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CHAPTER 1

INTRODUCTION

1.1 Introduction

The outcome of any experiment or the result of any natural phenomenon
depends on many unknown factors, which cannot be completely controlled or measured
exactly It is not possible to explain such situations by deterministic mathematical
equations. A better way of studying the behaviour of such phenomena, when tl.
outcomes are affected by many uncertain factors is by using stochastic models. These are
the models defined in terms of random variables. For example, suppose that one wants to
know the value of X, where X may be the price of certain commodity, or the contents of a
reservoir, or the velocity of wind, or the amount of currency notes in the Reserve Bank of

India, or the stock of radio active materiel etc.

Note the variable X' in the above examples are random variable (r.v.) and
they may vary at different time points. If we consider X, as the value of X, at a time point
n, then {X,} can be viewed as a realization of the stochastic process {X,neT}, where T is

an index set. We take in our studies I as a set of integers.

In the classical setup, the statistical analysis of the data is performed by
assuming that {X,,n T} is a sequence of independent and identically distributed (1.i.d) r.v.s
having some common distribution function (d.f) /. However, even in the examples quoted
above, the random variables X, for different # need not be independent. The dependency

among the rv.s at different time points can be broucht out by defining appropriate



stochastic models. The purpose of defining such models is to identify the stochastic
mechanism which generates the data and then use such models to predict its future
behaviour. This involves estimation of the unknown parameters in the model and the study
of other related statistical inference. Once we identify the stochastic model, the further

analysis can be handled, by the help of the well developed theory of stochastic processes.

One of the important applications of stochastic processes is the analysis of
time series. The models used in the classical analysis of time series are all linear in nature.
Moreover, the time series {X,} is assumed to be a Gaussian sequence (See Box ari
Jenkins (1976)). One of the linear stochastic models used in the time series analysis is the

p" order autoregressive model defined by

X, =aqX

n-

| tax X, . +a, X, +eE, (1.1.1)

where {€,} is a sequence of 1.i.d r.v.'s assumed to follow normal distribution and a,,a,, ...,
a, are constants referred to as autoregressive parameters. However, there are many

practical situations where the models are non-linear and non-Gaussian, (see eg. Tong

(1990)).
1.2. Random Coefficient Autoregressive Models

Nicholls and Quinn (1982) generalized the model (1.1.1) by allowing a;'s

to be random variable to define a random coefficient autoregressive (RCAR) model. The

sequence {.X,} said to follow a p”* order RCAR (RCAR(p)) model if

p
szzz{bi+ﬂir:}sz—i+8n ,”21,2,~~~ (1,2.1)

i=]

The following assumptions are made on this model:



Ai {€, n € 1} is a sequence of i.i.d. r.v.'s with mean zero and variance o”.

Ax ABr = (Bin Pon, ... PBon), n € T} is a sequence of 1.i.d random vectors with mean 0

and dispersion matrix I .
Ax: The sequences {¢,} and {f,} are statistically independent.

Ay b= (b, b, .., b,) 1s a vector of real constants.

The model (1.2.1) is fitted to various data sets and shown to be performing
well. For example, Nicholls and Quinn (1982) fitted an RCAR(2) model to the lynx data
which consist of the annual records of the number of Canadian lynx trapped in the
MacKenzie river district of North-Western Canada. Lawarance and Lewis (1985) used a
more specific RCAR(2) model which generates a stationary sequence of exponential r.v.s

to analyse the wind velocity data.

A score of literature is available on the study of first order Random
Coefficient Autoregressive RCAR(1) models. For the sake of future reference we define

the model as
X, =4b+p,3X, ,+E, . n=12, . (122)

where the r v's satisfy the assumption A, - A, described above with p = 1. We say that

the model (1.2 2) is stationary if it generates a stationary sequence {X,nel}.

The model (1.2.2) has many applications in the study of non-Gaussian time
series modelling. The theory of non-Gaussian time series mainly concentrates on obtaining
the stationary solution of the model (1.2.2)  We say that the model (1 2.2) has a
stationary solution if there exists a proper probability distribution for €, for a specified
distribution of X, for evey n. A standard technique adopted in obtaining the solution of

(1.2.2) is using characteristic functions or Laplacé transforms. Without much loss of



generality one may take »=0 in (122) If ¢(s) is the characteristic function of X, for
every n and yAs) is that of ¢,, then
$(s)

w(s) = —————, (1.23)
[ #(Bs)aG ()

where (5(.) is distribution function of /3, and the integral ranges over the support of G(.).

A general discussion on conditions for existence of solutions to this model
can be found in Paulson and Uppuluri (1972). The RCAR(1) model for defining a
sequence of exponential r v's are discussed by Gaver and Lewis (1980), Lawrance and
Lewis (1981), Sim (1990), etc. The similar models are used to generate sequences of
gamma r.v's by Gaver and Lewis (1980), Sim (1986), Lewis, McKenzie and Hugus
(1989), Sim (1990), Adke and Balakrishna (1992a) etc. A discussion on Laplace
RCAR(1) models may be found in Dewald and Lewis (1985).

The following are some of the more specific examples where RCAR(1)
models are used to describe the practical situations. In these cases it is assumed that 5=0.

Hence the model is rewritten as
X, =P, X, +e,, n=12,. (1.2.4)

Paulson and Uppuluri (1972) claim that the model (1.2.4) arises in the study of retention of
a substance in a system when the substance is pertodically introduced in random quantities
and the system periodically eliminates a random proportion of this substance. Then one
may be interested in the behaviour of the amount of a given substance present in the
system at the end of epoch »-1, n=12,... with X, =0. Suppose an amount &, of this
substance is introduced during the time interval (n-1, n] and during the same interval a
modification of the amount X,, to 8, X, take place. Hence the total amount of the

substance present at epoch # is X, described in (1.2.4). More specific example where X,



denotes the (1) balance of a saving account and (ii) the stock of radio active material at
time » are described by Vervaat (1979). In example (i) ¢, denotes the deposit made just
before time n and f, the interest factor which may fluctuate stochastically with time. On
the other hand, in (i) &, 1s the quantity of the radio active matenial added or taken away

just before time # and [, is the natural decay of radioactivity.

Sim (1986) discussed the application of model (1.2.4) in Hydrolical
modelling In his example X, and ¢, are content and random inputs of a dam respectively
at random time 7, and U, is the random decay factor of the storage of the dam between
time /,., and 7, Sim further assumed that {7} is a sequence of random times generated
by a homogeneous Poisson process and 0 = 7, < 7, <. Then by taking U,

=exp[-b(7,, —T,_,)], b=0, it was proved that X, has gamma distribution for each n>0

Similar examples may also be found in Andel (1976) and Hutton (1990). A
vector valued version of the model and its properties are discussed by Glasserman and Yao

(1995).
1.3. Autoregressive Minification Processes

In Section 1 2 we have seen that the solution for the model (1.2 4) exists if
and only if yAs) defines the characteristic function of a r.v. in the relation (1.2.3)
Therefore, to check the existence of the solution, we should have . closed from expression
for ¢s). But there are several standard distributions used in statistical studies, which
donot have closed form expression for their characteristic functions. For example, the
distributions, such as Pareto, Logistic, Weibull and extreme value type are useful to
analyase the variety of real life data. In order to generate a sequence of dependent r.v.’s
having any of these marginal distributions, the model of the type (1.2.4) are not of much

use [see eg. Tavares (1977, 1980)]. As an alternative, a model of the following type is



used for this purpose when the r.v’s have closed form expressions for their survival

functions.

Let {Z,} be a sequence of 1.1.d rv.’s with common d f (;(.) and Xy, be arv.

having d.f /" and is independent of Z,. Now define ', by

{XO, n=0
X, =< (13.1)
Akmin(X, ,Z,), n=12, .
where k>1. The model (1.3.1) implies that
F(x) = FHGE), (1.3.2)

where F7(x) = 1- f(x) and G(x) = 1- G(x). Arnold and Hallett (1989) proved that
if the survival function of X, is chosen as F,(x) = r[?‘(k—xj with F(0)= 1, then {X,,
1t

n>0} defined by (1.3.1) is a stationary sequence of r.v.’s having each X, distributed as /-
In this case the infinite product does not diverge to zero. Further the model has a solution
if and only 1f

F (kx)

GO = F

(13.3)

defines a proper survival function. Lewis and Mckenzie (1991) discuss the existence of
the solutions in different cases of this model in terms of survival functions and hazard

rates.

The model (1.3.1) has most of the properties of a first order autoregressive
model having "minimum" instead "addition" and hence the name autoregressisive
minification model. This is useful in modelling a situation where the underlying

distribution have closed survival function. For example, if one wants to model the stream



flow of rivers, where during certain periods there will not be flow and when there is flow
there will be lot of variations, which are very common in hydroloyical and geophysical

sciences.

Even though weibull or extreme value rv’s are commonly used for
modelling the data of the above type, the sequences of such r.v.s cannot be generated with
linear random coefficient models of the type (1.2.2). Same is the problem with Pareto
distribution, though it is very useful in modelling variety of socio-economic variables. In
modelling Markov dependent time series with these marginal distributions it is found that
the minification model is more appropriate. Studying the probabilistic properties of these
models becomes easier here as the distributions have closed form expressions for their
survival functions. Minification models for different special distributions are studied by
various authors. For example Tavares (1980) defined the model for exponential variates,
Sim (1986) defined for weibull, Yeh et al. (1988) discuss model for Pareto variables and so

on.
1.4. Statistical Inference for Markov Sequences.

Statistical Inference is an integral part of Stochastic modelling. If we want
to check the validity of any stochastic model, it is essential to have g od statistical test
procedures. This in turn demands estimation of the unknown parameters involved in the
model The classical theory of statistical inference is based ou the assumption that the
rv’sare11d with common d.f /. Butin practice we come across many situations where
the data is a realization of a sequence of dependent r v’s. To handle such situations the
theory of statistical inference for stochastic processes is developed. We are interested in
the inference for stochastic models which generate a sequence of r.v.’s having a special

kind of dependence structure, defined below known as Markov dependence.



Definition 1.4.1 (Markov Sequence)

A sequence {X,, n € 1} of rv.’s defined on a common probability space

(Q, F, P) is said to be Markovian if
Pr(X, €eBX,, =x,X,,=x,,,.1= Pr[X, eBX,, =x]

for any borel set B and xe(2, where Pr[ X, € B‘X ., = X]is called the transition function

of {X, n € I} In particular, Pr[ X, sinn , =x] 1s refer cd to as the transition

distribution of X, at y given X, = x.
Definition 1.4.1 (Stationary Stochastic Sequence)

A sequence {X,, n € T} 1s said to be stationary if for any positive integer &
and 1;, 1>, .1, and h in T the joint distribution of X(¢,), X(¢5), ..., X(#) is same as that of
X(t+h), X(tth), ., X(t4+h).

Definition 1.4.3 (Marginal Stationary Sequence)

A sequence {X,, n € T} of r.v.’s is said to marginally stationary if X,’s are

identically distributed for every n.

The assumption on the models (1.2.2) and (1.3.1) immediately imply that
the sequence {X,} generated by them are in fact Markovian. Moreover these sequences
are stationary under some mild additional conditions. We will come back to these

properties again in the forthcoming chapters.

The importance of Markov sequence in the analysis of practical situations,

necessitated the development of related theory of statistical inference. One of the useful



references for this subject is the book by Billingsley (1961). The statistical inference for
stochastic processes in general and for many special models are discussed in Basawa and

Prakasa Rao (1980).
1.5. Sequential Estimation

The statistical inference in classical setup is based on a random sample (X},
Xo, .., X,) of size n where n is a fixed positive integer. In stochastic processes the
inference is made by observing the realization for a duration of fixed length say /. In
both these cases, it is assumed that the sample size # and the duration / do not depend on
the observations. That is, one does not take advantage of the information supplied by the
observations for choosing the sample size. Choice of an optimum sample size is a crucial
problem while planning any statistical experiment. In most of the experiment, sampling is
very expensive and taking of each observation involves some cost. Since, cost of sampling
is a concern, one has to find minimum size of the sample required to make an optimum
decision. Now the problem becomes that of finding a value of n (sample size) which
optimizes (minimizes or maximizes) an appropriate objective function. One of the

procedures used in such cases is the sequential method.

Sequential procedure i1s a method of statistical inference whose
characteristic feature is that the number of observations or the time required for
observation of the process not determined in advance. The decision to terminate the
observation on the process depends, at each stage, on the result of the observations
previously made. A merit of this method is that test procedures and estimators can be

derived in some smaller number of observations.

Another context, where sequential estimation becomes necessary is that

when we want to determine the optimum sample size to estimate a parameter under certain
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optimality criteria in the presence of unknown nuisance parameters. This is illustrated in

the example of Woodroof (1982) pp. 105.

Ghosh and Sen (1991) describe some situations where fixed sample size
procedure is not suitable. The following are some of the specific examples discussed in

Ghosh and Sen (1991).
a. Example where Sequential Analysis is intrinsic

Consider the situation when the blood pressure X, of a patient under
intensive care is monitored continuously in time n. The problem here may be how to
analysis and interprect sudden fluctuations in pressure. To some extend the same is true in
the classical secretary problem. Here one is dealing with &k objects which are intrinsically
ranked 1(best), ..., kK (worst) according to some characteristics, but the observer can rank
them only by visual comparison with each other. The observer assigns a rank X, to the n"
arrival by comparing it with its (n-1)™ predecessors who were all rejected. The problem is
to design a stopping rule that maximise the probability of selecting the best one when the
observations do not have access to the rejected ones. Clearly in both examples, a fixed

sample analysis cannot be conceived.

b. Example where only Sequential Procedure yields solutions.

There are problems in point estimation, confidence intervals and hypothesis
testing where fixed sample procedures can be conceptualized but cannot provide solutions.
Suppose  that the  observations are 1id Bernoullli variables  with

P(X,=0)=p=1-P(X =1) and one wants an unbiased estimate for p"' Such an

estimate does not exist if one consideres the fixed data sample (X}, X, ..., X,) for any n>1.

On the other hand the stopping rule with N = smallest » for which X, =1 yields N itself as
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an unbiased estimate of p'. This stopping rule is known as Haldane’s inverse sampling

procedure.
c¢. Example where Sequential Analysis is ethical.

Consider a clinical trial or reliability study designed to elucidate the
differential if any between two competing treatments. The response data from the patients
in the sample are recorded in the order in which they appear. As soon as one treatment
could be judged superior to the other, ethical considerations demand curtailment of the

study
1.6 Some Useful Definitions and Results.

In this section we quote some useful definitions and results which are
frequently used in our discussion. Proofs of these results may be found in the reference

cited in the parenthesis.
Definition 1.6.1. (Stochastically bounded random variables).

-

A sequence of random variables is said to be stochastically bounded if for £

>0 there is a (" > 0 for which

P{|7,|>Ci<e for all n>1.
In particular if {¥,} converges in distribution then {Y,, n =1} is stochastically bounded.
Definition 1.6.2. (Ergodic Sequence).

A stationary process is said to be ergodic if Pr{(Xo, X, ...)eA} is either

zero or one whenever A4 is a shift invariant event.



Remark.1.6.1. (Karlin and Taylor (1974), pp. 488).

If sequence {X,} is stationary and ergodic then the sequence
Yo=§Xn Xo1,.), =12,

generates another ergodic stationary sequence.

Definition 1.6.3. (Uniformly Continuous in Probability (u.c.i.p)).

A sequence {¥,} of r.v’s is said to be uniformly continuous in probability if

for every £>0 there is a $>0 for which P{ A{axﬁl}; ;e Y,,| 2 e} <¢ forall n21.
0<k<n

Remark.1.6.2. (Woodroofe (1982), pp.41).

If {Y, »>1} converges to a finite limit with probability orc then {V,} is

u.c1p.

Remark.1.6.3. (Woodroofe (1982), pp.41).

If {Y,} and {Z,} are u.c.i.p then so is {¥,+Z,, n>1}, if in addition {Y,, n>1}
and {Z,. n>1} are stochastically bounded and if ¢ is any continuous function on R’ then

oY,.Z)isucip



Definition 1.6.4 (Uniform integrability (u.i)).

A sequence of r.v's {X,}1s said to be uniformly integrable if

limsup ~[|X,|dP =0

o
N2 ey

The uniform integrability gives a sufficient condition to interchange the limit and

expectation of a sequence of r.v.s.
Definition 1.6.5S (Uniformly Mixing Sequences).

