
STUDIES ON INTEGRABILITY AND CHAOTIC
BEHAVIOUR OF CERTAIN NONLINEAR SYSTEMS

THESIS SUBMITTED TO THE

COCHIN UNIVERSITY OF SGIENCE AND TECHNOLOGY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

M. P. JOY

DEPARTMENT OF PHYSICS

CQCHIN UNIVERSITY OF SCIENCE & TECHNOLOGY

COCHIN - 682 022

INDIA

JULY 1992



CERTIFICATE

Certified that tl'l.9 work reported in. the pl'eSeJ'\t

thesis is based on the bonafide work done by Hr. H. P. Joy~

un.der m.y 8uidance in the Department 0/ Physics, Coc b.i rv

University of Science and Technolo6Y, and has not been

included in any other thesis submitted previotisly for the

M. Sabir

Cochin 682 022,

7 July 1992.

(Supervising Teacher)

Department of Physics

Cochin University of Sci. & Tech.

DECLARATION

Cert ified t.ha t: the wor t« presented in this thesis is

based 01\ the ori~inal work done by 1ne 1.1ndel" the ~1.lidance of

Dr. 1" • Sabir, Pro f e esior , De-par t mervt: of Physics, Coc tvi ri

University of Science and Technolo6Y~ and has not been

included in any other thesis submitted previously for the

Cochin 682 022,

7 July 1992. H. P. Joy



PREFACE

Studies on nonlinear dynamical systems have been

revived in the recent past and has led to the discovery of

deterministic chaos. Availability of high speed computers and

applications to wide ranging areas of study have given much

importance to the subject. Deterministic nonlinear systems

can exhibit a broad spectrum of behaviour varying from

ordered, predictable, periodic motion on one end to

completely disordered, unpredictable, random-like motion

known as chaos at the other end. In contrast to chaotic

systems integrable systems show regular motion or order. In

this thesis we present some studies on different aspects of

integrability and chaotic behaviour of nonlinear dynamical

systems. Our main concern is with conservative Hamiltonian

systems - finite dimensional and infinite dimensional.

In the first chapter we give a brief review of the

basic facts concerning chaos and integrability in

deterministic dynamical systems as a background for the

remaining Chapters 2-6. After some opening remarks we define

and explain integrability of dynamical systems in § 1.1. This

is followed by a brief introduction to singular point

analysis in the next section. Section 1.3 introduces chaos.

Here the hierarchy of disorder properties shown by dynamical

systems is described and a brief introduction to different
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characterisations of chaos is given. Chaos in quantum systems

is revi~wed in § 1.4 . Section 1.5 contains an introduction

to Yang-Hills theories and monopoles. A brief review is given

of the studies on integrability and chaotic behaviour of

such field theoretic models and their importance highlighted.

There are no general tests for determining whether

a system is integrable or not. However, there are some

techniques of considerable practical utility for identifying

integrable cases. Among these are Painleve analysis due to

Ablowitz, Ramani, and Segur (ARS) and its generalisations.

Analysis of Kowalevskaya exponents (KE) and stability of

straight line periodic solutions are also very useful in this

regard. In Chapter 2 we describe these techniques. An account

is then given of our work where we have combined Painleve

analysis, Yoshida's methods of calculating KE and stability

analysis to show that, for two dimensional homogeneous~

potentials of degree 2m, integrability restricts KE and
';: ----------

integrability coefficients to discrete sets of values. This

has been made use of in the analysis of integrability of-

symmetric potentials with m=2, 3 and 4. Second integrals for

the integrable cases identified are 8.1so constructed

directly. We have also generalised the integrable potentials

of arbitrary degree 2m by constructing the corresponding

second integral.

Painleve analysis have been generalised by Weiss,

Tabor and Carnevale (WTC) to study partial differential
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equations (PDE). In Chapter 3 we apply this method to study

the integrability of some field theoretic models. Quest~on of

integrability of non-Abelian gauge fields or Yang-Hills

fields has attracted wide attention and has much importance

in Particle Physics and Field theory. We have studied the

integrability of spheric~lly symmetric time dependent

non-selfdual sector of SU(2) Yang-Hills (SSYH) and

Yang-Hills-Higgs (SSYMH) theory using WTC method. They are

shown to be nonintegrable. Various reductions of these
=====

systems to ODEs are also investigated and shown to be

nonintegrable.

Chaos is characterised by the exponential

divergence of nearby trajectories. Calculating-

exponents is a conven i~[l~_~~y.------------- to characterise chaos

quantitatively. If the maximal LE is pos~tiye the system is---------------------- -

said to be chaotic. What causes chaos is a very complicated
/--- ~------~--~

question. Our understanding of the origin of chaos is still

rudimentary. If the Riemannian curvature of the manifold on

which Hamiltonian flow can be considered as a geodesic flow

is negative everywhere the system can be proved to be-----chaotic. Converse is, however, not true. For Riemannian
~

curvature ca Lcu lat ion we do not cons ider the poten t ial

boundary. There are systems which have positive curvature

everywhere but are chaotic. In Chapter 4 we have studied such

a two dimensional quar~ic oscillator system which goes from

an integrable case to a highly chaotic one as a parameter

changes from 0 to 1. We calculated the maximal LE and
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negative curvature of the potential boundary at different

parameter values. We establish a direct correlation between

the curvature and chaos of the system.

Yang-Hills classical mechanics is highly chaotic.

Space time dependent Yang-Mills system also appears to be

chaotic. Chaotic behaviour of Yang-Mills theories is relevant

to the problem~ of quark confinement, monopole stability,

etc. in field theory. In Chapter 5 we have investigated the

chaotic behaviour of spherically symmetric time dependent

SU(2) Yang-Mills-Higgs (SSYMH) system in detail. We have

studied the dynamics near the 't Hooft-Polyakov monopole

solution. For our study we calculated the maximal LE of the

system obtained by discretising the original PDE. We found

that there is a transition from order to chaos as a parameter

field increases. Presence of Higgs field reduces chaos of the

which depends on the self interaction constant of the scalar

original YH fields. We have shown the existence of space-time
-----;

----------~

chaos in YMH system and the exponential

Hooft-Polyakov monopoles .

.------

Ln stabj.I i!¥__of
;.-

.. t

How classical chaos manifests in Quantum Mechanics--- ---
is a controversial and difficult question. Different

characterisations of quantum chaos have been proposed. There

is a widespread belief that Quantum Mechanics suppresses

chaos. Most of the studies concerning these questions are

semiclassical in nature. In Chapter 6 we investigate the

quantum chaos of the quartic Hamiltonian system studied in
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Chapter 4 by the recently introduced method of Gaussian
r-

effective potential (GEP). GEP is an approximate potential
~

describing the effect of quantum fluctuations on a classical

system. It is not a semiclassical quantity. We have

calculated GEP for different parameter values and for various

values of Planck's constant h. GEP becomes a regular

potential as we increase the value of h. But as the classical

chaos of the system increases the value of h at which GEP

becomes completely regular also increases showing the

existence of· signatures of

fluctuations.

chaos with quantum

The results presented in the thesis have appeared

in the form of following papers.

i. Joy M.P. and M.Sabir, Integrability of two

dimensional homogeneous potentials, J. Phys. A

Math. Gen., 21 (1988) 2291-2299.

ii. Joy M.P. and M.Sabir, Non-integrability of SU(2)

Yang-Mills and Yang-Mills-Higgs systems, J. Phys. A

: Math. Gen., 22 (1989) 5153-5159.

iii. Joy M.P. and M.Sabir, Transition from order to

chaos in Yang-Hills-Higgs system, Pramana J.

Phys., 39 (1992) L91-L94.

iv. Joy M.P. and M.Sabir, Chaotic behaviour and order

to chaos transition of 't Hooft-Polyakov monopoles,

J. Phys. A : Math. Gen., 25 (1992) (In Press).

v



v. Joy M.P. and M.Sabir,

quartic Hamiltonian

Chaos and curvature in a

system, (Communicated to

vi.

Pramana - J. Phys., 1992).

Joy M.P. and H. Sabir,

fluctuations in a quartic

Chaos and

Hamiltonian

quantum

system,

(Communicated to Phys. Rev. A, 1992).

Acknowledgements

I wish to express my sincere gratitude to Professor H. Sabir

for his able guidance. I am also thankful to Professor K.

Babu Joseph for his interest in this work. And I thank all of

my friends for their help.

I acknowledge the financial support provided by

Council of Scientific and Industrial Research, New Delhi in

the form of JRF and SRF during the period 1985-1990.

Cochin, 7 July 1992.'

vi

M. P. JOY



PREFACE

CONTENTS

i-vi

Chapter 1. INTRODUCTION 1-39

1.1. Dynamical Systems and Integrability 3

1.2. Singular point analysis 9

1.3. Chaotic behaviour 17

1.4. Quantum Chaos 24

1.5 Yang-Hills theories, Monopoles and Chaos 32

40-60

40

41

55

59

Chapter 2.

2.1.

2.2.

2.3.

2.4.

INTEGRABILITY OF TWO DIMENSIONAL HOMOGENEOUS

POTENTIALS

Introduction

Singularity, Stability and Integrability

Int~grable Potentials

Conclusion

Chapter 3. NONINTEGRABILITY OF SU(2) YANG-MILLS

YANG-MILLS-HIGGS SYSTEMS

AND

61-76

3.1. Introduction 61

3.2. Yang-Mills and Yang-Mills-Higgs systems 63

3.3. Singular point analysis and Integrability 69

3.4. Conclusion 75

3.A. Appendix 75

vii



Chapter 4. CHAOS AND CURVATURE IN A QUARTIC HAMILTONIAN

SYSTEM 77-89

4.1. Introduction 77

4.2. The Hamiltonian system 78

4.3. Lyapunov exponents 80

4.4. Riemannian curvature 83

4.5. Potential boundary 87

4.6. Conclusion 89

Chapter 6. CHAOS IN YANG-MILLS-HIGGS SYSTEM 90-105

5.1. Introduction 90

5.2. Chaos in SSYM and the ' t Hoo f t e Po Lvakov

Dlonopole in SSYMH 92

5.3. Lyapunov exponents and order to chaos

transition 95

5.4. Conclusion. 104

Chapter 6. CHAOS AND QUANTUM FLUCTUATIONS IN A QUARTIC

HAMILTONIAN SYSTEM 106-119

6.1. Introduction 106

6.2. Gaussian effective potential 108

6.3. Conclusion 118

S.A. Appendix 118

REFERENCES

viii

120-133



CHAPTER 1

INTRODUCTION

resurgence of

attributable

systems can

predictable,

unpredictable,

known as chaos

The last decade has ~1tnessed a

interest in nonlinear dynamics. This is mainly

to the realization that the non linear dynamical

exhibit a vapiety ef behaviou~ from ordered,

regular motion to completely disordered,

irregular and stochastic motion commonly

(Lichtenberg and Lieberman 1983, Schuster 1984, Hao Bai Lin

1984, Berge et al 1986, Steeb and Louw 1986b, Gleick 1987,

Tabor 1969). Generally these different types of behaviour

occur in a system as some parameter of the system ia varied.

The basic characteristic of chaotic motion is a sensitive

dependence on initial conditions. The resultinQ

unpredictability of future behaviour in completely

deterministic nonlinear systems has attracted much attention.

Even an apparently simple nonlinear system of three

differential equations can show such unexpected ways of

behaviour. Seminal studies by Lorenz in 1963 of a trunoation

of hydrodynamical partial differential equations (Lorenz

1963) and by Henon and Heiles in 1964 of a model for the

motion of a star under an axially symmetric galactic

potential (Henon and Heiles 1964) were the harbingers of a

new era. These models have now become the paradigms in the

study of nonlinear dynamics. But the beginning of the subject
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thcan be traced to the end of the 19 century. Poincar~ was

certainly aRare of the possibility of such intricate motion

in dynamical systems (Poincare 1892). However significant

contributions in this field have been made only in

comparatively recent times. Among the various reasons for

this has been the emergence of high speed computers. The

dramatic developments in our understanding of non linear

dynamics has touched almost all areas of science Physics,

Chemistry, Meteorology, Biology, Physiology, Ecology,

Economics and Sociology.

Not all nonlinear systems exhibit chaotio

behaviour. Integrable systems have regular phase space

motion. How to identify integrable systems and how and when

chaos arise in a non integrable system are questions yet to be

answered in general. This thesis is concerned with some

aspects of integrability and chaotic behaviour of

deterministic nonlinear dynamical systems. We are mostly

concerned with conservative, Hamiltonian systems. We study

the integrability and chaotic behaviour of some field

theoretic models also. These are related to the Yang-Hills

theory and are of relevance in particle physics. The

implications of chaos in Quantum Mechanics is another

fundamental question with fa~ from unambiguous answers. We

touch upon some aspects of this question by analysing a

simple model.

As a backg~ound for the discussion of our work in

Chapters 2-6 we present an overvieR of various aspects of

integrability, singular point analysis, chaotic behaviour and

2



Quantum chaos in the remaining sections of this chapter. An

introduction to Yang-Hills theory is also given in the last

section.

1.1. Dyna.mical systems and Integrability

Deterministic dynamical systems may be described as systems

of variables which evolve with an independent variable suoh

as time t and possibly with space variables x,y,z, according

to definite rules. When there is only one independent

variable we have a finite dimensional system mode led by

ordinary differential equations (ODE). In the case of Dore

than one independent variable a system is said to be infinite

dimensional and is described by partia.l differential

equations (PDE). We can define a finite dimensional dynamical

system (DS) as a set of n-first order differential equations

in n-variables, x = (x1,x2, ..... ,Xn ) (Ozorio de Almeida

1986) :

dx.
1

dt == i = 1,2, .... n , (1.1)

x denotes a point in the n-dimensional phase space and system

(1.1) is said to be a OS of n-dimensions. A solution of the

DS is a vector function x{xo,t) satisfying (1.1) and the

initial condition

(1.2)

If the vector field F is independent of time t we call the

system autonomous. By redefining time t as a new variable we

can consider an n-dimensional non-autonomous system as an

(n+l)-dimensional autonomous system. In nonlinear systems F

will be nonlinear. functions of x. OS can be described by

3



higher order differential equations also. But in general we

can transform an nth order differential equation in to

(1.3)

n-first order differential equations. If the independent

variables are discrete and not continuous we have discrete

dynamical systems described by difference equations. In the

present work our main conoern is with autonomous systems with

continuous independent variables.

Dynamical systems may be classified mainly into two

classes: conservative systems and dissipative systems. As

the time evolves in dissipative systems, the phase space

volume contracts whereas in conservative systems phase space

volume remains constant (Lichtenberg and Lieberman 1983).

Dynamical behaviour of the two types of systems are entirely

different. We may define the divergence of a system as

n aFi
ddV = J dn x ( E ~).

t V i=l uX

If dV/dt < 0, the system is said to be dissipative. For

conservative systems dV/dt = o.
We shall concentrate our attention mainly on

conservative (Hamiltonian) systems. Let us consider a system

described by Hamilton's equations of motion (Goldstein 1980) .

•
p. - - 8H/8q. , i = 1, ... N

1 1.
(1.4)

H is the Hamiltonian which is a function of generalized

coordinates Q i and corresponding conjugate momenta Pi. The

system is said to be a' Hamiltonian system of N-degrees of

. .
div (q,p)

freedom and the phase space is 2N-dimensional.

preservation is clear from Liouville's theorem

2 2
=E(~-~)=O

. 8q.8p.8p.itq.
1 1 1 1 1

4

Volume

(1.5)



A Hamiltonian system of N-degrees of freedom is

said to be integrable if there exist N time independent,

analytic, single valued integrals of motion I., which are in
1.

involution. That is their Poisson brackets vanish.

[ Ii,I j ] = 0, [ H,I t ] = 0, i,j = 1,2, ... ~N (1.6)

Intearals of Dotion are also known as constants of motion,

first integrals, etc. If the Hamiltonian H is independent of

time, it is a constant of motion. By Liouville-Arnold theorem

an integrable system executes linear Ilotion on an

N-dimensional torus defined by these first integrals and

their solutions can be obtained by Quadratures (Abraham and

Harsden 1978, Arnold 1978, Kozlov 1983) . Completely

integrable systems are exceptional. That is generic systems

are nonintegrable (Moser 1973). Phase space motion will be

regular and predictable in the case of integrable systems. In

general we may be able to find action-angle variables J,B and

hence solve the Hamilton-Jaoobi equation, for such systems.

Action-angle variables J, 9 are defined in such a way that,

by a canonical transformation from the original variables,

the transformed Hamiltonian "0 depends only on the momenta J,

the action variable. Now the equations of motion become

• -8Ho 8Ho
J = ae = 0, 6 = 8J =~(J) (1.7)

and can be easily integrated to

~ = constant, 6=wt+6. (1. 8)

All one degree of freedom autonomous Hamiltonian systems are

integrable. For a two degrees of freedom autonomous system to

be integrable there Dust exist one more integral of motion.

If there exist p < N constants of motion one can reduce the

5



effective dearees of freedom froD N to N-p. The p constants

of motion enter as parameters in the reduced system.

In the case of non-Hamiltonian systems which are

not derivable from a Hamiltonian the notion of inte~rability

is not as well defined as that in Hamiltonian systems. A

working definition can be given like this (Yoshida 1983, Puri

1990). A general dynamical system of n-dimensions Day be said

to be completely integrable if it can be reduced to final

Quadrature by the existence of n-1 time independent inteQrals

of motion or it can be transformed by a change of variables

into a set of linear ordinary differential equations (with

variable coefficients). Here also oompletely intearable

systems show reQular behaviour. Integrals of motion can also

be time dependent (Kus 1983, Steeb and Louw 1986b). In such a

case n-dimensional system is intearable if there exist n tiDe

dependent constants of motion. In general a dissipative

system can be put into a Hamiltonian system by doubling the

number of coordinates (Steeb et al 1985a).

In the case of infinite dimensional systems, the

concept of integrability is not as clear as that of finite

dimensional systems. Integrability in such systems are

related to the existence of soli ton solutions or solvability

by inverse scattering transform (1ST) or to the existence of

infinite number of conservation laws, or possibility of

transforming (by a change of variables) into a system of

linear partial differential equations (Puri 1990).

There are no general methods to identify integrable

systems. One can not tell a priori for a given system of N

6



degrees of freedom whether N integrals of motion would exist

or not. Moreover no general technique is available for

finding all the existing inteQrals of motion, or even for

finding their total number unless some obvious symmetries are

present. Sometimes numerical experiments suggest their

presence and can in turn help us to construct these.

One can in principle directly search for integrals

of motion by making use of the fact that they must be in

involution. It is a very difficult task in the case of

systems with more than two degrees of freedom (OOF). Even in

the 2 DOF case the method is not exhaustive. Hietarinta

(1987) has identified various classes of integrable 2 DOF

systems. In this approach a particular functional form for

the constants of motion are assumed and from the condition of

vanishing Poisson brackets certain restrictions on the

coefficients are obtained. The technique was first applied by

Whittaker (1927) to a Hamiltonian of the form

2 2
H = ( P1 + P2 )/2 + V(Q1,Q2)· (1.9)

He analysed a class of potentials V for which there exist an

integral of motion up to quad r at.Lo order in the momenta p ,

I(p,q) 2 b 2
c ~'lP2+ e ~'1+ f P2 + s (1.10)= a P 1 + P2 +

Here the coefficients are functions of Q •• Froll the
1

r equ i r enen t [ I,H ] = 0, one ob t a i n s a set of partial

differential equations for the coefficients in terms of the

potential V and its derivatives. Solution of these yields

integrable potentials V and the associated first integrals I.

