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1. INTRODUCTION

One of the basic assumptions in the classical analysis of the time
series is that the sequence of observations is a realization from some
Gaussian sequence. Further, most of the models employed in analyzing
such series are linear in nature. However, in recent years it has been
found that nonlinear models with nonGaussian marginal distributions
are more suitable than linear Gaussian models in certain situations.
See, for example, Lawrance (1991) and the references cited there.
One of the important nonlinear models used to generate sequence {Xn}
of nonnegative random variables (r.v.s) is defined by

Xn ¼
X0 n ¼ 0
k minðXn�1, "nÞ n ¼ 1, 2 . . . , k > 1

�
ð1:1Þ

where {"n} is a sequence of independent and identically distributed (i.i.d)
nonnegative nondegenerate r.v.s. called innovations andX0 is independent
of "1 . This model is referred to as a minification model. The Markov
sequence {Xn} defined by Eq. (1.1) has many properties of a first order
autoregressive (AR(1)) sequence. In particular, the exponential minifica-
tion process of Tavares (1980) is a time-reversed version of the first order
exponential autoregressive (EAR(1)) process introduced by Gaver and
Lewis (1980). This is an interesting result proved by Chernick et al.
(1988). It is worth recalling that Gaver and Lewis (1980) proposed an
estimation scheme based on the degeneracy property of the model,
which determines the exact value of the autoregressive parameter
and then estimates the scale parameter. In view of the time-reversibility
relation cited above, this estimation scheme can be extended to
determine the exact value of k in a minification process as we illustrated
in Sec. 3.

Various aspects of the model (1.1) when Xn has a specified distribu-
tion have been studied by different researchers. For example, Tavares
(1980) discuss the minification process with exponential marginal, Sim
(1986) defined this model for Weibull r.v.s., Yeh et al. (1988) for Pareto
r.v.s. and Pillai (1991) studied a model with semi-Pareto marginal
distribution.

If �FFðxÞ ¼ PðX0 > xÞ and �GGð yÞ ¼ Pð"1 > yÞthen fXng defined by
Eq. (1.1) is stationary if and only if

�GGðxÞ ¼
�FFðkxÞ

�FFðxÞ
, x � 0, k > 1 ð1:2Þ
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(cf. Lewis and Mckenzie (1991)). Arnold and Hallett (1989) showed that
if the distribution of X0 is chosen as

�FFðxÞ ¼
Y1
j¼1

�GGðx=k j
Þ ð1:3Þ

then Eq. (1.1) defines a stationary sequence with Xn having survival
function �FFð:Þ. It is assumed that the product (1.3) does not diverge to
zero. Let us define

X0 ¼ inf
0	 j	1

k j"�j, ð1:4Þ

where {"�j, j ¼ 0, 1, 2:::::} is a sequence of i.i.d. nonnegative r.v.s. with
common survival function �GGð:Þ. Now it follows that the survival function
of X0 is given by Eq. (1.3). The applications of these models in various
areas such as geophysical science, reliability, etc., are discussed in the
above mentioned references.

As far as statistical inference is concerned, little work has been done
for these models. Adke and Balakrishna (1992) have estimated the
parameters of exponential minification model. Balakrishna (1998) dis-
cussed the estimation problems in semi-Pareto and Pareto processes. In
this article, we estimate the common mean of {Xn} and the parameter k of
the general stationary minification processes defined by Eq. (1.1).

In Sec. 2, we prove that a stationary minification process is ergodic
and uniformly mixing. These results are used to prove the optimal prop-
erties of the estimators of k and the common mean of Xn in Sec. 3. As an
illustration we discuss the details of estimation problems in exponential
minification model in Sec. 4. The simulation results in Sec. 5 show that
the proposed estimators perform well in the exponential case. The Sec. 6
gives some concluding remarks.

2. SOME PROBABILISTIC PROPERTIES

OF THE MODEL

In this section we prove that the minification process is ergodic and
uniformly mixing.

