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Chapter I

INTRODUCTION

1.1 CON8TRUCTIOR or MUL~IVARIATI MODELS

The early developments in statistical distribution

theory was dominated by the normal distribution due to

various facts such as the pleasing solutions the assumptions

of normality can produoe, the belief of users that in many

practical situations normal observations will result either

naturally or as a very good approximations by invoking limit

theorems and the large volume of theoretical results that

justified normal approximations. A comprehensive study of

multivariate distributions including mechanisms to generate

them began only from the sixties of the century, and most of

the developments in this connection are only in formative

stages and is therefore a fertile area of research. One of

the main problems associated with the evolution of

multivariate models is that there is no unique way of

extending a corresponding univariate law and this has
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created a large body of distributions in the multivariate

set up.

Of the several standard methods to generate

rnultivariate distributions, on e is to generalise a systern or

equation defining a univariate distribution into the

multivariate case. This includes generalization of the

differential equation representing the Pearson family by Van

Uven (1925, 1926, 1929, 1947), steyn (1960), Elderton and

Johnson (1969) and the translation equation system by
I

Johnson (1949). A second method is to construct a

multivariate distribution by specifying the form of its

marginal distributions. Work in this connection can be seen

in the papers of Frechet (1951), Mongestern (1956), Farlie

(1960), Mardia (1970). However, it is to be noted that

there exist several multivariate forms with the same type of

rnarginals and therefore, the basis of adopting a particular

method in this category has to be accompanied by a proper

justification based on physical considerations. When we

replace marginal distributions by conditionals in the above
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specification, the picture is more rosy as in many cases it

is possible to extract unique joint distribution, at least

in the bivariate cases. Considerable interest has been

aroused recently in deriving bivariate models which have

pre-designated forms for their conditional distributions and

the present study reviews the important work in this area

and works out some new results in this direction.

Another approach results when one starts with the

univariate density and then postulate a functional form for

its multivariate analogue. For multivariate distributions

generated in this fashion, we refer to Mardia (1962), Gumbel

(1960), Bildikar and Patil (1968), Day (1969).

The main limitation of this approach is that, in

many cases, it is difficult to give a physical

interpretation to the model and its parameters. In
I

contrast, the modelling approach lakes into consideration

the physical states of the system, the relationships between

the variables and the parameters involved etc. so that when

real world situations that conform to these properties, are
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encountered the model becomes the right choice. The

distributions of Fruend (1961), Marshall and Olkin (1967),

Block and Basu (1974) are typical examples. An amalgamation

of these two types of model generation can be affected

successfully, if the models belonging to the first category

can be derived using the well-known system properties. The

present study envisages some interpretations to some of the

existing models.

A multivariate model that inherits the essential

features of the corresponding univariate version is often a

reasonable requirement for constructing the former. This

can be easily accomplished by identifying a characteristic

property that is of interest of the univariate law, which

needs extension to higher dimension and then to find its

multivariate analogue, wherever possible, uniquely. The

construction of the desired multivariate distribution is

complete, once the law is characterized by the newly

identified property. Galambos and Kotz (1977) considers

this as the soundest approach to develop multivariate

distributions.
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In the current investigation also, it is proposed

to work along these lines in deriving certain classeg of

distributions, the main basis of which is an extension of

the lack of memory property to the bivariate case. To

prepare the background for the research problem in this

I

study we briefly survey the important results in literature

that is of concern.

1.2 SURVEY OF LITERATURE.

The importance of the exponential distribution

among the class of continuous probability models is next

only to that of the normal distribution. The reasons for

the popularity of the exponential distribution in

theoretical and applied investigations can be attributed

mainly to the lack of memory property, its relation with the

Poisson process and the properties enjoyed by the order

statistics. Of these, the lack of memory property is

perhaps the best studied and widely applied among the

properties of the model, and the one that lends itself to
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extensions in various directions. From a theoretical point

of view lack of memory property is justified from the fact

that there are many real life situations where it holds

good, while in applied work, it is extensively used as a

characteristic property of the exponential distribution. In

view of its implications in reliability and life testing,

the property is best expressed in terms of the lifelength of

a component or device, although the meaning conveyed by it

can be shared among the class of other duration variables as

well.

If X is a non-negative random variable possessing

absolutely continuous distribution with respect to Lebesgue

measure, we say that the random variable X or its

distribution has lack of memory property if for all x,y ~ 0

such that P(X ~ y) > 0,

P(X ~ x+y I X ~ y) = P(X ~ x)

or equivalently, if p(X = 0.) ~ 1 for all X,Y ~ 0

P(X ~ x+y) = P(X ~ x) P(X ~ Y).

(1.1 )

(1.2)
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In terms of the survival function of the random variable

R(x) = P(X ~ x),

(1.2) is restated as R(x+y) = R(x) R(y). (1 .3)

The characterization of the exponential distribution, using

anyone of the equivalent forms (1.1) to (1.3) arises from

the, functional equation explored by Cauchy (1821) and

Darbaux (1875)

U(x+y) = U(x).U(y)

whose solution, is either U(x) = 0 for all x or

(1.4)

-AX
U(x) = e

for some constant A, whenever U(x) is a solution defined for

x > o.

For an absolutely continuous survival function R(x),

its failure rate h(x) is defined as

h(x)
-d log R(x)

= dx
(1.5)

The lack memory property is equivalent to the statement·

h(x) = a constant.

Further, the truncated mean or mean residual life defined as
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r(x) = E(X-XIX ~ x)

00

= [R(x)]-l J R(t)dt,
x

(1 . 6)

often interpreted as the average life time remaining to a

component at age z, is related to the failure rate through

the equation

It is given in Cox (1962) that for the

(1.7)

exponential

distribution r(x) = a constant Galambos and Kotz (1977)

establishes the equivalence of lack of memory property,

constancy of the failu~e rate, and constancy of the mean

residual life.

The extension of the lack of memory property is

often envisaged to serve one or both of the following

objectives.

a. to extend the domain of the values of x and y for which

equation (1.1) is true.

b. to provide a larger family of distributions that

includes the exponential model as a special case.
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By finite induction we obtain from (1.1) that

(1.8)

Setting xl = x2 = .... = x
n

= x > o and requiring the

resulting equation to hold for all integers n > 1 results in

a characterization of the exponential model, in modification

of the condition that (1.1) holds for all x, y ~ o. Further

Fortet (1977) considered the assumption that (1.7) is true

almost everywhere with respect to Lebesgue measure for (x,z)

in [0,00), is sufficient to guarantee that the distribution

is exponential. Another result in this direction due to
i

o= x, x ~= x
n

Sethuraman (1965) shows that xl = x2 =
logn

1
in (1.8), together with is irrational, where n

1
and n

2logn
2

are integers satisfying (1.8) characterizes the

distribution. Alternatively, a survival function satisfying

(1.1) for two values Y1 and Y2
of Y such the y Iy

1 2
is

irrational and for all non-negative values of X, is

equivalent to the lack of memory property.

Obviously, the values x and y in (1.1) can be

replaced by random variables Y and Z with degenerate
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distributions to produce equivalent characterizations. Once

the assumption of degenerate distribution is removed, the

equality in (1.1) changes to the inequality

R{x+y) ~ R{x). R{y)

where x and y are random variables hailing from two families

D
1

and 02 respectively, with the following properties.

1. Every member of D
1 and 02 is independent of X.

2. Every member of D
1

is independent of ~very member of D
2

and

3. P{a =S Y < b) > 0 and P{a ~ Z < b) > 0 for every [a,b).

A variant approach to extension of the lack of

memory property takes advantages of the equivalence of lack

of memory property and the constancy of residual life

function for all x ~ o. Often this approach provide a

larger class of distributions than the exponential.

The choice in most cases will be a function g(x)

for which either

E(h(x)IX ~ x) = g(x); x ~ 0 (1.9)
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or

E(h(X-x)1 X > x) = g(x) (1.10)

where h(.) and g(.) are known functions ending up with the

solutions that are proper survival functions. For details

we refer to Kotlarski (1972), Laurent (1972) Shanbhag and

Rao (1915), Gupta (1976) and Dallas (1976).

An attempt along some what different lines by Huliere

and Scarsini (1981) to extend (1.1) in generating a class of

probability distribution, uses the extension of the LHP by

the following equation,

P(X > x*y) = P(X > x) P(X > y). (1.11)

In equation (1.11) '.' is used to represent a binary

operation that is associative, and reducible (x * y = x*z ~

y = z). When the last equation is read as

R(x*y) = R(x) R(y)

its only continuous solution is

x * y = g-l (g(x) + g(y»

(1.12)

(1.13)

with 9(.) continuous and strictly rnonotonic. In this case,

the only continuous solution of (1.12) is
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R(x) = exp (-A O(x», ~ > 0 (1.14)

U = g- l (0) < x < g-l (eo) • Lt • th · t ho i f ()~ "1 apprOpr18 e C 01ce or g x

the authors characterize class of probability distribution

that includes the exponential, Pareto Type I, Weibull

models. As a bivariate extension of the above functional

equation Muliere and Scarsini (1987) also derives Marshall
!