The method can be extended to integrals which are higher

order in p. (Hall 1983, Holt 1982, Sen 1985,1987). In recent
1
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times computer programs for doing this have been developed

(Schwarz 1985,1986).

InteQrability oan also be related to the existence

of nontrivial symmetries or Lie sYDmetries (BluDan and Cole

1974, Lutzky 1979, Sahadevan and Lakshmanan 1986). Here one

finds the infinitesimal sYIlDetries of one parameter

continuous transformations leaving the equations of motion

invariant. By applying Hoether's theorem one can construct

constants of motion froD the infinitesimals. Suppose the

equations of motion,

(1.11)

are invariant under one parameter (& ) continuous

transformations.

x --+ X = x + & l)l(t,X,y,X,y) + 0(£2 )

y --+ y = y + £ l)2(t,X,y,X,y) + 0(£2 )

t --+ T = t + & ~ (t,x,y,x,y) + 0(&2 )

& « 1 (1.12)

where n1, l)2 and ~ are infinitesimals. Then the invariant

equations are
.. ..
l)1 x ~ 2 0l1~ = E{0l1 )
,. .,
l')2 - Y ~ 2 01

2
1; = E(0l2) (1.13)

Here E is the infinitesimal operator given by,

E ={ a/8t + l)18/ax + l)28 / 8 y + [ l)1-x{]8/8x + [7)2- y~]8/8y

(1.14 )

From these equations one can find n1 , n2 and { explicitly.

Using these infinitesimals one can find the associated

integrals of motion, if they exist.

Another technique is the Lax-pair approach where

8



one searches for two matrices Land H so that dL/dt = [L,H]

is equivalent to the oriainal Hamilton's equations of motion.

If that is possible then the coefficients of gO in the

expansion of det (L-g) are invariants and in involution. This

method has also been successfully applied to identify Bome

new integrable cases (Olshanetsky and PereloDov 1981).

A widely used and generally satisfactory method for

establishing the integrability of finite as well as infinite

dimensional systems is singular point analysis. Hore details

on this technique are iiven in the next section and in

Chapters 2 and 3.

1 • 2. Si ngul ar Pol nt AI"lal ysi s

Study of the analytic structure of dynamical systems reveal

several details concerning its behaviour such as

integrability and chaotic behaviour. Singular point analysis

is the most widely used method for identifying integrable

cases. The method relies on the conjecture that systems

hav Ing the Painleve property (PP) are integrable. A system is

said to have the Painleve property when the only movable

singularities of its solution in the complex time plane are

simple poles (Hille 1976, Davis 1962).

The recent revival of interest in the singularity

structure aspects and integrability is mainly attributable to

the works of Ablowitz, Ranan I and 'Segur (1978,1980). But the

idea has a long history and can be traced back to Sonya

Kowalevskaya who formulated the idea and applied it to

identify integrable cases of rigid body Dotion in 1889 (Cooke

9



1984~ Tabor 1984).

Differential equations oan have two types of

singularities : fixed and movable (Ince 1956). Fixed ones are

determined by the equation itself while the location of the

movable singularities depend upon the initial conditions.

Linear equations can have only fixed singularities. Nonlinear

equations oan have both movable and fixed aingularities.

Painleve (Ince 1956) investigated all first order

ODEs~ dw/dz = f{z~w)~ with f rational in wand analytic in z

whose only movable singularities are poles. Fuchs (1884)

examined the Question further. It was proved that the Riccati

equation dw/dz= f O( z )+f 1 ( z ) W + f 2 ( z ) 2 is the only firstw ~

order ODE which is free from Ilovable critical points.

Sonya Kowalevskaya (1889~1890,1978) was the first

to apply singularity analysis to a physical problell. Fuchs'

works and the works of Jaoobi on elliptical functions which

are meromorphic functions motivated Kowalevskaya to study the

integrability of a heavy rigid body rotating under the

influence of gravity in connection with the singularity

structure properties shown by the solutions in the complex

time plane. She considered the equations of Ilotion~

A dp = ( B - C ) q r - ~ Zo + y Yodt
B dq = ( C A ) p r - y Xo + et Zo (1.15a)

dt
C dr = ( A B ) p q - a Yo + (3 Xodt

da f3 r r qdt =
d~ = y p Cl r (1.15b)dt
dy = et q - (3 Pdt

where (p~q,r) and (a,(3,y) are the components of angular

10



velooity and direction cosines respeotively of the spinnina

top. (A,B,C) and (XU,yo,zO) are constant parameters related

to the components of moments of inertia and the position

coordinates of the centre of gravity respectively. For the

complete integrability of this system 4 integrals of Dotion

are needed. The system has 3 first integrals

hi = ! ( A p2+ B q2+ C 2 ) + et X o2 r

h2 = A a p + B (3 q + err

h3 = a 2 + (32 + y2

3 integrable special cases were known at the

Kowalevskaya.

( 1. 16)

time of

(1) A = B = C the trivial case of complete kinetic

sYllmetry.

h 4 = x OP + yoq + zOr

(ii) Xo = YO = Zo Euler case

h4 = A2p2+ B2q2+ C2r 2

(1.17)

(1.18)

and (ili) A = B, X o = Yo = 0

h 4 = r

Lagrange case

(1.19)

In the oases of Euler and Lagrange the solutions are

expressed in terms of elliptic functions which are

meromorphic. They do not have singular points other than

poles in the finite complex time plane. Motivated with this

she searched for parametrio choices having this property and

found that there are only four special cases satisfying this.

3 are the already known cases (i), (ii) and (iii) and for the

fourth case

A = B = 2C, Zo = 0,

she found an additional integral also and hence proved the

11



integrability. For the Kowalevskaya case

h
4

= ( p2 - q2 - a X
O

) 2 + ( 2pq - ~ X
O

) 2 (1.20)

She explicitly integrated this special choice and obtained

the general solution in terms of hyper-elliptic functions. No

other integrable c~ses are known for the system till now

(Golubev 1953).

Investigations by Painleve and ooworkers is a

remarkable work in the study of singularity structure

analysis in which they classified all second order ODEs of

the form ( Painleve 1900,1902, Fuchs 1906, Gambier 1909).

d 2w---2 = F(z,w,w')
dz

with F rational in w', algebraic in wand analytic in z,

whose critioal points are fixed. They identified 50 types

with this property. Out of these 44 are integrable in terms

of known functions including elliptio functions, by

quadratures or by linearisation. The remaining six equations

are now known as Painlev~ transcendents and have

transcendental meromorphic solutions. Classification of

higher order systems with Painlev~ property have been

attempted but is not yet complete (Garnier 1912, Bureau

1964, 1972) .

Ablowitz, Ramani and Segur (ARS) observed that all

similarity reductions of integrable PDEs are of Painleve

type. This observation prompted them to formulate a

conjecture : every ODE obtained by an exact reduction of a

PDE solvable by 1ST possesses the pp (Ablowitz and Segur

1977,1981). They also put forward an algorithm for testing

whether a system of ODEs satisfy the necessary criteria for

12



possessing the pp or not (Ablowitz et al 1980). Using this

one can check whether the solution of the system in complex

time plane can be expanded in terms of a Laurent series

around a movable pole, with sufficient number of arbitrary

coefficients. That is one looks for solutions of the form

p. Q) ( )= (z-z ) 1 E a m ( z-z )m
o 11=0 i 0

(1.21)

for the systell

dW i
F i( w1' · · · · "wn,z), i 1, .... , n (1.22)dz = =

The algorithm consists of three steps,

(1) the study of dominant or leading order behaviour,

(2) the determination of resonance values at whioh

arbitrary constants enter in the Laurent expansion

and (3) checking whether sufficient number of arbitrary

constants enter in the expansion.

The algorithm can also be applied to test the pp of

systems not written in the above form of first order

equations but formulated as systems with hiaher derivatives.

The alsorithm gives a necessary condition for the absence of

movable branch points either algebraic or logarithmic, but

occurrence of movable essential singularities can not be

detected.

Segur (1980) revived the Kowalevskaya's approach of

exploring the integrability of finite dimensional systems by

investigating the integrable cases of the Lorenz equation

through an application of the PP. Since then it has been used

to identify integrable cases of several systems (Bountis et

al 1982,1983,1984, Grammaticos et al 1982, Tabor and Weiss
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1981). In the oriQinal alaorithm due to Ablowitz, Ramani and

SeQur only inteaer leading orders can arise so that the

movable branch points are excluded. This is now known as the

strong PP. Ramani, Dorizzi and GranDaticos (1982) suaaested

the so called weak pp so that pp is Qeneralized to include

finite branchini. Here the leadina order can be a rational

number. Many integrable systems possess only weak PP. In the

generalised forD pp has been widely used as a criterion for

integrability (Dorizzi et al 1983,1984,1986, Grammaticos et

al 1983,1984,1985, Hietarinta 1983, Lakshmanan and Sahadevan

1964,1985, Henyuk et al 1983, Ramani et al 1984,1985, etc.

For more references see Sahadevan 1986, Steeb and Euler 1988,

Raman! et 81 1989). But there is no general proof connecting

the pp to integrability. Adler and van Hoerbeke

(1982a,b,1988) proved for a class of Hamiltonian systems that

pp is a necessary oondition for al~ebraio inte~rability in

terms of Abelian functions. No Hamiltonian systems having pp

are found to be algebraically nonintegrable. Only a few

rigorous results are available (See Ercolani and Siggia

1986,1989, Flasohka 1988). Though pp helps us to identify

integrable oases integrability can be proved only by findin~

sufficient number of integrals of motion. Analytic structure

of the solutions and the chaotic behaviour of the system also

appear to be related (Chang et al 1981,1982,1983, Bountis et

a1 1987,1991, Basals and Chafee 1986, Frish 1984, Thual and

Frish 1985, Dombre et al 1966, Fournier et al 1988, Levine

and Tabor 1988, Tabor 1989).

Yoshida (1983) introduced a method of finding
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Kowalevskaya exponents (KE) and proved the following theorem.

A necessary condition lor a similarity invariant system

to be al6ebraically inte6rable is that all Kowalevskaya

exponents be rat ional numbers.

In other words irrational or imaginary KE imply

nonintearability. KEs and Painle~ resonanoes are related to

each other . Hore details on this will be discussed in

Chapter 2.

Ziglin's work on nonintearability by studyina the

variational equations contain rigorous results in this field

(Ziglin 1983). Yoshida (1986,1987a,1989) and Ita (1985,1987)

developed the theory further producing rigorous results and

applying them to many dynamical systems (Yoshida

1987b,c,1988, Yoshida et al 1987a,b,1988, Grammaticos et al

1987). The approaches of Painleve , Yoshida and Ziglin have

some mutual connections and the details of whioh are

described in Chapter 2.

Though ARS put forward the algorithm in connection

with the integrability of POEs, it cannot be applied directly

for testing integrability of PDEs. One should reduce the PDE

before applying the algorithm. Definite conclusions are also

generally not possible. Weiss, Tabor and Carnevale (1983)

generalized the P-test by introducing a notion of pp for

PDEs. According to them a PDE possesses the pp if its

solutions are single valued about a movable singularity

manifold. Ward (1984) has given more precise definition and

pointed out that the singularity manifold must not be a

characteristic. We seek solutions of a PDE in the form
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(1.23)

about the singularity manifold

~ (Z1'··· .Zn) = 0 · (1.24)

The aliorithm essentially aoes like ARS algorithm, but the

calculations are more complicated. Kruskal proposed a

simplification where one take the singularity manifold in the

form ~(zl,z2) = zl+ ~(z2) with ~ an arbitrary analytic

function and the u j is a function of z2 only (when there are

only two independent variables zl and z2). In many situations

for PDE also we have to introduce the WPP concept. Several

systems have been studied using this method (Weiss

1983,1984,1985,1986,1987, Chudnovsky et al 1983, Sahadevan et

al 1986, Hlavaty 1985, Steeb and Euler 1987a,b,1990, Steeb

and Louw 1985,1986a,1987, Steeb et al 1984,1986c, Webb 1990)

and computer programs have also been developed for doing the

P-test (Hlavaty 1986, Heremsn and Van den Bulck 1988, Rand

and Winternitz 1986).

The main advantage of WTC method is that the

singular expansion obtained can be used for deriving Backlund

transformations, Lax Pairs, etc. Further extensions lead to

special solutions of nonintegrable equations also (Newell et

al 1987, Gibbon et al 1985, Tabor and Gibbon 1966, Conte

1988, Conte and Hussette 1989, Carriello and Tabor 1989,

1991). Different aspects of this and an application of WTC

method of P-test to~ test the integrability of time dependent

spherically symmetric SU(2) Yang-Hills and Yang-Hills-Higgs

systems are given in Chapter 3.
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1.3. Chaotic behaviour

As mentioned in the previous sections integrable systems show

regular behaviour. But they are rather exceptional. Host

dynamical systems are noninteQrable and many of them exhibit

chaotic behaviour. How and under what conditions chaos arises

is the important problem yet to be understood fully.

Hamiltonian systems, in general, have divided phase space

regular and irregular phase space regions coexist. Before

going into the details of such systems we take a look at the

hierarchy of disorder properties a classical system can

exhibit.

In ergodic theory dynamical systems are classified

according to the degree of disorder shown by them (Arnold

and Avez 1968, Lebowitz and Penrose 1970, Ford 1973). In

increasing order of stochastic properties they are classified

as recurrent systems, ergodic systems, systems with mixing,

systems with n-fold mixing, Kolmogorov systems, C-systems and

B-systells.

In a recurrent system trajectory returns to a given

neighbourhood of a point an infinite number of times as time

evolves. According to Poincare's recurrence theorem any

Hamiltonian system which maps a finite region of phase space

onto itself is of this type. This result, however does not

have much practical significance in view of the fact that the

return time is generally of enormous magnitude. A system is

generally characterised as ergodic if any trajectory fills

its energy surface. In ergodic systems time averages can be
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replaced by phase space averages. Er~odic hypothesis is the

foundation of classical statistical mechanics where the

assumption is that ensemble and time averages are equal. Once

it was thought that some non integrable perturbations would

give rise to ergodicity. But it turns out that this is not

true in general.

Let z(t) = (p(t),Q(t» represent a trajectory of a

particle in the phase space. The time evolution of z(t) can
~

be written using the time shift operator T as
A

z(t+T) = Tz(t) (1.25)

Then the time evolution of an arbitrary function of z is

given by
~ A

f(z{t+T» = STf(Z(t» = f[Tz{t)], (1.26)
A

where ST is a time shift operator along the orbit.

A dynamical system is said to be ergodic if for

every integrable function f,
t+T

liD -T1 Jdt' f[z(t')] = <f)
T~oo

t
=AJ dr(z)f(z)

n
(1.27)

where r(z) is the invariant measure in the accessible phase

space of volume o. Equation (1.27) means that time average is

equal to the phase space average. In an ergodic system time

average of any function is independent of the initial point.

A dynamical system is mixing if and only if, for

every integrable functions f and g,

lim < ~

T S f g ) = <f>.<g>
~oo T·

(1.28)
A

This implies that ST has a continuous spectrum. For any

mixing system the motion of a particle in the phase space has

infinite cycles and comes to be independent of the initial
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point as time passes. An example is given by Arnold and Avez

(1968). A mixture of 20% rum and 80% cola is stirred a large

number of tiDes n (n ~ 00). Then every part of it will

contain 20% rum and 80% cola. Implication is that it is

mixed.

One can easily show that mixing implies ergodicity.

But the converse is not true; ergodicity does not imply

mixing. Baker's transformation is an example for mixing.

A dynamical system is said to be n-fold mixing if

(1.29)

Next in the hierarchy is the so called Kolmogorov

system or a K-system which has a positive Kolmogorov-Sinai

(KS) entropy. The KS entropy is defined as follows. Let us

divide the phase space into a set {A.(O») of small cells of
J

finite measure at t=O. The backward evolution of the system

by a unit time step transforms this set to {A.(-1)}.
J

The

intersection B(-1) ={Ai(O) n Aj(-l») of this new set will

typically have smaller measure than {Aj(O)}. Continuing the

backward evolution, we can generate the elements of the set,

8(-2) ={A.(o)nA.(-1)nAk(-2»), etc.
1 J I

We say that the system has positive KS-entropy if the average

measure of each element of B decreases exponentially as

t~oo. Then the average exponential rate is defined as

h{A.(O)} = - lim ! E #1 [B.(-t)]
J t--+oo t . 1

1

(1.30)

where p denotes measure. KS entropy is defined as the maximum

of h over all initial measurable partitions of phase space.

In regions of connected chaos KS-entropy is the sum

19



of all positive Lyapunov exponents (Pesin 1977). Consequently

K-systems have very sensitive dependence on initial

conditions. Kolmogorov and Sinai proved that K-systems are

mixing (Lichtenberg and Lieberman 1983).

C-systems or Anosov systems are more stochastic

than K-systems in the sense that C-systems are K-systems but

not vice versa. In a C-system part of the tangent space is

associated with exponential divergence and a part disjoint

from that is associated with exponential convergence of

trajectories. Arnold's cat map is an example of a C-system.

Bernoulli systems or B-systems are at the top of

the hierarchy. They show behaviour indistinguishable from

randomness as in the Bernoulli shift map.

Natural systems do not strictly belong to any of

these classes. Usually the phase space is divided into

intermingled regions of chaotic and orderly behaviour. As a

first step towards the study of such systems let us consider

a near integrable system ie. an integrable system "0
perturbed with a nonintegrable part "1.

H = "O(J) + £ "1( 8,J) (1.31)

where £ is a parameter characterising the strength of

perturbation. J, 8 are the action-angle variables of the

integrable part. When & = 0 system is integrable and the

motion ocours on an N-torus. When the perturbation is small

what happens to the invariant tori of the integrable

Hamiltonian "0' is addressed by the famous Kolmogorov-Arnold­

Moser (KAM) theorem (Lichtenberg and Lieberman 1983, Berry

1978).
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Suppose the perturbation is suffioiently smooth and
8"0

small. Suppose also that the frequenoies vi(J) = 8J'
i

associated with the unperturbed Hamiltonian are linearly

independent or incommensurate. That is, for any set

(n1,n2 , .... nN) of integers that are not all zero,

N
.E DjVj{J) ~ 0 (1.32)
J=l

KAM theorem says that, under these conditions, most of the

N-tori (KAH-tori) of the unperturbed system are not

destroyed, only distorted slightly. The theorem does not

apply for tori with commensurate frequencies. A large enough

perturbation &"1 destroys all tori.

When the frequencies are COMmensurate the original

tori decompose into smaller and smaller tori. Some of these

new tori will again become stable according to KAH theorem.

But between the stable tori the motion is completely

irregular. According to Poincare-Birkhoff theorem (Birkhoff

1927) the original torus with rational frequency ratio is not

completely destroyed under a perturbation, but there remains

an even number of fixed points; an alternating sequence of

elliptic and hyperbolic fixed points. One can thus see that

in conservative systems regular and irregular motion are

densely interweaved. The destruction of KAH tori and the

onset of stochasticity can be explained by the resonance

overlap criterion proposed by Chirikov (1979).

