. also suggested a global distance measure to measure the 

dissimilarity between the sequences.  The measure was based on a weighted Pearson 

correlation coefficient rw between the FCGRs.  Let the two sets of FCGR quadrants be 

x and y with xi and yi representing the frequency in the ith  quadrant.  The weighted 

Pearson correlation coefficient is calculated as follows: 
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The advantage of using weighted correlation coefficient is that, the importance 

of each quadrant is made proportional to its magnitude.  Hence a quadrant with a 

significantly high occurrence of a particular oligonucleotide is given more importance 

while determining similarity.  The distance between the sequences is defined to be d 

= 1 – rw and this value ranges between 0 and 2.  Note that the distance 0 corresponds 

to perfect correlation between the sequences, i.e. the sequences are similar.  Almeida 
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et al. also recognized the property of CGR in finding out local similarity.  The paper 

notes that two sequences with the same last nucleotide cannot be further than 0.5 

distance apart.  Also, two sequences with the same last two nucleotides cannot be 

further than 0.25 distance apart.  The presence of similar nucleotides upstream will 

further shorten this distance.  Note that each similar pair of nucleotides halves the 

distance between the sequences prior to it.  This method of finding regions of local 

similarity was not further explored by the scientific community.  The work of 

Almeida et al  thus positioned CGR as a powerful sequence modelling tool that has 

the advantages of computational efficiency and scale independence. 

 Anh et al. (2002) considered the problem of matching a DNA fragment to an 

organism using its entire genome.  The authors used Recurrent Iterative Function 

System (RIFS) another iterative function system which has resemblance to CGR.   

Their hypothesis was that the multifractal characteristic of the probability measure of 

a complete genome, as captured by the RIFS, is preserved in its reasonably long 

fragments.  The RIFS of the fragments of various lengths were compared with that of 

the original sequences using Euclidean distance as a distance measure.  The 

hypothesis is supported by results obtained on five randomly selected genomes.   

Wang et al. (Wang et al, 2005) made a detailed and comprehensive study on 

various genomic signatures. The papers first concern was to prove that while 

nucleotide, di-nucleotide and tri-nucleotide frequencies are able to influence the 

patterns in CGRs these frequencies cannot solely determine the patterns in CGRs.  

Their work generated a new sequence which simulated the dinucleotide frequency of 

another sequence.  The CGR of the original sequence and the simulated sequence 

were seen not to be same.  The same procedure was repeated for trinucleotide 
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frequencies and then also the CGRs of the original sequence and the simulated 

sequence did not match.  These were counter examples to the result claimed by 

Goldman (1993).  It was shown that the CGR of a sequence was not solely dependent 

on oligonucleotide frequencies.  They showed that frequencies of oligonucleotides of 

all lengths are needed to determine the CGR absolutely.  The second part of this paper 

by Wang et al. concerns various genomic signatures. In parallel to CGR research, 

Karlin and Burge proposed the concept of genomic signature (Karlin and Burge, 

1995) which says that Dinucleotide Relative Abundance Profiles (DRAPs) of 

different DNA sequence samples from the same organism are generally much more 

similar to each other than to those of sequences from other organisms. In addition, 

closely related organisms generally have more similar DRAPs than distantly related 

organisms.  Wang et al. (2005) demonstrated that DRAP is one particular genomic 

signature contained within a broader spectrum of signatures. He claimed that CGR, 

which provides a unique visualization of patterns in sequence organization, is another 

alternative genomic signature within this spectrum.  In his opinion, DRAP can be 

considered as a second order FCGR, where the relative frequency of nucleotides is 

plotted instead of the usual frequency.  Note that relative frequency is defined as the 

original frequency divided by the product of frequencies of the component monomers.  

Expanding this, he generalized DRAP by defining trinucleotide relative FCGR.  The 

trinucleotide relative frequency is defined as trinucleotide frequency divided by the 

product of frequencies of the component monomers. Based on these the paper 

proposes that various kinds of genomic signatures exist, and they can be considered as 

members of a spectrum of genomic signatures. The paper notices that, before 

computing the FCGR the sequence has to be concatenated with the reverse 

complement strand to nullify strand bias.  Another thing is that, different organisms 
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will be having sequences of varying length and hence FCGRs have to be standardized 

by nullifying the effect of sequence length, in order to effectively compare between 

two of them.  Thirdly, the paper also proposes some distance measures between 

genomic signatures of two DNA sequences.  Two geometric distances which he 

proposes are the usual Euclidean distance and Hamming distance between two 

standardized FCGRs.  Another geometric distance the paper proposes is the Image 

distance, an innovation in this paper, which is computed using two concepts 

neighbourhood of an integer and density in that neighbourhood.  Yet another distance 

he mentions is a statistical one called the Pearson distance based on weighted 

correlation coefficient introduced by Almeida et al (2001), which we have already 

mentioned.  He further evaluated the phylogenetic tree produced by these various 

distances by comparing it with the phylogenetic tree obtained using CLUSTALW.   

Dufraigne et al. (2005) used the property of genome signature to detect 

horizontal transfer of genes between various organisms.  Since DNA transfers 

originate from species with a signature different from those of the recipient species, 

the analysis of local variations of signature along recipient genome may allow for 

detecting exogenous DNA. First the entire genome is scanned with a sliding window 

while calculating the corresponding local signature.  Then, the signature of each 

window is evaluated by measuring its deviation from the signature of the whole 

genome.  If the signature of a window is markedly different from that of the whole 

genome similar signature is searched for in a database of genomic signatures to find 

the putative origin of that particular fragment. Deschavenne et al. analyzed a total of 

22 prokaryote genomes in this way. It has been observed that atypical regions make 

up  ~ 6% of each genome on the average. Most of the claimed Horizontal Transfers as 
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well as new ones were detected using this method. The origin of putative DNA 

transfers is looked for among ~12000 species. Donor species are proposed and 

sometimes strongly suggested, considering similarity of signatures. 

 Cenac et al (2006) considered a possible representation of a DNA sequence in 

a quaternary tree, based on CGR, in which one can visualize repetitions of subwords. 

A CGR-tree was created, which turns a sequence of letters into a Digital Search Tree 

(DST), obtained from the suffixes of the reversed sequence. 

 Fertil et al (2005) created a workspace, named GENSTYLE, for nucleotide 

sequence analysis based on CGR.  In addition to visualization of genomic signature, 

the toolbox provides for comparing different signatures for the purpose of building 

phylogenetic tree.  The origin of short DNA fragments can be searched for using this 

tool.  The homogeneity of the signature along an entire genome could be studied 

which can lead to detecting Horizontal Transfers as mentioned by Dufraigne et al 

(2005).  The software further provides for measuring similarity and differences among 

sequences using statistical methods such as Principal Component Analysis.   

1.6  Central idea of the thesis 

This thesis is an attempt to explore and enhance the potential of Chaos Game 

Representation as a tool for Genome sequence analysis and comparison. We 

demonstrate for the first time the potential of CGR for making alignment-based 

comparisons of whole genome sequences.  A fast algorithm for identifying all local 

alignments between two long DNA sequences using the sequence information 

contained in CGR points is developed and demonstrated.  Another focus of the thesis 

is the use of CGR as a tool to explore the concept of genomic signature and use it for 



19 

 

Introduction to Chaos Game Representation 

deducing phylogenetic relationships. A number of studies have demonstrated that 

genome signature is a phylogenetic signal which means that genome signatures of 

evolutionarily related organisms tend to resemble each other. In this thesis, using the 

different oligonucleotide frequency profiles obtained by FCGR as different 

representations of the genome signature, we classify different groups of organisms 

based on similarity of the genome signature.  We find that different representations of 

the genome signature lead to different resolutions of the levels of classification. We 

apply the tool to investigate the bacterial origin of the eukaryotic organelles- 

mitochondria and chloroplast- by comparing the genome signatures of the organelles 

with those of bacteria. This leads us to formulating an alternate hypothesis for the 

origin of mitochondria.  

This work adds to the repertoire of sequence analysis applications of Chaos Game and 

positions CGR as a powerful too for genome sequence analysis and comparison.  

1.7 Organization of the rest of the thesis 

The potential of CGR in making alignment-based comparisons of whole 

genome sequences is explored in the next chapter.  In this chapter local alignments 

between two long DNA sequences are identified using the sequence information 

contained in CGR points.  An algorithm is developed so as to compute the length of 

aligned sequence from the distance between corresponding CGR points of the pair of 

sequences.  The algorithm is made faster by reducing the complexity from O (n x m) 

to O (n). This is done by anchoring the alignment using the FCGR matrix. 

 The third chapter describes the investigations of the phylogenetic signal 

contained in genome signatures using FCGR.  The chapter begins with a description 
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of the traditional methods of molecular phylogeny and outlining their limitations. 

Phylogenetic relationships based on similarity of genome signature are determined for 

different groups of organisms and different representations of the genome signature.  

The fourth chapter deals with the application of FCGR to investigate a specific 

problem namely, the evolutionary origin of the eukaryotic organelles, mitochondria 

and chloroplasts  The genome signature tree shows a major discrepancy from the 

established hypothesis that the bacterial ancestor of mitochondria is a member of the 

group alpha proteobacteria. We find that the genome signatures of mitochondria are 

closer to cyanobacteria than to most alpha proteobacteria.   The unique capability of 

cyanobacteria to perform both oxygenic photosynthesis and aerobic respiration 

prompts a more parsimonious hypothesis that a single endosymbiotic uptake of a 

cyanobacterium could have led to the birth of both the organelles.  Other arguments 

such as timing of evolutionary and geological events, selectional advantages 

conferred by combined photosynthesis and aerobic respiration and structural and 

functional similarity of cyanobacterial membranes to both the organellar membranes 

are brought together so as to demonstrate the plausibility of this alternate hypothesis. 

This chapter underlines the necessity to take a re-look at established phylogenetic 

relationships based solely on amino acid sequence similarities. 

Summary and future directions are given towards the end of the thesis. 
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2.1  Introduction 

Chaos Game Representation of genome sequences has been initially a tool for 

visual representation of genome sequence patterns.  Later on it was employed for 

alignment-free comparisons of genome sequences based on oligonucleotide 

frequencies.  However the potential of this representation for making alignment-based 

comparisons of whole genome sequences has not been exploited. In this chapter, a 

fast algorithm for identifying all local alignments between two long DNA sequences 

using the sequence information contained in CGR points is developed. The local 

alignments can be depicted graphically in a dot-matrix plot or in text form, and the 

significant similarities and differences between the two sequences can be identified.  

The method is demonstrated through comparison of whole genomes of several 

microbial species. Given two closely related genomes, information on mismatches, 

insertions, deletions and shuffles that differentiate the two genomes is found out using 

this algorithm.  
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2.2  Overview of sequence alignment 

Over the past years, sequence comparison has evolved from an obscure pursuit 

of a few evolutionary biologists to a routine event that is performed 100,000's times a 

day.  This is because sequence comparison is the simplest, quickest and most 

inexpensive way of determining whether a newly sequenced gene or protein is in fact 

"new" and whether this new gene might do something interesting. By comparing a 

sequence to others that have already been painstakingly characterized, it is possible to 

infer not only functional and structural similarity, but also detailed phylogenetic 

relationships -- simply on the basis of sequence similarity alone. In many respects, 

sequence searching and the assessment of sequence similarity lie at the heart of 

bioinformatics. 

Sequence alignment is an arrangement of two or more sequences, highlighting 

their regions of similarity that may be a consequence of functional, structural, or 

evolutionary relationships between the sequences.  Pair wise sequence alignment 

methods are concerned with finding the best-matching piecewise or global alignments 

of protein or DNA sequences.   It is typical to assume, while aligning two sequence 

segments that both the sequences have evolved from a common ancestor.  In that case, 

the mismatches in the alignment can be considered as those which correspond to 

mutations and gaps correspond to insertions or deletions in one of the sequences.   

   One of the uses of sequence alignment is to find homologues of a gene or 

gene-product in a database of known examples. This information is useful for 

answering a variety of biological questions. Another very important application of 

pair wise alignment is identification of sequences of unknown structure or function.  

From the similarity of the sequences one can deduce the structure or function of the 
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unannotated sequence.  Further, conserved regions in both the sequences may imply 

the structural or functional significance of the motif.  A most widely used application 

of sequence alignment is in the study of molecular evolution.  DNA carries over 

genetic material from generation to generation, by virtue of its semi-conservative 

duplication mechanism. Changes in the material are introduced by occasional errors 

and mutations in the duplication, and by viruses and other mechanisms which 

sometimes move sub-sequences within the chromosome and between individuals. 

Consequently, an alignment between sequences indicates that the sequences evolved 

from a common ancestor which contained the matching subsequences.  Using 

assumptions about the probabilities of these change events, we can estimate the time 

when sequences diverged from a common ancestor or the time required for changing 

one sequence into another.  The actual biological meaning of any alignment can never 

be absolutely guaranteed. However, statistical methods can be used to assess the 

likelihood of finding an alignment between two regions (or sequences) by chance, 

given the size of the database and its composition. 

2.2.1  Algorithms for sequence alignment 

String representation allows researchers to apply various string comparison 

techniques available in computer science. As a result, various applications have been 

developed that facilitate the task of sequence alignment.  Computational approaches 

to sequence alignment generally fall into two categories: global alignments and local 

alignments. Finding a global alignment is a form of global optimization that makes 

the alignment to span the entire length of all query sequences.  Global alignments, 

which attempt to align every residue in every sequence, are most useful when the 

sequences in the query set are similar and of roughly equal size.  A general global 
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alignment technique is the Needleman-Wunsch algorithm, which is based on dynamic 

programming.  However, local alignments identify regions of similarity within long 

sequences that are often widely divergent overall.  They are more useful for dissimilar 

sequences that are suspected to contain regions of similarity or similar sequence 

motifs within their larger sequence context. The Smith-Waterman algorithm is a 

general local alignment method also based on dynamic programming. With 

sufficiently similar sequences, there is no difference between local and global 

alignments.   

 A variety of computational algorithms have been applied to the sequence 

alignment problem, including slow but formally optimizing methods like dynamic 

programming, and efficient, but not as thorough heuristic algorithms or probabilistic 

methods designed for fast large-scale database search.  The dot-matrix approach, 

which implicitly produces a family of alignments for individual sequence regions, is 

qualitative and simple, though time-consuming to analyze on a large scale.  To 

construct a dot-matrix plot, the two sequences are written along the top row and 

leftmost column of a two-dimensional matrix and a dot is placed at any point where 

the characters in the appropriate columns match.   Word methods identify a series of 

short, nonoverlapping subsequences in the query sequence that are then matched to 

candidate database sequences. The relative positions of the word in the two sequences 

being compared are subtracted to obtain an offset; this will indicate a region of 

alignment if multiple distinct words produce the same offset. Only if this region is 

detected do these methods apply more sensitive alignment criteria; thus, many 

unnecessary comparisons with sequences of no appreciable similarity are eliminated.   

FASTA is a dynamic programming algorithm that compares two sequences to find the 
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best alignment. It finds regions of exact local matches between two sequences and 

then tries to connect them to get a global alignment.  BLAST stands for “Basic Local 

Alignment Search Tool.” BLAST searches for common words or k-tuples in the 

selected sequence and each database sequence and then tries to extend them beyond a 

selected threshold. Both FASTA and BLAST are heuristics of Smith-Waterman 

algorithm.  Further, word methods are best known for their implementation in the 

database search tools FASTA and the BLAST family.   Both the above algorithms are 

extremely efficient for aligning ‘gene sized’ sequences but are not suitable for 

aligning large sequences like whole genomes.   

 However, as more and more genomes are being sequenced it has important to 

develop efficient programs for detecting and aligning matching segments in pairs of 

megabase scale sequences for comparing whole genomes and determining 

evolutionary relationships.  Several programs for large-scale genome comparison 

have been developed in recent years, for example, MUMmer (Kurtz et al, 2004), 

SSAHA (Ning et al, 2001), AVID (Bray et al, 2003), BLASTZ (Schwartz et al, 2003), 

LAGAN (Brudno et al, 2003), DIALIGN (Morgenstern, 2004), WABA (Baillie et al., 

200) and GLASS (Leplae, 1998).  All these programs follow an anchor-based 

approach like FASTA in which all matching n-mers for a fixed n are initially 

identified as potential anchors and later the anchors are extended into longer 

alignments.  SSAHA stands for Sequence Search and Alignment by Hashing 

Algorithm.  Its uses a hashing function with a ‘k-mer’ seed.  Its fast and needs less 

memory than the traditional suffix-tree method.  However the length of k is limited 

since if k=15 then it uses around 4 GB of memory.  MUMmer which stands for 

Maximum Unique Matching (mer) is one of the extremely popular programs used for 
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megabase scale sequence alignment.  It uses a suffix tree method for alignment.  A 

Maximal Unique Match (MUM) for x and y is a pair of subsequences (x1,y1) that 

exactly match and there is no other subsequence pair that contain x1 and y1 

simultaneously.  MUMmer first constructs a suffix tree for x and later the suffixes of 

y are inserted into the same tree.  All the MUMs are detected by traversing this suffix 

tree.  The gaps between consecutive MUMs are aligned with the help of Smith-

Waterman algorithm.  MUMmer is linear in time consumption and memory usage.  

However, the program works best when the similarity of the input sequences are very 

high. 

Our proposed tool uses the sequence information contained in the CGR points 

for detecting local alignments between large genome sequences. 

2.3 Methods - CGR for alignment based comparison 

2.3.1 Overview of the method 

Here we develop a fast algorithm for pair wise local alignment of long 

sequences, of the order of megabases, using the information contained in CGR points. 

It is to be noted that in the CGR, a point corresponding to a sequence of length ‘n’ is 

contained within a square with side of length 2–n.  This holds true for any positive 

integer value ‘n’.  In other words, a point in the CGR can be used to trace back its 

corresponding original sequence upto n nucleotides backwards, where this n can be 

arbitrarily large.  This tremendous information content in the CGR has been left 

relatively unexplored.  Most applications of CGR have been based merely on point 

counts calculated at various grid resolutions (FCGR).  However, Almeida et al. 

(2001), mentions that, regions of local similarity between two sequences is reflected 

in the distance between CGR points. CGR points come closer together as sequence 
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similarity increases. They defined a measure of local similarity as length of similar 

sequence nH calculated as a function of the maximum absolute difference between 

either CGR coordinate. Nevertheless, no attempt was made to use the information for 

developing an algorithm for aligning and comparing whole genomes.   

 We first show how the similar segments of two sequences can be identified 

based on the distance between the CGR points of the two sequences. Since 

determination of distance between all pairs of CGR points, is costly in time 

(complexity O(N x M), N and M being the length of the two sequences) , we speed up 

the program by using an anchored alignment approach similar to that used in other 

sequence alignment programs. We use FCGR resolved by a 2k x 2k grid for the initial 

location of the matching k-mers which form the anchors. The distance between CGR 

points corresponding to each pair of matching k-mers, is then used to see if the 

matching k-mers can be extended into longer local alignments. We allow for 

mismatches by chaining together close local alignments. The program finds multiple 

local alignments between two sequences, allowing the detection of homologous 

segments, internal sequence duplications and shuffling of segments.   