A Sequence {X,} of r.v.’s is said to be uniformly mixing if
|P(ANB) = P(A).P(B)| < P(4).4(h),

where 4 € o{Xy, X}, ..., Xu}, B € 6{Xs.h, Xnsns1, ...} and ¢(h) —0 ans h —oo.
Definition 1.6.6 (m-dependent r.v.s).

A Sequence {X,} of r.v.’s ts said to be m-dependent if ( X}, ..., Xi) and

(Xn-#» Xu-x-1, ...) are independent for any k when ever n>m.
Definition 1.6.7 (Martingale Sequences).

The {X,, teT}is said to constitute a martingale w.rt a non-decreasing

sequence of o-field {D, reT } if the following conditions hold
i For every te 7, X;is D, measurable

1 E[lX/|]<x for every te T

1. For s,te 1, s--t, the relation E[X/|D,] = X; as.
Definition 1.6.8 (Submartingale Sequences).

The {X,, reT}is said to constitute a submartingale w.r.t a non-decreasing

sequence of o-field {D, teT } if the following conditions hold
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1. For every te T, X, is D, measurable

il. E[|X{]<x for every te T

iii. For s,te T, s ¢, the relation E[X|D;] > X; as.
Remark 1.6.4 (¢ f: Karlin and Taylor (1974), pp.250).

If {X,, 1e T} is a martingale and if g is a convex function on R then {g(X,)}

is a submartingale provided E[|g(X))|] < o for ¢ >1.
Definition 1.6.9 (Reverse (Backward) Martingales).

The {Z, teT}is said to constitute a reverse martingale w.r.t a decreasing

sequence of o-field {G, e T } if the following conditions hold

1 For every te T, Z,is G, measurable

il E[lZ|]<x for every re T

iii. E[Z|G:.1]=Z:., as.

Result 1.6.1 Minkowski Inequality [Chow and Teicher (1978), pp.108].

For p21, |X+1],<[X],+ ¥,

where ||| denotes the p™ norm defined as | X| =E'” |X|”
P P

Result 1.6.2 Holder’s Inequality [Chow and Teicher (1978), pp.104].

E

XY < EV?|X|" E"|1|" where -’1;-*-{1-: 1.

Holder's inequality with p - g=2 is called Schwartz Inequality.
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Result 1.6.3 Markov Inequality [Chow and Teicher (1978), pp.85]

E|xY

P([X' >ays———, a>0,r 0.
a

Result 1.6.4 Liapounov Inequality [Chow and Teicher (1978), pp.104]

|x

, < |X],, for r<p.

Result 1.6.5. Anscombe's Theorem [Woodroofe (1982), pp.11].

If Y, Y, ...areu.cip and ¢, a>0 be an integer valued r.v. for which 7/a
converges to a finite positive constant ¢ in probability and N, =[ac] where [x] denotes the

greatest integer part of x. Then Y,a -7 N, — 0 in probability as a—o. If in addition ¥,

converges in distributiontoar.v. Y'then ¥, — ¥ as a—.

Result 1.6.6. Slutsky’s Theorem ( Chow and Teicher (1978), pp.249)

If {X.}, {Y.} and {Z,} are three sequences of rv.’s with

X —45X,Y —£>a and Z, —2-> b, where a, b are finite constants, then

n

XY +Z,—2>aX +b,
where —.—»> and —%— denote the convergence in distribution and probability

respectively.

Result 1.6.7 Martingale Central limit Theorem (Nicholls and Quinn (1982), pp.14).
Let {C:} be a sequence of r.v.'s with the property that {; may be expressed
as a function not depending on ¢, which is measurable w.rt. o-field F, gensrated by a

sequence {a,,a.;, ...} of strictly stationary ergodic r.v. Further more suppose that
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- N
E(C | F)=0 and E(¢?)=c? <o. Then (¢?N) 2 D¢, converges in distribution to a

t=1

standard normal variate.

Result 1.6.8 Maximal Inequality for submartingales (Karlin and Taylor (1974),
pp. 251).

Let {X,} be a submartingale for which X,>0 for all n. Then for any positve A
0<k<n

lPr{MaxXk >/1}S E[X,]

Result 1.6.9 Maximal Inequality for reverse submartingales (Sen (1982), pp.13)

Let {X,} be a reverse submartingale. Then

l Max X,
np<n<n

< p_li_lnX"O ,’ for p>1.

Result 1.6.10 Marcinkiewicz-Zygmund Inequality (Chow and Teicher (1978), pp.356).
If {X, n21} is an iid. sequence with EX; = 0, E|X;|” <, p>2 and

S, ZX,- then £

i=1

-y
LS"

P = OQ@r?), where the notation = O(g) means that % is bounded.

Result 1.6.11 Burkholder Inequality [Chow and 1eicher (1978), pp.384].

If f= {f,, n=1} is a martingale and p €(1,00), then there exist constants

A,=18p™*(p-1)" and B, = 18p”(p-1)"?

such that 4,

1S, (Ol <

S

<B
»=Dp

S,(f)], where $,(f) = (id}] dy=fo .
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Result 1.6.12 [Sriram (1987)].

Let ¥, and Z, be any sequence of r.v.s and a,b #0 and s>0 be real numbers.

If P[ Y, -al >g] = Oy =P[ | Z,-b| >¢] for every £ >0, then

i P[| Y, Z,-ab|>e] = O(n™®)

i, l{ !
VA

n

: > gjl =0w™).

Proof:
Consider
P{| Y, Z, -ab|>€] =P[| Vs Z,- Yob + Yo b - abl>e]
<SP Y, (Zo- b)|> &2+ PLIB(Y, - nl>e2). (16.1)
But [V, (Z,- b)|>e2]=[1V.(Z,- B)|>e2,1Z,- b|2 6]

Utlr. .- ol>e2,12,- bl< 4]

cllz.-bl>aULlY, |2 22
Hence P[| Y, (Z, - b)|> &2]1<P[|Z,- b]> 8]+ P[| Y, | = £28]

=O(n*) + O@).

=O(n) (16.2)
Consider the second term in (1.6.1)

P[Ib(Y, - a)l>e21=P[]Y, - al>&/2b]
=On™). (1.6.3)

Application of (1.6.2) and (1.6.3) in (1.6.1) gives part (i). Proof of part (ii) is similar and

hence omitted.
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Result 1.6.13 Central limit Theorem for m-dependent rand-m variables

(Toragimov and Linnik (1971), pp.370).

If {X.} be is a stationary and m-dependent sequence with E[X,] = 0 and

E[X!]<x. Then & = E[X?] +2Y E[X,X..,] converges, and if o 20
k-1

Jno ' X, —5N(0. 6.
Where —%— means convergence in distribution.

Result 1.6.14 Central limit Theorem for Uniform Mixing Sequence. (Billingsley,
(1968), pp.174).

Suppose that {X,} is stationary ¢-mixing sequence with » @,° < o and

that X, has mean zero and finite variance. Then the series vn X, ——>N(0, ¢?), where

g

o =E[X}] +2ZE[X0X,(].
k=1
Result 1.6.15 Ergodic Theorem [Karlin and Taylor (1974), pp.487]

Let {X.} be an ergodic stationary process having a finite mean m . Then,

with probability one

1
Ilm—(X, + X,+....... +X,)=m.

n-»>a by

1.7 Summary of the Thesis

The rest of this thesis is divided into five chapters. The chapter 2 discusses the
estimation problem for the minification model defined by (1.3.1.). In this chapter we
study some of the probabilistic properties of the minification model such as ergodicity and
uniform mixing. Based on these properties we study the performance of the estimators for

the common mean and k. These are followed by estimation of the paramcters in some



special cases like, the minification models generating Exponential, Uniform and Pareto

marginals.

The chapter 3 deals with the sequential point and interval estimation of the
parameters of the above models. The optimal properties of sequential point and intervai

estimators are studied here.

The different properties of RCAR(1) model (1.2.1) and least squares estimators for
the parameters of the this model form the subject matter of chapter 4. Least squares
estimators suggested by Nicholls and Quinn (1982) are considered and their p™ moment

convergence are studied in detail in this chapter.

Chapter S provides the sequential methods of estimation for RCAR(1) model
Results from chapter 4 are used to prove the optimal properties of sequential procedure

for estimating location parameter of RCAR(1) model.

Chapter 6 is devoted to the sequential estimation of autoregressive parameter of
RCAR(1) model. Appropriate stopping rule is developed and first order efficiencies of this
stopping rule are established. It also includes a discussion on sequential interval estimation

for autoregressive parameter.

The references used in the thesis at various stages are listed after

the chapter 6.

Each chapter is divided into different sections. The equations are numbered as (a.b.c.).
This means that equation number 'c' of section ‘b’ in chapter ‘2’ Similarly the Theorems,
Lemmas, Results and Definitions are also numbered. The references are arranged in the

alphabetical order of authors.



CHAPTER 2

PARAMETER ESTIMATION IN
MINIFICATION PROCESSES

2.1 Introduction

The problem of estimation is an important stage in stochastic modelling. In
this chapter we estimate the parameters of minification model described in Section 1.3.

This is one of the non-linear models used to generate the non-Gaussian time series.

In recent years it is found that the models of this type have many
applications in analysing the real life situations. Further it is also found that these
non-linear models are more suitable than the linear Gaussian models in certain situations,
see for example, Tong (1990), Lawrance (1991) and references cited their in. One of the

important nonlinear models used to generate a sequence {X,} of a non-negative random

variable is defined by
X, n=0
X = 211
Min(X, ,Z,) k>1, n=12,..

where {Z,} is a sequence of iid non-negative, nondegenerate r.v.s called innovations and
Xois independent of Z;. This model is referred to as a nuinification model. Various aspects

of this model are discussed in Lewis and Mckenzie (1991).
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Now we will consider some interesting properties of a minification model

defined by (2.1.1).

The sequence has Markovian property.

Let {X,} be defined by (2.1.1) and consider the conditional probability

distribution function
PIXy <x | Xot =3, X2 = Xz, Xnos = Xns, ., Xo=%0]
= 1-P[Xy > x | Xo =3, X2 = Xn2, Xz = Xns, ., Xo=%0]
< 1 -PLAMin(X,s, Z)> x | Xot =y, Xoz = Xnzy oy Xo=x0]
1-P[X,; ~xk| Xu =y Xn_lz “Xpzy oy Xo =0 ] P[Z, >x/k]
1 if y<x/k
1-P[Z, >x/k] if y>x/k.

This is same as the conditional probability distribution function P[X, < x | X, = y].

Hence the process defined by (2.1.1) is Markovian.

The different aspects of the model (2.1.1) when X, has a specified
distribution are studied by various researchers. For example, Tavares (1980) discussed the
minification process with exponential marginals, Sim (1986) defined this model for Weibull
rv.s., Yeh, Amold and Robertson (1988) for Pareto r.v.s and Pillai (1991) studied a

model with semi-Pareto marginals.

The distributional properties of minfication model in general set up are

studied by Lewis and Mckenzie (1991) and Arnold and Hallett (1989). The applications of
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these models in various areas such as geophysical sciences, reliability etc. are discussed in

the above mentioned references.

In model (2.1.1) let Fix) = P(X, <x) and G(y) = P(Z, <y). Lewis and
Mckenzie (1991) have proved that the model (2.1.1) defines a stationary sequence {X,} if
and only if

_ F)
F(x)’

G(x) x 20, k>1 (2.1.2)

where F(x)=1-F(x)and G(x) = I- G(x). Arnold and Hallett (1989) showed that if

the distribution of Xj is chosen as
F(x)= H(_}(x/ki) (2.1.3)
i=1

then (2.1.1) defines a stationary sequence with X, having the survival function (2.1.3) for

every n>0. In (2.1.3) it is assumed that the product does not diverges to zero.

For our convenience we present the condition (2.1.3) in terms of a
sequence of iid non-negative r.v.s. Let {Z, #=0,1,2, .. }be a sequence of iid non-negative
r.v.s with common survival function G(.). Let us define

Xo = inf kK'Z . (2.1.4)

0<jc

Now it follows that the survival function Xj is ziven by (2.1.3). We state
some of the useful results related to the model (2.1.1) below. The proofs of theses results

may be found in Lewis and Mckenzie (1991).
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Result 2.1.1 Let {X, #>0} be a stationary Markov sequence defined by (2.1.1) with
stationary density function f{.). Then

, : T F(k’x)
:PX ijX_- =)l dx 215
#0) = PLX,, njl {Fm £(x) 2.15)

Result 2.2.2 For the stationary sequence defined by (2.1.1) the covariance between X,

and X,., is given by

Cov(X,, X,.;) = kE{(X -m, )I (_;(z)dz} (2.1.6)

where m, = E(X) = E{kj.(T (z)dz}.

0

Remark 2.1.1 Correlation between X, and X,., denoted by p(1) can be obtained from
(2.1.6) by dividing by Var(X,). If we denote p,(1) = c(k), then p.(j) = Corr(X,, X»,) may be
obtained by replacing & in c(k) by ¥. That is p.(j) = c(¥).

Remark 2.1.2 Autocorrelation function is said to be in geometric form if and only if p(1)
= p* for some a > 0. Exponential, Uniform and Pareto minification process have this

geometric auto correlation function. Also for these minification processes
#() = PLX, =k’ X,_ ;] = Corr(X, X)) = p()). (2.1.7)

The relation ¢(j) = p.(j) doesnot hold in gneral. Lewis and Mckenzie (1991) showed that
the relation ¢(j) = p.(j) is not true in case of Weibull minification processes. The quantity

#() defined in (2.1.5) is also a useful measure of dependence.

As far as statistical inference is concerned, little work is being done for
these models. Adke and Balakrishna (1992) have estimated the parameters of exponential

minification model. In this paper they proposed some sampling schemes to determine the
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exact value of k& and then estimate the mean of {X,}. Balakrishna (1998) discussed the
estimation problem in semi-Pareto and Pareto processes. In this chapter, we estimate the
common mean of {X,} and the parameter k& of the general minification process defined by

@2.1.1).

In Section 2 2, we prove that a stationary minification process is ergodic
and uniformly mixing. These result are used to prove the optimal properties of estimators
of common mean of X, in Section 2.3. Section 2.4 deals with estimation of k. Section 2.5

considers the estimation problems in some special cases.
2.2  Some Probabilistic Properties of the Model.

In this section we prove that the minification process is ergodic and

uniformly mixing [See definitions 1.6.2 and 1.6.5].

Lemma 2.2.1 Let {X,} be a stationary Markov sequence defined by (2.1.1) with k>1 and
the distribution of X, specified by (2.1.3). Then {X,} is ergodic.

Proof: Let I, = a{X), X>, ..., Xu}, Gn = ol Xy, Z), Zs, ..., Z,} be the o-field induced by (X,

X, .., Xxtand (Xo, Z), Z,, ..., Z,) respectively. Repeatedly using (2.1.1) we can write
X, = Mintk" X k"Z,,k"'Z,,.. kZ } . 2.2.1)
At this stage if we use the representation (2.1.4) of X, then

X, = ijrlg{k Nz (2.2.2)

The representations (2.2.1) and (2.2.2) imply that F, is contained in G, which is the
minimal sigma field induced by a sequence of i1.i.d r.v.s {Z,}. Hence the tail sigma field

of {X,}is contained in the tail sigma field * of the independent r.v.s. {Z,}. It is well
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known by Kolmogorov zero-one law that each event of 7" has probability zero or one.
This implies that 7 contains only events of probability zero or one, which is a sufficient

condition for {X,} to be ergodic.(cf. Stout (1974), pp.182). Hence the lemma is proved.

Lemma 2.2.2 The minification sequence {X,} generated by (2.1.1) is uniformly mixing

with mixing parameters

#h) = PIX=K X1, h=0,1,2. (2.2.3)
Proof: Let A and B be two events such that

Ae olXo X;.. X} and B € o{Xpon Xnsner... }.

In order to prove that {X,} is uniformly mixing we have to show that (See Definitio..

165)
|P(ANB) - P(A)P(B)| < ¢(h)P(A) (2.2.4)
such that ¢h) —0 as h —>c. We can prove this by closely inspecting the r.v.s, X1, X2,
., Xn-n; . By definition of the model (2.1.1)
Xooy=kMin (Xpp, Zoop), =12, ,h-1

an‘*j.—] l.f Xn*_/-l < Zn{/
- (2.2.5)
erH-j I.an+j—I >Zn»/'

Note that Z,., is independent of X,,.,.;, X,.,.o,.... If X,.=k Z,., for some j/=1,2, . ,h-1, then
the events A and B will be independent and hence (2.2.4) will hold. Let N be the number of

innovations occurring in the interval (n+ 1, n+h-1]. Then
P(ANB) = P(4) P(B) if N--0

# P(4) P(B) it N0
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That 1s
P(ANB|N > 0) = P(4| N>0) P(B| N>0). (2.2.6)

From (2.2.5) it follows that N=0 if and only if X,., = k" X, and in this case 4 and B are

not independent.

