STUDIES ON INTEGRABILITY AND CHAOTIC
BEHAVIOUR OF CERTAIN NONLINEAR SYSTEMS

THESIS SUBMITTED TO THE
COCHIN UNIVERSITY OF SCIENCE AND TECHNOLOGY

IN PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

M. P. JOY

DEPARTMENT OF PHYSICS

COCHIN UNIVERSITY OF SCIENCE & TECHNOLOGY
COCHIN - 682 022
INDIA

JULY 1882



CERTIFICATE

Certified that the work reported iIn the present

thesis is based on the bbnafide work done by Mr. M. P. Joy,
under my guidance in the Department of Physics, Cochin
University of Science and Technology, and has not been

included in any other thestis submitted previocusly for the

S

award of any degree.

M. Sabir
Cochin 8682 022, (Supervising Teacher)
7 July 1882. Department of Physics

Cochin University of Sci. & Tech.

DECLARATION

Certified that the work presented in this thestis ts
based on the original work done by me under the guidance of
Dr. M. Sabir, Professor, Department of Physics, Cochin
Unilversity o} Science and Technology, and has not been
included in any other thesis submitted previously for the
award of any degree.

Cochin 682 022, W ]
7 July 1882. M. P. Joy



PREFACE

Studies on nonlihear dynamical systems have been
revived in the recent past and has led to the discovery of
deterministic chaos. Availability of high speed computers and
applications to wide ranging areas of study have given much
importance to the subject. Deterministic nonlinear systems
can exhibit a broad spectrum of behaviour varying from
ordered, predictable, periodic motion on one end to
completely disordered, unpredictable, random-like motion
known as chaos at the other end. In contrast to chaotic
systems integrable systems show regular motion or order. In
this thesis we present some studies on different aspects of
integrability and chaotic behaviour of nonlinear dynamical
systems. Our main concern is with conservative Hamiltonian

systems - finite dimensional and infinite dimensional.

In the first chspter we give a brief review of the
basic facts concerning chaos and integrability in
deterministic dynamical systems as a background for the
remaining Chapters 2-6. After some opening remarks we define
and explain integrability of dynamical systems in & 1.1. This
is followed by a brief introduction to singular point
analysis in the next section. Section 1.3 introduces chaos.
Here the hierarchy of disorder properties shown by dynamical

systems is described and s brief introduction to different



characterisations of chsasos is given. Chaos in quantum systems
is reviewea in § 1.4 . Section 1.5 contains an introduction
to Yang-Mills theories and monopoles. A brief review is given
of the studies on integrability and chaotic behaviour of

such field theoretic models and their importance highlighted.

There are no general tests for determining whether
a system is integrable or not. However, there are some
techniques of considerable practical utility for identifying
integrable cases. Among these sre Painlevé snalysis due to
Ablowitz, Ramani, and Segur (ARS) and its generalisations.
Analysis of Kowalevskaya exponents (KE) and stability of
straight line periodic solutions are also very useful in this
regard. In Chapter 2 we describe these techniques. An account
is then given of our work where we have combined Painlevé
analysis, Yoshida's methods of calculating KE and stability
analysis to show that, for two dimensional homogeneous

—

potentials of degree 2m, intedrability restricts KE and

integrability coefficients to discfete sets of wvalues. This
M

hss been made use of in the anslysis of integrability of

symmetric potentials with m=2, 3 and 4. Second integrals for
the integrable cases identified are slso constructed
directly. We have alsc generalised the integrable potentials
of arbitrary degree 2m by constructing the corresponding

second integral.

Painlevé analysis have been generalised by Weiss,

Tabor and LCarnevale (WTC) to study pasrtial differential

ii



equations (PDE). In Chapter 3 we apply this method to study
the integrability of some field theoretic models. Question of
integrability of non-Abelian gsauge fields or Yang-Mills
fields has attracted wide attention and has much importance
in Particle Physics and Field theory. We have studied the
integrability of spherically symmetric time  dependent
non-selfdual sector of SU(2) Yang-Mills (SSYM) and
Yang-Mills-Higgs (SSYMH) theory using WIC method. They are -

—

shown to be nonintegrgble. Various reductions of these

T

systems to ODEs 8re alsoc investigated and shown to be

nonintegrable.

Chaos is characterised by the exponential
divergence of nearby trajectories. Calculating ygzgggngl,,

exponents is a convenient way to characterise chaos

————— —— -

N

quantitatively. If the maximal LE is positive the system Iis

—————

said to be chaotic. What causes chaos is a very complicated
T

P

gquestion. Our understanding of the origin of chaos 1is still
rudimentary. If the Riemannian curvature of the manifold on

which Hamiltonisn flow can be considered as a geodesic flow

is negative everywhere the system can be proved to be
hid- b ol

chaotic. Converse 1is, however, not true. For Riemannian
d

curvature calculation we do not consider the potential

boundary. There are systems which have positive curvature

—

everywhere but are chaotic. In Chapter 4 we have studied such

a two dimensionsal quartic oscillastor system which goes from
an integrable case to a highly chaotic one as a parameter

changes from 0 to 1. We <calculated the maximal LE and
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negative curvature of the potential boundary at different
parameter values. We establish a direct correlation between

the curvature and chaos of the systenm.

Yang-Mills classical mechanics is highly chaotic.
Space time dependent Yang-Mills system also appears to be
chaotic. Chaotic behaviour of Yang-Mills theories is relevant
to the problems\gg#_gg;;;::;;EEEi;;;;;j__;;;EEEEE::EEEEEEEEZ.
etc. in field theory. In Chaplter 5 we have investigated the
chaotic behaviour of spherically symmetric time dependent
SU(2) Yang-Mills-Higgs (SSYMH) §ystem in detail. We have
studied the dynamics near the 't Hooft-Polyakov monopole

solution. For our study we calculated the maximal LE of the

system obtained by discretising the original PDE. We found

that there is a transition from order to chsos as a parameter

which depends on the self interaction constant of the scalar

field incresses. Presence of Higgs field reduces chaos of the
resence o TIEES

original YM fie}ds. We have shown the existence of space-time

—_—

chaos in YMH system and the exponential instability of 't

> o ROT BomLem sRE M e
Hooft-Polyakov monopoles.
',/———/—\—

How classical chaos manifests in Quantum Mechanics

L —

is a controversial and difficult question. Different
characterisations of quantum chaos have been proposed. There
is 8 widespread belief that Quantum Mechanics suppresses
chaos. Most of the studies concerning these questions are
semiclassical in nature. In Chapter 6 we investigate the

quantum chasos of the quartic Hamiltonian system studied 1in

iv
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Chapter 4 by the recently introduced method of Gaussian
phhddihdel ARELLLLLLL

i
effective potential (GEP). GEP is an sapproximate potential

describing the effect of quantum fluctuations on a classical
system. It 1is not a semiclassical quantity. We have
calculated GEP for different parameter values and for various
values of Planck’s constant h. GEP becomes a8 regular
potentiasl as we increase the value of h. But as the classical
chaos of the system increases the value of h at which GEP
becomes completely regular salso incresses showing the

existence of signatures of chaos even with quantum

fluctuations.
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CHAPTER 1

INTRODUCTION

The last decade has witnessed a resurgence of
interest in nonlinear dynamics. This is mainly attributable
to the realization that the nonlinear dynamical systems can
exhibit a variety of behaviour- from ordered, predictable,
regular motion to completely disordered, unpredictable,
irregular and stochastic motion commonly known as chaos
(Lichtenberg and Lieberman 1883, Schuster 1984, Hao Bai Lin
1984, Berge et al 1888, Steeb and Louw 1886b, Gleick 1887,
Tabor 1888). Generally these different types of behaviour
occur in a system as some parameter of the system is varied.
The basic characteristic of chaotic motion is a sensitive
dependence on initial conditions. The resulting
unpredictability of future behaviour in completely
deterministic nonlinear systems has attracted much attention.
Even an apparently simple nonlinear systen of three
differential equations can show such unexpected ways of
behaviour. Seminal studies by Lorenz in 1883 of a truncation
of hydrodynamical partial differential equations (Lorenz
1983) and by Henon snd Heiles in 1864 of &a mnodel for the
motion of a star under an axially symmetric galactic
potential (Henon and Heiles 1984) were the harhingers of a
new era. These models have now become the paradigms 1in the

study of nonlinear dynamics. But the beginning of the subject



can be traced to the end of the 19th century. Poincaré wsas

certainly sware of the possibility of such intricate motion
in dynamicsal systems (Poincaré 1882). However significant
contributions in this field have been made only in
comparatively recent times. Among the various reasons for
this has been the emergence of high speed computers. The
dramatic developments in our wunderstanding of nonlinear
dynamics has touched almost all areas of science - Physics,
Chenmistry, Heteorology, Biology, Physiology, Ecology,
Economics and Sociology.

Not all nonlinear systems exhibit chaotic
behaviour. Integrable systems have regular phase space
motion. How to identify integrable systems and how and when
chaos arise in a nonintegrable system are questions yet to be
answered in general. This thesis 1is concerned with some
aspects of integrability and chaotic behaviour of
deterministic nonlinear dynamical systems. We are mostly
concerned with conservative, Hamiltonian systems. We study
the integrability and chaoctic behaviour of some field
theoretic models also. These are related to the Yang-Hills
theory and are of relevance 1in particle physics. The
implications of <chaos in Quantum Mechanics is anothser
fundamental question with far from unambiguous answers. We
touch upon some aspects of this question by analysing a
simple model.

As a bachground for the discussion of our work in
Chapters 2-6 we present an overview of various aspects of

integrability, singular point analysis, chaotic behaviour and



quantum chaos in the remaining sections of this chapter. An
introduction to Yang-Mills theory is alsoc given in the 1last

section.

1.1. Dynamical systems and Integrability .
Deterministic dynamical systems may be described as systems
of variables which evolve with an independent variable such
as time t and pbssibly with space variables x,y,z, according
to definite rules. When there is only one independent
variable we have a finite dimensional system modeled by
ordinary differential equations (ODE). In the case of more
than one independent variable a system is said to be infinite
dimensional and 1is described by partial differential

equations (PDE). We can define a finite dimensional dynamical

system (DS) as 8 set of n-first order differential equations

in n-variables, x = (xl,xz, ..... ,xn) (Ozorio de Almeids
1888):

dxi .

gt = X4 ° Fi(x,t), i=1,2,....n, (1.1)

x denotes & point in the n-dimensional phase space and system
(1.1) is said to be a DS of n-dimensions. A solution of the
DS is a vector function x(xo,t) satisfying (1.1) and the
initisl condition
x(xO,O) = xg (1.2)

If the vector field F is independent of time t we call the
system autonomous. By redefining time t as a new variable we
can consider an n-dimensional non-autonomous system as an
(n+1)-dimensional autonomous system. In nonlinear systems F

will be nonlinear functions of x. DS c¢an be described by



higher order differential equations also. But in general we
can transform an nth order differential equation in to
n-first order differential equations. If the independent
variables are discrete and not continuous we have discrete

dynamical systems described by difference equations. In the

present work our main concern 1is with autonomous systems with

continuous independent variables.

Dynamical systems may be classified mainly into two
classes @ conservative systems and dissipative systems. As
the time evolves in dissipative systems, the phase space
volume contracts whereas in conservative systems phase space
volume remains constant (Lichtenberg and Lieberman 1883).
Dynamical behaviour of the two types of systems are entirely

different. We may define the divergence of a system as
aF

dv _ n n
E—‘rd){(i{:

v =

If dv/dt < 0, the system 1is said to be dissipative. For

i
x (1.3

1

conservative systems dV/dt = O.

We shall concentrate our attention mainly on
conservative (Hamiltonian) systems. Let us consider a systenm
described by Hamilton s equations of motion (Goldstein 1880).

a; = dH/%p,, Py = - OH/dq, , 1= 1,...8 (1.4)
H is the Hamiltonian which is a function of generalized
coordinates q and corresponding conjugate moments p; - The
system is said to be a Hamiltonian system of N-degrees of

freedom and the phase space is 2N-dimensional. Volume

preservation is clear from Liouville’'s theorem

2 2
e o a H a H
div (q,p) = L ( -
3 "qi"Pi apit’q-1

) =20 (1.5)



A Hamiltonian system of N-dedrees of freedom is
said to be integrable if there exist N time independent,
analytic, single valued integrals of motion Ii’ which are in
involution. That is their Poisson brackets vanish.

I I,.1

}] =0, I H’Ii] =0, 1,3 = 1,2,...,H8 (1.8)

J
Integrals of motion are alsoc known as constants of motion,
first integrals, etc. If the Hamiltonian H is independent of
time, it is s constant of motion. By Liouville-Arnold theorem
an integrable system executes linear motion on an
N-dimensional torus defined by these first integrals and
their solutions can be obtained by quadratures (Abraham and
Marsden 1878, Arnold 1978, Kozlov 1883). Completely
integrable systems are exceptional. That is generic systems
are nonintegrable (Moser 1873). Phase space motion will be
regular and predictable in the case of integrable systems. In
general we mai be able to find action-angle variables J,8 and
hence solve the Hamilton-Jacobi equation, for such systems.
Action-angle varisbles J, & are defined in such a way that,
by a canonical transformation from the original variables,
the transformed Hamiltonian HO depends only on the moments J,
the action variable. Now the equations of motion become
3= g, o=2 .,y (1.7)
and can be easily integrated to
J = constant, € =w t + 6 . (1.8)

All one degree of freedom autonomous Hamiltonian systems are
integrable. For a two degrees of freedom autonomous system to

be integrable there must exist one more integral of motion.

If there exist p < N constants of motion one can reduce the



effective degrees of freedom from N to N-p. The p constants
of motion enter as parameters in the reduced system.

In the case of non-Hamiltonian systems which are
not derivable from a Hamiltonian the notion of integrability
is not as well defined as that in Hamiltonian systems. A
working definition can be given like this (Yoshida 1883, Puri
1880). A general dynamical system of n-dimensions may be said
to be completely integrable if it can be reduced to final
quadrature by the existence of n-1 time independent integrals
of motion or it can be transformed by a change of variables
into a set of linear ordinary differential equations (with
variable coefficients). Here also completely integrable
systems show regular behaviour. Integrals of motion can also
be time dependent (Kus 1883, Steeb and Louw 1886b). In such a
case n-dimensional system is integrable if there exist n time
dependent constants of motion. In general a dissipative
system can be put into a Hamiltonian system by doubling the
number of coordinates (Steeb et al 1885a).

In the case of infinite dimensional systems, the
concept of integrability is not as clear as that of finite
dimensional systems. Integrability 1in such systems are
related to the existence of soliton solutions or solvability
by inverse scattering transform (IST) or to the existence of
infinite number of conservation 1laws, or possibility of
transforming (by a change of variables) into a system of
linear partial differential equations (Puri 1880).

There are no general methods to identify integrable

systems. One can not tell s priori for a given system of N



degrees of freedom whether N integrals of motion would exist
or not. Moreover no general technique is available for
finding all the existing integrals of motion, or even for
finding their total number unless some obvious symmetries are
present. Sometimes numerical experiments sugdest their
presence and can in turn help us to construct these.

One can in principle directly search for integrals
of motion by making use of the fact that they must be in
involution. It is a very difficult task in the case of
systems with more than two degrees of freedom (DOF). Even in
the 2 DOF case the method is not exhaustive. Hietarinta
(1887) has identified various classes of integrable 2 DOF
systems. In this approach a particular functional form for
the constants of motion are assumed and from the condition of
vanishing Poisson brackets certain restrictions on the
coefficients are obtained. The technique was first applied by

Whittaker (1827) to a Hamiltonian of the form

H=(p§

+ B3 /2 + V(ag.ay). (1.9)
He analysed a class of potentisls V for which there exist an
integral of motion up to gquadratic order in the momenta p.
I(p,q) = a pf + b pg + ¢ pypyt € pyt f P, + & (1.10)
Here the coefficients are functions of q; - From the
requirement [ I,H }] = 0, one obtains a set of partisal
differential equations for the coefficients in terms of the
potential V and its derivatives. Solution of these yields
integrable potentials V and the associated first integrals I.

The method can be extended to integrals which &are higher

order in Dy (Hall 1883, Holt 1882, Sen 1885,1887). In recent



times computer programs for doing this have been developed
(Schwarz 1885,19888).

Integrability can also be related to the existence
of nontrivial symmetries or Lie symmetries (Bluman and Cole
1874, Lutzky 1878, Sahadevan and Lakshmanan 1886). Here one
finds the infinitesimal symmetries of one parameter
continuous transformations leaving the equations of motion
invariant. By applying Noether’'s theorem one can construct
constants of motion from the infinitesimals. Suppose the

equations of motion,

x = o(x,¥) ., ¥ = oy(x,y) (1.11)
are invariant under one parameter (e) continuous
transformations.

x — X =x+ ¢ nl(t,x,y,i,&) + 0(82)

H

y — ¥ =y + & n,(t,xy,x%,y) + 0(7)

t— T =t + 28 (t,X,7,%7) + 0(c2)

H

£ << 1 (1.12)
where Nys Mg and £ are infinitesimals. Then the invariant
equations are
n, - xE - 2af =Ea)

n, - v E - 2 a¢ = E(ay) (1.13)
Here E is the infinitesimal operator given by,
E =% 8/0t + n,8/8x + n,0/8y + [ 0,-x£18/9x + [n,~ y£10/dy
(1.14)
From these equations one can find Ny My and ¢ explicitly.
Using these infinitesimals one can find the associated

integrals of motion, if they exist.

Another technique is the Lax-pair sapprosach where



one searches for two matrices L snd M so that dL/dt = [L,HM]
is equivalent to the original Hamilton’'s equations of motion.
If that is possible then the coefficients of g" in the
expansion of det (L-g) are invariants and in involution. This
method has also been successfully aspplied to identify some
new integrable cases (Olshanetsky and Perelomov 1881).

A widely used and generally satisfactory method for
establishing the integrability of finite as well as infinite
dimensional systems is singular point analysis. More detsails
on this technique are given in the next section and in

Chapters 2 and 3.

1.2, Singular Point Analysis

Study of the analytic structure of dynamical systems reveal
several details concerning its behaviour such as
integrability and chaotic behaviour. Singular point analysis
is the most widely used method for identifying integrable
cases. The method relies on the conjecture that systems
having the Painlevé property (PP) are integrable. A system is
said to have the Painlevé property when the only movable
singularities of its solution in the complex time plane are
simple poles (Hille 1876, Davis 198862).

The recent revival of interest in the singularity
structure aspects and integrability is mainly attributable to
the works of Ablowitz, Ramani and Segur (1978,1980). But the
idea has a long history snd can be’ traced back to Sonya
Kowalevskaya who formulated the idea and applied it to

identify integrable cases of rigid body motion in 1888 (Cooke



1884, Tabor 1884).

Differential equations can have two types of
singularities : fixed and movable (Ince 1856). Fixed ones are
determined by the equation itself while the location of the
movable singularities depend wupon the 1initial conditions.
Linear equations can have only fixed singularities. Nonlinear
equations can have both movable and fixed singularities.