In the case of two degrees of freedom regular

regions and chaotic regions are separate, because a two

dimensional KAH surface can divide the 3-dimensional energy
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surface into distinct regions. But when N ) 2, this is not

possible and hence irreguiar trajectories wander about

between the preserved tori with incommensurate frequencies.

They are not confined to separate regions of stochasticity as

in the case of N = 2. This results in what is known as Arnold

diffusion. Irregular trajectories form an interconnected

'Arnold web'. The Arnold web can be arbitrarily olose to any

point of the energy surface and it can exist even as the

perturbation strength approaches zero. But in many cases the

diffusion rate may be extremely small (Nekhroshev 1977). In

such cases we can consider the system as one with different

stochastic regions and neglect the Arnold diffusion.

An important aspect of the study of dynamical

systems is characterisation of chaos. The techniques of

Poincar~ surface of section and calculation of Lyapunov

characteristic exponents are two useful tools in this regard

(Tabor 1981). Making a PoincaL~ surface of section (Henon and

Heiles 1964, "enon 1983) is a simple technique to study the

chaotic behaviour especially in the case of systems with two

degrees of freedoD. In this method a two dimensional surface

in the phase space is considered and the successive

intersections of a trajectory with the surface along any

particular direction are noted. When N=2 the trajectory lies

on the 3-dimensional energy surface defined by E = H(po,qO)

in the four dimensional phase space. This means that any of

the four variables say P2 can be obtained in terms of the

other three. A convenient choice is a plane (P1,ql) at a

point q2 = constant. This plane (Pl,Ql) is now known as the
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Poincare surface of section. The successive points define a

map called Poincare map. Poincare map produces iterates on a

bounded area of the surface and it is areR preserving,

because of the volume preserving property of Hamiltonian

flows. If the points after a sufficient number of iterations

of the map lie on a closed curve, the trajectory

corresponding to them lies on an invariant torus or KAH

surface. Instead of this, if these points fill a two

dimensional area in the surface, then the trajectory

corresponding to them is chaotic. Choice of different initial

conditions, depending on whether they belong to regular

regions or irregular regions, result in different behaviour

for the map. For systems with divided phase space there

appears islands of closed curves and a chaotic sea. The

concept of surface of section can be generalised to higher

dimensional systems with N > 2 also. But the method is not of

much utility in such cases.

A more convenient technique to analyse chaotic

behaviour is the study of Lyapunov characteristic exponents

(LCE). LCE give us the average rate of exponential divergence

of nearby trajectories and is a Quantitative measure of

chaos, the sensitive dependence on initial conditions.

Characterisation of chaos of a phase space trajectory in

terms of exponential divergence of nearby trajectories was

introduced by Henon and Heiles (1964). It has been further

developed by various authors (Zaslavsky and Chirikov 1972,

Froeschle and Scheidecker 1973, Ford 1983).

The theory of Lyapunov exponents was applied to
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characterise irregular trajectories by Oseledec (1968). The

connections among Lyapunov exponents, chaos and Kolmogorov

entropy have been established by Bennettin et al (1976).

Pesin (1977) and others. Bennettin et al (1980, 1976) and

Shimada and Nagashima (1979) gave an algorithm for

calculatina LeE. The method can be used to study chaotio

behaviour of dissipative systems as well. Calculation of LeE

from time series is given in Wolf et al (1985) along with

FORTRAN program code. In the case of Hamiltonian systems the

sum of LeE is zero and for dissipative systems it should be

less than zero. For calculating LeE we have to solve the

equations of motion along with the corresponding variational

system. Chaotic behaviour in many systems have been studied

by this method (Udry and Pfenniger 1988, Contopoulos et al

1987,1989. Cleary 1989). Hore details on Lyapunov exponents

will be given in Chapter 4.

1.4. Quantum Chaos

How does classical chaos manifest in quantum mechanics? What

are the differences between properties of a quantum system

whose classical limit is regular and of a system whose

classical limit is chaotic? These are the questions the

emerging discipline called quantum chaos tries to answer.

Whether there is actually something called quantum chaos is

still a controversial, unsettled and interesting question

(Berry 1983,1985, Hogg and Huberman 1982,1983, Ford et al

1891. Partovi 1982). Different characterisations and

properties for quantum chaos have been suggested and pursued
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by different authors.

As mentioned in the last section classical chaos is

well characterised by the sensitive dependence on initial

conditions which can be Quantitatively determined by

calculatini Lyapunov exponents. But in quantum mechanics the

scenario is completely different. For studying the time

evolution of a system we have Schrodinger equation, which is

a linear differential equation. Nonlinearity is a necessary

condition for classical chaos. Hence chaos in a quantum

system can not be similar to that in a classical system. In

quantum mechanics we deal with statistical quantities. The

uncertainty principle rules out definite trajectories for

particles in quantum mechanics. Hence the criterion of

exponential diverience of nearby trajectories can not be used

directly as a definition for quantum chaos. The uncertainty

principle also implies the coarse graining of quantum phase

space; we can not distinguish points in a 2N-dimensional

phase space within a volume h N. Hence the finite value of h

tends to suppress chaos.

Because of Bohr's correspondence principle by which

the quantum and classical behaviour should coincide for

macroscopic systems, we expect that some remnants of

classical chaos must persist in quantum mechanics. Actually

in the area of quantum chaos main interest is with study of

the properties of a quantum system whose classical limit

shows chaotic behaviour. Berry's terminology for this area of

study is quantum chaology (Berry 1987).

The semiclassical quantisation of a
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system is still en unsolved problem. The problem of

quantising non integrable systems was first realised by

Einstein (1917). Integrable systems can be quantised using

the E1nstein-Br111ouin-Keller-Haslov Quantisation rule

(Zaslavsky 1981, Eckhardt 1988). For a system with a

Hamiltonian H with N degrees of freedom depending on the

generalised coordinates and momenta and

(Pl,P2'· ... PN) which performs a finite motion quantisation

rules can be given under the following conditions :

(i) If the variables are separable the quantisation rule

is given by

~ p.dq. = n.h • i = 1.2 ...• N (1.33)
111 1

where ni>O are arbitrary integers which are the quantum

numbers. This is the Bohr-Sommerfeld quantisation rule.

(ii) If not separable but integrable we have EBKH

(1.34 )1,2, ... ,N

quantisation rule

N
Sk =J E p.dq. =

C
k

1=1 1 1

where Ck are N closed contours defined on the N-dimensional

invariant torus, which can not be reduced to each other by a

continuous deformation. Ok are called the Haslov indices.

Using numerical methods and a semiclassical

approach Gutzwiller (1971,1980,1990) developed a semi

classical quantisation method making use of the periodic

orbits of classical system. This is based on the Feynman's

path integral formulation of quantum mechanics.

In 1973 Percival invoked the correspondence

principle to conjecture that in the semiclassical limit, the
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energy level spectrum consists of regular and irregular part

corresponding to regular and irregular regions of classical

phase spaoe (Percival 1973). Many authors have investiQated

these questions since then. Various characterisations have

been proposed and techniques to identify quantum chaos have

been suggested (Berry 1983, HcDonald and Kaufmann 1979,

Pechukas 1962,1983,1984, Yukawa 1985, Eckhardt 1988, Bohigas

et al 1964,199'). Some of these are:

(1) the method of avoiding crossings of energy levels,

(2) the sensitivity of energy eigenvalues to

perturbations.

(3) the statistical analysis of fluctuations in the

spectral sequences,

levelneighbour(4) the distribution of nearest

spaoings,

(5) the structure of eigenvectors,

(6) the study of nodal curves,

(7) the loss of memory of initial states,

(6) Hose-Taylor criterion for quantum chaos,

(9) quantum Poincare sections,

(10) quantum entropies and Lyapunov exponents,

(11) algorithmic complexity theory.

It seems from these studies that quantum chaos is not as

strong as classical chaos.

Before discussing some of these methods in detail

let us see what is meant by quantum integrability. As

discussed above integrability in classical mechanics is a

well defined concept related to the existence of N integrals
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of motion in involution.

[ hn , h
ll

] p. = o.
Co~respondinQly one Day define Quantum integrability on the

"" "basis of the existence of N operators Jl~ J2~ .... ~JN whose

commutator brackets vanish.

" "[ J , J ] :: 0
n 11

(1.35)

Here use Day be made of the fact that one can replace an

operator A(p,q) by a c-number function A(p ,q ).

""" J N N N N - 2NA(p ,Q ) = d e d T d p d q (2nh) A(p,q)

" "
exp f( i/l1) [T . (p-p )+8. (q-q)]} (1.36)

The correspondence between the c-number functions and the

operators is one to one. The commutator bracket can be

replaced by Hoyal bracket.

{A,B}H = 2/h sin [h/2(8 QA·8pB- 8pA·8QB)]A(PAJqA)B(PB' qB)

(1.37)

Korsh (1982) has suggested that any classically

integrable system is also Quantum integrable in the above

sense. However, Hietarinta (1982,1984) has shown that this is

not true in general. Classical integrability does not imply

quantum integrability and vice versa. We may have to add

higher order terms in h for integrability.

One of the most widely used methods of studying

quantum chaos is the analysis of eigenvalue statistics.

Nonintegrability is reflected in the statistical properties

of sequences of energy levels (Bohigas et al 1984,1985a,b).

Let us consider a sequence of energy levels.

Assume that the eigenvalues are nondegenerate except for
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accidental degeneracies. If the Hamiltonian admits symmetries

then the underlying Hilbert space has to be deoomposed into

invariant subspaces so that the eigenvalues are nondegenerate

in these subspaces.

Before studying the eigenvalue statistics we have

to "unfold" the spectrum (Bohigas et aI 1985a). By unfolding

we can eliminate the variation in average level spacing as a

function of energy. This is done by mapping the spectrum {Ei }

onto the spectrum {&i] through £i =
smoothed cumulative density.

N(E. )
1

where If is the

The simplest statistical measure is the

distribution of nearest neighbour spacings

(1.38)

where Sk = &k+l - £k· It is assumed that the sequence is

sufficiently long so that statistical techniques can be

applied . For the exact semiclassical limit we have to

consider an infinite sequence of energy levels. From the

above sequence one can calculate the normalised probability

of finding an energy level spacing s. Using this we find the

probability distribution P(s) of nearest neighbour level

spacing s. P(s) is different for integrable and nonintegrable

systems and can be used for distinguishing between them. In

1977 Berry and Tabor (1977) showed that the nearest neighbour

level spacing distribution for an integrable system is

Poissonian,

P(s) = exp(-s). (1.39)

There is level clustering; individual levels are uncorrelated

and randomly distributed. Coupled harmonic oscillators are an
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exception to this rule.

In the case of chaotic systems we have level

repulsion. Nearby levels are correlated and the distribution

peaks at a nonzero value. Random matrix theory of nuclear

physios has been used for correlating level distribution with

chaotic properties (Hehta 1967, Brody et al 1981). If we

consider a Gaussian orthogonal ensemble (GOE) of random

matrix elements we obtain a distribution with linear level

repulsion,

P(s) = n/2 s exp(- n 8
2/ 4 ) (1.40)

This is known as Wigner surmise (Wigner 1961). If we consider

a Gaussian Unitary Ensemble (GUE) of matrix elements we

obtain a distribution with quadratic level repulsion.

P(s) = (32/n) s2 exp( - 4 s2/n) (1.41)

The exact nature of repulsion thus depend on the symmetry

properties of the Hamiltonian. The important point here is

that these distributions are generic properties of

nonintegrable Hamiltonians. It is independent of the degree

of nonintegrability.

In the generic Hamiltonian systems, where there is

a mixed behaviour of order and chaos, the situation is more

complicated. In such systems with divided phase space we have

to consider superposition of statistically independent

sequences of levels from each of the corresponding classical

phase space regions; sequences from regular regions having

Poisson distribution and those from irregular regions having

Wigner distributions. P{s) depends on the Liouville measure

of regular regions and chaotic regions (Berry and Robnik
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1884) .

First numerioal study of eigenvalue statistics was

carried out by HcDonald and Kaufman (1979) for the stadium

billiard. They found Poisson distribution corresponding to

the integrable limit and Wigner distribution for

nonintegrable cases. This has been confirmed by further

studies of Caaat L, Valz-Griz and Guarneri (1980) .

Calculations of Berry (1981) on Sinai's billiard also gave

similar results.

Higher order correlations such as and

Q-statistics are also used to characterise quantum chaos.

~3-statistics or rigidity parameter measures the mean square

deviation of the integrated density n(£) of states in an

interval [x,x+l] from a straight line (Hehta 1967).

1 · x+l 2mlD
~3(l,x) = r A B J [n(£)-A£-B] d£

, x
( 1.42)

(i) For Poisson distributed levels

A
3

{ l,x) = l/15 (1.43 )

(11) For GOE .63 ( I. , x ) = 1/n2 l o g l - 0.00695 ( 1.44)

(iii) For GUE A3( l , x ) = 1/2n2 log l + 0.059 (1.45 )

in the limit o~ large l.

In contrast to the level spacing distribution where

no semiclassical proof is known, ~3 can be characterised

completely in terms of periodic orbits.

Sensitivity of energy level motion on external

parameters have been studied by Pechukas (1983), Yukawa

(1985) and Steeb and van Tonder (1988).

Recently Luna Acosta (1991) used a definition for

sensitive dependence applicable both to classical and quantum
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systems and showed that sensitive dependence on initial

conditions is absent in bounded quantum systems. Absence of

sensitive dependence in Quantum systems has also been shown

by Partovi (1992). In a recent work Ford et al (1991) showed

the possible failure of quantum correspondence principle in a

specific example. HelIer (1984) observed that quantum eigen

states of stadium billiard have a structure with high

amplitude along short unstable periodic orbits. This is known

as quantum scars of classical periodic orbits and is

explained as due to constructive quantum interference.

Scarred wave functions have been numerically observed in many

physically relevant systems as well as experimentally

(Sridhar 1991).

In Chapter 6 we approach the problem of quantum

chaos by calculating the Gaussian effective potential of a

classically chaotic system.

1.5. Yang-Mills theories, Monopoles and Chaos

Non-Abelian gauge theories or Yang-Hills theories play an

important role in our current understanding of fundamental

interactions in nature (Abers and Lee 1973, Itzykson and

Zuber 1980). Yang and Hills in 1954 introduced the notion of

non-Abelian gauge fields by extending the concept of local

gauge transformations to the non-Abelian gauge group SU(2)

(Yang and Kills 1954). It was soon generalised to arbitrary

non-Abelian groups. The unified theory of weak and

electromagnetic interactions proposed by Weinberg, Salam and

Glashow is a gauge theory with Str(2)xU(1) as the gauge group.
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Grand unified theories which unify strong, weak and electro

magnetic interactions into a single theory are also based on

non-Abelian gauge theories. Strong interactions can be

described using SU(3) as the gauge group. Non-Abelian gauge

theories are intrinsically nonlinear and their integrability

and chaotic behaviour aspects are of much importance in field

theory and particle physics. Chaos in YM theories has got

relevance in the explanation of problems like quark

confinement, monopole stability, etc.

Gauge theories are characterised by the group of

symmetry transformations (the gauge group) under which they

remain invariant. Based on the type of gauge group gauge

theories can be Abelian or non-Abelian. The simplest gauge

group is U(1) and the corresponding Abelian gauge theory is

used in the description of quantum electrodynamics.

An SU(2) Yang-Hills theory may be constructed in

the following way (Actor 1979). Let ~(x) be a set of n scalar

fields. Consider the globally symmetric Lagrangian

~ = (8 ~)~(a ~) - m2~~~
~ ~

(1.46)

(In this section and Chapters 3 and 5 we use the Einstein

summation convention). A global gauge transformation is

defined by

(1.47)

where Ta are the 3 generators of the SU(2) group in the

n-dimensional representation satisfying the Lie algebra,

[Ta,Tb] = i & b TC (1.48)a c

ea are 3 arbitrary real parameters. If we make ea space-time

dependent
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(1.49)

we obtain a local gauge transformation belonging to the group

SU(2). The Lagrangian (1.46) is not invariant under the local

gauge transformation (1.49). It can be made gauge invariant

by replacing ordinary derivatives defined by

D ~ = (a 6 - ig Aa Ta ) ~ (1.50)
~ n ~ nm ~ nm m

where A~ are 3 vector fields called SU(2) gauge fields and g

is the coupling constant. The transformation of the gauge

fields can be obtained by requiring covariant derivatives to

transform like the fields.

D~~(x) ~ (D~~(x» = U ( 8(x» D~~(x)

Solving (1.51) we get

(1.51)

A:Ta ~ A:'Ta = U(8(X»A:TaU- 1(8(X» - ~(a~U(8(X»U-l(8(X»)

(1.52)

The SU(2) gauge invariant Lagrangian is

~' = (D ~)~(D ~) - m2~~~ (1.53)
~ ~

To complete the Lagrangian one should add the kinetic energy

term for the gauge fields. The simplest gauge invariant form

of kinetic energy is

~ = _ 1 Fa FPv a
4 ~v

where

(1.54)

Fa = a Aa - a Aa + g ~ AbAc (1.55)
pv ~ v v ~ abc ~ v

It may be noted that a gauge invariant mass term is not

present in the Lagrangian. This implies that the non-Abelian

gauge fields are massless fields.

Systems with spontaneous symmetry breaking (5SB)

are very important in field theory·~ Spontaneous breaking of
~

symmetry occurs when there exist degenerate vacuum states.
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The vacuum is not invariant under the symmetry group of

transformations even though the Lagrangian is invariant. When

a local gauge symmetry is broken some components of the gauge

fields become massive and all Goldstone bosons disappear.

This is known as Higgs mechanism (Higgs 1864). Goldstone

boson is a massless spin ze~o particle created when a

continuous global symmetry is spontaneously broken .

.Classical solutions of field theories play an

important role in the non-perturbative dynamics of the

corresponding quantum field theories. Especially important

are solutions with energy density confined to a small region

in space, which can be interpreted as particles. These are

coherent excitations of the basic fields and a consistent

quantum theory exists for many of them. For obtaining

physically relevant classical solutions, some conditions like

finiteness of energy or action is imposed. This condition

often defines a map between non-trivial topological spaces.

Such maps fall into different equivalent classes known as

homotopic classes, which are labelled by a number called

winding number. Therefore we can classify all finite energy

solutions with respect to their winding numbers (Goddard and

Olive 1978). For a fixed winding number n, a solution having

the lowest energy will be the stable one. n is always an

integer.