 

2.3.2  Using CGR points for finding identical segments in two sequences 

 Now, we show how the distance between CGR points can be used to identify 

sequence identities, and thereby a local alignment, without having to match the 

sequences nucleotide by nucleotide.  Consider the ith nucleotide of one sequence and 

the jth nucleotide of the other.  Co-ordinates of the CGR points corresponding to these 

positions on the two sequences are given by: 
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Xi   =  0.5  ( Xi-1 + gix )                                  

Yi  =   0.5  ( Yi-1 + giy )             (2) 

Xj   =  0.5  ( X j-1 + gjx )                             

Yj  =   0.5  ( Yj-1 + gjy )          

Define a distance between the two CGR points by  

( ) ( ) ( )( )jiji YYabsXXabsjid −−= ,max,           (3) 

If the nucleotides at positions ‘i’ and ‘j’ of the first and the second sequence 

respectively are equal then gix = gjx   and giy = gjy Then from equations (2) and (3) we 

get, 

( ) ( )1,15.0, −−= jidjid        (4) 

i.e. A pair of similar nucleotides makes the distance between the corresponding CGR 

points, half  the distance between the previous pair of points.  Extending this 

argument, we can say that if k consecutive nucleotides previous to positions i and j on 

the two sequences are identical, the distance between the CGR points corresponding 

to i and j is given by 

 ( ) ( ) ( )kjkidjid
k

−−= ,5.0,        (5) 

As k increases d(i, j) becomes smaller, i.e. as the length of identical sequence 

increases, the CGR points come closer together. 

 It must be noted that the closeness of two CGR points is not a sufficient condition to 

conclude that there is a length of similar sequence behind them. d(i,j) can become 

very low even when the sequences are very different. Such cases correspond to points 

on either side of, but close to, the borders of the quadrants corresponding to the four 

nucleotides. However if eqn. (5) is satisfied it can be inferred that the sequence 
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segment (i-k to i) in one sequence is identical to the segment (j-k to j) in the other 

sequence. 

Taking log on both sides of eqn. (5), we get, 

( )( ) ( )( )

( )5.0log

,log,log kjkidjid
k

−−−
=      (6) 

We can get an upper bound for k by putting d(i-k, j-k) = 1 in eqn.(6): 

( )( )jidk ,log2max −=        (7) 

This can be seen to be the same as the length of similar sequence proposed by 

Almeida et al. as a measure for assessing local similarity in two sequences.  

Equations 5 and 7 can be used to develop an algorithm for detection of all identical 

segments in two sequences based on the distance between CGR points. 

Calculating  kmax  for a pair of positions (i,j) on the two sequences we can estimate 

that , at the most, the sequence segment from i to i- kmax in one sequence could be 

identical to the segment from j to j- kmax in the other sequence .  We then check 

whether eqn. (5) is satisfied for k= kmax to see if these segments are truly identical.  If 

not, we substitute k-1 for k and check again if eqn. (5) is satisfied.  If not, then the 

procedure is repeated till the condition is satisfied.  Thus starting from (i- kmax, j- 

kmax), the first position (i-k, j-k) that satisfies eqn. (5) is determined. This gives the 

length k up to which segments prefixed to positions i and j in the two sequences, are 

identical. The flow chart of this procedure is shown in the following figure: 

 

 

 

 



33 

 

 Whole genome sequence alignment using Chaos Game Representation 

 

 
 
 
 
 
 
 
                                                                                                                   

 
 
 
                                                                                                         

 
                                                                                               
                                                                                           
                          
 
                                                                
 
 
 

Figure 2.1 - Flow chart of the procedure for identifying matching segments 

The method thus identifies identical segments without having to match the whole 

segment nucleotide by nucleotide. Search can be completely avoided if  kmax is found 

to be less than a threshold and long homologous segments can be identified by 

checking only a few points from (i- kmax, j- kmax )  instead of matching the whole 

length of the segment. 

2.3.3  Speeding up the algorithm 

A shortcoming of the above method is that the computational cost of obtaining 

the pair-wise alignment is high because d(i,j) has to be determined for all pairs of 

CGR points of the two sequences  and therefore the cost is of the order of the product 

of the length of the two sequences.  In order to speed up the program, we find a way 

to avoid computing d(i,j) for all pairs of CGR points of the two sequences. For this we 

use information from a resolved CGR in which the CGR square is divided into grid of 

Yes 

No  

Is d(i,j) = 2
-k

 x  

d(i-k, j-k) 

k = k -1 

(i-k to i) matches with (j-k to j). 

Length of the identical segment = k 

kmax = log (d (i,j)) 

k = kmax 
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size 2n x 2n. All CGR points falling in a square denotes the existence of a particular n-

mer prefixed to that position.  The ‘kmax’ is found only for those nucleotides in the 

other sequence which have their corresponding CGR point in the above mentioned 

square.  It is obvious that the increase in size of ‘n’ will increase the speed of the 

algorithm.  However, mismatches within the length ‘n’ cannot be found by this 

method. 

The algorithm for comparing two sequences A and B is described below: 

1. The CGR co-ordinates for both the sequences are calculated  

2. The CGR is resolved using a 2n x 2n grid and the CGR points of sequence B that  

    fall in each square are noted and stored 

3. Starting from the last nucleotide of sequence A, we identify the square in which the  

    corresponding CGR point i falls.  

3. The CGR points of B that fall in the same square, correspond to the n-mers in B  

    that match the n-mer which is prefixed to the position i  in A 

4. We calculate d(i,j)  and kmax for those CGR points  j  of the sequence B,  which fall  

     in the same square as the CGR point i of sequence A.  

5. Using d(i,j) and kmax  ,we determine the length of matching segments,  as described  

     in the flowchart.  

6. The longest matching segment is taken as the best local alignment at position i 

7. The procedure is repeated next for the point i-k in A, k being the length of the  

     longest matching segment.   

 

 

The flowchart of the entire algorithm is as follows: 
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Figure 2.2 – Flowchart of the whole algorithm 

 

    If (i = 0 or i-

Kbig =0) 

END 

1 

K = Kmax the length of the region of similarity immediately 

preceding the position pair (i,j) 

The regions of similarity between both the 

sequences are obtained, including length of the 

similar region 

3 

If (K>Kbig) 

Kbig = K 

    If( p = P) 

p = p+1 

2 

i = i - Kbig 
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 We can thus find all the non-overlapping local alignments between the two 

sequences. Using this approach, the all-to-all comparisons of the previous section is 

reduced to some-to-some comparisons, which speeds up the algorithm considerably. 

This technique is similar to the anchored alignment method used in other alignment 

programs.  It is to be noticed that here we use information from CGR, both for finding 

the anchors as well as for extending them. 

 The program yields the list of all local alignments between the two sequences 

in the order of their position in the sequence A. A sample list of alignments can be 

seen in Table 2.3 

.2.3.4  Floating point error 

 For long identical sequence segments, the distance value may go below the 

minimum value possible for a floating point variable. The distance defined in double 

precision variable becomes zero when the length of identical segment is greater than 

64. . Therefore in our implementation, when we encounter zero value for the distance 

we jump back by sixty positions and check distance again; if the distance is again 

zero, we jump back another sixty positions and so on until the distance becomes non-

zero. We add all the skipped positions to the k that we finally calculate with the non-

zero distance value. 
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2.3.5  Analysing the local alignments for shuffles, mismatches and   

          insertion/deletions 

 

Figure 2.3 – Local Alignments 

 Many a time, a quantitative measure of the degree of similarity/dissimilarity 

between two genomes is needed in a pairwise sequence alignment.  The number of (or 

length of) similar regions, shuffled regions, mismatches, insertions/deletions, 

duplications, inversions etc. help to quantify this concept.   These measures are 

defined below.  A local alignment can be defined by the start and end positions of 

identical segments in the two sequences. A pair of local alignments is given in the 

figure 2.3. 

 

Consider two local alignments L1 and L2 defined by 

(L1.StartA, L1.EndA, L1.StartB, L1.EndB) and  
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(L2.StartA, L2.EndA, L2.StartB, L2.EndB)  

 

 (a) Shuffles/Rearrangements 

Consider the list of local alignments that are ordered in increasing order of L.EndA. 

This list may not be in increasing order of L.EndB and any disruption of order in the 

list with respect to position in Sequence B is indicative of shuffling. By examining the 

disruption of order in L.EndB we can estimate the number of shuffles that have taken 

place in Sequence B with respect to Sequence A. 

  

(b) Mismatches 

Let, ∆A = abs (L2.StartA – L1.EndA) and ∆B = abs (L2.StartB – L1.EndB) where L1 

and L2 are two consecutive alignments in the ordered list. 

Mismatch length between the alignments can be calculated as: 

Mismatch length = min (∆A, ∆B) 

L1EndA L2StartA L1EndB L2StartB Mismatch 

56 64 56 64 8 

408 410 391 393 2 

636 637 619 620 1 

684 706 667 689 22 

843 857 826 840 14 

882 886 865 869 4 

 

Table 2.1 – Mismatches in the alignment 
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A few mismatches between the forward strands of the genomes of E.Coli K12 and 

E.Coli O157:H7 is illustrated in the above table.   

(c) Insertions/Deletions 

Diagonal off-set between two consecutive local alignments that are consecutive in 

Sequence B also, indicate deletions and insertions and can be calculated as 

IN/DEL length= max (∆A,  ∆B) - min(∆A, ∆B) 

In/Del L1EndA L2StartA L1EndB L2StartB In/Del Length 

Del 228 242 228 224 14 

Ins 317 318 299 301 1 

Ins 15394 15395 15377 16727 1349 

Ins 38484 38485 34110 34112 1 

Del 46517 46584 42111 42171 7 

Del 54724 55372 50310 50397 561 

Table 2.2  - In/Dels in the alignment 

A sample of Insertions/Deletions between the forward strands of the genomes of 

E.Coli K12 and E.Coli O157:H7 is given in the table 2.2.  Here the In/Dels in 

Sequence B is given with respect to Sequence A. 

(d) Duplications  

Duplications in B can be identified wherever L1.StartA = L2.StartA and L1.EndA = 

L2.EndA 

(e) Inversions 

Inversion of segments is detected by finding local alignments between Sequence A 

and the reverse complement of Sequence B 
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2.3.6  Chaining local alignments and filtering background noise 

 Short spurious alignments or background noise can be removed by filtering 

out all alignments below a certain threshold length. However this carries with it the 

danger of filtering out many “true” alignments that are separated by small 

mismatches. Therefore before filtering it is better to chain together ‘nearby’ perfect 

local alignments by allowing a certain amount of mismatches. We allow for short 

mismatches by chaining together local alignments that have no diagonal off-set and 

differ only by mismatches of a few nucleotides. We specify the maximum allowable 

mismatches per length of the chained alignment. If there is no diagonal off-set 

between them i.e. ∆A= ∆B, and the mismatch falls below the threshold value, the two 

alignments are chained together into a single alignment.  Chained alignments having 

length below a threshold are discarded to filter out the background noise.   

 

Order in 

A 

StartA EndA 

Order in 

B 

StartB EndB Length 

0 0 228 0 0 228 228 

1 242 317 1 224 299 75 

2 318 15394 2 301 15377 15076 

3 15395 18462 3 16727 19794 3067 

4 24968 25707 8 20563 21302 739 

5 25715 30126 9 21304 25715 4411 

 

Table 2.3 – Sample list of alignments 
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The above table shows some of the matching regions between the forward strands of 

the genomes of E.Coli K12 and E.Coli O157:H7, after filtering background noise.   

 

Inversions in any one of the genomes is taken care of by aligning the forward strand 

of one with the reverse complementary strand of the other.   

Order in A StartA EndA Order in B StartB EndB Length 

18 226955 228101 301 2729325 2728179 1146 

19 227193 229051 369 3426692 3424834 1858 

20 227285 227349 306 2728995 2728931 64 

21 229018 229051 293 2727268 2727235 33 

22 229068 230258 284 2727227 2726037 1190 

 

Table 2.4  -  Alignments between forward and reverse complementary strand 

The above table shows local alignments when the forward strand of E.coli K12 is 

compared with the reverse complementary strand of E.coli O157:H7.   Note that in 

Sequence B, the alignments are obtained in the reverse direction. 

 

2.4  Results and Discussion 

 The following figures show dot matrix plots showing the local alignments 

obtained using the method.   Line segments from the bottom-left to top-right direction 

shows regions of similarity.  Line segments from the top-left to bottom-right direction 

shows regions of inversion.  Parallel diagonal lines corresponding to the same region 

in the x-axis (or y-axis) show duplication in the sequence in the y-axis 

(correspondingly x-axis) 
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  The pair wise alignment was performed between Human Immunodefeciency 

Virus and Chimpanzee Immunodeficiency Virus, Pyrococcus Abyssi and Pyrococcus 

Horikoshii, E. Coli OH157:H7 and E. Coli K12, Mycobacterium leprae TN and 

Mycobacterium tuberculosis H37Rv respectively.  In all these computations the 

following values were used: 

Length of the k-mer which is used as the anchor  – 9 

Threshold length for accepting as local alignment (before chaining) – 20 

Maximum no. of mismatches allowed for chaining -  0.25  per matched length 

Threshold length for filtering background noise, after chaining the local alignments – 

30 

 

 

 
Figure 2.4  Human immunodeficiency virus and Chimpanzee immunodeficiency 
virus 
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Figure 2.5  - Pyrococcus Abyssi and Pyrococcus Horikoshii.  Large scale inversions 
can be observed in the genomes 

 
Figure 2.6 – Prochlorococcus Marinus 9312 and Prochlorococcus Marinus 
NATL2A.  Shuffling of a large segment (~500000bp) can be found visibly in the figure.  
Here the alignment in reverse complementary direction is marked by a different colour. 
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Figure 2.7  - E.coli K12 and E.coli O157:H7 

 
 
 
 
 

 
Figure 2.8 - Mycobacterim Tuberculosis H37Rv and Mycobacterium Leprae TN.  

Inversions can be noticed in the figure in the alignment of these genomes 
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2.4.1  Computational Time 

 The following table (Table 2.5) shows the computation time taken for finding 

all local alignments between pairs of sequences of different sizes  with the program 

running on a Pentium IV 2.5GHz machine.  

It can be seen that the factors affecting the time of execution of the program 

are not only on the length of the sequences, but also the degree of similarity between 

them and the amount of internal duplications. For example, the time taken for 

comparing M.leprae and M.tuberculosis is much greater than the time taken for 

comparing M. bovis and M.tuberculosis even though the sizes of the genomes are 

similar. However, the time taken by this program for comparing the two E.Coli 

genomes is 68 seconds while MUMmer an extremely popular large-scale sequence 

alignment tool available takes only 17 seconds. The emphasis of this paper is on the 

theoretical development of the method rather than on software development and it is 

possible that with better programming inputs the implementation can be made more 

efficient and faster. The focal characteristic of this method comes from the fact that 

CGR simultaneously facilitates other types of sequence comparisons ranging from 

visual comparisons of patterns to oligonucleotide frequency spectrums and genome 

signatures. 
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Organisms 

Length A 

(In base 

pairs) 

Length B 

(In base 

pairs) 

Time (forward 

strand) in seconds 

Time (reverse 

complement) in 

seconds 

HIV vs. CIV 9229 9811 <1 1 

P. Abyssi vs.  
P. Horikoshii 

1765118 1738505 24 27 

E. coli O157:H7 vs. 

E. coli K12 
5498450 4639675 68 156 

R. Madrid E vs.  
R. Malish 7 

1111523 1268755 18 24 

M. tuberculosis 
H37Rv vs.  
M. leprae TN 

4411532 3268203 119 120 

M. bovis AF2122 
vs. M.tuberculosis 
H37Rv 

4345492 4411532 10 230 

M. tuberculosis 
H37Rv vs.  
M. tuberculosis 
CDC1551 

4411532 4403662 6 232 

Table 2.5 -  Computational Time Taken 

2.5  Conclusion 

A novel algorithm, which uses information from chaos game representation of 

genome sequences, for finding all local alignments between the sequences has been 

developed.  The CGR of a nucleotide at a particular position is affected, though 

partially, by every nucleotide preceding it.  This property of CGR has tremendous 

potential and this hitherto completely unutilized potential of CGR is employed in the 

pair wise sequence alignment algorithm.  The algorithm is made faster by anchored-
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alignment method.  Anchoring is done using detection of n-mers through CGR.  Thus, 

both the anchoring and the progression of the alignment are computed using CGR.  

The method takes maximal advantage of the CGR, regarding computational speed and 

its ‘more-than-oligomer-representation’ property.  Fast comparisons can be made 

between sequences of mega-base size using a Pentium IV machine. As far as the 

speed of alignment is concerned, the program, in its present state does not offer any 

major improvements over MUMmer.  However, it is possible that the method can be 

implemented more efficiently through better programming inputs. Addition of the 

possibility of large scale sequence alignment to the existing repertoire of alignment-

free sequence analysis possibilities from CGR, positions CGR as a powerful 

quantitative sequence analysis tool.   
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Frequency Chaos Game RepresentationFrequency Chaos Game RepresentationFrequency Chaos Game RepresentationFrequency Chaos Game Representation    

 

 

3.1 Introduction 

Traditional phylogenetic methods based on molecular data regard the 

alignment of aminoacid sequences of homologous genes as the primary source of 

deducing evolutionary relationships.  This chapter first discusses the inherent 

difficulties in this method that include, the selection of orthologous genes, likelihood 

of horizontal transfer of genes, the fact that mutation takes place at the nucleotide 

level, the information contained in the so called ‘junk’ DNA, ambiguities of the 

alignments, to name a few.  The property of uniformity in oligomer profile throughout 

the length of an entire genome has given rise to the concept of ‘genomic signature’ for 

each genome.  This genomic signature is further found to carry a distinct phylogenetic 

signal.  i.e. Closely related species are found to have similar genomic signature.  This 

makes genomic signature a potential tool for computing evolutionary relationships.  
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Moreover, this method is an alignment free sequence comparison technique and thus 

free of many of the errors that plague traditional alignment based methods. We use 

Frequency Chaos Game Representation (FCGR) of nucleotide sequences as a tool for 

computing genome signature. We compute pairwise distances between sequences 

using a statistical distance measure proposed by Almeida et al.(2001), based on 

weighted correlation on the FCGR of two sequences. This distance is incorporated to 

a distance matrix to form an evolutionary tree.  The validity of the method is explored 

by examining whether and to what extent this method is capable of recreating 

established phylogenetic relationships and where this method shows unique 

capabilities with respect to traditional phylogenetic methods.  We also explore the 

effect of using different representations of the genome signature in this chapter. 

3.2 Computational Phylogeny - Traditional Methods and their 

limitations 

 Phylogenetics is the study of evolutionary relationship among various groups 

of organisms.   The relatedness between the biological species is studied through 

morphological data matrices and molecular sequencing data.  Evolution is regarded as 

a branching process, whereby populations are altered over time and may speciate into 

separate branches, hybridize together, or terminate by extinction.  The objective of the 

researcher is to reconstruct evolutionary trees and branches by computational 

methods.  A wide variety of information, including molecular data analysis, 

biochemical analysis, and analysis of morphology of the organisms are made use of to 

show different reconstruction possibilities.  A dilemma phylogenetics faces is that 

molecular data are available only for the present, while fossil records are sporadic and 
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unreliable. It is a complex and delicate task to fabricate trees that perfectly reproduce 

the evolutionary tree that represents the historical relationships between the species.  

Our knowledge of how evolution operates comes to help in assembling the whole tree.   

3.2.1  Phylogenetic tree based on morphology 

A phylogenetic tree, also called an evolutionary tree, is a graph showing the 

evolutionary interrelationships among various species or other entities that are 

believed to have a common ancestor. It is a form of a cladogram. In this graph, each 

node with descendants represents the most recent common ancestor of the 

descendants, and edge lengths correspond to time estimates. The earliest phylogenetic 

trees were simply based on the morphology and physiology of the species.  

