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CHAPTER 1

INTRODUCTION

1.1 Introduction

The outcome of any experiment or the result of any natural phenomenon

depends on many unknown factors, which cannot be completely controlled or measured

exactly. It is not possible to explain such situations by deterministic mathematical

equations. A better way of studying the behaviour of such phenomena, when tl.,

outcomes are affected by many uncertain factors is by using stochastic models. These are

the models defined in terms of random variables. For example, suppose that one wants to

know the value ofX, where X may be the price of certain commodity, or the contents of a

reservoir, or the velocity of wind, or the amount of currency notes in the Reserve Bank of

India, or the stock of radio active materiel etc.

Note the variable X in the above examples are random variable (r.v.) and

they may vary at different time points. If we consider Xn as the value ofX, at a time point

n, then {Xn } can be viewed as a realization of the stochastic process {Xn,nET}, where T is

an index set. We take in our studies T as a set of integers.

In the classical setup, the statistical analysis of the data is performed by

assuming that {Xn,nET} is a sequence of independent and identically distributed (i.i.d) r.v.s

having some common distribution function (d.t) F. However, even in the examples quoted

above, the random variables Xn for different 11 need not be independent. The dependency

among the r.v.s at different time points can be brought out by defining appropriate
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stochastic models. The purpose of defining such models is to identify the stochastic

rnechanism which generates the data and then use such models to predict its future

behaviour. '[his involves estimation of the unknown parameters in the model and the study

of other related statistical inference. Once we identify the stochastic model, the further

analysis can be handled, by the help of the well developed theory of stochastic processes.

One of the important applications of stochastic processes is the analysis of

time series. The models used in the classical analysis of time series are alllinear in nature.

Moreover, the time series {Xn } is assumed to be a Gaussian sequence (See Box ar!

Jenkins (1976». One of the linear stochastic models used in the time series analysis is the

p" order autoregressive model defined by

(1.1.1)

where {En} is a sequence ofi.i.d r.v.'s assumed to follow normal distribution and at ,a2 , ...,

a p are constants referred to as autoregressive parameters. However, there are many

practical situations where the models are non-linear and non-Gaussian, (see ego Tong

( 1990».

1.2. Random Coefficient Autoregressive Models

Nicholls and Quinn (1982) generalized the model (1.1.1) by allowing a.'»

to be random variable to define a random coefficient autoregressive (ReAR) model. The

sequence {Xn } said to follow s p" order ReAR (RCAR(p» model if

p

X n = L{b; +Pill}X,,-; +&n ,11= 1,2, ...
;=1

The following assumptions are made on this model:

(1.2.1)
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A\: {En, /1 E 7) is a sequence ofi.i.d. r.vs with mean zero and variance d.

A~: {f3n == (f3ln ,f3Jn, "0, f3pn), /1 E If} is a sequence of i.i.d random vectors with mean 0

and dispersion matrix r 0

A~: The sequences {En} and {jJn} are statistically independent.

A4 . h :.': (hi, h], "0, hp) is a vector of rea) constants.

The model (1.2.1) is fitted to various data sets and shown to be performing

well. For example, Nicholls and Quinn (1982) fitted an RCAR(2) model to the lynx data

which consist of the annual records of the number of Canadian lynx trapped in the

MacKenzie river district of North-Western Canada. Lawarance and Lewis (1985) used a

more specific RCAR(2) model which generates a stationary sequence of exponential r.v.s

to analyse the wind velocity data.

A score of literature is available on the study of first order Random

Coefficient Autoregressive RCAR( 1) models. For the sake of future reference we define

the model as

Xli = {b+fJ,,}XII - 1 +&11,11= 1,2, ... ( 1.2.2)

where the r.vs satisfy the assumption AI - A4 described above withp = 1. We say that

the model ( 1.2.2) is stationary if it generates a stationary sequence {Xn,n e 11 .

The model (1.2.2) has many applications in the study of non-Gaussian time

series modelling. The theory of non-Gaussian time series mainly concentrates on obtaining

the stationary solution of the model (1.2.2 ) We say that the model (1.2.2) has a

stationary solution if there exists a proper probability distribution for En for a specified

distribution of Xn for evey /1. A standard technique adopted in obtaining the solution of

(1.2.2) is using characteristic functions or Laplace transforms. Without much loss of



generality one may take h==O in (1.2.2). If f/!...s) is the characteristic function of Xn for

every /1 and tp(s) is that of e., then

f//(v) = rjJ( s) ,
f rjJ(f3s)dG(f3)

(1.2.3)

where C;(.) is distribution function of Pn and the integral ranges over the support ofG(.).

A general discussion on conditions for existence of solutions to this model,

can be found in Paulson and Uppuluri (1972). The RCAR(1) model for defining a

sequence of exponential r.v.'s are discussed by Gaver and Lewis (1980), Lawrance and

Lewis (1981), Sim (1990), etc. The similar. models are used to generate sequences of

gamma r.v.'s by Gaver and Lewis (1980), Sim (1986), Lewis, McKenzie and Hugus

(1989), Sim (1990), Adke and Balakrishna (1992a) etc. A discussion on Laplace

RCAR( 1) models may be found in Dewald and Lewis (1985).

The following are some of the more specific examples where RCAR(1)

models are used to describe the practical situations. In these cases it is assumed that b=O.

Hence the model is rewritten as

X n == PnX,,-l + 8 n> n = 1,2, ... (1.2.4)

Paulson and Uppuluri (1972) claim that the model (1.2.4) arises in the study of retention of

a substance in a system when the substance is periodically introduced in random quantities

and the system periodically eliminates a random proportion of this substance. Then one

may be interested in the behaviour of the amount of a given substance present in the

system at the end of epoch /1-1, /1== 1,2,... with Xo =0. Suppose an amount En of this

substance 'is introduced during the time interval (11-1, n] and during the same interval a

modification of the amount Xn-{ to Pn Xn-1 take place. Hence the total amount of the

substance present at epoch /1 is Xn described in (1.2.4). More specific example where Xn
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denotes the (i) balance of a saving account and (ii) the stock of radio active material at

time /l are described by Vervaat (1979). In example (i) e; denotes the deposit made just

before time 11 and /3n the interest factor which may fluctuate stochastically with time. On

the other hand, in (ii) e; is the quantity of the radio active material added or taken away

just before time 11 and /3n is the natural decay of radioactivity.

Sim (1986) discussed the application of model (1.2.4) in Hydrolical

modelling. In his example X n and e, are content and random inputs of a dam respectively

at random time l~, and U; is the random decay factor of the storage of the dam between

time 1~-1 and T" Sim further assumed that {Tn } is a sequence of random times generated

by a homogeneous Poisson process and ° == 1'0 < T, <.; Then by taking U;

=exp[ -be 1;1 - 1;/_1 )], hzO, it was proved that Xn has gamma distribution for each l1Z0.

Similar examples may also be found in Andel (1976) and Hutton (1990). A

vector valued version of the model and its properties are discussed by Glasserman and Yao

(1995).

1.3. Autoregressive Minification Processes

In Section 1 2 we have seen that the solution for the model (1.2.4) exists if

and only if fIJ{ s) defines the characteristic function of a r.v. in the relation (1.2.3)

Therefore, to check the existence of the solution, we should have J closed from expression

for r/i..,s). But there are several standard distributions used in statistical studies, which

donot have closed form expression for their characteristic functions. For example, the

distributions, such as Pareto, Logistic, Weibull and extreme value type are useful to

analyase the variety of real life data. In order to generate a sequence of dependent r.v. 's

having any of these marginal distributions, the model of the type (1.2.4) are not of much

use [see ego Tavares (1977, 1980)]. As an alternative, a model of the following type is
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used for this purpose when the r.v.'s have closed form expressions for their survival

functions.

Let {Zn} be a sequence ofi.i.d r.v.'s with common d.fC;(.) and X o be a r.v.

having d.f. }4-- and is independent of 2/. Now define ""1 by

A'"o,

where k>1. The model (1 .3. 1) implies that

F(x) == F(f)G(f),

/1 = 0

11 = 1,2,...

(1.3.1)

(1.3.2)

where F(x) == 1 - F'(x) and G(x) == 1 - G(x). Arnold and Hallett (1989) proved that

if the survival function of Xo is chosen as F~(x) = n(;(~-) with F(O) == 1, then {Xn ,
k./

.J I

/1~O} defined by (1.3. 1) is a stationary sequence of r.v.'s having each Xn distributed as l-,

In this case the infinite product does not diverge to zero. Further the model has a solution

if and only if

- F(kx)
G(x) = F(x) (1.3.3)

defines a proper survival function. Lewis and Mckenzie (1991) discuss the existence of

the solutions in different cases of this model in terms of survival functions and hazard

rates.

The model (1 .3.1) has most of the properties of a first order autoregressive

model having "minimum" instead "addition" and hence the name autoregressisive

minification model. This is useful in modelling a situation where the underlying

distribution have closed survival function. For example, if one wants to model the stream
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flow of rivers, where during certain periods there will not be flow and when there is flow

there will be lot of variations, which are very common in hydroloyical and geophysical

sciences.

Even though weibull or extreme value r.v. 's are commonly used for

modelling the data of the above type, the sequences of such r.v.s cannot be generated with

linear random coefficient models of the type (1.2.2). Same is the problem with Pareto

distribution, though it is very useful in modelling variety of socio-economic variables. In

modelling Markov dependent time series with these marginal distributions it is found that

the minification model is more appropriate. Studying the probabilistic properties of these

models becomes easier here as the distributions have closed form expressions for their

survival functions. Minification models for different special distributions are studied by

various authors. For example Tavares (1980) defined the model for exponential variates,

Sim (1986) defined for weibull, Yeh et al. (1988) discuss model for Pareto variables and so

on.

1.4. Statistical Inference for Markov Sequences.

Statistical Inference is an integral part of Stochastic modelling. If we want

to check the validity of any stochastic model, it is essential to have g.-od statistical test

procedures. This in turn demands estimation of the unknown parameters involved in the

model. The classical theory of statistical inference is based 011 the assumption that the

r v"s are i.i.d with common d.f. I~'. But in practice we come across many situations where

the data is a realization of a sequence of dependent r.v.'s To handle such situations the

theory of statistical inference for stochastic processes is developed. We are interested in

the inference for stochastic models which generate a sequence of r.v.'s having a special

kind of dependence structure, defined below known as Markov dependence.



Definition 1.4.1 (Markov Sequence)

A sequence {X, /1 E ]'} of r.v.'s defined on a common probability space

([2, F, I») is said to be Markovian if

for any bore! set Band XE n, where Pr[ Xn E BIX n 1 = X] is called the transition function

of {X, n E I} In particular, Pr[Xn < ylXn 1 = x] is refe. cd to as the transition

distribution of ~,\r'l at y given Arn_1 == x.

Definition 1.4.1 (Stationary Stochastic Sequence)

A sequence {Xn, /1 E ]T} is said to be stationary if for any positive integer k

and 11, 12, ... ~/n and h in 7'the joint distribution of X(tj), X(t2), ... , ./\'(tk) is same as that of

,,¥(II+h ), X(/2+h), ... , X(/k+h).

Definition 1.4.3 (Marginal Stationary Sequence)

A sequence {X, 11 E T} of r.v.' s is said to marginally stationary if Xn 's are

identically distributed for every 11.

The assumption on the models (1.2.2) and (1.3.1) immediately imply that

the sequence {Xn } generated by them are in fact Markovian. Moreover these sequences

are stationary under some mild additional conditions. We will come back to these

properties again in the forthcoming chapters.