Painlevé (Ince 1856) investigated all first order
ODEs, dw/dz = f(z,w), with f rational in w and analytic in =z
whose only movable singularities are poles. Fuchs (1884)
examined the question further. It was proved that the Riccati
equation dw/dz= fo(z)+f1(z) W+ fz(z) wz, is the only first
order ODE which is free from movable critical points.

Sonya Kowalevskaya (1888,1880,1878) was the first
to apply singularity snalysis to a physical problem. Fuchs’
works and the works of Jacobi on elliptical functions which
are meromorphic functions motivated Kowalevskaya to study the
integrability of a heavy rigid body rotating under the
influence of gravity in connection with the singularity
structure properties shown by the solutions in the complex

time plane. She considered the equations of motion,

AR =(B-Crar-Bzy+ry,

B =(C-A)pr-rxy+az (1.15a)
cE=(Aa-B)rpa-ayy+nxg
g%=ﬁr—rq

g%=yp_ar (1.15b)
g—’;=aq—ﬁp ,

where (p,q,r) and (o,f3,7) are the components of angular

10



velocity and direction cosines respectively of the spinning
top. (A,B,C) and (xo,yo,zo) are constant parameters related
to the components of moments of inertia sand the position
coordinates of the centre of gravity respectively. For the
complete integrability of this system 4 integrals of motion

sre needed. The system has 3 first integrals
2 2 2

h1 = % (Ap+Bqg"+Cr* )+ «a Xq
h2 —Aap+BfBqgq+Cyrr (1.16)
h3:02+f32+)’2

3 integrable special c¢ases were known at the time of

Kowalevskaya.
(1) A=B=¢C : the trivial case of complete kinetic
symmetry.
h4 = Xgp + ¥l + zgr (1.17)
(ii) Xqg = Vg = 2g : Euler case
h, = A%p%+ B%%s CZr? (1.18)

and (iii) A = B, Xg = ¥g = 0 : Lagrange case
hy =r (1.18)

In the cases of Euler and Lagrange the solutions are
expressed in terms of elliptic functions which are
meromorphic. They do not have singular points other than
poles in the finite complex time plane. Motivated with this
she searched for parametric choices having this property and
found that there are only four special cases satisfying this.
3 are the already known cases (i), (ii) and (1ii) and for the

fourth case

she found an additionsl integral also sand hence proved the

11



integrability. For the Kowalevskaysa case

2 2 2

- _ _ 2
h4 =(p qQ o xo)

+ ( 2pa - f xg5) (1.20)
She explicitly integrated this special choice and obtained
the general solution in terms of hyper-elliptic functions. No
other integrable cases are known for the system till now
(Golubev 1853).

Investigations by Painlevé and coworkers is a
remarkable work in the study of singularity structure
analysis in which they classified all second order ODEs of
the form ( Painlevé 1800,1802, Fuchs 1806, Gambier 1808),

3 = F(z,w,w’)

with F rational in w’, algebraic in w and analytic in 2z,
whose critical points are fixed. They 1identified 50 types
with this property. Out of these 44 are integrable in terms
of known functions including elliptic functions, by
quadratures or by linesrisation. The remsining six equations
sre now known as Painleveé transcendents and have
transcendental meromorphic solutions. Classification of
higher order systems with Painlevé property have been
attempted but is not vyet complete (Garnier 1812, Bureau
1964,1872).

Ablowitz, Ramani and Segur (ARS) observed that all
similarity reductions of integrsble PDEs are of Painlevé
type. This observation prompted them to formulate a
conjecture : every ODE obtained by an exact reduction of a
PDE solvable by IST possesses the PP (Ablowitz and Segur
1877,19881). They also put forward an algorithm for testing

whether a system of ODEs satisfy the necessary criteria for

12



possessing the PP or not (Ablowitz et al 1880). Using this
one can check whether the sclution of the system in complex
time plane can be expanded in terms of a Laurent series
around a movable pole, with sufficient number of arbitrary

coefficients. That is one looks for solutions of the form

p

. _ . 0O ( )
w, = (z-25) * L a3 ( z-z)" (1.21)
n=0
for the system
321 = F,(w w ,z2), i=1 n (1.22)
dz i RO : S T )

The algorithm consists of three steps,
(1) the study of dominant or leading order behaviour,
(2) the determination of resonance values at which
arbitrary constants enter in the Laurent expansion
and (3) checking whether sufficient number of sarbitrary
constants enter in the expansion.

The algorithm can also be applied to test the PP of
systems not written in the 8bove form of first order
equations but formulated as systems with higher derivatives.
The algorithm gives a necessary condition for the absence of
movable branch points either algebraic or logarithmic, but
occurrence of movable essential singularities can not be
detected.

Segur (19880) revived the Kowalevskaya’'s approach of
exploring the intedrability of finite dimensional systems by
investigating the integrable cases of the Lorenz equation
through an application of the PP. Since then it has been used
to identify integrable cases of several systems (Bountis et

sl 1982,1983,19884, Grammaticos et al 1982, Tabor and Weiss
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1981). In the original algorithm due to Ablowitz, Ramani and
Segur only integer leading orders can arise so that the
movable branch points are excluded. This is now known as the
strong PP. Ramani, Dorizzi and Grammaticos (1882) suggested
the so called weak PP so that PP is generalized to 1include
finite branching. Here the leading order can be a rational
number. Many integrable systems possess only weak PP. In the
generalised form PP has been widely used as a criterion for
integrability (Dorizzi et al 1983,1884,19886, Grammaticos et
zl 1983,1884,1985, Hietarinta 1883, Lakshmanan and Sahadevan
1884,1885, Menyuk et al 1983, Ramani et al 1984,1885, etc.
For more references see Sshadevan 1886, Steeb and Euler 1888,
Ramani et al 19888). But there is no general proof connecting
the PP to integrability. Adler and van Moerbeke
(18828,b,1888) proved for a class of Hamiltonian systems that
PP is a necessary condition for algebraic integrability in
terms of Abelian functions. No Hamiltonian systems having PP
are found to be algebraically nonintegrable. Only a few
rigorous results are available (See Ercolani and Sidgia
1986,1888, Flaschka 1988). Though PP helps us to identify
integrable cases integrability can be proved only by finding
sufficient number of integrals of motion. Analytic structure
of the solutions and the chaotic behaviour of the system also
appear to be related (Chang et al 1881,1882,1883, Bountis et
al 1887,19891, Bessis and Chafee 1986, Frish 1884, Thual and
Frish 1885, Dombre et al 1886, Fournier et al 19888, Levine
and Tabor 1888, Tabor 1888).

Yoshida (1883) introduced a8 method of finding
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Kowalevskaya exponents (KE) and proved the following theorem.

A necessary condition for a similarity tnvariant system
to be algebraically integrable s that all Kowaleuvskaya
exponents be rational numbers.

In other words irrational or imaginary KE imply
nonintegrability. KEs and Painlevé resonances are related to
esach other . More details on this will be discussed in
Chapter 2.

2iglin’'s work on nonintegrability by studying the
variational equations contain rigorous results in this field
(Ziglin 1883). Yoshida (1886,1887a,1988) and Ito (19885,1987)
developed the theory further producing rigorous results and
applying them to many dynamical systems (Yoshida
1887b,c, 1988, Yoshida et al 1887s,b,1888, Grammaticos et al
1887). The approaches of Painlevé , Yoshida and Ziglin have
some mutual connections and the details of whioh are
described in Chapter 2.

Though ARS put forward the algorithm in connection
with the integrability of PDEs, it cannot be applied directly
for testing integrability of PDEs. One should reduce the PDE
before spplying the algorithm. Definite conclusions are also
generally not possible. Weiss, Tabor and Carnevale (1883)
generalized the P-test by introducing a notion of PP for
PDEs. According to them a PDE possesses the PP if its
solutions are single valued about a movable singularity
manifold. Ward (1884) has given more precise definition and
pointed out that the singularity manifold must not be a

characteristic. We seek solutions of a PDE in the form
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(1.23)

about the singularity manifold

¢ (zl,....zn) =0 . (1.24)
The algorithm essentially goes like ARS algorithm, but the
calculations are more complicated. Kruskal proposed 8
simplification where one take the singularity manifold in the
form ¢(z1,zz) = zl+ w(zz) with w an arbitrary analytic
function and the uy is a function of z, only (when there are
only two independent variables z4 and 22). In many situations
for PDE also we have to introduce the WPP concept. Several
systems have been studied using this method (Weiss
1983,1984,1885,1986, 1887, Chudnovsky et al 1883, Sahadevan et
al 1886, Hlavaty 1885, Steeb and Euler 1887a,b,1880, Steeb
and Louw 1885,1886s,1887, Steeb et al 1884,1888c, Webb 1880)
and computer programs have also been developed for doing the
P-test (Hlavaty 1986, Hereman and Van den Bulck 1988, Rand
and Winternitz 1886).

The main advantage of WTC method 1is that the
singular expansion obtained can be used for deriving Bicklund
transformations, Lax Pairs, etc. Further extensions 1lead to
special solutions of nonintegrable equations also (Newell et
al 1887, Gibbon et al 1885, Tabor and Gibbon 1886, Conte
1888, Conte and Mussette 1888, Carriello and Tabor 1888,
1991). Different aspects of this and an application of WTC
method of P-test to test the integrability of time dependent
spherically symmetric SU(2) Yang-Mills sand Yang-Mills-Higgs

systems are given in Chapter 3.
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1. 3. Chaotic behaviour

As mentioned in the previous sections integrable systems show
regular behaviour. But they are rather exceptional. Most
dynamical systems are nonintegrable and many of them exhibit
chaotic behaviour. How and under what conditions chsos arises
is the important problem yet to be understood fully.
Hamiltonian systems, in genersal, have divided phase space ;
regular and irregular phase space regions coexist. Before
going into the details of such systems we take a look at the
hierarchy of disorder properties a classical system can
exhibit.

In ergodic theory dynamical systems are classified
according to the degree of disorder shown by them (Arnold
and Avez 1888, Lebowitz and Penrose 1870, Ford 1873). In
increasing order of stochastic properties they are classified
as recurrent systems, ergodic systems, systems with mixing,
systems with n-fold mixing, Kolmogdorov systems, C-systems and
B-systems.

In a recurrent system trajectory returns to a given
neighbourhood of a point an infinite number of times as time
evolves. According to Poincaré’s recurrence theorem any
Hamiltonian system which maps a finite region of phase space
onto itself is of this type. This result, however does not
have much practical significance in view of the fact that the
return time is generally of enormous magnitude. A system is
generally characterised as ergodic if any trajectory fills

its energy surface. In ergodic systems time averages can be
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replaced by phase space averages. Ergodic hypothesis is the
foundation of classical statistical mechanics where the
assumption is that ensemble and time averages are equal. Once
it was thought that some nonintegrable perturbations would
give rise to ergodicity. But it turns out that this 1is not
true in general.

Let z(t) = (p(t),q(t)) represent a trajectory of a
particle in the phase space. The time evolution of 2(t) can
be written using the time shift operator T as

z(t+T) = Tz(t) (1.25)
Then the time evolution of an arbitrary function of 2z 1is
gdiven by

£Qz(t+T)) = S_£(z(t)) = £[Tz(t)], (1.28)
where §T is a time shift operator along the orbit.

A dynamical system is said to be ergodic if for

every integrable function £,

£+T
T T JdtT £Lzt)1 = <6 = g [ arcoreca (1.27)
t 0

where I'(z) is the invariant measure in the accessible phase
space of volume Q. Equation (1.27) means that time average is
equal to the phase space average. In an ergodic system time
average of any function is independent of the initial point.
A dynamical system is mixing if and only if, for
every integrable functions f and g,
T <8 f.g> = <D< (1.28)
This implies that éT has 8 continuous spectrum. For any

mixing system the motion of a particle in the phase space has

infinite cycles and comes to be independent of the 1initisal
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point as time passes. An example is given by Arnold and Avez
(1968). A mixture of 20%¥ rum and 80% cola is stirred a large
number of times n (n — o). Then every part of it will

contain 20% rum and 80% cola. Implication is that it 1is

mixed.

One can easily show that mixing implies ergodicity.
But the converse is not true; ergodicity does not imply
mixing. Baker’ s transformation is an example for mixing.

A dynamical system is said to be n-fold mixing if

and only if for every integrable ' PR %
lim 2 ~ _
Ty, ..T —o S, £y Sy I = <fp..... <£ > (1.29)
n 1 n

Next in the hierarchy is the so called Kolmogorov
system or a K-system which has a positive Kolmogorov-Sinail
(KS) entropy. The KS entropy is defined as follows. Let us
divide the phase space into a set {Aj(O)} of small cells of
finite measure at t=0. The backward evolution of the system
by a unit time step transforms this set to {Aj(—l)}. The
intersection B(-1) = { Ai(O) N Aj(—l)} of this new set will
typically have smaller measure than {Aj(O)}. Continuing the
backward evolution, we can generate the elements of the set,

B(-2) = {Ai(O)nAj(—l)nAk(—Z)}, ete.
We say that the system has positi;e KS-entropy if the aversage
measure of each element of B decreases exponentially as
t—o. Then the average exponential rate is defined as

h{A;(0)} = - lim 1

t—o t

) Y] [Bi(-t)] log u [Bi(—t)] >0 (1.30)
i

where p denotes measure. KS entropy is defined as the maximum
of h over all initisl measursable partitions of phase space.

In regions of connected chaos KS-entropy is the sum
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of all positive Lyapunov exponents (Pesin 1877). Consequently
K-systems have very sensitive dependence on initisl
conditions. Kolmogorov and Sinai proved that K-systems asare
mixing (Lichtenberg and Lieberman 1883).

C-systems or Anosov systems are more stochastic
than K-systems in the sense that C-systems are K-systems but
not vice versa. In a C-system part of the tangent space is
associated with exponential divergence and a part disjoint
from that 1is sassociated with exponential convergence of
trajectories. Arnold’s cat map is an example of a C-systenm.

Bernoulli systems or B-systems are at the top of
the hierarchy. They show behaviour indistinguishable from
randomness as in the Bernoulli shift map.

Natural systems do not strictly belong to any of
these classes. Usually the phase space 1is divided into
intermingled regions of chasotic and orderly behaviour. As a
first step towards the study of such systems let us consider
a near integrable system ie. an integrable system HO
perturbed with a nonintegrable part Hl‘

H = HO(J) + & Hl( 6,3) (1.31)
where &£ is a parsmeter characterising the strength of
perturbation. J, € are the action-angle variables of the
integrable part. When € = 0 system 1is intedrable and the
motion occurs on an N-torus. When the perturbation is small
what happens to the invariant tori of the integrable
Hamiltonian HO’ is addressed by the famous Kolmogorov-Arnold-
Hoser (KAM) theorem (Lichtenberg and Lieberman 1883, Berry

1878).
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Suppose the perturbation is sufficiently smooth and
JH
g

aJi

associated with the unperturbed Hamiltonisn are 1linearly

small. Suppose also that the frequencies vi(J) =

independent or incommensurate. That is, for any set

(nl’"Z""'nN) of integers that sare not all zero,

N
Env.(J) =20 (1.32)
RIS

KAM theorem says that, under these conditions, most of the
N-tori (KAM-tori) of the unperturbed system are not
destroyed, only distorted slightly. The theorem does not
apply for tori with commensurate frequencies. A large enough
perturbsation 8H1 destroys all tori.

When the frequencies are commensurate the original
tori decompose into smaller and smaller tori. Some of these
new tori will again become stable according to KAM theoremn.
But between the stable tori the motion is completely
irregular. According to Poincaré-Birkhoff theorem (Birkhoff
1827) the original torus with rationsl frequency ratio is not
completely destroyed under a perturbation, but there remains
an even number of fixed points; an alternating sequence of
elliptic and hyperbolic fixed points. One can thus see that
in conservative systems regular and irregular motion are
densely interweaved. The destruction of KAM tori and ths
onset of stochasticity can be explained by the resonance
overlap criterion proposed by Chirikov (1878).

In the case of two degrees of freedom regular
regions and chaotic 1regions are separate, because a two

dimensional KAH surface can divide the 3-dimensional enerdy
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surface into distinct regions. But when N > 2, this 1is not
possible and hence irregular trajectories wander about
between the preserved tori with incommensurate frequencies.
They are not confined to separate regions of stochasticity as
in the case of N = 2. This results in what is known as Arnold
diffusion. Irregular trajectories form an interconnected
"Arnold web’. The Arnold web can be arbitrarily close to sany
point of the energy surface and it can exist even as the
perturbation strength approaches zero. But in many cases the
diffusion rate may be extremely small (Nekhroshev 1877). 1In
such cases we can consider the system as one with different
stochastic regions and neglect the Arnold diffusion.

An important aspect of the study of dynamical
systems is characterisation of chaos. The techniques of
Poincar#® surface of section and calculation of Lyapunov
characteristic exponents are two useful tools in this regard
(Tabor 1881). Making a Poincaré surface of section (Henon and
Heiles 1964, Henon 1983) is a simple technique to study the
chaotic behaviour especially in the case of systems with two
degrees of freedom. In this method a two dimensional surface
in the phase space 1is considered sand the successive
intersections of a trajectory with the surface salong any
particular direction are noted. When N=2 the trajectory lies
on the 3-dimensional energy surface defined by E = H(po,qo)
in the four dimensional phase space. This means that any of
the four variables say p, can be obtained in terms of the
other three. A convenient choice is & plane (pl,ql) at a

point a,; = constant. This plane (pl,ql) is now known as the
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Poincaré surface of section. The successive points define a
map called Poincaré map. Poincaré map produces iterates on s
bounded area of the surface and it 1is area preserving,
because of the volume preserving property of Hamiltonian
flows. If the points after a sufficient number of iterations
of the map 1lie on =& closed curve, the trajectory
corresponding to them lies on an invariant torus or KAM
surface. Instead of this, if these points £fill a two
dimensional area in the surface, then the trajectory
corresponding to them is chaotic. Choice of different initial
conditions, dependingd on whether they belong to regular
redions or irregular regions, result in different behaviour
for the map. For systems with divided phase space there
appears islands of closed curves and a chaotic sea. The
concept of surface of section can be generalised to higher
dimensional systems with N > 2 also. But the method is not of
much utility in such cases.

A more convenient technique to analyse chaotic
behaviour is the study of Lyapunov characteristic exponents
(LCE). LCE give us the average rate of exponential divergence
of nearby trajectories and is a quantitative measure of
chaos, the sensitive dependence on initial conditions.
Characterisation of chaos of a phase space trajectory in
terms of exponential divergence of nearby trajectories was
introduced by Henon and Heiles (1964). It has been further
developed by various authors (Zaslavsky and Chirikov 1872,
Froeschle and Scheidecker 1873, Ford 1883).