Consider

X, =x} dF(x)

PIAN(N>0)] = [ PALANX 1y, # K" X))
0

P{AIX, = x)P{X,., # k"X,

X, =x} dF(x)

O Gy 8

O Gy 8

P{A|X, = x)P{N >0) dF(x)

= P(N>0)P(A).

At the first stage of simplification we have used the Markov property of {X,} and then we
made use of the fact that [N=0] if and only if [X,.» =" X, ]. Hence from (2.2.6)
P(ANB|N >0) = P(A) P[B| N>0]. (2.2.7)

Once again using Markov property of {X,} and (2.2.7) we can write
P(ANB) = P[ANBN(N=0)] + P[ANBN(N>0)]
= PLANBN(N=0)] + P[ANB | (N>0)]P(N>0)

< P(N=0)P(4) + P(A)P(N>0) P[B| N>0]. (2.2.8)
Hence using (2.2 8) and the fact that P(B) = P[BM(N=0)]+ P[BN(N>0)] we get

|P(ANB) - P(A)P(B)| < P(A)[P(N=0) + P(N>0) P(B| N>0)
- P(B| N>0) P(N-0) - P(B| N=0) P(N=0)]
< P(A)P(N=0) [1- P(B| N=0)]
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< P(A4) ¢h),
where ¢(h) = P[N=0] = P[X,.,= K" X, ]

Since {X,} defined by (2.1.1) 1s stationary, from (2.1.5) we have

kh
f—d/( ).

Note that (k"x) / F(x) is a decreasing function of 4 and hence we can write

khx)
li h)= 1 —dF =0.
im g(h) = j o @

h—w

This completes the proof.
2.3  Estimation of the Mean

Let {X,} be a stationary sequence defined by (2.1.1) with common d.f. F(.)
and common mean u = E(X,). Assume further that Var(X,) = ¢° <wo ftor all n. The

ergodicity of {X,} implies that the sample mean X, = (X; + X, + ... + X,)/n is a natural

estimator of 2 The asymptotic properties of X, are discussed in the following theorem.

Theorem 2.3.1 The time average X, is strongly consistent and asymptotically normal
(CAN) estimator of u. The asymptotic variance (A.V) of X, is given by

— 0'2
AV (X,)= =B (2.3.1)

where B(.) is a continuous non-negative function.
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Proof: By Lemma 2.2.1 and point wise ergodic theorem [See Result 1.6.16] it follows that
X, — palmost surely (a.s) as # —>x The uniform mixing property of {X,} implies that

(cf Result 1.6.14)
n(X, - 12, (232)

d e . . .
where —— stands for convergence in distribution and Z; is a normal r.v with mean zero

and variance
o= +22 Y p.()). (233)
=1

In this case p()) 1s the autocorrelation between X; and X;.,. Further 0< of <. Thus X,

is the CAN estimator of x and

2 @
AV(X,)= T (1422 5,0 ). (234)

Let us denote by p(1) = Corr(X;,X>) and assume that p(1) is a continuous

function of & say c(k) [See Remark 2.1.1]. Hence we can write

2
AV(X,)= ‘j—)B(k)

where

Bk) =1 +2ic(kf), (2.3.5)

J=!

which is continuous in 4. Hence the proof is complete.

Remark 2.3.1 The uniform mixing property of {X,} implies that the summations in (2.3.4)
and (2.3.5) are finite [cf Ibragimov and Linnik (1978), pp.344].
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Based on the above CAN property of X, we can construct the asymptotic

confidence interval of u as follows.

Here we are interested in specifying an interval which covers the true
parameter (Population mean u) with an assigned probability say (1-a). This particular

interval is known as confidence interval with confidence coefficient (1-a).

X -
By the above Theorem 2.3.1, we have RC N(0,1) asymptoticaly.
9 B(k)
n

Thus for large #, when o” and k are known we can find out an Z,, from standard normal

tables such that

SO

a2 — 2

% Bk)
n

- o’ = o’
PX -7, Bhkysus<X, +7,,02Bk) | =>(-a)
n n

Thus the 100(1-a)% confidence interval for u is given by

2
X, iza,,”/"—B(k) }
n

We will use the above result to study the sequential interval estimation in Section 3 .4.

Pl -Z Z 2(l-q)

a
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24  Estimation of k

In this section we discuss the problem of estimating k. Let us define

k f X, <2,
W, = no= 24.1)
k(Z,/1X,) ifX,,>Z,

So that W, < k for all n. We propose &, as an estimator of k where,

~

k = Max W (2.4.2)

Ii<n

The properties of I?,, are studied below.

Theorem 2.4.1 The estimator &, is a strongly consistent estimator of &.

Proof: From (2.4.1) and (2.4.2) it is clear that I?n =k if and only if X, <Z, for at least one

i,i=1,2,...,n Thus
Plk #k]=P[X., >Z forall =12, . n]
But we have X;; = k Min (X,.;, Z;.;) and hence
Pk, #k)= PlkZ., >Z, kX,; >Z, for i=1,...n]
Plk #k] < P[kZ., >Z, for all i=12, .. n]
= PlkZy>Z,, kZ, >Z,, ..., kZp. >Z,)

< PlkZ, > Z,,kZ, > Z,,.. .kZ

M
= [Pz, , > 2,1, (24.3)

i=1

where [x] denotes the integer part of x.
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We have used the independents of Z/'s to arive at (2.4.3).

< - : n t_]
This implies that _ P[k, # k]< Y p'? " < 0, where p = PlkZ;., >Z,) = P[kZ, >Z;] and
n=1

= n=1

&L

since Z/'s are iid non-degenerate r.v.s, we have 0< p <1.

Now by Borel-Cantelli lemma, it follows that
P[ k  #k infinitely often] =0.

Equivalently I?" =k infinitely often with probablility one and hence Zn —k a.s as n —w.

X . .
Remark 2.4.1 Note that O<W, = —X—’ <k for all i and W, =k if and only if Z;> X, Thus

-1
the distribution function of W, is concentrated on a finite interval with a positive jump at
the end point. From the study of extreme value theory we know that if {/}} is a sequence
of iid non-negative r.v.s concentrated in a finite interval, with a positive jump at the end

point then I]VIax V, does not converge to a nondegenerate limit distribution for any

norming sequence. This result also holds for our stationary sequence since it is uniformily

mixing [cf pp.13 and pp. 60 of Leadbetter, Lingren and Rootzen (1983)]. Hence our

estimator ifn converges to a degenerate distribution for any norming sequence.

In the folowing , we propose an alternative estimators for & in some special

cases which are CAN for £.

One of the wellknown minification models is that defined by Travers (1980)

for exponential r.v.s. In this case X, has the distribution
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Fix)=P(X<x)=1-¢*,  A1>0,x>0
and the iid sequence {Z,} has the common distribution specified by

Gx)=P(Z <x)=1-e**" x>0.

Then X, defined by
Xo=kMin(X,.;, Z,), n=12, ..

has exponential distribution F(x) for all n >0. For this process E(X,) = 1/4, Var(X,)=1/4°,
Corr(X,, Xpon) = k" h=0,12... .

Now we suggest an estimator for & for the exponential minification process

defined above.

Let
1 if X, z2X, ,
U= j=12,.. . (2.4.4)
0 if X, <X,
Then
E(U) = k(2k-1)
and (24)5)
V(U) = k (k-1)/(2k-1)".

Let I/, = n'D U, be the arithmetic mean of U), U .., U, Now we study the

J=1

properties of moment estimator of k based on U,
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Theorem 2.4.2: For the exponential minification process, the estimator k"zﬂ—TnT 1S
strongly consistent and /n (k; - k) > Z;as n »x where Z; is a normal r.v with mean zero

and variance

ol =k(k-1) 2k-1)* - 2 (2k-1)* ( (k-1)’ i 1

— . (24.6)
S 1+ k"N 2k - 1))

Proof: By the ergodicity of {X,} we have as n o, U, = E(U)) = k2k-1 a.s and hence

lzn —>kas As U, is a function of X, and X,;, by lemma 222, it follows that {U/} is

also stationary and uniform mixing with coefficients

¢’ (h) = §h-1y=k"" h=12, .. . 2.4.7)
Now by applying Result 1.6.14 we get the result that

n[O, -k 12k -1)]—>2Z (2.4.8)

where Z is a normal r.v with mean zero and variance

Var(Z) = Var(U;) + 2 D Cow(U,,U,,,) (2.4.9)
h-1

Now let us compute
rth) = Cow(U,, U,.4)
= E(l/h (]1';,) - E(U]) E((/p;,)

= P(U, =1, Uy, =1) - P(U,;=1) P(U.4=1) (2.4.10)
But
P((// =1, l//.), =1) = P(X/ >X0, Xl'h >Xh)

= Plk Min( Xo,Z,)>Xo, k Min( X4, Z4.1)>Xa]
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= P[Xo> Xo k, Z1>Xo/ k, Xs> X'k, Zp. 1> Xw'k]

= P[Z>Xo' k, Zy. >Xi/k] = Py, (say) since k>1.  (2.4.11)

Now consider P,

Py=1-PZi>Xo k, Zy.>Xn k)’

= 1 - P[Zi<Xy k] - P[Zh.1 < Xk} + P[Zi<Xy/ k, Zno1 < Xi/K] (2.4.12)

Denote the last term in (2.4.12) by /,. Thus
Iy = PlZ1<Xo k, Zy-1< X'k
= P[Xo 2 kZy, Xo = kZ,,.1)
= P[Xo 2 kZ;, Min(K" Xy, K'Z,, K Z5,..., kZ4) 2 kZ. /]

=PXy 2 kZy, K" Xo2 Zh. 1, 72,2 241, Zn 2> 2]

I z+ z+ z+ z+ 2N
" Moz k2 Koz 2 2 i Ty 2 0 2y 2R e sy,

where, ¢ = (k-1)A.

Thus

b= [PLX, 2 Max(kz,,{%‘,), 7, > Zm ]exp{ A} exp{—cz"—ﬁ‘}
0

kh 1
exp {—czh,,} c exp {—cz,m}dz;,”. (2.4.13)

Now consider

PLX, >Max(kz k'”') Z, >;";‘*’1]
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= J'P[XO > Max(kzl,i%}), Z, > ;';"‘] ] ce dz,
0

= Ie Mice “dzZ, =] (say).

Zha
kh_l

Since k>1 and Z, > ;:'_‘1 we have

z
bl o7 <kz, .
kh—l 1 1

Thus

C Z
J= ~(Ak Zhel
Ak +c¢ exP{ ( +C)k'”}

k-1 z
= expd—A(2k - 1) 5L}
2k -1 XP{ ( )k””}

Using (2.4.14) and (2.4.13) I, can be written as

o«

z
h

k

0

x 2

C V4
= exp{—(ﬂk + )2t }exp —cz, [2+1+ L+ +5]1dz,,
£M+c k" { ¢ ¢ } '
CZ
Ak +c

T Tk +c '
Fl—+c[l+l+}+k%+...+;};]

< - : ~CZpe
L= jﬂk e exp{—(ﬂk +c)2a }exp{-czh+l[l +itrto o ]}C,e dz,,

(2.4.14)
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Substituting for ¢ we have

.o [(k - DAP / (Jk + (k- DA)
h

C dk+(k-DA K
Jas +(k _1)’1{ L)) +1

k

12 B G’ phd
_k-DT/2k-1 i K | (2.415)
e I T U L
kh—l

Now let us consider the other terms in (2.4.12)

21 P . ez, ¢ k—i
PIZ, < Xy'k] £P[x0 > kayfee “dz, = = (2.4.16)
Similarly
Pz <Xk = 2L (24.17)
h-1 =Np 2/(——1 e
Using (2.4.15), (2.4.16) and (2.4.17) in (2.4.12) we get
_ 1\ k-
PhZP[U1=],U1+},=]]=1-2(k 1)+ (k-1)"k h oy
2k-1  (k-1xk-1+2k"-k"")
_ k—1+k""
Qk—1)k-1+2k" - k")’
Using this value of Py in (2.4.10),
I‘(h) = COI’(U], Up;,) = P},-P(X1>Xo) P(X1+;,>X;,)
k2
= Py ———— 2.4.18
" k-1) (2.4.18)

Where we used the fact

PX>X5.1) = Pl k Min(Xs.1,Z5)> X 1]
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P ',Z )\».:

ATk

Il

[PLZ, > Y “dx
0

]e >k 2e Fdx
[}

A k
A 2k—1

which is independent of

Note that

gt 1

2 1{5“1 +2- .k} - (% )2-1)

th

Thus as 1 »>x

kl
MTTENE

Now let us simplify #(h) in (2.4.18)

kl

n=p, - —~
= E Gy

_ k-1+k"! ) k?
Qk-Dtk-1+k""Qk-1)} (2k-1)*

_ -k’
Qk-Dtk-1+k""Qk-1)}

(2.4.19)

An application of ratio test for convergence of series implies that
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2\r(h)| <x

Now using (2.4 5) and (2.4 19) in (2.4.9) we get

_ kk-1) 2(k—1)-‘£

|
v 2.4.20
ar(2) k-1 k-1 S k-1+k""'Qk-1) ( )
and 0< Var(Z) <x.
Let us write

~ 2k -1 _
Jn(k, k) = -——= 1\/5(1/"-%)

207, -

ra

: 2
Since ST -1 — (2k - 1)? as as n —>x by Slutsky's theorem we have

Jn(k, -k)y—>Z,

where Z; is a normal r.v with mean zero and variance o} given by (2.4.6). This completes

the proof.
In the next section we consider the estimation of parameters in some other

special cases

25  Estimation of Parameters in Some Special Cases.

This section is devoted to estimation of parameters when marginal
distribution of X, is either one of Exponential or Uniform or Pareto. In Section 2.1 we
have noted the conditions to be satisfied by the marginal distribution so that the non-
negative X, generated by the minification model (2.1.1) is stationary and Markov. The
class of such distributions include Exponential, Weibull, Pareto and Uniform- U(0,1)
distributions. We summarise the important features of these minification processes in the

Table 2.5.1.
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It can be noted from the Table 2.5.1 that Uniform, Exponential and Pareto
minification processes have geometric autocorrelation function. But all the four

minifcation process are uniformly mixing (See Lemma 2.2.2) with mixing parameter
¢ - PX,.=K X, =K" k>1 h=12, . (2.5.1)

Since. Weibull minification process doesnot have a closed form of this type for
autocorrelation function, here we consider only Exponential, Uniform and Pareto
minification processes.

In Theorem 2.3.1, we have noted that the sample mean X,is CAN

estimator for population mean. The asymptotic variance of X, can be calculated using

(21 7)and (2.5.1) as

AV(X,)= m{l +2§':p.x.u>}

n

‘4‘—)1122/( }
71

n

k+IKa_r(Xn)
k-1 n

Remark 2.5.1 Confidence interval for population mean of Uniform, Exponential and
Pareto minification process can be constructed as described in Section 2.3. The general

form of such an interval is given by

{/\_/n i_ZuZ%

n

Var(X , )}

We will use the results of this chapter for the sequential estimation of parameters of the

minification processes in the next chapter.

The material of this chapter are briefed in the paper Balakrishna and Jacob (1998a).



CHAPTER 3
SEQUENTIAL ESTIMATION FOR
MINIFICATION PROCESSES

3.1 Introduction

In many statistical inference problems, some predetermined
accuracy is required and usually the optimal fixed sample size to meet this accuracy
depends on some nuisanc: parameters. For example, if we wish to construct a confidence
interval for the unknown mean € of a normal population, N(6,0°) with preassigned

accuracy width 2d and confidence level y for given d > 0 and ye (0,1), the optimal fixed

R
zo )~ 1+
sample size procedure requires a sample of size no = (70) , where z = (D"'(—z—y) and

® is the cumulative distribution function of N(0,1) r.v. Note however that, the sample
2
size ny = (%) , depends on ¢ which is oftén unknown. To solve such problems it is

necessary to use a sequential scheme.

The most frequently used sequential sampling scheme is the fully sequential
scheme due to Anscombe (1953), Robbins (1959) and Chow and Robbins (1965). In this
scheme of sampling a sample of size m is drawn first and then observations are taken one
by one. It renews the estimates of the unknown parameter and the total sample size after
each new observation and checks weather enough observations have already been drawn.