Let us consider a non-Abelian example with 5SB and Higgs

mechanism. Consider an SU(2) gauge theory with Higgs triplet

defined by the Lagrangian,

~ = - ! Fa F~va + 1 D ~aDP~a - V(~)
4 pv 2 P
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where,

and

a 8 Aa a Aa + g s: b AbAc
F/wlV =

J.J vac Jwl v

D 4>a = a 4>a + £ Abfj>c
#-l I.J It abc 1.1

x 2 2
V{,p) ,pa~a_ m

) .= '1 ( ~

This is the Georgi-Glashow (1972) model. Here the SU(2)

symmetry is b r o k en down to U(l) by the lIiggs triplet. Tile

equations of motion are,

D s'"": =v

D DIJt/> =
IJ a

( 1 . 57 )

(1.58)

For m2 >0, the minimum of V{~) corresponds to the value of ~

given by the relation

4>2 = m2/ X

All finite energy solutions assume

configuration as r ~ 00 •

the ground

(1.59)

state

ie. , t/>2 ~ 11.
2/ >.. as r ~ 00 ( 1.60)

2 t/>at/>a= t/>~ + 4>2 + 4>2 and r 2= 2 2 x5Here t/> = 2 3 xl + x2 +

"t Hooft ( 1974) and Polyakov ( 1974) discovered

Donopoles as classical finite energy solutions of non-Abelian

gauge theories. The winding number of monopole solutions

originates from the finite energy condition (1.60) on the

Higgs field ~ . For magnetic monopoles the magnetic charge isa

related to the winding number. Sometimes winding number is

referred to as the topological charge. Since the winding

number is a conserved quantity magnetic charge is also

conserved.

The 't Hooft-Polyakov monopole

winding number 1 is

solution with



Aa = !& . r 1-K(r)
1 g R1n n r 2

4> 1 H(r)
(1.61)= r -2-g a

r

is the radial variable. This static

A~ = O.

where r = x and rn n

spherically symmetric ansatz converts equations of motion to

two coupled differential equations.

(1.62)

The energy integral in terms of the ansatz function is

where H' =8H/8r

integral (1.63)

2 H2 g2m2 )2+ ~( (1.63)
4g2 r 2 -",--

and K'= 8K/8r. For finiteness of the above

the ansatz function should satisfy the

condition

H --+ 0 ~ K --+ 1 as r --+ 0

H --+ gmr/A J K --+ 0 as r --+ 00

( 1.64)

(1.65 )

There is 5SB in this theory because the minimum of

V(~) corresponds to values of ~a on

S2 ={ ~1' ~2' ~3 : ~~ + ~~ + ~~ = m
2

/ X } (1.66 )

Choosing anyone out of these degenerate minima breaks the

symmetry spontaneously. However any arbitrarily chosen vacuum

is still invariant under 50(2) symmetry. Since 50(2) ~ U(l)

we can say that the U(l) symmetry survives and the gauge

field corresponding to this symmetry is long ranged.

Exact solutions of the system (1.62) are not

available except in the limit of the vanishing Higgs
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potential. In this limit, known as Prasad-Sommerfield (PS)

limit m -+ 0 and A -+ 0 with m2/A finite. The spontaneous

symmetry breaking survives beoause a classical solution can

have its Higgs field assuming non zero value m/~ as r -+ 00.

The solution in the PS limit is (Prasad and Sommerfield 1975)

K(r) = ~r/ sinh ~r, H(r)= ~r Coth ~r -1 (1.67)

where ~ = Mw = gm/~.

K and H approach the boundary condition (1.65) in

the following way

As r ~ 00, K(r) ~ O(e-Hwr )

H{r) ~ gmr/~ + O(e-~r)

where p = Y2 m is the mass of the massive Higgs particle. The

't Hooft-Polyakov monopole has a definite size determined by

the Compton wavelength of massive fields. The massive fields

exist inside the core and outside they vanish exponentially

leaving a field configuration exactly similar to that of the

Dirac monopole.

Yang-Mills theories are intrinsically nonlinear and

hence they can exhibit chaotic behaviour. Integrability and

chaotic behaviour aspects of such nonlinear field theories

has attracted much attention during the last decade. Hatinyan

et al (1981a) studied a simplified Yang-Mills model and

established the chaotic nature of YH fields. They considered

the case of spatially homogeneous fields. Following this

various authors have investigated such models in detail

(Savvidy 1984, Chang 1984, Karkowski 1991). Spatially

homogeneous models of YM theory with spontaneous symmetry

breaking have also been investigated (Matinyan et al 1981b,

Nagarajakumar and Khare 1989). Here there is an order to
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chaos transition as a system parameter is changed. More

details on these are given in Chapter 3. However only a few

studies are available on the more important and realistic

space-time dependent systems. First such study was made by

Matinyan et al (1986,1988). They investigated numerically the

chaotic behaviour of spherically symmetric time dependent

SU(2) Yang-Hills (58YM) system. We have studied the

integrability of SSYH using Painleve analysis and the results

are described in Chapter 3. The nonintegrability aspects of

spherically symmetric time dependent SU(2) Yang-Hills-Higgs

(SSYHH) system obtained using the time dependent version of

the ansatz (1.61) in (1.56) is also discussed there. Studies

on chaos in SSYMH is described in Chapter 5.

Chaos in non-Abelian gauge theories are of much

importance in Quantum ChroDodyn~mics. This is because of the

result that presence of random fields in the vacuum is a

necessary and sufficient condition for quark confinement

(Nielsen and Olsen 1979, Olsen 1982). Though quantum regime

of classically chaotic systems is not well understood it is

expected that chaos may somehow show up in the quantum case.

Hultiparticle hadron production processes may also be related

to chaos in such systems (Carruthers et al 1989).
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CHAPTER 2

INTEGRABILITY OF

HOMOGENEOUS

TWO DIMENSIONAL

POTENTIALS

2.1. Introduction

Recently considerable attention has been paid to the question

of integrability of dynamical systems. As mentioned in

Chapter 1 it is not possible to say whether a given

Hamiltonian system is integrable or not except when one can

construct integrals of motion directly. Singular point

analysis due to Ablowitz, Ramani and Segur (1980) and Yoshida

(1983) is an extremely useful technique for the study of

integrability and for the identification of integrable cases.

Ziglin's theory connecting nonintegrability and properties of

Donodromy matrices of certain periodic solutions give us some

rigorous results in this area (Ziglin 1983). Yoshida has also

proved some important theorems relating integrability of

dynamical systems and the Kowalevskaya exponents and

stability of straight line periodic solutions (Yoshida

1986,1987a,1989). These three methods have some connections

among themselves. A number of candidates for integrable

systems have been identified by these methods and their

combinations.

In this chapter we carry out

analyses and related studies on systems with

the form,
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H = -! (p2 + p2) + V(x,y) (2.1)
2 x y

with V(x,y) a homogeneous polynomial potential of even

degree 2m. Hamiltonians of these types are used in lattice

dynamics, condensed matter physics, field theory,

astrophysics, etc., and special cases of these have been

studied in the existing literature (Bountis et aI 1982,

Dorizzi et al 1983, Grammaticos et al 1983, Lakshmanan and

Sahadevan 1985, Steeb et al 1985b). To make the discussion

self-contained we describe briefly the ARS algorithm for

Painleve analysis, Kowalevskaya exponents (KE) analysis and

related theorems of Yoshida and the stability analysis of

Yoshida in the next section. The mutual connections among

these approaches are pointed out. Combining these methods we

deduce a stronger condition for integrability as a

restriction on the possible Kowalevskaya exponents (KE) and

integrability coefficients (le). Singularity and stability

analyses of symmetric homogeneous potentials with m = 2,3

and 4 is carried out and possible integrable cases are

identified. A second integral is also constructed directly in

those cases suggested by these analyses. We have generalised

the integrable cases to a potential of arbitrary degree 2m by

constructing the corresponding second integral. These results

are presented in section 2.3. Section 2.4 summarises our

conclusions.

2.2. Singularity, Stability and Integrability

2.2.1. Painlev~ analysis

According to the extended Painleve conjecture (Ramani et al
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1882) a sufficient condition for integrability is the weak

Painleve property (WPP). A system of equations is said to

have the strong Painleve property (PP) when the only movable

singularities of the solutions in the complex time plane are

poles. In weak Painlev~ case certain algebraic branch points

are also allowed. A strong necessary condition for the pp or

wpp is provided by the Painleve analysis (P-analysis)

(Ablowitz et aI 1980, Graham et al 1985, Steeb and Euler

1988). This consists in checking whether a solution can be

expanded in terms of a Laurent series with sufficient number

of arbitrary coefficients in the following form.
00

(2.2)
m+p.

'T 1
J T = Z-ZO

(m)a.
1

w. =
1 l

m=O
We describe the algorithm with sufficient modifications for

the inclusion of WPP. Let us consider a system of n first

order ordinary differential equations,

1=1,2, ..... n. (2.3)

where F is real, analytic in z and algebraic in w. ARS test

does not consider the presence of movable essential

singularities hence it gives only a necessary condition for

PP. The algorithm consists of 3 steps.

Step 1. Leading order behaviour or Dominant behaviour

The main assumption of ARS test is that the dominant

behaviour of the solutions in the neighbourhood of a movable

singularity is of the form,
Pi

w. ~ ~.T T ~ 0
1 1

(2.4)

where T = z-zO ,zo is arbitrary with some Re(P i ) < O.

Substituting (2.4) in (2.3) we can find the possible values
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of p. for which two or more terms in each equation balance
1

each other, while the rest can be ignored as T ~ o. The

balancing terms are known as leading order terms or dominant

terms. For each choice of p. this requirem~nt also determines
1

the corresponding values of the a .. There can be different
1

leading behaviours with different Pi. One must find and

examine separately all possible dominant behaviours.

From this step the following observations can be

made.

(a) If all p. are negative integers, then (2.4) may
1

represent the first term of the Laurent series for each p.
1

and this may be an indication of the strong pp (a.=a~O».
1 1

(b) If Pi are not integers, but rational fractions it

may be associated with WPP. The solution will have a movable

algebraic branch point. In some cases it may be possible to

transform the system to one without algebraic branch points

by a simple change of variables.

If any of the p. are irrational or imaginary it
1

indicates that the system is non P-type.

For an nth order system there are (n-l) arbitrary

constants to be sought among the (m)a.
1

in (2.2) for the

expansion to be generic. Zo is the first free integration

constant of the system. The powers at which they arise are

known as resonances and in the next step we turn to find

these.

Step 2. Resonances

In this step we substitute,

p. r
1w.= a.T (l + Y.T ),

111
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in the system containing only the leading order terms. We

retain only the terms linear in y. which can be written as
1

Q(r).r = 0 Y == (Y1' ... 'Yn ) (2.6)

where Q(r) is an n x n matrix, with r entering only in its

diagonal elements at most linearly. The r roots of the

equation,

n-1 n-2det Q(r) = (r+l)(r +A2r + + An- 1) = 0 (2.7)

determine the resonance values. Some general remarks:

(a) One root is always -1, representing the

arbitrariness of zO.

(b) The resonance r=O corresponds to the arbitrariness

of one of the leading order coefficients 0i= a~O).

(c) Any resonance with Re(r)<O (except r=-l) must be

ignored because it violates the leading order hypothesis.

(d) Any resonance with Re(r»O, but r not an integer,

indicates that z=zO is a movable branch point and in general

the system is non P-type. We must check whether it can be

removed by coordinate transformations.

(e) In the case where is itself rational, the

appearance of a rational r same denominator as

indicates a finite branching and is related to the WPP.

(f) If for every possible (p.,o.) from step 1, all of
1. 1.

the resonances r except -1 and 0 are positive real integers

then there are no algebraic branch points.

For generic solutions we must have (n-1)

nonnegative real resonances. If any of the resonance

irrational or imaginary the algorithm is terminated at

point.

is -1
this



Step 3. The constants of integration

In this step we check whether arbitrary constants enter in

the expansion at the resonance values without introducing

lOiarithmio terms. For this we substitute into the full

system (2.3), for every dominant behaviour (2.4), the

truncated expansion,
r

Pi ~s (m) Pi+m
w. = a.T + a. T ,

1 ~ 1

m=l
where r s is the largest positive resonance value.

(2.8)

We then

equate the terms order by order in powers of T to obtain,

Q(m) a(n)= R(m)( Zo;a(j». j=l •...•m-l (2.9)

T Twith m=l, .... r s, R = (R 1, ... ,Rn) ; a = (a1,·· .. ,Rn ) ·

(i) For m < r 1, r 1 being the smallest positive resonance

(2.9) determines a(m).

(ii) At m = ri' for (2.9) to have a solution (ie., for

a(r1) to have one arbitrary component. assuming r 1 is a

simple root of equation (2.7» the following compatibility

condition must be satisfied.

det Q(k)(r
1

) = 0

where Q(k)(r ) is the
1

replaced by R(r 1) .

k=1,2, ... ,n

with its

(2.10)

column

(iii) If (2.10) is satisfied, then for r 1 < m < r 2 , the

next smallest positive resonance, equation (2.9)

determines a(m) .

again

(iv) The same procedure must be repeated at each higher

resonance upto the largest one. In the case of multiple

resonance it must be ensured that the number of arbitrary

components of a(r) is equal to the multiplicity of the
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resonance r.

(v) When (2.10) is not satisfied at some resonance r,

one or more expansions (2.2) will have to be altered by

introducini lOQarithmic terms as follows,
r-1

w
i

=I aim)T
Pi

+
m

+ (ai r ) + bir)ln T)T
Pi

+
r

+ (2.11)

11=0

If even with this a~r)is not arbitrary we introduce more
1.

singular terms like (In T)2, etc., until the coefficient a~r)
1.

becomes arbitrary. (2.11) signals the presence of movable

logarithmic branch points and then the system is non-Painleve

type. This algorithm does not exclude the possibility of

movable essen t ial s Lngu lar it Les , hence the suff ic iency of

single valuedness has to be checked by some other methods.

2.2.2. Kowalevskaya exponents

Consider a similarity invariant system of ODEs
dx.

1.
dt = F i(x 1 ' · · · · ,xn) i=1,2, ... ,n (2.12)

where F. are rational functions of x. A system is said to be
1.

similarity invariant under the similarity transformation
1 g.

t -----. ct- t , x . -----. et 1. x , (2.13)
1. 1.

where g. are rational numbers and a is a constant if
1.

ill gn gi+ 1
F.(cc xl, .... ,a x) = a F.(x1, .... ,x) (2.14)

1 n 1. n

for arbitrary x and cc. A function ~(t,xl' ... ,Xn ) is said to

be weighted homogeneous of weighted degree H if it satisfies
-1 g 1 gn H

4>( Cl( t , ot xl' · · · , a xn ) = et 4> ( t , xl' · · · , x n ) . ( 2 . 15 )

Differentiating (2.14) with respect to cc and putting et=l, we

have
n

l 8F. ( )g.x. 1 x 1 ' .... ,x =
J J ----- n

· 1 aXeJ= J

(g.+ 1) F.(x1, .... ,x ) ·
1 1 n

46

(2.16)



These linear algebraic equa~ions determine the unknowns

gl' .... 'g from F.{x).n ~

A similarity invariant system (2.12) in general

admits a special type of particular solutions
-al -g

xl = k 1t •....• x n = kn t n (2.17)

with kigi~ 0 for at least one i. We can see that the

solution (2.17) satisfy (2.12) when the cons~ants are a set

of solutions of

i=l, .... ,n (2.18)

Consider now the variational equations about the reference

solution {2.17),

n
dy i 8F i -gl -gn
dt = ~ ax. (k1t •.. ,knt )Yj' i=1.2 •...• n (2.19)

j=l J

Here 8F./8x.(k1, ... ,k ) denotes 8F.(x)/8x. at
1. J n 1. J

x 1=k1, ... ,xn=kn. This notation is followed throughout this

ohapter. Differentiating (2.14) with respect to x and putting

-1a=t • x l = k1, .... ,Xn= ko' we have

-gi- 1 aF.
t 1

~ (k1,·· .,kn)·{2.20)ux.
J

Hence the variational equations can be written as

dYe
~

at =
n

~
j=l

8F. g.-g.-l
1. J 1
~ (k1,·· .,kn)tox .

J
y · ,

J
i=l,2, ... ,ne

(2.21)

It can be shown that
P-gl p-gn

Yl = y 1 • 0t .·····Jyn =Yn.Ot. (2.22)

satisfy equation (2.21) when the constant p is an eigenvalue
T

and the constant column vector y = (Y1• 0 •....• Yn• O) is an

eigenvector of a n x n constant matrix K = (K .. ) with matrix
1.J
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elements

aF.
1K•. = ~(kl, •••• ,k )+ 6 .. g ..

lJ ox . n 1J 1
J

The characteristic polynomial

(2.23)

K(p) = det (p6 .. - K.. ), (2.24)
1~i,j5() lJ lJ

is called the Kowalevskaya determinant and the eigenvalues of

the matrix K which are roots of the equation K(p)=O are

called the Kowalevskaya exponents (KE).

Theorems relating KE and integrals of motion have

been proved by Yoshida. Weighted degree of a homogeneous

first integral appear as a Kowalevskaya exponent. Its

gradient should not vanish at x. =k..
1 1

If there are two

independent weighted homogeneous first integrals of the same

weighted degree H then p=M becomes a KE with multiplicity

two. Their gradients at k 1, ... , k'n must be nonvan i s h i ng and

linearly independent. In Hamiltonian systems KE come in pairs

(p, gH- 1-p ) and the pair (-l,gH) is always present. Here gH

is the weighted degree of the weighted homogeneous

Hamiltonian. Yoshida proved also a very important result

relating KE to integrability. Yoshida's theorem In order

that a Biven sil7~il..arity invariant system C2.12..) with rational..

functions F~~) be al~ebraically inte8rable, it is necessary

that every possible KE is a rat tonal 11:umber. This means that

existence of an imaginary or irrational KE is a sufficient

condition for nonintegrability. These result~ have been

widely used in the study of integrability. Since we get an

idea about the weighted degree of the integral of motion, it

can be" used for searching integrals of motion also. KE can
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also be defined for nonsimilarity invariant sytems.

2.2.3. Ziglin's theory and Integrability coefficient

Ziglin (1983) obtained conditions for the integrability for

the variational equations, about a particular solution. Using

Ziglin's theory Yoshida developed conditions for

nonintegrability for some Hamiltonian systems.

Consider a Hamiltonian system with N degrees of

freedom

2H = 1/2 p + V(q) (2.25)

where potential V{q) is homogeneous polynomial of integer

degree k. In general the system has straight line periodic

solutions of the form

q = c ~(t), p = c ~(t) (2.26)

where ~(t) is a solution of the differential equation

2
d ~ + ~k-l=O (2.27)
dt 2

and the constant vector c

the algebraic equation

T= (cl'····· ,cN) is a solution of

c = avaq (c). (2.28)

The linear variational equation around the solution (2.26)

are with 6q = ~

d2~ __~(t)k-2V (c)~ (2.29)
dt 2 - qq

where V (c) is the Hessian matrix of V(q) evaluated at q=c.Qq .

Since Vqq(c) is symmetric by a change of variables ~ = U~·

with an orthogonal matrix U (2.29) is diagonalised or

separated to

d2~, _ k 2
dt 2 - -~(t) - diag ( A 1 , A2,··· ,AN)~'

where A1,A 2 , ..... ,A N are the eigenvalues of Vqq{c).
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In the case of two degrees of freedom Hamiltonian

systems there is only one nontrivial eigenvalue given by

A = Tr Vqq(c) - (k-1). (2.31)

The normal variational equation (NVE) can be written as

d
2
t + h~(t)k-2~ =0 (2.32)

dt 2

The quantity A is called the integrability coefficient (le).