The theory of Lyspunov eXxponents was applied to
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characterise irregular trajectories by Oseledec (1868). The
connections among Lyapunov exponents, chaos and Kolmogorov
entropy have been established by Bennettin et al (1878),
Pesin (1877) and others. Bennettin et al (1880, 1878) and
Shimada and Nagashima (1878) dave an algorithm for
calculating LCE. The method can be used to study chaotic
behaviour of dissipative systems as well. Calculation of LCE
from time series is given in Wolf et al (1885) along with
FORTRAN program code. In the case of Hamiltonian systems the
sum of LCE is zero and for dissipative systems it should be
less than zero. For calculating LCE we have to solve the
equations of motion along with the corresponding varisational
system. Chaotic behaviour in many systems have been studied
by this method (Udry and Pfenniger 1888, Contopoulos et al
1887,1888, Cleary 19888). More details on Lyapunov exponents

will be given in Chapter 4.

1.4. Quantum Chaos

How does classical chaos manifest in quantum mechanics? What
are the differences between properties of a quantum system
whose classical limit is regular and of a system whose
classical limit is chaotic? These are the questions the
emerding discipline called quantum chaos tries to answer.
Whether there is actuslly something called quantum chaos |is
still a controversisl, unsettled and interesting question
(Berry 1883,1885, Hogg and Huberman 1882,1883, Ford et sl
1881, Partovi 1882). Different characterisations and

properties for quantum chaos have been sugddgested and pursued
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by different authors.

As mentioned in the last section classical chaos is
well characterised by the sensitive dependence on initial
conditions which c¢an be quantitatively determined by
calculating Lyapunov exponents. But in quantum mechanics the
scenario is completely different. For studying the time
evolution of & system we have Schrddinger equation, which is
a linear differential equation. Nonlinearity is a necessary
condition for classical chaos. Hence chaos in & quantum
system can not be similar to that in a classical system. In
quantum mechanics we deal with statistical quantities. The
uncertainty principle rules out definite trajectories for
particles in quantum mechanics. Hence +the criterion of
exponential divergence of nearby trajectories can not be used
directly as a definition for quantum chaos. The uncertainty
principle also implies the coarse graining of quantum phase
space; We can not distinguish points in a 2N-dimensional
phase space within a volume hN. Hence the finite value of h
tends to suppress chsaos.

Because of Bohr’'s correspondence principle by which
the quantum sand classical behaviour should coincide for
macroscopic systems, we expect that some remnants of
classibal chaos must persist in quantum mechsnics. Actuslly
in the area of quantum chaos main interest is with study of
the properties of a quantum system whose classical limit
shows chaotic behaviour. Berry’'s terminology for this sres of
study is quantum chaology (Berry 1887).

The s=semiclassical quantisastion of a classical
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system 1is still en unsolved problem. The problem of
quantising nonintegrable systems was first realised by
Einstein (1817). Integrable systems can be quantised using
the Einstein-Brillouin-Keller-Maslov quantisation rule
(Zaslavshky 19881, Eckhardt 19888). For a system with a
Hamiltonian H with N degrees of freedom depending on the
generalised coordinates and momenta (ql,qz,....qN) and
(pl,pz,....pN) which performs a finite motion quantisation
rules can be given under the following conditions

(i) If the varisbles are separable the quantisation rule
is given by

§pidqi =ngh, iz 1,2, 8 (1.33)

where ni>0 are sarbitrary integers which are the quantum
numbers. This is the Bohr-Sommerfeld quantisation rule.

(ii) If not separable but integrsble we have EBEKHM

quantisation rule
N o
Sk = g pidqi = ( nk+ T yh , k =1,2,...,H8 (1.34)
Ck i=1
where Ck are N closed contours defined on the N-dimensional
invariant torus, which can not be reduced to each other by a

continuous deformation. o, are called the Haslov indices.
Using numerical methods and a semiclassical
approach Gutzwiller (1871,1880,1880) developed 1 semi
classical quantisation method making use of the periodic
orbits of classical system. This is based on the Feynman’s
path integral formulation of quantum mechanics.
In 1873 Percival invoked the correspondence

principle to conjecture that in the semiclassical limit, the
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energy level spectrum consists of regular and irregular part
corresponding to regular and irregular regions of classicsal
rhase space (Percival 1873). Many authors have investigated
these questions since then. Various characterisations have
been proposed and technigues to identify quantum chaos have
been sugdested (Berry 1883, McDonald and Kaufmann 1878,
Pechukas 1982,1883,1984, Yukawa 1885, Eckhardt 1888, Bohigas
et 8l 1884,1983). Some of these are
(1) the method of avoiding crossings of energy levels,
(2) the sensitivity of energy eigenvalues to
perturbations,
(3) the statistical analysis of fluctuations in the
spectral sequences,
(4) the distribution of nearest neighbour level
spacings,
(5) the structure of eigenvectors,
(6) the study of nodal curves,
(7) the loss of memory of initial states,
(8) Hose-Taylor criterion for quantum chsaos,
(8) gquantum Poincare sections,
(10) quantum entropies and Lyapunov exponents,
(11) algorithmic complexity theory.
It seems from these studies that quantum chaos is not as
strong as classical chsos.
Before discussing some of these methods in detail
let us see what 1is meant by quantum integrability. As
discussed above integrasbility in classical mechanics is a

well defined concept related to the existence of N integrals
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of motion in involution.

C hn, h 1] = 0.

R P

Correspondingly one may define quantum integrability on the

N A~

basis of the existence of N operators Jl’ 32"""JN whose
commutator brackets vanish.
L Jn’ Jn] =0 (1.35)

Here use may be made of the fact that one can replace an
operator A(p,a) by a c-number function A(p ,q ).
A ,a ) = | de d'r d% d%a c2mm) ™ acp,a)
exp {(i/b)[7.(p-p)+6.(a-q)1} (1.36)

The correspondence between the c-number functions and the

operators is one to one. The commutator bracket can be

replaced by Moysal bracket.

{A,B}y = 2/h sin [h/2(8 q,.8pg- 2p,.3q5)] A(p,.,q,)B(Pg, qp)
(1.37)

Korsh (1882) has suggested that any classically
integrable system is also quantum integrable in the above
sense. However, Hietarinta (1882,1984) has shown that this is
not true in general. Classical integrability does not imply
quantum integrability and vice versa. We may have to add
higher order terms in h for integrability.

One of the most widely used methods of studying
quantum chaos 1is the analysis of eigenvalue statistics.
Nonintegrability is reflected in the statistical properties
of sequences of energy levels (Bohigass et al 1984,1985a,b).
Let us consider a sequence of energy levels.

Els E < E3S.......S Eks

Assume that the eigenvalues are nondegenerate except for
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accidental degenersacies. If the Hamiltonian admits symmetries
then the underlying Hilbert space has to be decomposed into
invariant subspaces so that the eigenvalues are nondegenerate
in these subspaces.

Before studying the eigenvalue statistics we have
to "unfold” the spectrum (Bohigas et al 1885a). By unfolding
we can eliminate the variation in average level spacing as a
function of energy. This is done by mapping the spectrum {Ei}
ontoc the spectrum {si} through £, = ﬁ(Ei) where N is the
smoothed cumulative density.

The simplest statistical measure is the
distribution of nearest neighbour spacings
KPS (1.38)
where Sk = i1 T S It is assumed that the sequence is
sufficiently long so that statistical techniques can be
applied . For the exact semiclassical 1limit we have to
consider an infinite sequence of energy 1levels. From the
above sequence one can calculate the normalised probability
of finding an enerdy level spacing s. Using this we find the
probability distribution P(s) of nearest neighbour level
spacing s. P(s) is different for integrable and nonintegrable
systems and can be used for distinguishing between them. In
1977 Berry and Tabor (1977) showed that the nearest neighbour
level spacing distribution for an integrable system is
Poissonian,

P(s) = exp(-s). (1.39)
There is level clustering; individual levels are uncorrelated

and randomly distributed. Coupled harmonic oscillators are an
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exception to this rule.

In the case of chaotic systems we have level
repulsion. Nearby levels are correlated and the distribution
peaks at a nonzero value. Random matrix theory of nuclesar
physics has been used for correlating level distribution with
chaotic properties (Mehta 1887, Brody et al 1981). If we
consider a Gaussian orthogonal ensemble (GOE) of random
matrix elements we obtain a distribution with 1linear level
repulsion,

P(s) = n/2 s exp(- 7 s2/4) (1.40)
This is known as Wigner surmise (Wigner 1867). If we consider
a Gaussian Unitary Ensemble (GUE) of matrix elements we
obtain a distribution with quadratic level repulsion.

P(s) = (32/m) s° exp( - 4 s°/m) (1.41)
The exact nature of repulsion thus depend on the symmetry
properties of the Hamiltonian. The important point here is
that these distributions are generic properties of
nonintegrable Hamiltonians. It is independent of the degree
of nonintegrability.

In the generic Hamiltonian systems, where there is
a mixed behaviour of order and chaos, the situation 1is more
complicated. In such systems with divided phase space we have
to consider superposition of statistically independent
sequences of levels from each of the corresponding classical
phase space regions; sequences from regular regions having
Poisson distribution and those from irregular regions having
Wigner distributions. P(s) depends on the Liouville measure

of regular regions and chaotic regions (Berry and Robnik
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1984).

First numerical study of eigdenvalue statistics was
carried out by McDonald and Ksufman (1878) for the stadium
billiard. They found Poisson distribution corresponding to
the integrable limit and Wigner distribution for
nonintegrable cases. This has been confirmed by further
studies of Casati, Valz-Griz and Guarneri (1880).
Calculations of Berry (1881) on Sinai’s billiard also gave
similar results.

Higher order correlations such as A3 and
Q-statistics are also used to characterise quantum chaos.
As—statistics or rigidity parameter measures the mean square
deviation of the integrated density n(e) of states in an

interval [x,x+!] from a straight line (Mehta 1887).
. X+l
Ag(l,x) = L min o pey-Ae-B1%de (1.42)

1 A,B
x

(i) For Poisson distributed levels
Aa(l,x) = /15 (1.43)
1/nlog ¢ - 0.00885  (1.44)

(ii) For GOE Aa(l,x)

(111) For GUE Ag(l,x) = 1/27° log L + 0.058  (1.45)
in the limit of large 1.

In contrast to the level spacing distribution where
no semiclassical proof is known, A3 can be characterised
completely in terms of periodic orbits.

Sensitivity of energy 1level motion on external
parameters have been studied by Pechukas (1883), Yukawa
(1985) and Steeb and van Tonder (1888).

Recently Lunsa Acosta (1881) used a definition for

sensitive dependence spplicable both to classical and quantum
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systems and showed that sensitive dependence on initisal
conditions is absent in bounded quantum systems. Absence of
sensitive dependence in quantum systems has also been shown
by Partovi (1882). In a recent work Ford et al (1881) showed
the possible failure of quantum correspondence principle in a
specific example. Heller (1884) observed that quantum eigden
states of stadium billiard have a structure with high
amplitude along short unstable periodic orbits. This is known
as quantum scars of classical periodic orbits and is
explained as due to constructive quantum interference.
Scarred wave functions have been numerically observed in many
physically relevant systems as well as experimentally
(Sridhar 1881).

In Chapter 6 we approach the problem of quantum
chaos by calculating the Gaussian effective potential of a

classically chaotic system.

1.5. Yang-Mills theories, Monopoles and Chaos

Non-Abelian gauge theories or Yang-Mills theories play an
important role in our current understanding of fundamentsal
interactions in nature (Abers and Lee 1873, Itzykson and
Zuber 1880). Yang and Mills in 1854 introduced the notion of
non-Abelian gauge fields by extending the concept of 1local
gaude transformations to the non-Abelian gauge group SU(2)
(Yang and Mills 1854). It was soon generalised to arbitrary
non-Abelisn groups. The unified theory of weak and
electromagnetic interactions proposed by Weinberg, Salam and

Glashow is a gauge theory with SUKZ)xU(l) as the gauge group.
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Grand unified theories which unify strong, weak and electro
magnetic interactions into a single theory are also based on
non-Abelian gauge theories. Strong interactions can be
described using SU(3) as the gauge group. Non-Abelian gauge
theories are intrinsically nonlinear and their intedrability
and chaotic behaviour aspects are of much importance in field
theory and particle physics. Chaos in YM theories has got
relevance in the explanation of problems like quark
confinement, monopole stability, etc.

Gauge theories are characterised by the group of
symmetry transformations (the gauge group) under which they
remain invariant. Bssed on the type of gdauge 4droup gaugde
theories can be Abelian or non-Abelian. The simplest gauge
group is U(1l) and the corresponding Abelian gauge theory Iis
used in the description of quantum electrodynamics.

An SU(2) Yang-Mills theory may be constructed in
the following way (Actor 1878). Let ¢#(x) be a set of n scalar
fields. Consider the globslly symmetric Lagrangian

2= (00" 0 - ni's (1.46)
(In this section and Chapters 3 and 5 we wuse the Einstein
summation convention). A global dauge transformation is
defined by

px) — 370 = e T gex) (1.47)
where T2 are the 3 generators of the SU(2) group in the
n-dimensional representation satisfying the Lie algebrsa,

(12,1°1 = i & T° (1.48)
6% are 3 arbitrary resl parameters. If we make e? space-time

dependent
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b — ¢ (0> = e 10 OT 4y © ye)ex)  (1.48)
we obtain a local gauge transformation belonging to the group
SU(2). The Lagrangian (1.46) is not invariant under the local
gauge transformation (1.48). It can be made gaude invariant
by replacing ordinary derivatives defined by

D#, = (9,6 ~ighAl T )& (1.50)

M T nm m

where Az are 3 vector fields called SU(2) gauge fields and g
is the coupling constant. The transformation of the gauge
fields can be obtained by requiring covarisnt derivatives to
transform like the fields.

D“¢(x) — (D#¢(x))’= U ( 6(x)) Dﬂ¢(x) (1.51)
Solving (1.51) we get

ARTY — A% TP= UEGARTMUTN (e (x)) - £(a,UCex))UT I (x)))
(1.52)
The SU(2) gauge invariant Lagrangian is
£ = @ »T0,8) - n%%e (1.53)
To complete the Lagrangian one should add the kinetic energy
term for the gauge fields. The simplest gauge invariasnt form

of kinetic energy is

- _ 1 .a uea
£ = v va F (1.54)
where
a a _ a b.c
Fyu = 8HAv avAH + g 6abcAuAv (1.55)

It may be noted that a gauge 1inveriant mass term is not
present in the Lagrangian. This implies that the non-Abelian
gauge fields are massless fields.

Systems with spontaneous symmetry breaking (SSB)
are very important in field theo§y; Spontaneous bresking of

symmetry occurs when there exist degenerate vacuum states.
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The vacuum is not invariant wunder the symmetry droup of
transformations even though the Lagrangian is invariant. When
a local gaude symmetry is broken some components of the gaugde
fields become massive sand all Goldstone bosons disappear.
This is known as Higds mechanism (Higgs 1864). Goldstone
boson is & massless spin zero particle created when a
continuous global symmetry is spontaneously broken.

Classical solutions of field theories play an
important role in the non-perturbative dynamics of the
corresponding quantum field theories. Especially important
are solutions with energy density confined to a small region
in space, which can be interpreted as particles. These are
coherent excitations of the basic fields sand a consistent
quantum theory exists for many of them. For obtaining
physically relevant classical solutions, some conditions like
finiteness of enerdy or action 1is imposed. This condition
often defines a map between non-trivial topological spaces.
Such maps fall into different equivalent classes known as
homotopic classes, which are labelled by a number called
winding number. Therefore we can classify all finite energy
solutions with respect to their winding numbers (Goddard and
Olive 1878). For a fixed winding number n, a solution having
the lowest energy will be the stable one. n is always an
inteder.

Let us consider = non-Abelian example with SSB and Higgs
mechanism. Consider an SU(2) gauge theory with Higgs triplet
defined by the Lagrangian,

1

- _ 1 .a mwa 1 anH . a _
£=-3 Fva + 5 D”¢ D" ¢ V(&) (1.56)
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where,

a - a _ a b,c

va = B“A BDA + g €.be A“Av
a _ a b,c

Du¢ = a“¢ + g sabcAu¢

2 2

and  V(#) = § ( ¢%%- B ).

This is the Georgi-Glashow (1872) model. Here the SU(2)
symmetry is broken down to U(1l) by the Higgs triplet. The
equations of motion are,
va _ L
pF"% = - g cpel Do) o, (1.57)

1t 2 2
DHD ¢a ( m"~- X &%) ¢a (1.58)

For m2 >0, the minimum of V(¢) corresponds to the value of ¢

given by the relation

#2 = ml/ (1.58)
All finite energy solutions assume the ground state
configuration as r — o .

ie., ¢°— /A asr— (1.60)

Here ¢2 = p%p2= ¢f + ¢§ + ¢§ and r2= xf + xg + xg

‘"t Hooft (1874) and Polyakov (1874) discovered
monopoles as classical finite energy solutions of non-Abelian
gauge theories. The winding number of monopole solutions
originates from the finite energy condition (1.60) on the
Higgs field ¢a' For megnetic monopoles the magnetic charge is
related to the winding number. Sometimes winding number is
referred to as the topological chargde. Since the winding
number is a conserved quantity magnetic charge is also
conserved.

The 't Hooft-Polyakov monopole soclution with

winding number 1 is



a _ a _ 1 1-R(r)
A0 =0, Ai = g “ain’n r2
-1 H(r)
$ = g fa rz (1.61)

where r = X, and r is the radial variable. This static

spherically symmetric ansatz converts equations of motion to

two coupled differential equations.

"
&a
2 2% sk (k2 - 1452
or
2
r? 9—% = H ( 2% - m%r2 4+ 2y, (1.62)
or g€

The energy integral in terms of the ansatz function is

4

. 2 2 2 2,2

B= 4 [ar(g?s GHODE, GO-DF, K%

g 0 2r 2r r
2 2 2.2
+ §£§ ( ﬂ§ - 8'm" 42 (1.63)
4d r bN
where H® = 8H/3r snd K= 8K/dr. For finiteness of the above

integral (1.83) the ansatz function should satisfy the
condition
H— 0, K— 1 a8asr — 0O (1.84)
H— gmr/YA\, K— 0 8sr — o (1.85)
There is SSB in this theory because the minimum of
V(¢) corresponds to values of ¢a on
S2 = {8y, by, by B5 + BE 4+ 82 = wiin ) (1.886)
Choosing any one out of these degenerate minima breaks the
symmetry spontaneously. However any sarbitrarily chosen vacuum
is still invariant under S0(2) symmetry. Since S0(2) = U(1l)
we can say that the U(l) symmetry survives and the gaugde
field corresponding to this symmetry is long randed.

