NUCLEOSYNTHESIS AND PHASE TRANSITIONS IN THE EARLY UNIVERSE

TITUS K. MATHEW

THESIS SUBMITTED IN
PARTIAL FULFILMENT OF THE REQUIREMENTS
FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

GERTIFICATE

Certified that the work reported in the present thesis is based on the bonafide work done by Titus K Mathew, under my guidance in the Department of Physics, Cochin University of Science and Technology, and has not been included in any of the thesis submitted previously for the award of any degree.

Cochin-22
May 8, 1995

Supervising Teacher

DECLARATION

Certified that the work presented in this thesis is based on the original work done by me under the guidance of Prof. M Sabir in the Department of Physics, Cochin University of Science and Technology, and has not been included in any other thesis submitted previously for the award of any degree.

Cochin-22

May 8, 1995.

PRERACE

The work presented in this thesis has been carried out by the author as a research scholar under the supervision of Prof. M Sabir, in the Department of Physics, CUSAT. The thesis addresses some recent problems in the primordial synthesis of light elements in the early universe based on the standard hot big-bag theory and some related questions.

The recent advances in the observational arena, have led to a revision of the primordial abundances of light elements like $\mathrm{H},{ }^{2} \mathrm{H},{ }^{3} \mathrm{H},{ }^{3} \mathrm{He},{ }^{4} \mathrm{He},{ }^{7} \mathrm{Li}$ in the Universe. It is the aim of the standard big bang nucleosynthesis (SBBN) theory to predict these abundances thus to obtain the value of the baryon-to-photon ratio η of the present Universe. The other two parameters apart from η are number of light neutrinos and neutron life time, which are derived from experimental results.

There have been reports that the latest values of the abundances of deuterium (D), Tritium $\left({ }^{3} \mathrm{H}\right)$, belium- $3\left({ }^{3} \mathrm{He}\right)$ and helium- $4\left({ }^{4} \mathrm{He}\right)$ predicted by the theory do not agree with the observed values for a unique range of η. One of the aim of our work is to check this claim in the light of latest input parameters such as neutron life time, reaction rates etc. With a modified numerical cord, we find that discrepancy is there and it is shared by lithium-7 $\left({ }^{7} \mathrm{Li}\right)$ also. Even though the discrepancy is not very large, it is considerable and has the undesirable consequence that it can
predict more than one values of η for our Universe. The removal of this discrepency calls for some essential changes in the scenario of SBBN.

The inhomogeneous nucleosynthesis model based on first order quark-hadron phase transition in the early Universe, is an alternative scenario which has been extensively analysed in the last decade. Another class of models include neutrino degeneracy effects and neutrino masses. In this thesis we present our work in nucleosynthesis calculation and related aspects in these alternative models.

The contents of the thesis are organised as follows: In chapter 1 , is given an introduction to the theory of standard big-bang nucleosynthesis, and a review of the method of inferring the values of the primordial abundance of various light elements like $\mathrm{D},{ }^{3} \mathrm{H},{ }^{3} \mathrm{He},{ }^{4} \mathrm{He},{ }^{7} \mathrm{Li}$ etc.

In chapter 2 we present the method of calculating the reaction rates of the various reactions of cosmological interest based on the method of astrophysical S factor formalism. Here we report our work on the calculation of the rate of the reaction ${ }^{7} \mathrm{Li}(\alpha, n){ }^{11} \mathrm{~B}$, which is a very important reaction in the formation of the elements heavier than ${ }^{7} \mathrm{Li}$. The calculation is based on the latest data obtained by Boyd et al. The reaction rate obtained by us leads to a small reduction in the primordial abundance of ${ }^{7} \mathrm{Li}$.

In chapter 3 is presented our work about the modification of the Wagoner's numerical code for calculating the primordial abundance of the light elements. In Wagoners original code all thermodynamic functions are evaluated approximately. In order to increase the accuracy, we changed all these approximate evaluations with exact numerical calculation. We have updated the code by incorporating the latest results of reaction rates. By using our modified code and using the latest value of neutron life-time, we did recalculation of the primordial abundances of the light elements. By comparing our calculated results with the observed values of the abundances, we find that the abundances of light elements are not in agreement with the observed values for unique range of η values. This shows that the SBBN model is in trouble. Then we present our work regarding the removal of this discrepancy by including neutrino degeneracy. By including a small electron-neutrino degeneracy we find that the discrepancy can be removed. We also present here our investigations on the effects of massive neutrinos on primordial nucleosynthesis. Presence of massive neutrino can increase the neutron-proton ratio and thus the ${ }^{4} \mathrm{He}$ abundance. But this increase can be brought down by the noutrino degeneracy: The works done above are of extensive computational types, which do not reveal fully the physice of the process. In order to bring out the physice very clear, we also present an approximate analytical analysis of the neutrino degenerated nucleosynthsis.

In chapter 4 we present our work about the possibility of Mini-inflation prior to the quark-hadron trangition in the early Universe. First order quark-hadron transition is considered as a candidate for introducing inhomogeneity in the early Universe prior to the nucleosynthesis. On studying the characteristic of this tran-
sition we find that there is a possibility of mini-inflation just before the transition, which may dilute the inhomogeneity in such a way that the proceeding nucleosynthesis will not be affected considerably. We also note the possibility of mini-inflation without supercooling.

CONTENTS

Page
Preface i
Chapter 1. Introduction to standard Big-bang 1 theory and primordial nucleosynthesis
1.1 Thermal evolution of the Universe 6
1.2 Primordial nucleosynthesis 16
1.3 Observational abundance of light elements 24
2. The effect of the enhanced ${ }^{7} \mathrm{Li}(\alpha, \mathrm{n}){ }^{11} \mathrm{~B}$ 33
reaction rate on primordial abundance of ${ }^{7} \mathbf{L i}$
2.1 S - factor formalism for reaction rate 34
2.2 Reaction rate of ${ }^{7} \mathrm{Li}(\alpha, \mathrm{n}){ }^{11} \mathrm{~B}$ 38
3. Neutrino degenerate big-bang nucleosynthesis 45
3.1 The discrepancy - earlier results 47
3.2 Modifications of the Wagoner's code 49
3.3 Comparison of the theory and observation 58
3.4 Degenerate big-bang nucleosynthesis 61
3.5 An analytical analysis of the 66 degenerated big-bang nucleosynthesis
3.6 Massive neutrinos and nucleosynthesis 75
4. Mini-Inflation before the QCD phase transition 79
4.1 QCD transition in the early Universe 80
4.2 Mini-inflation 86
Appendix 97
References 100

Chapter 1

Introduction to standard Big-bang theory and primordial nucleosynthesis

The standard cosmological model is the hot big bang model. The important points of observational supports for this model are:
(i) Hubble expansion of the Universe,
(ii) Existence of the cosmic microwave background radiation (CMBR),
(iii) Abundance of the light elements.

The distribution of matter in the Universe is assumed to be homogeneous and isotropic on a sufficiently large scale as indicated by the distribution of galaxies. This high degree of isotropy exhibited by CMBR provides further evidence for the spatial isotropy.

The standand model assumes a homogeneous and isotropic Universe which is described by the Friedmann-Robertson-Walker (FRW) metric $[2,3,7,8,9]$

$$
\begin{equation*}
d s^{2}=c^{2} d t^{2}-R^{2}(t)\left[\frac{d r^{2}}{1-k r^{2}}+r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)\right] \tag{1.1}
\end{equation*}
$$

where (t, r, θ, ϕ) are the comoving distance, $R(t)$ is the cosmic scale factor and the k is a curvature parameter. By an appropriate reacaling of the coordinates k can assume values $+1,-1$ or 0 . For $k=+1$, the Universe is finite but unbounded, essentially a three sphere of radius R. The other twe cases describe space of infinite volume, $k=0$ being flat and $k=1$ being one of negative curvature.

For an expanding Universe, the Hubbles law, is the kinematical consequence of the FRW metric. Hubbles law [1] says that all galaxies are receding from each other, and the velocity of recession of a galaxy is proportional to the distance from the observer. The constant of proportionality known as the Hubbles constant gives the expansion rate of the Universe. The measured value of the Hubbles constant at the present epoch, H_{0} with its uncertainties in measurements ranges between 50 and $100 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$. Because of its uncertainty, one usually denotes H_{0} by h_{0} in units of $100 \mathrm{~km} / \mathrm{s} / \mathrm{Mpc}$, where $0.4 \leq h_{0} \leq 1.0$. One of the implications of the Hubbles law is the finiteness of the age of the Universe $t_{0} \approx H_{0}^{-1}$. This means that at a finite time in the past all the constituents of the Universe must have been concentrated at a point. In the big bang model it is assumed that Universe started expanding from such a singular state which was extremely hot and dense.

The dynamics of the Universe is determined by the Einsteins field equation [10]

$$
\begin{equation*}
R_{\mu \nu}-\frac{1}{2} R g_{\mu \nu}=8 \pi G T_{\mu \nu}+\Lambda g_{\mu \nu} \tag{1.2}
\end{equation*}
$$

where $R_{\mu \nu}$ is the Ricci tensor, R the Ricci scalar, $g_{\mu \nu}$ the metric, G the Newton's gravitational constant, $T_{\mu \nu}$ the energy-momentum tensor and Λ the cosmological constant. Since during the nucleosynthesis era the Λ is not significant, we will not consider it any more. The energy-momentum tensor $T_{\mu \nu}$ comprises of all the forms of energy and mass we can assume in the Universe. The solution for this equation for the dynamics of the Universe will depend on the choice of the energy-momentum tensor. For an istropic and homageneous Universe with a FRW metric, the tensor $T_{\mu \nu}$ must be a diagonal one $[2,3,4,5]$ and the nonvanishing space components equal to each other,

$$
\begin{equation*}
T_{\mu \nu}=\operatorname{diag}\left(\rho c^{2},-P,-P,-P\right) \tag{1.3}
\end{equation*}
$$

where ρ is the energy density and P the pressure, which are functions of time. With this choice Einstein equation (1.2) yield the following two equations for the evolution of the scale factor $[2,3]$.

$$
\begin{equation*}
3 \ddot{R}=-4 \pi G(\rho+3 P) R \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
R \ddot{R}+2 \dot{R}^{2}+2 k=4 \pi G(\rho-P) R^{2} \tag{1.5}
\end{equation*}
$$

If the equations (1.4) and (1.5) are combined to eliminate \ddot{R}, the result is a first order equation in \mathbf{R}

$$
\begin{equation*}
\left(\frac{\dot{R}}{R}\right)^{2}+\frac{k}{R^{2}}=\frac{8 \pi G}{3} \rho \tag{1.6}
\end{equation*}
$$

which is called as Friedmann equation. In addition to this the energy conservation yields the equation

$$
R^{3} \frac{d \rho}{d t}=\frac{d}{d t}\left[R^{3}(\rho+P)\right]
$$

$$
\frac{d}{d t}\left(P R^{3}\right)+\frac{p}{c^{2}} \frac{d R^{3}}{d t}=0
$$

Equations (1.6) and (1.7) can be solved by using suitable equations of states connecting pressure and energy density. Assuming that initially the radiation energy dominated over the matter energy, the equation of state is

$$
\begin{equation*}
P=\frac{\rho}{3} \tag{1.8}
\end{equation*}
$$

Neglecting the curvature effect it follows from (1.7) that the energy density of the radiation dominated phase behaves as

$$
\begin{equation*}
\rho \propto R^{-4} \tag{1.9}
\end{equation*}
$$

This leads to the connection between the scale factor and age of the radiation dominated Universe as,

$$
\begin{equation*}
R \propto t^{1 / 2} \tag{1.10}
\end{equation*}
$$

During the matter dominated phase pressure $\mathbf{P}=0$ and

$$
\begin{equation*}
\rho \propto R^{-3} \tag{1.11}
\end{equation*}
$$

The corresponding equation which connects the scale factor to age of the Universe is

$$
\begin{equation*}
R \propto t^{2 / 3} \tag{1.12}
\end{equation*}
$$

As Universe expands the energy density of the radiation decreases faster than that of the non-relativistic matter. But this difference in the decrease of the energy density will not manifest until the rate of thermalisation falls short of the expansion rate of
the Universe. When this happens the radiation and matter will thermally decouple from each other and consequently the Universe will change from the radiation dominated phase to the matter dominated phase.

The expansion rate of the Universe is controlled by the total energy density of the Universe. This total energy density comprises the energy density due to the photons and other particle species present in the Universe, like electrons, positrons, neutrinos, antineutrinos, nucleons etc. For $k=0$, one can define a critical energy density ρ_{c} as,

$$
\begin{equation*}
\rho_{c}=\frac{3 H^{2}}{8 \pi G} \tag{1.13}
\end{equation*}
$$

In terms of the present value of the Hubble constant, $\rho_{c}=1.88 h_{0}^{2} \times 10^{-29} \mathrm{~g} \mathrm{~cm}^{-3}$. We also define a parameter Ω known as the density parameter as

$$
\begin{equation*}
\Omega=\frac{\rho}{\rho_{c}} \tag{1.14}
\end{equation*}
$$

In terms of Ω the Friedmann equation can be written as

$$
\begin{equation*}
(\Omega-1) H^{2}=\frac{k}{R^{2}} \tag{1.15}
\end{equation*}
$$

For $\Omega>1, k=+1$ corresponds to a closed Universe. If $\Omega<1, k=-1$ the Universe is open, which expands for ever and $\Omega=1$ corresponds to a flat Universe with $k=$ 0.

The age of the Universe is also determined by the total energy density through the Friedmann equation. For the radiation dominated phase of the Universe, the
age can be written for $k=0$ as

$$
\begin{equation*}
t=\left(\frac{3}{32 \pi G \rho}\right)^{1 / 2}+\text { constant } \tag{1.16}
\end{equation*}
$$

Similarly one can determine the age of the matter dominated phase also. For exact age determination it is needed account for both the radiation and matter energy densities. The present age of the Universe is thought to be in the range 10 to 20 Gyr.

1.1 Thermal Evolution of the Universe

The early Universe was to a good approximation in thermal equilibrium. The subsequent departures from the equilibrium causes the formation of the different structures in the early Universe. A particle species depart from the thermal equilibrium when its interaction with the other particles lag behind the expansion rate of the Universe. During thermal equilibrium the reaction rate is a function of several variables including temperature. The expansion rate is however a function of temperature alone.

According to the second law of thermodynamics, the entropy of the perticles at temperature T in a volume V is $[2,3]$

$$
\begin{equation*}
d S=\frac{1}{T}\{d(\rho V)+P d V\} \tag{1.17}
\end{equation*}
$$

where ρ and P are the equilibrium energy density and pressure. By the integrability condition,

$$
\begin{equation*}
\frac{\partial^{2} S}{\partial T \partial V}=\frac{\partial^{2} S}{\partial V \partial T} \tag{1.18}
\end{equation*}
$$

The energy density and pressure then be related as

$$
\begin{equation*}
\frac{d P}{d T}=\frac{1}{T}\{\rho+P\} \tag{1.19}
\end{equation*}
$$

Energy conservation relation (1.7) can then be written as

$$
\begin{equation*}
\frac{d}{d T}\left[\frac{V}{T}(\rho+P)\right]=0 \tag{1.20}
\end{equation*}
$$

The quantity $V(\rho+P) / T$ is nothing but the entropy per comoving volume S, as can be proved from equations (1.17) and (1.19). Equation(1.20 implies that the entropy per comoving volume is a constant under the thermal equilibrium condition. During the radiation dominated phase, the constituent particles are highly relativistic such that the energy density is

$$
\begin{equation*}
\rho \propto T \tag{1.21}
\end{equation*}
$$

By entropy conservation law the corresponding evolution of the scale factor \mathbf{R} with temperature is

$$
\begin{equation*}
R \propto T^{-1} \tag{1.22}
\end{equation*}
$$

This condition known as the adiabatic condition, holds true through out the history of the early Universe.

At very high temperature the Universe consisted of photons, leptons, nucleons and mesons and their antiparticles. As the temperature dropped below $10^{12} \mathrm{~K}$ the
muons annihilate with their antiparticles. During the further expansion the main events that took place are the decoupling of neutrinos around $T \approx 2 \times 10^{11} \mathrm{~K}$, pair annihilation of e^{t} pairs, the freezing out of the neutron-to-proton number density ratio and subsequently the synthesis of the light nuclei at about $10^{\circ} \mathrm{K}$. Due to further cooling the Universe changed over from the radiation dominated phase to matter dominated phase at about $T \approx 4000 \mathrm{~K}$, followed by the decoupling of radiation and matter. The energy of the decoupled radiation was then red shifted due to expansion of the Universe, its present temperature being about 2.7 K .

The evolution of the thermodynamic functions like energy density, number density, pressure etc of the different particle species are as follows. In equilibrium condition the photons will obey the Planck distribution $[1,2,11,15]$

$$
\begin{equation*}
\bar{n}_{\gamma}\left(E_{\gamma}\right)=\frac{1}{\pi^{2} c^{2} h^{3}} \frac{E_{\gamma}^{2}}{e^{R_{\gamma} / k_{0} T_{\gamma}}-1} \tag{1.23}
\end{equation*}
$$

where E_{γ} is the photon energy and T_{γ} is the photon temperature. The total energy density of the photons can then be written as [11],

$$
\begin{equation*}
\rho_{\gamma}=\int_{0}^{\infty} \bar{m}_{\gamma}\left(E_{\gamma}\right) E_{\gamma} d E_{\gamma}=a \frac{T_{\gamma}^{4}}{c^{2}}=8.4182 T_{9}^{4} \mathrm{gcm}^{-3} \tag{1.24}
\end{equation*}
$$

The total number density of the photons $[11,16]$

$$
\begin{equation*}
n_{\gamma}=\int_{0}^{\infty} \bar{n}_{\gamma}\left(E_{\gamma}\right) d E_{\gamma}=\frac{2}{\pi^{2}}\left(\frac{k_{B} T_{\gamma}}{c h}\right)^{3} \zeta(3)=2.02872 \times 10^{28} T_{g}^{3} \mathrm{~cm}^{-3} \tag{1.25}
\end{equation*}
$$

This corresponds to $3.99 \times 10^{28}\left(T_{9} / 2.7\right)^{3}$ photons per cm^{3}, which is very large compared to the baryon density in a Universe with critical energy density equal to the baryon deasity. Hence the Universe is dominated by photons. The ratio of
the baryonic number density to the photonic number density, η is related to the baryonic component of the density parameter Ω_{b} as,

$$
\begin{align*}
\Omega_{t} & =3.5569 \times 10^{7} \eta h_{0}^{2}\left(\frac{T_{\gamma}}{2.7}\right)^{3} \tag{1.26}\\
& =3.5569 \times 10^{34} \eta h_{0}^{2}\left(\frac{T_{9}}{2.7}\right)^{3}
\end{align*}
$$

where h_{0} is the present value of the Hubble's constant in units of $100 \mathrm{~km} / \mathrm{sec} / \mathrm{Mpc}$ [2]. The pressure of the photon gas is

$$
\begin{equation*}
P_{\gamma}=\frac{1}{3} \rho_{\gamma} c^{2} \mathrm{erg} \mathrm{~cm}^{-3} \tag{1.27}
\end{equation*}
$$

The thermodynamic functions of the other particles like electrons, positrons, neutrinos, anti neutrinos etc can be determined using the following distribution function $[3,11]$

$$
\begin{equation*}
\bar{n}_{i}(p)=\frac{p^{2}}{2 \pi h^{3}} g_{i}\left(\frac{1}{e^{\left(E_{i}-\mu_{i}\right) / k_{s} T} \pm 1}\right) \tag{1.28}
\end{equation*}
$$

where i refers to the particular species, p is the momentum, g_{i} is the spin multiplicity (which is 2 for electron, 2 for photons and 1 for neutrinos), $E_{i}=\sqrt{P_{i}^{2} c^{2}+m_{i} c^{1}}$, is the energy of the $i^{\text {th }}$ particle of rest mase m_{i}, μ is the chemical potential and k_{B} is the Boltzman constamt. The + sign is for fermions and - sign is for bosons. In equilibrium the number density of any species i is

$$
\begin{equation*}
n_{i}=\int_{0}^{\infty} \bar{n}_{i}(p) d p \tag{1.29}
\end{equation*}
$$

the energy density is

$$
\begin{equation*}
c^{2} \rho_{i}=\int_{0}^{\infty} \overline{n_{i}}(p) E_{i}(p) d p \tag{1.30}
\end{equation*}
$$

and the pressure is given by the relation

$$
\begin{equation*}
P_{i}=\int_{0}^{\infty} \frac{p^{2} c^{2} \bar{n}_{i}(p)}{3 E_{i}(p)} d p \tag{1.31}
\end{equation*}
$$

Using the above general prescription we obtain the thermodynamic functions for the constituent particles of the early Universe as follows. The total energy density of the electrons is

$$
\begin{equation*}
c^{2}\left(\rho_{e^{-}}+\rho_{e^{+}}\right)=\int_{0}^{\infty} p^{2} 2 \pi^{2} h^{3} g_{e}\left(\frac{1}{e^{\left(B_{n}-\mu_{a}\right) / k_{B} T}+1}+\frac{1}{e^{\left(K_{d}+\mu_{n}\right) / k_{B} T}+1}\right) E_{e}(p) d p \tag{1.32}
\end{equation*}
$$

For zero chemical potential $(\mu=0)$ as assumed in the earlier works $[15,16,21,22]$, the above equation can be expanded in terms of the Bessel function as,

$$
\begin{equation*}
\rho_{e^{-}}+\rho_{e^{+}}=15.56 T_{9}^{4}\left[M(x)-\frac{1}{16} M(2 x)+\ldots \ldots .\right] g \mathrm{~cm}^{-3} \tag{1.33}
\end{equation*}
$$

where $\mathrm{z}=m_{e} c^{2} / k_{B} T=5.92986 / T_{9}$, and

$$
\begin{aligned}
M(z) & =\left[\bar{K}_{3}(x)+\frac{z^{2}}{24} \bar{K}_{1}(z)\right] \\
\bar{K}_{n}(z) & =\frac{2}{(n-1)!}\left(\frac{Z}{2}\right)^{n} K_{n}(z)
\end{aligned}
$$

and $K_{n}(x)$ is the modified function. In the ultrarelativistic limit, that is when T $>m_{e} c^{2} / k_{B}=5.92986 \times 10^{9} \mathrm{~K}$, the $e^{ \pm}$pairs are in thermal equilibrium with the photons. During that stage the energy density of the electrons can be repremented in terms of the photon density as

$$
\begin{equation*}
\rho_{\rho^{t}}=\frac{7}{8} \rho_{\gamma} \tag{1.34}
\end{equation*}
$$

The pressure of the electron gas can be written as [16]

$$
\begin{equation*}
\frac{p_{z}+p_{\sigma}}{c^{2}}=5.19 T_{9}^{4}\left[\bar{K}_{2}(z)-\frac{1}{16} \bar{K}_{2}(2 z)+\ldots \ldots . .\right] g \mathrm{~cm}^{-3} \tag{1,35}
\end{equation*}
$$

In the ultrarelativistic limit

$$
\begin{equation*}
\frac{p_{e^{+}}+\rho_{e^{-}}}{c^{2}}=\frac{1}{3}\left(\rho_{e^{+}}+\rho_{e^{-}}\right) \tag{1.36}
\end{equation*}
$$

The number density of the electrons is

$$
\begin{equation*}
n_{e^{-}}+n_{e^{4}}=3.38 \times 10^{28} T_{9}^{3}\left[\bar{K}_{2}(x)-\frac{1}{8} \bar{K}_{2}(2 x)+\ldots \ldots .\right] \mathrm{cm}^{-3} \tag{1.37}
\end{equation*}
$$

The difference in the numbers of the electrons and positrons has got a special significance. It gives the net number of electrons over their antiparticles which will equal to the total negative charge in the Universe. Since the total charge of the Universe is assumed to be zero, there will be an equal number of positive charge also. So by assuming charge conservation, the net number of the electrons per unit volume can be related to the baryon number density as $[11,16]$

$$
\begin{equation*}
n_{e^{-}}-n_{e^{+}}=N_{A} p_{t} \sum_{i} X_{i} \frac{Z_{i}}{A_{i}} \tag{1.38}
\end{equation*}
$$

where $X_{i,} A_{i}$ and Z_{i} are the mass fraction, mass number and atomic number of the $i^{\text {th }}$ species of the nuclei and N_{A} is the Avogadro number.