Not surprisingly this scheme is very efficient in terms of sample size.
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The purpose of present chapter is to extend the sequential estimation
techniques to minification processes.

The general minification processes and its probabilistic properties are
studied in Chapter 2. Compared to 11.d cases, the literature on sequential estimation in
time series emerged some what recently. See Sriram (1987, 1988), Basawa, McCormick

and Sriram (1990) for the history of sequential estimation in dependent cases.

The present chapter is organised into four sections. In Section 3 2 we
propose sequential procedure to deal with point estimation of mean. Sequential estimation
for kK in exponential minification process is given in Section 3.3. Section 3.4 contains

sequential interval estimation for mean and &.
3.2. Sequential point estimation of mean

Let X, X5, .., X, be the n observation from the model (1.3.1) and our aim
is to estimate = E(X,). As one can see in the literature on sequential estimation the loss
function is often the sum of quadratic loss. for the discrepancy between the target

parameters and their estimates. Thus here the loss function is

L= L5 (X -w?, 420 G21)

where o° = Var(X,). The loss function defined in (3.2.1) have the property that for a given
4, the loss increases as the difference between X, and u increases in either direction.
Also this loss function is easy to handle mathematically compared to other loss functions.
The expected value of a loss function is called risk function. The aim is to find an
estimator for the unknown parameter which have minimum risk under any loss function.

Such estimation procedures are known as minimum risk estimation method. Thus in

minimum risk estimation problem, minimization of risk w.r.t the choice of sample size
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leads to the minimum risk estimator (MRE). Here we estimate the parameter u such that

the expected value of L,(u) in (3.2.1) is less than some prescribed value u,,
A< 2
E l”?(/‘l) = Rﬂ(#) = —2_ E(Xn - #)
o

o’B(k)

Now using Theorem 2.3.1 we have E(X, - ,u)z ~ , where ~ means asymptoticaly

equal. Hence

Riy) =An' Bk)+o(n"), (3.2.2)
where B(k) is a continuous function of & for &>1 and f = o(g) means that i— —0.

Let ny(u) be the smallest integer » such that

Ry <u,

An'! Blk)< u,
Thus
no(u) = A B(k) u,,. 323)

It is clear from the sample size defined in (3.2.3) that nyu) depends on the parameter £
When the parameter £ is unknown, nonsequential optimal solutions may not exist in
general As a remedy we go for sequential method of estimation by defining a stopping

rule 7, in analogy with n/{(u) by
T,= infln>m,, nzu};'A.B(l?")} (3.2.4)

where m, is an initial sample size imposed to avoid stopping too soon and that depends on

the risk bound w,,. B(En) is obtained by replacing & by I?n [See (2.4.1) and (2.4.2)] in
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~

B(k). The estimator k, and its properties are discussed in Theorem 2.4.1. Now the

n

sequential point estimator for pis X ;, with corresponding risk

A _
R, = —E(X, -u)’
o
The efficiency of sequential procedure is measured in terms of the
convergence properties of the following quantities, under some regularity conditions as
cost per observations tends to zero. The quantities of interest are
(1) I (ii) L2 (i) %

n n, .
Here 7" denotes the stopping time, n, the fixed sample size R; denotes. the risk under

sequential setup and R, the risk under fixed sample size procedure. If ;T— converges to
0

1, then we say that the sequential procedure is asymptotically consistent and if —’f—T) -1
0
we say that the sequential procedure is asymptotically efficient. As a measure of relative

efficiency of sequential estimator w.r.t fixed sample size estimator we consider the ratio

R . . . o . .. R .
—L . The sequential point estimator is risk efficient if ——=1_ However, this is not true

My ' ny

. Y ¢ .
in general. But under some conditions if — converges to 1, then we term the sequential
"y

procedure as asymptotically risk efficient.

The main results of this section are summarised in the following Theorem.
Theorem 3.2.1: If for p >2, Ellezp <« and m, is such that u,""*"<m, = O( u;l) for h

€ (0,p-2) thenas u, —> 0

L

no(H4)

i

—1,as
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Iy

no(4)

1 E -1l—>0

i /7, (X7, - 1) —L 5 N(0, o7 ) where 0¥ = o’ B(k)

R"o(#)

We need some lemmas to prove this theorem and we introduce the

following notations for easy reference
n; = nyp) (1-¢) ny; = ny( ) (1+¢) 0<e<1

C=[7,<n] D=1[T,2n;] H=[n <T,<ny].

Lemma 3.2.1: IfE|Z,|*” <co, p>1 then

|- i, = 0w
Proof: From the definition of the model (1.3.1) we can write

X, -pu<n'Y(kZ - p)
1=1

=n'k {i(z, —a)+(a- y/k)} (3.2.5)

-1

where a=E(Z)
Thus using Minkowski inequality (See Result 1.6.1)

[%, -4, <nk “i(z,. @)

thka-piB),

2p
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: , . 2 e . .
Now since Z,'s are 1id with E|Z ]| P < x, we can use Marcinkiewicz -Zygmund inequality

[See Result 1.6.10] to the first term to get

i(Z, ~a)] =0w"?.

2p

Thus
”Y ;1““ " OW'H= 0w

The lemma is proved

Lemma 3.2.2: If {Z,} is a sequence of nonnegative and non-degenerate r.v.s and m, is

such that u,' "< m,=O( u;,] ). h e (0,p-2)forp -2 Thenas u, -0,
L P[T,<m]=0Cul? ¥P")

2 SPIT, >0 =0l P

Proof: From the definition of stopping time (3.2.4) if 7, <n, then

u;' A.B( En) <n; forsomem,<n<n;.
Thus

PlT,<n]<P[ u;‘ A. B(k,) < n, for some m,<n<n,]

< P[ B(k,) - B(k) < - B(k) for some m,<n < n;]

IN

P{ Max

<
m, .n<n;

B(l?n)— B(k)l > s'} where &' = £ B(k)

IA

Zm: Pk, - Bck)|> g']
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< i P[IE,, - kl > r]} ,forp>0. (3.2.6)

nom,

The last inequality is due to the fact that B(.) is a continuous function of 4.

Now consider

P, - K] > n] = PICR, 41 + PLE, k<]

=0+ P[(k,-k)<-7]

Max[i) <k- n}
I<ivn Zl \

[ Z Z V4 7
= P7(1;<k—77,—2?—<k—77,7‘;—<k—77,...,7n’%1<k—77]

IA
e

[ Z Z 7
PlA<k-nA<k-n,.. - <k-
"< 7, < U <k 77]

IA

. LS I
SPFZ:;'—<I(—77][2] =a[g]—‘,
@)
where a= P'Zl_<k_’7 :

. . . o Z
Since {Z,} 1s a sequence of nondegenerate r v s it is true that 0 < P[Yf‘ < x]<1 forx >0

Consider
AF. ""‘”’L il o
. < =~ ash — o
nt n? 0
Therefore,
[ 3 n?
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Il
3

_ 0
= “mM
n rua (loga)pa 2+

n+o (loga)”?

>

=0.

Therefore,
P“I?,1 - kl > 77] = o(n?).

This implies that

O<axl

P[l/? A ;7] = Q™).

Now using (3.2.7) in (3.2.6) we have

P{l,<n]= i Ow*)
n=m,

1 1
= "‘ —— + —_—
m? (m, +1)*
Now we have the following relations

1 1 1

p————t <
m? (m, +1)” Cm, -1)? m?

u

1 1 1

+ —} for some 0< ¢ x.
]

u

—+ .+ <
Qm )" @m0 @m, — 1) @m)” 2m )"

(3.2.7)
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1 1 1 4m, 1

p+ p+“.+ ~ p< N P
(4m,) (4m, +1) (8m, - 1) (4m,) (4m )

1 1 1 1 1
Hence — +———+. < + + +
m’  (m, +1)" m’ 2m)"t (4m)"!

k u

1 1 1
= Py 1+2p,I +22(p TRt

1 1

Now the series1 + bVl + W+ is a geometric series whose common ratio is

YRR

less than unity since p>2. Hence the sum of this geometric series is finite. Thus we have

P(T,<m}=0(m7*")

-1
= O(uf? M),

where we used the condition u,"*" < m,.

Hence first part of the Lemma is proved.
For the second part, from the definition of 7, it follows that for n > n,
PIT,>n) < Plug' 4 B(k,)>n]
= P[B( En y>n, A u, ]
= P[ B(k,) -B(k) > B(k) ]
=Pl k,- k| >e'1=0On*)
As in the proof of part (1) here we can prove

> PIT,>n]=0(ul" ).

nom
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This completes the proot

Lemma 3.2.3: Under the conditions of Lemma 3,2_2,{11;"‘(/?&—y)zl(n‘{,.y nﬂ},

0<u,< uy, uy <1 is uniformly integrable.

Proof: From the definition of uniform integrability [See Definition 1.6.4] it is enough to

prove that

1,7 2
u, (Xry —- 1) 1(n,<Ty\n2),<w'

Sup E
TH

Using (3.2.5) we can write

Elu (X, —w)'l,) < u,' EMax(X, -p)?| 1,
n 2
< g ! . 1
<u‘k EiMaxn 'Y (Z -a)+Ha-pulk) I,
n1<n<n2 1:1

<u'kn?® E(F! 1,)+2 ' u'k (a—wk) E(F, 1,,)

+u k E(1; X a—wk), (3.2.8)

D (Z, - a)lis a submartingale w.r.t. F, = 6{Xo Zi, ..., Z,}. Now

where /= Maxn'
R =1

using Schwartz inequality, Maximal inequality for submartingales and M-Z inequality, the

first term in (3.2.8) can be written as

w'kn? E(F} 1)< u'kn?® EV*(F})P*(H)

]

< u,'kn’ P"*(H) E”{

Max (2, - a)
(R 1=1
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IA

S(Z -a)

w'kn® P'H) E' 2{

]

IA

' kn? P! 2(1-{) O(my).

Now using Lemma 3.2 2, we have

w' kn' E(F!I,)<x.

Similarly the second term in (3.2.8) can be written as

2m w k(a—pk) ECF, 1)< n' u) k(a—uk) n? BV (D) PP(H).

Repeating the same arguments as above we have

m'u, kECF, 1, ) a-uk) <o

Similarly the third term in (3.2.8) is finite. Thus we have proved the lemma.

Lemma 3.2.4: If E{Z,]zp <o, p>1then {vn(X, — pr), n>1} is uniformly continuous in

probability.

Proof: We have vn(X, - u) = Y (X, - p)/vn

1=1

Letting > (X, - 4) =(), and following Woodroofe (1982) (cf. pp.11)

i1

we can write

(3.2.9)

+ [1 —(n'jj)m]
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If j < nd the second term on the right hand side (3 ° 9) is stochastically bounded by

[1-(1+ 8" T (X, - wlvn = [1-(1+ 6?1 O(1) by Lemma 3.2 1

=0(9)
which tends to zero as d -» 0 uniformly in .

Thus we have

PJ Max

LO j<nd

eI

Now consider

nJ—Q

Z(X w)[>

} L Max
0< j<n5

s, ¥

Using (3.2.5) we can write

n+y

P{ Max
0< jnd ‘

n+j

kD (Z -a)+ jk(a—-%) >

1:=n+1

DAX, ) >

0< j<né

5*2/_} P[Max

7]

n+y
Note that k{ Z(Z, -a)+ jk(a - %)} 1s a submartingale wrt G, = o{Xy Z,...Z,,}.

1=n+}

Using maximal inequality for this submartingale we have

P[Max l
£n

0 =nd J;

O, =0,

anJ <4

t-n+l

4
5—1

k8 E[(Z, - a)| +|(a -9
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= O(8) — 0 uniformly in n, since Ellezp <.
Thus {~Vn(X, — u), n>1} isu.cip.

Now we are in position to prove the theorem.

Proof of Theorem 3.2.1

Since k, is a strongly consistent estimator of £ and B(k) is a continuous
function of 4, it follows from (3.2.4) that 7, < and 7, 5 as #, —0. Also B( I?T” )
— B(k).

From the definition of stopping rule (3.2 4) we have

1,>2m,

Tz u,' A Bk, )
and

I,<ug' A Bk, ).

Thus

u,' A. B(k; )< Ty<u,' A Bk, )+m, (3.2.10)

Dividing (3 2.10) by n,(x) and using the above arguments it follows that

H a.s

—= ]
n,(u)

u

ny(4)

—0.

if m, 1s such that,
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For part (ii) we can write

E

7 T ' T
K _1| :E( # _1] +E( “ -} (3.2.11)
n,(4) n, (1) n, (1)
But ! 1= # -1 1("*‘ a -1 11)+ - -1 ]H
n, (1) ny (1) ny (44) n, ()

(T, '
and l e [C =0,
\H, (4)

Now using Lemma 3.2 2,

o) el ) ) )
E| ——-1| =E| —%—-1| Iy+E| -~ I+ E| = P(D)
m, (1) ny (1) ny (1) ny(44)
= e P(H) + ng (W) E[(T, - ny) 1] + g () (n2 -0y (u) )" P(D)

=& +e+0(1),

since ¢ is arbitrary, as #, -0, we have

E( L —1} —0. (3.2.12)
ny (1)

Now dominated convergence theorem can be applied to the second term in (3.2.11), since

[ T J

Thus

T » T )
limE( z —] - Elim( 2 -j Y (3.2.13)
u, »0 no(‘u) u,—0 no(’u)
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Now part (i1)of the Theorem follows from (3.2.11), (3.2.12) and (3.2.13).

For part (iii) recall from Theorem 2.3.1 that
n(X, - u) —>N(©,07).

We need to show that this result continues to hold when » is replaced by the stopping time
7, In Lemma 3 2 4 we have verified that {«/;(Yn - p), n21} 1sucip. Then one can

conclude, using Anscombe’s Theorem [See Result 1.6.5], (2.3.2) and from part (i) that

\/f(/?n - 1) —5N(0,0}), as u, — 0.

In part (iv) we will show that the risk of the séquential procedure X 7, defined by

R, =4 E(X; —u)iscloseto R, ,,,asu, —0.
Consider
RTF AE(/?T - .u)z
R N 2 I[CUHUDJ’ (3.2.14)

ng(u) uyo-

where the events C,D,H are as defined earlier.

Using Schwartz inequality, Lemma 3.2.1 and Lemma 3.2.2, we write

2 ¢ o= 2
HyO' U”O'

AE(X, - u)’ A _
iz I < EW{ Max (X, —/1)2"} PY(C),

m, < nem

1,1 _
where  +5 =1

A © Vp
= { n”} PY(C)

2
u,0° |,
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p Dithi g

A
= ?u#'O(mu”’ "O(u, )

A tp-Lyithelig
1 1) (h+1)
T, O(uf 7)YO(u, )
o

|

=0o(1) as u, -»0, since h €(0,p-2). 3.2.15)

Similarly using Schwatz inequality, Lemma 321 and part (2) of Lemma 3.2.2 we have

-:4 7 E (X, - ) lp=0(1). (3.2.16)

ll#O'

Now we will prove
A 1 v 2
- u, E(X; —p)'ly—1 asu, 0.

Using part (111) and Lemma 3.2.3 it follows that
2

_ o,
E (X, -y > T’ as u, 0.

U

But we have o = B(k) o” and n,(u)~ AB(k) u, to write
A — A
?u#' E (X, — )y ?u#’ ol n,' (u)

k
L ABK) (3.2.17)
u, ny(4)
Now the asymptotic risk efficiency follows from (3.2.14), (3.2.15), (3.2.16) and (3.2.17).

Hence the theorem is completely proved.
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3.3  Sequential Estimation of £ in Exponential Minification processes

Exponential minification process have many nice features compared to
other minification processes. This section deals with sequential estimation of & of th

exponential minification process.

Even though I?n defined in (2.4.2) is consistent for £ in a general
minification process, it is not CAN. However, for the exponential case the estimator

suggested 1s 1;,, given by

~ U
k =—oL 331
T2U -1 ( )

n

1s CAN as discussed in Theorem 2.4.1.