Olkin (1967) type class of distributions also.

The concepts and methods so far reviewed extends

to a multivariate setup. Since our interest in the present

investigation concerns only bivariate distributions, the

important developments in this area are now presented. An

obvious extension of the LMP in the bivariate case is

defined by the relationship

(1.15)

is the survival function of the random vector X = (x
1,x2)

in

+the support of R2 = {(x
1,x2)

I x
1,x2 > O}.
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A serious limitation of defining bivariate LHP, by

equation (1.15) is that its unique solution turns out to be

-A
1

x
1-A2

x
2

e

which is the trivial bivariate exponential distribution

which is the product of its marginals. In the reliability

context this amounts to the distribution of the life times

of a two component system, in which the life time of each

component is independent of the other. This severe

restriction that prevents consideration of two-component

systems where there is dependency among individual

components, has led to a relaxation of the requirements on

the values of Yl and Y2'

consider the equation,

One way of doing this is to

(1.17)

for all x
1,x2,t>O.

Marshall and Olkin (1967) derived a

solution of (1.17) by requiring the marginals of Xl and X
2

to be exponential distribution with parameters Al and A
2

in

the form,

(1.18)
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In this setup P(X=Y) is positive so that the simultaneous

failure of the two components is a physical characteristic

concerning the system, although this produces a singular

component in the distribution. This is unavoidable in the

sense that the assumptions of LMP, absolute continuity and

exponential margianls can result only bivariate distribution

with independent exponential marginals. It is therefore

apparent that to arrive at a meaningful bivariate

distribution, one has to abandon anyone of the three

conditions mentioned just above. By preserving LMP and

absolute continuity, Block and Basu (1974) derived bivariate

exponential distribution, in which the marginals are mixture

of exponentials. In spite of other extensions proposed by

Friday and Patil (1977), Arnold (1975). Esaryand Marshall

(1974) based on reliability considerations a detailed

assessment of these distributions vis-a-vis their usefulness

through characterization by reliability concepts are yet to

be established.

A fruitful alternative way of looking at the

equipment behaviour can be accomplished by investigating the
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behaviour of one of the components, when life time of the

other is pre-assigned. The first work in this direction

concerning the bivariate system, appears to be that of

Johnson and Kotz (1975) who defined the vector valued

failure rate of a device with component lifetimes (X
1'X2

) as

where

(1.19)

-8 109 R(X
1

, x
2

)

8x.
1

, i = 1,2 (1.20)

Drawing parallels from the univariate theory, they

considered the situation when

(1.21)

where c. 's are constants
1

independent of and and

established that such a case exist only when the joint

distribution has independent exponential marginals.

Accordingly, they considered the situation where the

components of the failure rate are locally constant, in the

form,

(1.22)
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and characterized the Gumbel's (1960) bivariate exponential

distribution with survival function,

(1.23)

~l' A
2

> 0, 0 ~ e ~ A
1A 2

with such a property.

In proving this result, they used the representation

Xl x2
R(x 1,x2 ) = exp[ - f h1(t,O)dt - f h

2(x1,t)dt
] (1.24)

o o

that connects uniquely, the failure rate and the survival

function. The fact that, unlike in the univariate case, the

failure rate can be defined in a multiplicity of ways,

leaves open the question of constructinq multivariate

distributions that can serve us models of specific equipment

behaviour. This will be further discussed in the sequel.

Taking specific clues from the definition of

bivariate failure rate, it is possible to

representation for the mean residual life

look

in

for

higher

dimensions. Defining the mean residual life function as the

vector,
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(1.25)

where

(1.26)

i = 1,2

and using the unique representation

r 1 (0 ,0) · r 2 ( xl ,0)

r I (Xl' 0 ). r 2 ( xl ' ](2 )

(1.27)

Hair and Nair (1988 a) established a characterization of the

Gumbel's distribution (1.23) using the local constancy of

Thi~ result was further extended by Nair and Nair (1988b) by

showing that the local constancy of the truncated moments,

B. (x .)
1 J

(1.28)

i,j = 1,2, i;l! j

for every r = 1,2,3, ... is a characteristic property of the
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same distribution. Nair and Nair (1991) further defined the

local lack of memory property of the random vector X by the

relations,

P(X. > x.+y, I X > x, X > x
2

) :: P(X.>x. I X.>x.),
111 1 12 11 ] J

i,j = 1,2 i ~ j

and established the equivalence of (1.29) and (1.2~).

(1.29)

Analogous to the univariate definition of LHP, one

can think about a similar property for the conditional

distribution arising from a bivariate distribution. In this

way Nair and Nair (1991) defined the notion of conditional

lack of memory for a random vector in the support of

the relationship

p(X. ~ t.+s. I x. ~ s., X.=x.) = P(X. 2: t ,
111 1 1 J J 1 1

x . = x.),
J J

i,j=l,2, i;ij

for all x. It., s , > o.
J 1 1

(1.30)

The equations (1.30) are satisfied if and only if the

distribution of X. given X .=x. has density,
1 J J
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f(x.lx ,) = A. (X.) exp(-A. (x .)x.)
1 J 1 J 1 J 1

which corresponds to the exponential form. Accordingly, the

bivariate distribution that possesses conditional LHP is one

for which the conditional densities are exponential. Arnold

and strauss (1988) has shown that there exist a unique

bivariate distribution with exponential conditionals and

obtained its density function as

where e = e(6) = 6 e- 1/
6

/ [ -E
i

( 1/ 6 ) ]

(1.31)

and E. is the well known exponential integral function
1

00

J -w -1
- E.(u) = e w dw

1
u

The above discussions provide the main results

that are required to identify our research problem

References needed to supplement the specific problems will

be provided in the appropriate chapters.
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1.3 RESERACH PROBLEM AND SUMMARY OF THE THESIS.

It is already shown that basically, there are two

approaches to extend the definition of the LMP to the

bivariate case; One given in Marshall and Olkin (1967) and

the other designated as local LMP in Nair and Nair (1990).

The generalised version of LMP proposed by Muliere and

Scarsini (1987) in the univariate case, naturally allows

extJnsion to the bivariate case. In the same manner as the

LMP of the univariate exponential distribution was extended

to generate bivariate exponential model of Gumbel (1960)

through the local LMP, there is scope for attempting a

localized bivariate version of the relation specified by

equation (l.l~). Accordingly in Chapter 11 we consider the

equations,

P(X. > G(x.,y,)1
111

X. >x. ,
1 1

i=1,2) = P(X. >y.lx .>x.)
1 1 J J

i,j=1,2,i~j

Where G(. ,.) is a function satisfying certain algebraic

properties. The family of continuous distributions



21

characterized by such a property is derived. It is shown

that by appropriate choices of G(.,.) the bivariate

exponential, Pareto, Weibull etc. can be reached as special

cases. It is well known that by monotone transformations of

the exponential variable, it is possible to obtain several

other continuous distributions as Weibull, Pareto, Logistic

extreme value, Uniform etc. but there exist no meaningful

single defining property that embraces all these models.

The above mentioned defining property forms a basis from

which all such related distributions can be brought under a

uniform framework. After deriving the basic model giving

rise to what is called the bivariate exponential type

family, some of its important members are identified. The

fundamental objective in studying a family of distributions

is to derive the global properties enjoyed by it, so that

individual investigation of each of its members can be

avoided. Thus we look at the properties of the family,

like, the constituent marginals, conditional distributions,

moments regression and correlation etc. Since the major

application is envisaged in the analysis of reliability, the
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basic quantities required in such cases for modelling

equipment behaviour such as failure rate, mean residual life

and residual life distributions are derived.

Although the Bivariate exponential type (BET)

family itself originated from a characteristic property, we

look into other possible characterizations in Chapter Ill.

The main objective of this investigation is to find out

interesting properties by which specific members of the

family can be identified in a practical situation.

Characterizations through conditional distributions,

functional forms of failure rates, conditional expectation

and mean failure rates are presented.

Following the logic involved in the extension of

local LMP, we consider extension of the conditional LMP

defined in equation (1.42) in Chapter IV. In effect, this

provides bivariate distributions that are determined

uniquely, by their conditional distributions. The results

in the Chapter supplements the efforts recently made by

researchers in addressing the problem of finding bivariate



distributions that are

?3

compatible with conditional

systems

distributions with pre-designated forms. The members of the

BET family of Chapter 11 are viewed to represent the
I

distribution of life lengths in two-component

assessed in the tests in laboratory where the components are

built. When they work outside the laboratory, the operating

condition might be different. A new system of models that

can accommodate such changes are also discussed in Chapter

IV. This approach provides several new additions to the

class of continuous bivariate distributions.



