
Journal of Digital Information Management � Volume 5 Number 6 � December 2007 385

A Multilingual Query Processing System using Software Agents

Sumam Mary Idicula
Department of Computer Science
Cochin University of Science & Technlogy
Cochin 682022, Kerala, India
sumam@cusat.ac.in

David Peter, S
Department of Computer Science
Cochin University of Science & Technlogy
Cochin 682022, Kerala, India
davidpeter@cusat.ac.in

 Journal of Digital
 Information Management

ABSTRACT: The goal of this work was developing a query
processing system using software agents. Open Agent Architecture
framework is used for system development. The system supports
queries in both Hindi and Malayalam; two prominent regional
languages of India. Natural language processing techniques are
used for meaning extraction from the plain query and information
from database is given back to the user in his native language.
The system architecture is designed in a structured way that it can
be adapted to other regional languages of India. . This system can
be effectively used in application areas like e-governance,
agriculture, rural health, education, national resource planning,
disaster management, information kiosks etc where people from
all walks of life are involved.

Categories and Subject Descriptors
H.2.3 [Languages]; Query languages: ID.2.7 [Natural Language
Processing]; H.5.2 [User Interface]; Natural language

General Terms
Query processing, Software agent, Multilingual data processing

Keywords: Query processing, database design, Software agents, Interfaces

Received 18 August 2006; Revised 11 Feb. 2007 and accepted 11 May 2007

1. Introduction

This work was aimed at developing an intelligent agent based
system for database query processing. Database holds huge
quantities of data. There are several artificial languages for
manipulating the data in the database. But their usage needs
knowledge about the database structure, language syntax
etc. Several Natural language front-ends have been developed
as a result of rigorous works done in this field of artificial
intelligence. But majority of them uses English as the natural
language. India being a multi-lingual country and only 5% of
the population can boast about of education up to matriculation
level, their use is limited. In this context, information retrieval
in regional languages from database has tremendous impact.
It is of very great use in application areas like e-governance,
agriculture, rural health, education, national resource planning,
disaster management, information kiosks etc. Even research
organizations can make use of such systems to bring their
findings to common man.

Most of the natural language query processing systems
available are constructed to function intelligently with a single
locus of control. Examples can be seen in[1],[2],[3]. But we
have developed the system as a multi-agent system. To the
best of our knowledge no system has been developed for
Indian languages based on agent technologies so far [16].

Sybase Inc has developed a natural language front end for
English using agent based technologies [15]. The system we
have developed is a multi-agent open system where agents
are capable of flexible autonomous action in order to meet
their design objectives. Each agent exhibits pro-activity,
sociability and learning capability. Pro-activeness is attributed
to the goal directed behavior of each agent. Sociability is
referred to the interaction with other agents to get its objective
done and learning ability attributed to the capability to adapt to
user’s language preferences and new languages.

The database considered in this study was the National
Resource Information (NRI) database. The user can give his
query to the system as if he delegates a human being for
information gathering. There is no rigid syntax for giving the
query. The system uses NLP techniques to extract meaning of
the query and retrieves information from data stores and
presents the information to the user in his own native language.

2. System Architecture

Architecturally the system used distributed agent technologies
based on Open Agent Architecture (OAA) for interoperation,
information brokering and distribution. An agent based
architecture was chosen to support this application because it
offers easy connection to legacy applications and the ability to
run the same set of support components in a variety of
hardware configurations ranging from standalone PC to
distributed operations across numerous workstation and PCs.
Additionally the architecture can be extended to support mobility
by running lighter weight agents like user interface agent on
handheld while the more computationally intensive processing
can be migrated elsewhere on the network. The agents were
written in the programming language Java and they
communicated via Inter-agent Communication Language (ICL).

The architecture of the system is illustrated in Figure 1. The
agents collaborating in the system are user-interface agent,
analyzer agent, parser agent, SQL agent and facilitator agent.
A brief description of each agent follows.

The collaborating agents were distributed over a network of
machines. Multiple users could use the system at the same
time. In our experimental set up, we have used four machines.
The Facilitator agent and the Database were run on one
machine. The Analyser agent, Parser agent and SQL agent
ran on another machine while two client machines were
loaded with User-interface agents. All agents were
programmed in Java. For running the system all the machines
should have J2DK 1.4.0 and OAA software package [14].