For the sake of algebraic simplicity we consider a loss function of the form

L= C[(2k-1) U - k>, C>0. (3.3.2)

for estimating £ using (3.3.1). Using Theorem 24.1 (See (2.4.8) and (2.4.20)) the

corresponding risk is given by

R = E[Ln] = C(2k-1)* E[U , -(k((2k-1))’

=Cn'! {k(k - 1)—2i (k-1 }

“k-D+k"2k-1)

=Cn' H(k) (say),

» k—1 3
where H(k)= k(k - 1)_2Z(k - 1)(+k" ‘)(zk -1

(3.33)

Note that H(k) defined by (3.3.3) is a continuous function of k for £>1. As in the case of
population mean here also we calculate the sample size such that the risk is less than some

prescribed limit say #;.. That is,
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R,,k < Uy, (334)

Let # be the smallest integer » such that (3.3 4) holds. That is,
Cn' Hk) < ug
Thus

no = Cn' Hk). (3.3595)
Note that this fixed sample size procedure depends on the unknown parameter £.
Let us define a stopping time by

Le=inf{nzm - n >2Cu' H(k )}, (3.3.6)

where m; is an initial sample size that may dependent on u,, H( l;n) 1s obtained by

replacing & by Ifn in (3.33)

Based on this stopping rule the sequential point estimator of £ is /;,. with
L3
corresponding risk R, . The optimal properties of this sequential procedure are

summarised in the following Theorem.

Theorem 3.3.1: IfE|Z,|% < = for p>2, and my is such that u;"**V< m,=O(u") for

he (0,p-2), thenas u;, — 0

2. E
n,,

-
—*—]I—)O

3. T, (k; - k) —“>N(0, o2), where o} is defined by (2.4.6)
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The following lemma's are needed to prove this theorem and hence

we prove them first.

Lemma 3.3.1: Let {Xn} be an exponential minification sequence defined in section 2.4

and if E| Z, 1% < % for p>1 then

”(Zk -1)U, - k“zp = O'?), where U, =(U;+Us+...+U, )/ n and U, is defined by

(244)

Proof: Consider

k

2k =07, - k], =x-1) |T7, - D

U,

2p

= (2k-D)n’

S k
20U, -z

2p

Note that Z(U, - (Zkk— 1))is a zero mean martangale w.rt F, = 6{X,,Z,,...Z,}. Then by
[

applying Burkholder inequality (See Result 1.6.1) and moment inequality we have

112
Bp n

< k
§(Ur “ k-1

112
1< 2

< {n >, - (2:_1))

2 i=1

4 2p

IA

r I'p
n'yU, —ﬁ)”}
L 1=1

2p

=0(1),

where B, = 18p" % (p-1)" ’ Hence

; k
20U, apy

1=1

=0’
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Therefore

2k ~ 17, - k], =@k-1)n" O@"?)

=0’

The lemma is proved.

For the following lemma we need to introduce some notations

Let my = no1-¢), m = ng{1+e), A = [Ty <ny], D= [7k 2n;) and E = [n; <T} <n,].

Lemma 3.3.2: IfE|Z,|¥ < o for p>2 and my is such that u,""D < mp=0(u;'), where

U 1s as definded in Section 3.3. Then for Ae (0,p-2),
1. P[Ti < m]=0(ul? D)

2.2 [Tz =0(u]")

neny

Proof: From the definition of stopping time 7; (3.3.6)
Ty < n; implies
Cu,'H(k,)<n, for some my<n<n,.

Thus using the definition of »,

P[7, <m)<P[Cu,'H(k, ) <n forsomem<n<n,]

=P[H(k,)- H(k) < -eH(k) for some m; <n<n]

SP{Max

my < nsm

H(Ign) - H(k)' >:8':, where &' = gH(k)
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- P[’H(/G,,) H(k)|>g']

!
’}

<y P[|/2" E 77]. (3338)
Now we will prove
P[/;,, - k] > 77] =0(n"7) (3.3.9)

In view of relation (3.3.1) and Result 1.6.12 it is enough to prove
Pl

U, - 7}—,’ > g] = O(n®).

Consider

I7 k
7, -5,
We have already proved in Lemma 3 3.1 that-

|

U, - 5,,= 00™).
Using Markov inequality for £ > 0, we get
P

Now using the Result 1.6.12,

EU, - it

73 k
U, — —-“_,| > e] <

=0m?™?).

817

I
27, -1 -]

>¢e| =0Wm??).

Hence the required result (3.3.9) follows from the above equation.
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Combining (3.3.8) and (3.3.9)

P[/i<n)< Z O@*”?)

nomy

_ 2)
_O(mk(l’ )1)
:O(llf‘p 2) 2(h~1))'

This proves the first part of the lemma.

On similar lines the second part can be proved. We have already provided a similar

result in lemma 3.3.2. Hence we omit the details.

Lemma 3.3.3: Under the conditions of lemma 3 3 2,

L, [(26-1) U, -k} L 1,y O W< g}

is uniformly integrable.
Proof: By the definition of uniform integrability it is enough to show that

Sup E | u;' [(2k-1) U, kP Ig| < .
N

Consider
E | u'[k-1) T, kT Isi<n, lMax[(Zk—l)(_/n—
2
< u,'(2k-1Y’E Max[U 2] I
(2k —1)2 ’
< l;l—z Max Z [U k- 14 IE
n n<n<n,y

1
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Note that » [U -] is a martingle wrt G, = o{X, Z; ..Z,} and hence
11

ey

Vo= |Max )" [U, -] is asubmartingale.
1)

Now using Schwartz inequality and maximal inequality for submartingales,

k=172
k‘——( 2) g v PAE). (3.3.10)

n,

E | u'[k-1) T, 4P 1p|<u

4
",

Consider E(}} ) = E’Z [V, - 5]
[}

Using M-Z inequality we have
E(V,})=0(n;) [See Lemma 3.3.1]
Using (3.3.10) , lemma 3 3 2 and above arguments we have

2
;DT Oy P <

II1

E | u'[(2k-1) T, -k Iy|< u

Hence the proof of the lemma is complete.

Lemma 3.3.4: {J;(/;n—k), n =1} is stochastically bounded and uniformly

continuous in probability.

Proof: Using (3.3.1), s/;(kAn — k) can be written as

n(k, - k) = JZ( v, —kj

20/, -1

Jn[(1-2k)T, + k]
207, -1
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_ (=26, + k) n
QU,-1y/n

(3.3.11)

We will prove that the terms in numerator and denominator of (3.3.11) are u.c.i.p and

stochastically bounded and then use the Remark 1| 6 3 to get the required result.

As U/ <1, it follows that {[(1- 2k)(7n + k]/\/;} and [(2(_7,, 1)/ n] converge to

zero almost surely as n—>x  Thus by Remark 162 these terms are ucip and
stochastically bounded. Since any continuous function o: u.ci.p and stochastically

bounded sequences is again u.c.i.p (cf Remark 1.6.3) lemma 3.3 4 now follows easily.

The proof of Theorem 3.3.1 is skipped as it is parallel to the proof of Theorem 3.2.1. In

the next section we will consider sequential interval estimation for the mean and £.
3.4  Sequential Interval Estimation

This section is devoted to the study of sequential interval estimation for the
mean of general minification processes defined by (2.1.1). In the iid setup Chow and
Robbins (1965) proposed a sequential confidence interval for the mean & of a

population with finite variance as discribed below. They consider a situation where {X,}

is a sequence of iid observations and éLn 9 (both based on X}, X;, ..., Xj) such that

Un

@,{ns@ and P[ éL"s 4 séu,,] > l-a. In this case 1-a is referred to as a confidence

Un

coefficient or the coverage probability and ae(0,1). In the confidence interval,

-

6,,and @(,n are the lower and upper confidence limits and the width of this interval is

equal to 9(,,, - éLn. In many problems of practical interest one wants to provide such a

confidence interval for a parameter of interest satisfying the additional condition that for

some preassigned d(>0).
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Assume the estimator 7, for & is strongly consistent and \/r_1(T,, -0

asymptotically normally distributed as n—w say N(0,07).

Then

limP(T -n'*0Z, ,<0<T +n"0Z _,)= l-a (3.4.1)
" oss A\ "n a2 n 1 a2

where Z,..>= ® '(1- £), Obeing the standard normal distribution function. Consider

the interval

1, =Tn-d, T,+d] (3.42)

as a possible confidence interval for 6. Its length is 2d and if ¢” is known the best fixed
sample size which minimizes the length can be obtained from (3.4.1) and (3.4.2) which is

given by (cf. Chow and Robbins (1965)).

ng=d’ z},,o ' (3.4.3)

and

Llr}(l)Pg(B €l )= l-a

For small d, /.4 provides a bounded length confidence interval for @ with asymptotic

convergence probability 1-a.

However, when o’ is unknown, o in (3.4.3) it can be replaced

by an estimator
S: = S,,(X/X_?...Xn),

but then we cannot use the above fixed sample size procedure. So we replace n, by a

random sample or a stopping rule

_ : . -2 2 2
Ny=min{n>2ny:nz2d~ 2, ,,S,},
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where, 1, is an initial sample size. Then we use the confidence interval
Iy, = {Tva-d, Tva+ d}

for estimating 6.

For the stopping rule N, and the interval /, Chow and R« 'bins (1965) have proved the
following properties.

1. N, is non decreasing in d

2. N, is finite with probability one for every >0

3 Nsd->1 asd—0

4 limP(0el,,) = l-a

Our problem here in this section is to find a confidence interval for u =
E(X)) for the model (2.1.1) having prescribed width 24 and a converge probability 1-a.

That is to find /, such that P[u e I, ]=1-a, 0 < a<l. We have proved in Theorem

2.3.1 [See (2.3.2)] that

Vn(X, - ) —>N(O, 1),
where o! is as defined in (2.3.3) and

0'12 = 0712— B(k).

B(k) = 1+2 ic(k’).

J1
Based on the above result an approximate confidence interval for g, when ¢ and k are

known are constructed in Section 2.3.

Let /. be the required confidence interval. Then
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IK =[ Xko-d, "\_/K0+d]

[

where

Ko=[d? Z%,, o’B(k)] (3.4.9)

1-a’2

and Z,..» 1s such that

Zlu}

1 2
ﬁ j‘exp{—“?} du = I-a.

Zl a2

Note that from (3.4.4) that K, »» when d—0 and

4K,

_ 4K,
Xy -us— "> 1a

Plue I, 1=P| K,

where

A =[oB(k)]"? (3.4.5)

When at least one of the parameters o, k is unknown we proposes
a sequential confidence interval. For that we define a stopping rule as in the case of point

estimation,

’

N=infln=ngn>d”Z}_,[S’B(k,)+n"]}, (3.4.6)
where

np 1s an initial sample size
n —

S;=n'Y (X -X,)
[

k is as defined by (2.4.2) and 4 is a suitable constant to be defined later. Note that from

the above definition of stopping rule N>d’ Z? . N”

1-a/2

241+ h)

ThatisN>(§ui
2| )
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Thus when d—0, N —»x.
The performance of the above stopping time N and the corresponding confidence

interval Iy are discussed in the following Theorem.

Theorem 3.4.1 IfE|Z, | ¥ < = for p>2 and he(0,p-2) then as d -0

. N d.s 1
- )
1 0

i E [i\/_j =
i K

0

1 Plue Iy] »1-a.

The following lemmas are needed to prove this theorem and hence we
prove them first.

Lemma 3.4.1. IfE|7,| % < x for p>2 then
PLI S A(k,)-0" Atk)|>€] = o(n?),
Proof: We have proved in Section 3.2 that
PLIA(K,) - Atk >e] = O@™),
which implies
P[A(k,) - A(k)|>e] = O(n*?),
In view of the Result 1.6.12 here it is enough to prove
P[| S2 -& |>¢] = On™?). (3.4.7)

As for (3.4.7) consider

sz -o?]

'Y (X, -X,) -0’
[

P

= (X, - ) 2= X (X - )+ (u- X)) -0

i-1 p

Now using (3.2.5), Minkoswski inequality and Schwarz inequality we can write
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n

S - OZH,, < Un ‘kzzn:(Z, -~ )’ + 2kn '(ka *#)Zn:(zl -a)+(ka - p)’
1 [

+ 2kn (u-X)DNZ —a)+2(u-X,) (ka-u)+ (u-X,) —ozl}p

< In'k? Zn:[(z, -a)’- e]np +2n '(ka - wyk

Z(Z: - a)

14

lu-X,)

2p

+ 2n ‘k”i(z, - a) ,, F2(ka— ) lu-X,)

P

, (3.4.8)

P

=X, + k6o

where 6=E( Z,- a )~

Note that Z[(Z, —a)’ - 6] is a mean zero martinagle wrt F, = 6{X, Z;, ..., Z,} and

[

hence from M-Z inequality the first term in (3.4.8) can be calculated as
In 2Nz - )-8, =0
=1

Now by applyaing Schwartz inequality, Lemma 3.2.1 and M-Z inequality each term in

(3.4.8) can shown to be of O’ ?). Thus we have

A orzl[p =0m"?).
Now from Markov inequality

Els? -o?|"

gl’

P[| $? -0 |>e] <

=On"?).
Hence we have the required result (3.4.7). The lemma is proved.
Proof of the following lemma is omitted as it is similar to that of Lemma 3.2.2.

Lemma 3.4.2 IfE|Z|¥ <xfor p>2 and he(0,p-2) then

. PV Ki1- ] =O(a"")
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1 ZP[N >11]=O(dp2:).

NFTE
Proof of Theorem 3.4.1

We can prove part (i) and part (ii) using Lemmas 3.2.1 and 3.4.2. The
proof is parallel to that of part (i) and part (ii) of Theorem 3.2.1. Hence we omitt the
details.

For part (iii) consider,

Pluel] = P[|X, - 4| <d]

=P \/_I\TIX\ _/JI < d\/ﬁ}

A A

\/_\ y(Z\/—

349
A \/K ’ ( )

where A is as defined in (3.4.5).
Recall from Section 3.2.1,

IN(X, - ) —25N@©, A?).
That 1s,

A'IN(X, - p) —25N(O,1).

Also we have from part (1) of Theorem 3 4.1,

Ay a.s 1
KO

N
and hence .| — —=— 1.
\ K,

Now part (iii) follows from (3.4.9) and the above arguement.

This completes the proof of the Theorem.



CHAPTER 4

ESTIMATION IN RANDOM COEFFICIENT
AUTOREGRESSIVE MODEL

4.1 Introduction

The rest of this thesis is about sequential estimation of first order random
coefficient autoregressive model RCAR(1).  Linear time series models such as
autoregressive models have been widely and successtully used in many fields. The reasons
are that these models can be easily analysed and they provide fairly good approximations
for the underlying chance mechanisms of numerous real life time-series. However, in some
particular situations one may ask if there exist other models which can provide better fits.
One is then led to consider nonstationary or nonlinear models. RCAR model is one such
class of nonlinear models which have been found useful in many areas. Some of the
specific applications of RCAR(1) models are discribed in Section 1.2. In the present
chapter we consider the properties of RCAR(1) model and properties of least squares

estimators of its parameters.

4.2  The Model and its Properties

Let {X,} be a sequence of r.v.s defined by an RCAR(1) model

X-p=0rpYXy-wte i=12, .. 4.2.1)
where 1 = E(X)) and the r.v.s satisfies the assumptions A; - A4 in section 1.2 with p=1.

They are

a) {&,i==x1,£2, }isasequence of iid r.vs with mean zero and variance o <=
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a) {f.i==1,12, . }isasequence of iid r.vs with mean zero and variance y <
a:) The sequence {¢} and {3} are statistically independent.

a;) X, is independent of ¢ and g, for ;- i.

Recursively using (4.2.1) we can express X, - i as

X-u=Ve W, i 1. (422)
where
V.= ¢ +Zm:{ﬁ(b+ﬁ,k)}gl‘j , for any m (4.2.3)
Tilko
and
w, {f!(bw,k)} (X, mry — 1) (4.2.4)

Here {},} defined in (42.3) is an (m+1) dependent stationary process. [See Definition
1.6.6].

In the following we discuss the conditions req,. ired for the stationarity of

{X.}. Using (4.2.2) we can write

Xo-u)V=Ww.
Thus

E[(X,- p) - V) =E[W’] (425)
Now using the assumptions for the model (4.2.1) and (4.2 4)

E[VV,Z]: E{lﬁ[([“rﬂz k)J E(X: m 1 _'u)z

k=0
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- lﬂ[(h2 +7) E(X, - ~y)z
k0
=B )" E(X, ., - p)

Now if (6% +y) <1 and E(X, - —/1)2< x, then as m — E[W] converges to zero.
Hence from (4.2.5) and from definition of convergence in mean square it follows that °

4 converge in mean square and, hence in probability to V;. Thus we have
(X - )V | =250, (4.2.6)

Thus there exist a solution for the model (4.2.1) if (6% +y)<1. The solution is given by

w [

Xo-u=¢ +Z{]—[(b +ﬂ,,{)}; S (4.2.7)
1L k-0

The solution for X, - 4 defined by (4.2.7) contains only iid r.v.s &'s and S's. Hence this

solution is stationary also. Nicholls and Quinn (1982) proved that the solution to X, - u

defined in (4.2.7) is ergodic. [See Theorem 2.7 of Nicholls and Quinn, (1982)].