The importance of Markov sequence in the analysis of practical situations,

necessitated the development of related theory of statistical inference. One of the useful
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references for this subject is the book by Billingsley (1961). The statistical inference for

stochastic processes in general and for many special models are discussed in Basawa and

Prakasa Rao (1980).

1.5. Sequential Estimation

The statistical inference in classical setup is based on a random sample (Xl,

X2, ... ~n) of size 11 where 11 is a fixed positive integer. In stochastic processes the

inference is made by observing the realization for a duration of fixed length say 'I'. In

both these cases, it is assumed that the sample size 11 and the duration I do not depend on

the observations. That is, one does not take advantage of the information supplied by the

observations for choosing the sample size. Choice of an optimum sample size is a crucial

problem while planning any statistical experiment. In most of the experiment, sampling is

very expensive and taking of each observation involves some cost. Since, cost of sampling

is a concern, one has to find minimum size of the sample required to rnake an optimum

decision. Now the problem becomes that of finding a value of 11 (sample size) which

optimizes (minimizes or maximizes) an appropriate objective function. One of the

procedures used in such cases is the sequential method.

Sequential procedure is a method of statistical inference whose

characteristic feature is that the number of observations or the time required for

observation of the process not determined in advance. The decision to terminate the

observation on the process depends, at each stage, on the resuit of the observations

previously made. A merit of this method is that test procedures and estimators can be

derived in some smaller number of observations.

Another context, where sequential estimation becomes necessary is that

when we want to determine the optimum sample size to estimate a parameter under certain
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optimality criteria in the presence of unknown nuisance parameters. This is illustrated in

the example of Woodroof (1982) pp. 105.

Ghosh and Sen (1991) describe some situations where fixed sample size

procedure is not suitable. The following are some of the specific examples discussed in

Ghosh and Sen (1991).

8. Example where Sequential Analysis is intrinsic

Consider the situation when the blood pressure Xn of a patient under

intensive care is monitored continuously in time n. The problem here may be how' to

analysis and interprect sudden fluctuations in pressure. To some extend the same is true in

the classical secretary problem. Here one is dealing with k objects which are intrinsically

ranked 1(best), ... , k (worst) according to some characteristics, but the observer can rank

them only by visual comparison with each other. The observer assigns a rank X n to the 11
th

arrival by comparing it with its (11-1)th predecessors who were all rejected. The problem is

to design a stopping rule that maximise the probability of selecting the best one when the

observations do not have access to the rejected ones. Clearly in both examples, a fixed

sample analysis cannot be conceived.

b. Example where only Sequential Procedure yields solutions.

There are problems in point estimation, confidence intervals and hypothesis

testing where fixed sample procedures can be conceptualized but cannot provide solutions.

Suppose that the observations are i.i.d Bemoulli variables with

P(X1 =0) = p =1- P(X = 1) and one wants an unbiased estimate for p-l. Such an

estimate does not exist if one consideres the fixed data sample (Xl, X2, ... ,xn) for any nz.1 .

On the other hand the stopping rule with N = smallest 11 for which Xn =1 yields N itself as
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an unbiased estimate of p-l. This stopping rule is known as Haldane's inverse sampling

procedure.

c. Example where Sequential Analysis is ethical.

Consider a clinical trial or reliability study designed tu elucidate the

differential if any between two competing treatments. The response data from the patients

in the sample are recorded in the order in which they appear. As soon as one treatment

could be judged superior to the other, ethical considerations demand curtailment of the

study.

1.6 Some Useful Definitions and Results.

In this section we quote some useful definitions and results which are

frequently used in our discussion. Proofs 'of these results may be found in the reference

cited in the parenthesis.

Definition 1.6.1. (Stochastically bounded random variables).

A sequence of random variables is said to be stochastically bounded if for E

> 0 there is a C > 0 for which

p { IYn I>C} < E for all 11> 1.

In particular if {Yn} converges in distribution then {rn, n ~1} is stochastically bounded.

Definition 1.6.2. (Ergodic Sequence).

A stationary process is said to be ergodic if Pr{(Xo, Xt, ...)EA} is either

zero or one whenever A is a shift invariant event.
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Remark.l.6.1. (Karlin and Taylor (1974), pp. 488).

Ifsequence {Xn } is stationary and ergodic then the sequence

Yn == l/I.....Xn, Xn .], ... ), 11 == 1,2, ...

generates another ergodic stationary sequence.

Definition 1.6.3. (Uniformly Continuous in Probability (u.c.i.pj),

A sequence {Yn } of r.v's is said to be uniformly continuous in probability if

for every £>0 there is a 0>0 for which p{ Max 1J:l+k - y" I~ e} < G for all n>1.
O~k~"li

Remark.l.6.2. (Woodroofe (1982), pp.41).

If {Yn, 1121} converges to a finite limit with probability OI~~ then {Yn } IS

u.c.r.p

Remark.l.6.3. (Woodroofe.( 1982), pp.41).

If {Yn } and {Zn} ·are u.c.i. p then so is {F,+2n, '1~ 1}, if in addition {Yn, 11~1}

and {Z; 112 I} are stochastically bounded and if et> is any continuous function on R2 then

~(Yn ~ Zn) is uc.i.p.
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Definition 1.6.4 (Uniform integrability (u.ij),

A sequence of r.vs {Xn}is said to be uniformly integrable if

lim sup flXnldP = o.
a ~C£.'l~l{lxnl?a}

The uniform integrability gives a sufficient condition to interchange the limit and

expectation ofa sequence ofr.v.s.

Definition 1.6.5 (Uniformly Mixing Sequences).

A Sequence {Xn } ofr.v. 's is said to be uniformly mixing if

Ip(AnB)-p(A).P(B)1 ~ P(A).tjJ(h) ,

whereA E a{Xo, Xi. ... , Xn}, B E a{Xn+ h, Xn+h~l, ... } and f/>(hJ ~O ans h -;00.

Definition 1.6.6 (m-dependent r,V.5).

A Sequence {Xn } of r.v.'s is said to be m-dependent if ( Xi, ..., Xk) and

(Xn~k, Xn~k.l, ....) are independent for any k when ever n>m.

Definition 1.6.7 (Martingale Sequences).

The {XI, te T}is said to constitute a martingale w.r.t a non-decreasing

sequence of a-field iD, lET} if the following conditions hold

For every lE 7: ..¥"r is D, measurable

11, E[~ll]<x for every lE I'

Ill. For S,/E 7: s-et, 'the relation E[XrlDsl = Xsa.s.

Definition 1.6.8 (Submartingale Sequences).

The {Xr, te T}is said to constitute a submartingale w.r.t a non-decreasing

sequence of a-field {D t lE T} if the following conditions hold
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1. For every te T, Xt is D, measurable

11. E[~t\]<oo for every te 1~

111. For S,IE 1: S·'- I, the relation E[XtIDs] ~ Xs a.s.

Remark 1.6.4 (c.f: KarIin and Taylor (1974), pp.250).

If {Xt, lE 7'} is a martingale and if g is a convex function on R then {g(Xt)}

is a submartingale provided E[Ig(Xt ) \] < 00 for I >1.

Definition 1.6.9 (Reverse (Backward) Martingales).

The {Z, t« nis said to constitute a reverse martingale w.r.t a decreasing

sequence of a-field {G t te T} if the following conditions hold

1. For every t e 7: Z, is Gt measurable

11 E[IZrl]<~ for every lE T

Ill. E[ZtIGt-1] = Z,., a.s.

Result 1.6.1 Minkowski Inequality [Chow and Teicher (1978), pp.108].

For pzl, IIX +}ts: Ilxllp + lilt,

where 1I.ll p denotes the pth norm defined as Ilxll p =EJ'P IXI P

Result 1.6.2 Holder's Inequality [Chow and Teicher (1978), pp.104].

Holder's inequality with p - q=2 is called Schwartz Inequality.
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Result 1.6.3 Markov Inequality [Chow and Teicher (1978)., pp.8S]

EIXl r

p(IXI > a) ~ --, a>O, rD.
a r

Result 1.6.4 Liapounov Inequality [Chow and Teicher (1978), pp. 104]

Result 1.6.5. Anscombe's Theorem [Woodroofe (1982), pp.11].

If YI , Y2, ... are u.c.i.p and la a>O be an integer valued r.v. for which tt/a

converges to a finite positive constant c in probability and Na =[ac] where [x] denotes the

greatest integer part of x. Then r; - YN --j. 0 in probability as a~. If in addition Yna a

converges in distribution to a r.v. Y then ~ ~ y as a~oo.
a

Result 1.6.6. Slutsky's Theorem ( Chow and Teicher (1978), pp.249)

If {Xn } , {Yn } and {Zn} are three sequences of r.v.'s with

X n~ X , Yn~ a and Zn~ b , where a, b are finite constants, then

where ~ and ~ denote the convergence In distribution and probability

respectively.

Result 1.6.7 Martingale Central limit Theorem (Nicholls and Quinn (1982), pp. 14).

Let {~t} be a sequence of r.v.'s with the property that ~t may be expressed

as a function not depending on I, which is measurable w.r.t. a-field F, generated by a

sequence {at" o.:i, ...} of strictly stationary ergodic r.v. Further more suppose that
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-I, iV

E(~t IFt)=O and E(S;) = c2 < 00. Then (cf. N) /2 Is, converges in distribution to a
1=1

standard normal variate.

Result 1.6.8 Maximal Inequality for submartingales (Karlin and Taylor (1974),

pp. 251).

Let {Xn} be a submartingale for which Xn~O for all n. Then for any positve A

A pr{Max x, > A} ~ E[Xnl.
~k~"

Result 1.6.9 Maximal Inequality for reverse submartingales (Sen (1982), pp.I3)

Let {Xn } be a reverse submartingale. Then

Max X" s --.E.-IIXf'O 11 ,for p>1.
no91~11} p p - 1 p

Result 1.6.10 Marcinkiewicz-Zygmund Inequality (Chow and Teicher (1978), pp.356).

If {Xn• n~l} is an i.i.d. sequence with EX/ = 0, EIXIIP < 00, p~2 and

n fs, I Xi then E!S"I P = o(,r\ where the notationf= O(g) means that g is bounded.
;=1

Result 1.6.11 Burkholder Inequality [Chow and Teicher (1978),pp.384].

Ifj= {In, n~l} is a martingale andp E(I,oo);then there exist constants

Ap= 18p3'2(P_l)-1 and Bp = 18p3/2(p_1)-1/2
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Result 1.6.12 [Sriram (1987)].

Let Yn and Z; be any sequence ofr.v.s and a.b ~ and s>O be real numbers.

If P[ I r, -G 1>£] == O(/fS
) == P[ Iz, -b I>£] for every e >0, then

.. [~ a ] 0 -of11. P - - - > e == (11).
Zn b

Proof:

Consider

P[ I r, Zn -ab 1,>6] == P[ IYnz, - Ynb + Ynb - lib I>6]

< P[ I Yn rz, - b) I> 6/2]+ P[ Iur. - .1) I>812]. (1.6.1)

But [ IYn rz, - b) I> 612] == [ IYn rz, - h) I> 8/2, Iz, - b I~ 8]

u[ IYn rz, - h) I> e/Z; IZ" - b I< 8]

~ [ IZ" - b I> 8] U[ Ir, I~ d28]

Hence P[ IY" rz, - b) I> 6/2] ~P[ IZ" - b I> 8] + P[ IY" I~ &/28]

== O(/fS
) + O(/f j

) .