Exact solutions of the system (1.62) sare not

available except in the 1limit of the vanishing Higgs
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potential. In this limit, known as Prasad-Sommerfield (PS)
limit m — O and » — 0 with mz/k finite. The spontaneous
symmetry breaking survives because a classical solution can
have its Higgs field assuming non zero value m/YA\ as r — .
The solution in the PS limit is (Prasad and Sommerfield 1875)
K(r) = Br/ sinh Br, H(r)= Br Coth pBr -1 (1.67)

where # = M = gm/7\,

K and H approach the boundary condition (1.65) in

the following way

As r — o, EK(r) — O(e_Hwr )

H(r) —s gnr/YA» + 0(e HT)

where p# = Y2 m is the mass of the massive Higgs particle. The
‘"t Hooft-Polyakov monopole has a definite size determined by
the Compton wavelength of massive fields. The massive fields
exist inside the core and outside they vanish exponentially
leaving a field configuration exsctly similar to that of the
Dirac monopole.

Yang-Mills theories are intrinsically nonlinear and
hence they can exhibit chaotic behaviour. Integrability and
chaotic behaviour aspects of such nonlinear field theories
has attracted much attention during the last decade. Matinyan
et al (198la) studied a simplified Yang-Hills model and
established the chaotic nature of YM fields. They considered
the case of spatially homogeneous fields. Following this
various authors have investigated such models 1in detsail
(Savvidy 1884, Chang 1884, Karkowski 1991). Spatially
homogeneous models of YM thecry with spontasneous symmetry
breaking have also been investigated (Matinyan et al 1881b,

Nagarajaskumar and Khare 1889). Here there 1is &an order to
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chaos transition as a8 system parameter is changed. More

details on these are given in Chapter 3. However only a few
studies are available on the more important and realistic
space-time dependent systems. First such study was made by
Matinyan et al (1886,1888). They investigated numerically the
chaotic behaviour of spherically symmetric time dependent
SU(2) Yang-Mills (SSYM) system. We have studied the
integrability of SSYM using Painlevé analysis and the results
are described in Chapter 3. The nonintegrability aspects of
spherically symmetric time dependent SU(2) Yang-Hills-Higds
(SSYHH) system obtained using the time dependent version of
the ansatz (1.61) in (1.56) is also discussed there. Studies
on chsos in SS5YMH is described in Chapter 5.

Chaos in non-Abelian gauge theories are of much
importance in Quantum Chromodyﬁgnibs. This is because of the
result that presence of random fields in the vascuum 1is a
necessary and sufficient condition for quark confinement
(Nielsen and Olsen 1878, Olsen 1882). Though quantum regime
of classically chsasotic systems is not well understood it is
expected that chaos may somehow show up in the quantum case.
Multiparticle hadron production processes may also be related

to chaos in such systems (Carruthers et al 1888).
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CHAPTER 2

INTEGRABILITY OF TWwWO DIMENSIONAL
HOMOGENEQUS POTENTIALS

c.1. Introduction

Recently considerable attention has been paid to the question
of integrability of dynamical systems. As mentioned in
Chapter 1 it 1is not possible to say whether a given
Hamiltonian system is integrable or not except when one can
construct integrals of motion directly. Singular point
analysis due to Ablowitz, Ramani and Segur (1880) and Yoshida
(1983) is an extremely useful technigque for the study of
integrasbility and for the identification of integrable cases.
Ziglin's theory connecting nonintegrability and properties of
monodromy matrices of certain periodic solutions give us some
rigorous results in this area (Ziglin 1883). Yoshida has also
proved some important theorems relating integrability of
dynamical systems and the Kowalevskaysa exponents and
stability of straight 1line periodic s&olutions (Yoshida
1986,19887a,1989). These three methods have some connections
among themselves. A number of candidates for integrable
systems have been 1identified by these methods and their
combinations.

In this chapter we carry out singular point
analyses and related studies on systems with Hamiltonian of

the form,
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H= —% 2+ Pi) + V(x,¥) (2.1)
with V(x,y) &a homogeneous polynomial potential of even
degree 2m. Hamiltonisns of these types are used in 1lattice
dynamics, condensed matter physics, field theory,
astrophysics, etc., and special cases of these have been
studied in the existing 1literature (Bountis et al 1882,
Dorizzi et al 1983, Grammaticos et al 1983, Lakshmanan and
Sahadevan 1985, Steeb et al 18985b). To make the discussion
self-contained we describe briefly the ARS algorithm for
Painlevé analysis, Kowalevskaya exponents (KE) sanalysis and
related theorems of Yoshida and the stability analysis of
Yoshida in the next section. The mutusl connections samong
these spproaches are pointed out. Combining these methods we
deduce a stronger condition for integrability as a
restriction on the possible Kowalevskaya exponents (KE) and
integrability coefficients (IC). Singularity and stability
analyses of symmetric homogeneous potentials with m = 2,3
and 4 is carried out and possible integrable cases are
identified. A second integral is also constructed directly in
those cases sugdested by these analyses. We have generalised
the integrable cases to a potential of arbitrary degree 2m by
constructing the corresponding second integral. These results
are presented in section 2.3. Section 2.4 summarises our
conclusions.

2.2. Singularity, Stability and Integrability )
2.2.1. Pasinlevé analysis

According to the extended Painlevé conjecture (Ramani et al
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1982) a sufficient condition for integrability is the weak
Painlevé property (WPP). A system of equations is said to
have the strong Painlevé property (PP) when the only movable
singularities of the solutions in the complex time plane are
poles. In weak Painlevé case certain algebraic branch points
are also allowed. A strong necessary condition for the PP or
WPP is provided by the Painlevé analysis (P-ansalysis)
(Ablowitz et al 1980, Graham et al 1885, Steeb and Euler
1988). This consists in checking whether a solution can be
expanded in terms of a Laurent series with sufficient number

of arbitrary coefficients in the following form.
[ ]

n+p.
W, = 2 a§m) T 1

; » T = 229 (2.2)

m=0
We describe the slgorithm with sufficient modifications for
the inclusion of WPP. Let us consider a system of n first

order ordinary differential equations,

dwi

dz

where F is resal, snalytic in z and algebraic in w. ARS test

= Fi(z,w), i=1,2,..... n. (2.3)

does not consider the presence of movable essential
singularities hence it gives only & necessary condition for
PP. The algorithm consists of 3 steps.
Step 1. Leading order behaviour or Dominant behaviour
The main assumption of ARS test is that the dominant
behaviour of the solutions in the neighbourhood of a movable
singularity is of the fornm,
Wy ® et T — 0 (2.4)

where T = z-zg , 2g is sarbitrary with some Re(pi) < 0.

Substituting (2.4) in (2.3) we can find the possible wvalues

42



of < for which two or more terms in each equation balance
each other, while the rest can be ignored as ¥ —— 0. The
balancing terms are known as leading order terms or dominant
terms. For each choice of Py this requirement also determines
the corresponding values of the o . There can be different
leading behaviours with different Py- One must find and
examine separately all possible dominant behaviours.

From this step the following observations can be
made.

(a) If all p; are negative integers, then (2.4) nmay
represent the first term of the Laurent series for each Py
and this may be an indication of the strong PP (ai=a§0)).

(b) If p; are not integers, but rational fractions it
may be associated with WPP. The solution will have a movable
algebraic branch point. In some cases it may be possible to
transform the system to one without algebraic branch points
by a simple change of variables.

If any of the p; are irrational or imaginary it
indicates that the system is non P-type.
For an nth order system there are (n-1) arbitrary

constants to be sought among the aim)

in (2.2) for the
expansion to be generic. zg is the first free integration
constant of the system. The powers at which they arise are
known &s resonances and in the next step we turn to find
these.

Step 2. Resonances

In this step we substitute,
P r

_ i .
W, T (1 + riT ), i=1,2,...,n, r>0. (2.5)
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in the system containing only the 1leading order terms. We

retain only the terms linear in vy which can be written as
Q(r).yr =0 Yy = (rl,...,rn ) (2.8)

where Q(r) is an n x n matrix, with r entering only in its

diagonal elements at most 1linearly. The r roots of the

equation,

det (r) = (r+1)(e" oA e R + A _>)=0 (2.7)
determine the resonsnce values. Some general remarks
(&) One root is always -1, representing the

arbitrariness of 2q -

(b) The resonance r=0 corresponds to the arbitrariness
of one of the leading order coefficients a, = ago).

(c) Any resonsance with Re(r)«<0 (except r=-1) must be
ignored because it violates the leading order hypothesis.

(d) Any resonance with Re(r)>0, but r not an integer,
indicates that z=z, is a movable branch point and in general
the system is non P-type. We must check whether it can be
removed by coordinate transformations.

(e) In the case where Py is 1itself rational, the
appearance of a rational r with same denominator as Py
indicates a finite branching and is related to the WPP.

(f) If for every possible (pi,ai) from step 1, all of
the resonances r except -1 and 0 are positive real integers
then there are no algebraic branch points.

For generic solutions we must have (n-1)
nonnegative real resonances. If any of the resonance is

irrational or imaginary the algorithm is terminated at this

point.
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Step 3. The constants of integration
In this step we check whether sarbitrary constants enter in
the expansion at the resonance values without introducing
logarithmic terms. For this we substitute into the full
system (2.3), for every dominant behaviour (2.4), the
truncated expansion,

r
P S p.+m
W, =gt 4y a§“)r i (2.8)
n=1

where ry is the largest positive resonance vslue. We then
equate the terms order by order in powers of 7 to obtain,

om) al™= r(®) zo;a(j)), 5=1,...,m-1 (2.98)

. - _ T . _ T
with m-l,....rs, R = (Rl,...,Rn) ; a = (al,....,an) .

(i) For m < Tys Ty beind the smallest positive resonance
(2.8) determines a(m).

(ii) At m = rys for (2.8) to have a solution (ie., for
a(rl) to have one arbitrary component, assuming ry is a
simple root of equation (2.7)) the following cémpatibility
condition must be satisfied.

det @®r ) =0 ke1,2,....n (2.10)

th column

where Q(k)(rl) is the matrix Q(rl) with its k
replaced by R(rl).

(iii) If (2.10) is satisfied, then for ry <m<r, the
next smallest positive resonance, equation (2.9) again
determines a(m).

(iv) The same procedure must be repeated at each higher
resonance upto the largest one. In the case of multiple
resonance it must be ensured that the number of arbitrary

(r)

components of a is equal to the multiplicity of the
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resonance r.

(v) When (2.10) is not satisfied at some resonance r,
one or more expansions (2.2) will have to be altered by

introducing logarithmic terms as follows,

i () Pi*™® (r), . (r) pytr
W, = z 8" + (a;"’+ BT 1In ) + ... (2.11)
mn=0
If even with this agr)is not arbitrary we introduce more

singular terms like (1n 1)2, etc., until the coefficient agr)

becomes arbitrary. (2.11) signals the presence of movable
logarithmic branch points and then the system is non-Painlevé
type. This algorithm does not exclude the possibility of
movable essential singularities, hence the sufficiency of
single valuedness has to be checked by some other methods.
2.2.2. Kowalevskaya exponents

Consider a similarity invariant system of ODEs

dx.

i _ .
5 - Fi(xl"""xn) i=1,2,...,n (2.12)

where Fi are rational functions of x. A system is said to be

similarity invariant under the similarity transformation

-1 g3
t — a 7L, xi — o Xy (2.13)

where gi are rationsal numbers and o« is s constant if

g4 g, gi+1
Fi(a Xyseroosdt xn) = o Fi(xl"""xn) (2.14)
for arbitrary x and o. A function ¢(t,x1,...,xn) is said to
be weighted homogeneous of weighted degree M if it satisfies
s tt,ol x axy = oM act,x X ). (2.15)
s 170 0 sXqsee XD .

Differentiating (2.14) with respect to o and putting a=1, we

have
n
%F;i¢ y = (g.+ 1) F.( x) (2.18)
}:gjx:j axl XysooeonX ) = (& (X X)L )
i=1 j
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These linear algebraic equations determine the unknowns
gl,....,gn from Fi(x).
A similarity invariant system (2.12) in general
admits a special type of particulasr solutions
“8y €,
Xy = klt R kn t (2.17)
with kigi# 0 for at 1least one 1i. We <c¢an see that the

solution (2.17) satisfy (Z2.12) when the cons{ants are a set

of solutions of

Fi(kl ,....,kn) = - giki i=1,....,n (2.18)

Consider now the variational equations about the reference

solution (2.17),

n
aF . -g -g
—fi - z as (gt Lkt "yvy, 1=1,2,...,n (2.19)
Here aFi/axj(kl,...,kn) denotes OFi(x)/axj at

xlzkl,...,xnzkn. This notation is followed throughout this

chapter. Differentiating (2.14) with respect to x and putting
-1

a=t -, x4y kl,....,xnz kn, we have
-g. 9F, -g -g -g.-1 8F,
J _"1 1 n, _ i i
t ij (klt ,..,knt ) = t 5;3 (kl""’kn)‘<2'20)

Hence the variational equations can be written as

n
y szi (kyseoonk N R y5o i=1,2,...,n.
- (2.21)
It can be shown that
P“Sl P‘gn
vy = yl,Ot beeaan )Y, = yn,Ot , (2.22)

satisfy equation (2.21) when the constant p is an eigenvalue
snd the constant column vector y = (y1 gr ¥y 0)7 is an

eigenvector of a n x n constant matrix K = <Kij) with matrix

47



elements

oF.
_ i
Kij = 5;;(k1,....,kn)+ 61381 . (2.23)
The characteristic polynomial

K = det ..— K..), 2.24
(P> 151,550( p613 13) ( >

is called the Kowalevskaya determinant and the eigenvalues of
the matrix K which are roots of the equation K(p)=0 sare
called the Kowalevskaya exponents (KE).

Theorems relating KE and integrals of motion have
been proved by Yoshida. Weighted degree of a homogeneous
first 1integral appear as a Kowalevskaya exponent. Its
gradient should not vanish at xi=ki. If there are two
independent weighted homogeneous first integrals of the same
weighted degree M then p=H becomes a KE with multiplicity
two. Their gradients at kl,...,kn must be nonvanishing and
linearly independent. In Hamiltonian systems KE come in pairs
(p, gH-l—p) and the pair (—1,gH) is always present. Here gH
is the weighted degree of the weighted homogeneous

Hamiltonian. Yoshids proved also a very important result
relating KE to integrability. Yoshida’'s theorem : In order
that a given similarity tnvariant system (2,120 with rational
functions F(x) be algebraically integrable, it is necessary
that every possible KE its a rational number. This means that
existence of an imaginary or irrational KE is a sufficient
condition for nonintegrability. These results have been
widely used in the study of integrability. Since we get an
idea about the weighted degree of the intedgral of motion, it

can be used for searching integrsls of motion also. KE can
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also be defined for nonsimilarity invariant sytems.
2.2.3. Ziglin's theory and Integrability coefficient
Ziglin (1983) obtained conditions for the integrability for
the variastional equations, about s particular solution. Using
Ziglin’s theory Yoshida developed conditions for
nonintegrability for some Hamiltonian systems.

Consider a Hamiltonian system with N degrees of
freedom

H = 1/2 p* + V(@) (2.25)
where potential V(gq) is homogeneous polynomial of integder
degree k. In general the system has straight 1line periodic

solutions of the form

g =c ¢(t), p=c ¢t) (2.28)
where #(t) is a solution of the differential equation
2
Q_% + o8 1 (2.27)
dt
and the constant vector ¢ = (01’ ..... ,cN)T is a solution of
the algebraic equation
c = g: (c). (2.28)

The linear variational equation around the solution (2.26)

are with &q =

2
d% _ k-2
€35 = —e() AV (et

dt
where qu(c) is the Hessian matrix of V(g) evaluated at q=c.

(2.29)

Since qu(C) is symmetric by a change of variables ¢ = UZ~
with an orthogonal matrix U (2.28) 1is diagonalised or

separated to

2, .
42 at)  2diag(r AL, .. AT (2.30)
2 122 N
dt
where hl,kz, ..... ’XN are the eigenvalues of qu(c).
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In the case of two degrees of freedom Hamiltonian

systems there is only one nontrivial eigenvalue given by

A = Tr qu(C) - (k-1). (2.31)
The normal varistional equation (NVE) can be written sas
2 ” -—
d“E + k¢(t)k 28 -0 (2.32)
dt?

The quantity X is called the integrability coefficient (IC).
Using the monodromy groups of the NVE and 2Ziglin's theorem
regarding nonintegrability Yoshida proved the following
theorem.

Theorem : If the integrability coefficitent X lies in the

region S, defined below , the system {s nonintegrable. The

k
regions Sh are defined as follows :
(i k =z 3
S, = { » <0, 1x<k-1, K+2<A<3k-2Z,...... ,
J3-DOk/2+F < N < 3(3+IK/2-F,.... } (2.33)
(ii) S1 =R - {0,1,3,6,10,...... »J(3+1)/2,...} (2.34)
(iii) S_1= R - {1,0,-2,-5,-8,...,-3(3+1)/2+1,...} (2.35)
(iv) k = -3

S, = { A1, 0x>-fk|+2, -[k|-1>x>-3|k|+3,
=31k -2>x>-8}k{+4,...,-3(G-)|k|/2-(3-1)>X>-3(F+1) | k| /2+(3+1)
s eee 1 (2.36)
Nonintegrability of various Hamiltonian systems have been
proved using these results.

2.2.4. Restrictions on KE and IC

If all the ki are nonzero the KEs and resonances are the
same. When some of ki are zeroc there will be a difference of

an additive term between them. But when resonances are not

KEs they can even be irrational or imaginary. More details on
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the connection between P-analysis, KE and Ziglin’s theory are
given by Yoshida et al (1987) and Ramani et al (1888).

In the case of homogeneous polynomisal potential of
degree‘Zm with two degrees of freedom the three methods
discussed sbove can be combined to yield more specific
results on integrability. In P-analysis we try to find
solutions around a movable singularity at tg in the complex

time plane in the form,

) —p +3/

x(t) :'zoaf P +J3/8 (2.37)
J:
) —q +3/

y(t) = L byr a *J/s (2.38)
j=0

Here p and q are positive rational numbers with a common
inteder denominator s>0. 8 # 1 corresponds to WPP. For the
system to have PP, j=rs must be integers, where r 1is the
resonance.

Hamiltonians with homogeneous potentials of dedree
2m are invariant under the similarity transformation

t — a—lt, X — agx, y —» agy (2.39)

P — o8P, P— o8P
X y
where g = 1/(m-1) and g° = mn/(m-1). For such a system
Kowalevskaysa determinant is given by
R(p)= (p+1)(p-gy) [ P2~ p(28+1) + 2(g+1>? + D_ 1, (2.40)
where
L o2

Dm— v V(kl,kz), (2.41)
the Laplacian of V at xzkl and y:kz and gH= 2m/{(m-1) 1is the
weighted degree of the Hamiltonian. kl and kz are determined
from the equations,

gg’klz - g!(kl,kz) and gg’k2= —.gz(kl,kz) (2.42)

X y
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Roots of the equation K (p) = 0 gives the KE. It can be
shown that KEs are the same as resonances of the P-analysis
when p = q = ¢.
Integrability coefficient for the system is given
by
_ gl _ _
hm— v V(cl,cz) (2m-1) , (2.43)
where VZV is Laplacian of V and cy and c, are solutions of
av _ av _ (2.44)
ax (¢1°¢2) = ¢ » ay (°1:¢3) =cy
Exponential instability occurs when
A< 0; 1 <X <2m-1; 2n+2 < A < Bm~2 ;......0....
m m m

3 JE-Dm+g < A < J@E+DE-§ ... (2.45)

S0 the Hamiltonian system is non-integrable in the
corresponding regions.