Lemma 2.1. The stationary Markov sequence defined by Eq. (1.1) is
ergodic.
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Proof. Let Fn¼ � {X1,X2,. . .Xn} and Gn¼ �{. . ., "�2, "�1,"0, "1, "2,..,"n} be
the sigma fields induced by (X1,X2,. . .Xn) and (. . . , "�1, "0, "1, "2,. . .,"n)
respectively. Repeatedly using Eq. (1.1), we can write

Xn ¼ MinfknX0, k
n"1, k

n�1"2, . . . k"ng, n ¼ 1, 2 . . . : ð2:1Þ

Thus it now follows from Eq. (1.4) that

Fn 
 Gn for n � 1 ð2:2Þ

and hence the tail sigma field � of {Xn} is contained in the tail sigma field
�* of the i.i.d. r.v.s. . . .,"�1, "0, "1, "2. . .,"n. It is well-known that each
event of �* has probability 0 or 1. This implies by Eq. (2.2) that � contains
only events of probability 0 or 1, which is a sufficient condition for {Xn}
to be ergodic (see Stout, 1974, p. 182). Hence the lemma is proved.

Definition. A sequence {Xn} of r.v.s. is said to be uniformly mixing (or
�-mixing) if

jPðA \ BÞ � PðAÞPðBÞj 	 PðAÞ�ðhÞ,

where A2 �(X0,X1,. . .Xn}, B2 �(Xnþh,Xnþhþ1. . ..} and �(h) ! 0 as
h ! 1.

Lemma 2.2. A minification sequence {Xn} generated by Eq. (1.1) and satis-
fying Eqs. (1.2) and (1.4) is uniformly mixing with mixing parameters

�ðhÞ ¼ P½Xh ¼ khX0�, h ¼ 0, 1, 2, . . . ð2:3Þ

Proof. Suppose that A 2 �(X0,X1,. . .Xn}, B 2 �(Xnþh,Xnþhþ1. . ..}.
A close inspection of the model (1.1) reveals that if at least one innova-
tion occurs in the time interval (nþ 1, nþ h� 1) then the events A and B
are independent. Let N be the number of innovations occurring between
Xn and Xnþh. Hence we have

PðA \ BjN > 0Þ ¼ PðAjN > 0ÞPðBjN > 0Þ: ð2:4Þ

It also follows from Eq. (1.1) that N¼ 0 if and only if Xnþh¼ kh Xn

and in this case the events A and B are dependent. These observations
along with Markov property of {Xn} show that A and (N>0) are
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independent events. That is,

P½A \ ðN > 0Þ� ¼

Z 1

0

Pf½A \ ðXnþh 6¼ khXnÞ�jXn ¼ xg dFðxÞ

¼

Z 1

0

PfAjXn ¼ xÞPfN > 0Þ dFðxÞ

¼ PðN > 0ÞPðAÞ:

Thus we have

PðA \ BjN > 0Þ ¼ PðAÞPðBjN > 0Þ: ð2:5Þ

On the similar lines, it can be shown that

P½A\B\ðN ¼ 0Þ� ¼

Z 1

0

PfBjXnþh ¼ khXngPðN ¼ 0ÞPðAjXn ¼ xÞdFðxÞ

	PðN ¼ 0ÞPðAÞ: ð2:6Þ

Now using Eqs. (2.5) and (2.6) we can write

PðA \ BÞ ¼ P½A \ B \ ðN ¼ 0Þ� þ P½A \ B \ ðN > 0Þ�

	 PðN ¼ 0ÞPðAÞ þ PðAÞPðN > 0ÞP½BjN > 0�

Hence

jPðA \ BÞ � PðAÞPðBÞj 	 PðAÞfPðN ¼ 0Þ � PðBjN ¼ 0ÞPðN ¼ 0Þg

	 PðAÞ�ðhÞ,

where �(h)¼P[N¼ 0]¼P[Xnþh¼ khXn].
Since the sequence defined by Eq. (1.1) is stationary, we have (cf.