==O(lfS
) (1.6.2)

Consider the second term in (1.6. 1)

P[ Iur, - a) I>&/2] == P[ IYn - a 1>£12 b]

=O(/fS
) . (1.6.3)

Application of(I.6.2) and (1.6.3) in (1.6.1) gives part (i). Proof of part (ii) is similar and

hence omitted.



18

Result 1.6.13 Central limit Theorem for m-dependent random variables

(Ibragimov and Linnik (1971), pp.370).

If {Xn } be is a stationary and m-dependent sequence with E[X,,] =: 0 and

E[ X~ ]<x.
m

Then cl == E[X:] +2:L/~TX1"¥lt-k] converges, and if a ~O
k:=1

Where~ means convergence in distribution.

Result 1.6.14 Central limit Theorem for Uniform Mixing Sequence. (Billingsley,

(1968), pp.174).

Suppose that {Xn } is stationary ~mixing sequence with :L fjJ ~2 < (X) and
n

that Xo has mean zero and finite variance. Then the series Jii X"~N(O, cl), where

et)

cl=E[Xg] +2:LE[XOXk].
k:=-1

Result 1.6.15 Ergodic Theorem [Karlin and Taylor (1974), pp.487]

Let {X} be an ergodic stationary process having a finite mean m. Then,

with probability one

1
lim -(X) + X 2 +.......+Xn ) = m.
n---.r.t, /1

1.7 Summary of the Thesis

The rest of this thesis is divided into five chapters. The chapter 2 discusses the

estimation problem for the minification model defined by (1.3.1.). In this chapter we

study some of the probabilistic properties of the minification model such as ergodicity and

uniform mixing. Based on these properties w,e study the performance of the estimators for

the common mean and k. These are followed by estimation of the parameters in some
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special cases like, the minification models .generating Exponential, Uniform and Pareto

marginals.

The chapter 3 deals with the sequential point and interval estimation of the

parameters of the above models. The optimal properties of sequential point and interval

estimators are studied here.

The different properties of RCAR( 1) model (1.2.1) and least squares estimators for

the parameters of the this model form the subject matter of chapter 4. Least squares

estimators suggested by Nicholls and Quinn (1982) are considered and their pth moment

convergence are studied in detail in this chapter.

Chapter 5 provides the sequential methods of estimation for RCAR( 1) model.

Results from chapter 4 are used to prove the optimal properties of sequential procedure

for estimating location parameter of RCAR( 1) model.

Chapter 6 is devoted to the sequential estimation' of autoregressive parameter of

RCAR(l) model. Appropriate stopping rule is developed and first order efficiencies of this

stopping rule are established. It also includes a discussion on sequential interval estimation

for autoregressive parameter.

The references used In the thesis at vanous stages are listed after

the chapter 6.

Each chapter is divided into different sections. The equations are numbered as (a.b.c.).

This means that equation number 'c' of section 'b' in chapter '(1 ~ Similarly the Theorems,

Lemmas, Results and Definitions are also numbered. The references are arranged in the

alphabetical order of authors.



CHAPTER 2

PARAMETER ESTIMArrlON I"N
MINIFICATION PROCESSES

2.1 Introduction

The problem of estimation is an important stage in stochastic modelling. In

this chapter we estimate the parameters of minification model described in Section 1.3.

This is one of the non-linear models used to generate the non-Gaussiantime series.

In recent years it is found that the models of this type have many

applications in analysing the real life situations. Further it is also found that these

non-linear models are more suitable than the linear Gaussian models in certain situations,

see for example, Tong (1990), Lawrance (1991) and references cited their in. One of the

important nonlinear models used to generate a sequence {Xn } of a non-negative random

variable is defined by

n=O

X=n
k > 1, n = 1,2,...

(2.1.1 )

where {Zn} is a sequence of iid non-negative, nondegenerate r.v.s called innovations and

Xo is independent of Zi. This model is referred to as a nrinification model. Various aspects

ofthis model are discussed in Lewis and Mckenzie (1991).
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Now we will consider some interesting properties of a minification model

defined by (2.1.1).

The sequence has Markovian property.

Let {Xn } be defined by (2.1.1) and consider the conditional probability

distribution function

P[Xn s x I Xn-J == y, Xn-2 == Xn-2 , Xn-3 == Xn-3 , ... , Xo == Xo J

= J- P[X; > x I Xn-J = y, Xn-2 == Xn-2 , Xn-3 == Xn-3 , ... , Xo == Xo J

=~ J - P[ k Min(Xn-J, Z,J> x I Xn-J == y, Xn-2 == Xn-2, ... , Xo ~ Xo J

1- P[Xn-1 :.- x.k I Xn-I -= y, Xn-2 -~ X n·2, ... , Xo = xo] P[Zn »x/k]

1

1- P[Z" > x / k]

if y S x t k

~/' y > x / k.

This is same as the conditional probability distribution function P[Xn S x I Xn-J = y].

Hence the process defined by (2. 1.1) is Markovian.

The different aspects of the model (2.1.1) when Xn has a specified

distribution are studied by various researchers. For example, Tavares (1980) discussed the

minification process with exponential marginals, Sim (1986) defined this model for Weibull

r.v.s., Yeh, Arnold and Robertson (1988) for Pareto r.v.s and Pillai (1991) studied a

model with semi-Pareto marginals.

The distributional properties of minfication model in general set up are

studied by Lewis and Mckenzie (1991) and Amold and Hallett (1989). The applications of
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these models in various areas such as geophysical sciences, reliability etc. are discussed in

the above mentioned references.

In model (2.1.1) let F(x) = P(Xo $X) and G(y) = P(Z/ ~y). Lewis and

Mckenzie (1991) have proved that the model (2. 1.1) defines a stationary sequence {Xn } if

and only if

G(x) = F(kx)
F(x) ,

x ~O, k >1 (2.1.2)

where F(x) = 1- F(x) and G(x) = 1- G(x). Arnold and Hallett (1989) showed that if

the distribution ofXo is chosen as

00

F(x) = nG(x / ki
)

;=1

(2.1.3)

then (2.1.1) defines a stationary sequence with Xn having the survival function (2.1.3) for

every 11~. In (2.1.3) it is assumed that the product does not diverges to zero.

For our convemence we present the condition (2.1.3) in terms of a

sequence ofiid non-negative r.v.s. Let {Z-n, 11=0,1,2, ... }be a sequence ofiid non-negative

r.v.s with common survival function G (.). Let us define

(2.1.4)

Now it follows that the survival function Xo is biven by (2.1.3). We state

some of the useful results related to the model (2.1.1) below. The proofs of theses results

may be found in Lewis and Mckenzie (1991).
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Result 2.1.1 Let {Xn, Il~O} be a stationary Markov sequence defined by (2.1.1) with

stationary density function.f(.). Then

(2.1.5)

Result 2.2.2 For the stationary sequence defined by (2.1.1) the covariance between Xn

and Xn-1 is given by

Cov(Xn, Xn-J) = kE{(X - m.J! G (Z)dz}

where m. ~- E(X) -= E{k!G(Z)dz}.

(2.1.6)

Remark 2.1.1 Correlation between Xn and Xn-1 denoted by px(l) can be obtained from

(2.1.6) by dividing by Var(Xn). Ifwe denote Px(l) = c(k), then PxU) = Corr(Xn,Xn-J) may be

obtained by replacing k in c(k) by J(. That is Px(j) = c(Ii).

Remark 2.1.2 Autocorrelation function is said to be in geometric form if and only if Px( 1)

= pa for some a > O. Exponential, Unif0f1!l and Pareto minification process have this

geometric auto correlation function. Also for these minification processes

«u = P(X n = k j X n- j] = Corr(Xn,Xn:/) = PxU)· (2.1.7)

The relation t/J(j) = px(j) doesnot hold in gneral. Lewis and Mckenzie (1991) showed that

the relation t/J(j) = Px(j) is not true in case of Weibull minification processes. The quantity

«J) defined in (2.1.5) is also a useful measure of dependence.

As far as statistical inference is concerned, little work is being done for

these models. Adke and Balakrishna (1992) have estimated the parameters of exponential

minification model. In this paper they proposed some sampling schemes to determine the
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exact value of k and then estimate the mean of {Xn } . Balakrishna (1998) discussed the

estimation problem in semi-Pareto and Pareto processes. In this chapter, we estimate the

common mean of {Xn } and the parameter k of the general minification process defined by

(2.1.1).

In Section 2.2, we prove that a stationary minification process is ergodic

and uniformly mixing. These result are used to prove the optimal properties of estimators

of common mean ofXn, in Section 2.3. Section 2.4 deals with estimation of k. Section 2.5

considers the estimation problems in some special cases.

2.2 Some Probabilistic Properties of the Model.

In this section we prove that the minification process IS ergodic and

uniformly mixing [See definitions 1.6.2 and 1.6.5].

Lemma 2.2.1 Let {Xn } be a stationary Markov sequence defined by (2.1.1) with k> 1 and

the distribution ofXo specified by (2. 1.3). Then {Xn } is ergodic.

Proof: Let F; = a{Xj , X2, .", Xn}, Gn= a{Xo, ZI, Z2, ..., Zn} be the a-field induced by (XI

,X2, ... , Xn } and (Xo, ZI, Z), ... , Zn) respectively. Repeatedly using (2.1.1) we can write

At this stage if we use the representation (2.1.4) ofXo then

- . f{k- j +1Z }X n - In lI-j
j~O

(2.2.1 )

(2.2.2)

The representations (2.2.1) and (2.2.2) imply that F; is contained in G; which is the

minimal sigma field induced by a sequence of i.i.d r.v.s {Zn}. Hence the tail sigma field,

of {Xn } is contained in the tail sigma field ,- of the independent r.v.s. {Z}. It is well
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known by Kolmogorov zero-one law that each event of ," has probability zero or one.

This implies that T contains only events of probability zero or one, which is a sufficient

condition for {Xn } to be ergodic.(cf. Stout (1974), pp.182). Hence the lemma is proved.

Lemma 2.2.2 The minification sequence {Xn } generated by (2.1.1) is uniformly mixing

with mixing parameters

f/J(h) = P[Xn=/I' Xo ] , h =0,1,2.

Proof: Let A and B be two events such that

(2.2.3)

In order to prove that {Xn } is uniformly mixing we have to show that (See Definitio..

1.6.5)

Ip(AnB) - P(A)P(B)I ~ ,(h)P(A) (2.2.4)

such that f/J(h) -)0 as h -)00. We can prove this by closely inspecting the T.V.S, Xn+1, Xn +2,

... , Xn.,.h-J. By definition of the model (2.1.1)

j= 1,2, ... ,h-1

(2.2.5)

Note that Zn-tj is independent of Xn~.I-J, X n-tj-2, .... If Xn-i)== k Zn+j for somej=1,2, ... ,h-1, then

the events A and B will be independent and hence (2.2.4) will hold. Let Nbe the number of

innovations occurring in the interval (n+ 1, n+h-1]. Then

P( A nB) = P(A) P(B)

~ P(A) P(B) if N-O
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P( AnBIN> 0) = P(A IN>O) P(B IN>O). (2.2.6)

From (2.2.5) it follows that N=O if and only if Xn + h = It Xn and in this case A and Bare

not independent.