Next important constituent of the early Universe is the neutrino. It is a massles, weakly interacting particle, with spin equal to (1/2). There are two types of neur trinos, Majorana and Dirac types. Recent experiments on double beta decay shows that the neutrinos in the early Universe are of Majorana type. There are 3 typers of neutrinos according to the recent experimental evidence $[23,25,26,145]$ they are the electron-neutrino, the muon-neutrino, and taon-neutrino. These have corresponding antiparticles also. By assuming that the neutrinos are non-degenerate,
the energy density of any one species, say the the electron type can be evaluated as,

$$
\begin{align*}
\rho_{\nu_{n}}+\rho_{\nu_{k}} & =\frac{7}{8} a c^{-2} T_{v}^{4} \tag{1.39}\\
& =7.36593 T_{\nu_{0}}^{4} \mathrm{~g} \mathrm{~cm}^{-3}
\end{align*}
$$

where $T_{\nu B}$ is the temperature of the neutrinos in units of $10^{9} \mathrm{~K}$. The temperature of the neutrinos are different from that of photons after the pair annihilation of the e^{t} pairs. This is because of the complete transference of the entropy of $e^{ \pm}$pairs to the photons due to their pair annihilation. Since the neutrinos will decouple form the thermodynamic equilibrium long before the e^{t} annihilation, they will not able to share the entropy due to the pair annihilation. The neutrinos decouple from the thermodynamic equilibrium at a temperature $T=2.1 \times 10^{10} \mathrm{~K}[11]$ when the universal expansion rate overtakes the interaction rate of the neutrinos with the reat of the Universe. Even after the decoupling the neutrino temperature will evolve as $T \propto R^{-1}$. After pair annihilation of electrons, neutrino temperature will be little less than that of the photons. The exact decrease of the neutrino temperature relative to photon temperature can be calculated from the law of the constancy of the entropy density. At high temperature almost all particles are relativistic in character. During such a stage the total energy density of the Universe can be expressed in terms of the photon density as,

$$
\begin{equation*}
\rho_{t c t}=\rho_{\gamma} g_{e f f} \tag{1.40}
\end{equation*}
$$

where $g_{e f f}$ is the effective spin multiplicity factor given ass [11]

$$
\begin{equation*}
2 g_{a f f}=\sum g_{b}\left(\frac{T_{b}}{T}\right)^{4}+\frac{7}{8} g_{a f f}\left(\frac{T_{f}}{T}\right)^{4} \tag{1.41}
\end{equation*}
$$

where the subscript $b(f)$ denote bosons (fermions). Before electron-positron annihilation $T_{b}=T_{f}=T$, hence $g_{e f f}$ becomes

$$
\begin{align*}
g_{e f f} & =\frac{1}{2}\left(g_{\gamma}+\frac{7}{8}\left(g_{e^{-}}+g_{e^{+}}+g_{\psi_{\psi}}+g_{\nu_{e}}+g_{\nu_{\mu}}+g_{\nu_{\mu}}+g_{\nu_{\psi}}+g_{\nu_{j}}\right)\right) \tag{1.42}\\
& =1+\frac{35}{8}=\frac{43}{8}
\end{align*}
$$

In this sum we include the photons, electrons, the three types of neutrinos and their antiparticles. Since the expension of the Universe is adiabatic the entropy per comoving volume remains a constant. So if any species annihilate in to photons their entropy will be transferred to photons and hence the photons temperature will be increased. This increase in temperature is shared by the other particles also if there is thermodynamic equilibrium. Since the neutrinos are decoupled well before the pair annibilation of neutrinos, the constancy of entropy implies that,

$$
\begin{equation*}
\left(g_{\gamma}+\frac{7}{8}\left(g_{\epsilon^{-}}+g_{\epsilon^{+}}\right)\right) T_{i}^{3}=g_{\gamma} T_{f}^{3} \tag{1.43}
\end{equation*}
$$

where T_{i} is the temperature before the annihilation of the e^{t} pairs and T_{f} is temperature after the annihilation process. After putting the required values in the above equation we get $[2,3,15,16]$

$$
\begin{equation*}
\frac{T_{j}}{T_{i}}=\left(\frac{11}{4}\right)^{1 / 3}=1.401 \tag{1.44}
\end{equation*}
$$

The initial temperature will be identical to the temperature of the decoupled neutrinos, then the above equation shows that after the pair annihilation the neutrino temperature is related to the photon temperature as

$$
\begin{equation*}
T_{\gamma}=1.401 T_{\nu} \tag{1.45}
\end{equation*}
$$

which implies a 40% increase in the photon temperature over the neutrino temperature. If the present day photon temperature is assumed to be 2.75 K , then the decoupled primordial neutrinos have a present temperature 1.96 K .

The pressure of the neutrinoe can be written as

$$
\begin{equation*}
P_{4}=\frac{1}{3} \rho_{\nu} c^{2} \tag{1.46}
\end{equation*}
$$

To get the total energy density and pressure of all the neutrinos it is enough to multiply the above equations of energy density and pressure with a factor 3.

Baryon density p_{t} can be calculated by the relation, $p_{t}=h T_{9}^{8}$. Because of the nucleosynthesis the baryon energy density will be modified. Acc correct equation for baryon density by taking account of the nucleosynthesis process is given by Wagoner [16] ad,

$$
\begin{equation*}
\rho_{k}=h T_{g}^{8}\left[1+\sum\left(\frac{\Delta M_{i}}{M_{u}}+\zeta T_{9}\right) Y_{i}\right] \tag{1.47}
\end{equation*}
$$

where $M_{u}=1.66043 \times 10^{-24} \mathrm{~g}$ is the atomic mass unit, $\zeta=1.388 \times 10^{-4}, \Delta M_{i}$ is the mass excess of the species i produced during the primordial nucleosynthesis. and Y_{i} is the abundance of the $i^{\text {th }}$ species. The last term in the above equation represents the kinetic energy contribution. The Baryon pressure is then written as

$$
\begin{equation*}
P_{b}=N_{A} p_{i} k_{B} T \sum Y_{i} \tag{1.48}
\end{equation*}
$$

By knowing the form of the thermodynamic quantitien, we can study the nature of the variation of the main variables in the theory, which will be useful later for
calculating the primordial abundance of the light elements. They are $T_{31} \mathrm{~h}$ and $\phi_{e s}$ the chemical potential of the electron. The variation of T_{8} can be calculated as,

$$
\begin{equation*}
\frac{d T_{9}}{d t}=\frac{d r / d t}{d r / d T_{9}} \tag{1.49}
\end{equation*}
$$

where $r=\ln R^{3}$, and $d r / d t=3 H$. The quantity $d r / d T_{9}$ can be evaluated from the principle of conservation of energy. The law of conservation of energy is as given by the equation (1.7). This equation can be modified by taking account of the energy introduced due to the nucleeobynthesis process as [16]

$$
\begin{equation*}
\frac{d}{d t}\left(\rho R^{3}\right)+\frac{p}{c^{2}} \frac{d R^{3}}{d t}+\left.R^{3} \frac{d \rho}{d t}\right|_{T=c o m a t .}=0 \tag{1.50}
\end{equation*}
$$

where ρ is the total energy density after the neutrinos were decoupled, that is

$$
\begin{equation*}
\rho=\rho_{e}+\rho_{y}+\rho_{z} \tag{1.51}
\end{equation*}
$$

and p is the corresponding pressure,

$$
\begin{equation*}
p=p_{\theta}+p_{\gamma}+p_{t} \tag{1.52}
\end{equation*}
$$

Now $\mathrm{dr} / \mathrm{d} T_{\mathrm{g}}$ can be obtained as [16]

$$
\begin{equation*}
\frac{d r}{d T_{9}}=-\frac{d r / d T_{9}+d \rho_{e} / d T_{9}+d \rho_{b} / d T_{9}}{\rho_{y}+p_{7} / c^{2}+\rho_{B}+p_{d} / c^{2}+p_{b} / c^{2}+\left(\frac{1}{d / d}\right)\left(d \rho_{b} /\left.d t\right|_{T_{6}}+d \rho_{e} /\left.d t\right|_{T_{6}}\right)} \tag{1.53}
\end{equation*}
$$

The time evolution of the h parameter is given by

$$
\begin{equation*}
\frac{d h}{d t}=-3 h\left[\frac{1}{R} \frac{d R}{d t}+\frac{1}{T_{9}} \frac{d T_{9}}{d t}\right] . \tag{1.54}
\end{equation*}
$$

The time evolution of the chemical potential can be obtained as

$$
\begin{equation*}
\frac{d \phi_{e}}{d t}=\frac{\partial \phi_{e}}{\partial T_{9}} \frac{d T_{9}}{d t}+\frac{\partial \phi_{e}}{d r} \frac{d r}{d t}+\frac{\partial \phi_{e}}{\partial S} \frac{d S}{d t} \tag{1.55}
\end{equation*}
$$

where $S=\sum_{i} Z_{i} Y_{i}$.

1.2 Primordial nucleosynthesis

It was Alpher, Bethe and Gamow [13] who were the first to consider the primordial production of the light elements in the Friedmann Universe. Two years later Fermi and Turkevich [14] did a similar work. In these earlier works it was assumed that essentially all the baryons are neutrons and baryon density of the form

$$
\begin{equation*}
\rho_{s}=h T_{9}^{3} \tag{1.56}
\end{equation*}
$$

where the parameter h is fixed by assuming the value of the baryon-to-photon number density ratio η, and T_{g} is the temperature in units of $10^{9} \mathrm{~K}$. Later Hayashi [17] proposed that initial baryon density would consists of mainly neutrons and protons, the nucleons, which are in thermal equilibrium with each other at high temperatures through the weak interaction. A set back to the earlier approaches was that due to the well known diffculty at mass numbers 5 and 8 . Hayashi and Nistida [18] made an attempt to overcome this by proposing triple alpha reaction, $3^{4} \mathrm{He} \rightarrow$ C^{12}. But their solution had the drawback that, the reaction needs a high baryon density, which will in turn over produce other light elements and also predict higher abundance for elements heavier than carbon which was against the experimental evidence. Due to these difficulties the hope on primordial synthesis of elements was doomed for a short period in the fifties. The approach was resurrected with work of Fowler and Hoyle [19]. They showed that the observed helium abundance in the Universe can not be accounted for by the stellar nucleosynthesis alone and implies the necessary revival of the possibility of cosmological origin of light elements. By their primordial abundance theory Fowler and Hoyle [19] predicted an abundance of
${ }^{4} \mathrm{He}$ about 27%, which retrict the h -parameter to about 10^{-4}. In the mean time the discovery of the microwave background radiation by Penzias and Wilson [20], gave strong support to the standard big-bang theory based on the Friedmann Universe which in turn supported the theory of primordial nucleosynthesis.

One of the main process through which the primordial nucleorynthesis procerds is the frrezing out of the neutron-to-proton ratio. Neutrons and protons are in thermal equilibrium at high temperature, $\mathrm{T} 1 \mathbf{0}^{10} \mathrm{~K}$. The equilibrium was kept between them through the following weak interactions [17]

$$
\begin{align*}
n+\nu_{e} & \longleftrightarrow p+e^{-} \tag{1.57}\\
n+e^{+} & \longleftrightarrow p+\bar{\nu}_{e} \\
n & \longleftrightarrow p+e^{-}+\bar{\nu}_{e}
\end{align*}
$$

During thermal equilibrium the number densities of neutrons and protons are slightly different due to difference in their masses. The relative number density is given by the relation [16]

$$
\begin{equation*}
\frac{n}{p}=e^{-\Delta m c^{2} / k_{B} T} \tag{1.58}
\end{equation*}
$$

where $\Delta m=1.293 \mathrm{Mev} / \mathrm{c}^{2}$, the reat mass difference between neutron and proton. During thermal equilibrium the total rates of the reactions which convert neutrons in to protons is almost equal to total rate of the reactions which corvert protons
into neutrons. The rate of the conversion of proton into neutron is about $\lambda(p \rightarrow$ $n)=4 \times 10^{-6} t_{9}^{5} \sec ^{-1}$. The reaction rate $\lambda(n \rightarrow p)$ and $\lambda(p \rightarrow n)$ are written as the sum of the rates of the individual reactions as,

$$
\begin{equation*}
\lambda(n \rightarrow p)=\lambda\left(n \rightarrow p+e^{-}+\nu_{e}\right)+\lambda\left(n+e^{+} \rightarrow p+\overline{\nu_{e}}+\lambda\left(n+\nu_{e} \rightarrow p+e^{-}\right)\right. \tag{1.59}
\end{equation*}
$$

and

$$
\begin{equation*}
\lambda(p \rightarrow \boldsymbol{n})=\lambda\left(\boldsymbol{p}+e^{-}+\overline{\nu_{e}} \rightarrow \boldsymbol{n}\right)+\lambda\left(p+\overline{\nu_{e}} \rightarrow \boldsymbol{n}+e^{+}\right)+\lambda\left(p+e^{-} \rightarrow \boldsymbol{n}+\nu_{e}\right) \tag{1.60}
\end{equation*}
$$

and the individual reaction rater can be calculated as $[16,27$]

$$
\begin{align*}
& \lambda\left(n \rightarrow e^{-}+\bar{\nu}+p\right)=\left(\tau \lambda_{0}\right)^{-1} \int_{1}^{\infty} \frac{\epsilon(\epsilon-q)^{2} \sqrt{\epsilon^{2}-1}}{[1+\exp (-\epsilon z)]\left\{1+\exp \left[(\epsilon-q) x_{x_{0}}\right]\right\}} d \epsilon \tag{1.61}\\
& \lambda\left(n+e^{+} \rightarrow \bar{\nu}+p\right)=\left(\tau \lambda_{0}\right)^{-1} \int_{1}^{\infty} \frac{\epsilon(\epsilon-q)^{2} \sqrt{\epsilon^{2}-1}}{[1+\exp (\epsilon \varepsilon)]\left\{1+\exp \left[(-\epsilon+q) z_{\nu}\right]\right\}} d \varepsilon . \tag{1.62}\\
& \lambda\left(n+\nu \rightarrow e^{-}+p\right)=\left(\tau \lambda_{0}\right)^{-1} \int_{1}^{\rho} \frac{\epsilon(\epsilon-q)^{2} \sqrt{\epsilon^{2}-1}}{[1+\exp (-\epsilon x)]\left\{1+\exp \left[(\epsilon-q) z_{\nu}\right]\right\}} d \epsilon . \tag{1.63}\\
& \lambda\left(p+e^{-} \rightarrow n+\bar{\nu}\right)=\left(\tau \lambda_{0}\right)^{-1} \int_{1}^{\infty} \frac{\epsilon(\epsilon-q)^{2} \sqrt{\epsilon^{2}-1}}{[1+\exp (\epsilon x)]\left\{1+\exp \left[(q-\epsilon) x_{N}\right]\right\}} d \epsilon . \tag{1.64}\\
& \lambda\left(p+\nu \rightarrow e^{+}+n\right)=\left(\tau \lambda_{0}\right)^{-1} \int_{1}^{\infty} \frac{\epsilon(\epsilon-q)^{2} \sqrt{\epsilon^{2}-1}}{[1+\exp (-\epsilon x)]\left\{1+\exp \left[(\epsilon+q) x_{\nu}\right]\right\}} d \epsilon \tag{1.65}\\
& \lambda\left(p+e^{-}+\nu \rightarrow n\right)=\left(\tau \lambda_{0}\right)^{-1} \int_{1}^{\rho} \frac{\epsilon(\epsilon-q)^{2} \sqrt{\epsilon^{2}-1}}{[1+\exp (\epsilon x)]\left\{1+\exp \left[(q-\epsilon) z_{\nu}\right]\right\}} d \epsilon . \tag{1.66}
\end{align*}
$$

In the original evaluation due to Wagoner $[15,16]$ these integarls are approximated in terms of the modified Bessel functions. In the above equations $q=\Delta m / m_{e}$, $z_{\nu}=m_{e} c^{2} / k_{B} T, \tau$ is the mean life time of the neutron under laboratory conditions and λ_{0} is defined as

$$
\begin{equation*}
\lambda_{0}=\int_{1}(q-\epsilon)^{2}\left(\epsilon^{2}-1\right)^{1 / 2} d \epsilon \tag{1.67}
\end{equation*}
$$

which has a value 1.636 [16]. In Wogoner's original work these integral is also approximated in terms of the modified Bessel functions.

The abundance of ${ }^{4} \mathrm{He}$ is very much sensitive to the freezing out value $\boldsymbol{n} / \boldsymbol{p}$ ratio compared to the other elements. The freexing value of n / p is in turn depend on the freezing out temperature of the weak interaction. Higher the freese out temperature, higher will be the value of n / p ratio. Practically all the available neutrons will be processed in to ${ }^{4} \mathrm{He}$.

The primordial nucleosynthesis process is begin with the formation of deuterium form neutron and proton through the reaction $n+p \rightarrow D+\gamma$. Due to the low binding (2.225 Mev) energy and large photo dissociation cross section, the deuterium (D) is photo dissociated as soon as it is formed because of the presence of large number of high energy photons at high temperature. This prevents the formation of the next heavy elements like tritium and helium. This is the well known deuterium bottheneck. As the Universe expands the temperature decrease hence more deuterium will be formed due to unavailability of the high energy photons. Hence deuterium starts building up at about $T_{9} \sim 1$. This will set the platform for formation of next heavy elements. ${ }^{3} H$ is mainly formed through the reactions $D(n, \gamma){ }^{3} H$ and $\mathrm{D}(\mathrm{D}, \mathrm{p})^{3} \mathrm{H} .{ }^{3} \mathrm{He}$ is formed mainly through the reactions ${ }^{3} \mathrm{He}(\mathrm{n}, \mathrm{p}){ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He} \rightarrow{ }^{3} \mathrm{H}$ $+e^{-}+\bar{\nu}_{e}$. The main reactions through which the element helium-4 is formed are $\left.{ }^{3} \mathrm{He}(\mathrm{n}, \gamma){ }^{4} \mathrm{He},{ }^{3} \mathrm{He}(\mathrm{D}, \mathrm{p})\right)^{4} \mathrm{He}$ and ${ }^{3} \mathrm{He}\left({ }^{3} \mathrm{He}, 2 \mathrm{p}\right){ }^{4} \mathrm{He}$. As the Universe cools down to the temperature to the temperature of $T_{9} \approx 0.1$, practically all the ${ }^{3} \mathrm{H}$ and ${ }^{3} \mathrm{He}$ are
converted in to ${ }^{4} \mathrm{He}$. Hence very soon the abundance of ${ }^{4} \mathrm{He}$ will exceeds that of all other elements except that of hydrogen. According to the periodic table of elements there are gaps at mass numbers 5 and 8. This corresponds to a pair of bottlenecks for the production of the elements heavier than ${ }^{4} \mathrm{He}$ like ${ }^{7} \mathrm{Li},{ }^{7} \mathrm{Be}$, etc. However a trace of these elements were formed mainly through the reactions ${ }^{4} \mathrm{He}\left({ }^{3} \mathrm{H}, \gamma\right){ }^{7} \mathrm{Li}$ and ${ }^{4} \mathrm{He}\left({ }^{3} \mathrm{He}, \gamma\right){ }^{7} \mathrm{Be}$. When temperature drops below $\mathrm{T}<4 \times 10^{8} \mathrm{~K}$, the increase in the coulomb barrier will effectively stops the nucleosynthesis process.

The main part of the nuclear abundance calculation is to time evolve the abunof dances, various light elemente and thus to predict the final abundance all the light elements. One part of the calculation lies in the time evolution of the parameters \boldsymbol{T}_{3}, h and ϕ_{e}, which can be done according to the prescriptions given above. Another part is the calculation of the reaction rates of the various reactions. The techniques of the calculation of the reaction rates will be discussed in chapter 2.

It was Robert Wagoner [16] who first developed the extensive numerical code for the calculation of the abundance of the light elements in the SBBN model. Later many workers modified the code $[21,22,27,28,29]$ for various purposes. In the original code due to Wagoner more than 140 reactions were included to calculate the abundances. Both forward and backward rates of almost all the reactions are included in the code. The abundance of any species, i is given in terms of the mass fraction

$$
\begin{equation*}
X_{i}=\frac{A_{i} n_{i}}{\rho_{i} N_{A}} \tag{1.68}
\end{equation*}
$$

where A_{i} is the mass number and and n_{i} is the number density of the $i^{\text {th }}$ species. The overall abundance of the species is depends on the number of reactions in which it is participates, the reaction rates and the type of reactions.

If the $t^{\text {th }}$ species is deatroyed or created due to the interaction with a photon or a lepton and forming or destroying a species j, then the corresponding contribution to the rate of the abundance of i is $\pm \sum_{j}\left(X_{j} / A_{j}\right) \lambda_{\mu}(j)$. The + sigen is chosen if process is a constructive and - sign if the process is destructive one. When the $i^{\text {th }}$ species is destroyed or created due to the interaction between the species j and k, then contribution of such reactions to the abundance rate of i is $\pm \sum_{j \geq k}\left(X_{j} / A_{j}\right)\left(X_{k} / A_{k}\right)[j k]$.Here $[\mathrm{jk}]$ is the reaction rate given by [16]

$$
\begin{equation*}
[j k]=\rho_{b} N_{A}(\sigma v\rangle_{j k} \tag{1.69}
\end{equation*}
$$

where

$$
\langle\sigma v\rangle=\int_{0} f(v, T) \sigma(v) v d v
$$

- and $f(0, T)$ is the Maxwell-Boltzman distribution function for the velocities of the reactants j and $k, \sigma(v)$ is the cross section of the reaction. Similarly if the $i^{\text {th }}$ species is destroyed or created due to interaction of three species j, k and l, then the corresponding contribution to the rate of abundance of the specier i is $\pm \sum_{j \geq k \geq 1}\left(X_{j} / A_{j}\right)\left(X_{k} / A_{k}\right)\left(X_{1} / A_{i}\right)[j k j]$, where [jkl] is the three body reaction rate given by the relation [15]

$$
\begin{equation*}
[j k l]=p_{b}^{2} N_{A}^{2}\langle\sigma v\rangle_{j N} . \tag{1.70}
\end{equation*}
$$

Now the total rate of growth of any species i can be calculated as

$$
\begin{equation*}
\frac{1}{A_{i}} \frac{d X_{i}}{d t}= \pm \sum \frac{X_{i}}{A_{j}} \lambda_{\omega}(j) \pm \sum \frac{X_{j}}{A_{j}} \frac{X_{k}}{A_{k}}[j k] \pm \sum \frac{X_{j}}{A_{j}} \frac{X_{k}}{A_{k}} \frac{X_{1}}{A_{l}}[j k l] \tag{1.71}
\end{equation*}
$$

This equation is to be solved to get the final abundance subjected to the initial conditions.

In Wagoner's code the nuclear species were first numbered as $i=1,2,3, \ldots$. etc, their mass numbers $\left(A_{i}\right)$, charge number $\left(Z_{i}\right)$ and Q-value are listed. The reactions are then classified according to their type as photo nuclear, weak, two body type with proton, neutron or alpha as partners and three body type etc.

The rate equation (1.71) to be solved is a highly non-linear one, which can be written as matrix equation $[16,11]$

$$
\begin{equation*}
\dot{x}_{i}=a_{i j} x_{j}+a_{i j} x_{j} x_{k}+a_{i j k} x_{j} x_{k} x_{l} \tag{1.72}
\end{equation*}
$$

For practical calculation the above non-linear matrix equation is converted into a linear one by a proper choice of the time step Δt. The time step should be small as possible, but at the same time should be large enough to ensure the chemical equilibrium between the species. For chemical equilibrium $\dot{x}_{i}=0$, hence

$$
\begin{align*}
0 & =a_{i j} x_{j}+a_{i j k} x_{j} x_{k}^{(0)}+a_{i j k} \alpha c_{j} x_{k}^{(0)} x_{i}^{(0)} \tag{1.73}\\
& =\left[a_{i} j+a_{i j} j k x_{k}^{(0)}+a_{i j} j k x_{k}^{(0)} x_{i}^{(0)}\right] x_{j}=b_{i j} j x_{j}
\end{align*}
$$

Here $x_{k}^{(0)}$ is the abundance obtained during the previous time step. A new set of x_{i} 's are obtained by solving this linearised equation. The calculation is continued until the abundance values are saturated.

The abundance equation is solved subjected to the initial conditions. In Wagoners original code initial conditions are specified for a temperature $\boldsymbol{T}_{9}=60$. The important quantities to which the initial values to be specified number densities, energy densities, h parameter etc. One of most important quantity whose initial values is to be specified is the initial abundance of the species. Wagoner used a relation for this in his original code as $[15,16]$

$$
\begin{equation*}
X(i)=10^{-10} X(j) X(k) \rho_{s} T_{9}^{-3 / 2} e^{Q / k_{B} T} \tag{1.74}
\end{equation*}
$$

According to this equation the initial abundance decreases with temperature. In later modified codes, however, many authors used a constant value for the initial abundance all for elements.

During the calculations of Wagoner et. al, the observational abundance of "He was around 0.270 by mass fraction. Their calculation reproduced this value, and this gave a strong to support the idea of primordial nucleosynthesis. The corresponding value for the h parameter obtained by them was about 10^{-4}. But later determinations have altered the values of the primordial abundance of the light elements, in particular that of ${ }^{4} \mathrm{He}$ was somewhat reduced. These changes call for certain modifications of the theory. However there is no universal agreement on this point. Even in the early eighties it was argued that the original theory is compatible with the then observational data on abundances, without much modifications. But recent determinations on the primordial abundance shows that the ${ }^{4} \mathrm{He}$ abundance is still less [37] around 0.220. These latest results on abundances ofthe light elements necesitate some essential modifications in the theoryas proposed by many
$[30,31,38,163]$. Our aim in this thesis is to check the present status of such inconsistenciesin the SBBN model and suggest suitable modifications to SBBN accordingly. In the following we will try to infer the primordial abundance of the light elements from the latest observational data available.

1.3 Observational abundance of light elements

The main parameters in the SBBN model are number of neutrinos, neutron life time and baryon to photon number density. Once the first two parameters are obtained from direct laboratory results, the theory becomes a single parameter theory. The method of SBBN model is to match its results with the observational abundances so as to predict the value of the parameter η. For this one needs reliable observational results on the abundance of light elements. For this we have depend on the astronomical surveys. The main observational sights for inferring the primordial abundances of light elements are sun, other stars, galaxies and certain planets. There are many observational uncertainties to warrant a very cautious approach in setting the limits of the primordial abundance. The abundance we observe today are contaminated with the nuclear processes in the galaxies and stars. The metallicity of the stars can be taken as a measure of the contamination due to the stellar ovolution. Metallicity means the presence of the heavy elements. Since heavy elements production was negligible during the SBBN period it is better to choose metal poor stars for inferring the primordial abundance of the elements. However
we do not see a zero metallicity star to determine the correction due to finite age of the stars or due to galactic chemical evolution. The general method for inferring the value of the primordial abundance is to extrapolate the element-metallicity data to zero metallicity. In the following we will consider the observational constraints on each of the light elements separately.