Lewis and Mckenzie, 1991),

�ðhÞ ¼ P½Xh ¼ khX0� ¼

Z 1

0

�FFðkhxÞ

�FFðxÞ
dFðxÞ:

Note that �FFðkhxÞ= �FFðxÞis decreasing function of h and hence by the
monotone convergence theorem it follows that �(h) ! 0 as h ! 1. This
completes the proof of the lemma.
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3. ESTIMATION OF k AND THE COMMON MEAN

Let {Xn} be a stationary sequence defined by Eq. (1.1) with common
distribution function F(.) and common mean �¼E(X1). Assume further
that Var(Xn)¼ �2<1 for all n. The ergodicity of {Xn} implies that the
sample mean �XXn ¼ ðX1 þ X2 þ � � � þ XnÞ=n is a natural estimator of �.
The asymptotic properties of �XXn are proved in the following theorem.

Theorem 3.1. The time average �XXn is strongly consistent and asymptoti-
cally normal (CAN) estimator of �. The asymptotic variance (AV ) of �XXn is
given by

AVð �XXnÞ ¼ �2AðkÞ=n, ð3:1Þ

where A(.) is a continuous nonnegative function.

Proof. By Lemma 2.1 and the point wise ergodic theorem, it follows that
�XXn ! � almost surely (a.s) as n!1. The uniform mixing property of
{Xn} implies that (cf. Billingsley, 1968, p. 174),

ffiffiffi
n

p
ð �XXn � �Þ �!

L
Z1, ð3:2Þ

where �!
L

stands for convergence in distribution and Z1 is a normal r.v.
with mean zero and variance

�2
1 ¼ �2

þ 2�2
X1
j¼1

	ð jÞ: ð3:3Þ

In this case 	( j) is the autocorrelation between X1 and Xlþj. Further
0 < �2

1 < 1. Thus �XXn is a CAN estimator of � and its asymptotic
variance is given by

AVð �XXnÞ ¼
�2

n
1þ 2

X1
j¼1

	ð jÞ

( )
: ð3:4Þ

Let us denote by 	(1)¼Corr(X1,X2) and assume that 	(1) is a con-
tinuous function of k, say c(k). Then it is known (see Lewis and
Mckenzie, 1991) that 	( j)¼ c(k j ). Thus we can write

AVð �XXnÞ ¼ �2AðkÞ=n, ð3:5Þ

2144 Balakrishna and Jacob

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
I
N
F
L
I
B
N
E
T
 
I
n
d
i
a
 
O
r
d
e
r
]
 
A
t
:
 
0
7
:
5
4
 
1
7
 
M
a
r
c
h
 
2
0
1
1



©2003 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

where

AðkÞ ¼ 1þ 2
X1
j¼1

cðk j
Þ, ð3:6Þ

which is continuous in k. Proof of the theorem is complete.

Remark 3.1. The uniform mixing property of {Xn} implies that the sum-
mations in Eqs. (3.3) and (3.6) are finite.

In the rest of this section, we discuss the problem of estimating k. For
the model (1.1) let us define

Wn ¼
Xn

Xn�1

¼
k if Xn�1 	 "n
kð"n=Xn�1Þ if Xn�1 > "n

�
ð3:7Þ

so that Wn	 k for all n. Let

~kkn ¼ Max
1	i	n

Wi: ð3:8Þ

Theorem 3.2. The estimator ~kkn is a strongly consistent estimator of k,
which is not asymptotically normal.