Traditional phylogenetic methods rely on morphological data obtained by measuring 

and quantifying the phenotypic properties of representative organisms.  The basic 

difficulty in morphological phylogenetics is the assembly of a matrix which quantifies 

the phenotypic characteristics being used as a classifier.  Every possible phenotypic 

characteristic could be measured and encoded for analysis.  But, the selection of 

which features are to be used as a basis for the matrix is a major inherent obstacle to 

this method.  The answer lies in, which traits of a species are evolutionarily relevant.  

Further, morphological studies can be confounded by examples of convergent 

evolution of phenotypes.  A high likelihood of inter-taxon overlap also present a 

hurdle.  The inclusion of extinct taxa in morphological analysis is often difficult due 

to absence of or incomplete fossil records.  Extinct taxa have been demonstrated to 

have significant effect on the phylogenetic tree produced.  In one study only the 

inclusion of extinct species of apes produced a morphologically derived tree that was 
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consistent with that produced from molecular data (Strait & Grine, 2004).  Phenotypic 

classifications, particularly those used when analyzing very diverse groups of taxa, 

are discrete and unambiguous.  For example, classifying organisms as possessing or 

lacking a tail is straightforward in the majority of cases, as is counting features such 

as vertebrae. However, the appropriate representation of continuously varying 

phenotypic measurements is a contentious problem without a general solution. A 

frequently used method is simply to sort the measurements of interest into two or 

more classes, rendering continuous observed variation as discretely classifiable (e.g., 

all members with humerus bones longer than a given cutoff are scored as members of 

one state, and the others as members of a second state). This results in an easily 

obtained data set but has been criticized for poor reporting of the basis for the class 

definitions and for sacrificing information compared to methods that use a continuous 

weighted distribution of measurements (Wiens, 2001).   The labour intensiveness of 

collecting morphological data prompts researchers to reuse previously compiled data 

matrices.  This results in the propagation of flaws in the original matrix into multiple 

derivative analyses. 

3.2.2  Phylogenetic tree based on molecular data 

Molecular sequences of macromolecules, such as genes and proteins, have 

surpassed morphological and other organismal characters as the most popular forms 

of data for phylogenetic analyses. Trees based on biomolecular sequences are much 

better since the characters (i.e. the amino acids or the nucleotides) are more closely 

equal in weight.  Molecular phylogenetics, also known as molecular systematics, is 

the use of the structure of molecules to gain information on an organism's 
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evolutionary relationships.  Every living organism contains DNA, RNA, and proteins. 

Closely related organisms generally have a high degree of agreement in the molecular 

structure of these substances.   Conserved sequences are expected to accumulate 

mutations over time.   Assuming a constant rate of mutation provides a molecular 

clock for dating divergence. Molecular phylogeny uses such data to build a 

relationship tree that shows the probable evolution of various organisms. Not until 

recent decades, however, has it been possible to isolate and identify these molecular 

structures.  As DNA sequencing has become cheaper and easier, molecular 

systematics has become a popular way to reconstruct phylogenies. 

Many of the disadvantages of the traditional phylogeny construction based on 

morphology are overcome by the introduction of phylogeny based on similarity 

between the molecules.  Early works in molecular phylogenetics made use of proteins, 

enzymes, carbohydrates and other molecules which were separated and characterized 

using techniques such as chromatography.  Another early approach was to determine 

the divergences between the genotypes of individuals by DNA-DNA hybridisation. 

The advantage for using hybridisation rather than gene sequencing was that it was 

based on the entire genotype, rather than on particular sections of DNA. Modern 

sequence comparison techniques try to overcome this objection by the use of multiple 

sequences.  Currently the exact sequences of DNA,  RNA or protein segments are 

extracted using different techniques. 

3.2.3  Multiple Sequence Alignment for building Phylogenetic tree 

Currently, a large majority of methods to compute phylogenetic trees based on 

biomolecular sequences are based on Multiple Sequence Alignment (MSA).  
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Sequence alignment is the method of arranging similar regions of a pair of sequences 

alongside so that the differences between them can be found out.  MSA refers to the 

sequence alignment of three or more biological sequences, generally protein, DNA, or 

RNA.  When the alignment is done for the purpose of evolution, the input set of query 

sequences is assumed to have an evolutionary relationship. i.e. It is supposed to have 

diverged from a common ancestor sequence.  From the resulting MSA, sequence 

homology can be inferred and phylogenetic analysis can be conducted to assess the 

sequences' shared evolutionary origins.  

   The similarity of the alignment is quantified and is made use to produce 

evolutionary trees.  However, defining homology can be challenging due to the 

inherent difficulties of multiple sequence alignment.  It is rarely possible to determine 

the evolutionary alignment of two divergent sequences with confidence because this 

would require knowledge of the precise history of substitutions, insertions and 

deletions that have led to the creation of the present day sequences from their 

common ancestor.  For a given gapped MSA, several rooted phylogenetic trees can be 

constructed that vary in their interpretations of which changes are mutations, and 

which events are insertion-mutations or deletion-mutations. For example, given only a 

pairwise alignment with a gap region, it is impossible to determine whether one 

sequence bears an insertion mutation or the other carries a deletion. The problem is 

magnified in MSAs with unaligned and nonoverlapping gaps. In practice, sizable 

regions of a calculated alignment may be discounted in phylogenetic tree construction 

to avoid integrating noisy data into the tree calculation. 
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One way to minimize the errors caused by an errant interpretation of mutation 

is by using a suitable substitution model.  Molecular phylogenetics methods rely on a 

substitution model that encodes a hypothesis about the relative rates of mutation at 

various sites.  The substitution models aim to correct for differences in the rates of 

mutations in nucleotide sequences. The use of substitution models is necessitated by 

the fact that the genetic distance between two sequences increases linearly only for a 

short time after the two sequences diverge from each other. The longer the amount of 

time after divergence, the more likely it becomes that two mutations occur at the same 

nucleotide site. Simple genetic distance calculations will thus undercount the number 

of mutation events that have occurred in evolutionary history. The extent of this 

undercount increases with increasing time since divergence, which can lead to the 

phenomenon of long branch attraction, that is wrongly marking two distantly related 

but convergently evolving sequences as closely related. 

Once the sequences are aligned, there are various methods for phylogenetic 

analyses, which can be performed (Holder & Lewis, 2003). The methods for 

calculating phylogenetic trees can be broadly divided into two categories. The first 

category consists of distance matrix based methods, also known as clustering or 

algorithmic methods (e.g. Neighbor-joining, Fitch-Margoliash, UPGMA).  The latter 

category includes discrete data (or character) based methods, also known as tree 

searching methods (maximum parsimony, maximum likelihood and Bayesian 

methods).   
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3.2.4  Distance Matrix Methods 

Distance between two sequences is often defined as the fraction of mismatches 

at aligned positions, with gaps either ignored or counted as mismatches.  Once the 

distances between all pairs of samples have been determined, the resulting triangular 

matrix of differences is submitted to some form of statistical analysis.  Distance 

methods attempt to construct an all-to-all distance matrix from the sequence query set 

describing the distance between each sequence pair.  The resulting dendogram created 

from this distance matrix is examined in order to see whether the samples cluster in 

the way that would be expected from current ideas about the taxonomy of the group.  

From this is constructed a phylogenetic tree that places closely related sequences 

under the same interior node and whose branch lengths closely reproduce the 

observed distances between sequences. Distance-matrix methods may produce either 

rooted or unrooted trees, depending on the algorithm used to calculate them. They are 

frequently used as the basis for progressive and iterative types of multiple sequence 

alignments.   There are different tree building methods from a distance matrix.  

Neighbor-joining methods, for tree building, apply general data clustering techniques 

using genetic distance as a clustering metric. The simple neighbor-joining method 

produces unrooted trees.  It does not assume a constant rate of evolution (i.e., a 

molecular clock) across lineages. Its relative, UPGMA (Unweighted Pair Group 

Method with Arithmetic mean) produces rooted trees and requires a constant-rate 

assumption.  That is, it assumes an ultrametric tree in which the distances from the 

root to every branch tip are equal.  Another tree building algorithm, the Fitch-

Margoliash method uses a weighted least squares method for clustering based on 

genetic distance.  Here, closely related sequences are given more weight to correct for 
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the increased inaccuracy in measuring distances between distantly related sequences.  

The distances calculated by this method must be linear; the linearity criterion for 

distances requires that the expected values of the branch lengths for two individual 

branches must equal the expected value of the sum of the two branch distances.  This 

property applies to biological sequences only when they have been corrected for the 

possibility of back mutations at individual sites.  This correction is done through the 

use of a substitution matrix such as that derived from the Jukes-Cantor model of DNA 

evolution. The distance correction is only necessary in practice when the evolution 

rates differ among branches.  In order to root unrooted trees, a standard practice in 

distance matrix methods is, to include an outgroup sequence.  The outgroup should 

appear near the root of the tree.  For that this sequence should be moderately related 

to the sequences in the query set.  An outgroup sequence which is too closely related 

to the query set defeats the purpose and one which is too distantly related only adds to 

the noise.   

3.2.5  Character based methods 

Character-based methods are based on the idea of generating all the possible 

tree topologies with the input sequences and then searching among these trees for the 

tree that best matches the data given some criteria. Maximum parsimony (MP) 

method is based on shared and derived characters. It does not reduce sequence 

information to a single number. It works with original data (alignment) and tries to 

provide the information about the ancestral sequences. The principle of this method is 

to find a tree with the smallest number of evolutionary changes.  It is based on the 

hypothesis that evolution prefers the smallest number of mutations.  MP is a method 
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of identifying the potential phylogenetic tree that requires the smallest total number of 

evolutionary events to explain the observed sequence data. Some ways of scoring 

trees also include a "cost" associated with particular types of evolutionary events and 

attempt to locate the tree with the smallest total cost.  The most naive way of 

identifying the most parsimonious tree is simple enumeration - considering each 

possible tree in succession and searching for the tree with the smallest score. 

However, this is only possible for a relatively small number of sequences or species 

because the problem of identifying the most parsimonious tree is known to be NP-

hard.  The MP method is particularly susceptible to long branch attraction due to its 

explicit search for a tree representing a minimum number of distinct evolutionary 

events.  The Sankoff-Morel-Cedergren algorithm was one of the early methods to 

simultaneously produce an MSA and a phylogenetic tree for nucleotide sequences 

(Sankoff, 1973). The method uses a maximum parsimony calculation in combination 

with a scoring function that penalizes gaps and mismatches, thus favoring the tree that 

introduces a minimal number of such events. The sequences at the interior nodes of 

the tree are scored and summed over all the nodes in each possible tree. The lowest-

scoring tree sum provides both an optimal tree and an optimal MSA given the scoring 

function. One shortcoming of the method is that it is highly computationally intensive.  

Hence an approximate method is first performed in which initial guesses for the 

interior alignments are refined one node at a time. Both the full and the approximate 

methods are in practice done by dynamic programming.  More recent phylogenetic 

tree - MSA methods use heuristics to isolate high scoring, but not necessarily optimal, 

trees. The MALIGN and POY is such a technique.  The MALIGN method uses a 

maximum-parsimony technique to compute a multiple alignment by maximizing a 
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cladogram score, and its companion POY uses an iterative method that couples the 

optimization of the phylogenetic tree with improvements in the corresponding MSA.  

However, the use of these methods in constructing evolutionary hypotheses has been 

criticized as biased due to the deliberate construction of trees reflecting minimal 

evolutionary events (Simmons, 2004).  Maximum Likelihood method relies on the 

fact that, a tree that requires more mutations at interior nodes to explain the observed 

phylogeny will be assessed as having a lower probability. This is broadly similar to 

the maximum-parsimony method, but maximum likelihood allows additional 

statistical flexibility by permitting varying rates of evolution across both lineages and 

sites.  In fact, the method requires that evolution at different sites and along different 

lineages must be statistically independent. Maximum likelihood is thus well suited to 

the analysis of distantly related sequences.  However, it formally requires search of all 

possible combinations of tree topology and branch length and hence it is 

computationally expensive to perform on more than a few sequences.   

3.2.6  Disadvantages of MSA in rebuilding phylogeny 

 One of the main applications of a successful Multiple Sequence Alignment is 

in constructing phylogenetic trees.  Here we consider the disadvantages of using an 

MSA to construct a phylogenetic tree.   

A major difficulty that arises is in the selection of conserved sequences for the 

purpose of alignment.  For obtaining a meaning phylogeny from a specific gene, the 

genes considered in all the organisms should be orthologous genes.  Note that one 

must distinguish between gene trees and species trees due to the presence of 

orthologous and paralogous genes.  Orthologous genes are homologous genes that are 
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truly the same and are separated by speciation alone.  Paralogous genes are 

homologous genes that resulted from a gene duplication in the parent organism.  The 

genes used in analysis can have more than one copy in a particular genome (i.e. 

paralogous genes).  This provides a cause for uncertainty such as which copy to select 

for the construction of the tree.  Yet another difficulty arises when different copies are 

found in different species.  The resulting phylogenetic tree will obviously not provide 

the correct relationships between the species   In addition to these, there are 

xenologous genes, those that are transferred from one organism to the other 

horizontally.  Taking a single gene sequence into consideration does not provide the 

best resolution in any phylogenetic tree.  For constructing a reliable tree multiple 

genes are required (Sandersson and Driskell 2003).  Note that, in case of less 

conserved sequences, it can be difficult to find orthologs from all the species under 

study. 

The next problem is the alignment itself.  Automatic alignments may fail to 

correctly identify conserved regions, whereas manual alignments allow this, but they 

are much more laborious. Many a times, automated alignment methods encounter the 

local minimum crisis.   An alignment with minimum number of penalties is the 

optimum one.  However, often automated alignment methods do not reach this global 

optimum and are trapped at local optima.  The alignments have to be then viewed by 

the user and should be manipulated by him manually to get the optimal alignment.   

In a gapped pairwise alignment, the gap can be attributed to insertion in one 

sequence or deletion in the other.  The problem augments geometrically in an MSA 

with more than two sequences.  Similarly, when there is a mismatch between two 
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characters at a particular position, the event may be a single mutation or more than 

one mutation at the same site.  Even when two aligned characters are similar, in 

reality, there might have been a mutation at that point in one sequence, and later 

another reverse mutation for the same character.  All these are to be taken into 

account for assembling an exact phylogenetic tree.  Only an ideal evolutionary model 

can tackle this issue perfectly.  However, this is near to impossible.   

 Alignments often become meaningless and are difficult to perform when the 

percentage of similarity between the sequences is very low.  A minimum threshold is 

needed to produce a significant evolutionary alignment. 

 Another crisis with the automated alignment programs is the time required for 

their execution.  Dynamic programming methods for alignment are computationally 

expensive.  The problem of aligning two sequences with ‘n’ and ‘m’ character 

positions respectively is of the order of n x m.  The computational time rises 

geometrically as the product of sequence length as more and more sequences are 

added for an MSA.    

In order to handle this computational expense, a heuristic method called 

Progressive alignment  deviced by Feng and Doolittle ( 1987) is employed.  The 

method clearly does not guarantee the optimal alignment for a set of sequences.  The 

most successful implementation of this progressive alignment method is used in the 

CLUSTALX (Des Higgins) programme.  Nevertheless, CLUSTALX has no way of 

quantifying whether or not the alignment is good.  Moreover the user, without using 

manual visualization, does not even know whether the alignment is correct.   Further 

this method has no objective function.   CLUSTALX initially computes pairwise 
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distance between sequences.  Sequences which have very less distance between them 

are placed as neighbours in the guide tree.  These neighbours are aligned in the early 

stages.  This aligned pair is treated as a single sequence for latest comparison.  The 

programme does not allow for subsequent corrections to be made later in the 

alignment process.  Suppose if there is a gap in an initial alignment, it is not possible 

to correct it, even if a correction may be needed subsequently.  Hence there is a 

possibility of a suboptimal alignment when the program reaches a local minimum.   

Thus the tree created can be of sub-optimal tree topology.  The technique in overall 

can be a very good estimate or an equally poor one.  Many a times the result has to be 

improved manually by visualizing the alignment.  The user has to make a judgment 

whether the regions aligned are reliable or not.   

Once the data are aligned we use distance matrix based methods or character 

based methods for phylogenetic analysis. The distance matrix format after computing 

an MSA enables rapid tree building compared to character based methods.  However, 

there are two major shortcomings.  Firstly, there is a loss of information when going 

from molecular data to distance data.  Secondly, it is not trivial to choose a good 

distance measure among the many distance measures that exist. The distance 

measures must among other things compensate for the possibility that there may be 

multiple substitutions at a particular site of the alignment which, if not corrected for, 

would result in an underestimation of the evolutionary distance between two 

sequences. 

One drawback of character based methods, such as Maximum Likelihood 

(ML) and Maximum Parsimony (MP) method, is that they are very time consuming 
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since the number of tree topologies grows very rapidly with the number of sequences. 

There are fortunately heuristic search methods that avoid having to evaluate all the 

trees but, nevertheless, the need to evaluate many different trees makes the optimality 

methods considerably more time consuming than the distance based clustering 

methods. Considerably more time consuming means that for clustering methods the 

result is ready within seconds whereas for optimality methods the result may easily 

take several minutes and maybe hours (depending on the number of sequences and 

their length).  A specific problem of MP is long-branch attraction.  It is caused by the 

fact that rapidly evolving lineages are considered closely related, regardless of their 

true evolutionary relationships (Bergsten 2005).  Differential rates of substitution 

among lineages or breaking up long branches by adding taxa that are related to those 

with the long branches have to be employed to minimize this miscalculation.    

Maximum likelihood methods require a model of evolution.  It has the disadvantage 

that the use of inadequate likelihood models can lead to faulty interpretation in real 

data sets.  The method is computationally expensive and is not suited for large 

number of sequences since it has to search all possible combinations and tree 

topology.   

3.2.7 Phylogeny based on nucleotide sequences 

Molecular sequencing of macromolecules, such as genes and proteins, have 

surpassed morphological and other organismal characters as the most popular forms 

of data for phylogenetic analyses.  The literature contains different opinions about 

whether nucleotide sequences or amino acid sequences should be used to decipher 

ancient phylogenetic relationships. Slowly evolving sequence characters have 



65 

 

 Phylogenetic Analysis using Frequency Chaos Game Representation 

 

generally been favored over faster evolving characters and this has led to the 

preferential use of amino acid characters over nucleotide characters.  