The relationship between the resonance of 8
Painlevé singularity and the KEs have been clarified by
Roekaerts and Schwarz (1887). More detailed discussions are
given by Yoshida et al (1987) and Ramani et al (1888). In
general Painleve lesding singularities having no counter part
in Yoshida’s theorem might exist. Here we consider the case
where they can be compared. The theorems of KE can be
translated into theorems on resonances.

(i) If an integral of motion of weighted degdree &1
exists such that its gradient is not zero at kl’ kz, both
nonzero, then there is a resonance r=g; associated with the
corresponding Painlevé® leading singularity with p=q=g.

(ii) If an integral of motion of weighted degree gy
exists such that its gradient 1is not zero on a solution
(2.42) with k

=0, k,#0 or k.,» O, k

1 2:0, then there is

1 2
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resonance r = 2(31—1/(m~1) + 1) wsassociated with the
corresponding leading singularity with p < @ = 1/(m-1) or q <«
P = 1/(m-1) respectively.

(iii) A necessary condition for the existence of an
algebraic second invariasnt 1s that all resonances with
Painlevé leading singularities with p = 1/(m-1) or q =
1/(m-1) are rational numbers.

The restrictions imposed on the resonances by the
extended P-conjecture imply that (1) all KEs associated with
solutions kl’ kz, both nonzero (p = q = g) must be integral
multiples of 1/(m -1), and (ii) all KEs associated with
=0, k, 0 ( k

solutions k1 and k2 with k = 0, k = 0 )

1 2 1 2

for p <cgq =8 (q <p =g ) must be integral multiples of
1/2s where s = 1/n(m-1) and n is a fixed integer specific to
a particular Hamiltonian. In case (i) p = r and in case
(ii) p = 1/(m-1) - (r-1)/2.

2.2.5. Further restrictions

We now combine singularity analysis with stability analysis

to obtain further restrictions on KEs. For homogeneous

potentials it follows from (2.40) and the results of

Roekaerts and Schwarz (1887) that the solutions of the
equation
2
2 m+1 m _
of - (3] e+ 2(52) + oa = 0 (2.48)

must be integral multiples of 1/(m-1) in case (i) discussed
above. Hence, for integrability, Dm must be given by

D, = [k(k-m-1) + 20°1/(n-1)? (2.47)
where k is an integer. Comparing equations (2.42) and (2.44)

and making use of equations (2.41) and (2.43) we find that Am
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is directly related to Dm by

Km = —Dm/gg - (2m-1) . (2.48)
Consequently Xm is also restricted to a set of discrete
values
xm = k(k-m-1)/m + 1. (2.48)

Expressing k modulo m by

k=nm+ i (2.50)
where n is an integer and i = 0,1,2,..... ,m-1, we have

km = j(3-1Om + (2.51)
for n=j sand i=1 (k=jm+1)
and A= j(i+1)m - J (2.52)

m
for n=3j+1 ,i=0 ( k=(3-1>m ).

For jm+l < k < (j+1)m,

J(3-1>m +3 <« Km < 3J(G+Dm -3 (2.53)
and hence is in the unstable region. It follows that for
integrability k can assume only the values jm or Jjm+l for

arbitrary J. In other words apart from -1 and gy the only
values KEs in case (i), can assume are 0, 1 (mod m) in units
of 1/(m-1). The integrability coefficient km’ then assumes
only the values corresponding to boundaries separating stable
and unstable regions.

In case (ii) the solution of equation (2.48) must
be a multiple of 1/2s. Hence for integrability

D, = [k/2n (k/2n - m - 1) + 20°1/(n-1)° (2.54)

where k is an integer. Correspondingly the integrability
coefficient is

Km = (k/2n) ( k/2n - m-1 ) + 1 . (2.55)

If k = 2nj eq.(2.55) is formally the same as eq.(2.498)
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with k — j. By the repetition of the previous reasoning
it will then follow that integrable cases correspond to j=0,
1 (mod m). However, there can also exist other integrable

cases with k # 2nj depending on the values of n and m

2. 3. Integrable Potentials
We have performed Painlevé analysis and calculated KEs for
symmetric quartic, sextic and octic potentials with a view to
identifying possible integrable cases in the 1light of the
above results. Direct construction of second integral of
motion is also given in some cases. A generalisation of the
integrable cases to potential of arbitrary degree 2m is also
obtained.
2.3.1. Quartic potentisals
Consider a system with Hamiltonian

=22+ P2y v act v + 8GOy +x vP) 4 o KB

A,B,C = O (2.55)

and equations of motion

x =P, T A
P = -[4Ax°+ B(3xy +y°) + 2Cxy®] (2.56)
P, = -[4ay%+ BGC+ 3xy?) + 20xPy)

To perform Painlevé snalysis we look for dominant behaviour
near a singularity of the form (2.37,2.38). Substituting in
(2.56) give p = q = 1 with b0 = a 84 where o can assume

one of the four possible values

. o= %1 , (2.57)
1,2
ag 4 = ((4A-2C) * [(4A-2C) - 4B1Y/23/2B.
Correspondingly
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ag = -2/(4A + 3Ba + 2Ca® + Ba®). (2.58)
Solutions of (2.58) can be expanded in the form
2 0 .
x(t) = L a.,z +*I (2.59)
j=0 Y
a .
y(t) = Eb,z 1 I (2.60)
j=0 7
This is a strong P-case. Resonances are found to be -1,1,2,4

(a = 1) and sufficient arbitrary constants enter with the
above type of solutions, when C = BA , A and B arbitrary.
To c¢salculate KEs and integrability coefficients

we note that for the system (2.55), g =1, &g° = 2 and m=2.

A soclution of (2.42) is kzz akl (correspondingly Co= ac

1
in eq.(2.44)) and
2 _ . 2 _ 2
kl = g g cy = ag (2.61)

By the restrictions mentioned in section 2 KEs (in case(i)

with kl’ kz both nonzero ) can only be 1,2,3,...., that is,
D2 can have values -6,-8,-12, -18,.... and corresponding
values of XZ are O, 1, 3, B,..... for any choice of

solutions. For the P-case, C=6A (A and B arbitrary) KEs are
-1,1,2,4 for o = *1 (D2 = -6) and -1,-1,4,4, for (D2 =
-12) and the corresponding values of Kz sare 0 and 3
respectively. Of the possible integrable cases corresponding
to the allowed values of D2’ for the P-case, we have been
able to construct the following second integral of motion
directly from the Poisson bracket condition (H,I] = O,
sssuming the weighted degree = 4.

_ 4 4 2.2
I = PxPy+ B (x7+y "+ Bx"y

)y +4A (x y+xy o) (2.62)
The special cases of the Hamiltonian (2.55) with B=0 hsas

been discussed by Steeb et al (1885b).
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2.3.2. Sextic potentials
Consider the Hamiltonian
H = % (Pi + P§)+A(x6+y8)+B(x5y+xy5)+C(x4y2+ x2y4)+Dx3y3,
A,B,C,D = O (2.863)

Equations of motion are

k=P .,V = B
P = —[BAX°+B(5x%y + y2)+C(4x yZ+ 2xyd)+3Dx%y° ] (2.84)
P, = ~[BAY +B(x°+ 5xyT)+C(2xdy +4x2yS)+3Dx°y2 ]

For this system, we have a8 singularity with dominant
behaviour p = q = 1/2 sand b0 = aao, where o is a root of
the equation
B 4 2,2 -
B(a™-1)+(2C-6A) o (aa” -1)+(3D-5B)a”™(a™ -1) = 0 (2.65)

o = * 1 is a root of the equation. Correspondingly,

ag = -3/[4(BA+5Ba +Bo”+2Cat+4Col+3Da’ )]
Solutions of (2.64) will be of the form

o0 .

x(t) = ¥ a,r 1/2+3/2 (2.86)
3=0 Y

> -1/2+5/2

y(t) = L b.r J (2.87)

j=0 7

This is a wesak P-case. The resonances are found to be -1,
1/2, 3/2, 3 (with aa = *1) and sufficient number of arbitrary
constants enter in the solution when C=15A and 10B = 3D, A
and B arbitrary.

For the system (2.63) g = 1/2, g¢° = 3/2 and m .=3.

k2 akl is a choice of solution of (2.42) (correspondingly
_ . 4 _ .4 _ 4

e, = acl in eq.(2.44)) and kl = -gg ¢y = ag - In order that

the system be integrable D3 has to be -15/4, -18/4, -30/4,

-38/4,.... and corresponding values of k3 are 0,1,5,8,.. for

any choice. For C=15A and 10B=3D (A and B arbitrary) KEs are



-1,1/2,3/2,and 3 (o« = *1) and k3 = 0.

Looking for an integral of motion with weighted

degree = 3 we find in the P-case

I=PpP +B (xB+yB+15(x¥y2+x2y3)] + A [B(x°y + xy°)+20x°y°]
(2.68)
Special cases of the Hamiltonian of the form

(2.63) with B=D=0 have been discussed by Graham et al (1985).
2.3.3. Octic potentials
For the Hamiltonian

H = % (Pi+P§) + AxB+y®y ¢ B(xTy+xy ') + C(xByZix2y®y +

D(x5y3+x3y5) + Ex4y4 (2.869)

It is found that C=28A, E=70A and D=7B, A and B arbitrary, is
a P-case. For this system g=1/3, g¢° =4/3 and m=4. D4 can
take values -28/8,-32/8,-56/8,-76/8,.... and corresponding
values of K4 are 0,1,7,12,22,....for any choice of solutions.
For the P-case we have a solution for which KEs are
-1,1/3,4/3 and 8/3 and K4 = 0 vielding an integrable
case. We can also identify the following non-integrable
cases.

(i) B=D=0 (except when (a) C=28A,E=70A (b) C=4A,E=6A
and (c) C=E=0 ), (ii) A=B=C=D=0 , (iii) A=C=D=E=0 and
(iv) A=B=C=E=0.

Searching for an integral of motion with weighted

degree =< 8/3 we have, when (a) C=28A,E=70A and D=7B

I =PpP, + ALB(X y4xy') + 56(x°yo+x3y°)] +
BrxC+yB+28(xPy2+x2y%)y + 70x%vY] (2.70)
(b) C=4A,E=6A and B=D=0 I = ny - Pyx (2.71)

and (c¢) B=C=D=E=0
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2.3.4 Generalisation
We can genersalise the integrable cases to arbitrary m (m =
2). The general form of an integrable symmetric Hamiltonian

with homogeneous potential of dedree 2m is

_ 1 2 2
H = 5 (Px + Py) + A Vm + B Jm (2.73)
and its integral of motion with a weighted degree 2m/(m-1) is
I = PxPy + B Vm + A Jm (2.74)
where
m . .
_ 2m-23 .23
v, = E oy x y (2.75)
[ ] when 23 = m
o, =
J
[ Zm—ZJ] when 2j > m
a-1 2m-23-1 [23+1
Jm = B. x (2.786)
j=0 9
when 2 +1 < m
a = [23+1]
[ om- (23+1)] when 23 +1 > m

Integrable cases (2.62),(2.868) and (2.70) are special cases

of (2.74) for m= 2,3and 4 respectively.

2.4. Conclusion

In this chapter an attempt was made to combine singularity
and stability analyses for &8 Hamiltonian system with a
homogeneous potentisl. A new restriction on KEs, which may be
used as an effective tool in the search for integrable

systems, has been obtained. Applying this to symmetric
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quartic, sextic and octic potentials we have identified
possible candidates for integrability. However it happens
that the cases where we have been able to construct a second
integral of motion directly are not genuinely new integrable
systems. This is because potential of the integrable form
(2.73) can be, by a rotation through an angle n/4 and
scaling (Hietarinta 1887), reduced to known integrable
potentials of the form
V=x"+a yn. 2.77)

It is known that the general form of integrable symmetric
potentials are V = f(x2+ yz) and V = f£(x)+f(y) with
integrals of motion I = ny - Pyx and I = Pi+ 2f(x) or Ps
+ 2f(y) respectively (Hietarinta 1887). Integdgrals of motion
(2.71) and (2.72) are also special cases of these. The
question whether these exhausts the integrable cases or

there can exist an additional integral in the rest of the

cases is yet to be answered completely.
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CHAPTER 3

NON-INTEGRABILITY OF SU(2) YANG-MILLS AND
YANG-MILLS-HIGGS SYSTEMS

3.1. Introduction

Recently the question of integrability of non-Abelian gaugde
fields has attracted wide attention (Chang 1884, Furusawa
1987, Ichtiaroglou 1889, Matinyan et al 1881a,b,1986,1888,
Savvidy 1884, Villarroel 1988). It has been shown that chsaos
can appear in classical theory of non-Abelian gdauge fields,
at least under certain approximations. This is of particular
significance in view of the result obtained by Olsen (1882)
that the presence of random fields in the vacuum is =a
necessary and sufficient condition of quark confinement in
Quantum Chromodynamics.

Most studies made so far have confined themselves
to the finite dimensional subsystems depending only on time
variable. Classical Yang-Mills theory depending oniy on time
(YM Classical Mechanics) has been shown to be non-integrable
and chaotic by various techniques (Matinyan et al 1881s,
Nikolaevskii and Schur 1982,1883, Gorski 1884, Steeb et al
1886d, Karkowski 1890,1881). However, with regard to the
general 3+1 field systems the situation 1is not fully
understood. By the Psainlevé criterion SU(2) self dusl
Yang-Mills equations have been shown to be integrable (Jimbo

et al 1982, Ward 1884). But such analysis has not been
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carried out in the general case. On the other hand Matinyan
et al (1886,1988) have shown that space time dependent
spherically symmetric Yang-Mills system can exhibit dynamical
chaos. They employed the Fermi-Pasta-Ulam (1855) method in
which continuous equations are replaced by a set of discrete
equations which are then numerically analysed. But it is well
known that the discretisation itself can be &a cause for
chaotic behaviour. Alsc the continuum 1limit of a discrete
model exhibiting chaos can be non chaotic.

In this chapter an attempt will be made to clarify
the question of nonintegrability and space-time chaos in the
spherically symmetric non self-dual-sector of sU(2)
Yang-Mills and Yang-Mills-Higgs theory without introducing
discretisation. We apply singulsr point analysis to test the
intedrability of the PDEs as well as of the ODEs obtained by
symmetry reduction and by other means. Our results show that
these systems are generally non-integrable.

The partial differential equations corresponding to
the SU(2) theory and the ODEs obtained from them are
described in section 3.2. A brief review of results regarding
integrability and chaos of YM and YMH Classical Mechanics 1is
also given. In section 3.3 we briefly describe the WTC
algorithm for singular point analysis. The results are also
presented in this section. Section 3.4 1is a summary of
results and conclusions. Expansions of recursion relations at
various orders for spherically symmetric Yang-Mills (SSYM)
and Yang-Mills-Higgs (SSYHH) systems are given in the

Appendix.
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3. 2. Yang-Mills and Yang-Mills-~Higgs systems

3.2.1. YHCM and SSYH

The SU(2) Yang-Mills system is described by the Lagrangian

- _ _!; a a
- Fm F (3.1)
a _ a a b ,c
where Fyv = 6“ Av - av Au L - R A’u Au (3.2)
o, Vv = 0’1’2»3 3 a,b,c :1’2»3
The equations of motion have the form,
@F + g« AP pe - g (3.3)
M py abc p Ty )

Let us look for 8 class of solutions of the system (3.3), for

which the Poynting vector in some system vanishes (Baseyan et

sl 1879),
_ a a _
TOj = FOi Fji = 0. ) (3.4)
Here Tpv = - Fﬁi sz + % g#u Ffp is the energy momentum

tensor of the field. Choosing the gauge Ag = 0 the -equation

(3.3) and (3.4) reduce to the following set of equations,

‘8 a b .c _
Ai - Fji,j + g £ bo Aj Fji =0 (3.5a)
a _ b e _
N™ = abo Ai Ai =0 (3.5b)
and A%r2. - ¢ (3.8)

i~ij
From (3.5b) and (3.8) we get,

a
- Ai,j )

Now let us consider the special case of spatially homogeneous

‘a a
Ay C B4 5 o . (3.7)
Yang-Mills fields which satisfy (3.4) snd depend only on the
time coordinsate. ie.,
a _ ,8
Ai = Ai(t) (3.8)

In this case the equations of motion take the form
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" 2 ,a ,b ,b 2
A} - g% AT AJ A] + g

a ,b ,b _
Ai AJ. AJ. =0 (3.9)

with constraint (3.5b). Then equations follow from the

Hasmiltonian,
.. 2 2 2
_ 1,8 ,a g a ,a _ a ,a
HYM _aziz Ai Ai + 3 [ ¢ Ai A.1 ) ( Ai Aj ) 1 (3.10)

Hence for spatially homogeneous YM fields the equations (3.3)
reduces to a nonlinear mechanical system (YMCHM). YMCM hsas
been extensively studied by various authors. Matinyan et =al

(1881a) investigated a simplified model with n=2 given by

H = ( %%+ ¥2)/2 + x%y2/2 (3.11)
obtained by taking Alz 1 x(t) Az -1 y(t) and Alz A2=0 They
17 g > 72 g 2 177

have shown that it is chaotic and nonintegrable. Study of the
periodic orbits of the system shows that they are unstable.
Further studies by Chirikov and Shepelyansky (1981), Avakyan
et al (1982), Nikolaevskii and Schur (1882,1883), ©Steeb and
Kunick (1985), and Steeb and Louw (1986c) have confirmed the
nonintegrability by salternative techniques such as Poincaré
surface of sections, Lyapunov exponents and Painlevé
analysis. Moreover Savvidy (1883) has shown that this system
is in fact a K-system. The model corresponding to n=3 has
also been shown to be nonintegrable (Steeb et al 1886a).
Higher dimensional cases have been investigated by Asatryan
and Savvidy (1883), Froyland (1883) and Karkowski (1880,1881)
and proved to be nonintegrable and chaotic.