Consider

00

PIAn (N)O)] = f p{[An(X,,+h ~ k h X")]IX,, = x} dF(x)
o

00

= f p{AIX" = x)P{X,,+h ~ k
h
X"IX" = x} dF(x)

o

00

= fp{AIXn = x)P{N > 0) dF(x)
o

= P(N-;>O)P(A).

At the first stage of simplification we have used the Markov property of {Xn } and then we

made use of the fact that [N=O] if and only if [Xn+ h = Ail Xn ]. Hence from (2.1.6)

p(AnBIN > 0) = P(A) P[B IN>O]. (2.2.7)

Once again using Markov property of {Xn } and (2.2.7) we can write

P(AnB) = p[AnBn(N=O)] + P[AnBn(N)O)]

= P[AnBn(N=O)] + P[AnB I(N)O)]P(N>O)

s 1>(N=O)P(A) + P(A)P(N>O) P[B IN>O]. (2.2.8)

Hence using (2.2.8) and the fact that P(B) = P[B(l(N=O)]+ p[Bn(N)O)] we get

Ip(A nB) - P(A)P(B)I s P(A)[P(N=O) + P(N)O) P(B IN>O)

-IJ(B IN>O) P(N~>O) - P(B IN=O) P(N=O)]

s P(A)P(N=O) [1 - P(B IN=O)]
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~ P(A) ~h),

where ~h) == P[N=O] == 1)[Xn~h == It Xn].

Since {Xn } defined by (2.1.1) is stationary, from (2.1.5) we have

Note that F(khx) / F(x) is a decreasing function of h and hence we can write

00 - J

lim r/J(h) = f lim F~ 'x)dF(x) =0.
h~oo 11-+00 F (x)o

This completes the proof.

2.3 Estimation of the Mean

Let {Xn } be a stationary sequence defined by (2.1.1) with common d.f. F(.)

and common mean p = E(Xn) . Assume further that Var(Xn) = cl <00 for all 11. The

ergodicity of {Xn } implies that the sample mean X" = (Xl + Xl + ... + Xn)/n is a natural

estimator of!J. The asymptotic properties of Xn are discussed in the following theorem.

Theorem 2.3.1 The time average Xn is strongly consistent and asymptotically normal

(CAN) estimator ofu. The asymptotic variance (A.V) of X n is give": by

_ a 2

A.V (X,,) == - B(k)
11

whereB(.) is a continuous non-negative function.

(2.3.1)
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Proof: By Lemma 2.2.1 and point wise ergodic theorem lSee Result 1.6.16] it follows that

X" ~)J almost surely (a.s) as 11 ~,x. The uniform mixing property of {Xn } implies that

(cr. Result 1.6. 14)

(2.3.2)

where~ stands for convergence in distribution and Z, is a normal r.v with mean zero

and variance

rf..'

O'r = cl + 2cl LPx(j)·
;=1

(2.3.3)

In this case IN) is the autocorrelation between X, and X, +}. Further 0< O'r <00. Thus Xn

isthe CAN estimator of )J and

2 cL.!

- a ~
A.V( X" ) = - {I + 2c: Px (j) } .

11 r': l '

(2.3.4)

Let us denote by px(l) = Corr(X1,x2) and assume that AI) is a continuous

function ofk say c(k) [See Remark 2.1.1]. Hence we can write

_ 0'2
A.V (X,,) = -B(k)

11

where

00

B(k) = 1 + 2 Lc(k J),
j=1

which is continuous in k. Hence the proof is complete.

(2.3.5)

Remark 2.3.1 The uniform mixing property of {Xn } , implies that the summations in (2.3.4)

and (2.3.5) are finite [cf. Ibragimov and Linnik (1978), pp.344].
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Based on the above CAN property of Xn we can construct the asymptotic

confidence interval of JJ as follows.

Here we are interested in specifying an interval which covers the true

parameter (Population mean IJ) with an assigned probability say (I-a). This particular

interval is known as confidence interval with confidence coefficient (I-a).

(X - JJ) .
By the above Theorem 2.3.1, we have g;;;; '"- N(O,I) asyrnptoticaly.

~B(k)
n

Thus for large 1" when if and k are known we can find out an ZClI'2 from 'standard normal

tables such that

~ (I-a).

Thus the 1OO( l-a)% confidence interval for JJ is given by

We will use the above result to study the sequential interval estimation in Section 3.4.
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2.4 Estimation of k

In this section we discuss the problem of estimating k. Let us define

k if X n-1 S z;
Wn =

X_n_ = (2.4.1)
X n-1

k(Zn / X n-l) if X n-1 > z;

So that Wn s k for all n. We propose kn as an estimator of k where,

i; = Max Jt:
1~I$n

The properties of kn are studied below.

Theorem 2.4.1 The estimator kn is a strongly consistent estimator of k.

(2.4.2)

Proof: From (2.4.1) and (2.4.2) it is clear that kn =k if and only if Xi; <Z; for at least one

i, i~1,2, ..., n. Thus

P[kn:,ek] = P[X-1 >2, for all j=1,2, ...,n].

Butwe have Xi, = k Min (X,-2, Z;-1) and hence

P[kn#c] = P[kZ;-J >Z;, kX'-2 >Z" for i=I, ....n]

P[ kn ~k] s P[kZ;-l >Z; for all i=1,2, ...,n]

r "1

l;J-l
= nP[kZ21-1 > Z2;]'

;=1

where [x] denotes the integer part ofx.

(2.4.3)
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We have used the independents of 2,'s to arive at (2.4.3).

:s. LC-.; ~ ;--1
This implies that 2: P[kn ~ k] ~ 2: pL2! < 00, where p = P[kZ2i- 1 >Z2i] = P[kZ1 >22] and

n=1 n=1

since Z;'s are iid non-degenerate r.v.s, we have o~ p < 1.

Now by Borel-Cantelli lemma, it follows that

P[ kn "#k infinitely often] =0.

Equivalently kn=k infinitely often with probability one and hence 'in ~k a.s as n ~oo.

Remark 2.4.1 Note that O<W; = ~~ k for all i and W; =k if and only if Z; > X-I. Thus
X J - - 1

the distribution function of Wi is concentrated on a finite interval with a positive jump at

the end point. From the study of extreme value theory we know that if \ Vi} is a sequence

of iid non-negative r.v.s concentrated in a finite interval, with a positive jump at the end

point then Max V, does not converge to a nondegenerate limit distribution for any
l~l~:n

norming sequence. This result also holds for our stationary sequence since it is uniformily

mixing [cf. pp. 13 and pp. 60 of Leadbetter, Lingren and Rootzen (1983)]. Hence our

estimator k-n converges to a degenerate distribution for any norming sequence.

In the folowing , we propose an alternative estimators for k in some special

cases which are CAN for k.

One of the wellknown minification models is that defined by Travers (1980)

for exponential r.v.S. In this case Xo has the distribution
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A>O,x~O

and the iid sequence {Z} has the common distribution specified by

G(x) = P(ZI S x) = 1 - e-A.(k-l)x, x~O.

Then Xn defined by

x" = k Min(X,,_I, Z,,), n = 1,2,...

has exponential distributionF(x) for all /1 ~o. For this process E(X,,) = IfA-, Var(X,,)=1/A-2
,

Corr(X", X,,+h) = k-h h=O, 1,2....

Now we suggest an estimator for k for the exponential minification process

defined above.

Let

Then

u=) j = 1,2, .... (2.4.4)

and

E([(,) = k/{2k-l)

V(~) = k (k-l)/(2k-I)2.

(2.4.5)

n

n-I'LU
J

be the arithmetic mean of Ui, U2, .••• U; Now we study the
]=1

properties of moment estimator of k based on Un'
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A II
Theorem 2.4.2: For the exponential minification process, the estimator k = ~-- IS

n 21/n - 1

strongly consistent and~(kn - k) ~ 22 as /1 ~oc, where Z2 is a normal r.v with mean zero

and variance

a 1 = k (k-l) (2k-l)2 _ 2 (2k-l)2 «k_l)3 ~ 1 .
1 tt{k-1+kh-1(2k-I)}

(2.4.6)

Proof: By the ergodicity of {Xn} we have as /1 ~OO, Un = E(Ui) = kl2k-l a.s and hence

kn ~ k a.s. As U» is a function of Xn and Xn-1, by lemma 2.2.2, it follows that {Un} is

also stationary and uniform mixing with coefficients

h == 1,2, .... (2.4.7)

Now by applying Result 1.6.14 we get the result that

Jii[Un - k / (2k -l)]~Z

where Z is a normal r.v with mean zero and variance

r~,

Var(Z) = Var( [I j ) + 2 L Cov([/) ,ll)th) .
h·-)

Now let us compute

But

(2.4.8)

(2.4.9)

(2.4.10)
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(2.4.11)

Now consider Ph

(2.4.12)

Denote the last term in (2.4.12) by lh. Thus

J
r$.; z z z z

- P[X > kZ X > h+l Z > h+l Z > h+l Z > h+l] -cZ},+1 dz
- 0- l' O-k h- 1 ' l- k h-l' 2- k h.-2'···' h-y ce h+l

o

where, c = (k-l)A.

Thus

Nowconsider
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(k 2,..1 )}! · -cZ1dmax Zl,"TT (.l "ce Zl
k '2 >~i

\ 1 .... -1/

cx:'Je .l.kZlce CZtdZ I =! (say) .
l".1

kH

Since k> 1 and 21> ;~~II we have

Zh-t-l Z k
k h- 1 < 1 < Zl'

Thus

c { z}J= exp -(Ak+c)~
Ak + c k h

-
1

k -1 { k Zh-tl }= -- exp -l(2 - 1)- .
2k - 1 k h

-
1

Using (2.4.14) and (2.4.13) I, can be written as

Ak +c

(2.4.14)
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Substituting for c we have

[(k -1)A]2 / (Ale + (k -1)A)
I h = --------~--~

Ak+(k-l)A _ {k.
h

-..
1

_ 1 }
k h - I + (k l)A· khlCkl) + 1

k

_ (k - 1)2 / 2k - 1
2 k --1. kit --k ~ kit _ kit 1
- -khT k-I+2kh-k h- 1 .

(2.4.15)

Now let us consider the other terms in (2.4.12)

00

P[ZI ~X()/k] = f P[xo > kzl]ce-CZ'dZ\
o

Similarly

k -I
P[Zh./ s X;,k] =

2k -1

c

Ak +c

k -I

2k -1
(2.4.16)

(2.4.17)

Using (2.4.15), (2.4.16) and (2.4.17) in (2.4.12) we get

p =P[U = 1 U = 1] = 1- 2(k-1) + (k-1)2k"-1
hl,l+h 2k-1 (2k-1)(k-1+2k h-k"-I)

k - 1+ k h
+

1

(2k-I)(k-l+2k h _k h
-

1
) '

Using this value of Ph in (2.4.10),

Where we used the fact

(2.4.18)
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f

= JP[Zh > f]k ).xdx
o

q.Je,xlk ).eAxdx

o

A k
-----
et + A. 2k - 1'

which is independent of 11.

Note that

Thus ash ~·x

Now let us simplify r(h) in (2.4.18)

k 1

r(h) = Ph - ---
(2k -- 1)2

k -_. I + k h
-tI

(2k -l){k -1 + k h '1(2k -I)}

(2k _1)2 {k -1 + k h
-
1(2k -I)} .