However, Simmons et al. (2004) talks of taking into consideration at least six 

factors before deciding whether to use nucleotide sequences or amino acid sequences 

for computing phylogeny.  The amino acids are composite characters formed by 

combining three separate nucleotide characters.  This causes loss of hierarchical 

information while using amino acid characters.  The second factor is that those amino 

acids that are specified by more than one codon can appear to be convergently derived 

on a tree when the underlying nucleotides are not.  The silent substitutions, which 

generally occur more frequently than replacement substitutions, are ignored if we only 

consider amino acid characters.  Studies have reported greater phylogenetic signal at 

the third codon position than the first or second codon position combined. The above 

three factors highlight the advantages of selecting nucleotides for molecular 

phylogeny.  The fourth factor depends on the property that, amino acid characters 

have an increased potential character-state space relative to nucleotide characters, 

which makes convergence less likely to occur (i.e., 20 vs. four possible character 

states). However, there are functional constraints on the protein that effectively limit 

the character-state space for amino acid characters (Dayhoff et al., 1972; Miyamoto & 

Fitch, 1995; Naylor and Gerstein, 2000).  Convergent changes in base composition 

can cause the same problem as long-branch attraction (Felsenstein, 1978), wherein 

unrelated organisms that derive similar compositional biases can be resolved as sister 

groups (Lockhart et al., 1992). The fifth factor is that amino acid characters are less 

sensitive to such changes in base composition. This is because shifts in nucleotide 

composition are concentrated at third codon positions at which most substitutions are 
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silent. However, amino acid composition is also affected by changes in base 

composition. Moreover, simulation studies have indicated that the compositional 

heterogeneity among sequences must be extreme in order for phylogenetic 

reconstruction methods to fail, suggesting that this is less of a problem than 

previously believed (Conant and Lewis, 2001; Rosenberg and Kumar, 2003), except 

in cases of short internal branches (Jermiin et al, 2004).  The sixth factor is that amino 

acid characters are not as subject to saturation as faster evolving silent substitutions 

because amino acid character-state changes are only caused by replacement 

substitutions.  Simmons et al. (2004) conclude, by mentioning the advantage of 

greater potential phylogenetic signal for nucleotide characters, and the greater 

observed character-state space and lower heterogeneity of amino acid characters, 

which was confirmed based on a broad selection of protein-coding loci. Although the 

greater potential phylogenetic signal for nucleotide characters was found to be 

enormous, the greater observed character-state space for amino acid characters was 

less impressive.  Agosti et al. (1996) consider that the most judicious approach may 

be to incorporate phylogenetic signal from both nucleotide and amino acid characters 

in a simultaneous analysis.   

3.2.8 Significance of silent mutations  

 A basic assumption underlying the use of the amino acid sequence variation in 

deducing evolutionary relationships is that selection takes place predominantly at the 

level of protein function which is, of course, decided by the amino acid sequence. 

This in turn implies that nucleotide character changes that lead to synonymous codons 

can take place without selectional constraints.  However, recent studies contradict this 

argument by bringing out evidence of functional changes produced by synonymous 



67 

 

 Phylogenetic Analysis using Frequency Chaos Game Representation 

 

single-nucleotide polymorphisms (SNPs).   A Synonymous SNP is a mutation that 

changes the triplet, but leaves the amino acid unchanged.  Hence they do not produce 

altered coding sequences, and therefore they are not expected to change the function 

of the protein in which they occur.  Sarfaty et al. (Sarfaty et al., 2007) in a recent work 

studied two synonymous SNPs that crop up frequently in a human protein that pumps 

toxins out of cells.  They found that one of the SNPs affects the timing of co-

translational folding and insertion of a protein into the membrane.  This in turn alters 

the structure of substrate and inhibitor interaction sites.  Similar mRNA and protein 

levels, but altered conformations, were found while comparing the wild-type and 

polymorphic one.  This study implies that naturally occurring silent mutations may 

also have such an effect and hence cannot be written off.  Silent mutations are known 

to have other effects too.  They can change the way that RNA, the molecule that 

bridges DNA to protein production, is cut and spliced together.  Pagani F. et al. 

(2005) showed that many silent mutations in the gene responsible for the lung disease 

cystic fibrosis can cause splicing changes that inactivate the protein.  These works 

point out that the silent mutations are not so silent after all.  It reveals that selection 

can constrain changes at the nucleotide sequence level itself so that the so-called 

neutral changes at the third codon position cannot be really considered as neutral.  

Variations like this in the DNA sequence can be taken into account while constructing 

phylogeny only if the nucleotide sequence itself is considered. It is important to keep in 

mind that it is the changes in the nucleotide sequence that ultimately bring about evolutionary 

changes.  
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3.2.9 Importance of considering the whole genome 

Any alteration in the nucleotide sequence in the non-coding region cannot be 

taken into account if only amino acid sequences are taken into consideration.  This 

‘junk’ DNA, as it was previously considered, is now proved not be junk at all 

(Makalowski, 2003).  Another important factor to consider is that it is not only 

individual protein function but also the regulation of their expression that contributes 

to the making of an organism which is more than just the sum of several (be it even 

millions of) amino acid sequences.  Ideas about the evolutionary significance of 

noncoding mutations are nearly as old as the discovery of regulatory sequences 

themselves. Soon after publishing their ground-breaking paper describing the lac 

operon in 1961 (Jacob & Monod, 1961). In another paper, Monod and Jacob (1961) 

speculated about the unique role that mutations in cis-regulatory regions might have 

during the course of evolution. Therefore “tinkering” with gene regulation has been 

recognized as a particularly powerful mode of evolution (Jacob, 1977), and gene 

regulation involves non-coding nucleotide sequences as well.  G.A Wray in his review 

work (Wray, 2007) even suggests that some phenotypic changes are more likely to 

result from cis-regulatory mutations than from coding mutations. Further he suggests 

that mutations in cis-regulatory regions are often co-dominant in contrast to, many or 

most coding mutations which are recessive.  Consequently it is obvious that we lose 

important evolutionary information by looking only at amino acid sequence changes 

without considering the nucleotide sequence changes.   

Phylogenetic trees based on amino acid sequences make the trees gene 

(protein) specific.  Basing the analysis on a single feature, such as a single gene or 

protein, is often unreliable since such trees constructed from another unrelated data 
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source such as another gene often differ from the first.  Hence great care is to be taken 

while inferring phylogenetic relationships among species. This is most true of genetic 

material that is subject to horizontal gene transfer and recombination, where different 

haplotype blocks can have different histories. In general, the output tree of such a 

phylogenetic analysis is an estimate of the feature's phylogeny (i.e. a gene tree) and 

not the phylogeny of the taxa (i.e. species tree) from which these features were 

sampled, though ideally, both should be very close.  Further, in many organisms, 

endosymbionts have an independent genetic history from the host and mistakenly 

selecting a protein from an endosymbiont would give fictitious results.  Hence, 

serious phylogenetic studies have to take the pain of using a combination of genes that 

come from different genomic sources (e.g., from mitochondrial or plastid vs. nuclear 

genomes), or genes that would be expected to evolve under different selective 

regimes, so that result would not show a false homology.   

3.3  The concept of Genome Signature 

Over the last decade considerable evidence has come up that DNA sequences 

evolve under the constraint of a “genome signature” which is related to the frequency 

of occurrence of short oligonucleotides in the DNA sequence (Karlin and Ladunga, 

1994; Edwards et al., 2002;  Qi et al., 2004; Dehnert et al., 2005; Wang et al., 2005; 

Chapus et al., 2005). Oligonucleotide frequency differences between species are seen 

to change too slowly to be purely the result of random mutational drift. This slow 

pattern of change reflects the direct or indirect action of purifying selection and the 

presence of functional constraints.  In fact, the constraints that slow down the 

divergence of genome signature could play an important role in determining 

evolutionary distances.  The concept of a genomic signature was introduced with the 
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observation of species-type specific Dinucleotide Relative Abundance Profiles 

(DRAPs) by Karlin and Burge in 1995 (Karlin & Burge, 1995).  Dinucleotides were 

identified as the subsequences with the greatest bias in representation in a majority of 

genomes.  As the name suggests, the relative abundance of dinucleotides in a genome 

was measured.  The computation was done by dividing the frequency of each 

dinucleotide by the frequency of its component monomers.  This was performed so as 

to nullify the effect caused by monomer frequency, such as being GC rich, since they 

are hypothesized to be not playing a part in evolution.  The key observation behind 

the genomic signature concept is that DRAP of different DNA sequence samples from 

the same organism are generally much more similar to each other than to those of 

sequences from other organisms. In addition, closely related organisms generally have 

more similar DRAPs than distantly related organisms. It was concluded from these 

observations that the DRAP values constitute a genomic signature of an organism.  

Later it came to be known that DRAP is one particular genomic signature contained 

within a broader spectrum of signatures (Wang et al., 2005). The invariance of the 

genome signature over different parts of the same genome indicates that there must be 

genome-wide processes that impose limits upon oligonucleotide composition in any 

particular genome. The mechanisms by which the genome conserves its signature are 

still in the realm of speculations.  If these indications are put on stronger scientific 

foundations, our current evolutionary models will have to be modified considerably. 

Much work is being done in the field of genome signatures.  Campbell et al. 

(1999) compared genomic signatures of prokaryote, plasmid, and mitochondrial 

DNA.  Deschavanne et al. (1999) observed that subsequences of a genome exhibit the 

main characteristics of the whole genome.  Further, Deschavanne et al. (2000) showed 
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that word usage in short fragments of genomic DNA (as short as1 kb) is similar to that 

of the whole genome, thus providing a strong support to the concept of genomic 

signature. Gentles and Karlin (2001) looked at the genome signature of various 

eukaryotes. Sandberg et al. (2001) proposed a method to classify sequence segments 

using genomic signatures.  They used a Bayesian classifier to analyse bacterial and 

archaeal genomes and investigated the possibility of predicting the genome of origin 

from a genome fragement.  Genome signatures were used in phylogenetic analysis by 

Edwards et al. (2002).  In fact, the remarkable agreement between phylogenetic 

relationships based on genomic signature distances and some of the well-established 

phylogenetic relationships is a strong indication that sequence diversification does 

take place under a strong constraint to conserve the signature.   Bush and Lahn (2006) 

in a recent paper show that the distances based on di-nucleotide and tetra-nucleotide 

frequencies from any part of the genome, and octa-nucleotide frequencies from the 

promoter regions are correlated to evolutionary time. They suggest that, while 

genome-wide processes like DNA replication and repair constrain the divergence of 

the shorter DNA words, the octa-nucleotide frequencies may be getting constrained 

by the slow evolution of the gene regulatory machinery.   PhyloPythia, a phylogenetic 

classifier using multi-class Support Vector Machine classifier with the 

oligonucleotide composition of genome fragments as input was built by McHardy et 

al. (2007).  The method allows for classification of genomic fragments for different 

taxa and more importantly for previously unseen fragments which originate from 

novel organisms.  The remarkable agreement between phylogenetic relationships 

based on genomic signature distances and some of the well-established phylogenetic 

relationships (Qi et al., 2004, Dehnert et al., 2005, Wang et al., 2005) is a strong 
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indication that sequence diversification does take place under a strong constraint to 

conserve the genomic signature.  It is to be remembered that this signature is present 

in the entire genome and not restricted to coding regions alone.  The below graph 

(Figure 3.1) is drawn based on a paper by Dufraigne et. al (2005), where the y-axis is 

formed by all possible tetranucleotides and the x-axis runs through the genome.  The 

colour gradient represents the frequency of a particular tetramer (y) at a particular 

region (x) in the genome.  The figure shows the tetranucleotide patterns in the 

1million nucleotide long genome of Rickettsia Prowazekii.  Each horizontal line is an 

indication of the uniformity of a particular tetramer pattern throughout the genome. 

This visual representation shows that the genome signature is conserved in all over 

the entire genome. 

 

Figure 3.1 - Tetramer frequency pattern in Rickettsia Prowazekii genome - 

1,111,523 nt 

These observations open to question the tacit assumption in most phylogenetic 

analyses that selection acts at the level of protein function only.  The amino acid 

sequence variations cannot be regarded as the sole foundation that holds the key to 
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evolutionary relationships. Unless the phylogenies based on amino acid sequence 

variations are supported by those based on nucleotide sequences, there is room for 

legitimate doubt.  This is especially true when chances of convergent evolution are 

high.  In summary, the phylogeny reconstructed using various methods 

morphological, molecular or otherwise, should support each other.  If the trees 

obtained are not alike, then the conclusion obtained from any one of them can be 

inaccurate. In the following  we explore whether and to what extent the phylogenetic 

relationships based on genome signature as represented by the Frequency Chaos 

Game Representation of the sequence have the capability to reproduce established 

relationships. We also investigate how the estimated trees differ when they are based 

on different representations of the genome signature. 

3.4 Building phylogenetic trees using FCGR 

 In order to build a phylogenetic tree based on genome signature, two 

quantitative representations are required: 

1. A representation of the genome signature 

2. A representation of the distance (dissimilarity) between two signatures 

Genome signature is represented as the frequency profile of  oligonucleotides of a 

particular length i.e. frequency profile of n-mers in the genome where n =1,2,3,4 etc. 

As described in Chapter 1 the Frequency Chaos Game Representation (FCGR) of 

order ‘n’ is the frequency profile of all oligomers of length ‘n’ in the genome. 

Depending on the value of n chosen we can make different representations of the 

genome signature. Another variation in the representation of genome signature is 
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brought by whether the frequency profile is corrected for the biases due to the base 

composition of the genome.  For this purpose the frequency of a particular oligomer is 

divided by the frequency of its component monomers.  This corrected profile is called 

the relative frequency profile.  In this work we have used  FCGRs of order 2 to 10 as 

genome signature representations and observed the differences in the phylogenetic 

classifications caused by the difference in the order of the FCGR.. We have also 

investigated whether correction for the base composition (i.e. relative frequency 

profile) makes a difference to the classification. 

A number of distance measures are possible between two FCGRs (mentioned 

in chapter 1).  Among these, we use the statistical distance based on weighted 

correlation coefficient mainly because it is more suited to comparing genomes of very 

different lengths.  This measure proposed by Almeida et al. (2001) is determined as 

follows.  Let the two sets of FCGR quadrants be x and y with xi and yi representing the 

frequency in the i
 th  quadrant.  The weighted Pearson correlation coefficient is 

calculated as follows: 
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The distance between the sequences is defined to be d = 1 – rwx,y and this 

value ranges between 0 and 2 since correlation  ranges between -1 and 1.  Note that 

the distance 0 corresponds to perfect correlation between the sequences, i.e. the 

signatures are identical.  An advantage of using such a statistical distance based on 

correlation coefficient is that sequences of highly varying length can be compared 

without standardizing the CGRs initially.  Another benefit in using weighted 

correlation coefficient is that, the importance of each quadrant is made proportional to 

its magnitude.  Hence a quadrant with a significantly high occurrence of a particular 

oligonucleotide is given more importance while determining similarity.  Thus the 

overrepresentation of any particular oligomer gets more highlighted which in turn 

serves to increase the correlation value for the sequence pair.  However, this method 

has the disadvantage that under-representation of a particular oligomer does not get its 

deserved priority.  Studies by Wang et al. (2005) show that this method produces 

fairly reliable phylogenies and hence we select it for computing phylogeny based on 

genomic signature.   

3.5 Results and Discussion 

3.5.1  Exploration of  the potential of genome signature as a phylogenetic signal 

 We present first of all some of the results obtained from phylogenetic 

classification using genome signature, represented by 3rd order FCGR, as the 

phylogenetic signal. We present here phylogenetic classifications obtained from 
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different sources of DNA sequences viz. whole genomes and chromosomes, 

mitochondrial genomes and the ubiquitous 16srRNA gene. 

3.5.1.1 Phylogenetic Classification using Genome Signature of whole genomes 

and chromosomes 

 It is clear from Section 3.2 that phylogenetic signal is contained not only in 

proteins and protein-coding genes, but also in the whole genome sequence. In an 

alignment based method comparison of whole genomes or chromosomes would not 

make any sense since there would not be any significantly similar regions on these 

sequences to be aligned.  At the most, there would be similar genes in the two 

organisms, but that too would not yield a meaningful alignments since the genes are 

distributed throughout the genome or chromosome. Alignment-free methods like 

genome signature comparisons are the only ways by which the phylogenetic 

information contained in the whole genome or chromosomes can be considered for 

deducing phylogenetic relationships. 

 The chromosomes of nine belonging to the class “Metazoa” were compared to 

each other.  The first five chromosomes were taken from each organism, with each 

chromosome taken as if it were a separate organism. The organisms are H.Sapiens, 

P.Troglodytes, R.Norvegicus, M.Musculus, B.Taurus, G.Gallus, A.Gambiae, 

D.Melanogaster and C.Elegans. The pair-wise Pearson distances mentioned earlier 

were computed between the organisms. The resulting distance matrix was supplied as 

input to the tree drawing software, ‘PHYLIP’.  The KITSCH algorithm (Fitch-

Margoliash and Least Squares Methods with evolutionary clock) was used and the 

resulting unrooted tree is drawn.     The unrooted distance tree obtained using  3rd 

order FCGR show interesting results as observed in Figure 3.2.  
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Figure 3.2  -  Metazoan tree based on 3rd order FCGR 

 

  It can be noticed that the vertebrates are clearly separated from non-

vertebrates. Similar organisms (Rat and Mouse, Human and Chimpanzee) cluster 

together. Chromosomes of each organism are seen to form separate clusters except for 

the  chromosomes of close organisms like Human and Chimpanzee  or Rat and Mouse 

which may be  too close to segregate into separate clusters.  This result shows a 

distinctive property of genomic signature where all parts of a genome of an organism 

show similar signature, irrespective of the chromosome from where the sequence is 

taken.  The similarity in the genomic signature is the only reason that chromosomes of 

the same organism cluster together.  Similar organisms are seen to be close to each 
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other on the tree. This distinctive property of genomic signature makes it a valuable 

tool for looking into phylogenetic relationships from an entirely new perspective.   

 Going to lower organisms whole genomes of sixty six species of bacteria were 

classified based on genome signature represented by the 3rd order FCGR (Figure 3.3).  

There is a great deal of clustering of similar species of bacteria showing the presence 

of phylogenetic signal in the genome signature. However the clustering is not 

faultless.  The inter-species relationships do not reflect established relationships – for 

example ε-proteobacteria and the Rickettsiales are seen to cluster separately from the 

rest of the proteobacteria.  However, bacterial phylogeny is notoriously ambiguous 

and different methods and different genes are known to give very different results. It 

is still unclear how the different main groups are related to each other and how they 

branched off from a common ancestor (Gupta et al., 2002).   
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Figure 3.3 - Bacterial phylogenetic tree based on 3rd order FCGR 

 

3.5.1.2 Phylogenetic Classification using Genome Signature of mitochondrial  

  genomes  

 A phylogenetic tree is created for 28 organisms belonging to the class 

“Eutheria” using the signature of the mitochondrial genome of all the organisms.  The 

genome signature is represented by the 3rd order FCGR.  One can clearly notice the 

clustering of the primates as a group and it can see that many closely related 

organisms are paired together (Figure 3.4).  However there are errors like incorrect 

grouping of rodents.  The fact that phylogenetic signal is present in the mitochondrial 

sequence signature is clearly indicated by the clustering of closely related organisms.  
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Figure 3.4  -   Eutherian tree based on 3
rd

 order FCGR on mitochondrial genomes 

Further, mitochondrial genomes of a larger class of organisms, “Eukaryota” are 

examined for their phylogenetic signal.  The tree based on 3rd order FCGR was 

constructed for 50 eukaryotic mitochondrial genomes.  Various groups such as 

Vertebrates, Lower animals, Fungi,  Lower plants, Higher plants can be seen (Figure 

3.5)  to form separate clusters in the resulting phylogenetic tree.   
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Figure 3.5 - Tree based on 3
rd

 order FCGR of mitochondrial genomes of a larger 

class, Eukaryota 

 The above results indicate that that there is a strong phylogenetic signal in the 

genome signature of mitochondrial genomes. Since mitochondrial genomes of 

different organisms contain very different sets of genes it would be very difficult to 

compare them by alignment based methods. Therefore the genome signature based 

method has a clear advantage over traditional methods in this respect. 