Using the monodromy groups of the NVE and Ziglin's theorem

regarding non integrability Yoshida proved the

theorem.

following

Theorem: 11 the intesrability coefficient X lies in the

re~ion Sk defined below t the system is noninteBrable. The

re6ions Sk are defined as follows :

(i) k ~ 3

= { <0, 1<X<k-1, k+2<X<3k-2, ,

j(j-l)k/2+j < x < j(j+l)k/2-j, ) (2.33)

( i i) S1 = lR - {O, 1, 3 , 6 , 10, , j (j + 1 ) /2, } ( 2 . 34 )

(iii) 5_
1
= IR - {l,O,-2,-5,-9, ,-j(j+1)/2+1, ) (2.35)

(iv)k~-3

Sk = { h>l. 0>h>-lkl+2. -lkl-l>h>-3Ikl+3.

-3Ikl-2>X>-6Ikl+4, ... ,-j(j-1)lkl/2-(j-1»X>-j(j+l)lkll2+(j+l)

, ... ) (2 . 36)

Nonintegrability of various Hamiltonian systems have been

proved using these results.

2.2.4. Restrictions on KE and le

If all the k. are non zero the KEs and resonances are the
1

same. When some of k i are zero there will be a difference of

an additive term between them. But when resonances are not

KEs they can even be irrational or imaginary. More details on
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(2.38)

(2.37)

the connection between P-analysis, KE and Ziglin's theory are

given by Yoshida et aI (1987) and Ramani et aI (1989).

In the case of homogeneous polynomial potential of

degree 2m with two degrees of freedom the three methods

discuss~d above can be combined to yield more specific

results on integrability. In P-analysis we try to find

solutions around a movable singularity at to in the complex

time plane in the form,
00

x(t) = E ~.T-P +j/s
j=O J

00

y(t) = E b T-q +j/s
j=O j

Here p and q are positive rational numbers with a common

integer denominator 8>0. s ~ 1 corresponds to WPP. For the

system to have pp. j=rs Dust be integers, where r is the

resonance.

Hamiltonians with homogeneous potentials of degree

2m are invariant under the similarity transformation

t ---+ a-lt. x ---+ agx, y ---+ agy

p ---+ ag'p
x' P ---+ ag'p

X y Y

where g = l/(m-l) and g' = m/(m-l) . For such

(2.39)

a system

Kowalevskaya determinant is given by

K(p)= (P+l)(P-gH) [ p2_ p(2g+1) + 2(g+1)2 + Dm J. (2.40)

where

(2.41)

the Laplacian of V at x=k l and Y~k2 and gH= 2m/(m-l) is the

weighted degree of the Hamiltonian. k l and k 2 are determined

from the equations,

(2.42)
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Roots of the equation K (p) = 0 gives the KE. It can be

shown that KEs are the same as resonances of the P-analysis

when p = q = g.

Integrability coefficient for the system is aiven

by

2
A m= 9 V(c 1,c 2) - (2m-l) , (2.43)

where v2V is Laplacian of V and cl and c 2 are solutions of

(2.44)

Exponential instability occurs when

A < 0: 1 < A < 2m-l,· 2m+2 < A < 6m-2 : .m' m m'

... ; j(j-l)m+j < Am < j(j+l)m-j , . (2.45)

So the Hamiltonian system

corresponding regions.

is ncn - in tegrab le in the

The relationship between the resonance of a

Painleve singularity and the KEs have been clarified by

Roekaerts and Schwarz (1887). Hore detailed discussions are

given by Yoshida et al (1987) and Ramani et al (1989). In

general Painlev~ leading singularities having no counter part

in Yoshida's theorem might exist. Here we consider the case

where they can be compared. The theorems of KE can be

translated into theorems on resonances.

(i) If an integral of motion of weighted degree gI

exists such that its gradient is not zero at k1, k2, both

nonzero, then there is a resonance r=gI associated with the

corresponding Painleve leading singularity with p=q=g.

(ii) If an integral of Dotion of weighted degree gI

exists such that its gradient is not zero on a solution

there is
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resonance r = 2(gI-1/{m-1) + 1) associated with the

corresponding leading singularity with p < q = l/(m-l) or q <

p = l/(m-l) respectively.

(iii) A necessary condition for the existence of an

algebraic second invariant is that all resonances with

Painleve leading singularities with p = l/(m-l) or q =
1/{m-1) are rational numbers.

The restrictions imposed on the resonances by the

extended P-conjecture imply that (i) all KEs associated with

solutions k 1, k 2, both nonzero (p = q = g) must be integral

multiples of 1/(m -1), and (ii) all KEs associated with

solutions k1 and k2 with k1 = 0, k2 ~ 0 (kl~ 0, k2 = 0 )

for p < q = g (q < P = g ) must be integral multiples of

1/2s where s = 1/n(m-1) and n is a fixed integer specific to

a particular Hamiltonian. In case (i) p = r

(ii) p = l/(m-l) - (r-l)/2.

2.2.5. Further restrictions

and in case

We now combine singularity analysis with stability analysis

to obtain further restrictions on KEs. For homogeneous

potentials it follows from (2.40) and the results of

Roekaerts and Schwarz (1987) that the solutions of the

equation

p2 - (:~D p + 2 (m~1)2+ Om = 0 (2.46)

must be integral multiples of 1/(m-l) in case (i) discussed

above. Hence, for integrability, D must be given by
11

-Om = [k(k-m-l) + 2m2]/(m-l)2 (2.47)

where k is an integer. Comparing equations (2.42) and (2.44)

and making use of equations (2.41) and (2.43) we find that Am
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is directly related to D bym

Am = -Dm/gg' - (2m-1) ·

Consequently A is also restricted to am

values

Am = k(k-m-l)/m + 1.

Expressing k modulo m by

k=nm+i

set

(2.48)

of discrete

(2.49)

(2.50)

where n is an integer and i = 0,1,2, ..... ,m-1, we have

Am = j(j-l)m + j (2.51)

for n=j and i=l (k=jm+l)

and A = j(j+l)m - jm (2.52)

for n=j+l ,i=O (k=(j-l)m).

For jm+l < k < (j+l)m,

j(j-l)m +j < A < j(j+l)m
m

-j (2.53)

and hence is in the unstable region. It follows that for

integrability k can assume only the values jm or jm+l for

arbitrary j. In other words apart from -1 and gH the only

values KEs in case (i), can assume are 0, 1 (mod m) in units

of l/{m-l). The integrability coefficient A ,
m

then assumes

only the values corresponding to boundaries separating stable

and unstable regions.

In case (ii) the solution of equation (2.46) must

be a multiple of 1/2s. Hence for in~egrability

-Om = [k/2n (k/2n - m - 1 ) + 2m2]/(m-l)2 (2.54)

where k is an integer. Correspondingly the integrability

coefficient is

Am = (k/2n) ( k/2n - m-l) + 1 .

If k = 2nj eq.(2.55) is formally the same as
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with k --+ j. By the repet it ion of tile prev ious reason ing

it will then follow that integrable cases correspond to j=O,

1 (mod 11). Hoveve r , there can also exist o t he r integrable

cases with k ~ 2nj depending on the values of n and m .

2.3. Integrable Polenlials

We have performed Painlev~ analysis and calculated KEs for

symmetric quartic, sextic and octic potentials with a view to

identifying possible integrable cases in the light of the

above results. Direct construction of second integral of

motion is also given in some cases. A generalisation of the

integrable cases to potential of arbitrary degree 2m is also

obtained.

2.3.1. Quartic potentials

Consider a system with Hamiltonian

H = ! (p2 + p2 ) + A(x4+ y4) + B(x3y +x y3) + C x 2y2.
2 x y

A,B,C ~ 0 (2.55)

and equations of motion
. p . = px = y

x y

P
3 2 3 2 (2.56)= -[4Ax + B(3x y +y ) + 2Cxy ]

x

P
3 3 2 2= -[4Ay + B(x + 3xy ) + 2Cx y]

y

To perform Painleve analysis we look for dominant behaviour

near a singularity of the form (2.37,2.38). Substituting in

(2.56) give p = q = 1 with bO = a a O' where a

one of the four possible values

can assume

= ± 1"i .a
a 3 , 4 -

Correspondingly

{(4A-2C) ± [(4A-2C) - 4B]l/2}/2B.

(2.57)
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a~ = -2/(4A + 3Ba + 2Ca2 + Ba3). (2.58)

Solutions of (2.56) can be expanded in the form
00 1.

x{t) = E a.T- +J (2.59)
j=O J

Q) 1·
y(t) = E b.T- +J (2.60)

j=O J

This is a strong P-case. Resonances are found to be -1,1,2,4

(0 = ±1) and sufficient arbitrary constants enter with the

above type of solutions, when C = SA, A and B arbitrary.

To calculate KEs and integrability coefficients

we note that for the system (2.55), g = 1, g' = 2 and m=2.

A solution of (2.42) is k2= ok1 (correspondingly

in eq.(2.44» and

ki = g g'ci = a~ (2.61)

By the restrictions mentioned in section 2 KEs (in case(i)

with k1, k2 both nonzero ) can only be 1,2,3, .... , that is,

D2 can have values -6,-8,-12, -18, and corresponding

values of X
2

are 0, 1, 3, 6, for any choice of

solutions. For the P-case, C=6A (A and B arbitrary) KEs are

-1,1,2,4 for a = ±1 (D~ = -6) and
J.:.

-1,-1,4,4, for (D2 =
-12) and the corresponding values of h 2 are 0 and 3

respectively. Of the possible integrable cases corresponding

to the allowed values of D2 , for the P-case, we have been

able to construct the following second integral of motion

directly from the Poisson bracket condition

assuming the weighted degree ~ 4.

I = P P + B <x4+y 4+ 6x 2y2) +4A (x 3Y+Xy3)x y

The special cases of the Hamiltonian (2.55) with

been discussed by Steeb et al (1985b).
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(2.66)

(2.67)

2.3.2. Sextic potentials

Consider the Hamiltonian

H = 1 (p2 + p2)+A{x6+y6)+B{x5Y+Xy5)+C{x4y2+ x 2y4)+Dx3y3,2 x y

A,B,C,D ~ 0 (2.63)

Equations of motion are

Se = p , y = px y

P = -[6Ax5+B{ 5x4 y + y5)+C{4x3 y2+ 2xy4)+3Dx2y3 ] (2.64)x

P = -[6Ay5+B{x5+ 5xy4)+C{2x4y +4x2 y3)+3Dx3 y2 ]
y

For this system, we have a singularity with dominant

behaviour p = q = 1/2 and bO = aaO' where a is a root of

the equation

B{a6-1)+(2C-6A) a (a4 -1)+(3D-5B)a2(a2 -1) =0 (2.65)

a = ± 1 is a root of the equation. Correspondingly,

a~ = -3/[4(6A+5Ba +Ba5+2Ca4+4Ca2+3Da3)]

Solutions of (2.64) will be of the form

E
a> -1/2+j/2

x(t) = R.T
j=O J

y{t) =Eb.T- 1/ 2+ j / 2

j=O J

This is a weak P-case. The resonances are found to be -1,

1/2, 3/2, 3 (with a = ±l) and sufficient number of arbitrary

constants enter in tha solution when C=15A and lOB = 3D. A

and B arbitrary.

For the system (2. 63) g = 1/2, g" = 3/2 and ID .=3.

k 2 = ak 1 is a choice of solution of (2.42) (correspondingly

c 2 = aC 1 in eq.{2.44» and k~ = -gg'c~ = a~ In order that

the system be integrable D3 has to be -15/4, -18/4, -30/4,

-39/4, .... and corresponding values of h 3 are 0,1,5,8, .. for

any choice. For C=15A and 10B=3D (A and B arbitrary) KEs are
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-1,1/2,3/2,and 3 (a = ±1) and A
3

= o.

Looking for an integral of motion with weighted

degree S 3 we find in the P-case

I = P P + B [x6+y6+15{x4y2+x2y4)] + A [6{x5y + Xy5)+20x3y3]
x y

(2.68)

Special cases of the Hamiltonian of the form

(2.63) with B=D=O have been discussed by Graham et al (1985).

2.3.3. Octic potentials

For the Hamiltonian

H = ! (p2+p2) + A{x8+y 8 ) + B{x7Y+Xy7) + C{x6y 2+x 2y 6 ) +
2 x y

D{x5y3 +x3 y5) + Ex4 y4 (2.69)

It is found that C=28A, E=70A and D=7B, A and B arbitrary, is

a P-case. For this system g=1/3, g' =4/3 and m=4.

take values -28/9,-32/9,-56/9,-76/9, .... and corresponding

values of A4 are 0,1,7,12,22, .... for any choice of solutions.

For the P-case we have a solution for which KEs are

-1,1/3,4/3 and 8/3 and A4 = 0 yielding an integrable

case. We can also identify the following non-integrable

cases.

(1) B=D=O (except when (a) C=28A,E=70A (b) C=4A,E=6A

and (0) C=E=O), (ii) A=B=C=D=O

(iv) A=B=C=E=O.

(iii) A=C=D=E=O and

Searching for an integral of motion with weighted

degree ~ 8/3 we have, when (a) C=28A,E=70A and D=7B

(b) C=4A,E=6A and B=D=O

and (0) B=C=D=E=O
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2.3.4 Generalisation

We can generalise the integrable cases to arbitrary m' (m ~

2). The general form of an Lnteg r ab Le symmetric Han i I tonian

with homogeneous potential of degree 2m is

1. (p2 +
..,

H = p£') + A V + B J (2.73)2 x y m 11

and its integral of motion with a weighted degree 2m/(m-1) is

I =
where

p P + B V + A Jx y m m (2.74)

v =
11

o. =
J

Dl 2m-2j 2·
E et. X Y J (2.75)

j=O J

( ~j ) when 2j s Dl

( 2;~2j) when 2j ) m

111-1 2-+12m-2j-1J = E o• x y J (2.76)
11 j=O J

( 211 J when 2j +1 s2j+1 11
et_ =J

( 211 )
21l-(2j+l) when 2j +1 ) 11

Integrable cases (2.62),{2.68) and (2.70) are special cases

of (2.74) for 11= 2,3and 4 respectively.

2.4. Conclusion

In this chapter an attempt was made' to combine singularity

and stability analyses for a Hamiltonian system with a

homogeneous potential. A new restriction on KEs, which may be

used as an effective tool in the search for integrable

systems, has been obtained. Applying this to symmetric
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quartic, sextic and octic potentials we have identified

possible candidates for integrability. However it happens

that the cases where we have been able to construct a second

integral of motion directly are not genuinely new integrable

systems. This is because potential of the integrable form

(2.73) can be, by a rotation through an angle n/4 and

scaling (Hietarinta 1987), reduced to known

potentials of the form

V = n nx + ay.

integrable

(2.77)

It is known that the general form of integrable symmetric

potentials are V = f(x2+ y2) and V

integrals of motion I = P y - P x andx y

+ 2f(y) respectively (Hietarinta 1987).

= f(x)+f(y) with

I = p2+ 2f(x) or p2
x y

Integrals of motion

(2.71) and (2.72) are also special cases of these. The

question whether these exhausts the integrable cases or

there can exist an additional integral in the rest of the

cases is yet to be answered completely.
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YANG-MILLS

SYSTEMS

CHAPTER 3

NON-INTEGRABILITY OF SU(2)

YANG-MILLS-HIGGS

AND

3.1. In~roduction

Recently the question of integrability of non-Abelian gauge

fields has attracted wide attent.ion (Chang 1984, Furusawa

1987, Ichtiaroglou 1989, Hatinyan et al 1981a,b,1986,1988,

Savvidy 1984, Villarroel 1988). It has been shown that chaos

can appear in classical theory of non-Abelian gauge fields,

at least under certain approximations. This is of particular

significance in view of the result obtained by Olsen (1982)

that the presence of random fields in the vacuum is a

necessary and sufficient condition of quark confinement in

Quantum Chromodynamics.

Host studies made so far have confined themselves

to the finite dimensional subsystems depending only on time

variable. Classical Yang-Mills theory depending only on time

(YH Classical Mechanics) has been shown to be non-integrable

and chaotic by various techniques (Hatinyan et al 1981a,

Nikolaevskii and Schur 1982,1983, Gorski 1984, Steeb et al

1986d, Karkowski 1990,1991). However, with regard to the

general 3+1 field systems the situation is not fully

understood. By the Painleve criterion SU(2) self dual

Yang-Mills equations have been shown to be integrable (Jimbo

et al 1982, Ward 1984). But such analysis has not been
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carried out in the general case. 011 tile o t he r hand Matinyan

et al (1986,1988) have shown that space time dependent

spherical1y symmetric Yang-Hills system can exhibit dynamical

chaos. They employed the Fermi-Pasta-Ulam (1955) method in

which continuous equations are replaced by a set of discrete

equations which are then numerically analysed. But it is well

known that the discretisation itself can be a cause for

chaotic behaviour. Also the continuum limit of a discrete

model exhibiting chaos can be non chaotic.

In this chapter an attempt will be made to clarify

the question of nonintegrability and space-time chaos in the

spherically symmetric non self-dual-sector of SU(2)

Yang-Hills and Yang-Mills-Higgs theory without introducing

discretisation. We apply singular point analysis to test the

integrability of the PDEs as well as of the ODEs obtained by

symmetry reduction and by other means. Our results show that

these systems are generally non-integrable.

The partial differential equations corresponding to

the SU{2) theory and the ODEs obtained from them are

described in section 3.2. A brief review of results regarding

integrability and chaos of YM and YMH Classical Mechanics is

also given. In section 3.3 we briefly describe the WTC

algorithm for singular point analysis. The results are also

presented in this section. Section 3.4 is a summary of

results and conclusions. Expansions of recursion relations at

various orders for spherically symmetric Yang-Hills (55YH)

and Yang-Hills-Higgs (SSYMH) systems are given in the

Appendix.
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3.2. Yang-Mills and Yang-Mills-Higgs systems

3.2.1. YHCK and SSYM

The SU(2) Yang-Hills system is described by the Lagrangian
~ = _ ~ F a. F a

4 pV ~v (3.1)

where (3.2)

~ ,v = 0,1,2,3 a,b,c =1,2,3

The equations of motion have the form,

8 Fa + g £ Ab Fe = 0 (3.3)
p ~V abo p pv

Let us look for a class of solutions of the system (3.3), for

which the Poynting vector in some system vanishes (Baseyan et

al 1979),

TOj
a a o. (3.4)= F Oi F .. =Jl 2

Here Tp v
Fa Fa + 1 Fa is the energy momentum= 4" g~vJJA VA AP

tensor of the field. Choosing the gauge Aa = 0 the equation0

(3.3) and (3.4) reduce to the following set of equations,

..
AbAa _ a c 0 (3.5a)F j i,j + g e

abc F .. =i j Jl

Na - e A~ A? = 0 (3.5b)- abc 1 1

.
and a a 0 (3.6)A.F .. =

1 ·lJ

From (3.5b) and (3.6) we get,.
Aa ( Aa Aa) = 0 (3.7)i r.r : i,j

Now let us consider the special case of spatially homogeneous

Yang-Hills fields which satisfy (3.4) and depend only on the

time coordinate. ie. J

a aA. = A.(t)
1 1

In this case the equations of motion take the form
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(3.10)

A~ - g2 A8; A~ A~ + 11.2 A8; A~ A~ = 0 ( 3 . 9 )
1 J J 1 1 J J

with constraint (3.5b). Then equations follow from the

Hamiltonian,

.• g2 2 2
H E 1 A~ A~ + - [( A~ A~) - ( A~ A~ ) ]YH = 2 1 1 4 1 1 1 Ja,i

Hence for spatially homogeneous YM fields the equations (3.3)

reduces to a nonlinear mechanical system (YHCH). YMCH has

been extensively studied by various authors. Matinyan et al

(1981a) investigated a simplified model with n=2 given by

H = ( x2+ y2)/2 + x 2y2/ 2 (3.11)

1 1 2 1 1 2obtained by taking A1= g x(t). AZ = g y(t) and AZ= A1=O. They

have shown that it is chaotic and nonintegrable. Study of the

periodic orbits of the system shows that they are unstable.