(2k - 1)2

(2.4.19)

An application of ratio test for convergence of series implies that
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r

Llr(h)1 <x:
h 1

Now using (2.4.5) and (2.4.19) in (2.4.9) we get

V
k(k - I) 2(k - 1)3 -r'1

ar(Z) - ,,-----
(2k-l)2 - (2k-l)2 ~k-l+kh'l(2k-l)

and 0< Var(Z) <x:

Let us write

2k -1 C'-
-- ~tl(ll - ~1)

I( I - 1 n_"
- 11

2k -1
Since _ ~ (2k - 1)2 a.s as /1 ~x by Slutsky's theorem we have

2(/'1 - 1

(2.4.20)

where Z2 is a normal r.v with mean zero and variance a~ given by (2.4.6). This completes

the proof.

In the next section we consider the estimation of parameters in some other

special cases.

2.5 Estimation of Parameters in Some Special Cases.

This section is devoted to estimation of parameters when marginal

distribution of Xn is either one of Exponential or Uniform or Pareto. In Section 2.1 we

have noted the conditions to be satisfied by the marginal distribution so that the non­

negative Xn generated by the minification model (2.1.1) is stationary and Markov. The

class of such distributions include Exponential, Weibull, Pareto and Uniform- U(O, 1)

distributions. We summarise the important features of these minification processes in the

Table 2.5.1.



T
ab

le
2.

5.
1

D
is

tr
ib

ut
io

n
o

f
D

en
si

ty
fu

nc
tio

n
X

n
f(

x)
M

ea
n

V
ar

ia
nc

e'
~
.
(
x
)

G1
.(

x)
Px

(1
)

<p
(h

)

U
ni

fo
rm

1,
0
~
~
1

1/
2

1/
12

1,
xs

O
1,

x
~
O

0,
ot

he
rw

is
e

I-
x

,
O

<
x<

l
(l

-k
x

)/
(I

-x
),

O
<x

<1
k-

1
k-

h

0,
x>

I
0,

x
z
l

E
xp

on
en

ti
al

A
e-

A
x

,
x

z
0,

A
>O

l/A
I/A

?
e-1

-x
e-A

.(k
-l)

x
k-

1
k-

h

W
ei

bu
ll

c
a

xc -1
ex

p(
-B

x"
)

(
~

)
c
r(

,;:.1
)

(-
b)
~l
;

no
ge

ne
ra

l
C>

O
,x

z
0

[r
(C

;2
)_

{r
(!

.f
)}

2
&

.
e

f*
'

[k
1J

fo
rm

k-
h

e

P
ar

et
o

a
(

1+
X

)-
a-

l,
a
>

1,
a

a
k-

1

-
-

k-
h

x
2

0
a

-
I

(a
-
l
)
~
(
a

-
2)

(1
+

x)
-a

k'
~
I·
~

_
1

(1
+

kx
)Q

kG
-1



40

It can be noted from the Table 2.5.1 that Uniform, Exponential and Pareto

minification processes have geometric autocorrelation function. But an the four

minifcation process are uniformly mixing (See Lemma 2.2.2) with mixing parameter

(2.5.1)

Since Weibull minification process doesnot have a closed form of this type for

autocorrelation function, here we consider only Exponential, Uniform and Pareto

minification processes.

In Theorem 2.3. 1, we have noted that the sample mean X ~ is CAN

estimator for population mean. The asymptotic variance of X n can be calculated using

(2. 1. 7) and (2. 5.1) as

AV(X
n

) = var(Xn ){1+2±px(J )1
n -, I I r

l/ar ( J'\. ) I ' .
== n - ~ 1+ 2L k I

/1 l .I 1

k+lvar(Xn )
- ------

k - 1 /1

Remark 2.5.1 Confidence interval for population mean of Uniform, Exponential and

Pareto minification process can be constructed as described in Section 2.3. The general

form of such an interval is given by

[
X ±z . k + 1var(XJ].

n u 2 k - I /1

We will use the results of this chapter for the sequential estimation of parameters of the

minification processes in the next chapter.

The material of this chapter are briefed in the paper Balakrishna and Jacob (1998a).



CHAPTER.3

SEQUENTIAL ESTIMATION FOR

MINIFICATION PROCESSES

3.1 Introduction

In many statistical inference problems, some predetermined

accuracy is required and usually the optimal fixed sample size to meet this accuracy

depends on some nuisance parameters. For example, if we wish to construct a confidence

interval for the unknown mean e of a normal population, N(e,cI) with preassigned

accuracy width 2d and confidence level r for given d > °and rE (0,1), the optimal fixed

? ()
. . . za - -1 1+ r

sample size procedure requires a sample of size no = (d) ,where z = <I> -2 and

<I> is the cumulative distribution function of N(O, 1) r.v. Note however that, the sample

?

size /10 = (z;) -, depends on cl which is often unknown. To solve such problems it is

necessary to use a sequential scheme.

The most frequently used sequential sampling scheme is the fully sequential

scheme due to Anscombe (1953), Robbins (1959) and Chow and Robbins (1965). In this

scheme of sampling a sample of size m is drawn first and then observations are taken one

by one. It renews the estimates of the unknown parameter and the total sample size after

each new observation and checks weather enough observations have already been drawn.

Not surprisingly this scheme is very efficient in terms of sample size.
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The purpose of present chapter IS to extend the sequential estimation

techniques to minification processes.

The general minification processes and its probabilistic properties are

studied in Chapter 2. Compared to i.i.d cases, the literature on sequential estimation in

time series emerged some what recently. See Sriram (1987, 1988), Basawa, McCormick

and Sriram (1990) for the history of sequential estimation in dependent cases.

The present chapter is organised into four sections. In Section 3 2 we

propose sequential procedure to deal with point estimation of mean. Sequential estimation

for k in exponential minification process is given in Section 3.3. Section 3.4 contains

sequential interval estimation for mean and k.

3.2. Sequential point estimation of mean

Let Xi. X2, ... , Xn be the 11 observation from the model (1.3. 1) and our aim

is to estimate Ji == E(X,). As one can see in the literature on sequential estimation the loss

function is often the sum of quadratic loss. for the discrepancy between the target

parameters and their estimates. Thus here the loss function is

A>O (3.2.1)

where cl== Var(X,). The loss function defined in (3.2.1) have the property that for a given

/J, the loss increases as the difference between XII and zz increases in either direction.

Also this loss function is easy to handle mathematically compared to other loss functions.

The expected value of a loss function is called risk function. The aim is to find an

estimator for the unknown parameter which have minimum risk under any loss function.

Such estimation procedures are known as minimum risk estimation method. Thus in"

minimum risk estimation problem, minimization of risk w.r.t the choice of sample size
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leads to the minimum risk estimator (MRE). Here we estimate the parameter p. such that

the expected value of Ln(p.) in (3.2.1) is less than some prescribed value Up.

_ a 2B(k)
Now using Theorem 2.3.1 we have E(X" - p)2 ~ , where ~ means asymptoticaly

n

equal. Hence

(3.2.2)

where B(k) is a continuous function ofk for k> 1 andf = o(g) means that f ~ 0 .
g

Let no(ji) be the smallest integer 11 such that

Rn(p) < up.

ie,

A n ' B(k)s. lip.

Thus

(3.2.3)

It is clear from the sample size defined in (3.2.3) that 110(J-1-) depends on the parameter k.

When the parameter k is unknown, nonsequential optimal solutions may not exist in

general. As a remedy we go for sequential method of estimation by defining a stopping

rule 7~ in analogy with l1a(p) by

(3.2.4)

where mu is an initial sample size imposed to avoid stopping too soon and that depends on

the risk bound Up. B(kn ) is obtained by replacing k by kn [See (2.4.1) and (2.4.2)] i,:



44

B(k). The estimator kn and its properties ate discussed in Theorem 2.4.1. Now the

sequential point estimator for )J is X T with corresponding risk
1/

The efficiency of sequential procedure is measured in terms of the

convergence properties of the following quantities, under some regularity conditions as

cost per observations tends to zero. The quantities of interest are

(i) L
1'0

(
00) £(7)
11 --

nO
(

000) u,
111 -.

Rflo

Here T denotes the stopping time, no the fixed sample size R, denotes the risk under

sequential setup and R; the risk under fixed sample size procedure. If L converges to
u nO

1, then we say that the sequential procedure is asymptotically consistent and if £(7) ~ 1
.n

O

we say that the sequential procedure is asymptotically efficient. As a measure of relative

efficiency of sequential estimator w.r.t fixed sample size estimator we consider the ratio

Rr RrThe sequential point estimator is risk efficient if - =1. However, this is not true
R

110
s;

in general. But under some conditions if RT converges to 1, then we term the sequential
R,lo .

procedure as asymptotically risk efficient.

The main results of this section are summarised in the following Theorem.

Theorem 3.2.1: If for p >2, EIZl12p< 00 and mu is such that U/(h+I)5mu = O(u;l) for h

E (O,p-2) then as uJ.J ~ 0

I'u
1. --~ 1, a.s

no ()J)



45

t
11. E _J.1_ - 1 ----» 0

110 (11)

IV.

I~T
__}J_----» 1.

R''O(/J)

We need some lemmas to prove this theorem and we introduce the

following notations for easy reference

11/ == Ilrl...)1) (I-c) 11] == 11o()1) (1+c)

Lemma 3.2.1: IfEIZI 1
2p

< oo,p~l then

Proof: From the definition of the model (1.3.1) we can write

n

Xn - J1 ~ /1 1L (kZ, - Ji)
,=1

where a == E(Z,)

Thus using Minkowski inequality (See Result 1.6.1)

n

IIXn-,u"lP~n-lk L(Z;-a) + kll(a-,ulk)112P
;:::) 2p

(3.2.5)



~6

Now since Z,'s are iid with EIZd2p < x, we can use Marcinkiewicz -Zygmund inequality

[See Result 1.6. 10] to the first term to get

n

L(Z,-a) ==0(111
:
2

) .

,.-:) 2p

Thus

11

/ Q 12 Q -1 7

J' '~~ 1/ ( 1/ ) == (1/ ~ )
1/1

The lemma is proved.

Lemma 3.2.2: If {Zn} is a sequence of nonnegative and non-degenerate r.v.s and mu is

such that 1I!l1 (h.l)~ mu = Q( u~\ h E (0,p-2) for p2. Then as u)J ~ 0',

Proof: From the definition of stopping time (3.2.4) if T)J s n, then

1 ---
u~ A.B(kn)~111 for some zss s n s v».

Thus

P[l~ ~ 11,] s p[u~1 A. B(k,,) ~ n, for some mu9 191,]

~ P[ B( kn ) - B(k) ~ -e B(k) for some mu ~ n s nJ]

~ :t p[IB(k,,) - B(k)1 > 8']
r-»;
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~ i P[lkll - kl > 17] , for 17 > 0
n mu

The last inequality is due to the fact that H(.) is a continuous function of k.

Now consider

s p[Max(~) < k-11]
l<::,"-n Z,l

(3.2.6)

_ [ L1 Z2 Z4 z; ]- P z; < k - 11,r < k - 1]'7:: < k - 1], ...,z-; < k - 17o 1 3 n-l

[
Z2 k Z4 k z; k ]s P r < - 11,7:: < - 11, ..·,Z-; < - 1]

1 3 n-l

p( Z2 k ][il 1
_ [!]-l

S r < - 11 -a ,
1

where a = p(~ < k - 17] .