 

3.5.1.3 Phylogenetic Classification of 16SrRNA genes based on relative FCGR 

The mitochondrial 16S rRNA gene fulfils the requirements for a universal 

DNA bar-coding marker. The gene conveys sufficient phylogenetic information to 

assign species to major taxa.  We wanted to find out if the phylogenetic information is 

carried not only by the sequence itself but also by relative abundance profile of the 
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oligonucleotides in the gene sequence. We took the 16S rRNA gene of 66 different 

organisms from eukaryotes, bacteria and archaea.  The genome signature was 

computed by dividing the 3rd order FCGR of the gene sequence by the monomer 

frequency.  The Neighbour-Joining algorithm was used and the resulting unrooted tree 

can be observed in Figure 3.6.  It can be seen that the three major kingdoms 

(Eukaryotes, Bacteria and Archaea) are clearly demarcated in the picture in 

accordance with established phylogeny.   

 

Figure 3.6  -  16SrRNA  tree based on trimer-relative frequency 
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3.5.2  Effect of the order of FCGR on phylogenetic classification 

 All the above classifications were based on a particular representation of the 

genome signature namely the 3rd order FCGR. Further, we investigate whether 

changing the order of the FCGR makes a difference to the classification. We also see 

whether compensating for biases created by base composition makes a difference to 

the classification by dividing the FCGR by the frequency of the component 

monomers. 

3.5.2.1 FCGR order variation on the ‘Metazoan’ tree 

 The same set of chromosomes of nine Metazoa, as taken earlier, was taken as 

test sequence.  FCGRs of order 3 to 10 and the bias compensated 3rd order FCGR 

were taken for phylogenetic tree construction.  The resulting trees are shown in the 

figures 3.7, 3.8 and 3.9. 

 

Figure 3.7 - Tree based on 3
rd

 order FCGR of Metazoan chromosomes 
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Figure 3.8  -  Tree based on 10
th

 order FCGR of Metazoan chromosomes 

 

Figure 3.9  -  Tree based on on bias-compensated 3rd order FCGR of Metazoan 
chromosomes 
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 Figure 3.7 shows the unrooted tree obtained by considering the 3rd order 

FCGR. It can be observed in the 3rd order FCGR tree that the vertebrates and 

invertebrates cluster separately. Further, closely related organisms such as Rat - 

Mouse and Human – Chimpanzee are clustered together.   However, this happens at 

the cost of intermingling of chromosomes of these closely related organisms.  One can 

notice that some of the Rat chromosomes are dispersed among the Mouse 

chromosomes and similar intermingling has occurred between the Chimpanzee and 

Human chromosomes.  In the 10th order FCGR tree the Rat and Mouse chromosomes 

are seen to form exclusive organism-wise clusters and there is no intermingling of 

their chromosomes.  However, the inter-species relationships are not depicted well 

here (for example the vertebrates and invertebrates do not form  separate groups in 

this tree)  The bias compensated 3rd order FCGR tree gives the best result among all 

the trees constructed.  Here the organisms including the Rat and Mouse chromosomes 

form separate groups.  The interspecies evolutionary relationships also come out 

good, showing the invertebrates as a separate group and Rat and Mouse chromosomes 

in nearby branches.  Further, chromosome number 4 of D.Melanogaster, which did 

not cluster with any group and was an exception in both the 3rd order FCGR tree and 

the 10th order FCGR tree, groups with the other D.Melanogaster chromosomes.  

However, in all the trees constructed the chromosomes of Human and Chimpanzee 

were always intermingled.  This phenomenon may be attributed to the high degree of 

similarity between the genome signatures of these closely related species.    
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3.5.2.2  FCGR order variation in the Human – Rhesus Monkey chromosome tree 

 The effect of varying the order of FCGR on the intermingling of chromosomes 

of two moderately related organisms, Human and Rhesus Monkey (Macaca Mulatta), 

was further examined separately.  All the chromosomes including the mitochondrial 

genomes were taken for building a distance tree.  It is observed that in the 3rd order 

FCGR tree (Figure 3.10) the chromosomes appear intermingled.  This shows that the 

trinucleotide frequency profile similarity between the chromosomes is greater than the 

similarity between chromosomes of the same organism.  However the 10th order 

FCGR tree (Figure 3.11) classifies the chromosomes organism-wise into separate 

clusters, with the exception that chromosome numbers 10, 16 and 19 of M.Mulatta 

cluster  with human chromosomes.  

 

Figure 3.10  -  3rd order FCGR distance tree of Human (HS) - Rhesus Monkey (MM) 

chromosomes 
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Figure 3.11 – 10th order FCGR distance tree of Human - Rhesus Monkey 

chromosomes 

3.5.2.3 FCGR order variation in Human – Common Chimpanzee chromosome 

tree 

 The 3rd order FCGR based genome signature distance tree (Figure 3.12) 

between Human and Common Chimpanzee chromosomes shows non-random 

intermingling of chromosomes. It can be observed that almost all chromosome 

‘counterparts’ in both the organisms have paired together. However this similarity 

between chromosomal counterparts is not observed for higher orders (e.g. 10-mer, 

Figure 3.13).  The pairing of counterpart chromosomes as seen in the 3rd order FCGR 

tree is not observed here, except for chromosomes 7, 17 and 20.  Such ‘counterpart’ 

chromosomes are present only in highly similar species pairs and that may be the 
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reason why the mingling of chromosomes in lower orders of ‘not so highly similar’ 

pair of species appears to be random. 

 

Figure 3.12 - Tree based on 3rd order FCGR of Human (HS) & Chimpanzee (PT) 

chromosomes 
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Figure 3.13  -  Tree based on 10th order FCGR of Human (HS) & Chimpanzee (PT) 
chromosomes 

 

3.5.2.4  FCGR order variation in Bacterial phylogenetic tree 

 The phenomenon of varying tree topology in accordance to varying FCGR 

orders was further observed in the case of bacterial phylogeny too.  Sixty six bacterial 

genomes belonging to various classes were taken for building a phylogenetic tree.  

The results when using 3rd order FCGR based distance show clustering of organisms 

belonging to the same class in a single branch (Figure 3.14).     
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Figure 3.14  -  Bacterial Tree based on 3
rd

 order FCGR 

 When higher orders are used (e.g. 10th order) the overall accuracy of the tree 

decreases, in the sense that Rickettsiales, Epsilon-proteobacteria and Gamma-

proteobacteria which formed separate clusters in the 3rd order tree, does not form such 

clusters in the 10th order FCGR tree (Figure. 3.15).  On the other hand, higher orders 

give a better resolution in the case of very closely related species.  The distance 

between actinobacteria is negligibly small in lower orders.  In particular, the distance 

between two strains of ‘Mycobacterium Leprae’ is obtained ‘zero’ in the 3rd order 

FCGR distance chart while its non-zero in higher orders ( > 6-mer ). 
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Figure 3.15 -  Bacterial Tree based on 10th order FCGR 

In summary we find that different orders of the FCGR provide different levels 

of resolution of the phylogenetic relationships. Higher order FCGRs carry more 

species-specific information but lose information on inter-species relatedness. Lower 

order FCGRs carry more information on inter-species relationships but can fail to 

resolve closely related species into separate clusters. Compensating for monomer bias 

improves the phylogenetic classification in some cases.  

3.6 Conclusion 

 The phylogenetic signal in the genomic signature is explored in this chapter to 

utilize FCGR as a phylogenetic tree construction tool.  The potential of this method is 

validated since trees obtained using this method is seen to exhibit many features of 

established phylogenies.  However there are discrepancies also. The advantage of the 
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method is in the alignment free comparison property.    The trees based on higher 

order FCGR show more resolved phylogenetic relationships between closely related 

species whereas the lower order FCGR produces trees with better overall inter-species 

relatedness.  Another interesting result is the FCGR order variation on chromosomal 

trees of closely related organisms.  The lower order FCGRs paired the ‘counterpart’ 

chromosomes, while the higher order FCGRs cluster the chromosomes organism-

wise. These characteristics of FCGR based trees make it a significant complementary 

tool investigating into phylogenies from a novel view point.   

3.7 References 

1. Agosti D, Jacobs D and DeSalle R (1996) On combining protein sequences and 

nucleic acid sequences in phylogenetic analysis: the homeobox protein case. 

Cladistics 12: 65–82 

2. Almeida JS, Carrico JA, Maretzek A, Noble PA and Fletcher M (2001)  

Analysis of genomic sequences by Chaos Game Representation, Bioinformatics, 

17(5): 429--437 

3. Bergsten J (2005) A review of long-branch attraction, Cladistics 21(2): 163--193 

4. Bush EC and Lahn BT (2006) The evolution of word composition in metazoan 

promoter sequence, PLoS Comput. Biol. 2 (11): e150 

5. Campbell A, Mrázek J, Karlin S (1999) Genome signature comparisons among 

prokaryote, plasmid, and mitochondrial DNA, Proc Natl Acad Sci USA 96(16): 

9184--9189 

6. Chapus C,  Dufraigne C, Edwards S, Giron A, Fertil B and Deschavanne P (2005) 

Exploration of phylogenetic data using a global sequence analysis method, BMC 

Evol. Biol. 5: 63     



93 

 

 Phylogenetic Analysis using Frequency Chaos Game Representation 

 

7. Conant GC and Lewis PO (2001) Effects of nucleotide composition bias on the 

success of the parsimony critierion in phylogenetic inference, Molecular Biology 

and Evolution 18: 1024--1033 

8. Dayhoff MO, Eck RV and Park CM (1972) A model of evolutionary change in 

proteins, In: Dayhoff MO (ed.) Atlas of Protein Sequence and Structure, NBRF 5: 

75--84,  

9. Dehnert M, Plaumann R, Helm WE and Hutt MT (2005) Genome phylogeny 

based on short-range correlations in dna sequences, J. Comput. Biol. 12 (5): 545--

553 

10. Deschavanne PJ, Giron A, Vilain J, Fagot G, Fertil B (1999) Genomic signature: 

characterization and classification of species assessed by chaos game 

representation of sequences. Mol Biol Evol. 16(10):1391—1399 

11. Deschavanne P, Giron A, Vilain J, Vaury A, Fertil B (2000) Genomic signature is 

preserved in short DNA fragments, IEEE International Symposium on 

Bioinformatics and Biomedical Engineering (BIBE’00): 161--167 

12. Dufraigne C, Fertil B, Lespinats S, Giron A, Deschavanne P (2005) Detection and 

characterization of horizontal transfers in prokaryotes using genomic signature. 

Nucleic Acids Res. 33: e6 

13. Edwards SV, Fertil B, Giron A and Deschavanne PJ (2002) A genomic schism in 

birds revealed by phylogenetic analysis of dna strings, Syst. Biol. 51: 599--613 

14. Feng DF, Doolittle RF (1987) Progressive Sequence Alignment as a Prerequisite 

to Correct Phylogenetic Trees, J Mol Evol 25: 351--360 

15. Felsenstein J (1978) Cases in which parsimony and compatibility methods will be 

positively misleading, Syst. Zool. 27: 401--410 



94 

 

 Phylogenetic Analysis using Frequency Chaos Game Representation 

 

16. Gentles AJ and Karlin S (2001) Genome-scale compositional comparisons in 

eukaryotes, Genome Res. 11(4): 540--546 

17. Gupta RS and Griffiths E (2002) Critical issues in Bacterial Phylogeny, 

Theoretical Population Biology 61(4): 423--434 

18. Haibin WEI, Ji QI and Bailin HAO (2004) Prokaryote phylogeny based on 

ribosomal proteins andaminoacyl tRNA synthetases by using the compositional 

distance approach, Science in China Ser. C Life Sciences 47(4): 313--321 

19. Holder MT and Lewis PO (2003) Phylogeny estimation: traditional and Bayesian 

approaches, Nature Reviews Genetics 4: 275-284 

20. Jacob F (1977) Evolution and tinkering, Science 196: 1161--1166 

21. Jacob F and Monod J (1961) Genetic regulatory mechanisms in the synthesis of 

proteins, J. Mol. Biol. 3, 318–356 

22. Jermiin LS, Ho SYW, Ababneh F, Robinson J and Larkum AWD (2004) The 

biasing effect of compositional heterogeneity on phylogenetic estimates may be 

Underestimated, Syst Biol 53(4): 638-- 643 

23. Karlin S and Burge C (1995) Dinucleotide relative abundance extremes: a 

genomic signature, Trends Genet. 11: 283--290 

24. Karlin S and Ladunga I (1994) Comparisons of eukaryotic genomic sequences, 

Proc. Natl. Acad. Sci. U.S.A.  91: 12832--12836 

25. Lockhart PJ, Howe CJ, Bryant DA, Beanland TJ, Larkum AW (1992) 

Substitutional bias confounds inference of cyanelle origins from sequence data, J 

Mol Evol  34:153-162 

26. Makalowski W (2003) Genomics. Not junk after all, Science 300:1246--1247 



95 

 

 Phylogenetic Analysis using Frequency Chaos Game Representation 

 

27. McHardy AC, Martin HG, Tsirigos A, Hugenholtz P and Rigoutsos I (2006) 

Accurate phylogenetic classification of variable-length DNA fragments, Nature 

Methods  4: 63 -- 72 

28. Miyamoto MM and Fitch WM (1995) Testing the covarion hypothesis of 

molecular evolution, Mol. Biol. Evol. 12:503–513 

29. Monod J and Jacob F (1961) General conclusions- teleonomic mechanisms in 

cellular metabolism, growth, and differentiation, Cold Spring Harb. Symp. Quant. 

Biol. 26, 389–401 

30. Naylor GJ and Gerstein M (2000) Measuring shifts in function and evolutionary 

opportunity using variability profiles: a case study of the globins, J. Mol. Evol. 51: 

223--233 

31. Pagani F, Raponi M and Baralle FE (2005) Synonymous mutations in CFTR exon 

12 affect splicing and are not neutral in evolution, Proc. Natl Acad. Sci. USA 102: 

6368--6372 

32. Qi J, Wang B and Hao BI (2004) Whole proteome prokaryote phylogeny without 

sequence alignment: A k-string composition approach, J. Mol. Evol. 58: 1--11 

33. Perrière G, and Gouy M (1996) WWW-Query: An on-line retrieval system for 

biological sequence banks. Biochimie, 78, 364-369.  

34. Rosenberg MS and Kumar S (2003) Heterogeneity of nucleotide frequencies 

among evolutionary lineages and phylogenetic inference,.Molecular Biology and 

Evolution 20(4): 610--621 

35. Sandberg R, Winberg G, Branden C, Kaske A, Ernberg I, Coster J, (2001) 

Capturing whole-genome characteristics in short sequences using a naive bayesian 

classifier, Genome Research 11, 1404– 1409 



96 

 

 Phylogenetic Analysis using Frequency Chaos Game Representation 

 

36. Sandersson MJ and Driskell AC (2003) The challenge of constructing large 

phylogenetic trees, Trends in Plant Science 8: 374--379 

37. Sankoff D, Morel C, Cedergren RJ (1973) Evolution of 5S RNA and the non-

randomness of base replacement, Nature New Biology 245:232--234 

38. Sarfaty CK, Mi Oh J,  Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, 

Gottesman MM (2007) A "silent" polymorphism in the MDR1 gene changes 

substrate specificity, Science 315: 525--528 

39. Simmons MP (2004) Independence of alignment and tree search. Mol Phylogenet 

Evol 31(3): 874--879 

40. Strait DS, Grine FE (2004) Inferring hominoid and early hominid phylogeny using  

craniodental characters: the role of fossil taxa. J Hum Evol 47(6):399—452 

41. Wang Y, Hill K, Singh S and Kari L (2005) The spectrum of genomic signatures: 

from dinucleotides to chaos game representation, Gene 346: 173--185 

42. Wiens JJ (2001) Character analysis in morphological phylogenetics: problems and 

solutions. Syst Biol 50(5): 689--99. 

43.  Wray GA (2007) The evolutionary significance of cis-regulatory mutations, Nat. 

Rev. Genet 8: 206—216 

 

 

 

 

 

 

 

 



97 

 

Evolutionary Ancestry of mitochondria computed using FCGR 

 

Chapter  4 Chapter  4 Chapter  4 Chapter  4     

    

EvolutionaEvolutionaEvolutionaEvolutional l l l ancestry of mitochondriaancestry of mitochondriaancestry of mitochondriaancestry of mitochondria    computedcomputedcomputedcomputed    

using FCGRusing FCGRusing FCGRusing FCGR    

 

 

4.1 Introduction 

Having established in the last chapter that the genome signature represented 

by FCGR has potential for complementing traditional methods for deducing 

phylogenetic relationships, here we focus on the exploration of an important problem 

of evolutionary biology namely, the evolutionary origin of the eukaryotic organelles, 

mitochondria and chloroplasts using FCGR.  

The evolutionary origin of the eukaryotic cell is an intensely debated topic. 

Intimately tied up with this is the origin of the eukaryotic organelles, mitochondria 

and chloroplasts.  The established view on the origin of these organelles is that they 

evolved from endosymbiotic bacteria which were ingested by an ancestral eukaryote - 

an alpha proteobacterium evolving into mitochondria and a cyanobacterium evolving 

into chloroplasts. Identification of the bacterial ancestor of mitochondria as an alpha 

proteobacterium rests on the remarkable similarity of the amino acid sequences of 
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mitochondrial proteins to the corresponding α-proteobacterial proteins. Here we 

explore whether the same relationships can be deduced using the whole genome 

signature as the phylogenetic signal. We find that the whole genome signature tells a 

different story from that evidenced by the amino acid sequence alignments of specific 

proteins. Intrigued by this discrepancy, we explore whether alignments of the 

nucleotide sequences that code for the proteins support the evidence from the amino 

acid sequence alignments.  We find that the evidence from the nucleotide sequence 

alignments support the evidence from whole genome signatures rather than that from 

the amino acid sequence alignments. Based on this we propose a plausible alternate 

hypothesis for the origin of mitochondria which we support further with arguments 

like parsimony, timing of geological events, selectional advantages and structural and 

functional similarities. 

 

4.2  Current view of the origin of Mitochondria and Chloroplasts 

 

Figure  4.1 

Mitochondria are rod-shaped organelles essential to all respiring eukaryotes.  

They provide the energy a cell needs to move, divide, produce secretory products, 
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contract - in short, they are the power centers of the cell. They are the sites where 

organic compounds are oxidized to carbon dioxide and water with a high yield of 

chemical energy in the form of ATP.  This is such an effective process that it often is 

regarded as the prerequisite for multicellular life.  Chloroplasts are organelles found 

in plant cells and eukaryotic algae that conduct photosynthesis. Chloroplasts absorb 

sunlight and use it in conjunction with water and carbon dioxide gas to produce food 

for the plant. Chloroplasts capture light energy from the sun to produce the free 

energy stored in ATP and NADPH through a process called photosynthesis.  Both 

organelles are surrounded by a double celled composite membrane with an 

intermembrane space, have their own DNA and are involved in energy metabolism.  

Both mitochondria and chloroplasts have reticulations, or many infoldings, filling 

their inner spaces.  Mitochondria replicate independently from the nucleus, arising 

only from a preexisting mitochondria.  Unlike mitochondria, however, chloroplasts 

replicate at the same time as the host cell, however replication of chloroplast DNA 

and cell DNA are not synchronized. 