386 Journal of Digital Information Management � Volume 5 Number 6 � December 2007

2.1 User Interface Agent

It accepts typed natural language queries (Hindi / Malayalam)
from the user and presents response to the queries in Hindi
/ Malayalam. Query can be input either through the keyboard
or through the onscreen keypad with the help of touch pen.
Onscreen keypads were made for both Hindi & Malayalam.
The sample view of Hindi text control and onscreen Keypad is
given in figure 2

meaningful units are called Tokens. Knowledge content of
Tokens are stored in frames. The output of the analyzer will be
a table that contains token frames.

Each token frame has the following slots: -
Value
Tag
Id
Meaning

Tag is a string that implies the database specific category of
the token. A list of most significant tags & interpretations are
given below in Table 1.

The standard used for information exchange in Indian language
is ISCII. But popular programming languages like Java uses
two byte Unicode characters. So if we want to render Indian
letters in Java GUI controls, we have to map ISCII to Unicode.
As it was found difficult to get fonts that satisfied both ISCII &
Unicode we did a font specific mapping The Indian fonts used
for Hindi and Malayalm were DVBW-TTYogeshEN and MLB-
TTIndulekha respectively developed by C-DAC.

2.2 Analyzer Agent

This agent performs activities like splitting the query into
individual words, spelling correction, domain dependent word

grouping and attaching semantic properties to each word
group. In this work the analysis of words is conducted in a
domain (database) specific way rather than in a language
specific way. This will make tokenizing the incoming user
query easier.

The query is first separated into individual words. An individual
word or a group of words that are “meaningful units” in
database context are identified with the help of a lexicon. These

Figure 2. Onscreen Keypad for Hindi

Figure 1. System architecture

Interagent Communication Language (ICL)

Facilitator Agent

Database
agent

Analyser
Agent

Parser
Agent

SQL
Agent

User–interface
Agent

Journal of Digital Information Management � Volume 5 Number 6 � December 2007 387

The tag labels are selected to imply database specific
meaning. Id is an integer that along with tag will uniquely
identifies a token in a token frame table, since the token frame
table may contain more than one token having the same tag
type. The value field contains the actual value of the token.
The meaning field contains the corresponding database field
name or operator name.

Table 2. Token Frame Table

Parsing is then done on the tag sequence: -

<FUNC><CFLD><DONT><NFLD><NVAL><COND><DONT>

2.3 Parser Agent

This agent checks whether the sentence is grammatically
correct. Here pattern driven parsing is used [3]. Each pattern
has got specific database mapping meaning. These patterns
are then mapped to columns & conditions in a database.

The parsing is done with the help of a set of production
rules. The production rules contain natural language pattern
as antecedent and category as consequence. The incoming
query is split to form a tree, which contain patterns found in
the natural language query. Since our main aim is to find the
conditions and columns for generating SQL, we are having
only two category items. They are <CONDITION> and
<COLUMN>. If any patterns is not following any of the
antecedent of a production rule then it will be treated as a
<FILLER>. The Table 3 gives some of the production rules
used: -

Pattern (Antecedent) Category (Consequence)

<NFLD><NVAL><COND> <CONDITION>

<FUNC><NFLD> <COLUMN>

<CVAL><CFLD> <CONDITION>

<CFLD> <COLUMN>

<FUNC><CFLD> <COLUMN>

<CVAL> <CONDITION>

<NFLD><NVAL><NVAL><COND> <CONDITION>

<FUNC><NFLD> <COLUMN>

Table 3. Antecedents & Consequents of production rules

After parsing the tokens that matches with the antecedent of a
production rule, they are grouped together to form a node.
The node contains information about the pattern, category
and participating tokens, which is the final output of the overall
understanding process. These nodes are passed to SQL
agent for SQL generation.

Table 4 gives the output of the parser which is to be used by
the SQL agent.