Since {Z,,} is a sequence of nondegenerate r.v.s it is true that 0 ~p[~ < X]<l for x> 0

Consider

Jli" -- kl > 171~ aliI 1 --,"_0 '-:.l ----, as 11 ~'X).
11 p 11 P 0

Therefore,

[n] 1 " 2. a 2 • a 2 • lIP ~
hm-- s hm--==hm-- == -
n +et" , 11 p n»et", 11- P n-+Cf' a -~-t-2 00
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. pn" t
= hm----

n--+:f1 a -- ~~2 .loga

I
. /)( p - 1)...1./,0

~ Im-----

1 P lJ.,.2
n .~(.(, (oga) a 2

1
· $1.2...P) ~. 2= tm a'

n-wso (Iogzr)" ,

=0.

Therefore,

This implies that

Now using (3.2.7) in (3.2.6) we have

(/:'

P[l~snJ]= L O(f"-P)

O<a< 1

(3.2.7)

== c[_1_ + 1 +l for some 0< c zc
m: (mu + I)P J

Now we have the following relations

1 1 1 mu
-+ +...+ <-=--
m: (mu + I)P (2mu - I)P m: m:--1

1 1 1 Zm; 1
---+--- -+...+ < - ---
(2m

u
) P (2m

u
+ l)" (4m

u
- l)" (2m

u
) P (2m

u
)P-t
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1 1 1 4/11 1
---+ .+ + < --~-== ---
(4m

u
)P (4m

u
+ I )P ... (8m

u
- I )P (4m

u
) J1 (4m

u
)P l

1 1
< -- +--- + ---+

m:J
1 (4m

u
)P 1

1 1 1
Now the series 1+ --1 + 2( 1) +... is a geometric series whose common ratio is --1 IS2 p 2 p 2 P-

less than unity since p>2. Hence the sum of this geometric series is finite. Thus we have

== O( (p 1)(1+h)-I)up ,

where we used the condition U~l/(h+l)s mu.

Hence first part of the Lemma is proved.

For the second part, from the definition of TIJ it follows that for n 2 n2

P[ t, > 11] ~ P[u~1 A B«( ) >11]

== P[ B( kn ) -B(k) »e B(k) ]

As in the proof of part (1) here we can prove

L P[T}J > n] == O(1I~P-2)'2).
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This completes the proof

0< /lj.J< /1o, /Iv < I is uniformly integrable.

Proof: From the definition of uniform integrability [See Definition 1.6.4] it is enough to

prove that

Using (3.2.5) we can write

n

s 11/-/ k E Max n 1L (Z; - a) +(a - JJ / k) 1H
"I <n<n2 ;=1

~ UJll k111-
2 E(F,,2 IH) +2 n;l U~1 k (a-p/k) E(F" I H)

(3.2.8)

n

where I~~ = Max /1 1 L (Z, - a) is a submartingale w.r.t. F; = cr{Xo, Z/, ..., Zn}. Now
n\ < n- n~ 1-:')

using Schwartz inequality, Maximal inequality for submartingales and M-Z inequality, the

first term in (3.2.8) can be written as



51

Now using Lemma 3.2.2, we have

-1 k ., E·'( L' 2 I )
11)1 /1)'" .J l'n }f < 'x:

Similarly the second term in (3.2.8) can be written as

Repeating the same arguments as above we have

Similarly the third term in (3.2.8) is finite. Thus we have proved the lemma.

Lemma 3.2.4: If EIzI 1
2p < 00, p?l then {JIi(Xn - )I), n> I} is uniformly continuous in

probability.

n

Proof: We have JIi(Xn - )I) = L (X, - )I) / JIi
1=1

"
Letting L (~\r, - 11) =={!n and following Woodroofe (1982) (cf pp.II)

,.-)

we can write

Qn+] _ Qn ~ -.1",. IQ .- Q I+ [1 -(~)1I2 ] ~ .
~ F" .Jn n-+) n n» } ,--

"\j11+ ) -v 11 -v n
(3.2.9)
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If j ~ /18 the second term on the right hand side (3 ~ 9) is stochastically bounded by

[1-(1 + b)-I 2] IIC¥n - u )11.Jn" = [1-(1 + b)-1I2] 0(1) by Lemma 3 2 1

= O(b)

which tends to zero as (j --~ 0 uniformly in /1.

Thus we have

Now consider

[
1 ] [n

l j

~]p Max~-IQn, - Qnl > §.. = P Max L(X, -p) > E...-!! .
o- .1<, n(' r'l) 2 O<.j<;.nJ 2vII I=n-+ 1

Using (3.2.5) we can write

{

n- j }

Note that k ,!;I(Z, - a) + jk(a - if) is a submartingale w.r.t G; = cr{XoZ,...Zn}.

Using maximal inequality for this submartingale we have

s &~ k8 E[I(Z, - a)1 + I(a -1-)/]
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= 0(8) ~ 0 uniformly in 11, since Elzl12p< 00.

Thus {J"ii(Xn - ,u), 11>1} is u.c.i.p.

Now we are in position to prove the theorem.

Proofof Theorem 3.2.1

Since kn is a strongly consistent estimator of k and B(k) is a continuous

function ofk, it follows from (3.2.4) that T; < 00 and T; ~oo as u; ~o. Also

~B(k).

From the definition of stopping rule (3.2.4) we have

and

Thus

Dividing (3.2.10) by 11o(J..1) and using the above arguments it follows that

11.~ ) 1

ifmu is such that, ~~O.
Ilo(/J)

(3.2.10)



For part (ii) we can write

(l' ).
and I J-i_ - 1 le == O.

\ 1'0 (Jl)

Now using Lemma 3.2.2,

(3.2.11)

since [,9 is arbitrary, as UfJ -~O, we have

(3.2.12)

Now dominated convergence theorem can be applied to the second term in (3.2.11), since

Thus

(3.2.13)
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Now part (ii)ofthe Theorem follows from (3.2.11), (3.2.12) and (3.2.13).

For part (iii) recall from Theorem 2.3.1 that

We need to show that this result continues to hold when 11 is replaced by the stopping time

1~. In Lemma 3.2.4 we have verified that {.,(;,(Xn - p), nzl} is u.c.i.p. Then one can

conclude, using Anscombe's Theorem [See Result 1.6.5], (2.3.2) and from part (i) that

In part (iv) we will show that the risk of the sequential procedure X T defined by
p

Consider

(3.2.14)

where the events C,D,H are as defined earlier.

Using Schwartz inequality, Lemma 3.2.1 and Lemma 3.2.2, we write

where .l + .l = 1p q

A
[ ]

lI P

n't:."-P pllq (C)
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A 1 tp 1)/(hd)q-= -U 10(m (p )/p)O(U )
a' jJ U jJ

A 1 h lp-I,/(Jt+l,q
= -U 1 O(U(P )( -d)P)O(U )

a 2 jJ ~ jJ

== o( 1) as u; -~O, since h E (O,p-2). (3.2.15)

(3.2.16)

Similarly using Schwatz inequality, Lemma 3.2.1 and part (2) of Lemma 3.2.2 we have

A - 2
---1-2 E (Xr -)J) ID = 0(1).
ujJ a JI

Now we will prove

Using part (iii) and Lemma 3.2.3 it follows that

But we have a/ = B(k) cl and 1'0 ()J) ~ AB(k) Up to write

A B(k)
~---~1.

UjJ 110 ()J)
(3.2.17)

Now the asymptotic risk efficiency follows from (3.2.14), (3.2.15), (3.2.16) and (3.2.17).

Hence the theorem is completely proved.
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3.3 Sequential Estimation of k in Exponential Minification processes

Exponential minification process have many nice features compared to

other minification processes. This section deals with sequential estimation of k of th

exponential minification process.

Even though kn defined in (2.4.2) is consistent for k in a general

minification process, it is not CAN. However, for the exponential case the estimator

suggested is kn given by

A (I
k == _ It

n 2(/ - 1
n

is CAN as discussed in Theorem 2.4.1.

(3.3.1 )

For the sake of algebraic simplicity we consider a loss function of the form

(3.3.2)

for estimating k using (3.3.1). Using Theorem 2.4.1 (See (2.4.8) and (2.4.20» the

corresponding risk is given by

=: (~/f} [k(k - 1)_ 2~ (k - 1).1 ]
- ft(k-l)+k h

-
1(2k-l)

=C" If} H(k) (say),

where H(k) == k(k - 1)_ 2" (k - 1).1
i: (k -1) + kit 1(2k - 1)

(3.3.3)

Note that H(k) defined by (3.3.3) is a continuous function of k for k>1. As in the case of

population mean here also we calculate the sample size such that the risk is less than some

prescribed limit say Ilk .. That is,
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Let 110k be the smallest integer 11 such that (3.3.4) holds. That is,

(~ /1-1 H(k) ~ ui,

Thus

(3.3.4)

(3.3.5)

Note that this fixed sample size procedure depends on the unknown parameter k.

Let us define a stopping time by

where m, is an initial sample size that may dependent on Ilk, H( kn) is obtained by

replacing k by k , in (3.3.3)

Based on this stopping rule the sequential point estimator of k is k 1. with

corresponding risk Rr . The optimal properties of this sequential procedure are
k

summarised in the following Theorem.

Theorem 3.3.1: If E IZ, 1
2p < zc for p>2, and m, is such that U;1!(h+l) s m, =O(u-/) for

hE (O,p-2)~ then as Ilk ~ 0

r.
2. E .u: - 1 --., 0

/lot
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The following lemma's are needed to prove this theorem and hence

we prove them first.

Lemma 3.3.1: Let {XII} be an exponential minification sequence defined in section 2.4

and ifE IZ, 1

2p < ~ for p~l then

(24 4.)

Proof: Consider

n k
(2k-l)1f' L(U, - (2k -1)

t : 1 2p

n k.
Note that L(U, - (2k _l)lS a zero mean martangale w.r.t F" = cr{XO'Zl•...Z"}. Then by

I 1

applying Burkholder inequality (See Result I.? 1) and moment inequality we have

== O( 1),

where Bp == 181)~'2 (p-l r1
2 Hence
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Therefore

The lemma is proved.

For the following lemma we need to introduce some notations

Let 111= 1'0~1-&), 111 == noA{l+e), A = [Tk 911] , D== [Tk ~.2] andE= [nl <T, <11.2].

Lemma 3.3.2: IfE IZ/12p < 00 for p>2 and m, is such that U;tI(h+l) ~ mk=O(u;l), where

Ukis as definded in Section 3.3. Then for hE (O,p-2),

Proof: From the definition of stopping time T; (3.3.6)

T, s III implies

Thus using the definition of 11/

=P[H( k
n

) - H(k) ~ -df(k) for some m, < 11 s nl]
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c; L P[IH«() H(k)1 > boIl
n . m.

~ i P[I(-kl>17].
n ml

Now we will prove

In view of relation (3.3. 1) and Result 1.6.12 it is enough to prove

Consider

We have already proved in Lemma 3.3.1 that:

Using Markov inequality for e > 0, we get

Now using the Result 1.6.12,

Hence the required result (3.3.9) follows from the above equation.

(3.3.8)

(3.3.9)
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Combining (3.3.8) and (3.3.9)

P[l~. ~ 11,] < L O(/fP 1
)

= O( u1 P 2)/2(h-+1».

This proves the first part of the lemma.

On similar lines the second part can be proved. We have already provided a similar

result in lemma 3.3.2. Hence we omit the details.

Lemma 3.3.3: Under the conditions of lemma 3 3 2,

is uniformly integrable.