The Serial Endosymbiosis Theory (SET) was first articulated by the Russian 

botanist Konstantin Mereschkowski (1905) and was later popularized by Lynn 

Margulis (1981) in her book Symbiosis in Cell Evolution is currently the most 

accepted theory explaining the origin of the eukaryotic organelles, mitochondria and 

chloroplasts.  According to SET, a set of anaerobic, heterotrophic cells known as 

proto- eukaryotes ingested and developed a mutually beneficial relationship symbiosis 

with an aerobic bacterium, which evolved into mitochondria, and later with a 

photosynthetic bacterium, which evolved into chloroplasts.  
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The currently accepted view (Yang et al., 1985; Andersson et al., 1998; Gray 

and Doolittle, 1982; Gray et al., 2001) is that mitochondria and chloroplasts 

originated from two separate endosymbiont events – the engulfment of an aerobic 

respirer belonging to the α-subdivision of proteobacteria leading to formation of 

mitochondria, and the subsequent engulfment of a photosynthetic cyanobacterium 

leading to formation of chloroplasts. The alpha proteobacterial ancestry of 

mitochondria is based on the similarity of the amino acid sequences of mitochondrial 

proteins to corresponding α-proteobacterial proteins.  Andersson et al. (1998) did 

phylogenetic analysis of concatenated aminoacid sequences of ribosomal proteins and 

concatenated sequences of NADH proteins of mitochondria, alpha-proteobacteria and 

other bacteria.  Both the trees show close evolutionary relationship between 

mitochondria and α-proteobacteria and in particular with Rickettsia Prowazekii.  

4.3 Results 

4.3.1 Genome signature relationships between cyanobacteria, α-proteobacteria, 

and the eukaryotic organelles 

As mentioned in the previous chapter, more and more evidence is turning up 

that selectional constraints work not only at the amino acid level but also at the 

underlying nucleotide level itself.  The so-called “silent mutations” producing 

synonymous codons are proving to be not really silent. Further, the non-coding 

regions face evolutionary constraints because of their involvement in the regulation of 

gene expression. This points out the necessity to support the amino-acid sequence-

based evidence with nucleotide sequence-based evidence at the level of the whole 

genome and at the level of individual genes.  
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Figure 4.2 : Tree based on 3rd order FCGR corrected for base composition showing 

positions of cyanobacteria, α-proteobacteria and mitochondria 

 

 Figure 4.2 shows the genome signature-based distance tree of the whole 

genomes of cyanobacteria, α-proteobacteria and mitochondria from different 

organisms. The 3rd order FCGR corrected for base composition is taken as 

representing the genome signature and the distance between the genome signatures is 

evaluated as a statistical distance based on weighted Pearson correlation.  The method 

is described in the previous chapter. The mitochondria cluster into clearly defined 

groups of plants (Group 4), protists (Group3), fungi (Group 5), simple animals (Group 

6)  and vertebrates (Group 7) showing the presence of a strong phylogenetic signal in 

the genome signatures.  Cyanobacteria (Group 2) and Rickettsiales (Group 1) cluster 

together in groups close to the protist mitochondria (Group 3).  All mitochondria are 
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seen to be distant from the cluster of alpha proteobacteria excluding the Rickettsiales 

(Group8). 

 It has already been established that the Rickettsiales cannot be ancestral to 

mitochondria and that mitochondria and Rickettsiales have a common ancestor. 

(Andersson et al., 2003, Emelyanov, 2003) The closeness of mitochondria and the 

Rickettsiales to cyanobacteria raises the question: Could a Cyanobacterium have been 

the ancestor of mitochondria? 

4.3.2 Genome signature distances between Mitochondria, Chloroplasts and 

Nuclear Genomes 
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Figure 4.3:  The CGR distance histogram showing mito-nuclear and chloro-nuclear 

distances decreasing from lower to higher organisms (from left to right). 

 

 Figure 4.3 is a bar graph that shows the genome signature-based “distance” 

between chloroplasts and mitochondria as well as the distance of the organellar 

genomes from the respective nuclear genomes of twelve lower and higher 

photosynthetic eukaryotes. We find that, in the lower eukaryotes the organellar 

signatures are very distinct from the nuclear signatures while the two organellar 

signatures are strikingly close to each other. The closeness of the two organelles is 

indicative of the organelles having originated from a single endosymbiont. The 

large dissimilarity of signature between the organelles and the nuclear genome in the 

lower organisms indicate that the ancestor of the organelles had distinctly different 

signature from that of the host organism that engulfed it. Later because of massive 

gene transfer between the organelles and the nucleus, the nuclear signature could have 

come closer to the organelles signature as indicated by our finding that in higher 

plants the nuclear signature is close to the organellar signature.  Cyanobacteria are the 

only bacteria that have the capability of both photosynthesis and aerobic respiration. 

Therefore Cyanobacteria are the only bacteria that could evolve into both chloroplast 

and mitochondria. Thus if the two organelles had a common ancestor it could only be 

a cyanobacterium 

4.3.3 Comparisons of nucleotide sequences of genes based on multiple sequence 

alignment 

To see whether the nucleotide-based results are consistent with the amino acid 

sequence based evidence we performed phylogenetic analyses with the same genes 
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that are used in one of the classical works that showed the closeness of mitochondrial 

proteins to α-proteobacterial proteins (Andersson et al., 1998). Multiple sequence 

alignment was performed on the nucleotide sequences using ClustalW (Thompson et 

al., 1994).  The alignment thus obtained was given as input to the logdet program of 

PHYLIP package to compute the logdet distance matrix.  Logdet distances were 

computed since sequences were taken from organisms with widely varying mutation 

rates.  The tree was drawn from the distance matrix using the Kitsch program of 

PHYLIP (Felsentin, 1989).  The unrooted trees are visualized using the Phylodraw 

(Choi et al., 2000) package.  The rooted trees are visualized using the njplot program 

(Perrière, 1996). 

The following figures show phylogenetic trees obtained using nucleotide 

sequence of concatenated ribosomal genes, concatenated respiratory genes and Iron-

Sulphur cluster assembly gene of mitochondria, chloroplasts, α-proteobacteria, and 

cyanobacteria. It is seen that, the cluster containing cyanobacteria and chloroplasts is 

significantly closer to the mitochondrial cluster than to the rest of the α-

proteobacterial cluster. The only alpha proteobacteria that clustered with the 

mitochondria were of the Rickettsiales family.   

Figure 4.4 show the unrooted tree obtained using the concatenated genes of 

ribosomal proteins.  The mitochondria and the chloroplast genes can be seen to cluster 

together with the cyanobacteria and the Rickettsiales group.  The alpha-proteobacteria 

are seen to be distant from both.    Figure 4.5 show the tree obtained using the same 

genes, but this time using an archaea, a Thermoplasma, as an out group.  Here also the 

alpha-proteobacterial group can be seen to cluster distantly from the organelles + 

cyanobacteria + Rickettsiales group . 
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Figure 4.4:  Unrooted tree of concatenated ribosomal genes S2, S3, S7, S10, S11, 

S12, S13, S14, S19, L5,  L6 and L16 
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Figure 4.5  Rooted tree of concatenated ribosomal genes S2, S3, S7, S10, S11, S12, 

S13, S14, S19, L5,  L6 and L16 
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Figure 4.6 : Unrooted tree with logdet distances of concatenated NADH genes 

nuoA, J, K, L, M and N. 

Figure 4.6 show the unrooted tree obtained using the concatenated NADH 

genes.  The mitochondrial genes and can be seen to cluster together with the 

cyanobacteria and the Rickettsiales group.  The alpha-proteobacteria is seen to be 

distant from both.    Figure 4.7 show the tree obtained using the same genes, but this 

time using a Mycobacterium, as an out group.  The alpha-proteobacterial group can be 

seen to cluster distantly from the other group.  High boot strap values are seen to 

support the phylogeny obtained.  
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Figure 4.7 -  Rooted tree with Mycobacterium outgroup of NADH genes nuoA, J, K, 

L, M, N. 
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Figure 4.8 : Unrooted tree of iron-sulphur cluster assembly genes, IscS 

The assembly of iron–sulfur clusters is considered one of the most essential 

functions of the mitochondrial compartments.  Iron-Sulphur Cluster Assembly gene 

IscS is found in all eukaryotic lineages including the a-mitochondrial ones containing 

hydrogenosomes and mitosomes.   Figure 4.8 shows a phylogenetic tree based on the 

nucleotide sequences of  IscS genes of eukaryotes, α-proteobacteria, and 

cyanobacteria. We find that the eukaryotic genes cluster together and that this cluster 

is closest to a cluster containing both cyanobacteria and Rickettsiales while the rest of 

the α-proteobacteria are considerably farther apart. 
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Figure 4.9 Rooted IscS tree with an archaea outgroup 
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The nuclear encoded mitochondrial aminoacyl-trna synthetases (aaRSs) 

occupy a position in the tree that is not close to any of the currently sequenced /alpha-

proteobacterial genomes (Brindefalk et al., 2006). Corresponding to the gene of each 

aminoacyl-trna synthetase a phylogenetic tree was formed.  The phylogenetic tree 

based on arginyl tRNA synthetase gene is seen in figure 4.10.  A rooted tree with an 

archaea as an outgroup is drawn.  The mitochondrial tRNA synthetases can be seen to 

cluster with cyanobacteria while the alpha-proteobacteria form another cluster.  

However, all the tRNA synthetase trees does not conform to this topology.  Figure 

4.11 show the phylogenetic tree based on methionyl tRNA synthetase gene.  A rooted 

tree is drawn with an archaea as an outgroup.  The mitochondrial tRNA synthetase 

can be seen equally close to cyanobacterial and alpha-proteobacterial genes.   
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Figure 4.10  -  Arginyl tRNA synthetase genes tree with outgroup archaea 
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Figure 4.11  Methionyl tRNA synthetase genes tree with archaea outgroup 
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4.4 Discussion 

4.4.1  An alternate hypothesis 

  Based on the results of our comparisons of nucleotide sequences at whole 

genome level and individual gene level we put forth an alternate  hypothesis, namely 

that both mitochondria and chloroplasts originated through the single endosymbiont 

event of a host cell engulfing a cyanobacterium. We propose that a cyanobacterium 

could have been engulfed by a proto-eukaryote in a rare-chance event very early in 

evolution (~ 2.4 Ga ago). Possessing the unique capability of both aerobic respiration 

and oxygenic photosynthesis the endosymbiotic cyanobacterium conferred such a 

selective advantage to the host that this “lucky host” out-competed all other proto-

eukaryotes and thus emerged as the ancestor of eukaryotes. The ingested 

cyanobacterium functioned initially as a “chloromitochondrion” and later separated 

into two separate organelles the chloroplast and the mitochondrion performing 

photosynthesis and respiration separately.. Later some of the hosts lost chloroplasts 

and became non photosynthetic eukaryotes Evolving in an atmosphere of 

progressively increasing oxygen the early primitive cyanobacterium-derived 

mitochondria developed more and more efficient systems for oxygen respiration and 

evolved into the present day mitochondria. 

In the following sections we put forth several arguments that support this 

hypothesis 

4.4.2   The Timing of Events  

The fossil record of cyanobacteria has been argued to extend to 3.5 Ga 

backwards but reliable biomarker evidence at 2.7 - 3.2 Ga ago is usually considered to 
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be the earliest undisputable micro-fossil record of cyanobacteria (Barghoorn and 

Schopf, 1965,1966; Schopf, 1970). 

The date of emergence of eukaryotes is still debated and estimates vary 

widely, from as early as 3.5 billion years ago to no more than 0.9 – 1.3 billion years 

ago. The estimates ( < 1.3 Ga) of the origin of eukaryotes rest mostly on the lack of 

undisputed fossil evidence, which is not a strong argument by itself (de Duve, 2007), 

since it is possible that the earliest eukaryotes did not leave fossils at all, or that they 

are yet to be found.  On the other hand there are a number of arguments that 

strongly favor an early origin of eukaryotes. There are a large number of 

apparently ancient eukaryotic innovations that do not have a prokaryotic counterpart 

(de Duve, 2007).  The characteristics that are unique to eukaryotes seem to show that 

the proto-eukaryotes were essentially anaerobic organisms that had developed long 

before the atmosphere became oxygenated ( ~ 2.4 Ga ago). The earliest reliable 

biomarker evidence of eukaryotes is reported at 2.7 Ga ago (Brocks et al., 1999) and 

the earliest fossils are reported to be 2.1 Ga old (Han and Runnegar, 1992).  A 

genomic timescale fixes the origin of eukaryotes around 2.6 Ga (Hedges et al., 2001). 

All these findings have strengthened the view
 
that modern eukaryotic and 

prokaryotic cells had long followed
 
separate evolutionary trajectories (Kurland et 

al., 2006).  A number of studies have suggested that the divergence of the archaeal, 

bacterial, and eukaryotic lineages is ancient (Forterre, 2001, Sicheritz-Ponten and 

Andersson, 2001) and, what seems most important in the present context, that the 

divergence of the eukaryotic lineage predates the divergence of α-proteobacteria 

(Canback et al., 2002).  
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Alpha-proteobacteria has been shown to be a rather late diverging group 

within bacteria by evidence provided by signature sequences in a number of proteins 

(Gupta RS, 1998). The α-proteobacterial endosymbiosis is considered to have taken 

place around 1.8 Ga ago (Farquhar et al., 2007), 600 million years after the 

atmosphere became oxygen-rich. This late acquisition of mitochondria raises 

questions on how the anaerobic proto-eukaryotes survived until they met their α-

proteobacterial rescuers and became aero-tolerant and even aerobic (de Duve, 

2007). It seems more plausible that eukaryotic aero-tolerance was accomplished 

much earlier than 1.8 Ga.  If alpha proteobacteria were the ancestors of 

mitochondria, an early origin of eukaryotes implies that eukaryotes stayed a-

mitochondriate for a long time after their origin. The question then is how they 

survived the toxic onslaught of oxygen during this period. Thus an early origin of 

eukaryotes is inconsistent with the alpha proteobacterial origin of mitochondria 

(Cavalier-Smith, 2006). Giardia Lamblia which is considered to have once possessed 

mitochondria, emerged around 2.2 Ga according to the genomic timescale for 

eukaryotic evolution calculated by Hedges et al (2001). The secondarily a-

mitichondriate nature of Giardia becomes consistent with their estimated origin 

around ~2.2Ga once the constraint of alpha proteobacterial origin of mitochondria 

after 1.6Ga is removed. 
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Figure 4.12 Proposed sequences of events leading to eukaryotic organelles. 

(Parallel evolution of (free-living) bacteria also shown schematically). 

 

Cyanobacteria possessing aerobic respiratory systems were already around 

from the early days of atmospheric oxygenation. Endosymbiosis of a 

cyanobacterium by an anaerobic proto-eukaryote before 2.4 Ga ago and 

subsequent evolution of the respiratory system under increasing oxygen is more 

consistent with an ancient origin of eukaryotes. 

 It is generally believed that mitochondria were acquired before chloroplasts 

because most extant eukaryotes possess some form of mitochondria while only a 

subset of them possess chloroplasts. However, recent evidence suggests that a number 
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of today’s non-photosynthetic eukaryotic microbes have evolved from a 

photosynthetic ancestor by loss of pigments and/or chloroplasts.  In the light of all 

newly accumulated knowledge, the primary endosymbiont event leading to 

chloroplasts occurred much earlier in eukaryotic evolution than currently envisaged 

(Andersson and Roger, 2002, Purton, 2002).  Phylogenetic data on the origin of 

chloroplast Hsp90 suggest that the common ancestor of animals and plants once 

harbored chloroplasts (Emelyanov, 2002), and the recent discovery of vestiges of 

photosynthetic structures  (“thylakosomes”) in chemoheterotrophic protists such as 

Psalteriomonas lanterna and some representatives of the parasitic genus Apicomplexa 

(Hackstein et al., 1997) would rather conform to this type of reasoning. Even some 

peroxisomal enzymes from animals have been shown to have originated from 

cyanobacteria (Gabaldon et al., 2006, Tabak et al., 2006).   Therefore, it is well 

possible that the ancestors of all the current non-photosynthetic organisms had 

once harbored chloroplasts in the form of cyanobacteria. 

Stanier (1970) proposed that chloroplast endosymbiosis took place first 

because oxygenic photosynthesis must have preceded aerobic respiration. Cavalier 

Smith (1987) proposed a simultaneous origin of chloroplasts and mitochondria by 

(nearly) simultaneous endosymbiont events around 0.9 Ga ago, that should have led to 

uptake of both the progenitors (of chloroplasts and mitochondria) by a proto-

eukaryotic host possessing phagocytic capability. He argued that, as soon as 

eukaryotes acquired the phagocytic machinery, all kinds of symbionts could be taken 

up and it is unlikely that photosynthetic ones would be taken up appreciably 

earlier or later than respiratory ones. In a more recent paper (Cavalier Smith, 

2006) he reported that TOM70, a protein of crucial importance in the import of 
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proteins into mitochondria, shows a clear cyanobacterial origin thereby supporting his 

hypothesis that the primordial host also harbored symbiotic cyanobacteria along with 

the proto-mitochondrial endosymbiont.  

 

4.4.3   Parsimony and Selective Advantage of a Single Primordial Cyanobacterial 

Endosymbiosis 

Cavalier Smith’s hypothesis of late endosymbiosis between a proto-eukaryote with 

well-developed phagocytic capability and some α-proteobacterium does not go well 

with the monophyletic nature of mitochondria. If “all kinds of symbionts could be 

taken up” (Cavalier Smith, 1987), it is difficult to see why one and only one 

combination could out-compete all the others. The monophyletic nature of 

mitochondria suggests that the mitochondrial endosymbiosis was a highly unusual and 

unlikely event. Evidence that other organelles like mitosomes and 

hydrogenosomes are also derived from mitochondria is another indication of the 

extreme parsimony involved in the primary endosymbiont event. Therefore, the 

event must have occurred very early in evolution at a time when the mechanism for 

attaining a stable endosymbiotic system was not yet well established.  

In view of the physiological unlikeliness of the so-called respiration-early 

hypothesis (Paumann et al., 2005) it is logical to hypothesize that the trigger for the 

emergence of aerobic respiration came from the molecular oxygen first released by 

the cyanobacterial oxygenic photosynthesis and that the aerobic respiratory chain 

was derived from the photosynthetic electron transfer chain, as extensively 

discussed by the so-called conversion hypothesis (Broda, 1975; Broda and Peschek, 

1979; Peschek 1996 a,b, 2004, 2005, 2008; Paumann et al., 2005). Initially the 
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function of the respiratory chain must have been the detoxification of O2 and there 

must have been a long intermediate phase before it developed into the full-fledged 

respiratory chain currently found in mitochondria and aerobic bacteria (Paumann et 

al., 2005).  As the inventors of oxygenic photosynthesis cyanobacteria must 

naturally have been the first organisms to face the challenge of molecular oxygen 

which they generated within themselves. They are thus likely to have been the 

first organisms to have developed oxygen-detoxifying systems via aerobic 

respiration. A wide variety of detoxifying enzymes for O2 and its even more 

dangerous partially reduced intermediates have been identified in cyanobacteria 

(Regelsberger et al., 2002; Paumann et al., 2005; Bernroitner et al, 2009).   