1.3.1 Helium-4

Apart from hydrogen, helium is the most abundant element in the Universe which we are observing. The main sources of observations are sun, orion, galactic HII regions and some other high metallicity sources. In the past fifteen years there has been tremendous increase in the observational data on ${ }^{4} \mathrm{He}$ abundance. In order to infer the value of primordial ${ }^{4} \mathrm{He}$, we have to subtract all the contributions made by the various astrophysical processes. During their chemical evolution stars will synthesis ${ }^{4} H e$ also along with the heavy elements. Let ΔY be the mass fraction of the astrophysical production of ${ }^{4} \mathrm{He}$ in a source. Since there was practically no production of heavy elements during the primordial synthesis, the whole content of the heavy elements present in the site is entirely due to the astrophysical production. Let ΔZ be the mass fraction of the heavy elements. If one succeed in finding a reliable relation between ΔY and ΔZ, that can be used to infer the primordial abundance of ${ }^{4} \mathrm{He}$. But theories on the chemical evolution of stars and galaxies are manifold. It is found that the helium-to-metallicity ratio is a complicated function
of stellar mass and composition. The relation between ΔY and ΔZ is not monotonic [149, 150]. In spite of this situation what is usually done is to do a linear extrapolation to zero metallicity. Traditionally, ${ }^{4} \mathrm{He}$ is inferred by linear regression of ${ }^{4} \mathrm{He}$ with either oxygen or nitrogen metallicity $[50,51]$. However there is no compelling reason to believe that ${ }^{4} \mathrm{He}$ abundance always increase linearly with oxygen or nitrogen [37]. Carbon is also used as standard. By accepting a linear relationship between ΔY and ΔZ as [11]

$$
\begin{equation*}
\frac{\Delta Y}{\Delta Z}=\alpha \tag{1.75}
\end{equation*}
$$

If we assume that the mass function of stars is a universal function then the average value of α is seems to be lie between 4 to 6 [11]. In order to get the primordial abundance of ${ }^{4} \mathrm{He}$ we have to subtract the the astrophysical contribution from the observed values as

$$
\begin{equation*}
Y_{p}=Y_{\text {obs }}-\Delta Y=Y_{\text {ot }}-\alpha \Delta Z \tag{1.76}
\end{equation*}
$$

The reliability will be strong if the observational site is a very old one or one with less metallicity. Caution should be taken to make sure that star which we are identifying as the source must be a massive or of mass in the intermediate range. In massive stars the core where the synthesis is taking place is convective, while the envelope is radiative. Because the envelope is not convective no mixing will take place, hence the envelope of massive stars will retain its original composition. The same is the case with intermediate massive stars, where the core is radiative and the envelope is convective. But for low mass stars the core and the envelope will overlap each other hence they are not generally selected for primordial abundance determination.

Let us briefly go through the various observationally inferred results due to various authors, with the aim of selecting the reasonable value for Y_{p}. A detailed list various values of ${ }^{4} \mathrm{He}$ abundance was compiled by Rana [11]. Pagel $[106,107]$ carried out a linear regression analysis on all the available data on ${ }^{4} \mathrm{He}$-metallicity including that from sun, orion and some other high metallicity sources and derived a value $Y_{7}=0.24 \pm 0.01$. In the same year Pagel $[55,107]$ showed that if one restrict to the data form extragalactic H II region with metallicity less than 0.25 of solar, then the result become $Y_{p}=0.225 \pm 0.005$, where he did the extrapolation with oxygen. Hasenfrats et. al. [103] found no such correlation between ${ }^{4} \mathrm{He}$ and O in their data from the 12 metal poor galaxies of a gasious nebulae. They give a value based on their data as $Y_{p}=0.245 \pm 0.003$. On the other hand the observational results due to Peimbert \& Torree-Peimbert [98], shows that there is a strong correlation between ${ }^{4} \mathrm{He}$ and O , according to them $Y_{p}=0.220$. Fuller et. al [37] argued that the no correlation between ${ }^{4} \mathrm{He}$ and O in the data obtained by Kunth \& Sargent is due to extremely low ΔZ value of the object. apart from O, one can use N and C as standards for the extrapolation to find the primordial value of ${ }^{4} \mathrm{He} .{ }^{12} \mathrm{C}$ and ${ }^{18} \mathrm{O}$ are processed in the first generation stars along with ${ }^{4} \mathrm{He}[149,150]$. But N is formed gradually during the second generation. As a result ${ }^{4} \mathrm{He}$ abundance with respect to N will show a rapid increase initially, then slow down to lower rate due to the increase in N. So the ${ }^{4} \mathrm{He}$ verges N curve for low value of N can be used to predict the primordial value of ${ }^{4} \mathrm{He}$ at a reasonable level. The curve of ${ }^{4} \mathrm{He}$ with O , has a strong dependence on the initial mass function (IMF) [149,150], which is a very poorly known function, and also very much model dependend. So it is considerably more difficult to predict Y_{p} using the curve between ${ }^{4} \mathrm{He}$ and O . Fuller, Boyd and

Kalen [37] adopt the ${ }^{4} \mathrm{He}$ verses N curve method to predict the value of Y_{p}. They have used the data of Pagel [107]. They found that $Y_{p}=0.233 \pm 0.009$ for all the 41 data points, $Y_{p}=0.221 \pm 0.007$ for first 22 points of comparably low metallicity and $Y_{p}=0.220 \pm 0.007$ for first 14 points of still low metallicity. They finally concluded by accepting $Y_{p}=0.220$ as the upper limit for the primordial abundance of ${ }^{4} \mathrm{He}$. Later Melnick et al [36] did an extensive analysis and proved that the primordial abundance of ${ }^{4} \mathrm{He}$ is still lower around 0.216 ± 0.006. It may be very difficult to judge between these to say what is the actual value of Y_{p}. In Table 1.1 we summarise some of these observational results. Our feeling is that we should rely on the value which is inferred from low metallicity objects. With that in mind we can very well set the primordial abundance of Helium between limits given below as

$$
\begin{equation*}
Y_{p}=0.215 \text { to } 0.225 \tag{1.77}
\end{equation*}
$$

by mass fraction. But some other authors $[29,58,66]$ still consider values around 0.235 as primordial.

1.3.2 Deuterium and Helium-3

Here we will consider the observational limits on deuterium (D) and helium-3(${ }^{3} \mathrm{He}$) together since most of the D present in early Universe will converted in to ${ }^{3} \mathrm{He}$, through the astrophysical process. So their combined abundance should not change much with time. However first we will cousider them separately.

Table 1.1: Observations on ${ }^{4} \mathrm{He}$ abundane

year	Authors	Y_{p}
1976	Peimbert and Tores-Peimbert	0.228
1979	Carney	0.19 ± 0.04
1980	French	0.216
1980	Talent	0.216
1980	Rayo et al	0.216
1983	Kunth and Sargent	0.245 ± 0.003
1983	Peimbert	0.218
1983	Buzzoni et al	0.23 ± 0.02
1986	Pagel	0.236 ± 0.005
1988	Pagel	0.230 ± 0.005
1989	Pagel	0.229 ± 0.004
1991	Fuller et al	0.220 ± 0.007
1992	Melnick et al	0.216 ± 0.006

The main observational sights of D are Solar system, UV absorption line studies in the local ISM, studies of the deuterated molecules (DCO, DHO) in the ISM. Because of its fragile nature \mathbf{D} is destroyed (at temperatures greater than about $0.5 \times 10^{6} \mathrm{~K}$) during the stellar evolution. There is practically no astrophysical production of deuterium reported conclusively. Certain proposals are there for the astrophysical production D [155,156], but none are accepted widely [132]. So the present day abundance provide a lower limit to the abundance of D and in order to obtain the primordial value one should correct for the astrophysical destruction. One of important nature of D is its strong dependence on the baryon-to-photon ratio η. Its abundance can related directly to the η value. Detection of the exact lower limit or upper limit to D abundance is very difficult because of the absence of a well defined chemical evolution theory. In 1992 Rana and Basu [32] proposed a chemical evolution model, according to which the D abundance can be a factor 2 higher than

Table 1.2: Observations on D abundance

year	Authors	D / H
1976	York and Rogerson	1.6×10^{-5}
1978	Sarma and Mohanty	$<6 \times 10^{-5}$
1979	Laurent et al	$0.7-0.4 \times 10^{-5}$
1980	Ferlet et al	$<1 \times 10^{-8}$
1983	York	$0.6-1.0 \times 10^{-5}$
1984	Vidal-Madjar	$2.0 \pm 1.0 \times 10^{-5}$
1989	Smith et al	$2.6-8.4 \times 10^{-5}$

the presently observed abundance. Certain other authors says that its abundance can be anywhere between 1 and $50[49,50,51,155,158]$. We will summarise some of the resulte about the observationally inferred values are listed in table 1.2

For ${ }^{3} \mathrm{He}$ there are only few determinations are there. The main observational sites are solar system, ${ }^{3} \mathrm{He}^{+}$lines in the galactic H II region etc. The abundance of ${ }^{3} \mathrm{He}$ compared to ${ }^{4} \mathrm{He}$ in the oldest meteorites and carbonaceous chondrites is found to be ${ }^{3} \mathrm{He} / \mathrm{H}=1.4 \pm 0.4 \times 10^{-4}[113]$ similar to the case with deuterium the abundance of ${ }^{3} \mathrm{He}$ also difflcult to infer because of the stellar processing, because low mass stars tend to produce ${ }^{3} \mathrm{He}$ and high mass stars tend to destroy ${ }^{3} \mathrm{He}$. Results of these determinations are tabulated in table 1.3

The most reliable results on the primordial abundance of these elements is the combined abundance these elements in number fraction. The combined abundance

Table 1.3; Observations on ${ }^{3} \mathrm{He}$ abundance

year	Authors	$\left({ }^{5} \mathrm{He} /{ }^{1} \mathrm{He}\right)$
1970	Jeffrey and Anders	$1.43 \pm 0.4 \times 10^{-4}$
1977	Frick and Moniot	$1.5 \mathrm{pm} 1.0 \times 10^{-4}$
1978	Eberhardt	$1.46 \pm 0.073 \times 10^{-4}$
1979	Rood et al	$<5 \times 10^{-5}{ }^{3} \mathrm{He} / \mathrm{H}$

according to Pagel [54], Smith [28] and Walker [22] is,

$$
\left(\frac{D+^{3} H e}{H}\right)_{p}<5 \times 10^{-5}
$$

by number fraction, where the subscript p denotes that the abundance shown is primordial. The abundance from the pre-solar nebulae is taken as [11]

$$
\left(\frac{D+{ }^{3} H e}{H}\right)=(3.6 \pm 0.60) \times 10^{-5}
$$

by number fraction, Olive at al [29] have argued that the combined abundance should be less than 10^{-4}. However we will consider a consensus value.

$$
\begin{equation*}
\frac{D+^{3} H e}{H}=7 \times 10^{-5} \text { to } 1.3 \times 10^{-4} \tag{1.78}
\end{equation*}
$$

by number fraction.

1.3.3 Primordial abundance Lithium-7

The determination of the primordial abundance ${ }^{7} \mathrm{Li}$ is one of the most controversial part in inferring the primordial abundance of all the elements. There are two main
sources for the determination of the ${ }^{7} \mathrm{Li}$ abundance, the Pop I stars and the Pop II stars. The observational limits from the Pop I star is that ${ }^{7} \mathrm{Li} / \mathrm{H} \approx 10^{-9}[28]$ and that from the Pop II stars is that ${ }^{7} \mathrm{Li} / \mathrm{H} \approx 10^{-10}$ [118]. The issue is which one is the primordial abundance. The consensus has been that the lower Pop II abundance represents the primordial abundance of ${ }^{7} \mathrm{Li}$. The main reason for this is that the Pop II stars are older than the Pop I. The latest determination is due to Deliyannis et. al. [159], which tallies with the earlier determinations on the Pop II stars. For our purpose we will consider this latest value as the ${ }^{7} \mathrm{~L}$ abundance

$$
\begin{equation*}
\frac{{ }^{7} L i}{H}=1.2_{-0.25}^{+0.30} \times 10^{-10} \tag{1.79}
\end{equation*}
$$

by number fraction. In this thesis we concentrate on the abundance of $\mathrm{D},{ }^{3} \mathrm{He}$, ${ }^{4} \mathrm{He}$ and ${ }^{7} \mathrm{Li}$ only. So no datailed discussion will be given about the other possible elements formed during the primordial synthesis, for example lithium-6, Boron, Beryllium. However the beryllium-7 formed during the primordial synthesis will converted it ${ }^{7} \mathrm{Li}$. So the abundance value of ${ }^{7} \mathrm{Li}$ as given above will actually repre sents the combined abundance of lithium- 7 and beryllium-7.

Chapter 2

The effect of the enhanced ${ }^{8} \mathrm{Li}(\alpha, \mathbf{n}){ }^{11} \mathrm{~B}$ reaction rate on primordial abundance of ${ }^{7} \mathbf{L i}$

One of the essential inputs of the primordial nucleosynthesis calculation is the reaction rates of the various relevant reactions. The final abundance is strongly de pendent on the accuracy of the reaction rates. One has to obtain these reaction rates from the laboratory measurements of the reaction cross-sections. Such calculations of reaction rates from the crosprections are discussed in Wagoner et. ab [15], Fowler et. al [19] and Mathew et. al.[35]. Usually the laboratory data are available at comparably large center of mass energy than that prevailed in the early Universe during the nucleosynthesis period. So one has to extrapolate the laboratory data available at high energies, to the appropriate lower energy region. This
extrapolation is usually done through the so-called astrophysical S-factor formalism [161,16].

2.1 S-factor formalism for reaction rate

For a two body reaction where an $i^{\text {th }}$ species is destroyed (or created) due to the interaction between the species j and k, the reaction rate per unit volume can be de trmined by equation (1.69). Since the Universe was in thermodynamic equilibrium with the components of the reaction, there exist a spectrum of relative velocities of the various particles. The temperature range during which the nucleorynthesis is taking place is $T_{9} \sim 1$ to 0.1 . In this temperature range all the matter particles are non-relativistic and non-degenerate. Hence the velocity distribution will be Maxwellian [28], which can be written as

$$
\begin{equation*}
f(v)=4 \pi^{2} v^{2}\left(\frac{\mu m_{n}}{2 \pi k_{B} T}\right)^{3 / 2} \exp \left(-\frac{\mu m_{n} v^{2}}{2 k_{B} T}\right) \tag{2.1}
\end{equation*}
$$

which satisfies $\int f(v) d v=1$, where $\mu=\left(1 / m_{1}+1 / m_{2}\right)^{-1}$ the reduced mass of the colliding aystem expreased in atomic mass unit ($1 \mathrm{amu}=m_{n}=1.6605 \times 10^{-27} \mathrm{Kg}$). Now the equation of (ov) reduces to

$$
\begin{equation*}
\langle\sigma v\rangle=4 \pi\left(\frac{\mu m_{n}}{2 \pi k_{B} T}\right)^{3 / 2} \int_{0}^{\infty} \sigma v^{3}\left(-\frac{\mu m_{n} v^{2}}{2 k_{B} T}\right) d v \tag{2.2}
\end{equation*}
$$

which is the integral required for the calculation of the reaction rate. In principle the term $\langle\sigma v\rangle$ can include the contributions from a resonant part other than the prominent [16] non-resonant part. But the magnitude of the contributions from the
resonant energy region depend up on the energy of the reactants. In the following however we will mainly concentrate on the most important part, the non-resonant part.

Apart from the knowledge about the velocity distribution, the quantity to be known for the calculation of the reaction rate is the crose-section of the reaction. While calculating the crosesection we have to take into account the Coulomb barrier penetration also because most of reactants posses charge during the primordial nucleasynthesis. Nuclear reactions are take place because the reacting nuclei are able to penetrate the coulomb repulsive barrier. The Coulomb energy between any species of atomic numbers Z_{1} and Z_{2} separated by a distance of R fermi is

$$
\begin{align*}
E_{c} & =\frac{1}{4 \pi \epsilon_{0}} \frac{Z_{1} Z_{2} e^{2}}{10^{-15} R(\text { fermi })} \tag{2.3}\\
& =\frac{1.44 Z_{1} Z_{2}}{R(\text { fermi })} \text { Mev. }
\end{align*}
$$

where ϵ_{0} is the permitivity of vacuum. Classically the reactions will take place when the kinetic energy is greater than the coulomb repulsive potential. The kinetic energy of a reactant nuclei is determined by the Maxwell-Boltzmann distribution of velocities corresponding to the thermal energy,

$$
\begin{align*}
k_{B} T & =1.3807 \times 10^{-16} \mathrm{~T} \tag{2.4}\\
& =8.62 \times 10^{-8} T \mathrm{Kev} .
\end{align*}
$$

From the above two relation it is clear that the Coulomb repulsive energy is many orders of magnitude greater than the average kinetic energy. The particles with the highest energy in the Maxwell-Boltamann dibtribution, have a chance to overcome
the coulomb barrier. Gamow showed that two particles of charges Z_{1} and Z_{2} moving with relative velocity v have a quantum mechanical probability for penetration approximately given by

$$
\begin{align*}
P_{r} & \simeq \exp \left(-\frac{Z_{1} Z_{2} e^{2}}{2 \epsilon_{0} \hbar v}\right) \tag{2.5}\\
& =\exp \left(31.29 Z_{1} Z_{2}\left[\frac{\mu}{E_{\text {kev }}}\right]\right)
\end{align*}
$$

where $E_{\text {kev }}$ is the center of mass energy in Kev. The cross-section will also be proportional to the same factor. Quantum mechanically the cross-section is proportional to $\pi \bar{\lambda} P_{r}$, where $\bar{\lambda}$ is the de Broglie wavelength of either nucleus in the center of mass frame. But $\pi \bar{\lambda} \propto(1 / E)$, where E is the center of mass energy. So one can write the crobs-section $\sigma(E)$ as promotional to

$$
\begin{equation*}
\sigma(E) \propto \frac{1}{E} \exp \left(-\frac{Z_{1} Z_{2} e^{2}}{2 \epsilon \hbar v}\right) \tag{2.6}
\end{equation*}
$$

or equivalently

$$
\begin{equation*}
\sigma(E)=\frac{S(E)}{E} \exp \left(\frac{Z_{1} Z_{2} e^{2}}{2 \varepsilon \hbar v}\right) \tag{2.7}
\end{equation*}
$$

where the factor $S(E)$ is by definition, the astrophysical S-factor, is a slowly varying function in general. The advantage of writing reaction rate in terms of S-factor is that the other two terms in the above equation are strongly varying function of energy, there factorisation leaving the situation in favour of the alowly varying function of energy, the S-factor. Now the reaction rate per particle can be written in terms of energy as

$$
\begin{equation*}
\langle\sigma v\rangle=\left(\frac{8}{\pi \mu m_{n}}\right)^{1 / 2} \frac{1}{\left(k_{B} T\right)^{3 / 2}} \int_{0}^{\infty} S(E) \exp \left(-\frac{E}{k_{B} T}-\frac{b}{\sqrt{E}}\right) d E \tag{2.8}
\end{equation*}
$$

where

$$
\begin{equation*}
b=\sqrt{2 \mu m_{n}} \frac{2 \pi e^{2} Z_{1} Z_{2}}{4 \epsilon \hbar}=31.290 Z_{1} Z_{2} \mu^{1 / 2} \mathrm{keV} . \tag{2.9}
\end{equation*}
$$

The behaviour of the integrand is mainly determined by the exponential factor. Because of the opposite behaviour of the two terms in the exponential, they give rise to what is known as the Gamow peak of the reaction rate at energy E_{0}

$$
\begin{equation*}
E_{0}=\left(\frac{b k_{B} T}{2}\right)^{2 / 3}=1.220\left(Z_{1} Z_{2} \mu T_{6}\right)^{1 / 3} \mathrm{keV} \tag{2.10}
\end{equation*}
$$

and an effective width Δ given by

$$
\begin{equation*}
\Delta=4\left(\frac{E_{0} k_{B} T}{3}\right)^{1 / 2}=0.749\left(Z_{1}^{2} Z_{2}^{2} T_{8}^{5}\right)^{1 / 6} \tag{2.11}
\end{equation*}
$$

where T_{6} is the temperature in terms $10^{6} \mathrm{~K}$. The value of the integral in equation (2.8) has an approximated value

$$
\begin{equation*}
\langle\sigma v\rangle=\left(\frac{2}{\mu m_{n}}\right)^{1 / 2} \frac{\Delta}{\left(k_{B} T\right)^{3 / 2}} S_{e f f}\left(E_{0}\right) \exp \left(-\frac{3 E_{0}}{k_{B} T}\right) \tag{2.12}
\end{equation*}
$$

In the above equation the term $S_{e f f}\left(E_{0}\right)$ the effective value of S-factor at the peak value E_{0}, is found to have a form

$$
\begin{equation*}
S_{e f f}\left(E_{0}\right)=S(0)\left[1+\frac{5}{36} \frac{k_{B} T}{E_{0}}+\frac{S(0)}{S(0)}\left(E_{0}+\frac{35}{36} k_{B} T\right)+\ldots \ldots\right] \tag{2.13}
\end{equation*}
$$

where $S(0)$ is the astrophysical S-factor at $E_{0}=0$, provided $S(E)$ is expanded in Taylors's series, $S(E)=S(0)+E S(0)+\left(E^{2} / 2\right) S(0)+\ldots .$. So in order to calculate the reaction rate one has to calculate the $S\left(E_{e \int f}\right)$.

If the energy of the reaction is so high that the Gamow peak is less than the nudear resonance energy, then the resonance contribution towards the reaction rate will be comparably larger. In such a case the Taylor expansion for the S-factor will break down. The cross-section of such resonant reactions can be follows from the

Breit-Wigner formula as [16]

$$
\begin{equation*}
\sigma(E)=\pi \bar{\lambda} \omega \frac{\Gamma_{a} \cdot \Gamma_{b}}{\left(E-E_{R}\right)^{2}+(\Gamma / 2)^{2}} \tag{2.14}
\end{equation*}
$$

where $\Gamma=\Gamma_{0}+\Gamma_{0}+\ldots . . .$. is the sum of partial energy widths of the resonances and ω characterising the spin multiplicities of nuclei taking part in the reaction. The corresponding reaction rate per particle is given as

$$
\begin{equation*}
\langle\sigma 0\rangle_{r} \simeq\left(\frac{2 \pi}{\mu k_{B} T}\right)^{3 / 2} \hbar^{2}\left(\omega \frac{\Gamma_{a} \Gamma_{b}}{\Gamma}\right) \exp \left(-\frac{E_{R}}{k_{B} T}\right) \tag{2.16}
\end{equation*}
$$

These equation must be added to the equation (2.14) in order to get the full reaction rate. If there are more than one resonances, an expression of the above form for each equation to be added to get final reaction rate.

2.2 Reaction rate of ${ }^{8} \mathbf{L i}(\alpha, \mathbf{n}){ }^{11} \mathbf{B}$.

The standard big-bang model of nucleosynthesis $[15,16,22]$ is thought to be a successful model for predicting the primordial abundances of the light elements up ${ }^{7} \mathrm{Li}$. But recent work [124] on ${ }^{4} \mathrm{He}$ has raised questions about the agreement between theory and experimental observations as mentioned in chapter 1. Even then the SBBN fits well with the observational results to some extent. The ultimate test of the model has to come from the prediction of the heavier elements like ${ }^{\text {II }} \mathrm{B}$. Heavier elements are produced mainly through the cycle [163],

$$
{ }^{4} H e\left({ }^{3} H, \gamma\right)^{7} L i(n, \gamma)^{8} L i(\alpha, n)^{11} B(n, \gamma)^{12} B(\beta)^{12} C(n, \gamma)^{14} C
$$

The most important reaction in this series is ${ }^{8} \mathrm{Li}(\alpha, \mathrm{n})^{11} \mathrm{~B}$ which determines the abundance of ${ }^{11} \mathrm{~B}$ and through which other elements can subeequently form. To understand the detailed dynamics of the above series, one must know the reaction rate of each component reaction. For calculating the reaction rate we must know the crosesection of the component reactions. Since the half life of ${ }^{8} \mathrm{Li}$ is low as 840.3 ms , it is very difficult to produce the reaction, ${ }^{8} \mathrm{Li}(\alpha, \mathrm{n}){ }^{11} \mathrm{~B}$ in the existing laboratory conditions. So what used to be done was measure the reaction rate of the inverse process and apply the principle detailed balance to infer the the rate of the forward reaction. The center of mass energy of the reaction in the laboratory was 1.5 Mev , so we have to extrapolate this data to the energy range prevailed in the early Universe during the primordial nucleorynthesis.

For the first time, Boyd et. al. [45] have been able to measure the direct reaction crose-section for ${ }^{8} \mathrm{Li}(\alpha, \mathrm{n})^{11} \mathrm{~B}$ using radioactive beams of ${ }^{\mathrm{n}} \mathrm{Li}$ of center of mass energy 1.5 MeV , which shows that the S -factor derived from the direct reaction is about $5-8$ times larger than those obtained by Paradellis et. al [67] from the study of its usual reverse reaction ${ }^{11} \mathrm{~B}(\mathrm{n}, \alpha)^{8} \mathrm{Li}$. The strong depedance on energy and existence of several resonances are noted and therefore the aspumption of existence of no resonance structure in the low energy region leading to the concept of $\mathrm{S}(0)$ factor is basically invalid. But since the big bang nucleosynthesis took place in energy range of 0.1 to 1 MeV , one has to extrapolate the data to the correct value of the
astrophysical S-factor for the reaction.