What happens when the YM fields are space-time
dependent? For simplicity let us consider the time dependent
spherically symmetric ansatz,

r
n

1
] t ain 2
g€ r

(1-K(r,t)) (3.12)
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which reduces the equations of motion, D# F“va =0 to

2 2, _
r (an Ku) + K(1-K") = 0 . (3.13)
This is named as SSYH system. The static soclutions of (3.13)
given by K = 0 is the Wu-Yang monopole solution, K = -1 is
the vacuum solution and K = 1 is the gauge equivalent to
vacuum one. These static solutions are all unstable (Wu and
Yang 1868). All soclutions except phe trivial ones K = * 1
are non self-dual.
A Lie symmetry analysis for a system including a
Higgs field was carried out by Babu Joseph and Baby (1885).
From that we infer that (3.13) admits a similarity variable,
p=r/ (t*-r" ) (3.14)
and on substituting (3.14) in (3.13) we get corresponding
similarity reduced ODE
2 d’k
P 2
de
[ 4
The singularity analysis of this equation is of significance

= K(K%-1) (3.15)

in view of the conjecture by Ablowitz et al (1880), that =a
system is integrable if the corresponding similarity reduced
system of ODE possesses the PP. It is also known that wusing
an independent variasble transformation (Arodz 1883)

t-to

* = =2 -1 (3.186)

the nonlinear partial differential equation (3.13) can be

reduced to a second order nonlinear ordinary differential

equation,
2
(2ee)e L8 4 20140y B 4 k(1-K%) = 0 (3.17)
d2» dae
The domain of # is -1 <2 < o . A family of regular

solutions in this domain was obtasined (Arodz 1983) with the
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property

K— 0O as T — ©

0 < IRl <1 as 7 —% -1.
3.2.2. YMHCH and SSYMH
Another system which we analyse is the SU(2) Yang-Mills-Higgs
system which can exhibit spontaneocus symmetry breakdown
depending on the vacuum expectation value of the Higgs
scalars. For a YMH model with N scalar fields transforming
according to a N-dimensional representation of SU(2) group

the Lagrangian density is

- _ 1 a HYa 1 A M, A
£ = " va F + sz¢ D7 -V(¢) (3.18)
a _ a a b ¢
where va = auAv - avA“ + g sabcAp Ap (3.19)
- s 8 a,B
DH¢A = 6“¢A ig TAB A“¢ (3.20)
2 2
_ A 2 m (3.21)
V() = ; (¢ - X )
a,b,c = 1,2,3 ; A,B = 1,....,N. TZB is an N-dimensionsal
matrix representation of the infinitesimal generators of

SU(2) and ¢2 = ¢A¢A' The equations of motion following from
(3.18) are
(3.22)

HUA . a B A
DvF ig TAB ¢ Dp¢

u 2 2
DMD Pa Cm =X @ )P, (3.23)

Restricting oneself to the case of spatially
homogeneous fields in the gauge Ag = 0 the equations get
reduced to ODEs describing a finite dimensional mechanical
system (YMHCHM), as in the case with YH theory discussed

above. For Higgs fields in the doublet representation (r?=

a

% , Pauli matrices) these equations can be derived from the
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Hamiltonian (Matinyan et al 1881b)

- 1 2 VA 1 2 a ,a 1,2 o 2
H=lyy * 3 (o + B + g 87 C A A [ 3B, + G+ M7
2 1 .2 o 2 2 .2
+A [§Ba+(7§+”) - n" ] (3.24)
The constraint to be satisfied is
b ¢ 1 : 1 . : : _
Cabe By A; ~HdZ W B + 5[0 B, -Bo -5, B Bel = 0

where n» is the vacuum expectation value of the scalar field

.

2

X is the self interaction constant of the scalar field ¢.

¢ iB,+B
- 1y_ 1 172
¢ {¢ }“ 72 [vzn +a-153] (3.25)

Detailed studies have been made for the special case of a two
component gauge field with Al = x(t) and A% = y(t) and all
other components of A zeroc interacting with the Higgs vacuum
B =0, o = 0. The Hamiltonian for this case is
Ho=pt= 6Pev%)r2 + e8x5v%72 + @20 (xP+y®)/4 (3.26)
where u4 is the constant value of the energy of the system.
This system is characterised by one parameter
no= (@/2)% (n/md (3.27)
and analysis reveal that the system can be integrable or
nonintegrable depending on n. At n,x® 0.15 a phase transition
like behaviour occurs from ordered motion to highly chaotic
motion. For higher values of m the system 1is close to an
integrable one. The Higgs field appears to subdue the chaos
of the original YM fields (Chirikov and Shepelyansky 1882,
Berman et al 1885).
We shall now turn to the field theory of YHMH system

with the Higgs field in the adjoint. .representation. Using the

time dependent spherically symmetric "t Hooft-Polyakov ansatz
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(Mechlenberg and O 'Brein 1878)

A =0 , AP =le Lo REb)

i g ain n rz (3.28)
-t H(r,t)
¢a B gro o2

where roos X, and r is the radisl variasble, the field
equations of the SU(2) gauge theory are reduced to the form
denocted as SSYMH

2 _ 2 2
r*(K_- K,) = K (K*- 1 + H*)

(3.28)
P*(H_- H) = H (2K* - n°%” +§; H®)
In the Prasad-Sommerfeld (PS) limit they become
(K- K = KK 1+ H) (3.30)

2

r(H_- H,) = 2HK

tt

By using the similarity varisble in (3.14), equations in

(3.30) can be further reduced to the system of ODEs,

P L% = K (KP-14H)
de (3.31)
2

oo L8 - ong?
do

Using the independent variable transformstion (3.16) the

system (3.31) yields the ODEs,

(2423 LK 4 20142y IR - gerZo148%)
da . da
2 (3.32)
(242 ) d g + 2(1+2) dd = 2HK2
da2e d»

It is not known whether the transformation (3.18) is related
to any symmetry invarisnce of the system or whether there are
other ODEs which may be obtained from (3.13) and (3.30).

With the intention of studying the integrability of

Yang-Mills and Yang-Hills-Higgs field theories we shall now
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carry out a singular point analysis of the PDEs (3.13) and

(3.28) as well as the ODEs (3.15),(3.17),(3.31) and (3.32).

3.3. Singular point analysis and Integrability

3.3.1. WTC Algorithm for Painleve analysis of PDE.

In Chapter 2 we have seen that the Painlevé property is a
useful criterion for identifying integrable systems. For
testing PP an algorithmic procedure has been devised by
Ablowitz, Ramani and Segur (ARS) (Ablowitz et al 1980). The
original ides of ARS was to attribute integrasbility to PDEs
when their reductions to ODE all have the PP. They
conjectured that every ordinary differential equation
obtained by an exact reduction of a nonlinear PDE solvable by
the inverse scattering transform (IST) method has the PP. 1In
practice this is not useful very much in testing the
integrability of PDE because it may not be possible to find
8ll the possible similarity reductions of it or the
reductions may be too trivial. It has been observed that this
is not a sufficient condition for integrability of a PDE
(Clarkson 18868). Weiss, Tabor and Carnevale (1883) introduced
the concept of PP directly for PDEs. According to them a PDE
possesses the PP if its solutions are single valued about a
singularity manifold. In the case of PDEs, the singularities
of the solutions can not be isolated as that for ODEs, which
are analytic functions of only one complex variable. If
fzf(zl,....,zn) is a meromorphic function of N complex
variables (2n variables), the singularities of f occur along

analytic manifolds of resl dimension 2n-2. These manifolds
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are determined by conditions of the form

where ¢ 1ia an analytic Ffunction of (zl,....,z ) in &
neighbourhood of the manifold. Ward (1884) has pointed out
that the manifold must not be a characteristic : ¢z # 0. For
PP the solution of a PDE u; can be expanded as a generalised

Laurent series about the manifold (3.33) in the form,

a,loo .
u.=¢p 'L o @ (3.34)
i . 18]
i=0
where uiox 0, uij = uu(zi,zz,....,zh) and ¢ =
¢(z‘,22,....,zn) are analytic functions of the independent
variables Z 32y 012 s in a neighbourhood of the manifold

(3.33) and oy is a negative integer. (3.34) must admit
arbitrary functions equal to the order of the PDE. To test
this we have an algorithm similar to that for ODEs. As a
deneralisation the concept of WPP can be introduced by
allowing oy to be rational. Substitution of (3.34) in the
PDE provides us with recursion relations for e Rruskal
(Ramani et al 1888) sugdested a simplified algorithm in which
P = Zytzot. ... + w(zn). The procedure of the algorithm is
analogous to that of ODEs and there are three steps in it.
They are (i) finding the dominant behaviours, (ii) finding
the resonance values and (iii) checking whether arbitrary
constants enter at the resonances without the introduction of
movable critical manifolds. In the first step we find all the
possible values of aiand Uig in the expansion (3.34). For

this we substitute the j=0 term of the series (3.34) in the

PDE and find o, values at which two or more terms Dbalsance,
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these being known as leading order terms (or dominant terms).
From this we can find corresponding Usig value also. To find

the resonances we extract the coefficient 6(j) = Q{3 uij of
the term ¢j+a—? where N is the order of the PDE, from the
recursion relations for LFFE Resonances are roots of the
equation Q(j)=0. We find always -1 to be a resonance which
corresponds to the arbitrariness of ¢. To avoid any movable
critical manifolds, we require that the remaining roots be
nonnegative integers. Correspondence of resonances and
Kowalevskaya exponents may be invoked here also (Steeb and
Euler 1988). In the third step we test whether positive
resonances do indeed correspond to the arbitrary constants of
the solution (3.34) without logarithmic singularities. This
is done by expanding the solution up to the largest
resonance. At each resonance we come across certain
conditions on the preceding uy; and ¢, known as compatibility
conditions, which must be satisfied in order to ensure that
the corresponding ;5 is indeed arbitrary. If the systenm
passes all the three steps we say that it is a P-case. Note
that the possibility of movable essential singularities are
not excluded and hence this test provides only a necessary
condition to have PP. The WTC method described here can also
be spplied to ODEs. In the case of ODEs if we put ¢ =t—to
and ;5 constants, we have the ususl ARS Painlevé test.

The interesting thing about +the WTC approach is
that the PP 1is directly connected to the 1linearisation

properties, Lax pairs, Backlund transformations, Hirota

bilinearisstion and soliton solutions.
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We obtain BHcklund transformations (Weiss
1883,1988) by truncating the expansion (3.34) st the constant

level term. That is we take
—N+1+

- -N
ui— uio¢ + uil¢ + UiN (3.35)
From the recursion relations for uij’ we find an over
determined system of equstions for ¢ and uij(jzo,l,...,N),

where Uy will satisfy the original PDE. In many integrsable
PDEs by solving the overdetermined system, we obtain an

equation satisfied by ¢, involving Schwarzian derivative,

@ ¢ 2
=2 JIxx oy 1 Txx
{¢,x} = ax( Py ) 5 (¢ ) . (3.36)
X X
(3.36) is invariant under the Moebius group transformations
_ay + b _
¢ = v + d s {#,x} ={v,x} . (3.37)
v
This motivates the substitution ¢ = ;l by which Lax pairs
2

may be found (Weiss 1883,1884).

It has been observed that there are connections
with Hirota’s bilinear transformation method to obtain
N-soliton solutions and WTC approach (Gibbon and Tabor 1985,
Hirota et al 1986).

In some systems arbitrary constants enter at the
resonances, for some special choices of ¢ only. There will be
consistency conditions to be satisfied by ¢#. Such systems are
said to have conditional PP (Weiss 1884). Special solutions
of such systems can be obtained using the truncated Laurent
series expansion. Even if the system possesses neither PP nor
conditional PP much useful information can be extracted from
the WTC expansions (Newell et al 1887, Conte 1888, Cariello

and Tabor 1883,1891).
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3.3.2. Nonintegdrability of SSYM and SSYMH systems

To investigate the integrability property of spherically
symmetric YM (SSYM) fields we consider the system (3.13). We
try to find solutions of the form

o o] .
K = ¢°‘.zouj¢’ (3.38)
]':.

To obtain the leading order behaviour we put K = uo¢a. From

that we gdet o = -1 and ui = 2r2(¢f—¢f). The recursion

relation is
¥ [(3-1)(3-2)(@] -8 du+(3-2)u;_ (B, b, )+

2(3-2)(,u;_, ~buy, Oveg o]
j n
i ngo .E Ui-ntn-als Y2 (3.39)

Resonances are found to be -1 and 4. -1 corresponds to the
arbitrariness of ¢. Expansions of (3.38) upto j=4 are given
in & 3.A.1 of Appendix. For the system to be integrable, at
the resonance value 4 the expansion coefficient must be
arbitrary. From the analysis of the recursion relations up to
j=4 we find that.u4 is not arbitrary and therefore the system
does not possess PP. The conclusion is that spherically
symmetric time dependent Yang-Hills equations are
non-integrable in the sense of WIC. To see whether it is
intedrable in the sense of ARS we shall do P-analysis of the
ODE (3.15) and (3.17) obtained from (3.13). We find that even
though resonances are rational, a sufficient number of
arbitrary expansion coefficients does not exist and hence
these systems are also nonintegrable.

Next we consider the spherically symmetric time

dependent Yang-Mills-Higgs (SSYMH) system (3.29). We seek
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solutions of the form

otw . ﬁw .
K=¢F% uj¢’, H=2¢"¢ vjz»’ (3.40)
i=0 i=0
From the leading order snalysis we obtain a = 3 = -1,
A A
up = (1 - 5 Vo and (2 - 5 ) = 2r(e0- #0) (3.41)
g g

Recursion relations for u, and v, are,

2 [3-1G-2) -2 0, -0, 04

2<j—2)<¢ruj—1,r_¢tuj-1 L )+uj_2' re Y-2, u]
i n ‘

r* [(3—1)(j—2)(¢f—¢f)vj+<j—2>vj_1<¢”—¢u>+

2(3_2)(¢rvj~1,r_¢tvj—1,t)+vj-2,rr—vj—z,t£]
i n
_ A 2 2
= Lv, . (2o __u +=5v _v)-nmr Vi, (3.43)
Nn=0 s8= g
Resonances are found to be real if - ; = é; = 2. The
]
resonances are found to be integers when §; = 0 or 1. But é;
g g
= 1 is not allowed by the sssumption that u, = g, v, * 0.
The resonance values for é; = 0 are -1,1,2 and 4. Expansion

g
of (3.42 and 3.43) upto Jj=4 are given in & 3.A.2. of

Appendix. Arbitrsasry expansion coefficients do not exist st
the resonance values. Hence the system is nonintegrable. When

- - 0 the leading order terms of the system (3.28) are equal

g
to its PS limit (3.30). It is 8lso non-Painlevé type and
hence nonintegrable. The similarity reduced system (3.31) and
(3.32) of the PS 1limit are slso found to be nonintegrable by

the same analysis.
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It may be mentioned that the ARS method 1is not
suitable for equations (3.15) and (3.31) but can be applied
to (3.17) =and (3.32) after they are converted to
corresponding autonomous systems. In these cases we find that
the resonances, which also happen to be the KE, are
irrational and hence these systems are also algebraically

nonintegrable in the sense of Yoshidas (1983).

3. 4. Conclusion

In this work we showed that spherically symmetric time
dependent Yang-Mills equations as well as Yang-Mills-Higgs
equations do not possess PP in the sense of WTC and the ODEs
obtained from them are aldebraically nonintegrable. These
conclusions are in general agreement with those obtained by
Matinyan et al (1886,1888) and by Furusawa (1887) for SU(2)
Yang-Mills system. The noteworthy part is that we have been
able to arrive at these results without introducing

discretisation at any stagde.

3. A. Appendix

3.A.1. Expansion of recursion relation for SSYHM (3.39).

o o2,,2 42, 2

J =0 2r7(@, - &) = ug

io- 1 - P2 - - _ - 2
371 mlug(@y - $y) - 2(ug om Spug )] = 3uyug
o2 i a2 2 .

ij=2 :r (uo,rr uO,tt) = Suzuo + 3u1u0 ug

I . W2 - - -
J =3 1 r7lu (b - B )+ 2(¢r“2,r ¢tuZ,t) T Yirr ul,tt]

_ 2 3_
= Z2u,u. + 8u2u1u0+ u1 u1

3Yg
- .2 _ N _
3 =4 r[2ug(e, - B )+ A(PLug - dug ) Uy T Uy ]
_ 2 2_
= 8u3u1u0+ 3u2u0+ 3u2u1 u2
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Expansion of recursion relastion for SSYMH (3.42,3.43).
anl, a2 L2 2 2
Zri(e, - #) = ugt vy
2,,2 2. _ 2. 2
2r (¢r - ¢t) - 200+ (K/g )VO

2

i lug(e,, - $py) - 2ug - Pug D1 = Buguds uvh
+ 2u0v0v1

vty - By - 2@V - dvg D1 = 2vyug

+ dugvou, + 300/8 v vE
rz(uo,rr— uO,tt) = 3u2ug + 3“?“0 +ou,v S+ 2u1 1

+ 2u0v0v2+ uovi - ug
rz(vo’rr— VO,tt) = 2v2ug+ 4u1 1 * 4u0 oot 2v0u§

2 2.2

+ 3(X/g2)(vzvo + vlvo) - m rivg
2
rolug(@ - Ppyd + 2(Puy L Piuy ) P Uy L Uy e

.2 3
3ug * Bujujugt uy + 2u

2
+ ulv1 + 2u0 2v1 + 2u1v2 o~ u1

2
Pl P P 2PV, - BVa )t Yy

= 2u oVols + 2u2v1v0

,rr vl,tt]

_ 2
= 2(2u + 2v,u,u, + V uy + 2v0 oy + 2v

0VoV3 2414 1
+ OvE ) (2vgvE + 8y vor vI)- miriv,

194g)

rf1a(el - #lyuy + 2ug(, - B )+ MGy - Blug ()

uZ
271

rr

+ 8u2 + 3u

2,rr” Y2,ttd 3914 2Yg

+ 2u3v1v0+ 2u2v2 0+2u1v3 0+2u1v1v2 +2u0v0v4

= 2u2

tu oY4

+ Bu

V2+u 2 - u
01 3 UaVitug¥a 2
r [4(¢r - ¢t)v4 + Lv3<¢ ¢tt) + 4(¢ 3 r ¢tv3,t)

+ 2u.v

+ v t] = 2(2vuu .+ 2v

guqugt Zvauqugt Zviugug

2,rr '2,t 2
2 2
+ 2v1u1u2+ 2v0uou4+ Zvoulu3 + v2u1+ vouz)
2 2 2 2 2.2
+ (MN/8 )(2v0v4+ 8v3v1v0+ 3v2vD + 3v2 ) - o°r v,
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CHAPTER 4

CHAOS AND CURVATURE IN A QUARTIC HAMILTONIAN SYSTEM

4.1, Introduction

The properties of a system that are responsible for the
regular or chaotic behaviour are not known clesarly. We have
already seen that properties such as singularity structure of
the solutions and stability of particular solutions have a
definite role in the dynamics of the system. It has been
shown that symmet;y of the potential contours is related to
chaotic behaviour (Ankiewicz and Pask 1884). Chaos 1is also
related to the Riemannian curvature of the manifold in which
the Hamiltonian flow can be considered as a8 geodesic flow
(Arnold and Avez 1868). Negsative curvature implies chaos.
Implication of positive curvature is not clear.