Further studies by Chirikov and Shepelyansky (1981), Avakyan

et al (1982), Nikolaevskii and Schur (1982,1983), Steeb and

Kunick (1985), and Steeb and Louw ~986c) have confirmed the

nonintegrability by alternative techniques such as Poincare

surface of sections, Lyapunov exponents and Painleve

analysis. Moreover Savvidy (1983) has shown that this system

is in fact a K-system. The model corresponding to n=3 has

also been shown to be nonintegrable (Steeb et al 1986a).

Higher dimensional cases have been investigated by Asatryan

and Savvidy (1983), Froyland (1983) and Karkowski (1990,1991)

and proved to be nonintegrable and chaotic.

What happens when the YH fields are space-time

dependent? For simplicity let us consider the time dependent

spherically symmetric ansatz,

o
A = 0,o

AC: = 1\. g £.
Q\.n

r
n (1-K(r,t)
2

r
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which reduces the equations of motion, D~ F~va = 0 to

2 2
r (K

r r
- K

t t
) + K(l-K) = 0 · (3.13)

This is named as SSYM system. The static solutions of (3.13)

given by K = 0 is the Wu-Yang monopole solution, K = -1 is

the vacuum solution and K = 1 is the gauge equivalent to

vacuum one. These static solutions are all unstable (Wu and

Yang 1969). All solutions except the trivial ones K = ± 1

are non self-dual~

A Lie symmetry analysis for a system including a

Higgs field was carried out by Babu Joseph and Baby (1985).

From that we infer that (3.13) admi~s a similarity variable,

2 2
P = r/ (t -r ) (3.14)

and on substituting (3.14) in (3.13) we get corresponding

similarity reduced ODE

2 d
2K

p --- = K(K
2-1)

(3.15)
dp2

•The singularity analysis of this equation is of significance

in view of the conjecture by Ablowitz et al (1980), that a

system is integrable if the corresponding similarity reduced

system of ODE possesses the PP. It is also known that using

an independent variable transformation (Arodz 1983)

t-to
It = r 1 (3.16)

the nonlinear partial differential equation (3.13) can be

reduced to a second order nonlinear ordinary differential

equation J

(3.17)

The domain of ~ is -1 ~ ~ < 00 A family of regular

solutions in this domain was obtained (Arodz 1983) with the
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property

K ----+ 0 as T ----+ 00

o < I K I < 1 as T -4 -1.

3.2.2. YHHCM and SSYMH

Another system which we analyse is the SU(2) Yang-Hills-Higgs

system which can exhibit spontaneous symmetry breakdown

depending on the vacuum expectation value of the Higgs

scalars. For a YHH model with N scalar fields transforming

according to a N-dimensional represent~tion of SU(2) group

the Lagrangian density is

~ = ~ F a F~va + ~D ~AD~~A -V(~) (3.18)
4 J.1V 2 1J

where 0- a Aa. - a Aa. Ab A C

FJ.1v = (3.19)J.1 v v 1J + g €abc 1J 1J

DJ.14>A - a 4> - i g Ta Aaq>B (3.20)-
J.1 A AB J..l

A
2 2 (3.21)V(f/» ( 4>2_ m )= - i:...

a,b.c = 1,2,3 ; A,B = 1, .... ,N. is an N-dimensional

matrix representation of the infinitesimal generators of

2SU(2) and ~ = 4>A4>A. The equations of motion following from

(3.18) are

D F~vA = ig Ta ~BD ~A
v AB J.1

D DJ.1 ~ = ( m2
_ ~ ~2)~

~ A A
Restricting oneself to the case of

(3.22)

(3.23)

spatially

homogeneous fields in the gauge A~ = 0 the equations get

reduced to ODEs describing a finite dimensional mechanical

system (YMHCH), as in the case with YM theory discussed

above. For Higgs fields in the do~~let representation (T a =
Ta , Pauli matrices) these equations can be derived from the
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Hamiltonian (Hatinyan et al 1981b)

H = HYH + -21 ( ~2 + 82) + 1 g2( A~ A~) [ 1 B2+ (~2 + n)2]
a 4 1 1 2 a 7L

(3.24)+A2 1 2 0' )2
') 2[ ( ~

2 B + Y2 + "'1) - l) ]
a

The constraint to be satisfied is

A~
.

1 + 1.s:
abc A~ - ~- TJ B [ 0' B - B 0'

1. 1. 2 a 2 a a - £abcBb Bc] = 0

where TJ is the vacuum expectation value of the scalar field

4>.

(3.25)~ = (:~J = ~ (Y2~B~;~iB3J
A is the self interaction constant of the scalar field ~.

Detailed studies have been m.ade for the special case of a two

component gauge field with Al x(t) 2 y(t) and all= and A
Z =1

other components of A zero interacting with the Higgs vacuum

B = D, CY = D. The Hamiltonian for this case isa

(3.26)

where ~4 is the constant value of the energy of the system.

This system is characterised by one parameter

1T = (3.27)

and analysis reveal that the system can be integrable or

nonintegrable depending on n. At IT ~ 0.15 a phase transitionc

like behaviour occurs from ordered motion to highly chaotic

motion. For higher values of n the system is close to an

integrable one. The Higgs field appears to subdue the chaos

of the original YH fields (Chirikov and Shepelyansky 1982,

Berman et al 1985).

We shall now turn to tile field t he o r y of YMH system

with the Higgs field in the adjoint...representation. Using the

time dependent spherically symmetric 't Hooft-Polyakov ansatz
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Aa 0 A~
j 1= = -£ r

0 \. 9 ain n

4>0.
1 H(r,t)= -r
9 a. 2

r

(Heck Lenbe r g and 0 'Bre Ln 1978)

- K(r,t)
2

r (3.28)

where r = x and r is the radial variable. the fieldn n

equations of the SU(2) gauge theory are reduced to the form

denoted as SSYHH

2
K

l t
) K (K 2 _ 1 + "2)r (K - =r-r-

2
H

l l
) H (2K

2 2 2 A
H

2
)r (H - = - Dl r +-

rr 2
g

III the Prasad-Sommerfeld (PS) limit t hev become

2
K

l l
) K (K2_ "2 )r (K - = 1 +

rr

2
H

l l
) 2HK

2
r (H - =rr

(3.29)

(3.30)

(3.31)

By using the similarity variable in (3.14), equations in

(3.30) can be further reduced to the system of ODEs,

2 d2K
2 2P = K (K -1+H ) .

dp2

d2 Hp2 = 2HK2
dp2

Using the independent variable transformation (3.16) the

system (3.31) yields the ODEs,

(2+~)~
d2K

2{ 1+~) dK = K(K
2-1+H2

)-- +
dx

2
d't

d
211

(3.32)

(2+'l)~ + 2{ 1+~) dH 2HK
2=

d~2 d~

It is not known whether the transformation (3.16) is related

to any symmetry invariance of the system or whether there are

other ODEs which may be obtained from (3.13) and (3.30).

With the intention of studying the integrability of

Yang-Hills and Yang-Mills-Higgs field theories we shall now
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carry out a singular point analysis of tile PDEs (3.13) and

(3.29) as well as the ODEs (3.15),(3.17),(3.31) and (3.32).

3.3. Singular point al"lalysis al"ld Integrabili ly

3.3.1. WTC Algorithm for Painleve analysis of PDE.

In Chapter 2 we have seen that the Painleve property is a

useful criterion for identifying integrable systems. For

testing pp an algorithmic procedure has been

Ablowitz, Ramani and Segur (ARS) (Ablowitz et al

devised by

1980). The

original idea of ARS was to attribute integrability to PDEs

when their reductions to ODE all have the PP. They

conjectured that every ordinary differential equation

obtained by an exact reduction of a non linear PDE solvable by

the inverse scattering transform (1ST) method has the PP. In

practice this is not useful very much in testing the

integrability of PDE because it may not be possible to find

all the possible similarity reductions of it or the

reductions may be too trivial. It has been observed that this

is not a sufficient condition for integrability of a PDE

(Clarkson 1986). Weiss, Tabor and Carnevale (1983) introduced

the concept of PP directly for PDEs. According to them a PDE

possesses the pp if its solutions are single valued about a

singularity manifold. In the case of PDEs, the singularities

of the solutions can not be isolated as that for ODEs, which

are analytic functions of only one complex variable. If

f=f(zl' .... ,zn) is a meromorphic function of N complex

variables (2n variables), the singularities of f occur along

analytic manifolds of real dimension 2n-2. These manifolds
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are determined by conditions of the form

(3.33)

where t/> is an analytic function of (zl' .... 'zn) ill a

neighbourhood of the manifold. Ward (1984) has pointed out

that the manifold must not be a characteristic : ~z ~ O. For

pp the solution of a POE u i can be expanded as a generalised

Laurent series about the manifold (3.33) in the form,

a.oo .
1. J

u. =4> E u..4>
\. . 0 l.J

J=

(3.34)

where 0, u..
1.J

= u.. ( z... , Z2' ..•. , z )
1.J ~ n

and

Independen t

variables z,z J •••• ,z J in a neighbourhood of the
1 2 n manifold

(3.33) and a. is a negative integer. (3.34) must admit
1

arbitrary functions equal to the order of the PDE. To test

this we have an algorithm similar to that for ODEs. As a

generalisation the concept of WPP can be introduced by

allowing a. to be rational. Substitution of
1

(3.34) in the

PDE provides us with recursion relations for u ...
l.J

Kruskal

(Ramani et al 1989) suggested a simplified algorithm in which

4> = zl+ z2+ + ~(zn). The procedure of the algorithm is

analogous to that of ODEs and there are three steps in it.

They are (i) finding the dominant behaviours, (ii) finding

the resonance values and (iii) checking whether arbitrary

constants enter at the resonances without the introduction of

movable critical manifolds. In the first step we find all the

possible values of ~.and u. O in the expansion (3.34). For
1 1

this we substitute the j=O term of the series (3.34) in the

PDE and find 01. values at which two or more terms balance,
t
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these being known as leading order terms (or dominant terms).

From this we can find corresponding ui O value also. To find.

the resonances we extract the coefficient Q(j) = Q(j) u .. of
IJ

the term ~j+o-~ where N is the order of the PDE, from the

recursion relations for u ... Resonances are roots of the
1J

equation Q(j)=O. We find always -1 to be a resonance which

corresponds to the arbitrariness of ~. To avoid any movable

critical manifolds, we require that the remaining roots be

nonnegative integers. Correspondence of resonances and

Kowalevskaya exponents may be invoked here also (Steeb and

Euler 1988). In the third step we test whether positive

resonances do indeed correspond to the arbitrary constants of

the solution (3.34) without logarithmic singularities. This

is done by expanding the solution up to the largest

resonance. At each resonance we come across certain

conditions on the preceding u i j and 4>, known as compatibility

conditions, which must be satisfied in order to ensure that

the corresponding u .. is indeed arbitrary. If the system
lJ

passes all the three steps we say that it is a P-case. Note

that the possibility of movable essential singularities are

not excluded and hence this test provides only a necessary

condition to have PP. The WTC method described here can also

be applied to ODEs~ In the case of ODEs if we put =t-to

and u .. constants, we have the usual ARS Painleve test.
1J

The interesting thing about the WTC approach is

that the pp is directly connected to the linearisation

properties, Lax pairs, Backlund transformations,

bilinearisation and soliton solutions.
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We obtain Blicklund transformations (Weiss

1983,1989) by t runc a t i ng the expansion (3.34) at the constant

level term. That is we take

-N -N+l
u.= u·O~ + u·1~ +111

(3.35)

(3.36)

From the recursion relations for u .. , we find an over
lJ

determined system of equations for ~ and u i j(j=O,l, ... ,N),

where ui N will satisfy the original PDE. In many integrable

PDEs by solving the overdetermined system, we obtain an

equation satisfied by ~, involving Schwarzian derivative,

~ t/>xx 1 4>xx 2
{~,x} = ;x(~ ) - 2 (~) ·

x x

(3.36) is invariant under the Moebius group transformations

~ = ~: ; ~ {~,x} ={~,x} · (3.37)

v lThis motivates the substitution ~ = by which Lax pairsv 2

may be found (Weiss 1983,1984).

It has been observed that there are connections

with Hirota's bilinear transformation method to obtain

N-soliton solutions and WTC approach (Gibbon and Tabor 1985,

Hirota et al 1986).

In some systems arbitrary constants enter at the

resonances, for some special choices of ~ only. There will be

consistency conditions to be satisfied by ~. Such systems are

said to have conditional pp (Weiss 1984). Special solutions

of such systems can be obtained using the truncated Laurent

series expansion. Even if the system possesses neither pp nor

conditional pp much useful information can be extracted from

the WTC expansions (Newell et al 1987, Conte 1988, Cariello

and Tabor 1989,1991).
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3.3.2. Nonintegrability of SSYH and SSYHH systems

To investigate the integrability property of spherically

symmetric YH (SSYH) fields we consider the system (3.13). We

try to find solutions of the form
00

K = c1>~E u.4>j
. j=O J

To obtain the leading order behaviour we put
0(

K = uo 4> . From

(3.38)

recursionThe=0( = -1 and

relation is

r
2

[( j .. 1 ) ( j - 2 ) ( 4>2 -4>2
l

) U .+( j - 2 )u. .. (4) -4>ll ) +
r J J-;a rr

2(j-2)(4> u... -4>l u l )+U. 2 -U. 2 tt]r J-;a_r J- , J- ,rr J-,

j n

= E E U. u U -U.
n=O 8=0 J-n n-g B J-2 (3.39)

Resonances are found to be -1 and 4. -1 corresponds to the

arbitrariness of ~. Expansions of (3.39) upto j=4 are given

in § 3.A.l of Appendix. For the system to be integrable, at

the resonance value 4 the expansion coefficient must be

arbitrary. From the analysis of the recursion relations up to

j=4 we find that u
4

is not arbitrary and therefore the system

does not possess PP. The conclusion is that spherically

symmetric time dependent Yang-Mills equations are

non-integrable in the sense of WTC. To see whether it is

integrable in the sense of ARS we shall do P-analysis of the

ODE (3.15) and (3.17) obtained from (3.13). We find that even

though resonances are rational, a sufficient number of

arbitrary expansion coefficients does not exist and hence

these systems are also nonintegrable.

Next we consider the spherically symmetric time

dependent Yang-Hills-Higgs (SSYHH) system (3.29). We seek
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solutions of the form
(:COO •

K = 4> E U .tI>J J

j=O J

From the leading order analysis we obtain cc =~ =
2 (1 ~ ) 2 d (2 _ ~ ) 2 = 2r2 (~2 _ 4>2)

Uo = - 2 Vo an 2 Vo r l

9 9

Recursion relations for u. and v. are,
J J

r
2

[ ( j - l ) ( j - 2 ) ( t/>2 - 4>2l )u.+(j-2)u. (4) -t/>ll)+
r J J-t rr

2{j-2)(if>u. -t/J u. )+u. -u. ]
r J - i, r l J-1 , 1 J-2 , r r J- 2 , II

(3.40)

-1,

(3.41)

j n

= E Eu. (u u + v v) -u.
n=O 9=0 J-n n-g B n-e 8 J-2

r
2

[ <j - l ) ( j - Z ) ( 4>2 - 4>2
l

) V.+ { j - 2 ) V . (1) -1>ll)+
r J J-1 rr

2(j-2)(if> v -4> v )+v -v ]
r j-1,r 1 j-1,l j-2,rr j-2,ll

(3.42)

j

=E
n A
E v. (2u u + - v v )

J -n n-s s 2 n -9 S
n=O 8=0 9

Resonances are found to be real if

2 2
- m r v. 2

J-

2

7 2
9

(3.43)

~ 2. The

Expansion

v ~ o.
o

)\. A.
resonances are found to be integers when = 0 or 1. But

2 2
9 9

= 1 is not allowed by the assumption that Uo ~ 0,

X
The resonance values for 2 = 0 are -1,1,2 and 4.

9

of (3.42 and 3.43) upto j=4 are given in § 3.A.2. of

Appendix. Arbitrary expansion coefficients do not exist at

the resonance values. Hence the system is nonintegrable. When

k
2

= 0 the leading order terms of the system (3.29) are equal
9

to its PS limit (3.30). It is also non-Painleve type and

hence nonintegrable. The similarity reduced system (3.31) and

(3.32) of the PS limit are also found to be nonintegrable by

the same analysis.
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It may be mentioned that the ARS method is not

suitable for equations (3.15) and (3.31) but can be applied

to (3.17) and (3.32) after they are converted to

corresponding autonomous systems. In these cases we find that

the resonances, which also happen to be the KE, are

irrational and hence these systems are also algebraically

nonintegrable in the sense of Yoshida (1983).

3.4. Conclusion

In this work we showed that spherically symmetric time

dependent Yang-Hills equations as well as Yang-Mills-Higgs

equations do not possess pp in the sense of WTC and the ODEs

obtained from them are algebraically nonintegrable. These

conclusions are in general agreement with those obtained by

Hatinyan et aI (1986,1988) and by Furusawa (1987) for SU(2)

Yang-Hills system. The noteworthy part is that we have been

able to arrive at these

discretisation at any stage.

3.A. Appendix

~esults without introducing

j = 1

j = 2

j = 3

j = 4 2r [2u3(~rr
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j = 4

j = 1

3.A.2. Expansion of recursion relation for SSYMH (3.42~3.43).

j = 0 : 2r2(~; ~~) = U~+ v~

2r2(~; ~~) = 2U~+ (A/g2)V~

r2[-Uo(~rr ~tt) - 2(~ruO,r- ~tUO.t)] -

j 2 2= r (u -O,rr

2r (v -O,rr

j = 3 r2[u2(~rr

+ 2u3v1vO+ 2uZVZvO+2ulv3vO+2ulvlv2 +2uOvOv4
2 2

+ 2uOvlv3+u2vl+uOv2 - u 2

r2[4(~; - ~~)V4 + 2v3(~rr- ~tt) + 4(~rv3,r- ~tV3,t)

+ v 2,rr- V2,tt] = 2(2v 3u 1u O+ 2v 2u 2uO+ 2v 1u 3u O
2 2+ 2v1u 1u 2+ 2vOuOu4 + 2vOu1u 3 + v2u 1+ VOU2 )

2 2 2 2 2 2+ (h/g )(2vOv4+ 6v 3v 1vO+ 3v 2v O + 3v 2v 1) - m r v2.
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CHAPTER 4

CHAOS AND CURVATURE IN A QUARTIC HAMILTONIAN SYSTEM

4.1. Introduction

The properties of a system that are responsible for the

regular or chaotic behaviour are not known clearly. We have

already seen that properties such as singularity structure of

the solutions and stability of particular solutions have a

definite role in the dynamics of the system. It has been

shown that symmetry of the potential contours is related to

chaotic behaviour (Ankiewicz and Pask 1984). Chaos is also

related to the Riemannian curvature of the manifold in which

the Hamiltonian flow can be considered as a geodesic flow

(Arnold and Avez 1968). Negative curvature implies chaos.