We propose that, when primitive organisms faced the challenge of toxic 

oxygen, one of them, a proto-eukaryote made a lucky break-through by 

managing to enslave a cyanobacterium and availed the enormous selective 

advantage conferred by simultaneous acquisition of oxygenic photosynthesis and 

aerobic respiration, thus taking the famous quantum leap in evolution. A 

dramatic increase in atmospheric oxygen levels known as the Great Oxidation Event 

took place around 2.4 Ga ago though the cyanobacteria had emerged at least 300 

million years before already (Kasting, 2006). This time lag has not yet received 

absolute explanation, though several hypotheses have been offered (Lenton et al, 

2004; Goldblatt et al, 2006; Kasting, 2006). We propose that the efficient transfer of 

photosynthetic capability to eukaryotes made photosynthesis extremely  wide-spread 

and thus contributed significantly to the dramatic rise in oxygen. This would place 

the timing of cyanobacterial endosymbiosis around 2.4 Ga ago. 
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4.4.4   Separation of the Organelles 

During replication of the cyanobacterial endosymbiont within the host, some 

of the progeny could have lost the thylakoid membrane possibly by mutation of a 

critical gene involved in biosynthesis of the membranes. This part of the off-spring 

was transformed into proto-mitochondria specializing in the function of aerobic 

respiration using the respiratory electron transfer chain that had been situated in the 

cyanobacterial plasma membrane from the very beginning (Peschek et al., 2004; 

Paumann et al., 2005).  The main function of the proto-mitochondrion must have been 

oxygen detoxification by aerobic respiration. As the atmosphere became progressively 

richer in oxygen, the proto-mitochondria developed more efficient and refined 

mechanisms for aerobic respiration as nowadays found in full-fledged mitochondria. 

In some of the eukaryotes occupying anaerobic niches, the proto-mitochondria 

degenerated into hydrogenosomes and mitosomes. It might also be speculated that 

peroxisomes are vestiges of the proto-mitochondria still contributing to the 

scavenging of oxygen free radicals. 

 The original cyanobacterium probably survived longer in its endosymbiont 

form and was converted to a chloroplast at a later stage (Cavalier Smith, 2006). 

Somewhere along the way a lineage of non-photosynthetic eukaryotes emerged by 

secondary loss of pigments and/or the photosynthetic function as mentioned earlier in 

this chapter.   

4.4.5 The majority of the mitochondrial proteome does not show alpha 

proteobacterial origin  

  A large fraction of eukaryotic nuclear-encoded genes with a prokaryotic 

homolog are of eubacterial origin and these are generally assumed to have originated 
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from the mitochondrial endosymbioint. However only a surprisingly small fraction 

of these genes can be traced specifically to alpha proteobacteria (Gabaldon and 

Huynen, 2003). Even more surprising is the fact that less than 20% of the 

mitochondrial proteome which could be even more legitimately assumed to have 

originated from the mitochondrial endosymbiont, has close homologues in alpha 

proteobacteria (Kurland and Andersson, 2000; Martin et al.,2002). A recent work on 

the origin and evolution of the nuclear-encoded mitochondrial aminoacyl-tRNA 

synthetases (aaRS) (Brindefalk et al., 2007 and figures 4.11 and 4.12)  shows that 

while all the 20 aaRSs considered originate from within the bacterial clade, not a 

single one is seen to originate from alpha proteobacteria. Irrespective of the method 

used and the aaRS analyzed, the results consistently place the node of the 

mitochondrial divergence within the bacterial domain, but distinct from the a-

proteobacterial clade. The mitochondrial aaRS do not show affinity to any specific 

bacterial clade. The same is the case with glycolytic genes (Canback et al., 2002).   

This is indicative of the fact that we are dealing with such ancient phenomena that the 

phylogenetic signals have become hopelessly blurred.   

In contrast to non-photosynthetic eukaryotes, the origin of a large percentage 

of plant nuclear genes can be clearly traced to cyanobacteria  (Martin et al., 2002). 

Using a novel supertree-based phylogenetic signal-stripping method Pisani et al. 

(2007) show that  the strongest phylogenetic signals in eukaryotic genomes link 

eukaryotes with the cyanobacteria. The results of Brindefal et al. (2007) show that the 

majority of the organelle aaRSs from plants cluster with cyanobacteria. In the case of 

glycolytic genes from green plants several of the phylogenetic reconstructions showed 

close relationship with cyanobacteria.  Now the fact that the plant genes show a clear 
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origin from cyanobacteria has been interpreted as evidence that these are genes that 

have been transferred to the nucleus from the chloroplast. An alternate explanation is 

that the nucleotide substitution rates in plant mitochondria are much slower than their 

non-plant counterparts (Lynch et al., 2006) and therefore ancient phylogenies are 

shown up much better with plant genes than those using non-photosynthetic eukaryote 

genes. Therefore the phylogenies shown up by plant genes could be interpreted as 

showing the true ancestral relationships while the phylogenetic signals have become 

too blurred in the highly mutated non-plant genes to show up a relationship to any 

particular eubacterial clade. 

4.4.6 Structural and Functional Characteristics of Cyanobacterial and 

Mitochondrial membranes 

Mitochondria, in their inner membrane, contain the highly sophisticated 

system of chemiosmotic oxidative phosphorylation which, inherently dependent on 

membrane-bound electron transport, must be the result of a long process of evolution 

under aerobic conditions. The cyanobacterial respiratory system, though basically 

similar to the mitochondrial one, is still more primitive and simpler, showing signs of 

having evolved under an atmosphere poorer in oxygen (Peschek et al., 2004).  

Like other Gram-negative bacteria, cyanobacteria have a cell envelope 

consisting of an outer membrane, a peptidoglycan layer, and a plasma membrane. In 

addition, these organisms possess an elaborate internal system of intracellular 

(thylakoid) membranes that host a dual-function photosynthetic–respiratory electron 

transport chain (Peschek, 1996 a,b). Their plasma membrane carries a pure respiratory 

chain without the photosynthetic reaction centers (Peschek et al., 2004). Perhaps one 

of the critical evolutionary innovations of the cell membrane in cyanobacteria was its 
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ability to invaginate to create a space between the cell membrane and the cell wall 

(Koning, 1994). The “invaginations”, which form contact points between plasma and 

thylakoid membranes, are sometimes called “mesosomes” or thylakoid centers 

(Hinterstoisser et al., 1993).  These areas of the cell membrane are rich in respiratory 

electron transport proteins. It has been debated whether the thylakoid membranes 

themselves are invaginations of the plasma membrane, or if they form separate 

compartments within the interior of the cyanobacterial cell. Recent electron 

microscopic studies indicate that the thylakoid membranes are physically 

discontinuous from the plasma membrane. (Liberton et al., 2006). They may, 

however, be physically connected with plasma membrane through thylakoid centers 

(Hinterstoisser et al., 1993).                               

Mitochondria and chloroplasts are both surrounded by double membranes. 

Chloroplasts contain, in addition, an internal (thylakoid) membrane system which, in 

cyanobacteria, carries both respiratory and photosynthetic electron transport chains. 

The mitochondrial respiratory chain is contained in the inner mitochondrial membrane 

which would thus be analogous (and homologous?) to the cyanobacterial plasma 

membrane, and which exhibits numerous invaginations called cristae. Both the 

mitochondrial inner membrane and the chloroplast thylakoid membrane form closed, 

osmotically autonomous (thus chemiosmotically competent) compartments and both 

membranes are stuffed with a reversible ATP synthase of appropriate orientation to 

catalyze the phosphorylation of ADP to ATP.  Thus physiologically the chloroplast 

structure is virtually identical to that of cyanobacteria whereas mitochondria 

could be considered to resemble cyanobacteria without thylakoid membranes.  
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The respiratory electron transport chain carried by the cyanobacterial 

membranes (Figure 4.13) has seen shown to be quite similar to that carried by the 

mitochondrial inner membrane, and in general – as is one of the main conclusions of 

the conversion hypothesis (see before) – functionally speaking the electron transport 

components of both respiratory and photosynthetic chains are strikingly similar to 

each other (Peschek, 2008). 

 The electron transport sequence (Peschek et al., 2004; Paumann et al., 2005; 

Peschek, 2008) will be briefly discussed in  the following in order to realize the 

remarkable similarity of electron transport systems in cyanobacteria, chloroplasts, and 

mitochondria:  

Complex I - NAD(P)H dehydrogenase : Cyanobacteria possess either a multi-

subunit “mitochondrial” energy-transducing NDH-1  enzyme or a 1-subunit non-

mitochondrial, non-energy transducing NDH-2 enzyme.  

Complex II  - (SDH) Succinate-dehydrogenase 

The occurrence of succinate dehydrogenase has been firmly established in 

both cyanobacterial membranes. Interestingly, just like the mitochondrial SDH, the 

cyanobacterial enzyme is inhibited by thenoyltrifluoro acetone (TTFA), and it cross-

reacts with monospecific antibody against mitochondrial SDH.   
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Figure 4.13   Details of the photosynthetic and respiratory electron transport 

systems in a cyanobacterium 

 

Lipid-soluble mobile carrier  

This pool component is ubiquinone in mitochondria but plastoquinone in all 

cyanobacteria. Redox potentials of ubi- and plasto-quinone (both benzoquinones) are 

almost the same and they can functionally substitute for each other. Side chains in 

positions 3 and 4 are methoxy- in ubiquinone, but methyl- in plasto-quinone 

which may indicate that ubiquinone replaced plastoquinone as the atmosphere 

became richer in oxygen. 
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Complex III:  The cytochrome b.c complex  

 Functionally speaking this complex is basically the same in cyanobacteria, 

chloroplasts, and mitochondria. The cytochrome b6f complex in chloroplasts and 

cyanobacteria, and the b.c1 complex in mitochondria, have exactly the same function, 

viz. as a quinol:cytochrome c/PC  oxidoreductase.  

Water-soluble mobile carrier  

In cyanobacteria this can be cytochrome c6 or PC or, as an electron donor to COX, 

also cytochrome cM (Bernroitner et al., 2008b). In chloroplasts of higher plants this 

carrier is the blue copper protein PC while in mitochondria it inariably is cytochrome 

c, functionally and topologically  very similar to cyanobacterial cytochrome c6. In 

prokaryotic and eukaryotic algae cytochrome c6 and PC may be physiologically 

interchangeable according to availability of Cu in the medium 

The terminal respiratory oxidase (TRO) 

While there may be several TRO-types in cyanobacteria,  e.g. aa3-type, bo3-type, bd-

type, etc., the only TRO unequivocally characterized as a functional protein in up to 

35 different cyanobacteria so far is a canonical aa3-type cytochrome c oxidase. The 

mitochondrial TRO also is an aa3-type cytochrome c oxidase. O2-affinity, redox 

properties and inhibition profiles of mitochondrial and cyanobacterial TRO are 

identical. Like other bacterial TROs its main redox-group-carrying subunit I shows 

the well-known property of the promiscuity of heme groups. The characteristic 

difference is that the enzyme is composed of 13 protein subunits in mitochondria but 

only 3-4 in cyanobacteria (and other bacteria), and that the TON (turnover number) of 

the cyanobacterial enzyme is lower by a factor of almost 100. Therefore, in spite of its 
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high O2-affinity it is obviously not as well adapted to aerobic respiration in fully oxic 

conditions as is the mitochondrial TRO.  

4.4.7 Summary of arguments 

The evidences supporting the alternate hypothesis are discussed in detail in the 

above five sections. Our arguments can be summarized as follows: 

• Cyanobacteria, atmospheric oxygen and eukaryotes existed a long time before 

the origin of alpha-proteobacteria.  If eukaryotes acquired mitochondria only 

after the advent of alpha proteobacteria, it is difficult to see how they survived 

the toxic onslaught of oxygen till then 

• Cyanobacteria being the first producers of oxygen were the first to develop 

oxygen detoxification capability through aerobic respiration. Early chance 

endosymbiosis of a cyanobacterium by a proto-eukaryote would have 

conferred the enormous advantages of photosynthesis and aerobic respiration 

to this lucky  proto-eukaryote. 

• The argument that since all eukaryotes possess mitochondria but only a subset 

possesses chloroplasts need not be considered as a valid argument to show that 

mitochondrial endosymbiosis took place earlier than chloroplast 

endosymbiosis. It is possible that earliest eukaryotes had both functions and 

some lost the photosynthetic function later. 

• The monophyletic nature of mitochondria points to endosymbiosis being a rare 

chance event. Therefore a single event leading to both the organelles is a more 

parsimonious hypothesis. 

• The structural and functional similarity of both mitochondrial and 

cyanobacterial membranes supports the hypothesis further.  It is reasonable to 
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propose that the primitive cyanobacterial oxygen de-toxification systems 

developed into efficient respiratory systems as the endosymbiont evolved into 

mitochondria under the pressure of increasing atmospheric oxygen.    

 

4.4.8  Explanation for the similarity of alpha-proteobacterial proteins to 

mitochondrial proteins 

 The primary reason that the search for the bacterial ancestor of mitochondria 

pointed to α-proteobacteria was that because, among the bacterial clades, the α-

proteobacteria were found to be the closest identified relatives of mitochondria on the 

basis of sequence similarities of several protein-encoding genes on the mitochondrial 

genomes.  However, the inference that the most closely related bacterial clade 

contains the mitochondrial ancestor is true only if we are sure that this bacterial 

clade existed before the emergence of mitochondria.  According to our hypothesis 

the cyanobacterial endosymbiosis took place around 2.4 Ga, viz., long before the 

emergence of α-proteobacteria. Then it can be considered that the proto-

mitochondria and the ancestors of α-proteobacteria evolved together in an 

oxygen rich environment.  This hostile environment was equally new to both and as 

a result both had to adapt to the novel conditions.  This would have led to the 

formation of functionally similar proteins by a process of convergent evolution 

rather than diverging from a common ancestor.  Thus the similarity in their amino 

acid sequences can be primarily attributed to convergent evolution.  Further, the 

predominantly parasitic nature of α-proteobacteria adds to the similarity of the 

environments in which mitochondria and α-proteobacteria evolved. It has been 

suggested that there could also have been some amount of “lateral gene transfer” from 
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the parasitic α-proteobacteria to mitochondria (Brindefalk et al., 2007).  Symbionts 

belonging to the Rickettsiales have been found in the mitochondria of animal cells 

(Beninati et al., 2004) and some species of Rickettsiales have been observed to 

transfer their genes into the nuclear genomes of their hosts (Kondo et al., 2002). 

Therefore, some of the “well-conserved” mitochondrial genes, including the rRNA-

genes, could also have been acquired much later in evolution from parasitic α-

proteobacteria.   

 

4.4.9  Importance of  nucleotide sequence analysis 

This above mentioned possibility of a convergent evolution and the 

evolutionary plausibility of an alternate hypothesis, increases the significance for a 

rechecking of the existing phylogeny based on protein sequences with a nucleotide 

sequence based phylogenetic comparison. Unless the phylogeny based on amino acid 

sequence variations are well supported by those of nucleotide sequences, there is 

always room for legitimate doubt.  This is especially true when chances of convergent 

evolution are high.  Our results based on genome signatures as well as aligned 

nucleotide sequences of  several genes consistently throw doubts on the currently 

accepted hypothesis on the origin of  mitochondria. 

 

4.5  Conclusion 

This chapter describes how a genome signature based phylogenetic analysis 

led us to a new hypothesis on an important biological question. Intrigued by the 

discrepancy between phylogenetic analysis based on nucleotide sequences and amino 

acid sequences we went deeply into factors other than molecular phylogeny which 
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could complement the results of molecular phylogenetic analysis. We put together a 

number of arguments to establish the plausibility of the alternate hypothesis. 

However, as with most hypotheses regarding ancient evolutionary events it is difficult 

to offer a conclusive proof of this hypothesis. We have, however, shown that the 

“proof” based on amino acid similarity of the proteins of α-proteobacteria and 

mitochondria becomes open to doubt when we consider the underlying nucleotide 

sequences. This case shows an example of the potential of CGR for investigating into 

“established” phylogenetic relationships from an alternate point of view.   

4.6  References 

1. Almeida JS, Carrico JA, Maretzek A, Noble PA and Fletcher M (2001)  

Analysis of genomic sequences by Chaos Game Representation, Bioinformatics 

17(5): 429--437 

2. Andersson JO and Roger AJ (2002) A cyanobacterial gene in nonphotosynthetic  

protists-An early chloroplast acquisition in Eukaryotes?  Curr. Biol. 12: 115--119 

3. Andersson SGE, Zomorodipour A, Andersson JO, Sicheritz-Ponten T, Alsmark 

UCM, Podowski RM, Naslund AK, Eriksson AS, Winkler HH and Kurland CG 

(1998) The genome sequence of Rickettsia prowazekii and the origin of 

mitochondria, Nature 396 (6707): 133—140 

4. Andersson SGE, Karlberg O, Canback B and Kurland CG (2003) On the origin of 

mitochondria: a genomics perspective, Phil. Trans. R. Soc. Lond.. B 358; 165--179 

5. Barghoorn ES and Schopf JW (1965) Microorganisms from the late Precambrian 

of Central Australia, Science 150: 337--339 

6. Barghoorn ES and Schopf JW (1966) Microorganisms three billion years old from 

the precambrian of South Africa, Science 152: 758—763 



132 

 

Evolutionary Ancestry of mitochondria computed using FCGR 

 

7. Beninati T, Lo N, Sacchi L, Genchi L, Noda H and Bandi C (2004) A novel alpha-

proteobacterium resides in the mitochondria of ovarian cells of the tick Ixodes 

ricinus, Appl. Environ. Microbiol.70: 2596--2602  

8. Bernroitner M, Tangl D, Lucini C, Furtmüller PG, Peschek GA and Obinger C 

(2008a) Cyanobacterial cytochrome cM: Probing its role as electron donor for CuA 

of cytochrome c oxidase, Biochim. Biophys. Acta 1787(3): 135--143 

9. Bernroitner M, Zamocky M, Pairer PG, Furtmüller PG, Peschek GA and 

Obinger C (2008b) Heme-copper oxidases and their electron donors in 

cyanobacterial respiratory electron transport, Chem Biodivers. 5(10): 1927--1961 

10. Bernroitner M, Zamocky M, Furtmüller PG, Peschek GA and Obinger C (2009) 

Occurrence, phylogeny, structure and function of catalases and peroxidases in  

Cyanobacteria, J. Exp. Bot. 60(2): 423--440 

11. Blankenship RE (1992) Origin and early evolution of photosynthesis, Photosynth. 

Res. 33: 91--111 

12. Blankenship RE and Hartman H (1998) The origin and evolution of oxygenic 

Photosynthesis, Trends in Biol. Sci. 23: 94--97 

13. Brindefalk B, Viklund J, Larsson D, Thollesson M and Andersson SGE (2007) 

Origin and Evolution of the Mitochondrial Aminoacyl-tRNA Synthetases, Mol. 