We calculate the value of $S_{\text {eff }}\left(E_{0}\right)$ and hence $S_{\text {eff }}(T)$, by extrapolating the data of Boyd et al. The data of Boyd et al is given in Table 2.1. Since the data of Boyd et al for ${ }^{8} \mathrm{Li}(\alpha, \mathrm{n})^{11} \mathrm{~B}$ reaction is available only up to the lowest energy of 1.5 MeV , we consider the data of Paradellis et al for the same reaction at energies less than 1.5 MeV , but we modified the data of Paradellis et al in view of the direct data of Boyd et al by multiplying it by an average factor that is derived from the comparison between the two data sets in the overlapping domain of the center of mass energy. In the low energy range where there is no data available, we took $S(E)$ as a constant. We have evaluated the integral of the equation (2.8) for different temperatures ranging from $0.2 \times 10^{\mathrm{R}} \mathrm{K}$ to $22 \times 10^{\mathrm{R}} \mathrm{K}$. A sample of our calculated data are presented in Table 2.2. With data, we have integrated the equation graphically. The value of the integral at different temperatures are given in Table 2.3.

Next we calculate the right hand side of equation (2.12) without the factor $S_{e f f}\left(E_{0}\right)$, that is $\langle\sigma v\rangle / S_{e f f}\left(E_{0}\right)$ at different temperatures and the results are tabulated in Table 2.4. We compare Table 2.4 and Table 2.3 at corresponding temperatures and thus find the value of $S_{e f f}$ at different temperatures. The newly found values of $S_{\text {eff }}(T)$ is plotted with temperatures as shown in figure 1. On extrapolating the curve to lower temperatures, we found that the value of $S_{\text {eff }}(0)$ is $2.0(\pm 0.05)$ $\times 10^{4} \mathrm{MeV}$ barn [35]. The value of $S_{e f f}(T)$ are then calculated for different temperatures and are given in Table 2.5

Fig 1. Plot of $\log \left(S_{\text {eff }}(T)\right)$ and temperature in units of $10^{8} \mathrm{~K}$.

Table 2.1: Data of Boyd et al

$E(\mathrm{MeV})$	$\sigma(\mathrm{mb})$	$\mathrm{S}(\mathrm{E})(\mathrm{MeV}$ barn)
1.62	381	1258
2.00	509	968
2.19	519	796
2.38	545	695
2.76	462	436
2.95	419	349
3.24	472	335
3.52	381	235
3.81	276	151
4.09	424	209
4.38	414	186
4.66	271	113
4.86	333	132
5.24	305	113
5.34	133	46
5.71	195	64
5.90	104	33
6.19	186	57
6.47	162	47

Table 2.2: Values of the integrand of eq. (5) at different values of temperature

$\mathrm{E}(\mathrm{MeV})$	$\mathrm{S}(\mathrm{E})(\mathrm{MeV}$ barn	at $\mathrm{T}=4 \times 10^{8}$	at $\mathrm{T}=8 \times 10^{8}$	at $\mathrm{T}=10 \times 10^{8}$
$0.2000(-01)$	$0.5433(05)$	$0.2168(-03)$	$0.1644(-03)$	$0.6527(-04)$
$0.2500(-01)$	$0.5433(05)$	$0.2817(00)$	$0.2167(00)$	$0.8859(-01)$
$0.5000(-01)$	$0.5433(05)$	$0.1252(08)$	$0.1035(08)$	$0.4889(07)$
$0.1000(00)$	$0.5433(05)$	$0.2000(13)$	$0.1913(13)$	$0.1208(13)$
$0.1500(00)$	$0.5433(05)$	$0.2698(15)$	$0.2983(15)$	$0.2518(15)$
$0.2000(00)$	$0.5433(05)$	$0.3746(16)$	$0.4788(16)$	$0.5401(16)$
$0.2500(00)$	$0.5433(05)$	$0.1792(17)$	$0.2647(17)$	$0.3992(17)$
$0.5971(00)$	$0.5433(05)$	$0.1099(18)$	$0.4444(18)$	$0.5020(19)$
$0.6119(00)$	$0.4688(05)$	$0.8915(17)$	$0.3763(18)$	$0.5020(19)$
$0.6545(00)$	$0.3228(05)$	$0.4989(17)$	$0.2383(18)$	$0.3755(19)$
$0.7158(000$	$0.2070(05)$	$0.2223(17)$	$0.1268(18)$	$0.2852(19)$
$0.7652(00)$	$0.9863(04)$	$0.7536(16)$	$0.4963(17)$	$0.1486(19)$
$0.7771(00)$	$0.2588(05)$	$0.1812(17)$	$0.1235(18)$	$0.3964(19)$
$0.8747(00)$	$0.6310(040$	$0.2118(16)$	$0.1826(17)$	$0.1032(19)$
$0.9352(00)$	$0.4246(04)$	$0.7945(15)$	$0.8567(16)$	$0.6879(18)$
$0.9563(00)$	$0.3622(04)$	$0.5578(15)$	$0.6395(16)$	$0.5804(18)$
$0.1000(01)$	$0.3083(04)$	$0.3136(15)$	$0.4082(16)$	$0.4773(18)$
$0.1109(01)$	$0.2075(04)$	$0.7055(14)$	$0.1261(16)$	$0.2782(18)$
$0.1231(01)$	$0.1770(04)$	$0.1644(14)$	$0.4181(15)$	$0.1869(18)$
$0.1269(01)$	$0.2851(04)$	$0.1752(14)$	$0.4969(15)$	$0.2759(18)$
$0.1366(01)$	$0.1919(04)$	$0.3930(13)$	$0.1478(15)$	$0.1443(18)$
$0.1494(01)$	$0.1396(04)$	$0.6421(12)$	$0.3501(14)$	$0.7187(17)$
$0.1618(01)$	$0.1258(04)$	$0.1298(12)$	$0.1016(14)$	$0.4294(17)$
$0.1999(01)$	$0.9678(03)$	$0.8569(09)$	$0.2023(12)$	$0.7790(16)$
$0.2190(01)$	$0.7660(03)$	$0.6043(08)$	$0.2479(11)$	$0.2880(16)$
$0.2380(01)$	$0.6949(03)$	$0.4358(07)$	$0.3105(10)$	$0.1089(16)$
$0.2761(01)$	$0.4361(03)$	$0.1713(05)$	$0.3683(08)$	$0.1176(15)$
$0.2951(01)$	$0.3493(03)$	$0.1050(04)$	$0.3922(07)$	$0.3781(14)$
$0.3237(01)$	$0.3347(03)$	$0.2062(02)$	$0.1764(06)$	$0.8917(13)$
$0.3522(01)$	$0.2350(03)$	$0.2976(00)$	$0.5634(04)$	$0.1497(13)$
$0.3808(01)$	$0.1512(03)$	$0.3582(-02)$	$0.1606(03)$	$0.2232(12)$
$0.4094(01)$	$0.2091(03)$	$0.9389(-04)$	$0.9643(01)$	$0.7024(11)$
$0.4379)(01)$	$0.1865(03)$	$0.1560(-05)$	$0.3669(00)$	$0.1401(11)$
$0.4665(01)$	$0.1127(03)$	$0.1730(-07)$	$0.9315(-02)$	$0.1865(10)$
$0.4855(01)$	$0.1318(03)$	$0.1397(-08)$	$0.1307(-02)$	$0.7899(09)$
$0.5141(01)$	$0.1127(03)$	$0 / 2149(-10)$	$0.4604(-04)$	$0.1458(09)$
$0.5427(01)$	$0.4645(03)$	$0.1575(-12)$	$0.7729(-06)$	$0.1285(08)$

Table 2.3: Values of the integral at different temperatures.

$\mathrm{T} \times 10^{8} \mathrm{~K}$	Integral
0.6	2.01×10^{-35}
4	5.34×10^{-22}
8	5.35×10^{-25}
10	16.36×10^{-25}
20	25.24×10^{-24}
22	34.92×10^{-24}

Table 2.4: Values of $\left(\langle\sigma v\rangle / S_{e f S}\left(E_{0}\right)\right.$ at different temperatures.

$\mathrm{T} \times 10^{8}$	$(\sigma v\rangle / S_{e f f}\left(E_{0}\right)$
4	7393×10^{6}
8	1056×10^{9}
10	4064×10^{9}
14	2536×10^{10}
18	8626×10^{10}
20	1393×10^{11}
22	2115×10^{11}

Table 2.5: Values of $S_{\text {ejf }}(T)$ at different temperatures.

$\mathrm{T} \times 10^{2} \mathrm{~K}$	$S_{e f f}(T)$
1	2.015×10^{4}
4	2.027×10^{4}
8	2.035×10^{4}
10	2.038×10^{4}
20	2.048×10^{4}
22	2.051×10^{4}

The new value of S-factor will affect the old value of reaction rate of ${ }^{8} \mathrm{Li}(\alpha$, n) ${ }^{11}$ B substantially. According to Malaney and Fowler [163], the old reaction rate of ${ }^{9} \mathrm{Li}(\alpha, n){ }^{11} \mathrm{~B}$ in the required energy range is given by

$$
\begin{equation*}
N_{A}\langle o v\rangle=8.62 \times 10^{13} T_{9 A}^{5 / 6} T^{-3 / 2} \exp \left(-\frac{19.461}{T_{8 A}^{1 / 3}}\right) \mathrm{cm}^{2} s^{-1} \text { mole }^{-1} \tag{2.16}
\end{equation*}
$$

where N_{A} is the Avogadro number, T_{9} is the temperature in units of $10^{9} \mathrm{~K}$ and

$$
\begin{equation*}
T_{9 \Lambda}=\frac{T_{9}}{1+T_{9} / 15.1} \tag{2.17}
\end{equation*}
$$

On comparing equations (2.16) and (2.12) one can find that the $S_{e f f}\left(E_{0}\right)$ used by Malaney and Fowler is $8.40 \times 10^{3} \mathrm{MeV}$ barn. One can note that the difference between our value and their value of $S_{\text {eff }}$. By incorporating our value of $S_{\text {eff }}\left(E_{0}\right)$ in to the reaction rate equation instead of Malaney-Fowler's value the reaction rate become,

$$
\begin{equation*}
N_{A}\langle\sigma v\rangle=2.05 \times 10^{14} T_{9 A}^{5 / 6} T^{-3 / 2} \exp \left(-\frac{19.461}{T_{9 A}^{1 / 3}}\right) \quad \mathrm{cm}^{2} s^{1} m_{o l e}{ }^{-1} \tag{2.18}
\end{equation*}
$$

Probably due to the above reaction rate the abundance of ${ }^{11} \mathrm{~B}$ and ${ }^{\mathrm{R}} \mathrm{Li}$ should change. Since this reaction is coming after the element ${ }^{7} \mathrm{Li}$ in the cycle this modified reaction rate will affect the abundance of ${ }^{7} \mathrm{Li}$ also. We modified the Wagoners code by incorporating our reaction rate for the above reaction and also some new reactions which are important for the synthesis of ${ }^{7} \mathrm{Li}$, but are not incorporated in a recent work by Smith et al [28] and found that the abundance of ${ }^{7} \mathrm{Li}$ is reduced by a factor of 1.2.

Chapter 3

Neutrino degenerate big bang nucleosynthesis

The standard big-bang nucleosynthesis model is successful in predicting the microwave back ground radiation [13]. It has been claimed that its prediction about the abundances of the light elements is also perfect. But the abundances values of the various light elements inferred from the latest observational data are not in agreement with the the theory for a unique range of the baryon-to-photon ratio. The prediction of the present day baryon-to-photon ratio η is the main aim of the SBBN.

In the SBBN model η is treated as one of the parameters along with the other two, the number of light neutrinos and neutron life time. The parameters, number

Table 3.1: Number of light neutrinos, N_{ν}

Authors	N_{ν}
Adeva at al	3.29 ± 0.17
De Camp et al	$3.27 \pm \mathbf{0 . 3 0}$
Akrawy et al	$3.12 \pm \mathbf{0 . 4 2}$
Arnio et al	2.40 ± 0.40
Abrams et al	$2.80 \pm \mathbf{0 . 6 0}$
Schramm et al	3
Shvartsman	3
Malaney et al	3

of light neutrinos and neutron life time are derived from the laboratory experiments. The number of light neutrinos has been fixed as 3 these beeing the electron neutrino, muon-neutrino and taon-neutrino. There are lot of experimental evidence for fixing the neutrino number as 3. We have summarised a set of results in Table 3.1.

There are various experimental determinations and theoretical inference on neutron life time. Since the freeze out value of the n / p ratio depends strongly on the life time of neutron [16], it has a crucial role in determining the abundance of ${ }^{4} \mathrm{He}$, because ${ }^{4} \mathrm{He}$ abundance depends very much on the freese out value of the n / p ratio. The abundance shows a sharp increase with the neutron life time. In the Table 3.2 is given the summary of some of the lifetime estimations of the life time of neutron. The latest measurements indicates a lower value for neutron life time, implying a lower abundance for ${ }^{4} \mathrm{He}$. In our calculation we take the weighted mean of the values since 1986, as done by Smith et al [28], that is $\tau_{n}=888.5 \pm 3.8$ sec. Once the number of neutrino and neutron life time are fixed the SBBN theory becomes a

Thable 3.2: Neutron life time τ

Authors	Years	neutron life time
Sonnovskii et al	1959	1013 ± 26
Christensen et al	1972	919 ± 14
Krohn and Ringo	1975	907 ± 18
Bondarenko et al	1978	877 ± 16
Strataura et al	1978	902 ± 20
Erozolimkkii et al	1979	905 ± 14
Byrne et al	1980	936 ± 17
Bopp et al	1984	889 ± 11
Byrne et	1984	914 ± 6
Kosvintsev et al	1986	903 ± 13
Last et al	1988	876 ± 22
Mampe et al	1989	887 ± 3
Olive et al	1990	889 ± 4.4
Walker et al	1991	889 ± 2.9

theory becomes a one parameter problem, the parameter being η. The expectation is that the SBBN model should predict a single value for η. But recent reports are against this expectation. It has been reported by many $[30,31,38,164]$ that the theory predicts more than one value for η. This should not be, because a single Universe cannot have more than one value for η.

3.1 The discrepancy - earlier results

In order to review the earlier situation we mainly follow the work of Rana [30,31]. For comparing the calculated results, the following limits inferred form the obser-
vational data for the primordial abundance were used by him,

$$
Y_{p}=0.230 \pm 0.006
$$

by mass fraction

$$
\frac{D+{ }^{3} H e}{H}=(3.6 \pm 0.60) \times 10^{-5}
$$

by number fraction and

$$
\frac{{ }^{7} L i}{H}=(1.12 \pm 0.38) \times 10^{-5}
$$

by number fraction. The number of neutrinos is 3 and the neutron life time is 891.6 sec. For the calculation Wagoners's code was used. The results due to Rana $[11,30]$ shows that the range of η corresponding to Y_{p} and $\left(D+{ }^{3} H e\right) / H$ mutually exclude each other, but the η corresponds to ${ }^{7} \mathrm{Li} / \mathrm{H}$ is overlapping with both regions. So the discrepancy here is mainly in the case of Y_{p} and $\left(D+{ }^{3} H e\right) / H$. Similar cases of inconsistencies in the SBBN model were reported by many as mentioned above. Even though the discrepancy is small, it is not negligible. It shows that the standard model predictions are not absolutely correct, but at the same time are not very far from truth. So SBBN model should be modified. Two alternative solutions have been proposed. One is the inhomogeneous nucleosynthesis model [37,68] and the second is the nucleosynthesis with neutrino degeneracy $[30,31]$. At the same time several works argued that standard model is sufficient $[21,22,144]$. We shall try to asses the status of the above reported discrepancy in the light of the refined values of the abundances, reaction rates and other parameters. First we propose to modify the Wagoners code to take account the latest results on reaction rates, neutron life times and include some other corrections which are described in the following sections.

3.2 Modifications of the Wagoners code

In the Wagoners code all the thermodynamic functions are evaluated approximately in terms of the modified Bessel function [15,16] as has been elaborated in chapter 1. Since the reported discrepancy regarding the non-uniqueness of η is small a precise evaluation is needed to check the absolute existential status of the inconsistency. We did an exact evaluation by changing all the approximately evaluated functions with accurate numerical calculations. The photon energy density is put in to the code as $\rho=8.4182 T_{9}^{4} \mathrm{gcm}^{-3}$, and its number density as, $n_{\gamma}=2.0282719 \times 10^{28} T_{9}^{3} \mathrm{~cm}^{-3}$. Another important constituent is the electron, which determine the baryon density through the charge conservation law. The difference in the electrons and its antiparticle positrons can be evaluated using the exact relation,

$$
\begin{equation*}
n_{e^{-}}-n_{e^{+}}=\left(\frac{k_{B}}{c \hbar}\right)^{3} \frac{10^{27}}{\pi^{2}} T_{9}^{3} \sinh \phi_{e} \int_{1}^{\infty} \frac{\epsilon \sqrt{\epsilon^{2}-1}}{\cosh (x \epsilon)+\cosh \phi_{e}} x^{3} d \varepsilon \tag{3.1}
\end{equation*}
$$

This difference in number can be related to the baryon mass density by assuming charge coservation. The total number density of the electrons and positrons can be evaluated as,

$$
\begin{equation*}
n_{e^{-}}+n_{e^{+}}=\left(\frac{k_{B}}{c \hbar}\right)^{3} \frac{10^{27}}{\pi^{2}} T_{9}^{3} \int_{1}^{\infty} \frac{\cosh \phi_{e}+e^{-x e}}{\cosh (x \epsilon)+\cosh \phi_{e}} \epsilon \sqrt{\epsilon^{2}-1} x^{3} d \epsilon \tag{3.2}
\end{equation*}
$$

and the total energy of the electrons and positrons is calculated ass,

$$
\begin{equation*}
\rho_{e}-+\rho_{e^{+}}=\left(\frac{k_{B}^{A}}{\pi^{2} c^{5} \hbar^{3}}\right) 10^{38} T_{9}^{4} \int_{1}^{\infty} \frac{\cosh \phi_{e}+e^{-z}}{\cosh \left(z \epsilon^{)}\right)+\cosh \phi_{e}} \epsilon^{2} \sqrt{\epsilon^{2}-1} z^{4} d \epsilon \tag{3.3}
\end{equation*}
$$

Electrons and positrons will annihilate each other during the pair annihilation period which starts at a temperature about $6+\alpha^{9} \mathrm{~K}$. But a small amount of electrons

Table 3.3: Evolution of electron density during pair annihilation.

T_{9}	$\rho_{\epsilon}+/ \rho_{7}$
100	1.751
34.5	1.746
3.3	1.335
1.35	0.181
0.41	0.0002

ived and these are responsible for the electron degeneracy $\phi_{e}=\mu_{e} / k_{B} T$, where ithe chemical potential of the electrons. During the pair annihilation the mass ity of the electrons evolve with respect to that of photons as given in the Table The total pressure due to the electrons and the positrons is calculated exactly he relation,

$$
\begin{equation*}
\left(P_{e^{-}}+P_{e^{+}}\right)=\left(\frac{k_{B}^{4}}{c^{5} \hbar^{3}}\right) \frac{10^{38}}{3 \pi^{2}} T_{9}^{4} \int_{1}^{\infty} \frac{\cosh \phi_{e}+e^{-z e}}{\cosh (z \epsilon)+\cosh \phi_{e}} \sqrt{\epsilon^{2}-1} z^{4} d \epsilon \tag{3.4}
\end{equation*}
$$

calculating the evolution of the temperature with respect to time, we need derivatives of the above quantities with respect to temperature and electron nical potential. The temperature derivative of net electron number can be :Hly calculated using the relation,

$$
\begin{align*}
\frac{\partial\left(n_{g^{-}}-n_{e^{+}}\right)}{\delta T_{9}}= & \left(\frac{k_{B}}{c \hbar}\right)^{3} \frac{10^{2 z}}{\pi^{2}} T_{g}^{2} \sinh \phi_{e} \tag{3.5}\\
& \times \int_{1}^{\infty} \frac{\sinh (z \epsilon)}{\left(\cosh (z \epsilon)+\cosh \phi_{e}\right)^{2}} \epsilon^{2} \sqrt{\epsilon^{2}-1} z^{4} d \epsilon .
\end{align*}
$$

uperature derivative of total electron energy density is,

$$
\begin{align*}
\frac{\partial\left(\rho_{e}+\rho_{e^{+}}\right)}{\delta T_{9}}= & \left(\frac{k_{B}}{c^{5} \hbar^{3}}\right) \frac{10^{36}}{\pi^{2}} T_{9}^{3} \tag{3.6}\\
& \times \int_{1}^{\infty} \frac{\cosh (x \epsilon) \cosh \phi_{e}+1}{\left(\cosh (x \epsilon)+\cosh \phi_{e}\right)^{2}} \epsilon^{2} \sqrt{\epsilon^{2}-1} x^{5} d \epsilon
\end{align*}
$$

and the temperature derivative of the total pressure due to electrons and positrons is calculated as,

$$
\begin{align*}
\frac{\partial\left(P_{\epsilon}+P_{\theta^{+}}\right)}{\partial T_{9}}= & \left(\frac{k_{B}^{A}}{c^{5} \hbar^{3}}\right) \frac{10^{36}}{3 \pi^{2}} T_{9}^{3} \tag{3.7}\\
& \times \int_{1}^{\infty} \frac{\cosh (x \epsilon) \cosh \phi_{\varepsilon}+1}{(\cosh (x \epsilon)+\cosh \phi)} \epsilon^{2} \sqrt{\epsilon^{2}-1} x^{5} d \epsilon
\end{align*}
$$

The corresponding chemical potential derivatives are

$$
\begin{align*}
\frac{\partial\left(n_{e^{-}}-n_{e^{+}}\right)}{\partial \phi_{e}}= & \frac{n_{e^{-}}-n_{e^{+}}}{\sinh \phi_{e}}+\left(\frac{k_{B}}{c \hbar}\right)^{3} \frac{10^{27}}{\pi^{2}} T_{g}^{3}\left(\cosh \phi_{e}-1\right) \tag{3.8}\\
& \times \int_{1}^{\infty} \frac{\cosh (z \epsilon)-1}{\left(\cosh (z \epsilon)+\cosh \phi_{e}\right)^{2}} \epsilon \sqrt{\epsilon^{2}-1} d \varepsilon \\
\frac{\partial\left(\rho_{z^{-}}+\rho_{e^{+}}\right)}{\partial \phi_{z}}= & \left(\frac{k_{B}^{4}}{c^{5} \hbar^{3}}\right) \frac{10^{3 B}}{\pi^{2}} T_{g}^{4} \sinh \phi_{e} \tag{3.9}\\
& \times \int_{1}^{\infty} \frac{\sinh (x \varepsilon)}{\left(\cosh (x \epsilon)+\cosh \phi_{e}\right)^{2}} \epsilon^{2} \sqrt{\epsilon^{2}-1} \varepsilon^{4} d \epsilon
\end{align*}
$$

$$
\begin{align*}
\frac{1}{c^{2}} \frac{\partial\left(P_{e^{-}}+P_{e^{+}}\right)}{\partial \phi_{e}}= & \left(\frac{k_{B}}{c^{5} \hbar^{3}}\right) \frac{10^{3 B}}{3 \pi^{2}} T_{g}^{4} \sinh \phi_{e} \tag{3.10}\\
& \times \int_{1}^{\infty} \frac{\sinh (x \epsilon)}{\left(\cosh (x \epsilon)+\cosh \phi_{e}\right)^{2}}\left(\epsilon^{2}-1\right)^{3 / 2} z^{4} d \epsilon
\end{align*}
$$

where the symbols have their usual meaning as given in the introduction. In the above equations we treat all particles as relativistic. In the case of baryons, they are treated as non-relativistic. But they show a relativistic character at temperatures
above $10^{11} \mathrm{~K}$. Their mass density can be evaluated using the equation (1.47). The temperature derivative of the baryon density can be written as,

$$
\begin{equation*}
\frac{d \rho_{4}}{d T_{9}}=h T_{9}^{3} \zeta \sum Y_{i}+h T_{9}^{3}\left(\frac{\Delta M}{M_{u}}+\zeta T_{9}\right) \frac{d Y_{i}}{d T_{9}} \tag{3.11}
\end{equation*}
$$

The total energy density of the 3 species of the neutrinos and their antiparticles can be written as,

$$
\begin{equation*}
\rho_{\nu}+\rho_{\nu}=3 \times 7.365935 T_{9}^{4} \tag{3.12}
\end{equation*}
$$

Neutrons are decoupled from the thermal equilibrium at about a temperature 2.1 $\times 10^{10} \mathrm{~K}$. After that the temperature of the neutrinos decrease with the expansion of the Universe as, $T_{\nu} \propto R^{-1}$.

3.2.1 Overheating of neutrinos

Neutrinos decouple from the thermodynamic equilibrium (at about a temperature $T \sim 2 \times 10^{10} \mathrm{~K}$) well before the annihilation of electrons and positrons in to photons (at temperature of about $T \sim 5.93 \times 10^{9}$). Hence the energy associated with the $e^{ \pm}$pairs is transferred completely to the photonic sector. As a result the the neutrino temperature is reduced by 1.401 times that of the photon. This was the sequence assumed in the standard model of the hot big-bang theory. But Dicus et. al. [27] have shown that during the pair annibilation of the e^{t} pairs a fraction of the energy associated with the $e^{ \pm}$, Dairs is added to the decoupled neutrino sector
through the scattering interactions, $\nu+e^{t} \leftrightarrow \nu+e^{t}$, and also through the annihilation process $\nu+\bar{\nu} \leftrightarrow e^{-}+e^{+}$. Since the neutrinos are decoupled species this transference of energy to them, is an effective loss for further Universal processes like primordial macleosynthesis. Dicus et al have shown that due this overheating the neutrino temperature can be increased by 0.3% [27]. This will affect the primordial nucleosynthesis process mainly in two ways. One is the modification in the weak interaction rate which controls the freeze out value of the n / p ration. The second is the effect on the number of the neutron decays after the freeze out of n / p ratio. Both the effects will be reflected in the abundance value of primordial ${ }^{4} \mathrm{He}$. Dodelson and Smith have argued that the first effect will lead to a decrease in ${ }^{4} \mathrm{He}$ abundance by an order of 10^{-5}, and the second effect will lead to a decrease about $1-2 \times 10^{-4}$.