Chapter 11

BIVARIATE EXPONENTIAL TYPE DISTRIBUTIONS

2.1 INTRODUCTION

Consistent with the objectives of the present

study setforth in Section 1.2, an extension of the bivariate

local lack of memory property (LLMP) and the class of

probability distributions characterized by such a property

will be introduced in this Chapter. The extended version of

the LLMP worked out here concerns a random vector X=(X
1,X 2)

admitting absolutely continuous survival function with

respect to Lebsegue measure in the support of

+
R

2
={( x , y ) l x , y>O} or its subspaces. The pre-requisite for the

development of the subject is a function G(.,.); defined

from R; into (a,b) where (a,b) is an interval on the real

line, satisfying the following properties.

PI G(G(x,y),z) = G(x,G(y,z» for all x,y,z in (a,b) (2.1)

P
2

There exists an element u in (a,b) satisfying

G(U,x)=x for every x (2 .,2)
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and

G(x,r) = G(x,s) and G(r,y) = G(s,y)

both imply r=s.

(2 . 3)

Under these conditions, it is shown in Aczel (1966), that

the only continuous solution of (2.1) in (u,c), where c is

in (a,b), is

G(x,y) = g-l(g(x)+g(y» (2 .4)

with continuous and strictly increasing g(.), provided that

x,y,z,G(x,y),G(x,z),G(G(X,y),z) all lie in (a,b). In this

case the inverse function g-l(.) exists for every x in (u,c)

and G(x,y) is strictly increasing in each of the variables.

We utilize this result to seek the class of bivariate

distributions satisfying the extended version of the LLMP

defined by

p (X . >G ( x , , y . ) IX>x) = P(X . >v . IX . >x . )
11111 J J

( 2 .5)

i,j = 1,2; i~j for every x. ,Y.
1 1

-1
in (u,g (00». The symbol

X>x in (2.5) stands for X.>x., i=1,2.
1 1
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The conditional probability statement on the left

side of (2.5) for i=l, becomes

(2.6)

using (2.2). Since G(x1,y
1)

is strictly increasing in each

of the variables, G(x1,y
1)

> G(x1,u) for every Y
1

in

-1
(u,g (00». Thus (2.6) reduces to

A similar expression results in the case of i=2.

In section 2.2 we establish that the property

(2.5) uniquely determines a class of bivariate models which

will be designated in the sequel as "bivariate exponential

type" (BET) probability distributions.

2.2 DERIVATION OF THE MODEL.

Theorem 2.1

vector admitting
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absolutely continuous survival function R(x
1,x2

) . A

necessary and sufficient condition for X to have the

generalised LLMP defined by (2.5) with respect to a function

G(.,.) satisfying PI' P
2

and P
3

is that

(2.8)

where g(.) is a continuous and strictly increasing function.

Proof:

starting from (2.5) and using the arguments that

1ed! to (2.7) for a random vector X in the support of

-1 -1
{u , 9 ( 00)} x {u , 9 ( (0) }, t he 9 enera 1i sed L LMPean be s tat ed

as

(2.9)

and

(2.10)

As X
2
~ u in (2.9),
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or

(2.11)

where

is the marginal survival function of the component variable

Xl' Equation (2.11) is of Cauchy form whose only continuous

solution is (Muliere and Scarsini (1981»

(2.12)

A similar deduction using (2.10) leads to

(2.13)

On writing

(2.14)

(2~9) takes the form
!

(2.15)

which is again of the form (2.11) so that (2.15) has the

unique solution
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Inserting (2.16) into (2.14),

(2.16)

(2.17)

Repeating the same type of reasoning with respect to (2.10),

using (2.13), an alternative expression for R(x
1,x2)

results

as

Identifying (2.17) and (2.18) we have

(2.18)

Dividing by g(x
1)

g(x
2)

and re - arranging the terms lead to

the variable separable form

The last equation holds for every xl and x
2

if and only if

C,(XI) - 0,
1 J 1

g( X .)
J

= 8, a constant

independent of x. and x I. Thus
1 J
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(2.19)

substituting for c, (x,) in either (2.17) or (2.18) we find
1 J

that R(x
I,x2)

is as stated in equation (2.8).

Conversely, assume that the survival function of

the random vector X is of the form (2.8) and conditions PI

tO
l
P

3
are satisfied then by direct calculations

shown that the LLMP is satisfied.

it can be

To complete the proof of our assertion it remains

to show that the parameters of the distribution lie within

the ranges specified in (2.8). For this we first note that

for R(xl'u)~O and R(u,x2)~O, for each value of the argument,

Now consider the inequality

which implies

or

(2.20)
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From g(G( xl ' X2» = g( xl ) + 9 (x2 ) , setting x
2 = u and using

p2 ' g(x
l) = g(x

l)
+g(u) showing that g(u) = o. Since g(.)

increasing in
-1

this would thatis strictly (u,g (00» mean

for every xl' x
2

in (u,g-I(OO», g(xi»O for i=I,2.

for the inequality (2.20) to hold for all x
I,x2

one must

have e~o.

Finally, the density of X is

2

f(x
l,x2)

8 R(x
I,x2)

= iJx
l

iJx
2

= [ (a l +9g( x2» (a2+9g( xl» - e] g'(x
l)

g'(x
2)

The requirement f(u,u)~O leaves the condition

2.3 SOME MEMBERS OF THE CLASS.

Obviously, Theorem 2.1 provides a class of

probability distributions as appropriate choices of G(x
I,x2)
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will lead to the various members of the family. The

function G(x
1,x2

) can be thought of as a binary operator

among the various points in the interval
-1

( u , g ( 00) ) , t ha t

are algebraically and physically meaningful. We give below

some useful models arising out of such considerations.

2.3.1 O(x,y) = x+y

Taking G(x,y) = x+y, we see that g(.) satisfies

the functional equation, g(x+y) = g(x) + g(y) which has

unique continuous solution g(x)=cx, c>O, further
-1

g (00)=00

and from G(x,u) = x, we have x>O. This leads to the

Gumbel's (1960) bivariate exponential distribution with

survival function,

(2.22)

property

(2.5) becomes the usual LLHP of Nair and Nair (1991),

defined in equation (1.35).

It is in this sense that (2.5) was designated as
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the extended version of the LLMP and the family derived on

that basis are called the family of bivarite exponential

type distributions.

The properties of the standard form of this

distribution (when a
t

=l ) are discussed in Gumbel (1960).

while those of (2.2) along with various characterizations

are available in Hair (1990). The potential of this

distribution in the context of reliability model is evident

from the functional form of its failure rate and mean

residual life given in Section 1.2.

2.3.2 G(x,y) = XJ

This results when the binary operation is ordinary

multiplication and the equation to be satisfied by g(.) is

g(xy) = g(x) 9(Y),

with unique continuous solution g(x) = c logx. Also

G(x,u)=x=xu gives u=l and 9(00)=00, so that each of Xl and X
2

has support (1,00). The form of the survival function is
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(2.23)

The marginal distribution of Xi' specified by

-0
i

Xi~l, i=1,2

is easily recognised 89 that of Pareto type I (Th@ numbering

of the Pareto classes is as in Arnold (1983», so that

(2.23) is a bivariate Pareto type I distribution. Reading

(2.23) along with (2.5), the characteristic property of the

model becomes,

P[X.>x,y.lx>x] =P[x.>y.lx,>x.].
1 1 J 1 1 J J

(2.24)

This generalises. the "dullness"
I
I

property defined by

Talwalker (1980) in the univariate case, which says that an

absolutely continuous random variable X is totally dull at a

point X on its support, if

p[X~XyIX~x] = P[X~y], for all y~l. (2.25)

Thus the result established in the present section becomes a

bivariate analogue of Talwalker's result.
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IIp
2.3.3 G(xi'Yi) = (X~ + Y~)

lip
Considering the choice G(x. ,y.) = (x~ + y~), we

1 1 1 1

have all conditions PI to P
3

imposed on G are satisfied and

g(x.) g(y,).
1 1

(2.26)

The unique solution of this functional equation that

provides a survival function is

Further,

g(x.)
1

a= ex.,
1

e,a>O

IIp
x. = G(x. ,u) = (x~+up) holds if and only if
111

u=O and further 9(00)=00. Thus we arrive at the survival

function,

(2.27)

This represents a bivariate Heibull distribution with

marginal density functions

f . (x. )
1 1

(1-1 (1= af3 x, exp {-e-x.},
1 1

a,~>O,x.>o, i=1,2
1

(2.2i)
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being univariate Weibull with scale

shape parameter ~.

parameter (-l/~)a

have

and

the

distribution in section 2.3.1 and for ~=2, it becomes the

bivariate Rayleigh distribution discussed in

Hukherjee (1989) and Roy (1993).