Proof. From Eqs. (3.7) and (3.8) it is clear that ~kkn ¼ k if and only if
Xi�1<"i for at least one i, i¼ 1,2, . . . , n. Thus

P½ ~kkn 6¼ k� ¼ P½Xi�1 > "i for all i ¼ 1, 2, . . . , n�

	 P½k"i�1 > "i for all i ¼ 1, 2, . . . , n�

	 P½k"2i�1 > "2i for all i ¼ 1, 2, . . . , ½n=2� � 1�:

This implies thatX1
n¼1

P½ ~kkn 6¼ k� 	
X1
n¼1

p
n
2½ ��1 < 1, ð3:9Þ

where p¼P[k"1>"2] and since "i’s are i.i.d nondegenerate r.v.s. we have
0<p<1. Now by the Borel-Cantelli lemma, we have

P½ ~kkn 6¼ k, infinitely often� ¼ 0:

That is, ~kkn ¼ k infinitely often with probability 1 and hence ~kkn ! k
a.s. as n ! 1.

However, P½
ffiffiffi
n

p
ð ~kkn � kÞ 	 x� ¼ P½ ~kkn 	 kþ x=

ffiffiffi
n

p
� � 1and hence ~kkn is

not CAN. This completes the proof.
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Remark 3.2. From Eq. (3.7) it is clear that 0<Wi	 k for all i and Wi¼ k
if and only if "i>Xi�1. Thus the distribution function of Wi is concen-
trated on a finite interval with a positive jump at the right end point.
From the study of extreme value theory, we know that there does not
exist a non-degenerate limit distribution for {Wn} for any choice of a
norming sequence (cf. Leadbetter et al., 1983, p. 13 and p. 60).

4. ESTIMATION FOR EXPONENTIAL

MINIFICATION PROCESS

One of the well-known minification models is that defined by Tavares
(1981) for exponential r.v.s. In this case X0 has the distribution

FðxÞ ¼ PðX 	 xÞ ¼ 1� e�x=�, � > 0, x � 0: ð4:1Þ

and the i.i.d. sequence {"n} has the common distribution specified by

GðxÞ ¼ Pð"1 	 xÞ ¼ 1� e�ðk�1Þx=�, x � 0: ð4:2Þ

Then Xn defined by

Xn ¼ k MinðXn�1, "nÞ, n ¼ 1, 2 . . . ð4:3Þ

has exponential distribution F(x) for all n� 0. Here {Xn} is referred to
as an exponential minification sequence, which is uniformly mixing with
(cf. Sec. 2)

�ðhÞ ¼ k�h, h ¼ 1, 2, . . . ð4:4Þ

The sample mean Xn is CAN estimator for � and

AVð �XXnÞ ¼
kþ 1

k� 1

�2

n
: ð4:5Þ

Hence we estimate � by the sample mean �XXn.
In the following discussion we propose an estimator for k denoted by

k̂k which is different from ~kkn defined by Eq. (3.8).
Let

Uj ¼
1 if Xj � Xj�1

0 if Xj < Xj�1

�
, j ¼ 1, 2, . . . ð4:6Þ
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then

EðUjÞ ¼ k=ð2k� 1Þ

and

VðUjÞ ¼ kðk� 1Þ=ð2k� 1Þ2: ð4:7Þ

Let �UUn ¼ n�1 Pn
j¼1 Uj be the arithmetic mean of U1,U2,. . . .,Un.

Theorem 4.1. For the exponential minification process, the estimator
k̂kn ¼ �UUn=ð2 �UUn � 1Þ is strongly consistent and

ffiffiffi
n

p
ðk̂kn � kÞ �!

L
Z2 as

n!1, where Z2 is a normal r.v. with mean zero and variance

�2
2 ¼ kðk� 1Þð2k� 1Þ2 � 2ð2k� 1Þ2ðk� 1Þ3

�
X1
h¼1

1

fk� 1þ kh�1ð2k� 1Þg
ð4:8Þ

Proof. By the ergodicity of {Xn} we have as n!1, �UUn ! k=ð2k� 1Þ a.s.
and hence k̂kn ! k a.s.