In order to incorporate the effect of overheating in the Wagoners code we adopt the formulation by Rana and Mitra [33]. They showed by a more careful method that there can be a 0.36% increase in the neutrino temperature compared to the photon temperature, which will lead to reduction about 0.003 in the ${ }^{4} \mathrm{He}$ abundance. The lose in the primordial soup due to the neutrino overheating can represented as,

$$
\begin{equation*}
\frac{d u}{d t}=\frac{d u_{\nu}}{d t}=\sum_{i} I_{i}\left(T-T_{\nu}\right) \tag{3.13}
\end{equation*}
$$

where I_{i} is the energy loss integral (its exact form is given in of Rana and Mitra [33]). It is assumed here that $T-T_{\nu} \ll T$. The summation in the equation extends over all types of neutrinos. The above equation can be recast in to more suitable
form by using the following equations,

$$
\begin{align*}
I_{i} & =\frac{C_{T}}{T_{i}} \frac{d u_{\nu}}{d t} \tag{3.14}\\
& =4 C_{w} \frac{d T_{\nu}}{d t} \tag{3.15}
\end{align*}
$$

as

$$
\begin{equation*}
\frac{d T_{\nu}}{d t}=\frac{C_{T}}{C_{\nu}} \frac{T-T_{\nu}}{\tau}-H \tau_{\nu} \tag{3.16}
\end{equation*}
$$

where

$$
C_{T}^{-1}=C_{e}^{-1}+C_{\nu}^{-1}
$$

C_{e} and C_{ν} are the specific heat capacities of olectron and neutrino respectively. τ_{i} is the total relaxation time for a given type neutrinos. The relaxation time of electron neutrino is slightly different from that of mu/tau neutrinos and as a result ν_{e} will decouple at about $1.5 \times 10^{10} \mathrm{~K}$, but ν_{μ} and ν_{τ} decouple at a slightly higher temperature $2.5 \times 10^{10} \mathrm{~K}$. The second term in the above equation arises due to the expansion of the Universe, where H is the Hubble constant. When we incorporates this effect in the our modified code it is found that the ${ }^{4} \mathrm{He}$ abundance is reduced by 0.001 only.

3.2.2 Effect of plasma on the electron mass

Due to the interaction of the electron with the rest of the plasma in the early Universe, its propagation will be modified. This interaction will effect a net increase in the rest mass of the electron at finite temperature [27]. Increase in the mass of the
electron can be calculated using the finite temperature propagator of the electron and photon, by assuming fermi distribution for electron. Dicus et al [27] have noted that the finite temperature increase in the electron mass is, if the chemical potential is negligibly small,

$$
\begin{equation*}
\delta m_{T}=\frac{B \alpha T^{2}}{m_{e}} \tag{3.17}
\end{equation*}
$$

where m_{e} is the zero-temperature rest mass of the electron, B is a slowly varying function of temperature having value between $1-2$ and α is the coupling constam which arises due to the addition of the gauge fixing term in the finite temperature propagator of electron. This correction cab be added to the zero temperature rest mass of the electron, which is 0.511 MeV , to get correct mass of the electron, at given temperature. The corrected maes mainly affect the weak interaction rate, which will in turn affect the ${ }^{4} \mathrm{He}$ abundance through the freeze out value of the n / p ratio. Due to the inclusion of this correction in our modified code there can be a slight decrease in the weak interaction rate, about -0.0013 , which would result in a slight increase in the ${ }^{4} \mathrm{He}$ abundance about 0.0002 .

3.2.3 Coulomb and radiative correction

In Wagoner's original code [16] the Coulomb correction is included by simply increasing the term λ_{0} appearing in the weak interaction rate by 2%. This has the drawback that at low temperature $\lambda(n \rightarrow p e v)$ approaches 0.98 rather than unity. The correct treatment of the Coulomb and radiative interactions was worked out
by Dicus et. al [27]. We will adopt their results to Wagoners code accordingly. They proposed that, the correction is to multiply all the weak interaction rate by ($1+\frac{\alpha}{2 \pi} C(\beta, y)$, where α is the coupling constant, β is the velocity of the electron in the rest frame of the positron and y is the neutrino energy divided by the electron mase m_{e}. The function C is given by,

$$
\begin{align*}
C(\beta, y) & \simeq 40+4(R-1)\left(\frac{y}{3 \epsilon}-\frac{3}{2}+\ln 2 y\right)+R\left(2\left(1+\beta^{2}\right)+\frac{y^{2}}{6 \epsilon^{2}}\right. \tag{3.18}\\
& -4 \beta R)-4\left(2+11 \beta+25 \beta^{2}+30 \beta^{3}+20 \beta^{4}+8 \beta^{6}\right) /(1+\beta)^{6}
\end{align*}
$$

where \mathbf{R} is defined to be

$$
R \simeq \beta^{-1} \tanh ^{-1} \beta
$$

In the above correction the largest part is that due to the radiative correction. The overall effect is about a 7% increase in λ_{0}, out of that 3.4% comer from the radiative part and the remaining part from the Coulomb part. Due to these correction λ_{0} increase from its old value 1.53515 to the new value 1.75321 . Consequently ${ }^{4} \mathrm{He}$ abundance is reduced by a 0.0005 .

3.2.4 Updating the reaction rates

We have included about 250 reactions in the code. In the original code of Wagoner around 180 reactions were included. In a recent work of Smith et. al. [28] only

81 reactions were included. They neglect other reactions arguing that the remaining ones are unimportant. We think that however small be the contribution of a particular reaction, it should be included. Of course the computation time will become large due to the inclusion of more reaction. But if one looking for accuracy in the prediction all the possible reactions must be included. In that sense we have more reactions which are not included in the work of Smith et. al.. A list of some important reactions and their rates are given in the appendix.

We have updated the reaction rates according to the latest results. The updating of the reaction is mostly from the paper due to Caughlan et. al. [46]. For the rates of some of the reaction we adopt the results from Smith et. al. [28]. In the case of the reaction ${ }^{8} \mathrm{Li}(\alpha, \mathrm{n})^{11} \mathrm{~B}$ we included the new rate determined by us in chapter 2 .

3.2.5 Correcting the values of the nuclear weight

For calculating the primordial abundance we need the weight of all the nuclear species in atomic mass units. In the original code the weight of the corresponding atomic species are included, which include the weight of the nuclei plus the corresponding number of the electrons also. Strictly speaking only the weights of nuclei are neede. So we have modified the code by replacing all these atomic weights with the correspouding nuclear weights.

3.3 Comparison of the theory and observation

We perform the computation with our modified code. For the calculation we chooses the following initial condition. The initiad temperature is chosen as $\boldsymbol{T}_{9}=100$. This temperature is high enough to have all the particles in statistical thermad equilibrium with each other. The initial value of all other variables are set for the temperature $T_{9}=100$. For example the initial value of the baryon density can be specified as follows. We know that the baryon-to-photon number density ratio is,

$$
\begin{equation*}
\eta=\frac{n_{\phi}}{n_{\gamma}} \tag{3.19}
\end{equation*}
$$

Let i refer to the initial value of the corresponding quantity, then

$$
\begin{equation*}
\left(n_{i}\right)_{i}=\left(n_{r}\right)_{i} \eta_{i} \tag{3.20}
\end{equation*}
$$

where

$$
\begin{equation*}
\left(n_{\gamma}\right)_{i}=2.028719 \times 10^{34} \tag{3.21}
\end{equation*}
$$

Since the temperature $\boldsymbol{T}_{9}=100$ is well above the neutrino decoupling temperature $\left(2.1 \times 10^{10} \mathrm{~K}\right.$) one should be cautious in calculating η_{i}. The value of the baryon-tophoton ratio will change due to the addition of the photons during the e^{t} annihilation. Let η_{f} be the value of the baryon-to-phaton ration after the e^{t} annihilation, then it can be written as,

$$
\begin{align*}
\eta_{f} & =\left(\frac{T_{\nu}}{T_{\gamma}}\right) \eta_{i} \tag{3.22}\\
& =0.366 \eta_{i}
\end{align*}
$$

Using the relation (3.20) and (3.21) the initial value of $n_{i,}$, the baryon number density turns out to be

$$
\begin{equation*}
\left(n_{b}\right)=5.54298 \times 10^{34} \eta_{f} \tag{3.23}
\end{equation*}
$$

Now we can easily calculate the initial value of h parameter by using the following relation,

$$
\begin{equation*}
n_{k}=N_{A} h T_{9}^{3} . \tag{3.24}
\end{equation*}
$$

Thus the initial value of h is turns out to be $9.20434 \times \eta_{j}$. Initial value of the abundance of all the elements is fixed as 10^{-25} by number fraction in order to avoid underflow in the numerical calculation. Basically the initial values of all relevant variables are fixed by the initial value of the temperature and baryon-to-photon ratio.

The ultimate test of the SBBN model is that whether the predicted abundances are all matching with those inferred from the observations for a unique range of η values. The results of the calculation are as shown in the figure 2 a and 2 b , where we plotted the abundance, mass fraction of ${ }^{4} \mathrm{He}$, number fractions of $\left(D+{ }^{3} \mathrm{He}\right) / \mathrm{H}$ and ${ }^{7} \mathrm{Li} / \mathrm{H}$. Figure 2 a is that result which obtained using our modified code. After this calculation, there was a paper by Smith et. al. [28], who proposed modified reaction rates for some of the important reactions. In constructing figure 2 b , we include these modified reactions also. The shaded regions are the allowed ranges of η obtained from the constraints due to the observationally estimated primordial abundances of the elements as described in chapter 1. The shaded zones are not found to overlap each other, thus bringing out the inconsistency of the SBBN model.

According to figure 2a, the observational abundance of ${ }^{4} \mathrm{He}$ by mass fraction corresponds to a range ($0.7-1.1$) $\times 10^{-10}$ of η, and that of ($\mathrm{D}+{ }^{3} \mathrm{He}$)/H corresponds to the range ($4-5.6$) $\times 10^{-10}$. The observational limits of ${ }^{7} \mathrm{Li} / \mathrm{H}$ is corresponds to (1.8-3.5) $\times 10^{-10}$. These three ranges of η are mutually excluding each other.

According to figure 2 b , the range of η corresponds to the ${ }^{4} \mathrm{He}$ abundance is (0.5 $-1) \times 10^{-10}$ that for $\left(\mathrm{D}+{ }^{3} \mathrm{He}\right) / \mathrm{H}$ abundance corresponds to (4.8-6.9) $\times 10^{-10}$ and that for ${ }^{7} \mathrm{Li} / \mathrm{H}$ abundance corresponds to $(1.7-2.6) \times 10^{-10}$. These results also shows that three ranges of η are mutually excluding each other. Earlier it was reported [30] that the discrepancy is there for ${ }^{4} \mathrm{He}$ and ($\mathrm{D}+{ }^{3} \mathrm{He}$)/H only. Our calculations using a more realistically modified code shows that the discrepancy is shared by ${ }^{7} \mathrm{Li} / \mathrm{H}$ also. Even though the inconsistency is small, it is not negligible. A small modification of the model must be sufficient to cure the theory.

Two alternative solutions have been proposed. One of them as proposed by Rana [30,31] and Sherrer [38], involves the introduction of one more free parameter, $\phi_{\psi_{4}}=\mu_{\nu_{\mathrm{e}}}$ called the degeneracy of electron neutrinos, characterizing the ratio of the excess number density of neutrino of electron type over their antiparticles to the photon number density. Another alternative solution $[6,68]$, is the inhomoge neous primordial nucleosynthesis, where the inhomogeneity is introduced in to the early Universe, prior to the nucleosyntheris by a possible first order transition from the quark-gluon to hadronic state of matter. The dynamics of this transition is the least understood one so far as the exact quantifications are concerned, but it

Fig. 2a Primordial abundances ${ }^{4} \mathrm{He}, \mathrm{D} / \mathrm{H}$ and ${ }^{7} \mathrm{Li} / \mathrm{H}$ in the SBBN model with the ahaded regions representing the allowed ranges of the baryon to photon number denalty ratio η. Non-overlapping of these shaded ranges of η implies inconastency of the modal predictions and the observational estimates.

Fig. 2b. Same as fig. 2a, but with the inclusion of modified reaction rates due to Smith et. al.
allowed the introduction of three more parameters to the model at a time when it had already three parameters in it. When the inhomogeneities were taken in to account the abundance ${ }^{4} \mathrm{He}$ and ${ }^{7} \mathrm{Li}$ shoot up considerably, in particular the later. We will discuss some aspects of inhomogeneous nucleosynthesis as solution to the above mentioned inconsistency in the next chapter. Here we will concentrate on the neutrino degenerate case.

3.4 Degenerate big-bang nucleosynthesis

In the work of Wagoner it was assumed that the neutrinos are non-degenerate. There is no firm experimental basis for such an assumption. A small neutrino degeneracy is natural according to many grand unified theories $[57,29]$. The meaning of neutrino degeneracy in the present context is that the chemical potential of the neutrino is non-zero, which implies an excess of neutrinos over their antiparticle [30]. We consider a degeneracy in the electron type neutrinos and there is no degeneracy in the other two types, the muon type and the taon type. The small neutrino degeneracy can affect the nucleosynthesis process in two ways. First the excess density of the neutrinos due to the degeneracy can increase the expansion factor causing an earlier freeze out of the n / p ratio. Because of the freeze out the value of n / p ration will be higher than its canonical value, which in turn increase the ${ }^{4} \mathrm{He}$ abundance. Second effect is that, because of the excess electron neutrino over their antiparticies, the rate of the forward reaction $n+\nu_{e} \rightarrow e^{-}+p$ will
dominate compared to the corresponding rate of the backward reaction. This causes a substantial decrease in the number density of neutrons. This in turn will reduce the ${ }^{4} \mathrm{He}$ abundance. So the first and second effects are mutually opposing effects. Since we are assuming a small degeneracy, the increase in the expansion rate will be comparably negligible, as a result the second effect will dominate the first one. We analyse the situation below with relevant calculations.

If there is no neutrino degeneracy, the energy density of electron neutrinos will be given by the relation,

$$
\begin{align*}
\rho_{\nu_{e}} & =\rho_{\nu_{k}}+\rho_{\nu_{k}} \tag{3.25}\\
& =\frac{7}{8} \frac{\pi^{2}}{15(c \hbar)^{3}} T_{\nu}^{4}
\end{align*}
$$

Because of the electron neutrino degeneracy the electron neutrino energy density become,

$$
\begin{equation*}
\rho_{\nu_{k}}=\frac{\pi^{2}}{15(c \hbar)^{3}} T_{\nu}^{4}\left[\frac{7}{8}+\frac{15}{4 \pi^{2}} \phi_{\nu_{k}}^{2}+\frac{15}{8 \pi^{2}} \phi_{\nu_{k}}^{4}\right] \tag{3.26}
\end{equation*}
$$

provided the rest mass of the neutrino is negligible. With respect to the photon energy density, the neutrino energy density become

$$
\begin{equation*}
\frac{\rho_{\mu}}{\rho_{\gamma}}=\frac{7}{8}\left(\frac{T_{\nu}}{T_{\gamma}}\right)\left(1+\Delta N_{\nu_{*}}\right) \tag{3.27}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta N_{\mu_{k}}=\frac{30}{7 \pi^{2}} \phi_{\mu_{k}}^{2}+\frac{15}{7 \pi^{2}} \phi_{\nu_{\mu}}^{4} . \tag{3.28}
\end{equation*}
$$

Here we assumed that the electron neutrino degeneracy will affect much the photonneutrino temperature difference, which is realistic assumption in the case of small
degeneracy. However if the degeneracy is higher [165] one should apply the correction of neutrino overheating due to the degeneracy also. Now the total energy density would become,

$$
\begin{equation*}
\rho_{\text {tat }}=\tilde{g_{e f f}} \rho_{\gamma} \tag{3.29}
\end{equation*}
$$

by assuming that all the relevant constituents are relativistic. Here geff is the effective spin multiplicity with neutrino degeneracy, which can be written as,

$$
\begin{equation*}
g_{e f f}=\frac{11}{4}+\frac{7}{8}\left(\Delta N_{4}\right) \tag{3.30}
\end{equation*}
$$

before e^{t} annibilation, and

$$
\begin{equation*}
g_{e f f}^{-}=1+\frac{7}{8}\left(\frac{4}{11}\right)^{4 / 3}\left(1+\Delta N_{\nu_{\mathrm{e}}}\right) \tag{3.31}
\end{equation*}
$$

after $e^{ \pm}$annihilation. According to the above equations the increase in energy density compared to photons due to the degeneracy of electron neutrinos is

$$
\left.(7 / 8) T_{\nu} / T_{\gamma}\right)^{4} \Delta N_{\varkappa_{1}}
$$

Due to this there is a speed up in the expansion of the Universe, which can be characterized by a speed up factor S as,

$$
\begin{align*}
S=\frac{H}{H} & =\left(\frac{\rho_{t a t}}{\rho_{t a t}}\right)^{1 / 2} \tag{3.32}\\
& =\left(\frac{g_{a f f}}{g_{e f I}}\right)^{1 / 2}
\end{align*}
$$

where H^{r} is the Hubble constant of the Universe with electron neutrino degeneracy. Due to a finite degeneracy S is always greater than 1. Because of this the n / p ratio freezes out at a higher temperature due to the early overtaking of the weak interaction rate by expansion rate.

The second effect is just the opposite of the first as we mentioned above, that is to decrease n / p ratio by enhancing the rate of conversion neutrons into protons. Due to this effect the ${ }^{4} \mathrm{He}$ abundance decrease, without affecting the abundance of the other elements. Our aim is to find a unique range of η for which theory is satisfied with the observational abundance of the ${ }^{4} \mathrm{He}, \mathrm{D},{ }^{3} \mathrm{He}$, and ${ }^{7} \mathrm{Li}$. We run the modified code for various values η and $\phi_{\nu_{a}}$. The value of η used by us is in the range, 0.5×10^{-10} to 1.0×10^{-8} and $\phi_{v_{e}}$ is in the range 0.05 to 1 . We span a 2 -dimensional parameter space of η and ϕ. Results are as shown figures 3a and 3b. In figure 3a, is that figure which corresponds to figure $2 a$, where the most latest results of some important reaction rates as reported by Smith et al [28] have not been used. Those results are incorporated to obtain the figure 3b. Figure 3 a , which gives the isoyield curves shows that the the abundance of elements, that is $Y_{p},\left(D+{ }^{3} \mathrm{He}\right) / \mathrm{H}$ and ${ }^{7} \mathrm{Li} / \mathrm{H}$ can be fitted for a unique range of baryon-to-photon ratio, $\eta=4(\pm 1) \times 10^{-10}$, where the required value of the degeneracy parameter is $\phi_{\nu_{e}} \simeq 0.11 \pm 0.04$ [34]. However $3 b$, is more reliable in that it include all the reaction rates in its most uptodate form. According to figure 3b, the value of baryon-to-photon ratio is $\eta=3(\pm 1) \times 10^{-10}$ and the corresponding value of degeneracy is $\phi_{\nu_{*}}=0.3 \pm 0.05$. If the Universe is not strictly obey the conservation of (B-L) (the difference between baryons and lepton numbers), it will then be possible to accommodate such a large value of $\phi_{\nu_{m}}$ compared

Fig. 3a. The plot for spanning the parameter space for the primordial abundance (by mass fraction) of ${ }^{4} \mathrm{He}, \mathrm{D}$ and ${ }^{7} \mathrm{Li}$ (solid, doted and dot-dashed lines respectively) for ϕ_{4} versus η. The shaded zone corresponds to the acceptable solution for $\phi_{\nu_{e}}=0.11 \pm 0.01$ and $\eta=4(\pm) \times 10^{-10}$.

Fig. 3b. Saine as figure 3a, but with the inclusion of the modified reaction rates of Smith et. al. Here the shaded zone corresponds to the acceptable solution for $\phi_{\nu_{e}}=0.30 \pm 0.05$ and $\eta=3(\pm 1) \times 10^{-10}$.
to the smallness of η. That the Majorana type of neutrinos with little or zero rept mass can under the circumstance of the early Universe develop such a large values of $\phi_{\nu_{n}}$ has been shown by Langacker et al [63]. The above reported value of degeneracy parameter (ie .3) would correspond to an excess neutrino number density of

$$
\begin{equation*}
L=\frac{n_{x_{4}}-n_{x_{x_{4}}}}{n_{\gamma}} \simeq 0.06 \tag{3.33}
\end{equation*}
$$

The corresponding speed up factor is about 0.4%, which justifies our assumption that for smaller degeneracy parameter (of course the degeneracy is higher compared to the photon number density) the speed up in the Universal expension is negligibly small.

Another point to be noted is that, given the error bars, possibly the shaded regions for $\left(\mathrm{D}+{ }^{3} \mathrm{He}\right) / \mathrm{H}$ and ${ }^{7} \mathrm{Li} / \mathrm{H}$ can merge for a value around 4.0×10^{-10} with no neutrino degeneracy. But if the value of $Y_{p} \leq 0.220$ we need a mechanism to reduce the SBBN value of ${ }^{4} \mathrm{He}$ abundance. This can be achieve by introducing significant degeneracy of electron neutrino ($\phi_{\nu_{e}}=\mu_{\nu_{c}} / k_{B} T \simeq 0.30$) is the main result of our work. However this suggestion must be conffrmed by further tests. If one extend the degeneracy to the other types of neutrinos also, there appears to be a possibility of constructing a baryon dominated Universe, even with $\Omega_{0}=1$.

3.5 An analytical analysis of the degenerate bigbang nucleosynthesis

Most of works, reported in the literature in the field of primordial nucleorynthesis icludes, the one we have given above, are of computational in nature. The over numerical reliance and computational nature gives the theory a kind of black box character, hiding the real physics from view most of the time. Hence analytical approaches which can throw light on the physical processes in the primordial nucleosynthesis are considered a welcome addition. This sorts of analytical treatment can devoloped only in an approximate way. For exact quantifications one canot by pass the exact numerical calculations. Bernstein et. al. [44] did an approximate analysis about the ${ }^{4} \mathrm{He}$ formation, where they mainly concentrated on case with non-degenerated neutrinos. Here our aim is to do such an analysis with some suitable assumptions for simplification of the calculation, for the ${ }^{4} \mathrm{He}$ for formation in Universe with electron neutrino degeneracy.