Proof: By the definition of uniform integrability it is enough to show that

Sup E 111;1 [(2k-l) UTt -kfhi < 00.
Tj

Consider
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n

Note that L [ll, - 2: I] IS a martingle w.r.t G; = cr{Xo ZI ...Zn} and hence
, 1

11

~'n== MaxL [(I'-Zkk l ] is asubmartingale.
111' n- n~ , 1

Now using Schwartz inequality and maximal inequality for submartingales,

2
I -I - k 2 I -1 (2k - 1)E Uk [(2k-1) U T - ] I H ~ 11k 1

k n
l

112

Consider E(~rn~) == E L [il,'- lick I]
, 1

Using M-Z inequality we have

(3.3.10)

[See Lemma 3.3.1]

Using (3.3.10) , lemma 3.3.2 and above arguments we have

2
I l k - k 2 I -I (2k - 1)

E 11k [(2 -1) l!Tt - ] It; ~ 11k 2
//

1

Hence the proof of the lemma is complete.

Lemma 3.3.4: { Jii(kn - k), /1 21} IS stochastically bounded and uniformly

continuous in probability.

Proof: Using (3.3.1)', Jii(kn - k) can be written as

Jii(k - k) = Jii (!!n -k)
n 2(J - 1

11

_ Jii[(l- 2k)Un + k]

2([ -1
n
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= [(1 - 2k )Un t k ] / In
(2l In - 1) / 11

(3.3.11 )

We will prove that the terms in numerator and denominator of(3.3.11) are u.c.i.p and

stochastically bounded and then use the Remark) 6 3 to get the required result.

As l / n s l. it follows that {[(1 - 2k )l/n + k] / In } and [(2[ T11 1) / 11] converge to

zero almost surely as /1-~X-. Thus by Remark 1.6.2 these terms are u.c.i.p and

stochastically bounded. Since any continuous function 01' u.c.i.p and stochastically

bounded sequences is again u.c.i.p (cf. Remark 1.6.3) lemma 3.3.4 now follows easily.

The proof of Theorem 3.3.1 is skipped as it is parallel to the proof of ·Theorem 3.2.1. In

the next section we will consider sequential interval estimation for the mean and k.

3.4 Sequential Interval Estimation

This section is devoted to the study of sequential interval estimation for the

mean of general minification processes defined by (2.1.1). In the iid setup Chow and

Robbins (1965) proposed a sequential confidence interval for the mean B of a

population with finite variance as discribed below. They consider a situation where {Xn }

A A

is a sequence of iid observations and BLn ,Bun (both based on Xl, X2, ... , Xn) such that

A A A A

()Ln5:()Un and P[()Ln s () 5:()Un] ~ I-a. In this case I-a is referred to as a confidence

coefficient or the coverage probability and aE (0,1). In the confidence interval,
A A

()l.n and ()Un are the lower and upper confidence limits and the width of this interval is

'" '"
equal to ()Un - ()Ln' In many problems of practical interest one wants to provide such a

confidence interval for a parameter of interest satisfying the additional condition that for

some preassigned d(>O).

0< (), - () < 2d
[in Ln - .
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Assume the estimator T; for () is strongly consistent and ~ iT; - 8) is

asymptotically normally distributed as Il~OO say N(O,d).

Then

lim ~}(7: -11 1'2 aZ1 _ (1 2 ~ fJ~ T" +n 1/2aZ
1 ai2) = I-a.

n-.'(
(3.4.1)

where Zj-a/l == <l> 1(1_ T), <I> being the standard normal distribution function. Consider

the interval

(3.4.2)

as a possible confidence interval for fJ. Its length is 2d and if cl is known the best fixed

sample size which minimizes the length can be obtained from (3.4.1) and (3.4.2) which is

given by (cf Chow and Robbins (1965».

and

2 2 J
lId == d ZI--aJ2 cf. (3.4.3)

For small d, Ind provides a bounded length confidence interval for (} with asymptotic

convergence probability I-a.

However, when d is unknown, din (3.4.3) it can be replaced

by an estimator

but then we cannot use the above fixed sample size procedure. So we replace nd by a

random sample or a stopping rule

N - . {> . > d -2 Z2 S2}d - mln n - /10 . 11 - l--al2 n ,
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where, 110 is an initial sample size. Then we use the confidence interval

for estimating B.

For the stopping rule N« and the interval I N Chow and R( "bins (1965) have proved the
d

following properties.

1. N« is non decreasing in d

2. Nd is finite with probability one for every d>O

4. limPo(BEINd ) = I-a.
n~etJ

Our problem here in this section is to find a confidence interval for u ==

E(X,) for the model (2.1.1) having prescribed width 2d and a converge probability I-a.

That is to find IN such that P[)1 E IN] == I-a, 0 ~ a <1. We have proved in Theorem
d d

2.3.1 [See (2.3.2)] that

where er: is as defined in (2.3.3) and

2
a 2 == S!- B(k).

1 /1

'X,

B(k) == 1+2 Lc(k J
) .

./"-1

Based on the above result an approximate confidence interval for zz, when cl and k are

known are constructed in Section 2.3.

Let I K be the required confidence interval. Then
o
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where

and Zl-a/] is such that

1 1.1 u::!

~ f exp{- U;} du = i-a.
...;21r

2, a.2

Note that from (3.4.4) that Ko ~oo when d~O and

where

(3.4.4)

(3.4.5)

When at least one of the parameters cl, k is unknown we proposes

a sequential confidence interval. For that we define a stopping rule as in the case of point

estimation,

where

N = inf[» ~ 110: 11~ d -2 Z12
_a 12 [S'~ B(kn ) + 1,-

h
] },

110 is an initial sample size

n

5'~ = Il-1L(X
1

- X
n

)2
I 1

(3.4.6)

kn is as defined by (2.4.2) and h is a suitable constant to be defined later. Note that from

the above definition of stopping rule N ~ d 2
Zl~ at l: .Nh

(
z ~ 2(1~h)

That isN~ 1;,2)
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Thus when d~O, N ~x;.

The performance of the above stopping time N and the corresponding confidence

interval Ix are discussed in the following Theorem.

Theorem 3.4.1 IfE I Z, 1

2p < zc for /»2 and hE (O,p-2) then as d ~O

N
1.

11.

111.

The following lemmas are needed to prove this theorem and hence we

prove them first.

Lemma 3.4.1. If E IZj 1

2p < x: for p>2 then

P[ I S'~ A( k
n

) -clA(k) I>B] == o(/(p'J).

Proof: We have proved in Section 3.2 that

P[ IA( kn ) - A(k) I>B] == O(/fP),

which implies

P[ IA( k
n

) - A(k) I>6] = O(n-p
/
2

) .

In view of the Result 1.6.12 here it is enough to prove

P[ I S; -cl 1>6] = O(,,-pI2).

As for (3.4.7) consider

n

lis,: - a 2t = n-1L<X, - Xn )2 _a 2

,:cl p

(3.4.7)

n n

/l-
I L (X , _/1)2 +2(/1-Xn ) /1 -

I L (X, -/1)+(/1-Xn ) 2 _a 2

,...:.1 ;=-1

Now using (3.2.5), Minkoswski inequality and Schwarz inequality we can write

p
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n n

IIS~-alt < IIn 1e L (Z,_a)l + 2kn l(ka-,u)L(Z, -a)+(ka-,u)2
, 1 , 1

n

+ 2kn I(,u - XJL(Z, - a) + 2(,u - XJ (ka - ,u)+ (,u - Xn>2 - (J"2t

, 1

n n

-:; Iln Ik 2 L [(Z, - a) 2 - 0]11 p + 211 I (ka - ,u)k L (Z, - a)
/ 1 j·l p

n

+ 2/1 lk L(Z, -- a)
I 1

11(,u - Xn )11
2P

+2 (ka - ,u) 11(,u - Xn )ll
p

2p

+11<,u - Xn ) 211 P + Ilk20 - (J" 211 P , (3.4.8)

1.

n

Note that L[(Z, - a)2 - B] is a mean zero' martinagle w.r.t Fn = cr{Xo, Z" ..., Zn} and
/ I

hence from M-Z inequality the first term in (3.4.8) can be calculated as

n

Iln 1k 2L [(Z,-a)2-0]ll
p

=O(n- I
-' )

,=1

Now by applyaing Schwartz inequality, Lemma 3.2.1 and M-Z inequality each term in

(3.4.8) can shown to be OfO(lf},''2). Thus we have

Ils~ - (J" 211 J' = 0(,,-1 2).

Now from Markov inequality

= 0(/fp.2).

Hence we have the required result (3.4.7). The lemma is proved.

Proofof the following lemma is omitted as it is similar to that of Lemma 3.2.2.

Lemma 3.4.2 IfE I 2, 1
2p < x for p>2 and hE (O,p-2) then

P[N Ko(l- co)] = O(d2ri.~))
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11. LP[N >11]=O(d
P

, ' )

'l}..ll(l·,.)

Proof of Theorem 3.4.1

We can prove part (i) and part (ii) using Lemmas 3.2.1 and 3.4.2. The

proof is parallel to that of part (i) and part (ii) of Theorem 3.2.1. Hence we omitt the

details.

For part (iii) consider,

P[,u EIN] = p[lx,v -,ul ~ d]

= p[JNI:v - ,uj ~ d~]

== p[JNIXN - ,ul ~ ~,.fN]
~ ~Ko'

(3.4.9)

where ~ is as defined in (3.4.5).

Recall from Section 3.2.1,

r;:;- - d 2-v N (X.\. - fJ) ~N(O, ~ ).

That is,

a.J ) 1

Also we have from part (i) of Theorem 3.4.1,

N

Ko

and hence ~:0 u.s) 1.

Now part (iii) follows from (3.4.9) and the above arguement.

This completes the proof of the Theorem.



CHAPTER 4

ESTIMATION IN RANDOM COEFFICIENT
AlJTOREGRESSIVE MODEL

4.1 Introduction

The rest of this thesis is about .sequential estimation of first order random

coefficient autoregressive model RCAR(l). Linear time series models such as

autoregressive models have been widely and successfully used in many fields. The reasons

are that these models can be easily analysed and they provide fairly good approximations

for the underlying chance mechanisms of numerous real life time-series. However, in some

particular situations one may ask if there exist other models which can provide better fits.

One is then led to consider nonstationary or nonlinear models. ReAR model is one such

class of nonlinear models which have been found useful in rnany areas. Some of the

specific applications of RCAR(1) models are discribed in Section 1.2. In the present

chapter we consider the properties of RCAR( I) model and properties of least squares

estimators of its parameters.

4.2 The Model and its Properties

Let {X,} be a sequence ofr.v.s defined by an RCAR(I) model

x -p = (b+ Pi)( X,-J - p) + e; i = 1,2, ... (4.2.1)

where I-J = E(X,) and the r.v.s satisfies the assumptions Al - A. in section 1.2 with p=l.

They are

at) {Cl, i = ±I, ± 2, ... } is a sequence of iid r.vs with mean zero and variance cl < x
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a2) {Ph i = ±1, ± 2, ... } is a sequence of iid r.vs with mean zero and variance r < 00

a.) The sequence {G/} and {Pi} are statistically independent.

(4) X, is independent of ~i and A for.i i.

Recursively using (4.2.1 ) we can express X, - J1 as

where

and

V, = E, +f [n (b +P, -k >]E,_ j , for any m
) 1 k ..0

(4.2 2)

(4.2.3)

(4.2.4)

Here {~'/} defined in (4.2.3) is an (m+l) dependent stationary process. [See Definition

1.6.6].

In the following we discuss the conditions re... ired for the stationarity of

{X,}, Using (4.2.2) we can write

(X, - J1 )- V,:=: W,.