As Un is a function of Xn and Xn�1, by Lemma 2.2, it follows that
{Un} is also stationary and mixing with coefficients (see Billingsley, 1968,
p. 186)

��
ðhÞ ¼ �ðh� 1Þ ¼ k�ðh�1Þ, h ¼ 1, 2, . . . ð4:9Þ

Now by applying the theorem 20.1 of Billingsley (1968), we get the
result that

ffiffiffi
n

p
½ �UUn � k=ð2k� 1Þ� �!

L
Z, ð4:10Þ

where Z is normal r.v. with mean zero and variance

VarðZÞ ¼ VarðU1Þ þ 2
X1
h¼1

CovðUl,UlþhÞ

CovðUl ,UlþhÞ ¼ P½Xl > X0,Xlþh > Xh� � P½X1 > X0�P½X1þh > Xh�

¼ 1� P½X0 > k"1�P½Xh > k"hþ1�

þ P½X0 > k"1,Xh > k"hþ1� � fk=ð2k� 1Þg2

¼ 1� p0 � ph þ p0h � fk=ð2k� 1Þg2, say: ð4:11Þ
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Now simplify the term p0h,

p0h ¼ P½X0 > k"1, k
h�1X0 > "hþ1, k

h�1"1 > "hþ1,

kh�2"2 > "hþ1, . . . "h > "hþ1�:

By conditioning on ("1, "hþ1)., it becomes,

p0h ¼

Z 1

0

�ðk� 1Þ2

ð2k� 1Þ
exp

"
f��ð2k� 1Þ"hþ1=k

h�1
g

��ðk� 1Þ 2þ
Xh�2

j¼1

k�j

( )
"hþ1

#
d"hþ1:

After simplifying the integral we get

p0h ¼ ðk� 1Þ2kh�1
ð2k� 1Þ�1

fk� 1þ 2kh � kh�1
g
�1

From the definition of the model (4.3), it immediately follows that

po ¼ ph ¼ ðk� 1Þ=ð2k� 1Þ:

Substituting these values in Eq. (4.11), we get

CovðU1,Uhþ1Þ ¼ �ðk� 1Þ3ð2k� 1Þ�2
fk� 1þ kh�1

ð2k� 1Þg�1:

ð4:12Þ

An application of the ratio test for convergence of series implies that

X1
h¼1

jCovðU1,Uhþ1Þj < 1:

Further, it is readily verified that

fkðk� 1Þg=ð2k� 1Þ2 þ
X1
h¼1

CovðU1,Uhþ1Þ

is strictly positive. Thus we have the result specified by Eq. (4.10) with
0<Var(Z)<1.

Let us write

ffiffiffi
n

p
k̂kn � kÞ ¼ �

ð2k� 1Þ

ð2 �UUn � 1Þ

ffiffiffi
n

p
ð �UUn �

k

2k� 1

� �
:
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Now, since (2k�1)/ð2 �UUn � 1Þ ! ð2k� 1Þ2 a.s. as n!1, by Slutsky’s
theorem, we have

ffiffiffi
n

p
ðk̂kn � kÞ �!

L
Z2,

where Z2 is a normal r.v. with mean 0 and variance �2
2 given by Eq. (4.8).

This completes the proof.

5. SIMULATION STUDY

In this section we study the performance of the estimators proposed
for the parameters of an exponential minification process discussed in
Sec. 4. We estimate � by �XXn and k by k̂kn defined in Theorem 4.1. For
specified values of k and � we generated samples of 1100 observations
and computed �̂� and k̂kn after skipping the first 100 values. We repeated
the experiment 100 times and then evaluated the averages of �̂� and k̂kn

Table 5.1. Averages of �̂� and k̂k from 100 simulations based on the exponential

minification model for specified values of � and k, where the observations in each

sample is 1000.

k � k̂k SE(k̂k) ASE(k̂k) �̂� SE(�̂�) ASE(�̂�) COR(k̂k, �̂�)