3.5.1 Neutron abundance with small electron neutrino degeneracy

Let $X_{n}(t)$ be the neutron abundance. During the evolution of the Universe, rate of neutron abundance change compared to the total mass density of the Universe is
governed by the equation,

$$
\begin{equation*}
\frac{d X_{n}(t)}{d t}=\lambda_{n p} X_{n}-\lambda_{p n}\left(1-X_{n}(t)\right) \tag{3.34}
\end{equation*}
$$

where $\lambda_{n p}$ is the total rate of the weak interactions that convert neutrons in to protons and $\lambda_{p n}$ is the rate of conversion of protons in to neutrons. The relevant weak interaction are as given in the first chapter. At temperature of about 1 MeV , the weak interactions fall out of equilibrium and after that only an occasional neutron will remain active. If we neglect the neutron decay and symthesis of elements, then the neutron abundance will reach a constant finite value $X_{n}^{(0)}$ as $t \rightarrow \infty$ (or as $T \rightarrow 0$). The effect of the neutron decay is to multiply $X_{n}^{(0)}$ with an exponential factor as

$$
\begin{equation*}
X_{n}=X_{n}^{(0)} \exp \left(-\frac{t_{c}}{\tau}\right) \tag{3.35}
\end{equation*}
$$

where t_{c} is the neutron capture time in the ${ }^{4}$ He nuclei and τ is the neutron life time. Once X_{n} is known, the ${ }^{4} \mathrm{He}$ abundance by mass fraction is equal to $2 X_{n}$. So the quantities one has to evaluate are $X_{n}^{(0)}$ and t_{e}. In the case of neutrino degeneracy our assumption is that the electron neutrino degeneracy is small but the mu/tau degeneracy need not be small. If there is a small electron neutrino degeneracy, the equilibrium abundance of neutron can be written as

$$
\begin{equation*}
X_{e q}=\frac{1}{1+\exp \left(y+\phi_{\nu_{0}}\right)} \tag{3.36}
\end{equation*}
$$

where the variable is defined as, $y=\Delta m / T, \Delta m=1.293$ the neutron-proton mass difference. By neglecting the neutron decay, the solution of the equation can be written as

$$
\begin{equation*}
X_{n}^{(0)}=X_{e q}-\int_{0}^{y} I\left(y, y^{-}\right) \frac{d}{d y^{-}}\left[\frac{\lambda_{p m}\left(y^{-}\right)}{\Lambda\left(y^{-}\right)}\right] d y \tag{3.37}
\end{equation*}
$$

where

$$
\begin{equation*}
I\left(y, y^{\prime}\right)=\exp \left[-\int_{v^{-}}^{\nu} d y^{\prime \prime} \frac{d t^{\prime \prime}}{d y^{\prime \prime}} \Lambda\left(y^{\prime \prime}\right)\right] \tag{3.38}
\end{equation*}
$$

is the integrating factor. The derivative the time with respect to the variable y can be written as,

$$
\begin{align*}
\frac{d t}{d y} & =\frac{d t}{d T} \frac{d T}{d y} \tag{3.39}\\
& =\left(\frac{45}{4 \pi^{3} g_{\sigma f f}}\right)^{1 / 2} \frac{M_{p 1}}{\Delta m^{2}} y
\end{align*}
$$

and

$$
\begin{align*}
\Lambda(y) & =\lambda_{p n}+\lambda_{n p} \tag{3.40}\\
& =\left(1+\exp \left(-y-\phi_{\nu_{c}}\right)\right) \lambda_{n p}
\end{align*}
$$

is the total reaction rate of neutrons and protons except for the free neutron decay, since we have ignored the neutron decay for calculating $X_{n}^{(D)}$. Hence the rate $\lambda_{\text {p }}$ is

$$
\lambda_{\pi p}=\lambda\left(n+\nu_{e} \rightarrow p+e^{-}\right)+\lambda\left(n+e^{+} \rightarrow p+\overline{\nu_{e}}\right)
$$

The corresponding individual rates are

$$
\begin{align*}
\lambda\left(n+\nu_{e} \rightarrow p+e^{-}\right) & =A \int_{0}^{\infty} d p_{\nu_{n}} p_{\nu_{e}}^{2} p_{e} E_{e}\left(1-f_{e}\right) f_{\nu_{e}} \tag{3.41}\\
\lambda\left(n+e^{+} \rightarrow p+\overline{\nu_{e}}\right. & =A \int_{0}^{\infty} d p_{e} p_{e}^{2} p_{\nu_{k}} E_{\nu_{e}}\left(1-f_{\mu_{4}}\right) f_{e}
\end{align*}
$$

where A is a constant whose value can be determined by calculating the neutron decay rate or equivalently the neutron life time. The rate of the neutron decay can be written as,

$$
\begin{equation*}
\lambda\left(n \rightarrow p+e^{-}+\overline{\nu_{s}}\right)=A \int_{0}^{\infty} d p_{s} p_{e}^{2} p_{\nu_{k}}\left(1-f_{\nu_{e}}\right)\left(1-f_{e}\right) \tag{3.42}
\end{equation*}
$$

In the above equations $p_{\psi_{4}}\left(p_{e}\right)$ denote the momentum of electron-neutrino (electron) and $E_{\nu_{n}}\left(E_{e}\right)$ is the energy of the electron-neutrino (electron). They are related as

$$
\begin{array}{ll}
E_{e}=E_{\nu_{e}}+\Delta m & \text { for } n+\nu_{e} \leftrightarrow p+e^{-} \\
E_{\nu_{e}}=E_{e}+\Delta m & \text { for } n+e^{+} \leftrightarrow p+\overline{\nu_{e}} \\
E_{\nu_{e}}=\Delta m-E_{e} & \text { for } n \leftrightarrow p+e^{+}+\nu_{e}
\end{array}
$$

The last relation gives the upper limit of the integration in the rate of $\lambda(n \rightarrow$ $p+e^{+}+\bar{\nu}_{8}$). In this case we neglect the kinetic energy of the nucleus because the recoil of the nucleus is negligibly small in the temperature of interest. The integration limit pos, can then written as,

$$
p_{0}=\left(\Delta m^{2}-m_{0}^{2}\right)^{1 / 2}
$$

The distribution functions have the form

$$
\begin{gather*}
f_{\mu_{t}}=\frac{1}{\exp \left(E_{\nu_{e}} / T_{\nu_{e}}-\phi_{\nu_{e}}\right)+1} \tag{3.43}\\
f_{e}=\frac{1}{\exp \left(E_{e} / T_{e}\right)+1} \tag{3.44}
\end{gather*}
$$

In order to simplify the analysis we make the following assumptions
1.

$$
\begin{equation*}
T_{\nu_{n}} \simeq T_{\gamma} \simeq T_{\varepsilon}=T \tag{3.45}
\end{equation*}
$$

2. $f_{e} \simeq \exp \left(E_{e} / T\right)$ and $f_{\nu_{e}} \simeq \exp \left(-E_{\nu_{e}} / T+\phi_{\nu_{e}}\right)$
3.

$$
\begin{equation*}
\left(1-f_{z}\right) \simeq 1 \text { and }\left(1-f_{\nu_{e}}\right) \simeq 1 \tag{3.46}
\end{equation*}
$$

4. electron mass $m_{e} \simeq 0$

Actually the neutrino temperature T_{4} is lese than the photon temperature T_{γ} by about 10% after the $e^{ \pm}$annihilation. In the second assumption we approximate the Fermi distribution by the Boltzmann distribution. Since during the nucleosynthesis the temperature is comparably less than Δm_{1} this assumption will not do much harm to the final assumption. Under these assumptions the weak rates are become

$$
\begin{gather*}
\lambda\left(n+\nu_{e} \rightarrow p+e^{-}\right)=2 A \Delta m^{5}\left(1+\phi_{\nu_{e}}\right)\left\{\frac{12}{y^{5}}+\frac{6}{y^{4}}+\frac{1}{y^{3}}\right\} \tag{3.49}\\
\lambda\left(n+e^{+} \rightarrow p+\overline{\nu_{e}}\right)=2 A \Delta m^{5}\left\{\frac{12}{y^{3}}+\frac{6}{y^{4}}+\frac{1}{z^{3}}\right\} \tag{3.50}
\end{gather*}
$$

The rate of the reaction $n \rightarrow p+e^{-}+\bar{\nu}_{e}$ is

$$
\begin{equation*}
\lambda\left(n \rightarrow p+e^{-} \bar{\nu}_{e}\right)=0.0157 A \Delta m^{5} \tag{3.51}
\end{equation*}
$$

So A can be written as

$$
A=\frac{255}{4 \tau \Delta m^{5}}
$$

where $\tau=1 / \lambda$. Total rate for the conversion of neutrons in to protons $\lambda_{m p}$ can the written as,

$$
\begin{equation*}
\lambda_{n p}=\left(1+\frac{\phi_{\nu_{e}}}{2}\right)\left(\frac{255}{\tau y^{5}}\right)\left(12+6 y+y^{2}\right) \tag{3.52}
\end{equation*}
$$

Substituting $d t / d y$ and $\Lambda(y)$ in equation (3.38), the equation for $I\left(y, y^{-}\right)$can be expressed as_{3}

$$
\begin{equation*}
I(y, \tilde{y})=\exp [K(y)-K(\tilde{y})] \tag{3.53}
\end{equation*}
$$

where

$$
\begin{equation*}
K(y)=b\left\{\left(1+\frac{\phi_{\nu_{c}}}{2}\right)\left(\frac{4}{y^{3}}+\frac{3}{y^{2}}+\frac{1}{y}\right)+\left(1-\frac{\phi_{\mu_{4}}}{2}\right)\left(\frac{4}{y^{3}}+\frac{1}{y^{2}}\right) e^{-v}\right\} \tag{3.54}
\end{equation*}
$$

with

$$
b=255\left(\frac{45}{4 \pi^{3} g_{* f f}}\right) \frac{M_{\tau 1}}{\tau \Delta m^{2}} .
$$

Table 3.4: Variation of helium abundance with ν_{e} degeneracy.

$\phi_{\mathbf{L}_{0}}$	freeze out n / p ratio	Y_{p} for $\eta=3 \times 10^{-10}$	Y_{p} for $\eta=4 \times 10^{-10}$
0.00	0.154	0.245	0.248
0.05	0.146	0.233	0.236
0.10	0.139	0.222	0.224
0.12	0.136	0.217	0.219
0.16	0.131	0.208	0.211
0.20	0.126	0.200	0.202

The solution to the neutron abundance equation now becomes

$$
\begin{equation*}
X(y)=X_{e q}+\int_{0}^{v} d y^{-} e^{u^{-}} \phi_{\nu_{e}} X_{e_{q}}\left(y^{-}\right)^{2} I\left(y, y^{-}\right) . \tag{3.55}
\end{equation*}
$$

The integral can be easily evaluated for different values of $\phi_{\boldsymbol{k}_{2}}$. The consistency of this type of simplifled calculation for $\phi_{\nu_{\varepsilon}}=0$, was verifed by Benstein et al [44], where they have calculated the integral for $\tau=896 \mathrm{sec}$. In our calculation we used the most recent value for the neutron life time, $\tau=888.5$ [28]. The results of our calculation are tabulated in Table 3.4. We have calculated $X_{n}^{(0)}$ also as shown in the table. Peebles [64] calculated $X_{n}^{(0)}$ for $\phi_{\nu g}=0$ as 0.155 , where he used the neutron life time as $\tau=1013 \mathrm{sec}$. In order to calculate Y_{p} one should know the capture t_{c} also. We calculate the capture in the presence of electron neutrino degeneracy. The capture time is that time when all the neutrons in the carly Universe are captured into the ${ }^{4} \mathrm{He}$ nuclel. Since the ${ }^{4} \mathrm{He}$ eynthesis is taking place at comparably low temperature than the electron rest mass, the temperature difference between electron and neutrinos must be taken in to account. The capture time can be written as [44].

$$
\begin{equation*}
t_{1}=\left(\frac{45}{16 \pi^{3} g_{f / f}}\right)^{1 / 2}\left(\frac{11}{4}\right)^{2 / 3} \frac{M_{p 1}}{T_{x}}+t_{0} \tag{3.56}
\end{equation*}
$$

where $t_{0}=2$ see [44] and T_{x} is the capture temperature. By calculating the capture temperature, the calculation of the capture time is straight forward. In the following we will calculate the capture temperature.

The following are the main reactions through which ${ }^{4} \mathrm{He}$ is formed in the early Universe,

$$
\begin{array}{r}
n+p \rightarrow D+\gamma \\
D+D \\
D+T+P \tag{3.58}\\
D+{ }^{4} H e+n
\end{array}
$$

During capture temperature most of the neutrons will be incorporated in to ${ }^{4} \mathrm{He} .{ }^{4} \mathrm{He}$ is formed due third reaction in the above sequence, due to the reaction between D and T. For most of the neutrons capture in to ${ }^{4} \mathrm{He}, \mathrm{it}$ is required that the destruction rate of D shoul be maximum, since the destruction of D will finally end up as helium. So we can calculate the capture temperature $T_{\gamma c}$ by the condition,

$$
\begin{equation*}
\left.\frac{d X_{D}}{d T}\right|_{T_{f}}=0 \tag{3.59}
\end{equation*}
$$

The calculations are done in equilibrium condition. The destruction rate of D will depend on the rate of formation D through the first reaction, and the rate
of formation T through the second reaction. In equilibrium state the following equations are valid

$$
\begin{align*}
G_{n p} & =\frac{X_{n} X_{p}}{X_{D}}=\frac{\lambda_{\gamma}(D)}{[p n]} \text { for } n+p \rightarrow D+\gamma \tag{3.60}\\
G_{D D} & =\frac{X_{D}^{2}}{X_{T} X_{r}}=\frac{[T P]}{[D D]} \text { for } D+D \rightarrow T+P \tag{3.61}
\end{align*}
$$

where G is the Saha factor [44] of the corresponding reaction. The number fraction X_{A} of any element of mass number A and atomic number Z can be written as [3]

$$
\begin{equation*}
X_{A}=g_{A}\left[\zeta(3)^{A-1} \pi^{(1-A) / 2} 2^{(3 A-5) / 2}\right] A^{3 / 2}\left(\frac{T}{m_{N}}\right)^{3(A-1) / 2} \eta^{A-1} X_{P}^{g} X_{n}^{A-\Sigma} \exp \left(\frac{B_{A}}{T}\right) \tag{3.62}
\end{equation*}
$$

Now the Saha factors can be rewritten as,

$$
\begin{gather*}
G_{\eta p}=\frac{\pi^{1 / 2}}{g_{D} \zeta(3) \eta}\left(\frac{m_{N}}{T_{\gamma}}\right) \exp \left(-\frac{B_{D}}{T}\right) \tag{3.63}\\
G_{D D}=\frac{g_{D}^{2}}{g_{T}}\left(\frac{4}{3^{3 / 2}}\right) \exp \left(-\frac{B}{T}\right) \tag{3.64}
\end{gather*}
$$

where $B=2 m_{D}-m_{P}-m_{T} \approx 4.02 \mathrm{MEV}, g_{D}=3, g_{T}=2$. The deuterium destruction can now be written approximately as

$$
\begin{equation*}
\frac{d X_{D}}{d Z}=R_{n p}\left(X_{p} X_{n}-G_{n p} X_{D}\right)-R_{D D}\left(2 X_{D}^{2}-G_{D D} X_{T} X_{p}\right) \tag{3.65}
\end{equation*}
$$

where $Z=B / T_{\gamma}$. The equation is takes into account the first two reactions in the sequence given equation (3.59). However the destruction of deuterium through second process will enhance the production of ${ }^{4} \mathrm{He}$. The quantities $R_{n \rho}$ and $R_{D D}$ are given by the relations,

$$
\begin{align*}
R_{n \varphi} & =\frac{d t}{d Z}\langle\sigma\rangle n_{B} \tag{3.66}\\
& =4\left(\frac{45}{16 \pi^{7} g_{e J J}}\right)^{1 / 2} \zeta(3) B_{D} M_{\rho \frac{1}{} \frac{\eta}{Z^{2}}\langle\sigma V\rangle} \\
& =\frac{1.55 \times 10^{13}}{\sqrt{9_{\sigma J J}}}\left(\frac{\eta}{Z^{2}}\right) \tag{3.67}
\end{align*}
$$

Table 3.5: Variation of capture time with ν_{e} degeneracy.

where we take $\left\langle\sigma V=4.55 \times 10^{-20}\right.$

$$
\begin{equation*}
R_{D D}=\frac{1.55 \times 10^{17}}{\sqrt{g_{o f S}}} \frac{\eta}{\epsilon^{2 / 3}} Z^{-4 / 3} \exp \left(-1.44 Z^{1 / 3}\right) \tag{3.68}
\end{equation*}
$$

Using the maximizing condition as given equation in 3.5.1 the condition for capture temperature is become

$$
\begin{equation*}
X_{D}^{1} R_{D} D=1 \tag{3.69}
\end{equation*}
$$

After substitution of the relevant quantities, the above condition become

$$
\begin{equation*}
Z^{-17 / 6} \exp \left(Z_{c}-1.44 Z_{c}^{1 / 3}\right)=6.124 \times 10^{\mathrm{s}} \sqrt{g_{e f j}}\left(\frac{1}{X_{7}^{(0)} X_{n}^{(0)} \eta_{10}}\right) . \tag{3.70}
\end{equation*}
$$

where η_{10} is the baryon-to-photon ratio in units of 10^{-10}. We can now calculate t_{c} for various values of $\phi_{v_{e}}$. The results are shown in table 3.5. We find that a slight increase in capture time with increasing $\phi_{k_{2}}$. Using the capture time for different $\phi_{\nu_{4}}$ values the abundance ${ }^{4} \mathrm{He}\left(Y_{P}\right)$ are calculated and are given Table 3.4. Comparing the results obtained here with our earlier numerical calculations we find that becauuse of the various approximations used the accuracy of the analytical calculations are rather poor. In spirits of this approach this approach helps to understand the physics behind the primordial synthesis of ${ }^{4} \mathrm{He}$. Similar works can
be carried for other elements also, but will need a different method which take account of the various reaction rates of the important reactions involved. Such an analysis is beyond the scope of the present work.

3.6 Massive neutrinos and nucleosynthesis

In SBBN and IBBN, the neutrinos are assumed to be massless species [15,21,22]. The SBBN theory restricts the number of neutrinos to 3 [53,60]. The condition $\Omega h^{2} \leq 1$, restrict the mass of the neutrinos to less than about $92 \mathrm{~h}^{2} \mathrm{eV}$ [143]. The laboratory limits for the masses of the μ and τ neutrinos are around 250 keV and 35 MeV respectively.

In the following we consider the effect of massive unstable neutrinos, with the presupposition that, these neutrinos decay only after the primordial nucleosynthesis process. The crucial effect of the massive neutrinos is through their contribution to the total mass density of the Universe, there by increasing the expansion rate of the Universe. The first attempt to include the effect of the massive neutrinos to primordial nucleosynthesis was done by Dicus et. al. [27]. Here we report a work in which neutrino mass and the electron-neutrino degeneracy are included. Our aim is to limit the degeneracy of electron-neutrino in the presence of the massive neutrinos using the limit on the ${ }^{4} \mathrm{He}$ abundance.

The time evolution of the number density n_{ν} of the massive neutrinos of mass m_{v} can be evaluated by using the Boltzmann relation [3],

$$
\begin{equation*}
\frac{d n_{\nu}}{d t}+3 H n_{\nu}=-\langle\sigma v\rangle\left(n_{\nu}^{2}-n_{\nu}^{e v 2}\right) \tag{3.71}
\end{equation*}
$$

where $n_{\nu}^{e \varphi}$ is the equilibrium number density, σ is the neutrino-antineutrino annihilation cross-section. The term $3 \mathrm{H} n_{\nu}$ represents the dilution in the neutrino density due to the expansion of the Universe. The above relation can rewritten using the variables $Y=n_{\nu} / n_{\gamma}$ and $x=m_{\nu} / T$ as

$$
\begin{equation*}
\frac{d Y}{d x}=-\frac{x\langle\sigma v\rangle s}{H(m)}\left(Y^{2}-Y^{q^{2}}\right) \tag{3.72}
\end{equation*}
$$

where $H(m)$ is the Hubble constant in the presence of the massive neutrinos which has the form

$$
H(m)=1.66 g^{1 / 2} \frac{m_{\nu}}{m_{p 1}}
$$

$g^{1 / 2}$ is the spin multiplicity factor of the constituents of the Universe and s is the entropy density. By substituting for $H(m)$ and S the equation (3.72) can be brought to the form,

$$
\begin{equation*}
\frac{d y}{d x}=\frac{2 m_{\mu} m_{p 1}}{\pi^{2}}\left(\frac{90}{8 \pi^{2} g}\right) \zeta(3) \frac{\langle\sigma v\rangle}{x^{2}}\left(y^{2}-y^{\alpha \alpha^{2}}\right) \tag{3.73}
\end{equation*}
$$

We consider $\langle\sigma v\rangle=N_{A} G_{\rho}^{2} m_{\nu}^{2} / 2 \pi^{2}$ [4], which is a constant for given m_{ν}, but in real case $\langle\sigma v\rangle$ is dependent on the momentum of the neutrinos. The contribution to the total energy density by the massive neutrinos can be calculated by the relation [3]

$$
\begin{equation*}
\left(\rho_{\nu}\right)_{\text {masaive }} \simeq 2 n_{\gamma} Y\left[\left(3.151 T_{\nu}\right)^{2}+m_{\nu}^{2}\right]^{1 / 2} \tag{3.74}
\end{equation*}
$$

The factor 2 will account for neutrino-antineutrino pairs. To obtain $\left(\rho_{\nu}\right)_{\text {man }}$ sive we have to solve equation (3.73). We numerically solved that differential equation
taking $m_{\nu}=5 \mathrm{MeV}$. The speed up factor then be calculated as

$$
\begin{equation*}
S=\left(\frac{\rho}{\rho_{0}}\right)^{1 / 2} \tag{3.75}
\end{equation*}
$$

where

$$
\rho_{0}=\rho_{\gamma}+\rho_{\varepsilon^{t}}+2 \rho_{\nu}
$$

and

$$
\bar{\rho}=\rho_{0}+\left(\rho_{\nu}\right)_{\text {manive }}
$$

In figure 4 we plotted the ratio of densities that is S^{2} versus the temperature, which shows a considerable increase in the expansion factor.

The increase in the speed up factor will affect the ${ }^{4} \mathrm{He}$ abundance in the following way. The speed up in the expansion will cause an earlier freeze out of the weak interaction and thus produce a high n / p ratio. This increase in the n / p ratio will increase the ${ }^{4} \mathrm{He}$ abundance. The effect of the electron-neutrino degeneracy is to bring down the value of ${ }^{4} \mathrm{He}$ abundance. By using the modified Wagoners code we found that for $m_{\nu}=5 \mathrm{MeV}$, and electron-neutrino degeneracy is $\phi_{\nu_{\nu}}=0.5$, for Y_{γ} $=0.225$ is obtained.

Fig. 4. Plot of the ratio of density with massive neutrinos to that with massless neutrinos ($i e$ the square of the speed up factor) and temperature in Mey .

Chapter 4

Mini-Inflation before the QCD phase transition

One of the alternative solutions proposed for the removal of the discrepancy in the SBBN due to the appearance of the multivalues of the baryon-to-photon ratio is the inhomogeneous big-bang nucleosyntheais (IBBN) $[38,6]$. Quark-hadron transition is found to be the best agent to produce density inhomogeneity in the early Universe prior to the nucleosynthesis. The quark-hadron transitio were happened around the temperature of about 200 MeV . Theoretical analysis and numerical lattice studies suggest that the quark-hadron transition in the early Universe may be a first order transition. Several studies have been made about the nature and $d y-$ namics of this transition $[81,121,122,123,149,83,167,162,126]$. The inhomogeneous nucleosynthesis after the quark-hadron transition has been worked out in detail by
coexist together at the critical temperature T_{c}. This phase seperation between the quark and hadronic state will cause density fluctuations. This isothermal density fluctuation will be modified later due to the diffusive separation of neutrons and protons [89], resulting in low density neutron-rich regions and high density protonrich regions. This density fluctuation will affect the primordial nucleosynthesis which happens just after this transition. One of the attractive feature of this model is that, this opens the possibility of accounting for the primordial abundances for Ω $=1$ in baryons. A Universe with $\Omega_{d}=1$, has the merit that, it is in accord with the inflationary scenario (since inflationary scenario predicts that the geometry of the Universe should be flat), and at the same time gives an answer for the dark matter problem.

The essential ingredient to study the phase transition is the equation of state of the two phases participating in the transition. If the quark-gluon plasma is treated as an ideal ralativistic gas then its pressure can be written in the bag model approach as [148]

$$
\begin{equation*}
P_{\text {ekF }}=\frac{7}{180} N_{c} N_{f} T^{4}\left[1+\frac{30}{7 \pi^{2}}\left(\frac{\mu_{q}}{T}\right)^{2}+\frac{15}{7 \pi^{4}}\left(\frac{\mu_{q}}{T}\right)^{4}\right]+\frac{\pi^{2}}{45} N_{g} T^{4}-B \tag{4.1}
\end{equation*}
$$

where N_{c} is the number of colours (which is 3), N_{f} is the number of quark flavours, $N_{g}=8$, the number of gluons, μ_{q} is the chemical potential of quarks, which equal to one-third of the baryonic chemical potential μ_{ϕ}, in the early Universe $(\mu / T) \sim 10^{-8}$. The term B appearing in the above equation is called the bag constant, which characterizes the vacuum energy of the quark-gluon plasma. The exact value of B for the early Universe is uncertain. Muller [125] have argued that the accepted
range of B is in between $60 \mathrm{MeV} \mathrm{fm}^{-3}$ and $400 \mathrm{MeV} \mathrm{fm}^{-3}$, but higher values are used in literature, for example, Kajantie and Suonio [126] have shown that if the transition temperature is 200 MeV , then $\mathrm{B} \sim 780 \mathrm{MeV} \mathrm{fm}^{-3}$. Spectroscopic studies [128] shows that the value of B is around (250 Mey$)^{4}$. If there is interaction in the quark-gluon plasma, then the pressure will be given as $[78,127]$,

$$
\begin{align*}
P_{45 P}= & \left(\frac{8 \pi^{2} T^{4}}{45}\right)\left(1-\frac{15 \alpha_{4}}{4 \pi}\right)+N_{f}\left[\left(\frac{7 \pi^{2} T^{4}}{60}\right)\left(1-\frac{50 \alpha_{4}}{21 \pi}\right)+\right. \tag{4.2}\\
& \left.\left(\frac{\mu_{f}^{2} T^{2}}{2}+\frac{\mu_{f}^{4}}{4 \pi^{2}}\right)\left(1-\frac{2 \alpha_{4}}{\pi}\right)\right]-B
\end{align*}
$$

where α_{s} is the coupling constant. We have assumed $\hbar=C=1$ and μ_{f} is the quark chemical potential. The coupling constant α_{c} can be written as [127]

$$
\begin{equation*}
\alpha_{\Delta}\left(\mu_{q}, T\right)=\left[\frac{12 \pi}{\left(33-2 N_{f}\right)}\right]\left(\ln \left[\left(0.8 \mu_{q}^{2}+15.622 T^{2}\right) / \Lambda^{2}\right]\right)^{-1} \tag{4.3}
\end{equation*}
$$

where Λ parameterizes the absolute strength of the interaction, whose value is in between 100 and 400 MeV . The other thermodynamic variables are then calculated by using the relations,

$$
\begin{align*}
n & =\frac{d P}{d \mu} \tag{4.4}\\
S & =\frac{d P}{d T} \tag{4.5}\\
E & =-P V+S T+\mu n V \tag{4.6}
\end{align*}
$$

where n, S and E are the number density, entropy and energy respectively and V is the volume of the quark-gluon plasma. For non-interacting maseles quarks with zero chemical potertial the equations will take the form [148]

$$
\begin{equation*}
P_{n p}=\frac{1}{3} g_{q} a T^{4}-B \tag{4.7}
\end{equation*}
$$

$$
\begin{align*}
E_{q P} & =g_{q} d T^{4}+B \tag{4.8}\\
s_{q z P} & =\frac{4}{3} g_{q} a T^{3} \tag{4.9}
\end{align*}
$$

where $g_{q}=51.25$, is the statistical factor of quark phase which the back ground leptons and s_{φ} is the entropy density.