2.3.4 O(x,y) = x+y+axy

Setting G(x,y) = x+y+axy gives,

g(x+y+axy) = g(x)+g(y)

which is equivalent to

h(x+y+axy) = h(x)h(y)

where

g(x) = log h(x)

The unique solution of (2.29) is, however,

h(x)
c

= (l+ax)

or

g(x) = c log (l+ax)

This would give the survival function of X as

Ray and

(2.29)
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2-6 c log(1+ax
1)

log(1+ax
2)]

-(°1+8 log(1+ax2 » -02
= (1+ax

1)
(1+aX

2)
(2.30)

is found from

and 9
2

= 6c . The support of the distribution

X=G(x,u)=x+u+axu

-1
giving u=O and 9 (00)=00. For R to be a proper survival

function, the parameters must satisfy the conditions ai>O

'J.
and 8 2: -a

i
. The marginal distributions of (2.30) are

Pareto type 11 distribution with survival functions,

a. ,x. ,c>O.
1 1

(2.31)

2.3.5 G(x,y) = (x+y)(1+(xy/c
2»-1

In thi~ ca~e, the functional equation to be ~olved

is

g(X+y)/(1+(xy/c
2

» ) = g(x) + g(y)

As before, setting g(x) = log h(x), we arrive at
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h(x+Y)/(1+(xy/c
2» = h(x)h(y)

with unique solution in the form h(x) = (

g(x) = log h(x) = a log (c+x )
c-x

The survival function of X reduces to

c+x
c-x

Thus

c+x
- X a log (_2)

2 c-x
2

c+x c+x
- 6a log (_i) log (_2) ]

c-x c-x
1 2

(2.32)

with a.=~.a and 9=6a
2

• To complete the derivation of the
1 1

distribution, the support of the variables and the ranges of

the values of the parameters are required.

appealing to G(x,u)=x, the resulting condition is

2 2
QJ(x -c ) =0.

As usual

Since at x~±C the function g(x) will explode and

therefore, u=O. Being a logarithmic function, g(x) has to



39

-1
remain positive which forbids the consideration of 9 (00) as

the right end of the support. Instead we restrict g(x) to

be positive for all values of x. This gives x<c and hence

the support of the bivariate distribution settles as (O,e) x

(O,c).

For R(X
1

, x
2

) to be a proper survival function, the

parameters must satisfy the conditions, ai>O and 6~-ala2'

i=1,2. The marginal distributions of (2.32) are finite

range distribution with survival functions

(

C + X1] -CX1 ,
R,(x,) =

1 1 c-x
1

ex, ,c>O, i=1,2.
1

Note: The calculations for model 5 is given in Appendix

2.4. GENERAL PROPERTIES OF THE BET FAMILY

In this section some general properties of the

family with probability density function (2.21) are

investigated. The marginal density function of X. are
1

directly obtained from the joint survival function (2.8) by

allowing x. to tend to u. Thus
1
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gives the marginal density of Xl as

(2.33)

SimilarlY,

(2.34)

The conditional probability density functions are

-1
= a j [ (a I +89 ( x I ) ) (a I +89 ( x I ) ) -8] s ' (x I )

1 J J 1 1

exp[-(a
i+8g(x

,»g(x , )].
J 1

2.4.1 Moments

(2.35)

h th t f h litT e r raw momen 0 Xl' wenever

given by

exists is
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en -a1Q(x 1)
E(X~) = J J[~ a

1
c;J'(x

1
) ~ dX

1
u

(X) -0 t

J [g-l(t)]r 1 dt= °1 e
0

-1 r
(2.36)= Q

l
L(g (t»

From (2.36) it is easy to see that the mean and variance of

[
-1 2 2 -1 ]var(x

l
) = 01 L(g (t») - L (g (t»).

where L(.) denotes the Laplace transform. The values

corresponding to the various members of the family presented

in Section 2.3 are given in Table 2.2.

2.4.2 Conditional means

The conditional mean of Xl given X2=x2 is
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(X)

- 8 J g-1(t)01(t)dt
o

Thus

(2.37)

and
co -1

E(X2IX1=X1) = u +O~1 J (01+8t)d9dt (t)02(t)dt
o

where G2(t) = eXP[-(o2+8g(x1»t).

Model 1.

Specialising for Model 1, g(x)=x, u=O

-1 m -(01+8x2)t
E(X1IX2=x2) = 02 f (02+8 t) e dt

o

°2(01+8x2)+8
=

°2(01+8x2)2

(2.38)

(2.39)
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Olj(Oli +8x j)+8= 2 ' i,j=1,2,i~j.

OI
j(OIi

+8x
j

)
(2.40)

The regression of Xi

decreasing in X .•
J

Model 2

on X.
J

is non-linear and

The regression functions for Model 2 can be

obtained as follows. Here g(x) = log x, u=l

-1 00 -(0l1+8IogX2-1)t
= 1 + 012 J (0I2+8 t ) e dt

o

(2.41)

Similarly,

(2.42)

Model 3

For model 3, g(x)=x~, u=O

[Ol~ _
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(2.43)

[a (1(a +8x(1)+8]
121

(a +8x(1)(1/(1)+1 ·
2 1

(2.44)

Model 4

In respect of model 4, g(x)=log(l+ax), u=O.

°2(a1 +8 1o g ( 1 +a x 2)-1)+9
=

2a
2a(a1+91o

q(1+ax
2)-1)

(2.45)
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Thus,

E(Xilx.=x,) =
J :J

a.(a
i

+8 1og ( 1+ax . ) - 1 ) +9
J J 2 ' i,j=1,2, i~j.

a
j8(ai

t 8 1og ( l t a X
j

) - 1 )
(2.46)

00

E(X1X2) = J xlx2f(xl,x2)dxldx2
u

co
=J X2f2(X2)E(XIIX2=X2)dx2

u

00

= u J
u
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2 m dn-1(y) -a2
y + JOO dn-1(t) -olt

dt=u +u J ~ e dy u ~ e
o dy 0 dt

m 00 -alt-a2y-6tYd -l(t)d -l( )
+ J J e 9 9 Y dt dy

o 0 dt dy

2 ( d -l( ) -1=u +u L 9 Y + L dg (t»)
a

2
dy a

l
dt

dg-1(t) d9-1(y»)
dt dy · (2.47)

Specialising the above expression for the different models

we have the following expressions.

Model 1 has

-1 -1 -1
E(X1X2)

= 6 exp[a
1a26 ]E

1[a1a26
]

For model 2, with g(x
i

) =x~ and u=O, i=I,2

(2.48)

00 -a1t 1 (l/~)-l 00 -(a2+6t)y (l/~)-l

=f e -- t J e y dy dt
o ~2 0

=
00J (a +6t)-(1/~)

o 2

-a t
1

e
(1/(1)-1

t dt



Model 3

Model 4
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r(!) 00
(a +z)-(l/(1)

-(al/9)z (1/(1)-1
= --L J e (z/9) dz/e

(12 0
2

r(!) (X) (l/~)-l -(al/9)z(1 J z
dz (2.49)= (a +z)l/(1 e(129 (1/(1) 0

2

1 1 -1 -1= 1+ ---- + ---- + e exp[(a1-l)(o2-1)9 ]
a1-l (X2-1

(2.50)

1 m -(a1-l)t m -[(CK2- 1 ) +9t ]y
= ~ J e J e dy dt

a 0 0

(2.51)
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Th. oonditional di.tribution of Xi given xj>ajo

The density function of Xl given X2>x2 is

-(a
l

+9 g ( X
2

» 9 ( X
1

)
= [(a

1+9g(x2)]q'(x1
) e

Similarly,

(2.56)

(2.57)

2.5 RELIABILI~Y MEASURES

2.5.1 Failure Rat••

The bivariate vector valued failure rate defined

by Johnson and Kotz (1975) is given in equation (1.24) is

given as
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where

Basu's (1971) failure rate is

The forms of the failure rate function in respect

of the standard models are presented in Table 2.3 and 2.4.

The typical vector failure rate function in each of the

models in Table 2.3 determines the corresponding

distribution uniquely by virtue of the representation

(1.29). However, some more general functional forms that

can be postulated without identifying these exact

expressions that characterize the distributions exist and

these are investivated in Chapter Ill.

The knowledge of the form of h(x
1,x2)

is helpful

in informing whether it is monotone increasing or
I

decreasing, thereby classifying the distributions according
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as IFR or DFR. Buchanan and Singpurwalla (1977) defines a

multivariate distribution as belonging to IFR (DFR) class in

It is easy to translate the above definition in terms of the

behaviour of the failure rate components h
1(x1,x2

) and

h
2

( x
1

, x
2

) , since

R(X
1

+t
1

, x
2

+t
2

)

R(x
1,x2)

Thus the bivariate distribution is IFR (DFR) in
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the very strong (VS) sense if h
i

( x
1

, x
2),

i=1,2 is •
decreasing (increasing) function in both the ar9uments xl

and x
2

• In a similar manner we see that following the

definitions of Buchanan and Singpurwalla (1977) that a

bivariate life distribution is IFR (DFR) in the strong sense

(8) if h
i(x1+t,x2+t)

is ~(t) in (x
1,x2

) . IPR (DPR) in the

weak (W) if hi(xl+tl,x2+t2) is t(~) in x and IFR(DFR) in the

very weak (VW) if h
i(x1+t,x2+t) is ~(t) in x and IFR(DFR) in

the very weak (VW) if hi(x+t,x+t) ~(t) in x.