Pattern Category Tokens

<FUNC><CFLD> <COLUMN> Tokens 1 & 2

<MEM> <FILLER> Token 3

<NFLD><NVAL> <COND><CONDITION> Token 4,5 & 6

<HY> <FILLER> Token 7

Table 4. Set of patterns identified

2.4 SQL Agent

This agent generates SQL equivalent of the natural language
query entered by the user. The output from the parser agent
gives clear indications of required columns & conditions in
the final SQL. The SQL is generated based on the underlying
database structure and set of expert rules for query building.
Interpretation of the natural language patterns that we received
as a result of parsing is required for generating SQL.

For example: -

IF (pattern = “<FUNC><NFLD>”)

{

 ADD ‘<FUNC>(<NFLD>)’ TO COLUMNS;

 ADD TABLE(<NFLD>) TO TABLES;

}

The rule-base can be created as an XML document, so that
the processing can be done easily with the help of already
available XML parsers.

2.5 Database Agent

Database agent interacts with the National Resource
Information Database stored in MySQL 1.4. This database
contains information like electricity, land use, common index,

Token category (Tag) Interpretation

<CFLD> Character attribute of a database table

<NFLD> Numeric attribute of a database table

<CVAL> Character value

<NVAL> Numeric value

<FUNC> An SQL function

<AND> The logical operator AND

<OR> The logical operator OR

<COND> Relational operator

<DONT> Don’t care terms

Table 1. Token Categories

388 Journal of Digital Information Management � Volume 5 Number 6 � December 2007

agriculture index, development index, demography,
occupation, education, health, transport etc for every state in
India up to panchayat level.

2.6 Facilitator Agent

The facilitator agent is a blackboard server agent that is
responsible for coordinating agent communication and control
and for providing a global data store to its client agents. It
maintains a registry of agent service and data declarations
[6],[14]. All communication between client agents must pass
through the black board. An extension of Prolog has been
chosen as the Interagent Communication Language (ICL)to
take advantage of unification and backtracking when processing
queries. The primary job of the facilitator is to decompose ICL
expressions and route them to agents who have indicated a
capability of resolving them. Thus agents can communicate in
an undirected fashion, with the facilitator acting as broker

Every agent participating in the system defines and publishes
a set of capabilities expressed in the ICL, describing the
services that it provides [14]. These establish a high-level
interface to the agent, which is used by a facilitator in
communicating with the agent, and in delegating service
requests to agents. The capabilities are referred as
“solvables”. In this work parsing a token string is a solvable of
the parser agent. Displaying the output on the screen is a
solvable of the user-interface agent. While performing a task,
an agent can request the service provided by other agents
through the procedure “Solve()”

3. An Example Scenario

The fol lowing is an example of an operational
demonstrat ion scenario that i l lustrates inter-agent
communication. The user tells the interface agent through
the onscreen keyboard the following query. The interface
agent translates this query into an ICL “solvable” expression
and posts this query to the facilitator. The facilitator
determines that analyzer agent is capable of performing
the requested service and the request will be routed to the
analyzer agent. The do_event() callback of the analyzer will
be executed and the output will be posted as a ICL solvable
request to the facilitator. Then the parser agent, SQL agent
and Database agent will perform their services in sequence
and the result will be given to the interface agent, which will
render the result to the user.

4. Results

Some sample screen shots of the multilingual information
retrieval system are given below. Since we have only
developed a prototype of the system, we haven’t populated
the database considerably. Hence only few records are seen
in the output. The scope of the query can be restricted to
village, district or state level. In the GUI, there is a panel for
entering the query. The output message from every agent will
be displayed in the panel given next to this. The information
retrieved from the database is shown in a separate window.

Figures 3 & 4 represent the screen shots displaying the
results of queries given in Hindi and Malayalam respectively.
The query entered by the user and the corresponding SQL
statement generated by the SQL Agent and the result obtained
can be seen in the screen shots.

5. Evaluation

We have evaluated the system using 42 questions created by
two native Hindi speakers and two Malayalam speakers. The
results indicated that the system works acceptably good in
spite of being a prototype.

5.1 Creating Question and Answers

We explained to the evaluators about the information stored
in the NRI database and the possible information they can
get from it. This approach helped the users to formulate
questions, which can be answered with the data stored
in the database. The type of questions was balanced with
character and numeric outputs. The system was tested with
42 queries. These queries were entered in both Malayalam
and Hindi. In addition to simple queries, the question type
included those containing built-in functions like sum, avg,
max, count etc, sub queries, grouping and multiple table
queries.