In this chapter we study 8 quartic Hamiltonian
system with two degrees of freedom and explore the connection
between the chaotic behaviour and the Riemannian curvature.
We find that there is a direct 1link between the chaotic
behaviour as measured by Lyspunov exponents and the negative
curvature of the potentisal boundary which is not considered
in the Riemannisn curvature calculation. In section 2 we
briefly describe the system under study and in section 3 we
give details of the calculation of Lyapunov exponents. An
account of the relation between dynamics and Riemannian

geometry and Riemannian curvature of the sssociated manifold
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is given in section 4. In section 5 potential boundary
curvature 1is csalculated 8nd its connection with the LEs

established. Section 6 contains our conclusions,

4.2. The Hamiltonian system

We shall study a system whose Hamiltonian is given by

H=1/2 ( p5 + p5 ) + V(@) , (4.1)
where V(q) = g___E_a_)_( q41‘+ qg ) + 172 qfqg (4.2)

and o« is a parameter, 0 < o = 1. Potential V(g) for different
o values are plotted in fidgure 4.1, for V = 1. Chaos of this
system has been studied in detail by Carnegie and Percival
(1984) using the techniques of Poincaré surface of section
and by sfudying the properties of periodic orbits. The system
has got n/4 symmetry. At oa=0 it 1is integrable and the

corresponding second integral of motion is given by

I = 3p,p, + a,9,( aj+as ) . (4.3)

Phase space motion is regular and all trasjectories lie on an
invariant tori. As o increases regular regions break up and
irregular regions appear. When «=1 system become highly
chaotic and has shown to be equivalent to a K-system by
Savvidy (1883). It has been used as a simplified model of the
spatially homogeneous classical Yang-Mills field (Savvidy
1984).

The system (4.1) is scale invariant and we can study the
chaotic behaviour at a fixed value of energy H=E. By scaling
we may obtain the behaviour at any other energy value. Using
singulsr point analysis Steeb et al (1986b) have shown that

the system is nonintegrable except when a=0. The resonances
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Figure 4.1. Curve of potentisl V = 1 for o values equal to
(a) 0.0, (b) 0.3, (c¢) 0.5, (d) 0.8, <(e) 0.9
and (f) 1.0.
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or Kowalevskaya exponents are r = -1, r_= 4, Ta,a” 3/2 £ (8/4
+ 4(a+2)/(a—4))”q. When o>4/25 resonances sare complex.
Integrability of such systems in general have been studied by
Joy and Sabir (1888) wusing singular point analysis and
stability analysis. Quantum chaos of this system has been
studied by Steeb and Louw (1986a) and Kotze (1988). Studies
on the effect of quantum fluctuations on this system by

calculating the Gaussian effective potential is given in

Chapter 8.

4. 3. Lyapunov exponents
We shall investigate the possibility of chaotic behaviour of
the system by computing the maximal Lyapunov exponent (LE).
Lyapunov exponents provide a quantitative measure of the
degree of <chaos for both Hamiltonian and dissipative
dynamical systems. It is easily computable and is a reliable
quantity to characterise a chaotic system. Another important
aspect is that it is related to other measures of chaos such
as Kolmogorov entropy and capacity dimension. LE of 8 given
trajectory characterise the mean exponential rate of
divergence of nearby trajectories.
Consider an autonomous first order system

ki = Fi(x) , 1 =1,...n, (4.4)
where n is the dimension of the system. Consider a trajectory
in the n-dimensional phase space and a nearby trajectory with
initisl conditions Xq and Xqt Axo, respectively. Time

evolution of the variation ¥y = Ax is given by the 1linearised

variational equations

80



¥ = § (OF;/0x3) vy, 1,3=1,...,n. (4.5)

Mean exponential rate of divergence of two initially close

trajectories is given by

. d(x,,t)
_ lim 1 g
AXaY g7 e i In ix, 0 (4.86)
d(0)—0

where d(xg,t) = d(t) = [r(x4,t)| is the Euclidean norm of .
It has been shown that X exists and is finite. There 1is an
n-dimensional basis {éi} of ¥y such that for any y, X takes on

one of the n values Ki(xo) = K(xo,éi) which are the Lyapunov

characteristic exponents (LE) of order one. They can be
ordered by size, KIZ KZZ ......... an. For almost all y, A
= Kl (Contopoulos et al 1878). Kl is known as the maximal
LE.

One of the LEs will be always =zero because along
the direction of the flow y grows only linearly with time. In
the case of a Hamiltonian system 1-dimensional LE are
symmetric about zero. Kiz - xZN—i+1 , where 2N = n, N the
number of degrees of freedom. Therefore here at lesst two
LEs are zero. Sum of LEs will be zero. Hence for & chaotic
Hamiltonian system with two degrees of freedom there will be
only one positive LE.

Higher order LE can be defined by gdeneralising the
concept to describe the mean exponential divergence rate of a
p-dimensional volume in the tandent space p £ n. Using the

wedge operstor notation

Vp: ylA Yo o yp

for the volume Vp of a p-dimensional parallelepiped whose

edges are the vectors VysVoseenn- ,yp. Then,



. V (x,,t)
(p> _lim 1 p 0’
A (XO, Vp) = t—som E 1n VP(XO,O) 4.7

defines a8 LE of order p. X is given as the sum of p LEs of

order 1.
(p)_ y(pP)_
A = xl ..K1+ x2+ ...... + Kp,
for almost all V_s.
P n
For a Hamiltonian system sum of LEs Y Xi(xo) = g,

i=1

while for a dissipative system, it 1is negstive. Pesin has

obtained a relation between KS entropy and LE.

h, = j [ T 2.0 ] du,
k A.>0 i
R

where the sum is over all positive LE and the integral is
over a specified region of phase space. For a two degree of
freedom Hamiltonian system only Kl is greater than =zero and
hk: Kl when we consider only the connected chaotic regions.
When kl >0 the system is said to be chaotic. In the numerical
calculation we obtain the maximal LE Kl, if we take the
initial variations at random. To calculate Kl we chose an
initial YO and then integrate the system (4.5) for ¥y
alongwith (4.4) for x. From that we obtain the quantity
d(t)=|y(t)| where for convenience d0 is usually chose to be
unity. If the system is chaotic d 1increases exponentially
with t and this will lead to overflow and other numerical
errors. To avoid this we chose a small time interval T and
normalise ¥y to 8 norm of unity at every interval r. Thus we
iteratively compute
dp= | ¥y (O], ¥ (0) =y, (v)/dy (4.8)

yk(T) is obtained by integrating (4.5) with initial value
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yk(O) along the trajectory from x(kr) to x{((k+l1)r). Now we

define LE as

1 n
xl = o7 iglln di‘ (4.9)

For small r and large n, the above definition is valid and Al

is independent of the choice of . In a connected chaotic

region Xl is independent of x also.

Details of calculating higher order LE are
described by Nagashima and Shimada (1878), Benettin et al
(1880) and Wolf et al (1985)

Equations of motion of our system (4.1) can be

written sas,

1 7%
X, = X
2 4
L0 _ 3 ,a_ 2 (4.10)
x3 = (o 1)x1/3 xlx2
. - _ 3,,_.2
X, = (a 1)x2/3 Xy Xy

Corresponding variationsl system is given by,

f1 = Y3

Vv, = v

2 4

e a2 2. (4.11)
vg = ((a-13xy-%5)y,-2X X5V,

v, = ((a—l)xz-xz)y -2X . XY

4 2 Xy )V 2X X5V,

We numerically solve the system (4.10) and (4.11) together.
LE is calculated for different values of the parameter «,
with different sets of initial wvariastions. In figure 4.2
maximal LE vs a is plotted. We take the energy E=1 for our
calculations. As o increases, one can see from the value of

LE that the chaos in the system also increases.

4.4, Riemannian curvature

Any Hamiltonian flow can locally be considered as a geodesic
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Figure 4.2, Ploﬁ of maximal LE (M) vs a.
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flow on a Riemannian manifold (Arncld and Avez 1868).

Consider 8 system with Hamiltonian of the form
N
H(p,qa) = /2 ¥ =

(q) éié- + V(q) (4.12)
i,3=1

i 3

The solutions qi(t) are extremes of Euler-Maupertuis

principle,
M
' N 1/2
& 5 (2{E-V(gq)} ¥ aij(q)dqidqj) =0 (4.13)
M i,j=1

where MO and Ml are the end points of the trajectory. This
may be considered as the variational equation for geodesics
in a Riemannian space with a line element
N
2
ds®” = ¢ g. .dg.da. s (4.14)
i, =1t Y

and metric coefficients

g5 = 2E-V(D)a, (@) (4.15)
Evolution of the separation p between the nesarby geodesics
obey ( to the lowest order in p )} the Jacobi equation

p%o/dt? = - K(a,t) o, (4.16)
where D/dt is the covariant derivative in the Riemannian
geometry defined by the metric gij' If we restrict ourselves
to initial separations perpendicular to an orbit, the
covariant derivative can be replaced by ordinary one and we
can write the Jacobi equation (4.16) as

a2p/at? = - K(q,t) 2, (4.17)
where K(q,t) is the Riemannian curvsture calculated along the
orbit.

2 so that sa..= &6.., Riemannian

When E-V = 1/2 % Pi’ 13 i3

curvature K(q,t) is given by (Van Velsen 1878),

K = (N—l)/S(E—V)3 { 2Tr (Hij) - N Vme} (4.18)
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where “ij: 3ViVj + 2(E—V)Vij ,

v,= ov/0q>  and v, = 9%v/eqlaqd.
In two dimensions K is same as Gaussian curvature. Sign of K
indicates the stability of the orbit. Positive curvature
implies local stability, whereas negative curvature nmeans
instability. Hadasmard-Lobachevsky theorem sugdgests that if
the Riemannian curvature 1is negative, the system behaves
chaotically; there is exponential divergence of nearby
trajectories (Arnold and Avez 1888). Surfaces of constant
negative curvature are chaotic. It may be noted that while
negative R-curvature everywhere is a sufficient condition for
chaotic behaviour the converse 1is not true. Positive
curvature does not mean that the system is integrable. Local
instability everywhere implies global instaﬁility but 1local
stability everywhere does not imply global stability
(Eckhardt et al 1985). Associstion of the system with the
geodesic flow on R-manifold is not valid at the boundary of
the manifold, ie., at E = V, where the metric tensor becomes
singular.

In 2 dimensions R-curvature (Gaussian curvature) is

given by,

K = 1/2 (E-V)? { 0%V/aq3+0%v 045

+ 1/(E-V) [ (9V/0a)%4(8V/9q,)° 1t , E > V. (4.19)
For the system (4.1),
K = 1 2 2, 2 2 2
= 1/2(E-V)%((2-0)(a+ad) + 1/(E-V)[ (9V/9a,)%+(8V/2a,)° 1}

(4.20)
One can see from (4.20) that K is always positive implying

local stability. But we know that the system is nonintegrable
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except for o = 0.

4.5. Potential boundary
In the Riemannian curvature calculation we did not include
the potential boundary given by E = V. Now 1let wus consider

the potential boundary given by

( 1-a¢ ) 4 4 2 2 _
i3 ( a;t 9, > + 1/2 qia, = E (4.21)
Extrinsic curvature of the curve (4.21) is given by
3 2 2 4 4

3 2 2 ,3/2

192 1
(4.22)
When o = 0, R is positive for all values of qy and q,- R is

[(1-c0%/8(a5+ad) + (5-20)/3(a%+ad)a

negative in between the points of the boundsary (ql,qz) and

(qi,qé). Because of symmetry we consider only the first

quadrant. .
E1/4
q:
1 1-ay/12¢14ptye1/2p%7 14 (4.23)
92 P9
4, = P 4,
i 2
E1/4 (4.24)
qZ =

[(1-a)/12(1+pty+1/2p2117/4

where, p2 = {3-(1-a)2- ¥ [(1-0)2-31%-4(1-0)% }/2(1-at) (4.25)

When 94 =95, R is the maximum and it is given by
1/4

- ot 3
5/4( 2% )

R =
B (4-a)

In figure 4.3 |R | versus « is plotted for energy E = 1.

(4.26)

Comparing figures 4.2 and 4.3 we can see that the chaos
in the system 1is directly correlated to the negative

curvature of the potential boundary.
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4.6. Conclusion

In this chapter we have presented a simple model in which
there is connection between chaos and the curvature of the
Riemannian manifold in which the evolution can be considered
as a geodesic flow. HNegstive curvature implies chaos but
positive curvature does not give rise to integrability. A
chaotic quartic system is investigated which has strictly
positive curvature. We calculate the LE and show that these
are directly correlated with negative curvature of the
potential boundary. As the negative boundary curvature
increases chaos also increases in the system. Exponentisal
instability of trajectories occurs by scattering at the
negatively curved potential boundary. Such systems may be
considered as billiards with boundary as the potentisl
boundary. The connection between billisrds and Hamiltonian
systems have been observed in some particular cases (Savvidy
18984, Kawabe and Ohta 1888). Further investigations asare

necessary to establish general connections.
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CHAPTER S5

CHAOTIC BEHAVIOUR IN YANG-MILLS-HIGGS SYSTEM

5.1. Introduction

Recently much interest has been focused on the question of
non-integrability and chaos in classical non-Abelian gauge
theories. As we have seen in Chapter 3 spatially homogeneous
Yang-Mills system (YMCM) is non-integrable and shows strong
chaotic properties in general. This has been established by
many authors using various analytical and numerical
techniques. Studies on the more important and more realistic
space-time dependent systems are however much less in number.
Studies on such non-Abelian field theoretic systems are of
relevance in understanding quark confinement in QCD, monopole
stability, etc. Study of spatio-temporal chaos in itself is
also very interesting. Matinyan et al (1986,1988) showed that
space-time dependent Yang-Mills system can salso exhibit
dynamical chaos. They studied time-dependent spherically
symmetric solutions of SU(2) Yang-Mills system, in particular
the Wu-Yang monopole solution. Exponentisl instability of
trajectories was found using Fermi-Pasta-Ulam technique of
studying the distribution of energy among different harmonic
modes. Kawabe and Ohta (1890) studied the system further by
calculating the induction period, the equal time correlation
and the msximal Lyapunov exponents and showed the existence

of chsos in the YM system. Using the technique of Painleve
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analysis we (Joy and Sabir 1888) have recently shown that
time-dependent spherically symmetric SU(2) Yang-Mills and
Yang-Mills-Higgs systems are non-integrsble. (See chapter 3.)

Chaotic behaviour of classical systems with
spontaneous symmetry breaking is also very interesting and
investigations on such systems were made by Matinyan et al
(1981b). They found an order to chaos transition in spatially
uniform Yang-Mills system with Higgs scalar fields (YMHCH),
as the vacuum expectation value of Higgs field 1is changed.
Recently Matinyan et al (1988) performed some preliminary
numerical calculations on time dependent spherically
symmetric SU(2) Yang-Mills-Higgs system (SSYMH) and showed
that there can be chaos. Details of chaotic behaviour of
SSYHMH is unclear snd whether there 1is an order to chaos
transition similar to YMHCHM is an open question.

In this chapter we present the results of =
numerical study on the chsotic behaviour of SSYMH system. It
is more complicated thsn the spatiaslly homogeneous cases
because of the presence of a singular potential and
space-time dependence. We consider specifically the t
Hooft-Polyakov monopole solution. Because of the 1large mass
of monopole quantum fluctuations are reduced and classical
system may be a good approximation to the real quantum case.
We find a phase-transition like behaviour from order to chsaos
as we tune the parameter which depends on the self
interaction constant of scalar fields. For our study we
discretise the system 1into a collection of interacting

coupled nonlinear oscillators and calculate the maximal
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Lyapunov exponents for various parameter values and different
number of oscillators. Calculstion of maximal Lyapunov
exponents is a reliable criterion to determine whether a
system is chaotic or not.

In the next section we briefly describe the studies
on the chaotic behaviour of spherically symmetric time
dependent SU(2) Yang-Mills system (SSYM). The
Yang-Mills-Higgs system (SSYMH) under investigation 1is also
presented there. We present the numerical techniques applied
and the results in section 3. Section 4 contains our

conclusions.

5.2. Chaos in SSYM and the 't Hooft Polyakov monopole
in SSYMH.

In Chapter 3 we discussed some of the spatially homogeneous
models of Yang-Mills theory which are nonintegrable and
chaotic. We shall now consider some aspects of chaotic
behaviour in space-time dependent YH systems. Hatinyan et sl
(1886,1988) were the first to investigate the chaotic
behaviour in SSYM system given by the equation (3.13).

(o8- #HKk = R(KF- 1)/ 0f (5.1)
Details of this system have been given in Chapter 3.
Space-time dependence and singular potential complicate the
analysis of the system which is also devoid of any control
parameter. Matinyan et al used the Fermi-Pasta-Ulam technique
for their study. The continuous system 1is discretised to

obtain N coupled anharmonic oscillators. Corresponding

equations of motion are,
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K(i+1,t) — 2K(i,t) + K(i-1,t)
2
_R(GLL) [RGB -1
(ih)?

where h is the space discretisation step. The solution K(i,t)

kki,t) =

(5.2)

of (5.2) is expanded in harmonics
N-1
K(i,t) = Y2/N E§ w(j,t) sin (mij/N) (5.3)
j=1

Then the total energy of the discrete analog of (5.1) is

given by the expression,

N-1 2 . 2
E=Ey+ 1/4 L (1 - K (é't)l h (5.4)
iz1 (ih)
where,
N-1 .0 29 ~
E0=1/2h2[w + Ty 1, (5.5)
R j
j=1
#; = 2/h sin nj/2N.

Dynamics of the system near the Wu-Yang monopole solution
K(r) = 0 has been investigated. Boundary conditions taken
were K(0,t) = K(N,t) = 0, K(i,0) = 0, with some modes excited
at t=0. This corresponds to a deformed but initislly resting
string. Boundary conditions for non-deformed string at t=0
are K(i,0)=0, K(0,t) = K(N,t) = 0, K(i,t) # 0. Matinyan et al
found that the energy is shared uniformly among different
modes indicating the ergodic nature of the system. Kawabe and
Ohta (1880) investigated the system in more detail by
evaluating the induction period, equal time correlation and
msaximal Lyapunov exponents. These studies confirmed that the
SSYM system is always chaotic. The induction period never
becomes infinite indicating the sabsence of quasiperiodic
behaviour even for small perturbations. Moreover the maximal
LE is always positive confirming the chaotic nature of the

system.
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Now let us consider the spherically symmetric time
dependent SU(2) Yang-Mills-Higgs (SSYMH) system. ‘t Hooft
(1874) and Polyakov (1874) discovered magnetic monopoles as
finite energy solutions of non-Abelian gauge theories, in the
Georgi-Glashow model Qith the gauge group SU(Z2) 1is broken
down to U(1l) by Higgs triplets. More detsails on this model
are contained in sections 1.6 and 3.2. The field equations
with time dependent "t Hooft-Polyvakov ansatz (Mecklenberg and

O0'Brien 1878) are,

rz(ai-— 3%)1( :K(K2+ HZ"’ 1)
r2( 8% - 8% yH = H (2% - n%r%+ X % ). (5.8)
T t 2
g
The vacuum expectation value of the scalar field and Higgs
boson mass are < ¢2 > = F2 = mz/ X and HH = Y2n F
respectively. Mass of the gauge boson is Mw = gF. With
2
M
B = A = , introducing the variables £ = M r and
2 2 w
-4 2M
M
T = Hwt, the equations (5.8) become
(ot - )k = R(K+ W - 1)
(5.7)
(o2 - o2Hm = m (P4 ui—gty st
Total energy of the system E is given by
g’E ® 2
_ _ 2 2 2 1 _H
C(B)_ZH_IT_'I{KT+}—IT+ Kf+ Z(Hf»f)
w 0 2
v Ao kP— 1% k%2, g (wP— % )7 }df (5.8)
2¢ 72 | 42

Time independent ansatz (1.61) gives the 't Hooft-Polyakov
monopdle solution with winding number 1 the details regarding
which are given in Chapter 1. In the limit # — 0 known as

the Prssad-Sommerfeld (PS) 1limit, we have the static
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solutions,

R )
H(E)

£/ Sinh &

Z Coth & - 1 . (5.9)
It has not been possible to find exact nontrivial solutions
for # # 0 analytically.