We have noted in (4.2.6) that |(X, - U ) V,| —250 Now asymptotic
properties of (X, - x ) is same as that of V, [See Rao (1973), pp. 122]. Moreover, the

asymptotic distribution of Jn(X . — M) 1s also same as that of \/;;(17,, - 4,) where 4. is

the mean of },and J, =n” DV, Since E(}}?) is finite, and V, is (m+1)-dependent r.v.s,
11

we have for fixed m [See Result 1.6.13],

In(@, - ) — N(0, 3 Covly, ,m,)j ‘ (4.2.8)

n=-m
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Also as m —x, V, converges to (X; - x ) in mean square. Hence Cov(V,,V,,,) also
converges toCov(X, — u, X, — u) [cf Rohatgi(1976), pp.248]. Thus as m — « the

variance of the asymptotic distribution in (4.2.8) converges to
> Cov(X, —p, X, — p).
h- -

That is,

AV, -p)]= ZCov(X WX, —u). (4.2.9)

h=—o

For the sequence defined by (4.2.1) using (4.2.7) and assumption on the model we have

V(X)=EX,-u)=E [e +Z{ﬂ(b+ﬂ,,)} }

=E[&]]1+E[b+f] El¢],1+E[b+f] E[b+..1" E[£],]+ ...

+.+2 E[b+B] E(&) E(6.)) +..

=+ () P+ (B ry) P
o’ B
o V (say). (4.2.10)

V = Var(X,) defined in (4.2.10) is finite if E[ 7] = o’ < and &’ + y <1.
Now consider

r(h)= Cov(X,,X,,,).

Using the assumptions on the model we can write

Xhh_#_g +(b+ﬂx+h) g:+h l : +H(b+ﬂ;+h k)(X /‘1)
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Thus
r(h) = E[(X, - uXX,,, - )]

=E[€,,,(X, - ) FE[(6 + B,,,) €,y (X, — ) ] ...
+ E[Q(b+ﬂ,-+h_k)()€ - #)’]
=E[¢,,JE(X, - )+ E[(b+5,.,) JE[€,,,, ]E(X, - )+ ..
+ E{Ii_l(bwuhﬂk)JE (X, - p)* = 8" Var(X)
On similar lines
r(-hy= Cov(X,,X,_,)=b" Var(X)) = r(h) (4.2.11)
Now using (4.2.9), (4.2.10) and (4.2.11)

AVIVAT, - )] = 3 rh)

h=-w

2
g

.o 2
e Rl

o’ ‘i 2bJ
= 1+
1-(b* +¥) 1-b

o’ 1+54

e (4.2.12)

From (4.2.8) and from the above discussion we have

2
g ”bj. (4.2.13)

(X, - N(O’ -0 +y)1-b
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The next section deals with least squares estimation of parameters of

RCAR(1) model defined in (4.2.1).
4.3  Properties of Least Square Estimators

The main objective of estimating the unknown parameters of a stationary
time series {X,} is to provide predictors of X, given the past values of the process. The
least squares estimators are those estimators which minimize the sum of squares of errors
Random coefficient autoregressive process are nonlinear in nature with two error
components. Thus the least squares estimation procedure adopted here is a two step
procedure. Many researchers have suggested estimators for regression parameter b in the
model (4.2.1) that are efficient in the presence of nuisance parameters. For example see
Koul and Schick (1996) and Schick (1996). The least squares estimators for b, &° and y
obtained by Nicholls and Quinn (1982) are given below.

Assuming u = E(X)) 1s known,

n

b, = (X, ~ )X, , -/ (X, - p)

i=1

7= 2UNZ -2)I2(Z -Z)
i=1 i=1

where,

U=BX-w+e=X-p)-bX.,-p)
U= (X - ) - b,(Xes - 1)

Z, = (/Y, '.U)z
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Z= n"iZl ,
i1

when 4 is unknown the above estimators can be modified as

b= X -X XX, - X )IY(X, - X, ) 43.1)
i1 i1
7,=2U0NZ -2)/2(2 -Z) (432)
t 1 121
6t=n'YU0-7,Z (4.3.3)
t=1
where,

U=(X-X,)-5,X:-X.,) (4.3.4)
Z=(X- X))
Z=n"Y7Z.

i=1

Some of the properties of these estimators useful in sequential analysis are discussed in the

following lemmas.

Lemma 4.3.1: If Ele‘,“

<0 and ||b+ﬁ;||4s<l, s 21, then ”,?n - ﬂllzp = Om"?).
Proof: Assume without loss of generality ¢ =0. Then using (4.2.7)

>

J=1

|

X,

45

i=1

{ﬁ(b + B )}8,»_ it 8,}

k=0
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Interchanging the order of summation and using Minkowski inequality we have

u

<n'y
45

J=1

X,

, ggi

By the Marcinkiewicz-Zygmund (M-Z) inequality (See Result 1.6.4),

i[r—[(b +ﬂi— k):}gi J

1=1] k=0

i=1] k=0

i[ﬁ(bwm}.»-,

+ nt!
45

43

- O( n'?)

45

and

n

2.5

=1

=0

45

Hence the required result.

The next lemma deals with p™ moment convergence of I;,, :

(43.5)

Lemma 4.3.2: If Ele¢,|"” <o and E|p + B,|"7 <1, p 21 then p[lgn - bl > £] = O '?),

Proof: When u = E(X)) is known the estimator of b is given by
b= DK K ) S !
Using (4.2.1) l;,, can be written as
by = S0+ BXX, =)+ 61T (K, =)

bZ(X, T #)2 +Zﬂi(Xi~l - /‘)2 +281(Xi_1 - ﬂ)z
= __1=1 i=1 i=1

Z(X, 17 ,U)z
=1
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2BX ) e (X )
= -1 i1

+bh

Z(Xl I—/l)z
11
Thus

. Zﬂl(Xl l—/j)z +Z€:(Xl-1_u)z
b -b= i=1 i=1 '

n

i(XH - p)?

n-1
If 1 is unknown the estimator for uis X, , =n"'Y X, . Then
=0

~ n'J
b -b= = 436
" n'K, ( )
where,

o= D PAX -X, V4 e (X  -X ) (43.7)
i=1 i=1

K.= D (X, -X, )" (4.3.8)
i=1

The ergodic theorem (See Result 1.6.15) for {X,} implies that as n—xc,
X, - pas The model (4.2.1) and the assumptions on that immediately imply that the
sequences { B,(X, , - X, )}, {e(X,,~X,,) }and (X, - X, ,)* are stationary and
ergodic [See Remark 1.6.1]. Now applying Ergodic Theorem for these sequences, it

follows that n’ J,— 0 and n’ K, — V as as well as in the p® moment, where V is
p

defined in (4.2.10). As a consequence we have (5n -b) >0 asasn — w.
Next we calculate ”n A “ and “n"‘Kn -V ” ‘
P P
Consider J, defined in (4.3.7) and by some algebraic manipulations we can write

n'J, = J,+J, +J v J,
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where
J, =n" D BAX, - p)
i-1
J,=nl (u-X,)' 3B,
1=1
Jo = e (X - (439)
-1
Jo T2(u= X)) 0t YA - )
1=1
Jn-‘ - ,{1 (Iu— X’:_I)ZE, .
i=1
We write

P[IJ.1>e1<P[| v, [>e51+ Pl U, |>e51+ P[] U, |>e51+ P[] J, |>e5]

+P[| J, [>e/5]. (43.10)
Using Markov inequality we can write
o o < B g
J. 1> < 4311
(7, 1>e9] (e/5)" ( )

If we define £, as the o-field induced by {(f, &), £ < n} then

n n-1
ELY. B:( Xt — ) | Fasl =Y Bi(Xiy — 11)* +E[Bu(Xos - )]

i=1 i=1

n-1
= Zﬁi(Xi-l ‘/1)2 .
i=l1

Since S, is independent of X, for j<n and E($;) = 0. Thus {Z,B,(X,-_l -u)? n>1}isa

i=1
zero mean martingle wrt F, By using Burkholder inequality [See Result 1.6.11],

moment inequalities, assumptions of the Lemma and independence of £, and X;., we have
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B Y AX, - < [ S, - ]
11 v i=1 P
< ln ‘i’ﬂ,()(l —y)l'w
<’ Y8l -,
i1
=0(),
where B, = 18p™ *(p-1)"?
Thus
i B(X -l =0,

14

Hence from (4.3.11) it follows that

P[] J, [>&/5]= O™, (4.3.12)

As for

&)

PLl g, | >e/5] < l{n '

= Q™). (4.3.13)
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Where we used the moment inequality, Cauchy-Schwarz inequality, Lemma 4 3.1 with s =

38

[

p/2 and the fact that

=O(n'°). Notethat Y &(X, , - )’ and D B(X, - u)
t 1 1

p
are mean zero martingales w r.t /.. Now using similar arguments as in the case of ./, we

can show that
P[| J,, | >£ 51 = On™?)
and
P[l J,, [>£5]=0@*?).
As for .J, use Schwartz inequality, Lemma 4.3.1 and M-Z inequality to get
Pl J, |>€51=0@*?).
Hence from the above arguments and (4.3.10) we have for £0
Pl 1), >e] = Om??). (43.14)

By writing

n

K-V =n YUK, -t (- X ) 2AX, - u - X))

(|
- [’:(Xl 1 _#)Z l
and repeating the similar arguments as in the case of J, we get

Hn 'K, - V”,, =On"?)

and hence
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Pl K, -V [>¢]=On"?). (43 15)

Now Lemma 432 follows from (4.3.14), (4.3.15), (4.3.7) and Result 1.6.12. T'is

completes the proof.

In the expression (4.3 .2) replacing U by U, we write

n'YUNZ -7)
i1

Vo= . (4.3.16)
n'y(zZ, -7y
1
Nowy , - y can be written as
n'>UNZ -7)
Vo-v=—" — -7
n'>\(Z -2y
+ 1
n'YUNZ ~2)-y(Z -Z)"]
- i1
n'>(Z-7)
[
n'S U -2y)Z, - 7)
e — (4.3.17)
n'>(z -2Z)
1
since D _(Z, - Z)Z =0.
11
Define E=U o'-yZ (43.18)
and write
v, -r=n'T, n'R, (4.3.19)

where
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T, =37 - 7)€ (4320)

R, = i(z,. -2Z) (43.21)

Now by repeating the arguments used to prove lemma 4.3.2 we can prove that as n—oo,

'T, >0 and #'R, > R a.s and in p” moment, where R = Var(Z;) <co. Hence from (4.3.19)

we have ¥ - y —0.

Let us write

n 'S (U -UINZ, -Z)
i=-1

Vw=7w=

n'>(z -Z)
=1
n 'Y (Z,-ZXU,-U XU, +U,)
= i=1
n'>(Z -Z)
i=1
n‘]Z(Z' - Z)(b _bn)(X)—l - Y;»l){ZUt +(b_bn)(Xt-—l - X_;Al)}
— 1=1
n“Z(Z,. -Z)*
i=1
=n'H,n'R,, , (4.3.22)

where,
H,= ﬁ(Z, ~ZXb-b XX, - X, )2U, +(b-bXX_ - X, )} (4323)

and R, is as defined by (4 3 21) Using similar arguments as before we can prove

v, -7, >0as.

Lemma 4.3.3: Under the conditions of Lemma 4.3 .2
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Pll7, -7l>el=00").
Proof: We write
PLI7, -7>el<Pll7, -7, 1> 41+ PUl 7, - 71> %] (43.24)
Now let us calculate P[| 7, - 7, |> %4 1and P[| 7, - ¥|> %]

Using Minkowski inequality and Schwartz inequality in (4.3.20) we can write

-1
n

T,

<
P

'S Z¢,
i=1

(4.3.25)

g

2p

Now using (4.3.18) and (4.3 .4) each term in (4.3.25) can be written as

n‘lzziéi = " n_’Z[ﬂiz(Xi-l - _;—1)4 + gi(Xi—l - ‘Y;—I)
i=1 P i=1
+ zﬂigi(Xi-l - ‘Y;—l)s-(Xi—l - Y:—l)zo-z-(Xi-l - "?:—1)47 “p

12],,= | n"i[(Xi_x ~ ) (= X) 2K - - X))

n
AN
i=1

= | n UL XL - X))+ e+ 2fe (X, - X, ) -0
i=1

2p

-(X,, - Y;-x)z?' “2p

From the proofs of earlier lemmas it follows that

L], =O0@™).

”n

n' |

Using Markov inequality for £0

Plln' T,-0]> &) = O™ (4.3.26)
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On similar lines it can be shown that

PLln’ R, - R|> ] = O(n™?). (4.3.27)
Hence from (4.3.19), (4.3.26), (4.3.27) and Result 1. 6.12 we get

Py, -7, 1> %1=00". (4.3.28)

H, defined in (4.3.23) can be written as

Y

H=3028,(X, - X (6= b,)+26,(X,, - X’ 6-5,)
i1
+ (X~ X656 - 226X, - X, )" ®-8)
-2Ze(X, - X, Xb-b)-Z(X,_, - X. ) (b-b)]
Now repeating arguments in Lemma 4.3.2 here also we can show that
P[In'H,-0|> & = O(n™?). (4.3.29)
Now (4.3.27), (4.3.29), (4.3.22) and Result 1.6.12 leads to
L7, - 71> %1= 0w (4.3.30)
Application of (4.3.28) and (4.3.30) in (4.3.24) gives
Pl 7,- 7[> %1=00:"?).
This completes the proof.
Lemma 4.3.4: Suppose that the conditions of Lemma 4.3.2 hold, then for £0

P[l63- 1> )= O™,
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Proof: Let o be the expression for 62 obtained by replacing U, in the place of l7, in

equation (4.3.3).
Consider
G- F=n'SU -7,7 -
=1
and

62-52=n"Y U -U)-G,-7.)Z.
1=1

Now using lemma 4.3.3 and using similar arguments as before we can show that

P[] 52- &|> &2] = O(n™?) (4.3.31)

and
P[| 62-52 |> 2] = O(n™?). (4.3.32)

But
P[| 62-7|> e] <P[| 52- &|> e2] + P[| 62-52 | > &2]. (4.3.33)

Now Lemma 4.3 4 follows from (4.3.31), (4.3.32) and (4.3.33).
This completes the proof of Lemma 4.3.4.
The results of this chapter will be used in the following chapters for studying the

sequential estimation.



CHAPTER S

SEQUENTIAL ESTIMATION OF
THE MEAN OF RCAR(1) PROCESS

5.1 Introduction

There are two basic reasons why sequential methods are used in Statistics.
Firstly, 1t is possible to reduce the sample size on an average as compared to corresponding
fixed sample size procedure. Secondly to solve certain problems which cannot be solved by
any procedure based on a predetermined sample size. Some of the examples to this effect are
discussed in Section 1 5. The discussion in the present chapter focuses on the first aspects of
the subject and deals in particular with Random Coefficient Autoregressive Processes of order
one RCAR(1). The main problems discussed in this chapter are the sequential point
estimation, and interval estimation. We have already discussed in detail the properties of this

model in Chapter 4.

The problem of sequential estimation of the parameters of AR(1) model are
studied by Sriram (1987, 1988). Recently Sriram’s results have been extended to AR(p)
model and linear processes by Fakhre-Zakeri and Lee (1992) and Lee (1992).
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2 Sequential Point Estimation

We study the problem of sequential point estimation of mean of RCAR(1)

ocess in this section

Since {X,, >0} defined in (4.2.1) is a stationary and ergodic sequence, a

tural estimator for g = E(X)) is the sample mean

n

X =n' ZX .
¢ 1
ippose that we want to estimate z by X, using the loss function
Lot = A(X, - )’ + An, A,A >0 (5.2.1)

here A is a known constant and A is the cost per observation. The loss function defined by
2.1) 1s the weighted error plus cost of inspection. An approximate expression of the sk

in be calculated using (4.2.13) and is given by

Roi=E(l,.)=AE(X, - u)’ + An

~A'I : : + A 522
x Ar 2. L.
1 1 (‘,2 )1 : d ( )

et ny be the value of n for which R, , is minimum. Treat g # as a continuous variable, we

fferentiate R, ; w.r.t. n and obtaine n,. Thus

IR, o
———= =0 implies
an
, o’ 1+b4
-An* +A=0.

