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ON APPROXIMATION METHODS FOR UNBOUNDED OPERATORS

Introduction

Many of the practical problems that occur in Physics, Chemistry, Engineering Sciences,

Economics etc. lead to problems of solving linear operator equations or computing sin-

gular values or spectral values of linear operators. And many of the operators that arise

in this way are unbounded. Functional Analysis plays a pivotal role in supplying tools

for attacking these problems. An attempt is made in this thesis to concentrate on the

solutions of operator equations and approximation numbers (generalization of singular

values) of linear operators. Naturally, the operators in consideration are unbounded.

Though there are effective techniques and efficient algorithms for the analysis and

computation of solutions of operator equations, there are still plenty of equations whose

actual solutions defy all computational endeavours. In respect of those cases, the

obvious interest is to make approximations of the actual solutions.

One of the goals of Numerical Functional Analysis is to investigate the problem of

approximating solutions of operator equations. Significant work has been done in this

direction by many eminent mathematicians for equations involving special types of

operators such as Toeplitz operators, differential operators and integral operators. The

basics of finding solutions of equations involving certain kinds of bounded operators

can be seen in [2], [4], [7] and [9].

The present study focuses on developing a general theory on approximate solutions

of unbounded operator equations, in arbitrary Hilbert spaces. The treatment is entirely

different from that of bounded operators. The usual convergence may not be expected

in the case of unbounded operators. A variant of the classical notion of resolvent

convergence is used for the approximation.

Yet another area the present study focuses is to discuss certain approximation num-
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bers of unbounded operators. Approximation numbers are generalization of the clas-

sical singular values (of compact operators). If A is a compact operator on a Hilbert

space H , then A∗A is a compact self-adjoint (in fact, positive) operator. Let λ1 ≥
λ2 ≥ λ3 ≥ · · · be the sequence of (non-zero) eigen values of (A∗A)1/2 (counting multi-

plicity). sk(A) = λk is the kth singular value of A . It is true that sk(A) = inf{‖A−
F‖/F ∈ B(H), rank F ≤ k− 1} , where B(H) denotes the class of bounded operators

on H . The same definition works for bounded operators as well. In the general setting,

sk(A) are called approximation numbers. Inspired with this, several other approxima-

tion numbers are introduced for bounded operators by many mathematicians.

The notion of approximation numbers was further extended to unbounded opera-

tors by M.N.N. Namboodiri and A.V. Chithra [14]. One among them is the relative

approximation numbers. And a few other similar approximation numbers have been

introduced in this study.

Summary of the Thesis

The thesis consists of four chapters. Chapter 1 presents some basic definitions and

results in Functional Analysis and Operator Theory which are used in the subsequent

chapters.

In chapter 2, approximation methods for unbounded self-adjoint operators are ana-

lyzed. A variant of the classical notion of resolvent convergence is used for the purpose

of approximating the solution x of the equation

Ax = y, (1)

where y is a given element of a separable Hilbert space H and A is a self-adjoint

unbounded operator in H . Computation of the actual solution x is not possible in

many of the cases. In those cases the obvious interest will be finding approximate

solutions xn of (1). So, the problem is reduced to finding a sequence of ‘uniquely
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solvable’ (invertible) operators An defined on certain finite-dimensional subspaces Dn

of the domain D(A) of A such that (An ) converges to A in some sense, and a

sequence ( yn ) in H with yn ∈ R(An) , the range of An , such that (yn) converges to

y in H satisfying the following:

If xn is the unique solution of the equation

Anxn = yn(n = 1, 2, 3, . . .), (2)

then ( xn ) converges to the unique solution x of (1). We call (An ) an approximation

method or approximating sequence for A if (An ) converges to A in some sense and

we call (An ) an applicable sequence or applicable method for A if ( xn ) converges to

x in H .

In this context, filtrations are used to define resolvent convergence. Let H be a

separable Hilbert space. By a filtration of H we mean an increasing sequence (Hn ) of

finite dimensional subspaces of H such that ∪Hn = H . In the second section, some

relevant results on resolvent convergence are extended in our setting. Applicability

is discussed in the third section. The relation between applicability and resolvent

convergence is established. Stability plays a vital role here. (An ) is said to be stable

if An is invertible for every n ≥ n0 , for some no , and sup {‖A−1
n ‖/n ≥ n0} < ∞ .

We consolidate the results established in this section as follows:

1. If (An ) is stable, then, (An ) is an applicable method for A if and only if An → A

in the strong resolvent sense.

2. If An → A in the strong resolvent sense, then, (An ) is an applicable method for

A if and only if (An ) is stable.

We discuss stability in the fourth section. The following result is established in this

section:

Let A be a self-adjoint operator in H . Let An be self-adjoint and invertible
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on Hn , for each n , where (An ) is a filtration of H . Suppose An → A in the

strong resolvent sense. If (An) is stable, then A is injective.

The fifth section deals with the finite section method. Let (Hn ) be a filtration of

H contained in D(A) , the domain of A , and let Pn be the orthogonal projection on

H with range Hn . The sequence (An ), where An = PnAPn/Hn is called the finite

section method.

We prove a few results which give some sufficient conditions for the resolvent con-

vergence of (An ) to A .

Let us state the main results of this section :

1. If A(Hn) ⊆ Hn , then An → A in the strong resolvent sense.

2. Let Γ(A) be the graph of A and let G = {(x,Ax )/x ∈ ∪Hn} . If G is dense in

Γ(A) , then An → A in the strong resolvent sense.

We deduce some useful corollaries from this result, including the following one:

An → A in the strong resolvent sense if APnx → Ax for every x ∈ D(A) .

Finally we prove that for self-adjoint operators with A(Hn) ⊆ Hn , the series expan-

sion for eitA is valid in the dense set ∪Hn of the domain D(A) of A .

In Chapter 3, the truncation method for unbounded matrices is analyzed. By an

unbounded matrix we mean an infinite matrix such that the operator it induces in l2

with respect to the standard orthonormal basis is unbounded. We discuss how and

when the corner truncations of a given unbounded self-adjoint matrix A can be used

to approximate the solution of the equation Ax = y , for a given y in l2 . Some

of the results established in the previous chapter are applied here to investigate the

resolvent convergence of the truncations to the given matrix. Also, an attempt is made

to discuss unbounded Toeplitz matrices. For self-adjoint Toeplitz matrices A = T (a)

with a ∈ L2(T) ( T being the unit circle), we have proved the following result:
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Let D′ = D(A) ∩ l1 and G′ = {(x,Ax)/x ∈ D′} . Suppose G′ is dense in Γ(A),

the graph of A . Then the truncations of A converge to A in the strong resolvent

sense.

Chapter 4 is devoted to analyzing certain approximation numbers of unbounded

operators. We consider unbounded operators which are bounded relative to some

other operator. Various kinds of relative approximation numbers are discussed in this

chapter. The first section deals with relative approximation numbers and the second

section deals with approximation number sets. The following connection between the

eigenspectrum and the first approximation number set of a closed unbounded operator

is established:

|e(A)| ⊆ s̃1(A) , where |e(A)| denotes the set {|k|/k ∈ e(A)} . Here e(A) is

the eigenspectrum of A and s̃1(A) is the first approximation number set of A .

Fourth section deals with generalized approximation numbers and fifth section

deals with square approximation numbers. As a final result, we prove that the

square approximation numbers τ ∗
k,T (An) converge to τ ∗

k,T (A) as n → ∞ , where

An are the finite sections of A , namely PnAPn . Here, Pn are the orthogonal

projections on H with some finite dimensional subspaces Hn as range.
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