The equations of atate for hadronic state, by considering it as a massless ideal gas of zero chemical potential are [148]

$$
\begin{align*}
P_{k} & =\frac{1}{3} g_{k} a T^{4} \tag{4.10}\\
E_{k} & =g_{k} a T^{4} \tag{4.11}\\
s_{k} & =\frac{3}{4} g_{k} a T^{3} \tag{4.12}
\end{align*}
$$

where $g_{k}=17.25$, which also includes the lepton background particles contribution. The hadronic constituents are mainly consists of nucleons. These equations are simplest to analyse the nature and dynamics of the first order QCD transition. Even though the T_{c} is considered as the starting temperature of the phase transition, in real case there will be a supercooling below the critical temperature, in order to nucleate the hadronic phase in the quark-gluon plasma. The coexistence temperature can be obtained by equating the quark-gluon plasma pressure and hadron pressure since it is assumed to be a first order transitions. So the critical temperature become,

$$
\begin{equation*}
T_{c}=\left(\frac{a\left(g_{\varphi}-g_{k}\right)}{3}\right)^{-1 / 4} B^{1 / 4} \sim 0.72 B^{1 / 4} \tag{4.13}
\end{equation*}
$$

This will lead to a coexistence temperature of $T_{c}<250 \mathrm{MeV}$, when $B<(300 \mathrm{Mev})^{4}$.

The latent heat liberating during the transition can be calculated as,

$$
\begin{equation*}
L=T_{\mathrm{s}} \frac{\partial\left(P_{\text {qup }}-P_{k}\right)}{\partial T}=T_{c}\left(s_{q}-s_{k}\right) \tag{4.14}
\end{equation*}
$$

where the derivative is evaluated at $T=T_{c}$. By using the ideal equation of state for both quark-gluon plasma and hadronic phase it can be shown that the latent heat $L \sim 4 B$. The latent heat by inctuding 2 and 3 flavours of quarks are studied by Fuller et al[148]. Their studies by treating both the phases as ideal gases shows that the latent heat will be slightly higher for 3 flavours of quarks than for 2 flavours. Other thermodynamic quantities for example, transition temperature T_{c} also show a slight increase with the number of quark flavours. The effect of including interaction in the quark-gluon plasma has been studied by many $[78,80,86,87,88]$. It was found that the effect of interaction is to increase the thermodynamic quantities like T_{c}, L etc.

The important consequence of this first order phase transition is the generation of isothermal baryon number fluctuation which will alter the preceding primordial synthesis of light nuclei [148] in the early Universe. The baryon number fluctuation is characterized by the ratio of the baryon number density in the quark phase to that in the hadron phase at the coexistence temperature, as represented below,

$$
\begin{equation*}
R=\frac{n_{i}^{q}}{n_{b}^{k}} \tag{4.15}
\end{equation*}
$$

Fuller et al[148] calculated the value of R by assuming ideal gas equation of states for both quark-giuon and hadronic phase with chemical and thermal equilibrium
between the two phases as,

$$
\begin{equation*}
R \approx \frac{2}{9}\left(\frac{\pi^{3}}{8}\right)^{11 / 2}\left(\frac{T_{c}}{m}\right)^{3 / 2} e^{m / T_{c}} \tag{4.16}
\end{equation*}
$$

where m is the mass of the baryons in the hadronic phase. They have shown that the inhomogeneity may have significant effect on primordial nucleosynthesis when $R \geq$ 20 for which the coexistence temperature should be less than $T_{c}<125 \mathrm{MeV}$. This result was later confirmed by Murugesan et al [80] by including interaction in the quark-gluon phase and Hagedorns pressure ensemble correction [79,129,130] to the hadronic phase. The exact value of the transition temperature is still uncertain due to the lack of understanding of QCD, however lattice field calculations [134, 141,166] shows that, $T_{c}=235 \pm 42 \mathrm{MeV}$. If so the inhomogeneity due to this transition will not affect the primordial nucleosynthesis. But due to the uncertainty in the exact quantification of the QCD parameters, a firm conclusion cannot be drawn yet, which motivate lot of works in the inhomogeneous nucleosynthesis.

The two main factors to be taken in to account while computing the abundances of the light elements in IBBN are the different values of the baryon-to-photon ratio prevailing in the different parts of the same Universe due to inhomogeneity in baryon density and the different diffusion probability of the neutrons and protons of the hadronic phase. Compared to the charged proton, the diffusion length of neutron is large because the protons diffusion will be hindered by the proton-electron scattering unlike in the case of neutrons whose diffusion length will be affected by the nucleons collision only due to its dipole moment. This difference in diffusion length will cause the generation of low density neutron rich region and high density proton
rich region [162]. The two regions will participate in the nucleosynthesis process. Several works on IBBN are there in which the authors assumed that [71,89,131,148] the neutron diffusion is over before the nucleosynthesis. On the other hand examples are there $[68,85,163]$ which include the possibility of neutron diffusion during the inhomogeneous nucleosynthesis. Fuller at al have [148] shown, by assuming that the neutron diffusion is over before the nucleosynthesis, that the inhomogeneous nucleobynthesis with $\Omega=1$, will overproduce ${ }^{7} \mathrm{Li}$. The same authors later extended their work for $\Omega \neq 1$ case also and proved that the deuterium also will be overproduced. Terasawa and Sato $[69,70]$ have considered the case where the neutron diffiusion is cominued during the nucleosynthesis also, and showed that the IBBN prediction for the light elements will be compatible with the observational abundance only if the density fluctuation parameter $R \geq 300$ and the other parameters were tuned accordingly. Various values for R are considered in the literature, varying from 1 to $10^{6}[71,124,167]$. A consensus value is still not derived due to the enormous number of possibilities and the lack of understanding of the exact dynamics of the quark-hadron transition.

4.2 Mini-inflation

The Universe may supercools below the transition temperature T_{c} to facilitate the nucleation of the hadronic phase. If this supercooling is large enough it might be possible that the QCD vacuum energy contribute to the energy density and pressure
of the quark-gluon phase will come to dominate and as a result the Universe can undergo a mini-inflation [72,148]. This mini-inflation may be present even during the transition time [73]. If there is sufficient supercooling, such an inflation can affect the scale factor, and baryon density fluctuation. However it is possible that the supercooling may be quite small as has been pointed out by Banerjee [40]. In the following we study the possibility of mini-infiation by including interaction in the quark-gluon plasma and Hagedorn's pressure ensemble correction to the hadronic phase. For including imteraction we make use of the formula for the temperature dependence of the coupling constant, suggested by Kapusta [127] as given equation (4.3). For the temperature dependence of the coupling constant we make use of another formula also, derived by Nakkagawa-Niegawa [76], which seems to be more realistic one. An interesting result we obtained is possibility of mini-inflation above the transition temperature, which does not need a supercooling. The mini-inflation without supercooling is possible for a reasonable value of the vacuum energy constant (the bag constant) when we use the Nakkagawa-Niegawa equation for the temperature dependence of the QCD coupling constant.

We use the following equation of state for the quark-gluon plasma by considering it as unconfined gas of relativistic particles with overall vacuum energy and the interaction between the quarks and gluons is included in the lowest order of the perturbation through the running coupling constant α_{s} as

$$
\begin{equation*}
\rho_{\text {esp }}=\frac{51.25 \pi^{2}}{30} T^{4}\left(1-\frac{110}{51.25 \pi} \alpha_{2}\right)+B \tag{4.17}
\end{equation*}
$$

where we included the degrees freedom of quarks and the background particles like
electrons, photons and neutrinos, $\rho_{\text {eq }}$ is the energy density of plasma. The pressure of the quark-gluon plasma can be calculated as,

$$
\begin{equation*}
P_{\mathrm{qgp}}=\frac{(\rho-4 B)}{3} \tag{4.18}
\end{equation*}
$$

. In our analysis we consider a range of values for the bag constant form 50 $\mathrm{MeV} / \mathrm{fm}^{-3}$ to $400 \mathrm{MeV} / \mathrm{fm}^{-3}$. Even though the use of high values of B parameter may not be physically meaningful our final results are in agreement with reasonable values of B.

In the absence of interaction between hadrons the equation of state for hadronic state is [78],

$$
\begin{align*}
P_{\text {kad }} & =\frac{p_{\text {kad }}^{t t}}{\left(1+p_{\text {kad }}^{t t} / 4 B\right)} \tag{4.19}\\
\rho_{\text {had }} & =\frac{\rho_{\text {kad }}^{t t}}{\left(1+\rho_{\text {kad }}^{t} / 4 B\right)} \tag{4.20}
\end{align*}
$$

where $P_{\text {kad }}$ is the pressure of the hadronic phase and $\rho_{\text {had }}$ is the energy density. De nominators in equations 4.19 and 4.20 are due to the Hagedorn's pressure ensemble correction for the finite size of the hadrons. $P_{\text {tad }}^{\text {mad }}$ and $\rho_{\text {had }}^{\text {pt }}$ are given by

$$
\begin{equation*}
P_{\operatorname{kad}}^{\mathrm{pt}}=\sum_{i} P_{i} \tag{4.21}
\end{equation*}
$$

where

$$
\begin{equation*}
P_{i}=\int_{m_{i}}^{\infty} d E\left(E^{2}-m_{i}^{2}\right)^{3 / 2}\left(\exp \left[\beta\left(E-\mu_{i}\right)\right] \pm \theta_{i}\right)^{-1} \tag{4.22}
\end{equation*}
$$

and

$$
\begin{equation*}
p_{k a d}^{p t}=\sum_{i} \rho_{i} \tag{4.23}
\end{equation*}
$$

where

$$
\begin{equation*}
\rho_{i}=\frac{d_{i}}{6 \pi^{2}} \int_{m_{i}}^{\infty} d E E^{2}\left(E^{2}-m_{i}^{2}\right)^{1 / 2}\left(\exp \left[\beta\left(E-\mu_{i}\right)\right] \pm \theta_{i}\right)^{-1} \tag{4.24}
\end{equation*}
$$

The subscript pt refers to poimt like hadrons and i denote a single hadron. We consider only nucleons in the hadronic phase. μ_{i} is the chemical potential for the $i^{\text {th }}$ hadron of mass m_{i}, with spin-isospin degeneracy d_{i} and $\theta_{i}=+1$ for fermions and $\theta_{i}=-1$ for bosons.

Earlier we have calculated the critical $T_{\text {c }}$ as $0.72 B^{1 / 4}$ by considering the both phases as massless ideal gases. When we includes the interaction in the quark-gluon phase and apply Hagedorn's correction [130] to the equation of state of hadrons T_{c} will change accordingly. Behaviour of T_{c} was studied by Murugacan et al [80] by using the equations of state given above. To calculate the T_{c} they made use of the temperature and chemical dependence of the coupling constant α_{s} as given in equation (4.3) suggested Kapusta [127] and in a later work by Heins et al [78]. In zero temperature QCD the scale parameter Λ appearing in α_{a} is lies between 100 and $400 \mathrm{MeV} .[78]$. We assume values for Λ between 0 and 400 Mev ., and calculated the T_{c} for different values of B and corresponding values of α_{s} are computed and are given Table 4.2. Our calculation shows that T_{c} increase with Λ and also with B. The coupling constant also increases with Λ and T_{c}. It is clear from the table that for a given value of Λ, T_{c} increasea with B, but α_{s} decrease with B.

Kapusta [127] obtained the coupling constant using the momentum space subtraction method. In this calculation it was assumed that the temperature depen-
dence of the coupling constant can be taken in to account by naively choosing the normalisation scale to be the energy scale comparable to the temperature of the environment. But this is not generally true as has been pointed out by Nakkagawa and Niegawa [76]. One should treat the dependence of the coupling constant on the renormalisation scale and the temperature of the environment separately, since there is no compelling reason to take the the renormalisation scale to be equal to the environment temperature. Nakkagawa and Niegawa's analysis showed that the coupling constant α_{4} has a power like dependence on temperature in contrast to the logarithmic dependence as predicted by Kapusta, the form of the coupling constant obtained by Nakkagawa and Niegawa is shown below.

$$
\begin{equation*}
\alpha_{s}=(b[\ln (\mu / \Lambda)-\ln (\Lambda(\xi) / \Lambda)])^{-1} \tag{4.25}
\end{equation*}
$$

Here μ is the energy scale characterizing the process considered, $b=29 / 6$ for two flavours of quarks and $\xi=T / \mu$ where T is the temperature of the surrounding. At large temperature the second term in the parenthesis of the right hand side of the equation (4.25) can be written as,

$$
\begin{equation*}
b \ln \left(\frac{\Lambda(\xi)}{\Lambda}\right)=\pi^{2} \sum_{i=1}^{N} A_{i}\left(\delta_{i} \xi^{2}+\epsilon_{i} \xi\right) \tag{4.26}
\end{equation*}
$$

With $N=3$, for two quark flavours Nakkagawa and Niegawa have obtained,

$$
\begin{array}{ccc}
A_{1}=1 & A_{2}=1 & A_{3}=4 / 3 \\
\delta_{1}=0 & \delta_{2}=0 & \delta_{3}=-2 \\
\epsilon_{1}=13 / 8 & \epsilon_{2}=0 & \epsilon_{3}=-5 / 4 \tag{4.29}
\end{array}
$$

The variations of α_{s} with Λ for $\mu=0.5,1,1.5 \mathrm{GeV}$. and $\xi=1(\mathrm{~T}=\mu)$ is given in table 4.1

Table 4.1:
The variations of α_{0} with $\boldsymbol{\Lambda}$ for $\xi=1$, acconding to Nakkagawa-Niegawa equation

μ (GeV).	Λ (MeV).	$\operatorname{bln}(\mu / \Lambda)$	$\mathrm{b} \ln (\Lambda(x i) / \Lambda)$	α_{Δ}
0.5	50	11.129	5.313	0.172
0.5	100	7.779	5.313	0.406
0.5	150	5.819	5.313	1.976
1	50	14.479	5.313	0.109
1	100	11.129	5.313	0.172
1	150	7.779	5.313	0.406
1	300	5.819	5.313	1.976
1.5	100	13.089	5.313	0.129
1.5	200	11.129	5.313	0.226
1.5	300	7.779	5.313	0.406
1.5	400	5.819	5.313	1.976

It is clear from that α_{s} increases with Λ, but the rate of increase of α_{s} here is very large compared to the rate increase as by Kapusta equation for the coupling constant.

The condition for inflation can be derived from the Friedmann equations satisfled in the early Universe. The condition for inflation is

$$
\begin{equation*}
\ddot{R}=-\frac{C^{2} R}{2}\left(\rho_{\mathrm{QYP}}+3 P_{\mathrm{QgP}}\right) \tag{4.30}
\end{equation*}
$$

The inflation possible when $\ddot{R} \geq 0$, and from the above equation it follows that the required condition is

$$
\begin{equation*}
\rho_{\mathrm{ggp}}+3 P_{\mathrm{gqP}} \leq 0 \tag{4.31}
\end{equation*}
$$

The critical temperature T_{i} at which the above condition is satisfled can be deter-

Table 4.2: Variation of T_{ε} with $\Lambda \& B$ and corresponding values of $\alpha_{s} \& T_{i}$ according to Kapusta's equation for α_{s}

A (MeV).	B $\left(\mathrm{MeV} . / \mathrm{fm}^{3}\right.$	T_{c} (MeV).	$\alpha_{\mathbf{c}}$	$T_{\mathbf{i}}$ (MeV).
0	60	103	0	30
0	250	148	0	123
0	400	166	0	197
100	60	117	0.42	32
100	250	163	0.35	132
100	400	183	0.33	210
250	60	145	0.78	36
250	250	184	0.61	141
250	400	202	0.56	223

mined by equating the left hand side of the above equation to zero:

$$
\begin{equation*}
\rho_{\text {sse }}+3 P_{\text {sep }}=0 \tag{4.32}
\end{equation*}
$$

Using equation (4.17) and (4.18) with α_{1} given by equation (4.3) we compute the values of T_{i} for different choices of Λ and B. Some of these are shown in Table 4.2 H is seen that both T_{i} and T_{c} increases with α_{s}, but the rate of increase of T_{i} is large compared to that of T_{c}. With B given a reasonable value (comparably high value if Kapusta's equation for coupling constant is used), T_{i} exceeds T_{c}. The consequences of this is that and inflationary stage can start above the coexistence temperature T_{c} without supercooling. This possibility was not noted in the work of Fuller et al. [148] and Boyko et. al. [72], where supercooling below T_{c} is considered as an essential condition for mini-inflation to happen. The value of B needed to realise this scenario appears to be quite high in comparison with the phenominologically permissible range of B if Kapusta's equation for the temperature dependence of the coupling constant is used. On the other hand when use the Nakkagawa-Niegawa

Table 4.3: Values of B acconding to Nakkagawa-Niegawa equation for α_{0}

Λ (MeV).	T_{c} (MeV).	α_{s}	B $\left(\mathrm{MBV} . / \mathrm{fm}^{3}\right.$
100	100	0.171	132
100	200	0.171	234
250	100	0.721	130
250	200	0.721	260

equation [76], the condition for mini-inflation without supercooling is found to be satisfied with lower values of α_{s} and hence with smaller values of B, the bag constant. This is clear from Table 4.3, which shows the variation of B with α_{s}. It is seen from our calculation that the mini-inflation without supercooling is possible for a value of $B \approx 250 \mathrm{MeV} / \mathrm{fm}^{3}$.

A solution describing the time evolution of the scale factor during the miniinflation can be obtained from the Friedmann equations as

$$
\begin{gather*}
\dot{R}-C R \sqrt{\rho}=0 \tag{4,33}\\
\dot{\rho}+3 \frac{\dot{R}}{R}(\rho+P)=0 \tag{4.34}
\end{gather*}
$$

where $C=\left(8 \pi^{2} / 3\right)^{1 / 2} M_{\text {F }}$. On applying the equations of state of quark-gluon plasma phase to the above equation, it become,

$$
\begin{equation*}
\dot{\rho}+4 C \rho^{3 / 2}-4 C B \rho^{1 / 2}=0 \tag{4.35}
\end{equation*}
$$

This has solution solution

$$
\begin{equation*}
\rho=B C^{2}\left(2 C \sqrt{B}\left(t-t_{d}\right)+\operatorname{ArCth}\left(\sqrt{\rho_{c} / B}\right)\right) . \tag{4.36}
\end{equation*}
$$

This result is in agreement with obtained by Boyko et. al. [72]. The Friedmann now gives the scale factor as,

$$
\begin{equation*}
R=S h^{1 / 2}\left(2 C \sqrt{B}\left(t-t_{c}\right)+A r C t h\left(\sqrt{\rho_{c} / B}\right)\right) S h^{1 / 2}\left(\operatorname{ArCth} \sqrt{\rho_{c} / B}\right) \tag{4.37}
\end{equation*}
$$

where t_{c} is the zero point of time given as

$$
\begin{equation*}
t_{\mathrm{c}}=(2 C \sqrt{b})^{-1} \operatorname{ArCth}\left(\sqrt{\rho_{c} / B}\right) \tag{4.38}
\end{equation*}
$$

and ρ_{6} is the integration constant which is equal to the energy density at critical temperature T_{c}. It is found that $\rho_{c} \approx 5.516 \mathrm{~B}$ for $\alpha_{s}=0$ and decreases as α_{s} increases. Equation (4.37) shows that scale factor is increasing not as a pure exponential function, but approaches an exponential form when $t \geq(2 C \sqrt{B})^{-1}$.

During the expansion of the Universe RT is a constant. Using this we can calculate the increase in the scale factor due to mini-inflation without supercooling. In table 4.4 we give the percentage increase of the scale factor due to mini-inflation without supercooling. In this calculation we have made use of the Kapusta's formula for the coupling constant with a high value of B around $400 \mathrm{Mev} / \mathrm{fm}^{-3}$. But If the Nakkagawa-Niegawa equation is used the required value of \mathbf{B} is $\mathbf{B} \sim 250$ $\mathrm{MeV} / \mathrm{fm}^{-3}$. Table 4.4 also reveals that the increase of the scale factor due to miniinflation without supercooling is reduced because of the inclusion of interaction in the quark-gluon plasma.

If there is a supercooling before the phase transition the mini-inflation will continue and the scale factor may increase rapidly. This will depend on the dynamics

Table 4.4: Percentage increase in R due to mini-inflation without supercooling

Λ	T_{c}	T_{i}	R_{c} / R_{i}	percentage increase in \bar{R}
0	166	197	1.19	19%
100	183	210	1.15	15%
250	202	223	1.10	10%

of the phase transition and will also be probably influenced by the rapid expansion. Specific conclusions regarding this require a detailed study of the transition and the effect of mini-inflation.

In our analysis we consider hadron phase as an ideal gas. One can take in to account the interaction between the hadronic states also, for example, by including a density dependent interaction between the hadronic states as done by Heins et al. [78]. If this is done the coexistence temperature shows an increase by a small factor which does not affect conclusion much. Another question that can be raised is regarding the effect of the inclusion of strange quarks in the quark-gluon phase. Murugesan et al. [80] have shown that the inclusion of s quarks can lead to a slight decrease in the transition temperature. The effect of this dight decrease will only strengthen our conclusion.

The effect of mini-inflation on inhomogeneity may be a dilution of the density inhomogeneity. If the inflation is sufficient enough to smoothen the density inhomogeneity before nucleosynthesis, the primordial nucleosynthesis will become a homogeneous process. There also a number of other problems as well that the IBBN
model faces. Only future works on the experimental side and theoretical side can clarify the exact status of the inhomogeneous nucleosynthesis model.

Appendix

Modified rates of some important reactions

No.	Reaction	Nuclear Reaction Rate ($\mathrm{cm}^{3} \mathrm{~s}^{-1}$ mole ${ }^{-1}$
1.	$P(n, \gamma) d$	$\begin{aligned} & 4.472 \times 10^{2} \\ & \left(1-0.850 T_{9}^{2 / 2}+0.490 T_{9}-0.0962 T_{9}^{9 / 2}\right. \\ & \left.+8.47 \times 10^{-3} T_{9}^{a}-2.80 \times 10^{-6} T_{9}^{8 / 2}\right) \end{aligned}$
2.	${ }^{7} \mathrm{Lj}(\mathrm{n}, ~ \gamma)^{8} \mathrm{Lj}$	$\begin{aligned} & 3.144 \times 10^{9} \\ & +4.26 \times 10^{3} T_{9}^{3 / 2} \exp \left(-2.576 / T_{9}\right) \end{aligned}$
3.	${ }^{\top} \mathrm{Be}(\mathrm{n}, \mathrm{p})^{7} \mathrm{Li}$	$\begin{aligned} & 2.675 \times 10^{9} \\ & \times\left(1-0.560 T_{9}^{1 / 2}+0.179 T_{9}-0.0283 T_{9}^{3 / 2}\right. \\ & \left.+2.21 \times 10^{-9} T_{9}^{9}-6.85 \times 10^{-5} T_{9}^{8 / 2}\right) \\ & +9.391 \times 10^{8} T_{9}^{3 / 2} T_{9}^{-3 \rho} \\ & +4.461 \times 10^{0} T_{9}^{-3 / 2} \exp \left(-0.07486 / T_{9}\right) \\ & T_{9 a}=\left[T_{9} /\left(1+13.08 T_{9}\right)\right] \end{aligned}$
4.	${ }^{3} \mathrm{He}(\mathrm{n}, \mathrm{p}) \mathrm{T}$	$7.2110^{8}\left(1-0.508 T_{9}^{1 / 2}+0.22878\right)$
5.	${ }^{14} \mathrm{~B}(\mathrm{n}, \gamma)^{12} \mathrm{~B}$	$\begin{aligned} & 7.29 \times 10^{2} \\ & +2.40 \times 10^{3} T_{9}^{-3 / 2} \exp \left(-0.223 / T_{q}\right) \end{aligned}$
6.	$d(p, \gamma)$	$\begin{aligned} & 2.65 \times 10^{3} \\ & T_{9}^{-2 / 9} \exp \left(-3.720 / T_{9}^{\alpha / \beta}\right) \\ & \times\left(1+0.112 T_{9}^{/ \beta}+1.99 T_{9}^{2 \beta}\right. \\ & \left.+1.56 T_{9}+0.162 T_{9}^{4 / 3}+0.324 T_{9}^{5 / 4}\right) \end{aligned}$
7	${ }^{10} \mathrm{Be}\left(\mathrm{n},{ }^{4} \mathrm{He}\right){ }^{7} \mathrm{Li}$	5.07×10^{8}
8	${ }^{6} \mathrm{Li}(\mathrm{n}, \mathrm{T}){ }^{4} \mathrm{He}$	$2.54 \times 10^{6}+T_{2}{ }^{-3 / 2} \exp \left(-2.39 / T_{i}\right)$
9	$d(d, n){ }^{4} \mathrm{He}$	$\begin{aligned} & 3.95 \times 10^{8} T_{q}^{-2 / 3} \\ & \exp \left(-4.259 / T_{9}^{1 / \beta}\right) \times\left(1+0.058 T_{q}^{1 / 3}\right. \\ & \left.+0.765 T_{9}^{2 / 3}+0.525 T_{9}+9.61 \times 10^{-3} T_{9}^{4 / \beta}+0.016 T_{9}^{5 / 3}\right) \end{aligned}$
10.	d (d p) T	$\begin{aligned} & 4.17 \times 10^{8} \\ & T_{9}^{2 / 3} \exp \left(-4.258 / T_{9}^{1 / 3}\right) \\ & \times\left(1-0.008 T_{9}^{1 \beta}+0.518 T_{9}^{2 / \beta}+0.355 T_{9}\right. \\ & -0.010 T_{9}^{4 \beta}-0.018 T_{9}^{1 / 2} \end{aligned}$
11.	$\mathrm{T}(\mathrm{d}, \mathrm{n}){ }^{4} \mathrm{He}$	$\begin{aligned} & 1.063 \times 10^{[1} \\ & T_{9}^{-3 / 9} \exp \left[-4.559 / T_{9}^{1 / 3}-\left(T_{9} / 0.0754\right)^{2}\right] \\ & \times\left(1-0.092 T_{9}^{1 /}-0.375 u T_{9}^{2 / 3}-0.242 T_{9}\right. \\ & \left.+33.82 T_{9}^{4 \beta}+55.42 T_{9}^{5 / 3}\right)+8.047 \times 10^{8} T_{9}^{-2 / 3} \exp \left(-0.4857 / T_{9}\right) \end{aligned}$
12.	$\mathrm{T}(a, \gamma)^{7} \mathrm{Li}$	$\begin{aligned} & 3.032 \times 10^{5} \\ & T_{9}^{-2 / 3} \exp \left(-8.090 / T_{9}^{1 / 3}\right) \times\left(1+0.0516 T_{9}^{1 / 3}+\right. \\ & 0.0229 T_{9}^{2 / 3}+ \\ & \left.8.828 \times 10^{-3} T_{9}-3.28 \times 10^{-6} T_{9}^{4 / 3}-3.01 \times 10^{-6} T_{9}^{5 / 3}\right)+5.109 \times 10^{5} \\ & T_{96}^{5 / 5} T_{9}^{3 / 2} \exp \left(-8.068 / T_{9}^{1 / 3}\right) \\ & T_{q_{0}}^{5}=T_{9} /\left(1+0.1378 T_{9}\right) \end{aligned}$