In the light of these definitions, we see that the

BET family consists of distributions that belongs to most of

the IFR and DFR classes of models.The bivariate exponential

distribution with independent marginals is both IFR-V8 and

DFR-VS, Model 1 is IFR-S, model 2 is DFR-S, model 3 can be

IPR-S or DFR-S depending on the values of ~ and so on. Thus

we have a flexible family of distributions from which a

required model that satisfies the physical condition of the

system can be chosen.

On the other hand, the 8calar failure rates do not
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determine the distribution of (x
1,x2)

uniquely as survival

function R(x1,x2 ) is determined as solution of the second

order differential equation,

2.5.2. Yhe HeaD Residual Lif. Function

In general for the BET family, the mean residual

life function defined by (1.31) does not have a closed form

expression. However, for certain specific models, this

expression allows simplification.

Model 1

Model 2

Model 4

i,j=1,2, i;w!j.
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2.5.3 a•• idual Lif. Distribution.

The mean residual life, variance residual life

etc: often used in reliability modelling can be used as

summary measures derived from the distribution of residual

lives. Often it is more informative to look at the residual

life distribution itself rather than these measures to have

a detailed understanding of the failure process. The

survival function of the residual lives corresponding to

S(y;x) = P[x>x+ylx>x]

where

th~ orderinq assumed to be componentwise. It is easy to see

that

S(y;x) = R(x+y)/R(x)

Thus for the family (2.8)

where g(x) i~ continuous and has continuous derivatives in

-1
(U,9 (m», it follows that
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Thus when g(.) is a linear incressin; function,

the residual life distribution has the same form as the

original life distribution, except for the parameters.

2.5.4 Di8tribution of Minimum and Maximum of (X1'X2)

are specified by their survival functions,
!

P(T>t) = exp[ -a
19 ( t ) - a

29 ( t ) - 6q2(t)]

P(Z>z) = exp[ -a
19(z)] + "exp[ -a

2
Q(z»

2- exp[ -a19(z) - a
29 ( z ) -6 g (z)]

These distributions arise in reliability when the

components are connected in parallel or series.
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....ble 2.1

Model No. O(x,y) g(x) Survival function support

1
(exponential) x+Y x exp(-alxl-a2x2-9xlx2] (O,m)x(O,m)

2 -(al+91oCJx2)
-a

(Pareto I ) log x
2

(l,m)x(1,m)xy xl x
2

3
1-

(Weibull) (xP+yp)p a a a a a
(0 .eo) x( 0 ,m)x exp[-alxl-a2x2-9xlx2]

4 -(a
l

+9 1oCJ ( 1+a x
2

»
(Pareto 11) x+y+axy log(l+ax) (l+ax

l)
-et

2
(0 ,m)x(O ,m)(1+ax

2)

c-x
5 (al +91o CJc+ x

2
)

(Finite (x+y) (C+X)log - (C-Xl ) 2
Range)

(1+ x~J
c-x

c+x1 a
e (C-X2) 2

(O,c)x(o,c)
c+x

2
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"able 2.2

Model
E(X. ) var(x

i)No 1

1
-1 -2a
i

Ot
i

-1 -1 -2
2 °i(Oi-1) 0i (ai - 2) (Oi -1)

3 a-1/ f1r ( I +(1 - 1 ) 0~21(1[r(I+2(1-1)-r2(1+(1-1)]
i

-1 -1 2 -1 -2
4 a (a.-I) aia (Oi- 2) (Oi-1)

1

(-i +2 (-i +1
a i c

2[2- 2-.+1) (Y' (-1:3) -v(-i : 2))5 C[I-0i (YJ -2)-YJ -2))]

-ai (¥' ~i :2) -Y'~i :1))2]
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Table 2.3

Vector failure rate function of the BET family

I Model

1

2

3

4

5

6

Bivariate
exponential
with
independent
marginals

failure rate
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Table 2.4

Scalar failure rate

Model Scalar failure rate

1 [(0I
1+8x2)(0I2+8x1)-8]

I
-1 -1

2 [(0I1+8109X2)(0I2+810;X1)-8]X1 x2

3
2 ~ ~ ~-l ~-l

~ [(0 +8x )(a +8x )-8]x I
1 221 1 2

2

4
8 [(0I1+8109(1+&X2»(0I2+8109(1+&X1»-8]

[1+8x
1

][1+&x2]

5 4c
2 (2 2)-1( 2 2)-1c -x c -x

1 2

[ c+x C+X1) ]
(011 +8109 C-X:J (012+81OV -- -9a-x

6
1

Bivariate
exponential

Cl1(J2with
independent
marginals
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Appendia

Mean and variance of Model 5

(l-t)l+t

a -1
t 1 dt

1 Cl

= c-2a
1c!

t l(l+t)-l dt
o

-- _8
2

[w«· +2
1 » - VJ (_a

2
] ]using the relationship tFl(l,a,a+l:-l) T T

between the hyperq80metric function and the di9amma function

~(.) in Abramowitz and steoun (1972, p557).

Similarly,
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E(X~)
1

( 2t ) 2
a -1

2 I t 1 dt= ale 1 - l+t
0

1 [ a -I ()( a +1
2 J t 1 - oft 1(I+t)-1 + 4t 1 (l+t)-2]dt=a c

1
0

var(x
1

) = E(X~) - [E(X
1

) ] 2

=a1c
2

[2 - 2«(11+1) {Y'C(lI:
3») _"ca l :l»)}
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Note 1. tF1(a,b,c:x) is the hypergeomtric function defined

~
(a) (b) n

n n x
by 2Fl(a,b,c:x) =F(a,b,c:x) = (c) DT

nn=O

with (a) = a(8+1) ... (a+n-l). (Abramowitz and
n

StequD, paqe 556)

2. The value for model 1 through 4 corresponds to

univariate di8trbutions available in Johnson and

Katl (1972)



Chapter I11

CHARACTERIZATIONS OF BET FAMILY

3.1 IMTRODUCTIOI

A characterization theorem is the only exact
I
I

method to identify uniquely the form of distribution

function, that generated the observations. These theorems

also help us to have a better understanding of the structure

and the implication of the physical system that is subjected

to investigation. Accordingly, in this Chapter, we

a

establish some characterizations related to BET family, as a

whol~ and several unique properties that pertain to some of

its members.

3.2 CHARACTERIZATION BY CONDITIONAL DI8TRIBUYIOM8

Events of the form Xj>x
j

, where X
j

represents

non-negative, continuous random variable are of ~pecific

interest in various fields of applied research such as

reliability, survival analysis, extreme value theory etc.,
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with appropriate interpretations for x ..
J

In the bivariate

set up it is possible to have acce~s on information about

the behaviour of the variable X. given that x,>x
j

i,j = 1,2;
1 J

i~j and therefore there is some apparent interest in

characterizing the joint distribution of (X
1,X2

) given the

forms of the conditional distribution of the X. given X.>x ..
1 J J

We first establi5h a theorem that characterizes the BET

family using such conditional distributions.

Theorem 3.1

Let X = (X
1,X2)

be a bivariate random vector

admitting absolutely continuous distribution with respect to

-1 -1
Lebesgue measure in the support of (u,g (00» x (u,g (00».

The survival function of X is of the form (2.8) with

continuous and strictly increasing g(.) if and only if for

every Xi>U, the conditional densities f(xiIXj>Xj), i,j=1,2:

i~j are of univariate exponential type.

Proof:

If the survival function of X is of the form

(2.8), we have
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(3.1)

80 that differentiation with respect to xi yields

(3.2)

which i. of exponential type. Conversely, assuming

f(XiIXj>Xj) are of univariate exponential type, it should be

of the form,

(3.3)

and therefore,

(3.4)

Set:ting X I = u in (3.4) we have,
: J

where a i = ai(u). Thus the joint survival function can be

written either as

(3.5)
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or as

(3.6)

Bquating (3.5) and (3.6)

which after rearrangement yields,

(3.7)

for all x
1,x2>u.

Usin9 the ar9uments similar to that led to

the solution in equation (2.19) Ne find that

(3.8)

where e is a constant. Substituting (3.8) in (3.5) or in

(3.6) we arrive at (2.8) and this completes the proof.

3.3 CRARACTBRIZATIOI BY RELIABILI!T OOftCBP~8.

A glance at some important members of BET family

reveals that m08t of them are useful in the context of



66

modelling equipment behaviour in two-component systems where

the random variable of interest are the life times Xl and X2

of the components. This is in view of the popularity of the

exponential, Weibull and Pareto enjoyed as life

distributions in the context of reliability and life

testing. It 18 therefore of interest to look at the nature

of the failure rate of the 8ystem of distributions, under

consideration. Using vector valued failure rate given in

equation (2.58) and the result that h(x
l,x2

) can uniquely

determine a distribution, we already have a charaoterization

of the BET family. with a more general form of the failure

rate than the specific expression in (2.58), it i. possible

to have a characterization and this we give in the following

result.