Implication of positive curvature is not clear.

In this chapter we study a quartic Hamiltonian

system with two degrees of freedom and explore the connection

between the chaotic behaviour and the Riemannian curvature.

We find that there is a direct link between the chaotic

behaviour as measured by Lyapunov exponents and the negative

curvature of the potential boundary which is not considered

in the Riemannian curvature calculation. In section 2 we

briefly describe the system under study and in section 3 we

give details of the calculation of Lyapunov exponents. An

account of the relation between dynamics and Riemannian

geometry and Riemannian curvature of the associated manifold
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is given in section 4. In section 5 potential boundary

curvature is calculated and its conn e c t Lon with t he LEs

established. Section 6 contains our conclusions.

4.2. The Hamiltonian system

We shall study a system whose Hamiltonian is given by

H 1/2 ( 2 2 ) + V(q) (4.1)= P1 + P2
,

where V(q)
( 1-a )

( 4 4 ) + 1/2 2 2 (4.2)= 12 ql+ q2 qlq2

and et is a parameter, 0 ~ at S 1. Potential V(q) for different

a values are plotted in figure 4.1, for V = 1. Chaos of this

system has been studied in detail by Carnegie and Percival

(1984) using the techniques of Poincare surface of section

and by studying the properties of periodic orbits. The system

has got n/4 symmetry. At 0=0 it is integrable and the

corresponding second integral of motion is given by

2 2
I = 3P1PZ + ql q2( q1+q2 ) (4.3)

Phase space motion is regular and all trajectories lie on an

invariant tori. As a increases regular regions break up and

irregular regions appear. When 0=1 system become highly

chaotic and has shown to be equivalent to a K-system by

Savvidy (1983). It has been used as a simplified model of the

spatially homogeneous classical Yang-Mills field (Savvidy

1984) .

The system (4.1) is scale invariant and we can study the

chaotic behaviour at a fixed value of energy H=E. By scaling

we may obtain the behaviour at any other energy value. Using

singular point analysis Steeb et al (1986b) have shown that

the system is nonintegrable except when a=O. The resonances
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Figure 4.1. Curve of potential V = 1 for a values equal to

(a) O.OJ (b) 0.3, (c) 0.5, (d) 0.8, (e) 0.9

and (f) 1.0.
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or Kowalevskaya exponen ts are r
t
= -1. r = 4. r = 3/2 ± (9/4

2 3,.

+ 4(a+2)/(a-4»t/2. When 0>4/25 resonances are complex.

Integrability of such systems in general have been studied by

Joy and Sabir (1988) using singular point analysis and

stability analysis. Quantum chaos of this system has been

studied by Steeb and Louw (1986a) and Kotze (1988). Studies

on the effect of Quantum fluctuations on this system by

calculating the Gaussian effective potential is given in

Chapter 6.

4. 3. Lyapul"lov exponents

We shall investigate the possibility of chaotic behaviour of

the system by computing the maximal Lyapunov exponent (LE).

Lyapunov exponents provide a quantitative measure of the

degree of chaos for both Hamiltonian and dissipative

dynamical systems. It is easily computable and is a reliable

quantity to characterise a chaotic system. Another important

aspect is that it is related to other measures of chaos such

as Kolmogorov entropy and capacity dimension. LE of a given

trajectory characterise the mean

divergence of nearby trajectories.

exponential rate of

Consider an autonomous first order system

x.=F.(x)
1 1

i = 1, ... n , (4.4)

where n is the dimension of the system. Consider a trajectory

in the n-dimensional phase space and a nearby trajectory with

initial conditions X o and xO+ Ax O' respectively. Time

evolution of tile variation y = Ax is given by the linearised

variational equations
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= E (8F if 8x j) Y j , i J j =1, ... , n .
j

(4.5)

Mean exponential rate of divergence of two initially close

trajectories is given by

(4.6)1
-t- In

lim
A (xo,y0) = t--+oo

d( 0 )-+0

where d(xO.t) =d(t) = ly(xo.t)1 is the Euclidean norm of y.

It has been shown that h exists and is finite. There is an

n-dimensional basis {~.) of y such that for any y, ~ takes on
1

one of the n values x i (xo) = A (:KO'~ i) Wllich are the Lyapunov

characteristic exponents (LE) of order one. They can be

ordered by size,

= A 1 (Contopoulos et al 1978) . A
1 is known as the maximal

LE.

One of the LEs will be always zero because along

the direction of the flow y grows only linearly with time. In

the case of a Hamiltonian system i-dimensional LE are

symmetric about zero. A i = - A 2N- i +1 ' where 2N = n, N the

number of degrees of freedom. Therefore here at least two

LEs are zero. Sum of LEs will be zero. Hence for a chaotic

Hamiltonian system with two degrees of freedom there will be

only one positive LE.

Higher order LE can be defined by generalising the

concept to describe the mean exponential divergence rate of a

p-dimensional volume in the tangent space p ~ n. Using the

wedge operator notation

vp = YlA YZA ....A Yp

for the volume V of a p-dimensional parallelepiped whose
p

edges are the vectors yl'y2' ..... ,yp. Then,
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A(P){X V) = lim 1 In
0' P t--+oo t

Vp(xo·t)

Vp{xo,O)
(4.7)

defines a LE of order p. A is given as the sum of p LEs of

order 1.

0,
n

For a Hamiltonian system sum of LEs E A.(X O) =
· 1 11=

A(P)= AiP)= A 1+ A 2+ + A
p

'

for almost all V s.p

while for a dissipative system, it is negative. Pesin has

obtained a relation between KS entropy and LE.

hk = J[ EA. (x) ] dJJ,
A. >0 1

JK 1

where the sum is over all positive LE and the integral is

over a specified region of phase space. For a two degree of

freedom Hamiltonian system only Al is greater than zero and

h k= Al when we consider only the connected chaotic regions.

When A1 >0 the system is said to be chaotic. In the numerical

calculation we obtain the maximal LE ~1' if we take the

initial variations at random. To calculate Al we chose an

initial Yo and then integrate the system (4.5) for y

alongwith (4.4) for x. From that we obtain the quantity

d ( t ) =Iy( t ) I where for convenience dO is usually chose to be

unity. If the system is chaotic d increases exponentially

with t and this will lead to overflow and other numerical

errors. To avoid this we chose a small time interval T and

normalise y to a norm of unity at every interval T. Thus we

iteratively compute

d k= I Yk- 1(T)I. Yk(O) =Yk- 1(T)/dk. (4.8)

Yk(T) is obtained by integrating (4.5) with initial value
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yk(O) along th~ trajectory from X{kT) to x{{k+l)T). Now we

define LE as

(4.9)

For small T and large n, the above definition is valid and Al

is independent of the choice of T. In a connected chaotic

region A1 is independent of x also.

Details of calculating higher order LE are

described by Nagashima and Shimada (1979), Benettin et al

(1980) and Wolf et al (1985)

Equations of motion of our system (4.1) can be

written as,

X3
x4 3 2(a-1 )x

1
/3-x

1
x

2

• 3 2x
4

= (ct-l)x2/3-x1x2

Corresponding variational system is given by,

(4.10)

·Yl = Y3
·Y2 = Y4 2 2·Y3 = «~-1)x1-x2)Y1-2x1X2Y2

· 2 2
Y4 = «a-l)X2-xl)Y2-2xlX2Yl

We numerically solve the system (4.10) and

LE is calculated for different values of

(4.11)

(4.11) together.

the parameter ~,

with different sets of initial variations. In figure 4.2

maximal LE vs ~ is plotted. We take the energy E=1 for our

calculations. As a increases, one can see from the value of

LE that the chaos in the system also increases.

4. 4. Riemannial"l curvature

Any Hamiltonian flow can locally be considered as a geodesic
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Figure 4.2. Plot of maximal LE (A) vs a.
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flow on a Riemannian manifold (Arnold and Avez 1968).

Consider a system with Hamiltonian of the form
N

H(p "q) = 1/'2 Ea.. (q) q. q. + V(q )
· · 1 lJ 1 J1, J =

(4.12)

The solutions q.(t) are
1

principle,

extremes of Euler-Maupertuis

M
t N 1/~

6 f (2{E-V(q») E 8 •. (q)dq.dq.) ~= 0
M • • -1 lJ 1 Jo l.,J-

(4.13)

where MO and H1 are the end points of the trajectory. This

may be considered as the variational equation for geodesics

in a Riemannian space with a line element
N

ds 2 = E g ..dq.dq.
· · -1 lJ 1 J1, J-

and metric coefficients

El •• = 2{E-V(q»)a .. (q)
lJ lJ

(4.14)

(4.15)

Evolution of the separation p between the nearby geodesics

obey ( to the lowest order in p ) the Jacobi equation

D2p/dt 2 = - K(q,t) p (4.16)

where D/dt is the covariant derivative in the Riemannian

geometry defined by the metric g ... If we restrict ourselves. lJ

to initial separations perpendicular to an orbit, the

covariant derivative can be replaced by ordinary one and we

can write the Jacobi equation (4.16) as

2 2d p/dt .= - K(q,t) p (4.17)

where K(q,t) is the Riemannian curvature calculated along the

orbit.

2When E-V = 1/2 E Pi.' so that a .. = 6 .. , Riemannian
1J l.J

curvature K(q,t) is given by (Van Velsen 1978),

K = (N-1)/8(E-V)3 { 2 Tr (p .. ) - N V V } (4.18)
1J m m
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where p ..= 3V.V. + 2(E-V)V .. ,
IJ 1 J IJ

i 2 i jV.= 8V/8q and V.. = a V/oq 8q .
1 IJ

In two dimensions K is same as Gaussian curvature. Sign of K

indicates the stability of the orbit. Positive curvature

implies local stability, whereas negative curvature means

instability. Hadamard-LobachevskY theorem suggests that if

the Riemannian curvature is negative, the system behaves

chaotically; there is exponential divergence of nearby

trajectories (Arnold and Avez 1968). Surfaces of constant

negative curvature are chaotic. It may be noted that while

negative R-curvature.everywhere is a sufficient condition for

chaotic behaviour the converse is not true. Positive

curvature does not mean that the system is integrable. Local

instability everywhere implies global instability but local

stability everywhere does not imply global stability

(Eckhardt et al 1985). Association of the system with the

geodesic flow on R-manifold is not valid at the boundary of

the manifold, ie., at E = V, where the metric tensor becomes

singular.

In 2 dimensions R-curvature (Gaussian curvature) is

given by,

K = 1/2 (E-V)2 ~ a2v/aqi+a2v/aq~

2 2+ l/(E-V) [ (8V/8 Ql) +(8V/aQ2) ]} , E > V. (4.19)

For the system (4.1),

K = 1/2(E-V)2~(2-a)(qi+q~) + l/(E-V)[ (av/a Ql)2+(av/8 q2)2]}

(4.20)

One can see from (4.20) that K is always positive implying

local stability. But we know that the system is nonintegrable
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except for ~ = o.

4.5. Potential boundary

In the Riemannian curvature calculation we did not include

the potential boundary given by E = V. Now let us consider

When a = 0, R is positive for all values of ql and q2.

the potential boundary given by

( 1-a ) ( 4+ 4) + 1/2 2 2 = E12 qi q2 qlq2

Extrinsic curvature of the curve (4.21) is given by

32244
4E [(i-a) -3]qlq2 + (l-a) (q1+q2)

R = -3- 2 66 2222
[(i-a) /9(ql+q2) + (5-2~)/3(ql+q2)qlq2

(4.21)

]3/2

(4.22)

R is

negative in between the points of the boundary (Ql,Q2) and

(qi,q2). Because of symmetry we consider only the first

quadrant.

(4.23)

.Q2 = p ql

qi = p qi
E 1/4

(4.24)

Qi =
[(1-a)/12(1+p4)+1/ 2p2]1/4

When Ql=Q2' R is the maximum and it is given by

- et 3 1/4
R = 3/4( 2E ) (4.26)

m (4-a)

In figure 4.3 IR I versus ~ is plotted for energy E = 1.m

Comparing figures 4.2 and 4.3 we can see that the chaos

in the system is directly correlated to the

curvature of the potential boundary.
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4.6. Corrc LtesLors

In this chapter we have presented a simple model in

there is connection between chaos and the curvature

which

of the

Rt enannI an manifold in which the evolution can be considered

as a geodesic flow. Negative curvature implies chaos but

positive curvature does not give rise to integrability. A

chaotic quartic system is investigated which has strictly

positive curvature. We calculate the LE and show that these

are directly correlated with negative curvature of the

potential boundary. As the negative boundary curvature

increases chaos also increases in the system. Exponential

instability of trajectories occurs by scattering at the

negatively curved potential boundary. Such systems may be

considered as billiards with boundary as the potential

boundary_ The connection between billiards and Hamiltonian

systems have been observed in some particular cases (Savvidy

1984, Kawabe and Ohta 1989). Further investigations are

necessary to establish general connections.
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CHAPTER 5

CHAOTIC BEHAVIOUR IN YANG-MILLS-HIGGS SYSTEM

5.1. Introduction

Recently much interest has been focused on the question of

non-integrability and chaos in classical non-Abelian gauge

theories. As we have seen in Chapter 3 spatially homogeneous

Yang-Mills system (YMCM) is non-integrable and shows strong

chaotic properties in general. This has been established by

many authors using various analytical and numerical

techniques. Studies on the more important and more realistic

space-time dependent systems are however much less in number.

Studies on such non-Abelian field theoretic systems are of

relevance in understanding quark confinement in QeD, monopole

stability, etc. Study of spatio-tempo~al chaos in itself is

also very interesting. Hatinyan et aI (1986,1988) showed that

space-time dependent Yang-Mills system can also exhibit

dynamical chaos. They studied time-dependent spherically

symmetric solutions of SU(2) Yang-Hills system, in particular

the Wu-Yang monopole solution. Exponential instability of

trajectories was found using Fermi-Pasta-Ulam technique of

studying the distribution of energy among different harmonic

modes. Kawabe and Ohta (1990) studied the system further by

calculating the induction period, the equal time correlation

and the maximal Lyapunov exponents and showed the existence

of chaos in the YH system. Using the technique of Painleve
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analysis we (Joy and Sabir 1989) have recently shown that

time-dependent spherically symmetric SU(2) Yang-Mills and

Yang-Hills-Higgs systems are non-integrable. (See chapter 3.)

Chaotic behaviour of classical systems with

spontaneous symmetry breaking is also very interesting and

investi,ations on such systems were made by Hatinyan et a1

(1981b). They found an order to chaos transition in spatially

uniform Yang-Hills system with Higgs scalar fields (YMHCM),

as the vacuum expectation value of Higgs field is changed.

Recently Hatinyan et al (1989) performed some preliminary

numerical calculations on time dependent spherically

symmetric SU(2) Yang-Mills-Higgs system (SSYHH) and showed

that there can be chaos. Details of chaotic behaviour of

SSYHH is unclear and whether there is an order to chaos

transition similar to YHHCH is an open question.

In this chapter we present the results of a

numerical study on the chaotic behaviour of SSYHH system. It

is more complicated than the spatially homogeneous cases

because of the presence of a singular potential and

space-time dependence. We consider specifically the 't

Hooft-Polyakov monopole solution. Because of the large mass

of monopole quantum fluctuations are reduced and classical

system may be a good approximation to the real quantum case.

We find a phase-transition like behaviour from order to chaos

as we tune the parameter which depends on the self

interaction constant of scalar fields. For our study we

discretise the system into a collection of interacting

coupled nonlinear oscillators and calculate the maximal

91



Lyapunov exponents for various parameter values and different

number of oscillators. Calculation of maximal Lyapunov

exponents is a reliable criterion to determine whether a

system is chaotic or not.

In the next section we briefly describe the studies

on the chaotic behaviour of spherically symmetric time

dependent 5U(2) Yang-Hills system (SSYH). The

Yang-Hills-Higgs system (SSYHH) under investigation is also

presented there. We present the numerical techniques applied

and the results in section 3. Section 4 contains our

conclusions.

5.2. Chaos in SSYM and the ·t Hooel Polyakov monopole

in SSYMH.

In Chapter 3 we discussed some of the spatially homogeneous

models of Yang-Hills theory which are non integrable and

chaotic. We shall now consider some aspects of chaotic

behaviour in space-time dependent YM systems. Matinyan et al

(1986,1988) were the first to investigate the chaotic

behaviour in SSYM system given by the equation (3.13).

( a; - ai) K = K (K2 1)/ r
2 (5.1)

Details of this system have been given in Chapter 3.

Space-time dependence and singular potential complicate the

analysis of the system which is also devoid of any control

parameter. Hatinyan et al used the Fermi-Pasta-Ulam technique

for their study. The continuous system is discretised to

obtain N coupled anharmonic

equations of motion are,

oscillators.

92

Corresponding



(5.2)

K(i,t) _ K(i+l,t) - 2K(i,t) + K(i-l,t)

h2

K(i,t) [K(i,t)2 - 1 ]

(ih)2

where h is the space discretisation step. The solution K(i,t)

(5.3)

of (5.2) is expanded in harmonics:
N-l

K(i,t) = ~2/N E ~(j,t) sin (nij/N)
j=l

Then the total energy of the discrete analog of (5.1) is

given by the expression,
N-1 _ K2(i,t)]2

E = EO + 1/4 E [1 (ih)2 h
i=l

(5.4)

where,
N-l ·2 ~~~2EO = 1/2 h E [ ~ + ] , (5.5)
j=l J

~. = 2/h sin nj/2N.
J

Dynamics of the system near the Wu-Yang monopole solution

K(r) = 0 has been investigated. Boundary conditions taken
.

were K(O,t) = K(N,t) = 0, K(i,O) = 0, with some modes excited

at t=O. This corresponds to a deformed but initially resting

string. Boundary conditions for non-deformed string at t=O
.

are K(i,O)=O, K(O,t) = K(N,t) = 0, K(i,t) ~ O. Hatinyan et al

found that the energy is shared uniformly among different

modes indicating the ergodic nature of the system. Kawabe and

Ohta (1990) investigated the system in more detail by

evaluating the induction period, equal time correlation and

maximal Lyapunov exponents. These studies confirmed that the

SSYM system is always chaotic. The induction period never

becomes infinite indicating the absence of quasiperiodic

behaviour even for small perturbations. Moreover the maximal

LE is always positive confirming the chaotic nature of the

system.
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Now let us consider the spherically symmetric time

dependent SU(2) Yang-Mills-Higgs (SSYMH) system. 't Hoeft

(1974) and Polyakov (1974) discovered magnetic monopoles as

finite energy solutions of nan-Abelian gauge theories, in the

Georgi-Glashow model with the gauge group SU(2) is broken

down to U{l) by Higgs triplets. Hore details on this model

are contained in sections 1.6 and 3.2. The field equations

with time dependent 't Hooft-Polyakov ansatz (Hecklenberg and

Q'Brien 1978) are,

r 2( iJ2 (12 ) K = K ( K
2 + H2 _ 1 )

r t

r 2( 8
2 8 2 ) H = H ( 2K2 - m2r2+ ~ H2 ) . (5.6)
r t g2

The vacuum expectation value of the scalar field and Higgs

boson Blass are < t/>2 ) = F2 = m
2/ A and HH -{2A F

respectively. Mass of the gauge bason is Mw = gF. With

A H 2

(3
H introducing the variables ~ "w r and= ;2 =

2M 2
, =

M

T = ""t·, the equations (5.6) become

( 8 2 a2 ) K = K ( K
2 + H

2 1 )/ e2
e T

a2 8 2 2K
2 H2_ ~2» / ~2.