5.2 Examples and Analysis of Results

Fig 3 & 4 shows examples of queries entered together with
the SQL statements generated by the system and also their
output. We ran the system for 42 queries and evaluated the
result. For 28 queries we got the corresponding desired SQL
and got the correct output. But for the remaining 14, the
execution didn’t complete and error messages were received.
The analysis of errors showed that the main cause for error
was the absence of words used in the Natural language query
in the language lexicon. Synonyms of all common nouns and
phrases were not included in it. This was the case with both
languages and the analysis agent reported these errors. The
second cause was that the patterns stored in the rule base of
parser agents were not complete. Some query patterns used
by the native users were not adequately taken care in the rule
base of the parser.

Anaphoric and elliptical queries also created problems since
these aspects were not considered in depth. But all the
queries in both languages that fell in the purview of the stored
lexicon and rule base of parser were correctly processed.

6. Conclusion & Future work

The advantage of this system is that the user can query the
data store in his own native language without knowing
the complexity of the database structure and location of the
database. The agents involved in the system are adaptive to
the user language and the usage style. It is the facilitator
agent who is planning and coordinating the sequence of tasks

Journal of Digital Information Management � Volume 5 Number 6 � December 2007 389

involved in query processing. The Open Agent Architecture is
useful for building complex systems in which there are many
heterogeneous components and in which flexibility and
extensibility is important.

This work can be extended to other languages because each
language family exhibits homogeneity in structure. For
example other members of the Dravidian family of languages
can use the language resources and processing techniques

Figure 3. Screen shot for query in Hindi

used for Malayalam. The system’s performance can be
improved by considering anaphoric & elliptical queries. The
user interface can be made more user friendly by adding
agents capable of processing multi-modal inputs like speech
and gesture. Now the output is only in text form. It can be
extended to include spatial information by integrating this
system with spatial database. It adds more value to the result
and can be effectively used by government bodies for resource
planning.

Figure 4. Screen shot for query in Malayalam

390 Journal of Digital Information Management � Volume 5 Number 6 � December 2007

Acknowledgement

Indian Space Research Organization sponsored this research
work. We thank I.C Matieda, Head, Division of Informatics,
Space Application Center Ahmedabad for providing many
analyses and suggestions that helped an efficient
implementation. We also thank the programming support
given by G.Jayababu.

References

[1] Adam N.R., Gangopadhyaya, A (1997). A Form-based
Natural Language Front End to a CIM Database, IEEE Trans.
On Knowledge and Data Engineering, 9 (2) 238-250.

[2] Androutsopoulos I., Ritchie G., Tanisch, P(1993).

[3] Bharathi, Akshar., Sanyal, Rajeev (1993).

[4] Bahrathi, A., Chitanya, V., Sangal, R (1996).

[5] Bradshaw, J.M (1997).Software Agents, AAAI Press.

6] Cohen, P.R., Cheyar, A (1994). An Open agent Architecture,
In: Proceedings of the AAAI Spring Symposium on Software
Agents, California, 21-28.

[7] Weiss, Gerhard (1999). Multiagent Approach to Distributed
Artificial Intelligence, MIT Press.

[8] Idicula, S.M., Peter, D.S(2000). Frame Based System for
Understanding Malayalam, VIVEK, 13 (2) 25-33.

[9] Jennings, N.R., Woodridge M.J(1999). Agent Technology-
Foundation, Application and Markets, Springer.

[10] Jurafsky, D.,Martin, J.H(2000). Speech and Language
Processing, Prentice-Hall.

[11] Manning, C.D., Schutze, H (2002). Foundation of Statistical
Natural Language Processing, MIT press.

[12] Michael, N.H., Munindar P.S., (1997). Readings in Agents,
Morgan Kaufmann.

[13] Sugumaran, M., Narayanasamy, P (2002).

[14] The OAA Home page at http://www.ai.sri.com/~oaa

[15] http://www.ianywhere.com

[16] Idicula, S.M., Peter, D.S (2005). Intelligent Agent-based
Multilingual Information Retrieval System, In: Proceedings of
the International CALIBER-2005 on Multilingual Computing,
Cochin, India, 8-21.