1.1 0.5 1.099 0.012 0.011 0.486 0.072 0.071 0.723

1 1.102 0.011 0.012 1.006 0.135 0.144 0.618

2 1.103 0.010 0.012 2.007 0.299 0.287 0.641

5 1.100 0.011 0.012 5.096 0.682 0.738 0.649

10 1.099 0.013 0.011 10.024 1.577 1.460 0.701

1.25 0.5 1.251 0.025 0.022 0.506 0.048 0.048 0.654

1 1.252 0.022 0.022 1.005 0.086 0.095 0.565

2 1.249 0.022 0.022 1.983 0.169 0.189 0.607

5 1.249 0.021 0.022 4.956 0.432 0.471 0.517

10 1.250 0.023 0.022 9.943 0.938 0.943 0.595

2.5 0.5 2.514 0.149 0.157 0.502 0.026 0.024 0.506

1 2.493 0.142 0.154 1.006 0.046 0.049 0.228

2 2.510 0.178 0.157 1.985 0.097 0.096 0.268

5 2.508 0.150 0.156 5.033 0.227 0.243 0.211

10 2.532 0.168 0.160 10.027 0.479 0.481 0.221

5 0.5 5.108 0.899 0.780 0.498 0.021 0.019 0.101

1 5.270 1.000 0.835 1.000 0.044 0.038 0.044

2 5.178 0.851 0.803 1.989 0.074 0.076 0.177

5 5.239 0.971 0.824 4.972 0.190 0.191 0.175

10 5.151 0.910 0.794 10.016 0.373 0.386 0.148
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over the repetitions. The Table 5.1 presents the specified values of the
parameters �, k, the averages of the estimates based on 100 trials, along
with the standard errors. The columns of ASE (�̂�) and ASE (k̂k) provide
the asymptotic standard deviations evaluated at (�̂�, k̂k), using Eq. (4.5)
and (4.8) respectively. The column with COR gives the estimated coeffi-
cient of correlation between �̂� and k̂kn. Observe that the estimates �̂� and
k̂kn are very close to the respective parameter values with their standard
errors close to the corresponding asymptotic standard errors for all com-
binations of the parameters.

However, the correlation between the estimators decreases when k
increases. The simulated values of the estimator ~kk defined by Eq. (3.8)
coincides with the theoretical value of k in each trial, but such situations
may not occur in practice.

When k is known or it is replaced by ~kk, the estimates of � coincide
with �̂� with its standard error equal to SE(�̂�) for n¼ 1000. However, in
this case we get a good estimate for � for relatively smaller sample size.
The Table 5.2 summarizes the computation of the estimates along with
the standard errors for known values of k when n¼ 100.

6. CONCLUDING REMARKS

There are several minification models available in the literature for
generating variety of nonGaussian sequences. If we want to use
these models in the practical situations, a valid estimation procedure is
necessary. In this article we proposed some estimators for the common
mean and k of a stationary minification model. The asymptotic properties

Table 5.2. Averages of �̂� from 100 simulations based on the exponential

minification model for known values of k, where the observations in each

sample is 100.

k

1.1 1.25 2.5

� �̂� SE( �̂�) ASE( �̂�) �̂� SE( �̂�) ASE( �̂�) �̂� SE( �̂�) ASE( �̂�)

0.5 0.520 0.217 0.238 0.486 0.137 0.146 0.516 0.072 0.079

1 1.041 0.430 0.477 1.001 0.314 0.301 0.990 0.164 0.151

2 2.013 0.789 0.923 2.088 0.528 0.624 1.969 0.305 0.301

5 5.177 2.295 2.373 5.151 1.556 1.545 5.030 0.683 0.768

10 9.996 4.481 4.581 10.21 3.378 3.063 10.07 1.306 1.538
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of the estimators are also studied. The simulation study shows that the
estimators perform well.
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