(5.7)
( ) H = H ( + (3 {

{ T

Total energy of the system E is given by
g2E 00

C (~) = = J { KT
2+ H

2
+ K

2
+4n H -2T e

w 0

+ 2;2 (K 2_ 1 )2+ K2H2
+ L ( H

2_ e2
)2

~ ~2 41;2

Time independent ansatz (1.61) gives the 't

~ H 2
2 ( He - r )

} d~ (5.8)

Hooft-Polyakov

monopole solution with winding number 1 the details regarding

which are given in Chapter 1. In the limit ~ ~ 0 known as

the Prasad-Sommerfeld (PS) limit, we have
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solutions,

K(e) = 1;/ Sinh e

H(e) = e Coth e 1 . (5.9)

It has not been possible to find exact nontrivial solutions

for ~ ~ 0 analytically.

Matinyan et al (1989) investigated the possibility

of chaos in SSYMH near the 't Hooft-Polyakov monopole

solutions. They found that it can be chaotic by calculating

the Lyapunov exponents (LE). Their calculations are not

either exhaustive or satisfactory to arrive at a definite

conclusion. They calculated LE for a time of t = 3 which is

not sufficient for obtaining the asymptotic value of LE.

Dependence of chaos on the parameter ~ has also not been

investigated. We present the details of our numerical study

of these aspects in the next section.

6.3. Lyapunov exponents and Order to Chaos transition

As has been discussed in Chapters 1 and 4 calculation of LE

is a reliable and convenient way to study chaos. If the

maximal LE is greater than zero tile system is said to be

chaotic.

For our study we discretise the original infinite

dimensional system (5.7) to obtain a set of N coupled

anharmonic oscillators. The discrete model is given by

K(i,t) = K(i+l,t) - 2K(i,t) + K(i-1,t)

h2

K(i,t) [K(i,t)2+ H(i,t)2-- 1 ]

(ih)2

95

(5.10)



where h is

= H{i+l,t) - 2H(i,t) + H(i-1,t)

h2

2H(i,t) K(i,t)2- ~H(i,t)[H(i,t)2-- (ih)2]
(ih)2

i=' 1, ..... N-l,

the space discretisation step. Corresponding

variational system is obtained by discretising the following

equations :

( 8 2 ,,2 )6K = (3K2+ H2_ l)oK + 2HK oH
~ T

e2
(5.11)

( a2 ,,2 )6H = (2K2+~H2-- ~{2)6H + 4KH oK.e T

~2

For calculating LE we have to solve system (5.10)

along with the variational system obtained from (5.11). In

the system, there exist two parameters, the energy and the

value of ~. For the numerical integration we can start from

arbitrary values of K and H. But we are interested in the

evolution of 't Hooft-Polyako~· monopole solutions. Static

monopole solutions occur at the minimum of energy functional

C(~) for a fixed ~. So we choose K(i,O) and H(i,O) as the

static solution of the YHJI system w}lic}l we find using a

finite difference method for solving boundary value problems.

We use the asymptotic form of the solutions for fixing the

boundary values. C(~) for different ~ values are given in

table 5.1. Static solutions of SSYMH for some ~ values are

shown in figures 5.1a and 5.1b.

We use fixed boundary conditions and numerically

solve the system (5.10) with static solutions as initial

conditions along with the discretised system obtained from
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Table 6.1. C(~) and Maximal LE for different ~ values.

C«(3) LE

0.0 1.000 0.00

0.1 1.006 0.00

0.5 1.193 0.00

1.0 1.243 0.00

2.0 1.302 0.00

5.0 1.386 0.00

10.0 1.451 0.00

50.0 1.600 0.00

75.0 1.641 1.54E-3

100.0 1.671 2.32E-3

200.0 1.762 1.13E-2

500.0 1.971 2.54E-2

1000.0 2.301 7.01E-2

5000.0 4.641 1.OOE-l

(5.11). For our calculations we take N=100 and the

discretisation step h=O.l. In figures 5.2a and 5.2b plot of

LE versus time is given for some values of ~. We calculate up

to t=1000.0 which is sufficient for obtaining asymptotic

values of LE. We use an IMSL routine for Bulirsh-Stoer

algorithm for the numerical integration of the differential

equations with a tolerance value 10- 3. Calculations are done

in double precision in a CYBER 180/830 computer. In the case
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of ~=1000 and ~=5000 we used a higher tolerance value because

of the enormous amount of computer time required otherwise.

We did the calculations with high accuracy such that change

in energy is less than 1%. Lyapunov exponents for different

values of ~ are also given in table 5.1. From figure 5.3,

where log(LE) vs log(~) is plotted, we can see that there is

a transition from order to chaos near ~=75.0. Up to ~=50.0 LE

is zero within the limits of numerical accuracy. For ~=75.0

LE becomes positive and reaches an asymptotic value 1.54xl0-~

For higher ~ values we get higher and higher positive LEs.

However LE is not seen increasing indefinitely with~. At the

transition region the increase is rapid but as ~ increases

further the rate of increase in LE falls. As ~ ~ 00 LE

appears to attain an asymptotic value.

Table 5.2. Maximal LE for different values of N and ~.

50.0

75.0

100.0

200.0

N = 16

0.00

0.006

0.0015

0.027

LE

32

0.00

0.0012

0.0021

0.0091

64

0.00

0.0013

0.0021

0.0105

100

0.00

0.0015

0.0023

0.011

We have repeated the calculations with different

values of N also. Results are qualitatively the same as that

of N=100. LE for N = 16,32,64,100 are given for various ~
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values in table 5.2. Increasing N does not have much effect

after N=32. This indicates that the results obtained are good

approximations to the original infinite dimensional system.

This behaviour can be compared to the results obtained by

Livi et al. (1986) for a Fermi-Pasta-Ulam chain of anharmonic

oscillators. For FPU ~-model LE reaches an asymptotic value

when the number of oscillators is N 20-40. For small N

values boundary values also have effects 011 tile dynamics.

Asymptotic values of K and H are reached only after ~ = 3

4. The quartic oscillator system corresponding to N = 1 is

nonintegrable and chaotic for all ~ values.

5.4. Conclusion

Our calculations show that there is a phase-transition-like

behaviour from order to chaos in SU(2) SSYMH system. This

result is in agreement with that obtained in the case of

spatially homogeneous YMH system, where Higgs field manifests

only as the vacuum expectation value F. As F increases there

is an order to chaos transition and in that case there are no

terms dependent on the self interaction constant. There is

2only one parameter for YHHCM, namely g E/4nMw . On the other

hand here we consider the time evolution of both gauge and

scalar fields and there exist two parameters C(~) and ~. ~

depends on the self interaction constant A. Since we are

interested in monopole solutions we took the minimum value of

energy functional C(~) for a specific ~ value. It is known

that as ~ increases the effect of Higgs field decreases and

when ~ ~ 00 system becomes purely Yang-Hills, which is
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highly chaotic. The effect of Higgs scalar fields is to

reduce the stochasticity of the YH system. In the central

part of the monopole the scalar field is approximately equal

to zero and the YM field which dominates this region displays

chaotic behaviour. Outside the monopole core the Higgs field

approaches its mean value and the YH field behaves in regular

manner. From our study one can see that 't Hooft-Polyakov

monopole solutions show irregular behaviour in time, and they

are exponentially unstable. Our results can be compared with

that of Brand t and Neri (1979) in the context of Wu-Yang

monopoles. They have shown that negative modes exist in the

spectrum of the operator describing small perturbations of

monopole solutions, implying exponential growth of

perturbations with time. Solutions with magnetic charge q ~ 1

are unstable. Arbitrary continuous deformations of the field

configurations do not change the topological charge, during

the evolution of the fields with time. The evolution of the

fields in the central part of the monopole can be arbitrarily

complicated, may oscillate or vary ergodically. Though in the

case of the monopole classical description may be a

meaningful approximation to the quantum case the im~lications

of the result in the exact quantum field theory of this

object is a separate issue requiring detailed study.
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CHAPTER 6

CHAOS AND QUANTUM FLUCTUATIONS IN A QUARTIC

HAMILTONIAN SYSTEM

6.1. Introduction

Different approaches to the characterisation of quantum chaos

and the variety of techniques for its investigation have been

discussed in section 5 of Chapter 1. Host of the studies so

far made are semiclassical and/or numerical. Recently an

application of the Gaussian Effective Potential (GEP) method

in quantum mechanics has been made for an approximate but

analytical study of the effect of quantum fluctuations on

chaotic systems (Carlson and Schieve 1989). GEP is an

approximate potential describing the quantum effects on a

classical potential and it is not a semiclassical quantity

(Stevenson 1984). Carlson and Schieve used this method to

study the effect of quantum fluctuations in Henon-Heiles

potential and four leg potential (GEP calculations given in

that paper contain inaccuracies which do not change their

conclusions. Correct GEP calculation for Henon-Heiles system

is given in the Appendix S.A.). They studied the variation in

the nature of the GEP as h, the Planck's constant is varied

and found that as h ~ 1 (large values of h) the GEP reduces

to an integrable potential even though the classical

potential is nonintegrable and chaotic. They also tested the

conditions for hyperbolicity of periodic orbits (Churchill et

106



al 1975,1977) when quantum fluctuations are present. Their

conclusion was that the quantum fluctuations destroy the

chaotic behaviour in the Henon-Heiles potential and in the

four leg potential.

In this chapter we apply the GEP method for

studying the quantum chaos in

Hamiltonian system,

a generalised quartic

(6.1)

where 0 ~ a ~ 1. This is a system which can exhibit chaotic

behaviour of various degrees depending on the parameter a.

Our aim is to study the change in quantum chaos as a is

varied and compare the classical and quantum behaviour.

System (6.1) is integrable and shows regular behaviour when

a=O. But when 0=1 system is highly chaotic and can be used as

simplified model for classical Yang-Mills system (Savvidy

1984). For value of a in between these extremes the behaviour

interpolates between order and chaos. Many investigations

have been made on the classical dynamics of the system in

detail (Carnegie and Percival 1984, Steeb et al 1986b).

Recently we (Joy and Sabir 1992) studied the relation between

curvature and chaos in the system the details of which have

been discussed in Chapter 4. The system has positive

Riemannian curvature implying local stability for all values

of a. But the potential boundary of the system has negative

curvature except when ~=O, and chaos of the system, as

measured by Lyapunov exponents, increases with a as the

negative curvature of the potential boundary is increased.

Quantum chaos in the system has been investigated by means of
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spectral properties (Steeb and Louw 1986b, Kotze 1988).

Nearest neighbour spacing of energy eigenvalues obey Poisson

distribution when a=O and a Wigner distribution when a=l. In

between there is an intermediate behaviour.

Studying the GEP as function of h for various

values of a we find that even though there is quantum

suppression of chaos there is a correspondence between

classical behaviour and quantum behaviour. The value of h

above which the GEP become an integrable one increases with

the degree of chaos in the classical system. In the next

section we briefly describe the computational details of the

Gaussian Effective Potential. Sectioll 6.3 contains the

results and the conclusions.

6. 2. The Gaussian Effect! ve Pot orrt.LaI

The Gaussian Effective Potential (GEP) method as formulated

by Stevenson (1984) is a very convenient technique for

estimating the qu an t un effects on a classical p o t en t i a L. It

gives us a picture of how quantum fluctuations modify the

classical potential. For a system with Hamiltonian H the GEP
min
o where is Gaussian

state localised around qo and n denotes a set of parameters

governing its width. Compared with the exact effective

potential which is obtained by minimising over all states

localised around qo and the one loop effective potential it

has several distinct advantages and gives a more realistic

description of quantum phenomena. Though approximate the GEP

is neither perturbative nor is semiclassical.
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Let us consider the GEP estimation of a Hamiltonian

system with two degrees of freedom with a Hamiltonian of the

form,

H - 1
2

To evaluate the GEP we first compute the expectation value of

the energy VG = <~IHI~>, where the normalized wave functions

~ are two dimensional Gaussians of the form exp (-q.n ..q./2),
1 lJ J

and 0 .. is a symmetric matrix that in general depends on the
lJ

position variables. GEP is obtained by minimising this with

respect to t hre e var iat ional para.meters two principal

frequencies nand wand an angle e specifying the orientation

of the principal axes of the wave function with respect to

the Ql,Q2 axes. Using the creation and annihilation operator

formalism one can make the calculation purely algebraic. The

annihilation and creation operators a1,a2

defined through

and are

(6.2)

(6.3)

1

[

q ] [C0se - Sine] r (2hO) :

q~~ + sine cose ~(2hW)
1

[:~] =

[
P 1] = [ C~S8 -Sin8] [- ~(2hO): (ai-a!)]

P2 sln8 cos8 - ~(2hW)2 (a2-a2
)

t twhere [al,a l] = 1 and [a 2,a 2] = 1. The expectation value of H

is evaluated in the state 10>0 defined by a1IO>n= 0 and

For the system (6.1) GEP is given by the minimum of

VG which is obtained by a straight forward calculation :
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(6.4)

-1
V 1-a (4 4) 1 2 2 hO [l-a ( 2 2~ 2. 2~)

G = 12 q1 +q2 + ~ q1q2 + 2 2 Q1COS ~ + Q2S1n 0

+ i ( qlSin2e + q~cos2e ) + Q1Q2s i n 2e ]

-1
+ hw [~a ( 2 · 26 + 2 2e )

2 4 Ql s 1n ~ Q2COS

1 (2 26 2. 26 ) • 26 ]+ 2 Ql c o s ~ + Q2S1n ~ - Q1Q2 s 1n 0

2
+ ~ ( 0-2+w-2)(le

a ( cos4e + sin4e ) + is sin22e )

h'2. - 1 4 4 1 -foOt • 2' 11
+ 8 (Ow) (sin e + cos 8 - --2- Sln 28 ) + 4 (0 + w )

To find the minimum we have to solve the following set of

equations.

28 )

(6.5a)

- 2h 0- 3 (lea ( cos4e + sin4e ) + is sin22e )

h - 2 -1 . 4 4 l+ot 2 1- -4 0 W (sln e + cos e - sin 28 ) + --2- 2

(6.5b)

-3 1-~ 4 4 3 2'- 2h W (-a- ( cos e + sin e ) + 16 sin 28 )

_ ~ ~-lw-2( · 4~ + 4£) 1+0 · 2~~ ) + 14 u Sln 0 cos - ~ Sln ~o 2

, (6.50)

The solutions e, 0 and w should be substituted in VG to

obtain the GEP VG" Even then we can find only a local

minimum. But these coupled set of equations are not of the
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form where we can calculate the solutions analytically. Hence

we resort to numerical minimisation of the ~otential VG at

each ql and q2-

Since our system is scale invariant we evaluate VG

for a fixed value of energy; we fix VG= 1. The level curves

of VG for different values of Planck's constant h are plotted

in figures 6.1 - 6.6. Figure 6.1 shows the VG for a=O, when

the system'is integrable classically_ For h=O we have the

classical potential boundary which has no negative curvature_

As we increase the value of h we see that the GEP becomes

more and more circular. In the other figures for nonzero a

with negatively curved classical potential boundary we

observ~ that the increase in the value of h leads to a

reduction of the negative curvature of the boundary and

ultimately the boundary becomes a circle around the origin.

This, as noted by Carlson and Schieve, is the manifestation

of quantum suppression of chaos. As h is increased the value

at which the level curve first becomes a circle is a measure

of the amount of quantum fluctuations needed to suppress

classical chaos. From the figures 6.1-6.6 we can make an

important observation that the value of h at which VG becomes

a circle increases monotonically with a. Denoting this value

of h by h in table 6.1 we give approximate h for variousc c

values of a. In the most chaotic regime in a any magnitude of

strong Quantum fluctuations chaos will be completely wiped

off. In other words the quantum system will exhibit chaotic

features if quantum fluctuations are small. On the other hand

for weakly chaotic systems (a small) even slight quantum

111



-
Figure 6.1. V for a = 0.0 with h values (a) 0.0, (b) 0.4,a

(c) 0.6 and (d) 0.8.
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-
Figure 6.2. Vafor a = 0.3 with h values (a) 0.0, (b) 0.4,

(c) 0.6 and (d) 0.8.
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-1

-2

a

-2 -1 1 2

-
Figure 6.3. Vofor a = 0.5 with h values (a) 0.0, (b) 0.5,

(c) 0.8 and (d) 0.95.
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-3

-3 - 1 3

-
Figure 6.4. Vafor a = 0.8 with h values (a) O.OJ (b) 0.5,

(c) 0.8 and (d) 1.05.
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-
Figure 6.9. Vofor ~ = 0.9 with h values (a) 0.0, (b) 0.5,

(c) 0.8, (d) 1.0 and (e) 1.25.
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-
Figure 6.6. Vafor a = 1.0 with h values (a) 1.4, (b) 1.2,

( c) 1. 0 , ( d) O. 8 and (e) o. 0 .

•

117



Table 6.1. h values for various ~ valuesc

a 0.0 0.3 0.5 0.8 0.9 1.0

h 0.8 0.8 0.95 1.05 1.25 1.4
c

fluctuations will destroy chaos. We can thus see from the GEP

study a correlation between the classical and quantum system

with regard to integrability and ·chaos.

6. 3. Conel us! 01'1

Our GEP calculation for one particular Hamiltonian system

shows that even though quantum f Luc t ua t Lons reduce chaos, it

exists for small values of h. For sufficiently large value of

h all of these become regular, but the value at which they

become regular increases with the chaoticity of the original

classical system. Other conclusion is that though quantum

fluctuations diminishes chaos there exist

classical chaos in the quantum regime.

6.A. Appendix

remnants of

Here we give the correct GEP for the Henon-Heiles potential

studied by Carlson and Schieve (1989)

2 2 2 3
V(Ql,Q2) = (q1+q2)/2 - ql q2 + ql/3. (6.6)

Using (6.2) and (6.3) we obtain,

VG = <~IHI~>= V(Ql,Q2) + h(O+w)/4 + h(1/0+1/w)/4 +

(1/0-1/w)(Q1COS 2~ - Q2sin 2~). (6.7)

118



On minimizing VG we get

VG = V(Ql,q2) + h (o+w)/2,

where,

(6.8)

(6.9)

and

o = [ 1 + 2Q1COS 2~ - 2Q2sin 2~ ] 1/2

w =[1 2Q1COS 2~ + 2Q2sin 2(3 ] 1/2

tan 2(3 = -q2/ql.

In the case of four leg potential discussed in

Carlson and Schieve (1989) given by

2 2 2 2
V(Q1,Q2) = (q1+q2)/2 - q1 Q2/ 2 (6.10)

one can not find the GEP because the expectation value VG is

not bounded from below.
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