28	${ }^{7} \mathrm{He}(\mathrm{n}, \gamma)^{\prime} \mathrm{Be}$	(2.59 $\times 10^{-7}$
		$/\left(\left(1+0.344 T_{9}\right) T_{9}\right)=\exp \left(-1.062 / T_{9}\right)$
27.	${ }^{8} \mathrm{Li}(\mathrm{p}, \mathrm{n}){ }^{\mathbf{4}} \mathrm{He}$	8.65×10^{9}
		$T_{9}{ }^{2 / 3} \exp \left(-8.52 / T_{9}^{1 / 3}-\left(T_{9} / 2.53\right)^{2}\right)+2.31$
		$\times 10^{\rho} T_{9}^{3 / 2} \exp \left(-4.64 / T_{\mathrm{s}}\right)$
28.	${ }^{8} \mathrm{Be}(\mathrm{n}, \mathrm{p}){ }^{4} \mathrm{He}$	4.02×10^{8}
29	${ }^{9} \mathrm{Be}(\mathrm{p}, \mathrm{d}){ }^{4} \mathrm{He}$	2.11×10^{11}
		$\mathcal{T}_{8}^{\text {2 }}$ /3 $\exp \left(-10.359 / T_{9}^{1 / 3}-\left(T_{9} / 0.520\right)^{2}\right)$
		$\left(1+0.0401 T_{9}^{1 / 3}+1.00 I_{8}^{9 / 2}+0.307 T_{3}+3.21 T_{8}^{8 / 3}+2.30 T_{8}^{8 / 3}\right)$
		$+5.79 \times 10^{8} / T_{9} \exp \left(-3.046 / T_{9}\right)+8.50 \times 10^{8} / T_{9}^{3 / 4} \exp \left(-5.80 / T_{9}\right)$
30.	${ }^{8} \mathrm{Ld}(\mathrm{a}, \mathrm{n}){ }^{1 / \mathrm{B}}$	$\begin{aligned} & 2.05 \times 10^{4} \\ & T_{n}^{1 / 6} T_{n}^{3 / 2} \operatorname{exn}(-19.461 / T \end{aligned}$
		$\begin{aligned} & T_{9} T_{9} T_{9}^{3 / 2} \exp \left(-19.461 / T_{s_{9}}\right) \\ & T_{s_{0}}=T_{9} /\left(1+T_{9} / 15.1\right) \end{aligned}$
31.	${ }^{3} \mathrm{H}(\mathrm{p}, \mathrm{n}){ }^{3} \mathrm{H}_{3}$	7.07×10^{8}
		$\left(1-0.15 T_{9}^{1 / 2}+0.098 T_{9}\right) \exp \left(-8.863 / T_{9}\right)$
32.	${ }^{3} \mathrm{H}(\boldsymbol{\gamma}, \mathrm{n}){ }^{4} \mathrm{He}$	$1.67 \times 10^{\circ} / T_{g}^{2 / a}$
		$\exp \left(-4.872 / T_{9}^{1 / 3}\right)$
		$\left(1+0.086 T_{9}^{1 / 3}-0.455 T_{q}^{2 / 3}-0.272 T_{9}+0.148 T_{q}^{(A /}+0.225 T_{9}^{5 / 3}\right)$
33.	${ }^{3} \mathrm{He}(\mathrm{T}, \mathrm{d}){ }^{\mathbf{4}} \mathrm{He}$	$5.46 \times 10^{\circ}$
		$T_{96}^{5 / 8} / T_{9}^{3 / 2} \exp \left(-7.738 / T_{9 a}^{1 / 3}\right)$
		$T_{90}=T_{9} /\left(1+0.128 T_{9}\right)$
34	${ }^{6} \mathrm{Lj}(\mathrm{d}, \mathrm{n})^{\text { }}$ Be	$1.48 \times 10^{12} / T_{9}^{2 / 3}$
		$\exp \left(-10.135 / \mathrm{T}_{2}^{1 / 1}\right.$
35.	${ }^{6} \mathrm{Li}(\mathrm{d}, \mathrm{p})^{\dagger} \mathrm{Li}$	$1.48 \times 10^{13} / T_{9} 2 / 3$
		$\exp \left(-10.135 / \mathrm{T}_{8} / \mathrm{A}\right.$
36.	${ }^{7} \mathrm{Li}(\mathrm{d}, \mathrm{p}){ }^{8} \mathrm{Lj}$	$8.31 \times 10^{8} / T_{2}^{3 / 2}$
		$\exp \left(-6.998 / T_{9}\right)$
37	${ }^{7} \mathrm{Li}(\mathrm{T}, \mathrm{n}){ }^{9} \mathrm{Be}$	$1.4 \times 10^{11} / T_{8}^{2 / 3} \exp \left(-11.333 / T_{9}^{1 / 3}\right.$
38	${ }^{8} \mathrm{LI}(\mathrm{d}, \mathrm{n}){ }^{8} \mathrm{Be}$	$3.22 \times 10^{11} / T_{9} 2 / 3 \exp \left(-10.357 / T_{g}^{1 / 0}\right.$
30	${ }^{7} \mathrm{Li}(\mathrm{T}, \mathrm{n}){ }^{4} \mathrm{He}$	$8.81 \times 10^{1 /} / T_{9}^{2 / 3} / T_{9}^{2 /} \exp \left(-11.333 / T_{8}^{1 / N}\right.$
40	${ }^{1} \mathrm{Be}\left({ }^{3} \mathrm{He}, \mathrm{p}\right)^{6} \mathrm{He}$	$6.11 \times 10^{13} / T_{9}^{2 / 3} \exp \left(-21.793 / T_{8}^{1 / 3}\right.$
41	${ }^{7} \mathrm{LL}\left({ }^{3} \mathrm{He}, \mathrm{p}\right)^{4} \mathrm{He}$	$1.11 \times 10^{13} / T_{9}^{1 / 3} \exp \left(-17.989 / T_{9}^{1 / 3}\right.$
	${ }^{7} \mathrm{Be}\left({ }^{3} \mathrm{H}, \mathrm{p}\right)^{4} \mathrm{He}$	$2.91 \times 10^{12} / T_{8}^{2 / 3} \exp \left(-13.719 / T_{8}^{1 / 3}\right.$
	${ }^{7} \mathrm{LI}(\mathrm{p}, \gamma){ }^{\text {c }} \mathrm{He}$	Rate of raction 15.
		$+1.56 \times 10^{5} / T_{8}^{2 / 9} \exp \left(-8.472 / T_{8}^{1 / 2}-\left(T_{9} / 1.696\right)^{2}\right)$
		$\left(1+0.049 T_{g}^{1 / 3}+2.498 T_{9}^{2 / 3}+0.860 T_{9}+3.518 T_{8}^{A /}+0.308 T_{9}^{P A}\right)$
		$1.555 \times 10^{6} / T_{9}^{3 / 2} \exp \left(-10.70 / T_{9}\right)$

References

${ }_{6}{ }^{[1]}$ E P Hubble Proc. Nat Acad. Sci 15168 (1929)
1 [2] S Weinberg Gravitation and Cosmology (John Wiley and Sons, New York, 1972)

ᄂ [3] E W Kolb and M S Turner The early Universe, (Addison Wesley, California, 1990)
$\infty_{\infty}[4]$ G Borner The Early Universe (Springer-Verig, Berlin (1988)
A [5] C W Misner, K Thorn and J A Wheeler Gravitation (Freeman, San Francisco 1970)
\forall if] E Witton Phys. Rev DsO 272 (1984)
S [7] H P Robertson Ap. J. 88284 (1935)

* [8] A G Walker Proc. Lond. Math. Sac. (2) 4290 (1936)

S[9] A Friedmann Z. Phys. 10377 (1922)
\ [10] A Einstein Z. Phys. If 1249 (1913); Annalen der Phys. 49769 (1916), For and English translation see Th Principle of Relativity (Melhuen, 1923, reprinted by Dover Pub. p-35
[11] N C Rana in Quark-glton plasmaed. B Sinha, S Pal and S Raha, (SpringerVerlag 1990)
[12] W Rindler Mon Not. Roy. Astron. Soc. 116663 (1956)
[13] R A Alpher, H A Bethe and G Gamow Phys. Reu \%9, 803 (1948)
[14] E Fermi and A Turkevich 'quote in R A Alpher and R C Herman, Rev. Mod. Phys. 22, 153 (1950)
[15] R V Wagoner, W A Fowler and F Hoyle Ap. J. 1483 (1967)
, 4 [16] R V Wagoner Ap. J. Suppl. Ser. 18247 (1969)
V17] C Hayashi Prog. Theor. Phys. 5224 (1950)
[18] C Hayashi and M Nishida Prog. Theor. Phys. 16613 (1956)
[19] W A Fowler and F Hoyle Ann. Phys. 10280 (1960)
$\bigcirc[20]$ A A Penzias and R W Wilson Ap. J. 142 419 (1965)
(n [21] J Yang, M. S Turner, G Steigman, D N Schramm and K A Olive Ap. J. 281 493 (1984)
[22] T P Walker, G Steigman, D N Schramm, K A Olive and H S Kang Ap. J. 37651 (1991)
[23] B Adeva et. al. Phys. Lett. B291 509 (1989); 237136 (1990)
[24] D De Camp et. al. Phys. Lett. 291519 (1989)
[25] M Z Akrawy et. al. Phys. Lett. B 291530 (1989)
[26] P Aarnio et. al Phys. Lett B 692173 (1989)
[27] D A Dicus, E W Kolb, A M Gleeson, E C G Sudharshan, V L Teplitz, and M S Turner Phys. Rev. D 262696 (1982)
[28] W K Smith, L H Kawano and R A Malaney Ap. J. Suppl. 85219 (1993)
[29] K A Olive, D N Schramm, D Thoma, and T P Walker Phys. Lett B 265239 (1991)
[30] N C Rana Phys. Rev. Lett $f 8209$ (1982)
[31] N C Rana $/ l$ Nuovo Cimento $B 8453$ (1984)
[32] N C Rana and S Basu Astro. Astrophys. 265499 (1992)
[33] N C Rana and B Mitra Phys. Rev. D \& 393 (1991)
[34] N C Rana and T K Mathew in Physics and Astrophysics of Quark-ghon plasma Eds. B Sinha, Y P Viyogi and S Raha (World Scientific, Singapore, 1994) p. 215-222.
[35] T K Mathew and N C Rana Indian J. Phys. B 681 (1994)
[36] J Melnick, M Heydari-Malayeri and P Leisy Astro. Astrophys. 25316 (1992)

137] G M. Fuller, R N Boyd and J D Kalen Ap. J. Lett. 971 L11 (1991)
[38] J Scherrer Mon. Not. R. Astro. Soc. 205683 (1983)
[39] G J Mathews, D N Schramm and B S Mayer Ap. J. 404476 (1993)
[40] B Banerjee and R V Gavai Phys. Lett. B 293157 (1992)
[41] F R Brown, F P Butler, H Chen< H C Herman, Z Dorg, W Schaffer, L I Urger and A Vaccarino Phys. Reu. Lett. 652491 (1990)
[42] W A Fowler, G R Caughlan and B A Zimmerman Ann. Rev. Astron. Astrophys. 5525 (1967), 1969 (1975)
[43] M J Haris, W A Fowler, G R Caughlan and B A Zimmerman Ann. Reu. Astron. Astrophys. 21165 (1983)
[44] J J Bernstein, L S Brown and G Feinberg Rev. Mfod. Phys. 6125 (1989)
[45] R N Boyd, L Tanihata, N Inabe, T Kubo, T Nakkagawa, T Susuki, M Yonokura, X X Bai, K KImura, S Kubuno, S Shimoura, H S Xu and D Hirata Phys. Rev. Lett. 681283 (1992)
[46] G R Caughlan and W A Fowler Atomic Data Tables 40291 (1988)
[47] K B Jefferts A A Penzias and R W Wilson Ap. J. 179 L57 (1973)
[48] L Spitzer, J F Drake, E B Jenkis, D C Mortan, J B Rogerson and D G York Ap. J. Lett. 181 L 116 (1973)
[49] P Delbourgo-Salvador, C Gry, G.Malinie and J Audoze Astron Astrophys. 15053 (1985)
[50] B J Pagel Phil. Trans. R. Soc. Lon. A 90619 (1982)
[51] B J Pagel in Inrer space/Outerspace Ed. E W Kolb et. al (Chicogo Univ. Press (1986) p-72
[52] R T Wood, T M Bania, T L Wilson Ap. J 280629 (1984)
[53] E Schartmmann Astron. Astrophys. 1 \%Q 1 (1987)
[54] B J Pagel in A Unified view of the macro and micro cosmos Eds. A De Rujula, D V Nabopoulos and P A Shaver (World Scientific, Singapore, 1987) P-399
[55] B J Pagel in Baryonic Dark Matter Eds. D Lynden-Bell and Gilmore (Klumer, Netherlands, 1990) P-237
[56] M Spite, J P Maillard and F Spite Astron Astrophys. 14156 (1982)
[57] D Nanopoulos, D Sutherland and A Yildis Lett. Nuovo Cimento 28205 (1980)
[58] H S Kang Int. J. Mad. Phys. D 231 (1993)
[59] S Dodelson and M S Turner Phys. Rev. D 463372 (1992)
[60] A Boesgard, G Steigman Ann. Rev. Astron. Astrophys. 29319 (1985)
[61] B D Fields, S Dodelson and M S Turner - Pre-print FERMILAB-Pub-92/298- (1992)
[62] N Yu Gneden and J P Ostriker Ap. J. 4001 (1992)
[63] P Langacker, G Sergre and S Soni Phys. Rev. D 263425 (1982)
[64] P J E Peebles Ap. J. 146542 (1966)
[65] M Pinsonneault, C P Deliyannis and P Demarque Ap. J. Suppl 78179 (1992)
[66] J Yang, D N Schramm, G Steigman and R T Wood Ap. J. 227697 (1979)
[67] T Paradellis, S Kossionides, G Donkellis, X Aslanoglou, P Assimakopolous, A Pakou, C Rolf and Lananke Z. Physik. A 997221 (1990)
(68] H Kurki-Suonio Phys. Rev. D 972104 (1988)
[69] N Terasawa and K Sato Phys. Rev. D 992893 (1989)
[70] N Terasawa and K Sato Ap. J. 962 L47 (1990)
[71] N C Rana, B Datta, S Raha and B Sinha Phys. Eett. B24O 175 (1990)
'[72] V G Boyko and L L Jenkovski, B Kampfer and V M Sysoev Pre-print KFKI$49 / A(1889)$
[73] L L Jenkovski, B Kampfer and V M Sysoev Z. Phys. C $\& 8147$ (1990)
[74] G S Abrams et. al. Phys. Rev. Lett 692173 (1989)
[75] J I Kapusta Nucl. Phys. B 148461 (1979)
[76] H Nakkagawa and A Niegawa. Phys. Lett. B 199263 (1987)
[77] H Stocker Nucl. Phys. A 418 578c (1984)
[78] U Heinz, P R Subramanian, H Stocker and W Greiner J. Phys, G 121237 (1986)
[79] R Hagedorn Z Phys. C 17265 (1983)
-[80] S K Murugeasan, G Janhavi and P R Subramanian Phys. Rev. D\&1 2384 (1990); Phys. Rev. $D \not \& 3576$ (1990)
[81] T DeGrand and Kajantie Phys. Lett. B 147273 (1984)
[82] E Suhonen Phys. Lett. B 11981 (1981)
[83] C Hogan Phys. Lett. B 199172 (1983)
[84] K E Sale and G J Mathews Ap. J. 909 L2 (1986)
[85] N Terasawa and N Sato Prog. Theor. Phys. 811085 (1989)
[86] C P Singh, B K Patra and Saeed Uddin Phys. Rev. D 494023 (1994)
[87] C P Singh Phys, Rep. 296147 (1993)
[88] C P singh In. J. Mod Phys. A 77185 (1992)
[89] J H Applegate, C Hogan and R J Scherrer Phys. Rev. D 951151 (1987)
[90] R A Malaney and G J Mathews Phys. Rep. 229145 (1987)
[91] J Ignatious, K Kajantie, H Kurki-Suonio and M Laine Phys. Ret, D50 3738 (1994)
[92] A N Sosnovski, P E Spivak, Yu A Prokofev, I E Kutikoy and Yu P Dobrynin Zh. Eksp. Teor. Fiz. 951059 (1959)
[93] C J Christensen, A Nielson, A Bahnsen, W K Brown and B M Rutard Phys. Rev. D 51628 (1972)
[94] V E Krohn and G R Rimgo Phys. Lett. B 55175 (1975)
[95] L N Bondarenko, V V Kurguzoy, Yu A Prokofev, E V Rogov and P E Spivak JETP Lett. 28303 (1978)
[96] Chr. Stratawa, R Dobrozemskey and P Weinzierl Phys. Rev. D 183970 (1978)
[97] B G Erozolimskii, A I Frank, Yu A Mostovoi, S S Arzumanov and L R Voitzik Sov. J. Nucl Phys. 90356 (1979)
[98] M Peimbert and M Porres-Peimbert Ap. J. 209581 (1976)
[99] B Carney Ap. J. 299877 (1979)
[100] H B French Ap. J. 24041 (1980)
[101] D L Talent, Ph.D Thesis Rice University (1980)
[102] J F Rayo, M Peimbert and S Torres-Peimbert Ap. J. 2551 (1982)
[103] D Kunth and W L W Sargent Ap. J. 27381 (1983)
[104] M Peimbert in ESO Wokshop on Primondial Helium Eds. P A Shaver et. al. (Garching 1983) p-267
[105] A Buzzoni, F Fusi Pecci, R Buohanno and C E Corsi in ESO Wonkshop on Primondial Heltium Eds. P A Shaver et. al. (8:Garching 1983) p-422
[106] B J Pagel in Advances in NUclear Astrophysics Eds. E Vangioni-Flam et. al. (Gif-Yvette Editions Frontiers, 1986) p-53
[107] B J Pagel $R G O$ Pre-print (1989)
[108] D G York and J B Rogerson Ap. J. 203378 (1976)
[109] N V G Sarma and D K Mohanty Mon. Not. R. Astron. Soc. 184181 (1978)
[110] C Laurent, A Vidal-Madjar and D G York Ap. J. 289923 (1979)
[111] A Vidal-Madjar and C Gry Astron. Astrophys. 12499 (1983)
[112] W H Smith, W V Schempp and K H Baines Ap. J. 396967 (1989)
[113] P M Jeffrey and E Andus, Geochin Cosmochin Acta 341175 (1970)
[114] U Frick and R K Moniot Proc. Lunar Planet. Sci. Conf. 8th 229 (1977)
[115] P Eberhardt Proc. Lunar Planet. Sci Conf. 9th 1027 (1978)
[116] R T Rood, T L Wilson and G Steigman Ap. J. Lett. 227 L97 (1979)
[117] L M Hobbs and D K Duncan Ap. J. 917796 (1987)
[118] M Spite, F Spite, R C Peterson and F H Chaffee Astron. Astrophys. 178 L9 (1987)
[119] R Rebolo, P Molaro and J E Beckmann Astron. Astrophys. 192192 (1988)
[120] H S Kang and G Steigman Nucl. Phys. B 972494 (1992)
[121] M Crawford and D N Schramm Nature 298538 (1992)
[122] E W Kolb and M S Turner Phys. Lett. B 11599 (1982)
[123] D N Schramm and K A Olive NucL Phys. A 418 289c (1989)
[124] G J Mathews, B Mayer, C R Alcock and G M Fuller UCR-102920 Pre-print, Laurence Livermore Laboratory (1989)
[125] B Muller The Physics of Quark-Gluon plasma Lecture notes in physics Vol. 225 (Heidelberg, Springer-Verlag (1985)
[126] K Kajantie and H Kurki-Suonio Phys. Rev. D94 1719 (1986)
[127] J Byrne Nature 910212 (1984)
[128] P Hasenfratz, R R Horgan, J Kuti and J M Richard Phys. Lett. B 95299 (1980)
[129] R Hagesorn Suppl. Nuovo Cimento 9147 (1965)
[130] R Hagedorn and J Ranft Nuovo Cimento 6169 (1986)
[131] J Audose, P Delbourgo-Salvador, H Reeves and Salati in Origin and Evolution of the elements Ed. G J Mahtew (World Scientific, Singapore (1988) P-86-96
[132] M Gyulasry, K Kajantie, H Kurki-Suonio and L McLerran Nucl. Phys. B 297477 (1984)
[133] B S Mayer, C R Alcock, G J Mathews and G M Fuller Phys. Rev. D4 1079 (1991)
[134] J Potvin and C Rebbi Phys. Rev, Lett 623062 (1989)
[135] S Huang, J Potvin, C Rebbi and S Sanielevi Phys. Rev. D 422863 (1990); Phys. Rev. D 492505 (1991)
[136] R Brower, S Huang, J potvin and C Rebbi Phys. Rev, D 462703 (1992)
[137] B Grosbman and M L Laursen Nuvl. Phys. B $\{08637$ (1993)
[138] B Grossman, M L Laursen U -J Wiese and T Trappenberg Phys. Lett. B 299175 (1992)
[139] A A Cole and Trappenberg Phys. Rev. D 504881 (1994)
[140] M Fukugita, M Okawa and M Ukawa Phys. Rev. Lett. 691768 (1989); Nucl Phys. B 997181 (1989)
[141] Y Iwasaki et al. Phys. Rev. $D \not \& 64657$ (1992)
[142] D A Dicus, E W Kolb, V L Teplitz and R V Wagoner Phys. Rev. D 171529 (1978)
[143] R Cowsik and J C McClelland Phys Rev. Lett. 29169 (1972)
[144] J Yang, D N Schramm, G steigman and R T wood Ap. J. 227697 (1979)
[145] F W Stecker Phys. Rev. Lett. $f 617$ (1981)
[146] Particle Data Group, Review of Particles, Phys. Rev. $D \not \& 5$ (1995)
[147] G M Fuller, G J Mathews and C R Alcock Phys. Rev. D 971380 (1988)
[148] J Lodenquai and V Dixit Phys. Lett. B 124317 (1983)
[149] C Chiosi and A Meader $A R A$ A 24329 (1986)
[150] S E Woobley and T A Weaver ARA A 24 205 (1986)
[151] B J Pagel, NORDITA pneprint, NORDITA 90/47 A (1990)
[152] J A Baidwin, G J Ferland, P G Martin, M R Corbin S A Cota, B M Peterson and A Sletteback Pre-print (1990)
[153] R E S Cleg, D L Lambert and J Tompkin Ap. J. 250262 (1981)
[154] P Andreani, E Vangioni-Flam and J Audoze Ap. J. 994698 (1988)
[155] L M Ozernoi and V V Chernomordik Sov. Astron. 19693 (1976)
[156] R I Epstein, J M Lattimer and D N Schramm Nature 269 198 (1976)
[157] R B Larsan Mon Not R. Astr. Soc. 218409 (1986)
[158] R Ferlet, A Vidat-Madjar, C Laurent and D G York Ap. J. 242576 (1980)
[159] C P Deliyannis and P Demarque Ap. J. Lett. 970 L89 (1991)
[160] E M Burbidge, G R Burbidge, W A Fowler and F Hoyle Rev. Mod. Phys. 29547 (1957)
[161] G J Mathews, R N Boyd and G M Fuller Ap. J. 40965 (1893)
[162] R A Malaney and W A Fowler Ap. J. Lett. 945 L5 (1989)
[163] F W Stecker Phys. Rev. Lett 4617 (1981)
[164] H S Kang and G Steigman Nucl. Phys. B 272494 (1992)
[165] R V Gavai in Quantum Fields on the Computer (World Scientific, Singapore (1992)
[166] C R Alcock, G M Fuller and G J Mathews Ap. J. 320439 (1987)
[167] P Bopp, D Dubbers, E Klemt, J Last, H Schultz, W Weibler, S J Friedman and D J Scharpf J. Phys. C 32 (1984)
[168] J Byrne, J Morse, K F Smith, F Shaikh, K Green and F L Greene Phys. Lett $B 92274$ (1980)
[169] Yu Yu Kosvintsev, V I Morosov and G I Terekhov JETP Lett. 44571 (1986)
[170] J Last, M Arnold, J Dohner, D Dubbers and S J Freedman Phys. Rev. Lett. 60995 (1988)
[171] W Mampe and W A Fowler Ap. J. 33314 (1988); op. cit 345 L5 (1989).
[172] G S Abrams et. al. Phys. Rev. Lett. 692173 (1989)
[173] D G York Ap. J. 264172 (1983)