- +y)1-b
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This gives
1+
nozAl/2 1-1/2 0[1_(b2+7)]-1/2 (m) (523)

2
Rn‘l . ‘e
Clearely e is positive at ny.
n

We refer n, as the best fixed sample size procedure. The corresponding minimum value of

risk R, ,can be obtained from (5.2.2) and is given by
R, ,=24n. (5.2.4)

If at least one of the parameters b, o7,  in (5.2.3) 1> unknown, there does
not exist any best fixed sample size procedure that will achieve the minimum risk R, .

As a remedy we go for sequential procedure to estimate u by choosing a sample size such

that the associated risk will be close to R

.1 88 COst per observation becomes small.

Towards this end we use the least squares estimators of b, of and 7. Properties of these

estimators are already discussed in Section 4.3.

Let us define a stopping time 7' by

1+5\"
T=inf{ m2m: n2 A2 12 [ of1-(5 +y )]** (1—_5) +n*]}, (5.2.5)

where m is an initial sample size, #>0 is a suitable constant to be defined later. Based on

this stopping rule the sequential point estimator of 4 is X, and the associated risk is

Rra=AE(X, - u*+ AE(T). (5.2.6)
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The main theorem in this chapter is stated below. This theorem establishes
the optimal properties of the sequential procedure for estimating u using the stopping rule
(5.2.5).

Theorem 5.2.1: For p>2, ifEle,|”” <o, E|b+ 8,|”” <1 and he (0, (p-2)/4)
,l

thenas A—> 0

. ——>1,as
n,

n,

i E 1l—>0

RT,/I

1. -1

ng. 4

- o’ 1+bj
iv. VT (X, - ! N( .
v. VT (X; ) —> O 7)1-b
The proof of this Theorem depends on some lemmas, which are proved

below. The following notations are introduced for easy reference.

n;= (%)1/2“”‘) ny= no(l- 8) n3= no(1+£), O<&<1,K= (%)”2,
E = [n;<T<n;) B=[{T<n)j C =[Tzn;)

Irand F© denote the indicator and complement of a set F respectively.

Lemma 5.2.1: Suppose that E|£f" ' <  and Ejp+8,[”<1 for p >2, then for every

>0
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| o’ 1+b o’ 1+b|
P on - n . — O -p/2 .
l;‘l—(bn2+yn)1—bn 1-(b2+7)1—b| ™)

Proof: Using Lemma 4.3.2, Lemma 4.3.3, Lemma 4.3.4 and Result 1.6.12 we can write

P :|[1—(5" +};,,)]_[1—(b+}’)]l> 8] = O(n-p/Z)

la+b) 146 | .
_I(]_B”)—]—bl>£ —O(nP2)

and

ol - 02| > ¢ J= O(m*?)

P[

Once again use Result 1.6.12 to obtain

| & 1+h o' 1+b|
P 2 - = O@*?).
[ll—(b:wn)l-b 1—(b’+y)1—b|>g )

n

This completes the proof of Lemma 5.2.1.

Lemma 5.2.2: Suppose that Elef" l <wand E[b + B,|" <1 for p >2, then for every > 0

i P[Tem) =045
and

i > P[7>n]=0(ﬁ).

n2ny

Proof: From the definition of stopping rule (5.2.5), we have

T> (%)1/2 7
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That is
T> (%)IIZ(IH:) =n,

Now from (5.2.5) and (5.2.7),

ol 1+,

P[TSnz]SP[(%)m{ —(b}+7,)1-b

1/2
} <n for some n1<%n2]

>

52 1+ '
<P ?;" - = < K ’n} for some n,<n<n,
1-(b, +7,)1-0,

I N (1+b)_ o’ 1+b1>a’(2-g)s(1+b)
T (1= (B2 47 )\1=b) 17 +y) 1-b] 1= (B> +y)\1-b

O ~ 2 2
<3 P' S, _ (lenj_ o’ (1+b)
o=@ +po\1-8,) 1-(F+)\1-b

Now from Lemma 5.2.1 we have

P[T<ny) = O(n G ) = O(l‘"‘%) .

This proves the first part of the Lemma.

For the second part, from the definition of T it follows that for n >n;,

P[7>n] = P[(4)" [

N 0’2(2—6‘)8(l+b)
1-(h* +p)\1-8/ |

(5.2.7)
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~2 - 172 )
=P z" - LR/ 022 L+6 >K'(n,—n)-n"}.
1-(b, +7,1-b I-( +y)1-b

But

ok — gol(1+b)
TOI-() +7,)1(1-b)

Ay oa 12 V2 h
[1- B2 +7,))1-5) (g) 1
c’(1+b) a/ l+g|
Choose A small enough so that the above expression for K™ (n, — n,) - n;"is greater than

[ ol(1+b) }”’
41~ @B +7,)N1-b)

Thus we can write

K'(n,-n,)-

P[T>n]

<p o! l+l;n E_ o’ 1+bIT >[ c*(1+b) jr
1= +7,)1-b, 1-(3* +y)1-b 41— (B> +yX1-b)
pll8r  1+b ot 148 Sol(+h)

T 1-@2 5 ,)1-8, 1-( +p)1-b] 41~ (B +yX1-b)|

Now using Lemma 5.2.1 and repeating the same argument as in the first part we get the

result.



95

Proof of Theorem 5.2.1

In section 43 we have proved that as n —oo, h

6l 25y, —=> y Also we have noted in (5.2.7) that
rs (%)mmh)
Thus T>was 4A— 0.
Hence it follows that as 2— 0
b, —5 b
612y
and

(5.2.8)

Yr ——> ¥.

From the definition of stopping rule 7 we can write

112 o} 1+ 57‘ v
() <T

1—(1;72 "'fr) ]_l;r
72 1+b "
< A)m { .O-T_l _ AT—I} +(T_ l)h +m. (529)
(1 { 1—(brz_, +¥ra) =0,

Hence dividing (5.2.9) by n, and using (5.2.8) and then letting A —50, we obtain

T
— 2 5 1.
n,
As for part (ii) we have the result
ElX]= EX' +EX~
where

X' =Max (X,0)
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and

X =Max (-X,0).

Here observe that

Therefore, by dominated convergence theorem and part (i) of the Theorem 5.2.1 we have

T
E(— - lj — 0as A0
n,

Now we write

T T
n, n, n, n,

and hence

In nzny

Since 0< £ <1 is arbitrary, from Lemma 5.2.2 we have

E(l— 1] — 0 as A—-0.

n,

So part (ii) of the thorem is also proved.

E(l— lj <(1-8) P(B) + & + n,' 3" PIT > n]+P(C).

(5.2.10)

(5.2.11)

In order to prove the part (iii), (that is 7 is asymptotically risk efficient)

assume without loss of generality that 4= 0.

Now using (5.2.4) and (5.2.6)

R, _ AEX! . AET
R 2/n, 2An,’

ng,A
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Since we have already proved (ii) # is enough to show

AEX?

—>1,a8 1> 0.
[

Instead of proving (5.2.12) we will prove

AE(?;I;
n, -0
and
AE(X, - X, )1,
MO

Towards that end consider (5.2.13) and write

AEX}I; _ AEX}l, AEX},
MO MO MO

using (4.2.7) we can write

EX? Iz <E Max X} I

msnsn,

<
msnsm| =0

2
<E Mw{z Yan Ig

2

SiW: Ig +2 ZEMn;Mnj' Is,
=

J<Jj'

n | j-1
Y"J= n‘] { (b+ﬂl—k)}l -]
i=1 k=0

where,

-0 as A—0.

(5.2.12)

(5.2.13)

(5.2.14)

(5.2.15)

(5.2.16)

(5.2.17)
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and

Observe that for j > 0, the sequence {Y,} is a reverse martingale w.r.t.{G,}, where

(}n = G{(ﬂkv£k)9 an}

Since

E{Yns,| Gi]= E{(n - 5 f(b +Bi s )}H IG"}

i=1{ k=0

= (n_ 1)_12E{ JZ-‘(b"'ﬂi-k )}Ei—j G

=(n-1)"(n- I)E{{j ‘(b+ﬂ, k)}

k=0

°)

G,,}. (5.2.18)

= E{[E(b +B, ):lgi—j

Leting Z, = nY,; and using (5.2.17)

we have

Z, =E[Z,Z,,2,.,,..]

= E[an Gn]

- iE{[ﬁ(b +B., )}e,—_, G

-1

x.

(b +p,. k)J } | (5.2.19)

O
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Using (5.2.19) in (5.2.18) we get
E[Yn-l‘/" Gn] = Ynj-

Hence{M,} and { M ,fj }are reverse submartingales. By Schwarz inequality

and Maximal inequality for reverse submartingale we have

EM] I <E"*(M})P"(B)

PY(B).

n;‘i{ﬁ(b+ﬂi_,,)]ei-,

i=1| k=0

An application of M-Z inequality gives

4

E"? =0O(n"). (5.2.20)

n{‘i{ﬁ(bw._u}q

i=1 | k=0

Application of lemma 5.2 2 and (5.2.20) leads to

E M? Ig= O( 2l +h)) O( /1(;>2)/8(1+h))
w .
Since h < -?2 we have

EMZIB
A—2= 50as i 0. (5.2.21)
An,

Using Schwarz inequality for the second term in (5.2.16)

E[M,, M, Is] < E"Y( M, )E" (M,,)P*(B).
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So that

A _EM, M, I5] -0 as A 0, (5.2.22)
An,

Using (5.2.21) and (5.2.22) in (5.2.16)

AEXLI,

—0as A—> 0.
n, as A—

Repeating the same arguments as above and using part (ii) of Lemma 5.2.2
AEX:I,

—0as A 0.
o, as

Thus we have proved (5.2.13)

Next consider

E(/?r - ["ZS"S”)X -X ‘ }
© 2
Max
S 2
;;EAZ‘Z’S,W +2§E,%,Z’§,an{‘;{g§:%w, (5.2.23)

where W, = y l:h &+8,. ;)} - ”o_]i[ﬁ(b +ﬂ,--k)}8m :

i=1 ] k= i=1 | k=0

Note that for each fixed j20 {W,, ,, no< n <ns} is a reverse martingale w.r.t. {G,}.

Consider

E{MaxW2 }=E{ Max w? } (5.2.29)

n, ) . n.n,
ny<n<n o) (ny<n<ng YU(n,<n<ny) 0+J
2 3 2 [ o 3
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Now applying Schwarz and maximal inequalities for reverse submartingale { W,
Max W?
n<n, nJ
E {"os Ao} -0

E{Max W} }/lno——>0.

nn
nySnsng, o/

o o

and

Thus from (5.2.24) we get

E{Maxmfw}/znﬁo.

nysnsng

The second tern in (5.2.23) can be handled similarly. This completes the proof of part (iii).

For part (iv) we have noted in Chapter 4 [See (4.2.13)] that as n —

o’ 1+bj

Y _ d
(X, - N(O’ 1-(B*+y)1-b

Now write
(X, = 1) = JFAne (Xr = X))+ Tl (X, - ). (5225)
From (5.2.14) we have

AE(X, - X, )1,
MO

—->0as Ao 0.

Using (5.2.3)

Ang[1-(b* + N(1-b) E(X; - X, )

> —>0as Ao 0.
o (1+b) An,
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That 1s, as A— 0,

no E(X,; - X, )'>0.

which implies that

Jn, (X, - X, )—2-0. (5.2.26)
From part(i) we have

T _ e 5125450

"o

Application of (5.2.26), part (i) of Theorem 5.2.1, (4.2.13) and Slutsky’s Theorem in
(5.2.25) we get (iv). This completes the proof the theorem.

5.3  Sequential Interval Estimation

In Section 3.4 we have discussed the general frame work of sequential interval

estimation. Our problem in this section is to find an interval /), for the population mean of
RCAR(1) process having prescribed width 2d and a coverage probibility 1-a .

That is to find an iuterval I such that

P[ye]n]=1~a.

Recall from section 4.2 ( see (4.2.13)) that

ol 1+b

Jn(X, - p) >N(o,l_(b2+7).l_b

).

Based on this result an appropriate confidence interval for 4 when b, ¢/ and y are known

is given by
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where
2
m=id?z2,, —2 __1*b; (5.3.1)
1-(b"+y) 1-b
and Z;.4» is such that
1 Zigi2
— |exp{-%} du = I-a.
var —z{.n i
Note from (5.3.1) that ny, —o0 when d—0 and
- d\n
P[pelno]=P|i\[rz|X"o—pls-§}—)1-a,
where
2 12
§ = [ 02 .Hb) (53.2)
1-("+y) 1-b

When at least one of the parameters b, o° and y is unknown we proposes a
sequential confidence interval. For that we define a stopping rule as in the case of point
estimation,

-~

5 .
N=inf{n2m:n2d'222 N .1+[i" +nh }, (5.33)
1-a/21|1-(b! +7) 1-b,

where m is an initial sample size and 4 is a suitable constant to be defined later. Note that

from the above definition of stopping rule N >d”’ Z%_, N*
2/(1+h)
Z
That is N > —“"’2)
at is ( -

Thus when d—0, N —<0.
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The performance of the above stopping time N and the corresponding

confidence interval /Iy are discussed in the following Theorem.

4p

. 4p p-2
Theorem 5.3.1 For p>2, if E'sl <1 and he(O,—4—)

<o, Elb+ﬂ1

then as d =0

i) —_— 1

(i1) E (—N-) -1
h,

@iy Plue Iv] >l

Proof: Proof of part (i) and part (ii) are very much similar to the proof of part (i) and (ii)
of Theorem 5.2.1 and hence we omit the details.

For part (iii)

Pluc Iv] = P[|)? N A d]
_ p{gm i S‘_’_‘g], (53.4)

where & is as defined in as (5.3.2).

Recall from Section (5.2) that

IN(X, - )—5N(O, £7).

Now using the definition of no (5.3.4) becomes

VN |+ JN
P TNIXN—plle_%.F}: .
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. . N
Also we have noted in Part(i) that — — 1 a.s.

nO
That is /iV_ -1 as.
no

Now Part (iii) follows from (5.3.4) and the above arguments. The proof of the Theorem is

complete.

The work of this chapter is summarised in Balakrishna and Jacob (1998). In the

next chapter we discuss the sequential estimation of b.



CHAPTER 6
SEQUENTIAL ESTIMATION OF THE REGRESSION
PARAMETER OF RCAR(1) MODEL

6.1 Introduction

The main problems of this chapter are to obtain a sequential point

and interval estimation of the autoregressive parameter of an RCAR(1) model.

For algebraic simplicity we assume u = 0 and hence our model in

this chapter is
Xi=(b+B) X +e&,i=12, ... (6.1.1)

In addition to the assumptions a;-a, made in Section 4.2, here we further assume

that

o =E(g!) <o, for k=1234. (6.1.2)

Sriram (1988) considered the sequential point estimation of
autoregressive parameter in a AR(1) model. Basu and Das (1995) obtained
sequential least square estimator for the autoregressive parameters in a AR(p)

model.
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In this chapter, Section 6.2 deals with the definition of stopping rule
and its properties for the point estimation of regression parameter. The main result
of this chapter is included in Section 6.3. Section 6.4 deals with the sequential

interval estimation.
6.2  Definition and Properties of the Stopping Rule

Given a sample of size » one wishes to estimate the autoregressive

parameter b by the least squares estimator given by

Y XX,
I; = =l

—
2

2 X5

i=1

Using the equation (6.1.1) and making some algebraic manipulations as in the

6.2.1)

proof of lemma 4.3.2 we can write

b -b= J,
K

n

, 6.2.2)

where

J"= z":ﬂith—l + ingl—]
i=1 i=1
(6.2.3)
K=Y X2,
i=1

The purpose of estimating the autoregressive parameter b is to use
the model in predicting the future values of the process given the past

observations. The minimum mean square error predictor of X,., given Xy X .....

Xn based on the above RCAR(1) model is X . l;,, X,. From that point of view
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it may be legitimate to employ the mean squared error loss function with a

sampling cost given by

L,=An" Y[ X, - E(X,|X, )] +n,

where A is the sampling cost per unit.