Biol. Evol. 24 (3): 743--756  

14. Brocks JJ, Logan GA, Buick R and Summons RE (1999) Archean molecular 

fossils and the early rise of eukaryotes, Science 285: 1033--1036 

15. Broda, E. (1975) The evolution of the bioenergetic processes, Pergamon Press, 

Oxford 



133 

 

Evolutionary Ancestry of mitochondria computed using FCGR 

 

16. Broda E and Peschek GA (1979) Did respiration or photosynthesis come first?  J. 

Theor. Biol. 81: 201–212 

17. Bush EC and Lahn BT (2006) The evolution of word composition in metazoan 

promoter sequence, PLoS Comput. Biol. 2 (11): e150 

18. Canback B, Andersson SGE and Kurland CG (2002) The global phylogeny of 

glycolytic enzymes, Proc. Natl. Acad. Sci. U.S.A. 99(9): 6097--6102 

19. Cavalier-Smith T (1987) The simultaneous symbiotic origin of mitochondria,  

chloroplasts, and microbodies, Ann. N. Y. Acad. Sci.503: 55--71 

20. Cavalier-Smith T (2006) Origin of mitochondria by intracellular enslavement of a 

photosynthetic purple bacterium, Proc. R. Soc. B 273: 1943--1952 

21. Chapus C,  Dufraigne C, Edwards S, Giron A, Fertil B and Deschavanne P (2005) 

Exploration of phylogenetic data using a global sequence analysis method, BMC 

Evol. Biol. 5: 63 

22. Choi JH , Jung HY, Kim HS and Cho HG (2000) PhyloDraw: a phylogenetic tree 

drawing system, Bioinformatics 16 (11): 1056--1058 

23. Christian de Duve (2007) The origin of eukaryotes: a reappraisal, Nat. Rev. Genet. 

8: 395--403   

24. Dehnert M, Plaumann R, Helm WE and Hutt MT (2005) Genome phylogeny 

based on short-range correlations in dna sequences, J. Comput. Biol. 12 (5): 545--

553 

25. Edwards SV, Fertil B, Giron A and Deschavanne PJ (2002) A genomic schism in 

birds revealed by phylogenetic analysis of dna strings, Syst. Biol. 51: 599--613 



134 

 

Evolutionary Ancestry of mitochondria computed using FCGR 

 

26. Emelyanov VV (2002) Phylogenetic relationships of organellar Hsp90 homologs 

reveal fundamental differences to organellar Hsp70 and Hsp60 evolution, Gene 

299 (1-2): 125--133  

27. Emelyanov VV (2003) Common evolutionary origin of mitochondrial and 

rickettsial respiratory chains, Archives of Biochemistry and Biophysics  

420 (1) 130 -- 141 

28. Farquhar J, Peters M, Johnston DT, Strauss H, Masterson A, Wiechert U and 

Kaufman AJ (2007) Isotopic evidence for Mesoarchaean anoxia and changing 

atmospheric sulphur chemistry, Nature 449: 706--709 

29. Felsenstein J (1989) PHYLIP - Phylogeny Inference Package (Version 3.2), 

Cladistics 5: 164--166 

30. Forterre P (2001) Genomics and early cellular evolution. The origin of the DNA 

world, C. R. Acad. Sci. Ser. III 324: 1067--1076 

31. Gabaldon, Huynen MA (2003) Reconstruction of the proto-mitochondrial 

metabolism, Science 301: 609  

32. Gabaldón T, Snel B, Frank van Zimmeren, Hemrika W, Tabak H and Huynen MA 

(2006) Origin and evolution of the peroxisomal proteome, Biology Direct 1: 8  

33. Goldblatt C, Lenton TM and Watson AJ (2006). The Great Oxidation at ~2.4 Ga 

as a bistability in atmospheric oxygen due to UV shielding by ozone, Geophys. 

Res. Abstr. 8: 00770 

34. Gray MW and Doolittle WF (1982) Has the endosymbiont hypothesis been        

proven? Microbiol. Rev.  46: 1--42 

35. Gray MW, Burger G and Lang BF (2001) The origin and early evolution of 

mitochondria, Genome Biology Reviews 2(6): 1018.1–1018.5 



135 

 

Evolutionary Ancestry of mitochondria computed using FCGR 

 

36. Gupta RS (1998) Protein phylogenies and signature sequences: a reappraisal of 

evolutionary relationships among Archaebacteria, Eubacteria, and Eukaryotes, 

Microbiol. Mol. Biol. Rev. 62: 1435--1491 

37. Gupta RS (2000) The phylogeny of Proteobacteria: relationships to other 

Eubacterial phyla and eukaryotes, FEMS Microbiol. Rev. 24: 367--402 

38. Gupta RS (2003) Evolutionary Relationships among Photosynthetic Bacteria, 

Photosynth. Res. 76: 173--183 

39. Hackstein JHP, Schubert H, Rosenberg J, Mackenstedt M, Berg Mvd, Brul S, 

Derksen J and Matthijs HCP (1997) Plastid-like organelles in anaerobic 

mastigotes and parasitic Apicomplexans, In: Schenk HEA, Herrmann RG, Jeon 

KW, Müller NE and  Schwemmler W (eds) Eukaryotism and Symbiosis. 

Intertaxonic Combination versus Symbiotic Adaptation, pp 49--55. Springer 

Verlag, Berlin 

40. Han TM and Runnegar B (1992) Megascopic eukaryotic algae from the 2.1-

billion-year-old negaunee iron-formation, Michigan, Science 257: 232--235 

41. Hartmann, H. (1998) Photosynthesis and the origin of life, Origins of Life and the 

Evolution of the Biosphere (OLEB) 28: 515-521 

42. Hedges SB, Chen H, Kumar S, Wang DYC, Thompson AS and Watanabe H 

(2001) A genomic timescale for the origin of eukaryotes, BMC Evol. Biol.1: 4  

43. Hinterstoisser B, Cichna M, Kuntner O and Peschek GA (1993) Cooperation of 

plasma and thylakoid membranes for the biosynthesis of chlorophyll in 

cyanobacteria: The role of the thylakoid centers, J. Plant Physiol.142: 407--413 

44. Jacob F (1977) Evolution and tinkering, Science 196: 1161--1166  



136 

 

Evolutionary Ancestry of mitochondria computed using FCGR 

 

45. Jeffrey H.J (1990) Chaos game representation of gene structure, Nucleic Acids 

Res. 18: 2163--2170 

46. Jeon KW (1995) Bacterial endosymbiosis in amoebae, Trends Cell Biol. 5:137--

140 

47. Karlin S and Burge C (1995) Dinucleotide relative abundance extremes: a 

genomic signature, Trends Genet. 11: 283--290 

48. Karlin S and Ladunga I (1994) Comparisons of eukaryotic genomic sequences, 

Proc. Natl. Acad. Sci. U.S.A.  91: 12832--12836 

49. Kasting JF (2006) Ups and downs of ancient oxygen, Nature 443: 643--645 

50. Kondo N, Nikoh N, Ijichi N, Shimada M and Fukatsu T (2002) Genome fragment 

of Wolbachia endosymbiont transferred to X chromosome of host insect, Proc. 

Natl. Acad. Sci. U.S.A. 99: 14280--14285 

51. Koning and Ross E (1994) Cyanophyta. Plant Physiology Information 

http://plantphys.info/plant_biology/cyanophyta.shtml (June 22, 2006)  

52. Kurland CG and Andersson SGE (2000) Microbiology And Molecular Biology 

Reviews, 786–820  

53. Kurland CG, Collins LJ and Penny D (2006) Genomics and the irreducible nature 

of Eukaryote cells, Science 312: 1011--1014 

54. Lenton TM, Schellnhuber HJ and Szathmáry E (2004) Climbing the co-

evolutionary ladder, Nature 431: 913 

55. Liberton M, Berg HR, Heuser J, Roth R, and Pakrasi HB (2006) Ultrastructure of 

the membrane systems in the unicellular cyanobacterium Synechocystis sp. strain 

PCC 6803,  Protoplasma 227: 129--138 



137 

 

Evolutionary Ancestry of mitochondria computed using FCGR 

 

56. Lynch M, Koskella B and Schaack S (2006) Mutation pressure and the evolution 

of organelle genomic architecture, Science 311: 1727--1730 

57. Margulis L (1981) Symbiosis in Cell Evolution : Life and its environment on the 

early earth, W.H. Freeman, San Francisco 

58. Martin W, Rujan T , Richly E , Hansen A,  Cornelsen S , Lins T , Leister D, 

Stoebe B, Hasegawa M and Penny D (2002) Proc Natl Acad Sci U.S.A. 

99(19):12246--12251  

59. Mereschkowski C (1905) Über Natur und Ursprung der Chromatophoren im  

Pflanzenreiche, Biol Centralbl 25: 593—604 

60. Paumann M, Regelsberger G, Obinger C and Peschek GA (2005) The 

bioenergetic role of dioxygen and the terminal oxidase(s) in cyanobacteria, 

Biochim. Biophys. Acta (BBA) – Bioenergetics  1707 (2-3): 231--253 

61. Peschek, GA (1996a) Cytochrome c oxidase and the cta operon of cyanobacteria, 

Biochim. Biophys. Acta 1275: 27--32 

62. Peschek GA (1996b) Structure-function relationships in the dual-function 

photosynthetic-respiratory electron transport assembly of cyanobacteria,  

Biochem. Soc. Trans. 24: 729--733 

63. Peschek GA (2005) Cyanobacteria viewed as free-living chloromitochondrtia, 

In:  Est Avd.  And Bruce D. (eds) Photosynthesis: Fundamental Aspects to Global 

Perspectives, pp 746—749, The International Society of Photosynthesis, Toronto, 

Canada 

64. Peschek GA (2008) Electron transport chains in oxygenic cyanobacteria, In: 

Renger G (ed) Primary Processes of Photosynthesis: Principles and Applications,  



138 

 

Evolutionary Ancestry of mitochondria computed using FCGR 

 

2: 383--415,  European Society of Photobiology, The Royal Society of Chemistry, 

Great Britain 

65. Peschek GA, Obinger C and Paumann M (2004) The respiratory chain of blue-

green algae (cyanobacteria), Physiologia Plantarum 120(3): 358—369 

66. Perrière, G. and Gouy, M. (1996) WWW-Query: An on-line retrieval system for 

biological sequence banks. Biochimie, 78: 364--369. 

67. Pisani D, Cotton JA, and McInerney JO (2007) Supertrees Disentangle the 

Chimeric Origin of Eukaryotic genomes, Mol. Biol. Evol. 24(8):1752–1760 

68. Pringsheim EG (1949) Colorless algae, Bact. Rev. 13: 47--56 

69. Pringsheim EG (1963) Farblose Algen, Gustav Fischer Verlag, Stuttgart 

70. Pringsheim EG and Wiessner W (1960) Colorless phototrophs?   

Nature 188: 919--920 

71. Purton S (2002) Going green: the evolution of photosynthetic eukaryotes.  

Microbiology Today 29: 126--128 

72. Qi J, Wang B and Hao BI (2004) Whole proteome prokaryote phylogeny without 

sequence alignment: A k-string composition approach, J. Mol. Evol. 58: 1--11 

73. Regelsberger G, Jakopitsch C, Plasser L, Schwaiger HJ, Furtmüller PG, 

Peschek GA, Zamocky M and Obinger C (2002) Occurrence and biochemistry of 

hydroperoxidases in oxygenic phototrophic prokaryotes (cyanobacteria), Plant 

Physiol. Biochem. 40: 479--490  

74. Sarfaty CK, Mi Oh J,  Kim IW, Sauna ZE, Calcagno AM, Ambudkar SV, 

Gottesman MM (2007) A "silent" polymorphism in the MDR1 gene changes 

substrate specificity, Science 315: 525--528 

75. Schopf JW (1970) Precambrian microorganisms and evolutionary events prior to 



139 

 

Evolutionary Ancestry of mitochondria computed using FCGR 

 

the origin of vascular plants, Biol. Rev. 45: 319--352 

76. Sicheritz-Ponten T and Andersson SG (2001) A phylogenomic approach to 

microbial evolution,  Nucleic Acids Res. 29: 545--552 

77. Simmons MP, Carr TG and Neill KO (2004) Relative character-state space, 

amount of potential phylogenetic information and heterogeneity of nucleotide and 

amino acid characters, Mol. Phylogenet. Evol. 32: 913--926 

78. Stanier RY (1970) Some aspects of the biology of cells and their possible  

evolutionary significance, Symp. Soc. Gen. Microbiol.  20: 1--38 

79. Tabak HF, Hoepfner D, Zand Avd, Geuze HJ, Braakman I and Huynen MA 

(2006) Formation of peroxisomes: Present and past, Biochim. Biophys. Acta 

(BBA) - Molecular Cell Research 1763(12): 1647--1654  

80. Thompson JD, Higgins DG and Gibson TJ (1994) CLUSTAL W: improving the 

sensitivity of progressive multiple sequence alignment through sequence 

weighting, position specific gap penalties and weight matrix choice, Nucleic Acids 

Res. 22: 4673– 4680 

81. Wang Y, Hill K, Singh S and Kari L (2005) The spectrum of genomic signatures: 

from dinucleotides to chaos game representation, Gene 346: 173--185 

82. Woese CR, Magrum LJ and Fox GE (1978) Archaebacteria, J. Mol. Evol. 11: 245-

-252 

83. Xiong J, Fischer WM, Inoue K, Nakahara M and Bauer CE (2000) Molecular 

evidence for the early evolution of photosynthesis, Science 289: 1724--1730 

84. Yang D, Oyaizu Y, Oyaizu H, Olsen GJ and Woese CR (1985) Mitochondrial 

origins, Proc. Natl. Acad. Sci. U.S.A. 82 (13): 4443—4447 

 



140 

 

Summary and Scope for future work 

 

Summary and Scope for future workSummary and Scope for future workSummary and Scope for future workSummary and Scope for future work    

 

Summary 

The preceding chapters present our attempts to develop the technique of Chaos 

Game Representation from a mere sequence visualization algorithm to a unique tool 

with versatile abilities to draw out the information content present in colossal 

biological sequence databases.   

The first chapter gives a comprehensive introduction to CGR and explains the 

construction of a Frequency Chaos Game Representation (FCGR), which is in fact a 

square matrix representing the frequency of different oligonucleotides in a sequence.  

The inception of CGR in 1990 by HJ Jeffrey and the works by various authors raising 

the stature of CGR to a valid sequence analysis technique is discussed in detail in the 

chapter.  The distance measure between two sequences, proposed by Almeida et al. in 

2001, computed from FCGR and based on Pearson correlation coefficient is described 

here.  The concept of genome signature brought out by Deshavanne et al. in 1999, 

shows that subsequence of a genome exhibits characteristics of the whole genome.  

The characteristic which is preserved here is the short oligonucleotide composition 

and hence FCGR becomes an ideal tool in analyzing genome signature. 

A key property of CGR is that, the source sequence can be retraced upto any 

desired level from the coordinates of the CGR points.  This previously unutilized 

characteristic of CGR is made use in the second chapter to build an alignment based 

comparison of genomes.  Here, an algorithm for identifying all local alignments 
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between two long DNA sequences using the sequence information contained in CGR 

points is developed.  This is done by defining the distance between the CGR points 

(xi, yi) and (xj, yj) of two positions of the two sequences respectively as 

( ) ( ) ( )( )jiji YYabsXXabsjid −−= ,max,  .  Further it is found that for k identical 

nucleotides in both sequences the equation becomes ( ) ( ) ( )kjkidjid
k

−−= ,5.0, .  

The length k of identical sequence is thus found out and its location is further marked 

to identify the region of local alignment. The alignments thus found are depicted 

graphically in a dot-matrix plot or in text form.   The program execution time is 

further made fast by using an anchored alignment approach similar to that used in 

other programs such as FASTA.  The anchoring is done by taking similar ‘k-mers’ in 

both the sequences, where the k-mers are further found by FCGR.  Neighbouring 

local alignments with a gap, in-del or mismatch separating them are then chained 

together.  Inversions of segments in the sequences are also accounted for by taking the 

reverse complement of the second sequence and comparing with the first sequence.  

Genomes of several closely related microbial species are compared and the results are 

illustrated in the chapter.    

The phylogenetic signal contained in genome signature is the focal theme of 

the third chapter.  The inherent difficulties in the traditional molecular phylogenetic 

methods based on sequence alignment are discussed carefully.  The distance measure 

mentioned in chapter one, based on Pearson correlation coefficient between the 

FCGRs of two sequences, is utilized to compute the pairwise distance between two 

sequences.  The distance matrix thus obtained is used to construct phylogenetic trees.  

The results thus obtained on evolutionarily related data sets clearly indicate the 
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presence of phylogenetic signal in genome signature.  Established phylogenetic 

relationships could be recreated to a fair extent using this alignment free technique.  

The fact that correlation of two data sets is scale independent and since this distance 

measure is based on the correlation of FCGRs, two sequences of varying dimensions 

can be compared meaningfully using this technique.   

The effect of varying the order of the FCGR on the resulting trees is studied in 

this chapter.  It can be observed in general that trees based on lower order FCGR is 

more suited for comparing sequences of distantly related organisms, while higher 

order FCGR is more suited for closely related organisms.  Another interesting result is 

the ‘chromosome wise’ tree of organisms.  The lower order FCGRs caused the 

intermingling of chromosomes of closely related organisms, that too pairing of 

‘counterpart’ chromosomes in the case of the Human – Chimpanzee chromosome 

distance tree.  However, the higher order FCGRs classifies the chromosomes into 

separate groups, but at the cost of losing inter-species relationships.  The tree based on 

bias-compensated third order FCGR, i.e. each trinucleotide frequency divided by its 

component monomer frequencies to nullify the effect of base composition, displayed 

the twin advantage of species specificity and preservation of inter-species relation.  A 

distinctiveness of the signature method to be noticed here is that a chromosome wise 

distance tree would not make any sense in an alignment based method.  The presence 

of a distinct phylogenetic signal in genome signature can be inferred from the results 

in this chapter. 

This distinct phylogenetic signal in FCGR is utilized in the fourth chapter in 

re-examining the currently accepted hypothesis on the origin of the eukaryotic 
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organelle, mitochondria.  Molecular phylogeny based on aminoacid sequences is the 

main result in support of the hypothesis that an endosymbiosis of an alpha-

proteobacteria led to the formation of mitochondrion.  However, genome signature 

results depict that the signature of mitochondria is closer to cyanobacteria and 

chloroplasts than to its hypothesized ancestor, the alpha-proteobacteria.  Further, 

taking into account the unique capability of cyanobacteria to perform both oxygenic 

photosynthesis and aerobic respiration, an alternate more parsimonious hypothesis is 

proposed; that a single endosymbiotic uptake of a cyanobacterium could have led to 

the evolution of both the organelles.  We bring together arguments such as parsimony, 

timing of evolutionary and geological events, structural and functional similarity of 

cyanobacterial membranes to both the organellar membranes, so as to create the 

plausibility of this alternate hypothesis.  Multiple sequence alignment done on the 

nucleotide sequences of ribosomal proteins and NADH dehydrogenase genes also 

supported the new hypothesis.  Moreover, the signature based distance between the 

mitochondria and chloroplasts is relatively small while the distance from the 

organelles to the nuclear genome is large for the early eukaryotes (protists), which 

again points to a common endosymbiotic ancestry for both the organelles.  Molecular 

phylogenetics is a powerful tool for probing ancestral relationships, but it is known 

not to be infallible.  Hence, the discrepancies in the results obtained by amino acid 

based methods and nucleotide sequence based methods must be considered seriously.  

If this alternate hypothesis finds acceptance, it would imply that we take a serious re-

look at other ‘established’ phylogenetic relationships based solely on amino acid 

sequence similarity. 
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In conclusion this work considerably enhances the current repertoire of 

applications of Chaos Game Representation and positions it as an important  genome 

sequence analysis tool .  

Scope for future work  

We hope that this work will spawn renewed interest in Chaos Game 

Representation, both in terms of using the currently available applications to address 

important biological questions as well as to develop new applications. 

Biologists can use phylogenetic analysis based on CGR as a tool for having a 

re-look into other ‘established’ phylogenies.  For a given evolutionary tree to be well 

established trees based on different construction methods should complement each 

other.  Whenever there is a contradiction among the results, there is space for an 

alternate evolutionary relationship.  The effect of varying the order of FCGR on the 

resulting distance trees is to be further studied and representations that combine the 

advantages of different orders can be thought of.   

Information scientists can further go in depth by utilizing the sequence (data) 

retracing property from a single CGR point.  The technique can be employed in fields 

beyond biological sequences. The information content in a single CGR point makes 

the technique a likely candidate for lossless file compression techniques.  The 

computing of frequencies of oligomers of various lengths in a single run of the 

program can be utilized to make FCGR a faster pattern-searching algorithm.  An 

efficient web-based software tool for CGR based sequence analysis would be a very 

useful addition to Bioinformatics tools. 
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