Theorem 3.2

A continuous random vector in the support of

-1 -1
(u,g (00» x (u,g (00» has distribution specified by (2.8)

if and only if the failure rate function is of the form

(3.9)
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where bi(u) = ai' i=I,2 and the function g(.) is .s

stipulated in theorem 3.1 with g(u)=O.

Proof:

Given a failure rate vector of the form (3.9),

using relationships in equation (1.26) one can write,

(3.10)

and

(3.11)

Equating (3.10) and (3.11) we get the functional equation

b
1(x2)-a1

b
2(x1)-a2

=q(x
2

) g(x
l

)

holding for all x
1,x2

which is infact true if and only if,

bi(x j ) = (a.+9g(x.», i,j=1,2;i~j
1 J

where· 8 is independent of Xl and x 2 · Substituting this in

(3.10) we have the survival function of the required form.

The converse is obvious from equation (2.58).
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It has already been pointed out in section 2.5.2

in general, the BET family does not have a closed-form

expression for its mean residual life and therefore, there

does not exist characterization of the entire family in

terms of simple functional forms of the mean residual life.

However, it is worthwhile to investigate the existence of

characterilation theorems comprising certain subclass of the

BET family. We now present a result in this direction.

theorem 3.3

If ;(x) is differentiable in
-1

(u,; (m» and

[g-l(U)]-l<oo, then a necessary and sufficient condition that

a bivariate density has a mean residual life vector of the

form

are non-negative continuous

functions, is that the corresponding survival function is,

(3.12)
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Proof:

Given that

From relation (1.32),

8
1(U)

8
2(U)

9'(U) g'(u)
= 8

1
( u ) 8

2(U)
9' (Xl) g' (x

2
)

exp[ -

and

=
9' (Xl )g' (X

2
)

2
(g' (u»

exp [ - (3.13)

Equating the two for~

By the usual arguments, this yields

i,j=1,2; i~j
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where

-1
Substituting this value of ai(x

j
) in R(x

1,x2)
we oet the

distribution specified by (3.12). The converse is obvious.

Corollary

(i) Taking q(x
i

) = xi' (3.12) becomes model 1 in Table

2 .1.

-(0 +1)
2x

2

which is bivariate Pareto type I distribution.

(iii)

-01 -02 -81oo(1+ax2)R(x
1,x2)=(l+ax1)

(1+ax
2)

(1+ax
1)

Re.ark:

In general the form of the distribution (3.12) is

not the same as that in the BET family. For example, if we



71

So that no density exists for (X
1'X2 ) . Further for modelS,

(3.12) is of different form.

From the expressions for the vector valued failure

rates and mean residual lives given earlier, we notice that

bivariate exponential distribution, the value

unity for the bivariate Pareto Type 11.

3.4 MEAR FAILURE RATIS

Considering the vector valued failure rate and

!
mean residusl life, we can arrive at certain derived

measures viz. arithmetic mean failure rate (AFR), geometric

mean failure rate (OFR), harmonic mean failure rate (H'R)

and similiar measures involving mean residual life. These

measures were introduced in the univariate case by Ray and

Mukherjee (1992). We now extend these definitions to the

bivariate case. Accordingly, the bivariate AFR is a vector

of two componerrt s defined as,
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where

i=I,2; X.>O.
1

(3.15)

The bivariate GFR is defined as

where

and

with

(3.16)

X.
1

= [~i l (3.17)

In the next section we discuss some properties of AFR, GFR

and HFR.

3.5 PROPERTIES OF THE MEA" FAILURE RATES.

'fheorem 3.4

The three means of failure rate, viz AFR,GFR and
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HFR each uniquely determines the distribution function of

the bivariate random vector.

Proof:

From (3.12),

-c7109R( X
1

, X
2

)

c7x
i

dX i

or

That is,

and

As Xl ~ 0+ in (3.21), we have

substitutinq for R
2(x 2) in (3.20) it reduces to

(3.18)

(3.19)

(3.20)

(3.21)
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By analogy we obtain,

(3.22)

(3.23)

Usinq one of these equations (3.22) and (3.23) we obtain the

survival function of (X
1'X2

) uniquely.

Now we shall consider equation (3.16) which can be

written as

Xl

xl log 01(x1 , x
2

) =flog h
1(x1 , x2) dX1o

for i=1. Differentiating with respect to xl'

From (3.4),

(3.24)

-8109R(X
1

, X
2

)

6 = °1(Xl ' X2 )
xl

(3.25)

Integrating (3.25) in the range (0,X
1

)

(3.26)
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Similarly,

(3.27)

As Xl~ 0+ in (3.27) yields,

and sUbstitution of this value in (3.26) gives

Similarly,



Equations (3.28) and
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(3.29) provide the necessary

expressions for R(x
1,x2).

Proceedinq alonQ similar lin•• ,

using equation (3.17) we can arrive at the survival function

in terms of HFR as

or

(3.30)

dx '
1·

Examples.

(3.31)

Then

and

:: a .(1-1
2A2 ·
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substitutinG the corresponding values in equations (3.22) or

(3.23) we e,et

R(x1,x2) = eXP[-xlal~-l -X2(a2+9~)~-1]

which is bivariate Weibull distribution.

substituting in (3.28) or in (3.29)

!which is Gumbel's bivariate exponential distribution

Substitutin9 in (3.30)
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which is bivariate Pareto Type I distribution.

,.heor.. 3.5

A set of necessary conditions that an APR function

I
(ii)

(ii1)

Proof:

(3.32)

(3.33)

Condition (i) is obvious. To prove condition (ii)

(3.22) gives
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For R(X1,x2) to be a survival function one must have

+ +
R(O ,0 ) = I and 0~R(xI,x2)~I. Hence

A
I

( X
I

, X
2

) x
2---- ~-

A
2(0+,X2)

xl

also

Condition (ii!) follows from

which implies

or

Similarly from R(X1,OO)=O

lim
X

2
A

2
( x

1
, x

2
) :: 00.

-2-. 00
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3.6 CHARACTBRIZATIOft8 OP BIVARIATB WIIBULL DISTRIBU!IOn AnD

GUMBEL'S SIVARIATE BXPONENTIAL DISTRIBUTIOR

Ne shall obtain certain characterizations of

bivariate Heibull distribution and Gumbel's bivariate

exponential distribution using these measures.

Theorem 3.6

If h
i(x1,x2)

is differentiable in both the

arguments then X follows bivariate Heibull distribution

specified by (2.27) if and only if any of the following

statements hold.

Proof:

Assume that (1) holds.

Taking i=l,
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(3.34)

Taking i=l and differentiating (3.34) with respect to xl' we

get

Integrating (3.35) with respect to xl

or

(3.35)

Similarly for i=2,

Using the relation (1.26) we can reach at the functional

equation,
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which gives solution as

On substitution, the survival function reduces to that of

Heibull distribution, with Q.
1

+= ak.(O ) and 6=6a.
1

Conversely, if it ia assumed that X=(X
1,X2)

has

bivariate Neibull distribution specified by (2.27), then

from Table (2.3)

= (0 +6x
(1)x f1- 1

121

which gives

So that the specified form holds.

Assume that condition (2) holds. Proceeding as in the

previous case we get
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where mi(x
j

) is the constant of integration, and this gives

the required survival function. Converse also i8 similar to

that in case (1).

In case (3), we have

Differentiating with respect to xl'

1

e

hi(X1,X2 )

h
1

( x
1

, x
2)

Integration yields,
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and similarly

and therefore the proof is analogous.

Corollary 3.1

Let X = (X1,X2 ) be a bivariate random vector

admitting absolutely continuous distribution with respect to

Lebesque measure. Then

!

Ai(X1 , x
2)

= 0i(X
1'X2 ) = Hi ( X1 , X2) ~ "i(X

j
) ' i,j=1,2, i~j

of function alone, if and only if x has Gumbel • s

bivariate exponential distribution.

Proof:

Proof follows from equations (3.22), (3.28) and

(3.30) and Theorem 3.6.

Corollary 3.2
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independent of Xl and X2 if and

independent exponential variates.

3.6 is as follows

Theorem 3.7

only if Xl and

A restatement of

X
2

are

Theorem

If h
i{xl,x2)

is differentiable, the following

four statement~ are equivalent.

(i)

(ii)

(iii)

Ai {X
I

, X
2)

is proportional to 0i(x1,x2
) for all xi'

i=1,2.

0t(x
1,x2) is proportional to "i(x

1,x2) for all xi'

i=I,2.

Hi {x
1

, x
2)

is proportional to A
i

( x
l

, x
2)

for all xi'

i=1,2.

and

(iv) X={X
1,X2

) follows bivariate Weibull distribution,

specified by (2.27) wherever these measures are

defined.

3.7 CHARACT!RIZA~IO" or PARETO ~YPI I DISYRIBUTIOM.

In this section we establish a characterization of
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Pareto type I distribution which is an extension to the

bi~ariate case of the result in Dallas (1976) mentioned in

Section 1.2.