Nicholls and Quinn (1982) pp.44 showed that if E( X}!,) < oo then

as N—o,
Jn (b, -b) —>N@©, 0, V' + VZE(XL)7),

where V' is as defined in (4.2.10). Also we have noted in Section 4.3 that

n
'YX =¥ as n—w.
i=1

Hence

S X2 (B, - ) —NO, &2+ V' E(X2, 7).
i=1

Since the process is stationary we have E( X}',) = E( X*) for every i. Hence the

asymptotic distribution can be written as

(Z"; X2 )2 (b, - b) —>N(O,H?) (6.2.4)

where

= oyt {[l—(b’ +7,)l0, +603 (" +72)} ) 62.5)

[(1-(* +y,+6b%y, +4by,)] | 05
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Now the risk function R, = E(L,) can be evaluated using (6.2.4). Thus
R,=E(L,) =An' H* + An + o(n’).

The value of # which minimizes (6.2.6) can be obtained from

J R, P
=0=-An" H + A
on

The best fixed sample size ny is given by
ne =4/ A)"*H
with corresponding minimum risk

R"o=22.na

(6.2.6)

6.2.7)

(6.2.8)

Note that the fixed sample size procedure n, defined by (6.2.7) depends on the

nuisance parameters and hence the sample size cannot be specified in advance.

Under these circumstances a sequential method of estimation is preferable. For

this purpose, we define a stopping rule 7" by

T=inf{n>m: n> (4/ A)"*[ A, + ™)},

(6.2.9)

where m is an initial sample size, 1:1,, is obtained from H by replacing b, 75, 73, 74

o, and oy by their respective estimators. These estimators are obtained by using

the method suggested by Beran and Hall (1992).

For the model (6.1.1), we define

U= BXuu+e,
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and
(7,=.X, - EnXi-l-

Constrain both &,, and 7, to be zero and assume that the estimatesé,,, 7,

+sO 4157 §-1» have already been computed.

Put
. k-1
X,=n'Y X',
i=1
k-1 o
Wa=2; - ch XV 140 k-im
I=1
Wk = n.I pVxl
i=1
Then
S WXL - X))
7k.n = '=1"
Z(Xu~l - Xk)z
i=1
and

For our model
Ut=(X,- b X.1)
&1n= O = ;,ln

Wo=U?
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Which are equilant to estimators for y; - E(ﬂiz) and o, = E(a,z) suggested by

Nichollas and Quinn (1982) pp.46 & 47.
Further,

~ N

Wi = (X - I;nXi-1)3 - 3C1 X ;'m &Zn C le VnO1n
=(X- b, X..)"
« =X - I;;,Xi-l)4 - ‘Cz Xiz—l }:2;. &Zn

- ~

=(/Y' - EnX"'I)4 - 6X12—l 72}1 ain'

oo, n} Eor, x]

i=1

&3;‘ =n.IZ(X bX31) 73n

7o {Z[(X —b,X, ) -6X2 5,5, 10X, X‘)}{ﬁ:(&‘.,—z)‘}

i=1
Gop =1 YUK, -8, X1 ) - 6X2,7,,62,1- 7o X,

Based on the stopping time define by (6.2.9) the sequential point estimator of b is

b, and the associated risk is
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T -~
Re=AT" Y[X, ~E(X,.[X,_,)]2 £ AT, (6.2.10)
i=1

In the next section we will prove some results which establish the optimal

properties of the above sequential procedure.
6.3  Properties of the Stopping Rule

The important properties of the sequential procedure are stated in

the following theorem.

Theorem 6.3.1: Let T be the stopping rule defined by (6.2.9). and p>2.
Suppose that E|g)|¥ <o, E[b+,|< 1 and & € (0, (p-2)/4) thenas A — 0

T a.s
. ———51
n,
i. El—=1—>0
n,

V- (b +7,)lo, +603(b* +7,) )

ii. VT (b.-b —daN[O, Vo
(5r-0) i (1= +7 )1~ (B* +y, +6b7y, +4by ;)]

and
T

ZX,] (b; -b)—>N(OH’)

=1

N

<
IS
{

Proof of this theorem depends on a number of lemmas. The

following notations will be useful in the further disci1ssion.



113

Let
K: (%)1/2 ’ n1 — Kl/(l+h)’ n;= no(l_ 8), n;= n0(1+€), 0<&'<1,

E = [n<T<n;] B=[T<n) C=[T2n;]

Ir and F€ denote the indicator and complement of a set F respectively.

The asymptotic properties of the estimators are discussed in the

following lemma. We have proved that y,, — yand &,,— o, almost surely as

n — o, in chapter 4 Exactly in the same manner we can prove the as

convergence of 7, ,7,, and o, .
Lemma 6.3.1 For p>1, if E(£2%) <, E|[p+B,/**< 1 and h € (0, (p-2)/4) then as
n > © y, —=5 5,0, 2> o for k = 1234 and

P”f;',, - Hl > g] = O(n??) for £>0.

Proof: Once we prove the asymptotic convergence of for &=1 3 and 4 proof of
the last part of this lemma is a direct consequence of Result 1.6.12. We have

already proved a similar result in Lemma 5.2.1 and hence omit the details.

We also skip the proof of the next Lemma as it is similar to the

proof of lemma 5.2.2.

Lemma 6.3.2 Under the conditions of lemma 6.2.1 for £0

P-2)
24(h+1])

P[T<n]=0
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and

(p-2)
S P[r>n)=0(2 4

n2nm

Lemma 6.3.3 If J, is as defined by (6.2.3), then the sequence {%LL n2 1} is
n

stochasticaly bounded and uniformly continuous in probability.

Proof: We have already proved in Lemma 4.3.2 that

|/,]| = O(n'?), and hence {j"_ , n2 1} is stochasticaly bounded.
In

Now to prove u.c.i.p we write

J., J 1 yn ||J
etk i< — U, -1 21 for k20. 63.1
ik 7;‘{ s Tkl in (63.1)

For k < né the second term in (6.3.1) is bounded by [1-(1+8)™?]

J
21 which tends
#

to zero as 6 =0 uniformly in n>1. For the first term applying the maximal

inequality for the martingale {J,}and then using the independence of X; and (&, S

) for j<k we get
evn 4 2
P{é{gvm ~J < ———} S Bl =,
4 n+nd n+nd 2
= = E ZﬂiXiz—l + ZgiXi—l
En i=n+1 i=n+]
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4 nend n+nd
= —_—E {y ZE(X,.‘_l)*'O'z ZE(th—l)}

2
&n i=n+l 1=n+l

= ((6) as § -0 uniform in n>1.

Jn

From the above argument, it follows that {J" , n2 1} is u.cip by Definition

1.6.3. This completes the proof of the lemma.

K

Lemma 6.3.4: The sequence { =, nz l} is u.c.i.p and stochastically bounded,
n

where X, is defined by (6.2.3).

Proof: We have the result (See L.emma 4.3.2) that

.7 K a.s 02

T1-( +7,)

<00,

But stochastic boundedness and u.c.i.p holds if a sequenge converges to a finite

limit a.s ( cf. Remark 1.6.2. and Definition 1.6.1.). Hence the lemma follows.

Lemma 6.3.5 The sequences {n (I;,, -b)} and {J" } are u.c.ip and

N

stochastically bounded.

Proof: We have noted in Remark 1.6.3 that any continuous function of u.c.i.p and
stochasticaly bounded sequence is also u.c.i.p and st~chasticaly bounded..

Here we can write

J

n

Jn(6,-5)=Vn

-1 .
n K,
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Hence {\/;(I;n -b)} is u.cip follows from Remark 1.63, Lemma 6.3.3 and
J, _J, I

JK. JK,/n

can prove that { J }is u.c.i.p. and stochasticaly bounded.

Tk

Lemma 6.3.4. Writing

and repeating the above arguments we

Lemma 6.3.6 If for p>1, E|g)|*<oo, Ejb+B,/%< 1 and

lp

E

<0

>

M -1
[Z(ﬂm — &, +ﬂx+lXi "‘ﬂiXi-l)z}
i=1

for some positive integer M, then {[nW,|’} is uniformly integreable (u.i) for all

q < p, where
Wo=n"K, (b -b) (6.3.2)
Proof: We have

2
nW,=K,(b,-b) = In
K

n

An application of Schwartz inequality gives

J? J? n
< ]
K, ) ni,, K, 2p
But note that |J, | = O(n"?) . [See Lemma 4.3.2]

and hence it follows that
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2
I,
n

=O(1).

Hence from the definition of uniform integerability it is enough to prove that

sup z
n2 M +1 K"

To this end consider

< oo, for some M.
2p

n -1 n-2 n2
2 ZXiz-l =2 ZXi2 =2Xi2 + ZX:‘ZA + X:+X:—l
i=1 i=0 i=0 i=0

n-2
2 )X+ X))
i=Q

n-2

2 % Z[Xx - Xm]z :
=0
Letting
di= X;- X (6.3.3)
we have
n-2 n-2
Z(gm —&; +pi+1Xi "ﬂiXx‘—l)z = Z[di —bdi—llz
i=t i=0
n2
= (1+p})*> d;} (6.3.4)
i=0
where, d .;= -Xo.

Now using (6.3.3) and (6.3.4) we can write

n n-12
inzq 2 '}{ (1+lbl)—2= Z(gm — & +ﬂi+lXi —ﬂiXi—l)z :
i=0 i=l

For n>M-+1, then there exist a g such that

gM+1 < n<(q+ M.
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n
Since ) X7, is increasing in n we have
1=0

n__ (g+HM

n - gM+1
I SN IP &
i=0 i=0

IA

aM 1+ =L~

2. Bu

i=1

IA

9
4M (1+|p])* Sup q7'> 1/ B,,,
q21

i=1

iM
where Buy = D (€, ¢, +B,.,X, - B, X, ).

J=(i-T)M+1

q
But {q"Z(l /By )Gy 42 1} is a reverse submartingale,

i=1

1
where Gy, = a{l"Zl/B,.M, IZq}.

i=1

An application of the maximal inequality for reverse submartingale yields

2
< £ "1/3”4"2;:’

q
Supq™' > (1/ B,
upq Z( ae) 2p-1

q21 i=1

2p

which is finite by assumption. Hence the proof of the Lemma is complete.

Now we proceed to prove the main theorem.
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Proof of Theorem 6.3.1

~

We have noted that b, —*>b, 7, —*> %, 0, —=> 0

k=1234 asn—wc. ThusH, —2» H, ash—>w. Also from the definition of T

we have
T>(A4 2" " and hence
1-»>x, as A —0.

Hence

H —=>H (6.3.5)
Using (6.3.5) and the definition of the stopping rule (6.2.9) we can write
(AN H, <T<AD"? [H,_ HT-1)"+m. (6.3.6)

Now by taking 4 — 0 and dividing (6.3.6) by n, and using the expression (6.2.7 )

for ny, we have

Thus we have proved the part (i) of the theorem.

Part (ii) can be proved using Lemma 6.3.2 and Lemma 6.3.3. However we skip

the details as they follow similar to the proof of part (ii) of Theorem 5.2.1.

We have noted in Section 6.2 that 1—,

VM- +7,)lo, +603(b* +v,) J

b -b)— 5 N| 0oV +
Jn(5,-6) ("’2 (1= +7,)ll1- (6" +7, +6b77, +4by )]
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and

(Z X,) (b_-b)—> N(O,H?).

=1

Now Anscombe's Theorem [See Result 1.6.5] can be applied to get part (iu1) of the
theorem. The conditions for Anscombe's Theorem are verified in Lemma 6.3.5

and in part (1) of the theorem.
Now let us prove part (iv).

We have
R, =2(AA)"*H

and
R, =AEWr+ AET,

where W, is as defined by (6.3.2). Thus we have

7’:&_ — LH (4A)EWr+ L E(Tno). (6.3.6)
g

By part (i1) of the theorem we have E(—z) —>las A -50.

n,

. R .\
Hence in order to prove—=— —1 it is enough to show thatas 4 — 0,

Ny

H'AN?EW; [, >0 (63.7)

and

H' (A EWr Iz > 1. (6.3.8)
Consider (6.3.7)

H' (AN EWr I =H' (A EWrlp+H (A1) EWrlp.  (639)
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Using Schwartz inequality we can write the first term in (6.3 9) as

H' (AN EWrIs<H ' (40" W1

) P'? [T'< ny)

{T~ny}

1:2
<H (4 )" [wazj P2 [T < n,]

n=n

(p-2)

l(i" zj ol 3G+

n=n;

<H' (41" Sz:]pMan

(r-2)
= (W) H! O(n, 3% /18(h +1)

— 0, since h € (0,(p-2)/4)as A > 0 (6.3.10)
The last inequality is due to Lemma 6.3.2, Lemma 6.3.5 and Lemma 6.3.6.
Using similar arguments we can show that the second term in (6.3.9) as
H'(ANZ?EWrI; >0as 1 0. (6.3.11)
Now combining (6.3.10) and (6.3.11) we get the required result (6.3.7).
In order to prove (6.3.8) it is enough to show that as 4 — 0,

H' (AN EW ) 4yt (6.3.12)
and

{H ' (4 2)"* E(Wy) Iz } is uniformly integrable . (6.3.13)
Here y! denote a Chi-square r.v with one degree of freedom.

From part (ii1) of the theorem using (6.3.2) we have
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H' JTW, —*>N@©O,1)as 2 >0
and hence we have

H TW; —> y? as 1 >0

Also using part (i), definition of n, (6.2.7), Slutsky Theorem and the fact

lg-—~—1as A — 0, we have

H' (A EWr)ly —4> x},as A > 0.
Hence we the equation (6.3.12).
To prove (6.3 13) we have consider for >1,

H'(AAEW! Iy<H'(AA)7E Max W'

ny<n<n,

! 2

ne M+l Kn

<H (4" n}*

2

Max J,

5y <n<ny

2t

21
< H ™ (A/2)7 n* O(nt) = 0(1).
The last inequality follows from Lemma 6.3.5 and maximal inequality for the
martiangale {J,}
Hence H ' (4/A)'* EW, Izisu.i. Thus
gl —1as A0

.

This complete the proof of the Theorem.
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6.4  Sequential Interval Estimation
In Section 5.3 we have discussed the sequential interval estimation problem
for the mean of RCAR(1) model. Our problem in this section is to find an interval

I, for the regression parameter b of RCAR(1) process having prescribed width 2d
and a coverage probibility 1-a .
That is to find an interval /;; such that

P[bel ]:1—a.
n

Recall from Section 6.2 that

V21— (b +7,)lo, +604(* +7,) ])
)

b —b)—> N(O; Vs
‘/;( § ) 72 [1_(b2+72)][1"(b4+74+6b272 +4b73

Based on this result an appropriate confidence interval for &6  when all the

parameters are known is given by

1,=[b,-d b,+d].

where

-2 _ 2 4 2
n=d?z:_ (GZV-l+ V- +7,)lo, +603 (6 +7,) J 64.1)
[1-(" +y )1-(" +y, +6b7y, +4by;)

and Z;..» is such that

Zyan

7o Jeot- i di=la

'zl-clz
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Note from (6.4.1) that n —w when d—0

and

d

n
K

Plbe ], ] =P[—[’1I5n LE }—» I-a,
K
where

K=(a V1= +7,)o, +603(6 +7,) 1)
’ [1_(b2+72)][l“(b‘+74+6b272+4b73)

(6.4.2)

When at least one of the parameters b, oy, 03 0y 1o, 55, 74 is
unknown we proposes a sequential confidence interval. For that we define a

stopping rule as in the case of point estimation,
= . 252 ~2 ,  —h
Nb—mf{an.nzd Zl_alz[x,,+n ]},

where K n is obtained from (6.4.2) by replacing the parameters by

corres . -tponding estimators defined in Section 6.2.

Here m is an initial sample size and # is a suitable constant to be defined later.

Note that from the above definition of stopping rule Ny > d”? Z?2 _,, .Ny™*.

7 2/(1+h)
That is N, > (%)

Thus when d—0, N, »>w.
The performance of the above stopping time N, and the corresponding

confidence interval [, are discussed in the following Theorem. Since the

proof is similar to that of Theorem 5.3.1 we omit the details.
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$p

_ 3p —
Theorem 6.4.1 For p>2, if E'el <land he (0, p4—2)

<o, Elb+ﬂl

then as d 50
SN

n

(i) E (ﬂ) -1

n

(i) P[be 1, 11w

6.5 Directions of future work

In this thesis we have considered the sequential estimation for some
Markovian models, like autoregressive minification models and Random
Coefficient Autoregressive model. We have also discussed the optimality
properties of the sequential procedures.

We have the plan to extend this work to p® order Random Coefficient
Autoregressive model (RCAR (p)), vector valued RCAR (p) model. Also we
would like to work on the second order approximations for the expected values of

the stopping rules. The investigations towards these directions are in progress.

The work of this chapter is summarised in Balakrishna and Jacob (1997:).
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