Matinyan et al (1988) investigated the possibility
of chaos in SSYMH near the 't Hooft-Polyakov monopole
solutions. They found that it can be chaotic by calculating
the Lyapunov exponents (LE). Their calculations are not
either exhaustive or satisfactory to arrive at a definite
conclusion. They calculated LE for a time of t = 3 which is
not sufficient for obtaining the asymptotic value of LE.
Dependence of chaos on the parameter (3 has also not been
investigated. We present the details of our numerical study

of these aspects in the next section.

5. 3. Lyapunov exponents and Order to Chaos transition

As has been discussed in Chapters 1 and 4 calculation of LE
is 8 reliable and convenient way to study chaos. If the
maximal LE is greater than zero the system is said to be
chaotic.

For our study we discretise the original infinite
dimensional system (5.7) to obtain a8 set of N coupled
anharmonic oscillators. The discrete model is given by

kzi,t) _ R(i+1,t) — ZK(i;E) + R(i-1,t)

_R(iLt) [KCGL )%+ HGL, 85— 1 ]
(ih)? (5.10)
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h}i,t) - H(i+1,t) — 2H(Ei,t) + H(i-1,t)

2
h
_ 2H(E,t) KRG, 85 BHGLOIHG, 82— (1h)?)
c N2
(ih)
i=1,..... N-1,

where h 1is +the space discretisation step. Corresponding

variational system is obtained by discretising the following

equations
( ag - 8% )K= (3K%+ HZ- 1)6K + 2HK SH
2
) , — ¢ 0 (5.11)
(8 - o7 YOH = (2K7+3BH"— B¢ ~)6H + 4KH SK.
Z
4

For calculating LE we have to solve system (5.10)
along with the variational system obtained from (5.11). 1In
the system, there exist two parameters, the energy and the
value of 3. For the numerical integration we can start from
arbitrary values of K and H. But we are interested in the
evolution of 't Hooft-Polyskov. monopole solutions. Static
monopole solutions occur at the minimum of energy functional
C(3) for a fixed 3. So we choose K(i,0) and H(i,0) as the
static solution of the YHH system which we find wusing =a
finite difference method for solving boundary value problems.
We use the asymptotic form of the solutions for fixing the
boundary values. C(3) for different 3 values are given in
table 5.1. Static solutions of SSYMH for some 3 values are
shown in figures 5.1a and 5.1b.

We use fixed boundary conditions and numerically
solve the system (5.10) with static solutions as initial

conditions along with the discretised system obtained from
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Table 5.1 . C(f5) and Maximal LE for different 3 values.

r C(3) LE
0.0 1.000 0.00
0.1 1.006 0.00
0.5 1.183 0.00
1.0 1.243 80.00
2.0 1.302 0.00
5.0 1.386 0.00
10.0 1.451 0.00
50.0 1.600 0.00
75.0 1.641 1.54E-3
100.0 1.671 2.32E-3
200.0 1.782 1.13E-2
500.0 1.871 2.54E-2
1000.0 2.301 7.01E-2
5000.0 4.641 1.00E-1

(5.11). For our calculations we take N=100 and the
discretisation step h=0.1. In figures 5.2a and 5.2b plot of
LE versus time is given for some values of 2. We calculate up
to t=1000.0 which 1is sufficient for obtaining asymptotic
values of LE. We use an IMSL routine for Bulirsh-Stoer
algorithm for the numerical integration of the differential
equations with a tolerance value 10_3. Calculations are done

in double precision in a CYBER 180/830 computer. In the case
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of B3=1000 and 3=5000 we used a higher tolerance value because
of the enormous amount of computer time required otherwise.
We did the calculations with high accuracy such that change
in energy is less than 1%. Lyapunov exponents for different
values of 3 are also given in table 5.1. From figure 5.3,
where log(LE) vs log(3) is plotted, we can see that there is
a transition from order to chsos near 3=75.0. Up to 3=50.0 LE
is zero within the limits of numerical accuracy. For £3=75.0
LE becomes positive and reaches an asymptotic value 1.54x10—?
For higher f# values we det higher and higher positive LEs.
However LE is not seen increasing indefinitely with /3. At the
transition region the increase is rapid but as [ increases

further the rate of increase in LE fsalls. As # — o , LE

appears to attain an asymptotic wvalue.

Table 572- Maximal LE for different values of N and 3.

LE
3
N = 18 32 64 100
50.0 0.00 0.00 0.00 0.00
75.0 0.0086 0.0012 0.0013 0.0015
100.0 0.0015 0.0021 0.0021 0.0023
200.0 0.027 0.0091 0.0105 0.011

We have repeated the calculations with different
values of N also. Results are gquaslitatively the same as that

of N=100. LE for N = 16,32,64,100 are given for various £
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values in table 5.2. Increasing N does not have much effect
after N=32. This indicates that the results obtained are good
approximations to the original infinite dimensional system.
This behaviour can be compared to the results obtained by
Livi et al. (1986) for a Fermi-Pasta-Ulam chain of anharmonic
oscillators. For FPU 3-model LE reaches an asymptotic value
when the number of oscillators is N = 20-40. For small N
values boundsry values also have effects on the dynamics.
Asymptotic values of K and H are reached only after £ = 3 -
4. The quartic oscillator system corresponding to N = 1 is

nonintegrable snd chaotic for all 2 values.

5. 4. Conclusion

Our calculations show that there is a phase-transition-~like
behaviour from order to chaos in SU(2) SSYMH system. This
result is in agreement with that obtained in the case 6f
spatially homogeneous YMH system, where Higgs field manifests
only as the vacuum expectation value F. As F increases there
is an order to chaos transition and in that case there are no
terms dependent on the self interasction constant. There is
only one parameter for YHHCM, namely ng/4ﬂMw. On the other
hand here we consider the time evolution of both dsaude and
scalar fields asnd there exist two parameters C(f) and 3. £
depends on the self interasction constant X. Since we are
interested in monopole solutions we took the minimum value of
energy functional C(B) for a specific 3 value. It 1is known
that as /3 increases the effect of Higgs Field decreases and

when 3 — o system becomes purely Yang-Mills, which 1is
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highly chaotic. The effect of Higgs scalar fields is to
reduce the stochasticity of the YM system. In the central
part of the monopole the scalar field is spproximately equal
to zero and the YM field which dominates this region displays
chaotic behaviour. QOutside the monopole core the Higgs field
approgches its mean vsalue and the YM field behaves in regular
manner. From our study one can see that 't Hooft-Polyakov
monopole solutions show irregular behaviour in time, and they
are exponentially unstable. Our results can be compared with
that of Brandt and Neri (1879) in the context of Wu-Yang
monopoles. They have shown that negative modes exist in the
spectrum of the operator describing small perturbsastions of
monopole solutions, implying exponential growth of
perturbations with time. Solutions with magnetic charge q = 1
are unstable. Arbitrary continuous deformations of the field
configurations do not change the topological charge, during
the evolution of the fields with time. The evolution of the
fields in the central part of the monopole can be arbitrarily
complicated, may oscillate or vary ergodically. Though in the
case of the monopole classical description may be a
meaningful approximation to the quantum case the implications
of the result in the exact quantum field theory of this

object is a separate issue requiring detsasiled study.
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CHAPTER 6

CHAOS AND QUANTUM FLUCTUATIONS IN A QUARTIC
HAMILTONIAN SYSTEM

6.1. Introduction

Different approaches to the characterisation of quantum chaos
and the variety of techniques for its investigation have been
discussed in section 5 of Chapter 1. Most of the studies so
far made are semiclassical and/or numerical. Recently an
application of the Gaugsian Effective Potential (GEP) method
in quantum mechanics has been made for an approximate but
analytical study of the effect of quantum fluctuations on
chaotic systems (Carlson s8nd Schieve 1889). GEP is an
approximate potential describing the quantum effects on a
classical potentisl and it is not a semiclassical quantity
(Stevenson 1984). Carlson and Schieve used this method to
study the effect of quantum fluctuastions 1in Henon-Heiles
potential and four leg potential (GEP calculations given in
that paper contain inaccuracies which do not change their
conclusions. Correct GEP calculation for Henon-Heiles system
is given in the Appendix 6.A.). They studied the variation in
the nature of the GEP as h, the Planck’s constant' is wvaried
and found that as h — 1 (large values of h) the GEP reduces
to an intedrable potential even though the classical
potential is nonintegrable and chaotic. They also tested the

conditions for hyperbolicity of periodic orbits (Churchill et
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al 1875,1877) when quantum fluctuations are present. Their
conclusion was that the quantum fluctuations destroy the
chaotic behaviour in the Henon-Heiles potentiasl and 1in the
four leg potentisal.

In this chapter we apply the GEP method for
studying the quantum chaos 1in 8 genersalised quartic

Hamiltonian system,

_ 1 2,2 1-a 4 4 1 22
Ho= = (pytpy) + 77 (979p) + 5 419 (6.1
where 0 € oo £ 1. This is a system which can exhibit chaotic

behaviour of various degrees depending on the parameter ao.
Our 8im is to study the chande in quantum chasos &8s a is
varied and compare the classical and quantum behaviour.
System (6.1) is integrable and shows regular behaviour when
a=0. But when a=1 system 1is highly chaotic and can be used as
simplified model for classical Yang-Mills system (Savvidy
1884). For value of a in between these extremes the behaviour
interpolates between order and chaos. Many investigations
have been made on the classicsal dynamics of the system 1in
detail (Carnegie and Percival 1884, ©Steeb et al 1886b).
Recently we (Joy and Sabir 1882) studied the relation between
curvature and chaos in the system the detsils of which have
been discussed in Chapter 4. The system has positive
Riemannian curvature implying local stability for all values
of a. But the potential boundary of the system has negative
curvature except when o=0, and chaos of the system, sas
measured by Lyapunov exponents, increases with o as the
negative curvature of the potential boundary 1is increased.

Quantum chaos in the system has been investigated by means of
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spectral properties (Steeb and Louw 1886b, Kotze 1888).
Nearest neighbour spacing of energy eigenvalues obey Poisson
distribution when «=0 and a Wigner distribution when a=1. In
between there is an intermediate behaviour.

Studying the GEP as function of h for various
values of a we find that even though there is quantum
suppression of chaos there 1is a correspondence between
classical behaviour and quantum behaviour. The value of h
above which the GEP become an integrable one increases with
the degree of chaos in the classical system. In the next
section we briefly describe the computational details of the
Gaussian Effective Potential. Section 6.3 contains the

results and the conclusions.

6.2. The Gaussian Effective Potential

The Gaussian Effective Potential (GEP) method 8s formulsted
by Stevenson (1984) is a very convenient technique for
estimating the quantum effects on a classical potential. It
gives us a picture of how quantum fluctuations modify the
classical potential. For s system with Hamiltonian H the GEP
is defined as VG(qO) = mén <y|H|w> where |w> 1is Gaussian
state localised around dq and Q denotes a set of parameters
governing its width. Compared with the exact effective
potential which is obtained by minimising over all states
localised around 94 and the one loop effective potential it
has several distinct advantages and gives a more realistic

description of quantum phenomena. Though approximate the GEP

is neither perturbative nor is semiclassical.
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Let us consider the GEP estimation of a Hamiltonian
system with two dedrees of freedom with a Hamiltoniasn of the

form,

_ 1 2 2 \
H - 2 ( pl + pz ) + v(ql’QZ"

To evaluate the GEP we first compute the expectation value of
the energy VG = <y|H|y>, where the normalized wave functions
¥y are two dimensional Gaussians of the form exp (—qiﬁijqj/Z),
and Qij is 8 symmetric matrix that in general depends on the
position variables. GEP is obtained by minimising this with
respect to three variational parasmeters : two principal
frequencies 2 and w and an angle @ specifying the orientation
of the principal axes of the wave function with respect to
the q4,9, axes. Using the creation and annihilation operator
formalism one can make the calculation purely algebraic. The

annihilation and c¢creation opersators al,az and a{,a; are

defined through

1
] , T2 +
(ql’ 3 [q10]+ ( cos6 —51n9]{h(2h02 . (a1+a1)] 6.2
ap) 929 sin® cosd) lh(2hw) * (a. +al)
1 La L
P, cos8 -siné) (- }(Zhﬂ)z (s —a*)
11 _ 2 1 171 (6.3)
Po] sind  coso) L~ 1(zhw)’ (az—a;)

where [al,az] = 1 and [az,a;] = 1. The expectation value of H
is evaluated in the state |0>, defined by =a,|/0>,= 0 and
a2|0>Q: 0.

For the system (6.1) GEP is given by the minimum of

VG which is obtasined by a straight forward calculation
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1

_l-o 4,4, 1 22 holie o2 2 2_. 2
Vo = 717 (91 *9p) + 5 9y9; + 5 [55— ( qjcos™@ + q5sin®e)
1 2.2 2.2 .
+ 2 ( qysin e + 9,008 e ) + q1q251n 26 ]
ho 1 1 2 . 2 6.4
+ —% [—iq ( qysin®® + q%cosze )
1,2 2 2.2, . _ .
+ 7 (qlcos 8 + a,sin e ) q49,51in 28 ]
2
s D202y 2% ( cos?e + sin®e ) + 3 sin2e )
2 8 16
2 .
+ % (Ow)_l(sin46 + coste - 1%3 sin228 ) + 2 Q1+ w )

To find the minimum we have to solve the following set of

equations.

-1

aVe/08 = 0= (@ 1+ Wl = (q?— qg ) sin 20 + 2q,q,c08 20 )

(a+2)h 1 2

+ 5 (a *- w'l) sin 46

(6.5a)

-2 [1l-a 2 2 2 2

ov/aq=0= - Q {—5— ¢ qlcos e + qzsin e }

2

+ —% ( qisinze + qzcosze >+ qlqzsin 26 ]

- 2h 078 (222 ( cos?e + sin®e ) + I sin®20 )
_h Q‘thl( sin49 + coste - 12 gin22e ) + %
4 2 2
(6.5b)
AV/Bw=0= - w2 [1%3 ( q%sinze + qgcosze )
1 2 2 2 . 2 .
+ 5 ( qlcosée + a,sin 8 ) - q;9,5in 26 ]
- 2h 0% (322 ( cos’e + sin'e ) + 3o sinf2e )
- h Q—lw—z( sin49 + coste - 12 sin226 )y + 1
4 2 2
P’ (8.50)

The solutions €8, Q@ and w should be substituted in VG to
obtain the GEP VG‘ Even then we can find only a 1local

minimum. But these coupled set of equations are not of the
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form where we can calculate the solutions analytically. Hence

we resort to numerical minimisation of the potential V

G at

each q and a4 -
Since our system is scale invariant we evaluate VG
for a fixed value of energy; we fix VG: 1. The 1level curves

of VG for different values of Planck’'s constant h are plotted
in figures 8.1 - 6.6. Figure 6.1 shows the VG for o=0, when
the system' is integrable classically. For h=0 we have the
classical potential boundary which has no negative curvature.
As we increase the value of h we see that the GEP becomes
more and more circular. In the other figures for nonzero o
with negatively curved classical potential boundsry we
observe that the increase in the value of h 1leads to a
reduction of the nedative curvature of the boundary and
ultimately the boundary becomes a circle around the origin.
This, as noted by Carlson and Schieve, is the manifestation
of quantum suppression of chaos. As h is increased the vsalue
at which the level curve first becomes a circle is a8 measure
of the smount of quantum fluctuations needed to suppress
classical chaos. From the figures 6.1-6.6 we can make an
important observation that the value of h at which 76 becomes
8 circle increases monotonically with a. Denoting this value
of h by hc in table 6.1 we give approximate hc for wvarious
values of a. In the most chaotic regime in a any magnitude of
strong quantum fluctuations chaos will be completely wiped
off. In other words the quantum system will exhibit chaotic

features if quantum fluctuations are small. On the other hand

for weakly chaotic systems (o small) even slight quantum
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Figure 6.1. Vafor o = 0.0 with h values (a) 0.0, (b) 0.4,

(c) 0.6 and (d) 0.8.
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Figure B.3. Vafor o = 0.5 with h values (a) 0.0, (b) 0.5,

(c) 0.8 and (d) 0.95.
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Figure 6.85. V;for o = 0.9 with h values (&) 0.0, (b) 0.5,

(e) 0.8, (d) 1.0 and (e) 1.25.



Figure 6.86. $;for o = 1.0 with h values (a) 1.4, (b) 1.2,

(c) 1.0, (d) 0.8 and (e) 0.0.
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Table 6.1. hc values for various o values

h 0.8 0.8 0.85 1.05 1.25 1.4

fluctuations will destroy chaos. We can thus see from the GEP
study a correlation between the classical and quantum system

with redard to integrability and .chaos.

6.3. Conclusion

Our GEP calculation for one particular Hamiltonian systenm
shows that even though quantum fluctuations reduce chsos, it
exists for small values of h. For sufficiently large value of
h all of these become regular, but the value at which they
become regular increases with the chaoticity of the original
classical system. Other conclusion 1is that though quantum
fluctuations diminishes chaos there exist remnants of

classical chaos in the quantum regime.

6.A. Appendix

Here we give the correct GEP for the Henon-Heiles potential

studied by Carlson and Schieve (1989)

q
V(a,,a,) = (a2+a5)/2 - a5 + a3/3. (6.6)

Using (8.2) and (6.3) we obtain,
VG = <y|H|y> = V(ql,qz) + h(+w)/4 + h(1/9+1/w)/4 +
(l/ﬂ—l/w)(qlcos 3 - qzsin 23). (86.7)
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On minimizing VG we get

Vg = V(ql,qz) + h (Hw)/2, (6.8)
where,
Q =0 1 + 2qlcos 23 - 2qzsin 213 ]1/2
@ =1 1- 2q,c08 28 + 2a,s5in 2 ] 72 (s.9)
and tan 213 = —qz/ql.

In the case of four 1leg potential discussed in
Carlson and Schieve (1988) given by
_ 2, 2 2 2

one can not find the GEP because the expectation value VG is

not bounded from below.
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