-rh.or.. 3.8

vector admitting

absolutely continuous distribution with respect to Lebesgue

measure in the support of (l,oo)x(l,oo) with E(X~)<OO for any

positive integer r. Then X follows bivariate Pareto I

distribution specified by (2.23) if and only if

(3.36)

Proof:

Assume that the survival function of X is of the

form (2.23).

(3.37)

substituting for R(c
1,c2

) from (2.23) we get
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(3.38)

Now consider

(3.39)

Thus (3.36) is true for i=l.

similarly.

~he case for 1=2 holds

Conversely, assume that condition (3.36) holds.

Denote by

also we have,
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Q'J

= c~ R(c1,c2) + r J
cl

Then (3.36) can be written as,

(3.40)

Since R(.,.) is a monotone, continuous function, it is

differentiable. Differentiating (3.40) with respect to cl'

we have

R'(C
1

, c
2

)

R(c
1,c2)

(3.41)

Integrating this we get
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where A1 ( c 2 ) is the constant of integration. Lettinq c1-+l,

Similarly by assumin~,

we get

(3.43)

Settinq c
2=1

in (3.42), it reduces to

substituting this value of R1(c
1)

in (3.43) we qet

(3.44)

and: similarly

(3.45)



90

Equating (3.44) and (3.45)

~.king logarithms on both sides and re-arranging

This viv8a

Then substituting 8
t(c j

) in (3.44) or in (3.45) we get

which is of the form (2.23). This completes the proof.
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Chapter IV

SOME DERIVED MODELS

4.1. I NfRODUCT101

There are several attempts in literature to

construct bivariate distributions which has specified forms

for its marginal and conditional distributions of which the

systems with specified mar~inals are reviewed in Johnson and

Kotz (1972). Seshadri and Patil (1964) studied the problem

of determining the joint distribution of Xl and X
2

oiven the

marginal distribution of Xi and conditional distribution of
I

X
j

;9iven Xi = xi' 1, j = 1,2, i ;t. j.

sufficient condition for the uniqueness of the joint densitl

function of Xl and X
2

is that the conditional distribution

of Xi given Xj is of the exponential form. The question of

determining the joint distribution using the conditional

distributions has received considerable attention in the

recent times, on the ground that information about the

conditional densities are available in many real life

phenomenon. Some recent papers in this area are of castillo
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and Galambos (1987) Arnold (1987), Arnold and strauss

(1988), etc. Arnold and Press (1989) determined a necessary

and sufficient condition for the existence of joint density

given the conditional densities. Gourieroux and Monfort

(1979). Host of the attempts in these papers were to obtain

joint distributions which have a specified form for their

conditionals are normal, Weibull, Pareto etc.

conditionals,such as bivariate distributions whose

In the

following section, we provide a uniform framework in which a

class of bivariate distributions can be generated. This

cl~ss contains models whose conditionals are exponential,

Weibull, Pareto I, Pareto 11 and finite range distributions.

4.2. DIRIVA710R or !BI PAMILY.

The lack of memory property defined by "air and

Nair (1991) given in equation (1.36) is generalised here as

follows.

(4.1)



93

j wherefor all si' t
i,

x
j

in (u,c) holds, i,j = 1,2

G(.,.), u, c etc; are all 8S explained in the beginning of

Chapter 11.

Writing the conditional survival function of Xi

given X
j

= x
j

as,

(4.2)

equation (4.1) becomes,

x .) .
J

(4.3)

Using (4.2) and (4.3) we have

S(G(t.,Si)'X.) = S(t.,X.).S(Si'X
j

) .
1 J 1 J

(4.4)

has thePor a fixed, but otherwise arbitrary x
j

(4.4)

solution, following the ar;uments in Muliere and Scarsini

(1987)

(4.5)

Thus the problem of finding the bivariate distributions
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reduces to find the joint

distribution of (X1,X2), where the conditional distribution

of Xi given xj=x
j

forms,

(4.6)

and

(4.7)

The probability density function corresponding to

(4.6) and (4.7) are then

£( Xl I X2) ""1(x 2)

-""1(X2)9(Xl)
s ' (xl)= e

and

£( x2 I x
l) ""2(x l)

-""2(Xl)9(X2)
9' (][2)= e

respectively.

(4.8)

(4.9)

Representing the marginal densities of xland X
2

by £1 (xl)

and £2(x 2) we arrive at the identity,

""1(x 2)

-""1(x2)g(x1)
g' (xl) £2(](2)e

""2(x l)

-""2(Xl)9(X2) Cl' (x2) £l(xl) (4.10)= e
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or equivalently for all x
1,x 2

in (u,c).

(4.11)

with primes indicating differentiation.

(4.11) with respect to x
2,

Differentiating

(4.12)

Jow differentiating (4.12) with respect to xl' we have

or

8A
1

{X
2

)

8x
2

8g(x
2

)

8x
2

(4.13)
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For equation (4.11) to be true for all x
1,x2

it must be true

that

i,j = 1,2 i ~ j

c7X
i

( x
j

)

'x j
69(X

j
)

'x j

where 6 is a constant independent of both Xl and x2 .

(4.14)

Since

this solution is unique, the value of ~i(Xj) that satisfy

(4.10) is

(4.15)

Introducin9 this value of ~i(Xj) in (4,10) and simplifyin9

for all x1,x2, This however means that for some constant

C)O,

(4.16)

Prom (4.10),(4.14) and (4.16) the joint density of
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(4.17)

In particular when 8=0, we have the case of independence of

Th. oonstant C oan be obtained a. follows.

Ne have

(l)U)

J f f(x1,x2)dx1dx2 = 1
u u

That is,

or

Correspondinv survival funotion is obtained as

(1)(1)

R(-1'x2) = f f f(x1,x2) dX1 dx2"
xl -2

(4.18)
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-1 -1 -1= B1(QIQ2
8 ) B1(QIQ2

6 +QIG(xl)+Q2G(X2)+8G(Kl)G(X2»'

(4.19)

4.3. PAR71CULAa CAlli.

and this reduces to the density function of the form

x
1

, x
2

> 0, which is the bivariate exponential distribution

obtained in Arnold and strauss (1988) and Abrahams and

Thomas (1984).

impli.s
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and gives

~hi8 is the bivariate distribution with Pareto I model as

conditionals.

giv~s

~ > 0, a
i

> 0, 8 ~ 0, i = 1,2, x
1,x2 > ~.

A bivariate distribution with Meibull conditionala results.

4. 0(x1,x2) = x1+x 2+&X1X 2 '

implies

and

The joint density is
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-a
l

-a
2

-81oQ(1+ax
2)= C (l+ax

l)
(l+ax

2)
(l+ax

l)

implies

In all these oases C i8 as in equation (4.18). The solution

of the functional equations in the e.amples are available in

Aczel (1966).

~he unique bivariate distribution with Pareto I1

conditionals obtained in example 4 of above differs from a

similar model derived in Arnold (1987). Arnold chooses the
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scale parameters to depend on the conditioned variable and

the shape parameter is fixed. In the model described here,

the scale parameter remains unaltered, while the shape

parameter changes with the values of the

variable.

4.4. RARDOM E"VIROKME"~AL MODELS.

conditioned

A working mystem is often affected by the changes
I

in its surroundings. The environment in which the system is

working need not be the same as the laboratory environment,

under which the system was de8igned and the prospective

reliability was determined. The workinq environment

comprises of a number of observable and unobservable factors

whose intensities change over time in a random manner. For

example, the system might have been built on the premise

that the components are structurally independent so that

when they 'York in a common environment, the expectation is

that they fail independently. However the common workin;

condition may induce cert8in kind of relationships among the
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oomponents that makes the assumption independent failure

times untenable. Thus the reliability of the .,stem is

often affected sometimes adversely and sametimesfavourably,

when the system operates in places different from the

initial test site. It is important to assess the manner and

extent by which the reliability is affected due to a change

in environment and therefore extensive studies have been

earned out by various researchers on models that can eaplain

this fact.

Lindley and 8ingpurwalla (1986) have studied

systems sharinq common environment and currit and

Sin~purwalla (1988) analysed the reliability function of

Lindley and Singpurwalla model, in the parallel and series

systems and have obtained a formula for making Bayesian

inferences for the reliability function. Mayak (1987),

Bandyopadhyay

and

Cinlar and ~Eeckici (1987), ROJ (1989),

Basu (1990), Gupta and Oupta (1990) Lee

Sankaran and Hair (1993), Singpurwalla and

Gr08S

Youngren

and

(1991),

(1993)

etc: have considered environmental models in detail. It is
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customary in modelling problems to assume that the failure

rate of the system working in the new environment i8 given

vector failure rate, when the system has worked in the test

environments. In thi. representation, n stands for the

effect on the failure rate due to the change in environment.

Thus when the environment factor n > 1 (~ < 1, ~ = 1) the

new working oonditions are assumed to b. barsher (milder,

same as) than the original work site. Since the influence

of the changed environment is seldom known exactly, it is

reasonable to take n as a random variable and to assume a

suitable probability density function for it. One such

choice for the distribution of 'n' is the oamma density

f(nlm,p) m > 0, P > o. (4.20)

Consider a two component system, with life lengths

Xl and X
2"

originall" the s,stem is assumed to have a

distribution function specified by (2.8). ~he vector valued

failure rate of the system is given in equation (2.58).

While working in an environment with environment factor n,
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(4.21)

which gives the new survival function of (X1'X2
) as

(4.22)

Aocounting the uncertainty of ~, by averaging this over the

distribution of n, ;iven by (3.20)

m m P -mn p-l -n(alo(xl)+Q20(x2)+60(xl)o(x2»
Rn( x 1 , x 2)=J rp e n e dn

o

(4.23)

at
where a i = m-' and b ~ Blm, i = 1,2.

The corresponding density function is given by

f(X~'X2) = p[p(al+bo(x2)(a2+bo(xl»+ala2-b) 0'(X1)9'(X2)

[1+alO(Xl)+a29(x2)+b9(Xl)9(X2»)-(P+2)

(4.24)

and the marginal density functions are
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(4.25)

The conditions on the parameters of the model derives from

or

Since g(.) is monotonio increasing and 9(U) = 0, the above

inequality holds good for all -1,x2 if and only if 8
2

) 0

and b > o. SimilarlY we get

o S (81+bg( X
2

» 9 ( X1 )

whioh vives -I > 0, b > o. From the assumption of gana.

density on. vets p ) o.

Alao f(u,u) ~ 0 leaves the condition,

or
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Thus the conditions on the parameters are

The family of distributions obtained under aforementioned

framework includes a large olass of distributions, like

Pareto distributions of Hutchinson (1979), Lindley and

Sin9Purwalla (1986), Burr distributions of Tatahasi (1965),

Durling et al (1970). These distributions are considered in

the forthcoming section.

4.5. PARTICULAR CASIS.

1. When 9(X
i

} = x. , i=1,2 , u=O, the form of original
1

distribution i. Gumbel • s bivariate exponential

distribution specified by (2.22) corresponding

environmental model takes the form,

Rn(x1,x2) = [l+alxl+a2x2+bxlX2]-P (4.26)

which is bivariate Pareto of Hutchinson (1979). By

takino b=O in equation (3.26), bivariate Par.to



107

distribution of Lindley and Sinopurwalla (1986) i8

obtained.

2. 9(X
i

) = 109 xi i=1,2 original distribution is bivariate

Pareto Type I, specified by equation (2.23) and

accordingly, equation (4.23) ohanges to

(4.27)

3. 9(X
i

) = ~, the parent distribution becomes bivariate

Neibull given by (2.27), and the environmental model is

R (x x) - [1+a x~+a X~+bx~x~]-P. x x >0n l' 2 - 1 1 2 2 1 2 ' l' 2
(4.28)

which is bivariate Burr distribution of Durling et al

(1970). When b = 0, bivariate Burr distribution of

Takahasi (1965) results.

4. = the parent distribution

becomes bivariate Pareto Type 11, and the environmental

model arising from (4.23) is

(4.29)
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c+x.
1

When 9(X
i

) = 109 ----, with 0 < xi < C, 1=1,2 the formc-x
i

of original distribution is bivariate finite range

distribution specified by (2.32).

environmental model is

Corresponding

+ b 109 0+x1 109 0+x2 ]-p.
c-x c-x

1 2
(4.30)

To be able to analyse the reliability of this

system in a chan;ed environment, we note that, the vector

valued failure rate of the system is

with

p(at+b9(x j
» 9'(Xt )

= [l+a19(x1)+a29(x2)+b9(x1)9(x2)] •
(4.31)

~hU8 for a quantitative assessment of the effect of the new

environment on the system the objects of comparison are the

failure rates in (4.31) and (2.58). Using the superscripts

'e' and '0' to differentiate the failure rates of changed
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and oriqinal environments the relative measures that

facilitate comparison are

(4.32)

Thus when actually the system i. operated in a

different set of conditions, the error that would be

committed through the measurement of the failure rate would

be positive or negative accordino as

)
1.

<

With respect to our model, this happens when

p(a
i+b9(X j

» )

(1+ai9(xl)+a29(x2)+b9{xl)9(x2»(Qi+99(Xj» < 1.

For i = 1, the first condition reduces to

or when
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Since E(n) = p/m, we conclude that whenever

changed environment would cause failures

frequently than in the test condition, when

more (less)

environments are identical.

4.6. CHARACTERIZATIONS

As discussed in Section 3.2, measures similar to

AFR, GFR and HFR can be obtained if the concept of failure

rate in them is replaced by mean residual life in the

bivariate case. Aocordingly, the arithmetic mean mean

residual life (AM MRLF) is defined a. the vector,

where

Xi

Ki ( x1 , x2 ) = ~i J r i ( x1 , x2 ) dXi
o

(4.33)
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and

this the mean residual life of i oomponent.

Likewise, the bivariate geometric mean mean residual life

(OM MRLP) i. defined a.,

where

Xi

Li ( x1 , x2 ) = exp { ~i f 109 r i ( x1 , x2 ) dXi }

o
(4.34)

and the bivariate harmonic mean mean residual life (HM MRLF)

is defined as

with
x .

(

1 i 1 -1
Mi ( X1 , x2 ) = --- J ( ) dXi )xi r i x1,x2o

Using the concepts of AM MRLF, GM MRLF and KM MRLF

(4.35)

together

with AFR, GFR and HFR we can characterize some of the models

already considered in the sequel.



112

Theorem 4.1

+
A random vector X = (x

1,x2)
in R

2
with absolutely

continuous distribution satisfies the property

(4.36)

For every x
1,x2

> 0 if and only if the distribution of

(X
1,X2

) is bivariate exponential of Gumbel(1960).

Proof:

When (X
1,X2)

is of Gumbel'. form,

So that from (4.33) = establishing

(4.36). Conversely, if (4.36) holds differentiating the

identity (4.33) with respect to xi'

or

= 0
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Thus r
i(x1,x2) = (Pl(x 2),P2(x1» and hence the result

follows from Hair and Hair (1988).

Corollary

if and only if (X
1

' X
2)

has Oumbel's bivariate exponential

distribution.

Adopting the same logic, but with • little

different algebra, it can be seen that the following

theorems hold.

Theorem 4.2

L(x
1,x2)

= r(x
1,x2)

for every x
1,x2

> 0

only if (X
1,X2)

has Oumbel's distribution.

'rbeor.. 4.3

M(x
1,x2)

= r(x
1,x2)

for every x
1,x2

> 0

only if (X1,X2 ) has Gumbel's distribution.

Theorem 4.4

if and

if and

A necessary and sufficient condition for (X
1'X2

) to be
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an "bsolutely continuous random vector in the support of

~atisfies anyone of the following conditions

for i = 1, 2, every xl' x2 > 0 and some positive real c is

that (X
I'X2)

is distributed either as Oumbel's bivariate

exponential distribution for c = 1 or a bivariate Pareto

type in (4.26) for 0>1, or as bivariate finite range with

survival function

(4.37)

-1 -1 -1
PI' P2, d>O, O<x1 <PI' 0 <x2 < (I-P1x1) , l-d < qp1 P2 S I

(P2-QXl )

for 0 < C < 1.

Proof:

Suppose (1) holds. Then for i = 1
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or

Differentiating with respect to xl'

Similarly for i = 2

This gives the form of

which characterizes the models in the Theorem for the

specified values of C as 9iven in Sank.ran and Mair (1992).

When (2) holds. for i = 1,

which gives the same expression for r
1

( x
1

, x
2

) as in the ca~e

of assumption (1). The proof for ease (3) follows suit and

this establishes the Theorem.
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Theorem 4.5

An AM MRLP of the form,

characterizes the Oumbel's bivariate law for a = 0 Pareto 1I

distribution for a ) 1/2 and the finite range distribution

for 0 < a < 1/2.

Proof:

Xl

~ ~l J log r 1(t,x2)dt = .xI + bl(x2)
o

The present study has considered three general

families of distributions, each bringin9 a cl.ss of

bivariate distributions under a uniform frame work. They

provide new derivations for some well known distributions as
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well as certain new bivariate continuous distributions.

Derivation of all the models are based on extensions of

concepts that have found acceptance amoD9 a large audience.

Ne have presented characterization theorems that will enable

identification of the member which will suit the

observations in a practical situation.

In view of the general functional form appearing

I

in the survival function in each family, general

characterization theorems were hard to establish, as in many

cases the assumed properties lead to functional equations

that are difficult to solve, by the existing methods.

However, characterization theorems based on basic

reliability conoepts have been established, where the models

are most apt to use. More characteristics of the families

are being investivated and is hopefully expected to be

presented in a future work.
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