Thus

(4.2.5)

Now using the assumptions for the model (4.2. I ) and (4.2.4)
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m

= n(h 2 + r) E(X, m I -- ,ur
le 0

Now if tb' + r) <1 and E(X, m-I - ,uy < 00, then as m ~oo E[ W;2] converges to zero.

Hence from (4.2.5) and from definition of convergence in mean square it follows that '

11 converge in mean square and, hence in probability to Vi. Thus we have

I(X, - ,u )- v, I~ 0 . (4.2.6)

Thus there exist a solution for the model (4.2. I) if (b 2 + r) < 1. The solution is given by

XI -,u = E, +f[O (b +s: )]81 ) .

.I . 1 k -·0

(4.2.7)

The solution for X, -,u defined by (4.2.7) contains only iid r.v.s e;'s and p;'s. Hence this

solution is stationary also. Nicholls and Quinn (1982) proved that the solution to X, - ,u

defined in (4.2.7) is ergodic. [See Theorem 2.7 of Nicholls and Quinn, (1982)].

We have noted in (4.2.6) that I(X - ,u )- v, I~O. Now asymptotic

properties of (X, -,u) is same as that of V" [See Rao (1973), pp. 122]. Moreover, the

asymptotic distribution of .j;i( Xn - j.J) is also same as that of .j;i(~ - ,uv) where JiT, is

11

the mean of ~.r, and r: == //-1 L~'~ Since E(~·~2) is finite, and Vi is (m+l)-dependent r.v.s,
I 1

we havefor fixed m [See Result 1.6.13],

.j;i(~ - ,u,,)~N( 0, ntmcOV(V;,V;+h»)' (4.2.8)
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,
Also as m ~OO, ~ converges to (Xi - p) in mean square. .Hence Cov(~,V';+h) also

converges toCov(X, - P,X'+h - p) [cf. Rohatgi(1976), pp.248]. Thus as m ~ 00 the

variance of the asymptotic distribution in (4.2.8) converges to

<x-

L Cov(X, - P, X i +h - p) .
h.c- -(f)

That is,

00

AY.[ ~(v,. - j.jJ] = L Cov(X, - j.j,Xi +h - u),
h=-oc-

(4.2.9)

For the sequence defined by (4.2.1) using (4.2.7) and assumption on the model we have

+...+ 2 E[b+P;] E(s,) E(Si-J) +...

(J2

2 = V (say).
l-(b +y)

v = Var(X,) defined in (4.2.10) is finite ifE[ s:] = d < 00 and b2 + r <1.

Now consider

r(h) = Cov(X" X i + h ) .

Using the assumptions on the model we can write

h

X'Th - P = S,+h + (b +Pi+h) S,+h-l + ... + n(b + Pi+h-k )(Xi - u),
k=l

(4.2.10)
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Thus

r(h) = E[ (X, - IJ}(X'~h - IJ)]

On similar lines

Now using (4.2.9), (4.2.10) and (4.2.11)

C1J

A.V[ In(v,, - f.Jv)] = Lr(h)
h=-cr.J

2

= a [1+2(b+b2+ ...)]
1-(b2 +y)

= a
2

[l+~]
1-(b2 +y) I-b

a 2 l+b
=----

1-(b2 + r ) I-b'

From (4.2.8) and from the above discussion we have

C - d ( a
2 l+b)"/11(Xn - p) ~N 0, 2 .

1-(b +y) I-b

(4.2.11)

(4.2.12)

(4.2.13)
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The next section deals with least squares estimation of parameters of

RCAR(I) model defined in (4.2.1).

4.3 Properties of Least Square Estimators

The main objective of estimating the unknown parameters of a stationary

time series {Xn } is to provide predictors of Xn given the past values of the process. The

least squares estimators are those estimators which minimize the sum of squares of errors

Random coefficient autoregressive process are nonlinear in nature with two error

components. Thus the least squares estimation procedure adopted here is a two step

procedure. Many researchers have suggested estimators for regression parameter b in the

model (4.2.1) that are efficient in the presence of nuisance parameters. For example see

Koul and Schick (1996) and Schick (1996). The least squares estimators for b, cl and r
obtained by Nicholls and Quinn (1982) are given below.

Assuming j.1 =- E(.X",) is known,

n n

b, = L (X, - JL)(X, 1 - JL) IL (X, 1 - JL)2
,=1 ,=1

n n

rn == LU,2(Z, - 2) IL(Z, - 2)1
;=1 ;=1

n

a-~ == ; L (J,2 - rnZ
;=1

where,

U, = p, (X, - JL) + G, = (X, - JL) - b(X,-1 - JL)

(I, == (X, - JL) - bn (X,-l - JL)

2, == (X, - fJ)2
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n

Z = Il-ILZ, ,
;-:1

when )J is unknownthe above estimatorscan be modified as

" .n n

bn = L(X, - Xn)(X; 1 -X;-I)/L(Xi 1 - X:_1)2
,--I iecl

(4.3.1)

n nrn == Lll,2(Z, - 2) IL(Z, - 2)2 (4.3.2)
, I ,-.:1

where,

n

a-~ == 11 1L (1,2 - rnZ
,-=1

(4.3.3)

n

Xn == /1 ILX, ,
;:-1

n

X· == Il-l~ X.
n--I L..J ,··1

1:.1

V, == P, (Xi - X n ) + Ci = (Xi - X n ) - h(Xi-1 - X:_ 1 )

n
- -I~Z= n L..JZ;.

;=1

(4.3.4)

Some of the properties of these estimators useful in sequential analysis are discussed in the

following lemmas.

Proof: Assume without loss of generality IJ == O. Then using (4.2.7)
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Interchanging the order of summation and using Minkowski inequality we have

IIXn I14. ~ n-It ~[n(b+pi-k)}i-j 4.+ n" ~6; 4.

By the Marcinkiewicz-Zygmund (M-Z) inequality (See Result 1.6.4),

~[n(b+p;k)};-j 4. =0(n
l
/
2

)

and

n

L 6, = 0(111
/
2

)

,=1 4$

Hence the required result.

The next lemma deals with pth moment convergence of bit.

(4.3.5)

Proof: When p = E(Xi) is known the estimator of b is given by

n n

bn L (X, - p)(X, 1 - JL) /L (X, 1 - p)2
,=1

Using (4.2.1) bn can be written as

i=1

n n

bn = ~)(b + Pi XX;_I - ,u)+ "';] /~::<X;_I - ,u)2
i=1 i=1

n n n

bL(Xi 1_1J)2 + LP;(Xi-. t - p)2 +LEi(Xi-t _ p)2
,=1 ,.:=1 ;=1

n

L (X, 1 -- li) 2

, r: 1
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n n

LP, (X, I .- JL)2 +L 6, (X, I - JL)2
,-I ;-:·1 +h

n

L(X, 1 - ).J)2
, I

Thus

b -b =n

n n

LP,(X,.I-fJ)2 +L&;(X,.l _fJ)2
;-=1 ;=1

n

L (X;_I - p)2
;=1

n--I

If IJ is unknown the estimator for IJ is X:_ 1 = n' LX; . Then
,=0

where,

;=1

(4.3.6)

(4.3.7)

(4.3.8)

The ergodic theorem (See Result 1.6.15) for {Xi} implies that as n~oo,

X;_1 -; fJ a.s. The model (4.2.1) and the assumptions on that immediately imply that the

-. 2 -. 2 -. 2 •sequences {P,(X'_1 - X,,_I) }, {&;(X'_1 - X n- t ) } and (Xi - 1 - X n- 1) are stationary and

ergodic [See Remark 1.6.1]. Now applying Ergodic Theoremfor these sequences, it

follows that If1 Jn~ 0 and 1,-1 K; ~ V a.s as well as in the pth moment, where V is
A

defined in (4.2.10). As a consequence we have (b" -b) ~O a.s as n~ 00.

Next we calculatej»'Jnt and Iln-1K; - vt .
Consider I n defined in (4.3.7) and by some algebraic manipulations we can write
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where

n

Jilt = n-J I.J3;(X, t -Ill
;--1

n

J
n l

= If' L 6, (X,_I - /J)2
,:..1

n

J
n 4

=2 ( /J - X ;_I ) n' Lf3,(X;-I-j.1)
, = 1

n

I n, c n ' (p- X;-t)L&, .
;=1

We write

(4.3.9)

P[ IJn I>&] s P[ IJilt 1>&1.5] + P[ I J.., 1>&1.5] + P[ I I n) 1>&1.5] + P[ I J"4 1>&1.5]

+p[1 I n l>d.5]. (4.3.10),

Using Markov inequality we can write

lfwe define F" as the a-field induced by {(f3k, 6k), k S Il} then

n n-l

E[LP;(X;-l - p)2 IF,,-J] = LP;(X;-l - p)2 + E[P,,(X"-l - ,u)2]
;=1 ;=1

n-l

= LP; (X;-l - p)2 .
;=1

(4.3.11)

n

Since p" is independent of x:;. for j-n and E(f3i) = O. Thus {LP;(Xi- 1 - p)2 , IQl} is a
;=1

zero mean martingle w.r.t F; By using Burkholder inequality [See Result 1.6.11],

moment inequalities, assumptions of the Lemmaand independence of Pi and Xi; we have



n
1 I, ~ 2Bp 11 • L...J {3, (X, - Jl)

I I

Thus

81

11

S; [n-1L P7(Xj _,u)4]1I2
p i=}

n l'

< 11 I LIp, (X, - ,u)2I
p

I 1

s 11/ iIIIP,j(X, - ,u)2t
1-:)

= 0(1),

p

p

n

L{3,(X
I

_1J)2 = O(lf1.'2).
I-I p

Hence from (4.3. 11 ) it follows that

As for

(4.3.12)

(4.3.13)
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Where we used the moment inequality, Cauchy-Schwarz inequality, Lemma 4.3.1 with s ==

p/2 and the fact that II~P,t= O(tf'.?) Note that ~ e, (X, I - 11/ and ~ P, (X, 1'- 11)

are mean zero martingales w r.t F; Now using similar arguments as in the case of.J we
'1 1

can show that

and

As for .l; use Schwartz inequality, Lemma 4.3.1 and M-Z inequality to get

Hence from the above arguments and (4.3.10) we have for £>0

By writing

n

If' K; - Jr :=-11 1L[(X, 1 - 11,)2 + (JL - X; 1)2 + 2(X, J - JL)(JL - X'~_l)
, 1

and repeating the similar arguments as in the case ofI n we get

and hence

(4.3.14)
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(4.3 15)

Now Lemma 4.3.2 follows from (4.3.14), (4.3.15), (4.3.7) and Result 1.6.12. l~l'is

completes the proof.

In the expression (4.3.2) replacing V; by VI we write

n

1"" 2 -11 c:(! I (ZI - Z )
I,)r n =:. - n

1, - 2
11 LJ(ZI - Z)

I')

Now rn - r can be written as

n

11 1I (!,2 <. ZI - Z)
I 1

11

n' I [lJ,2 (ZI - Z) - r(ZI - 2)2]
I 1

111, -1.
11 ~(Zl - Z)

/ 1

n

I( 1I ([/,2 - Z,r)(2
1

- Z)
1,1

n

/(,1 I (2, - 2)2
,1

n

since I(ZI - Z)Z =0.
1,1

(4.3.16)

(4.3.17)

Define (4.3.18)

and write

where

(4.3.19)



n
t: = L(Z, - Z)~,

,.:-1

n

Rn = L(Z; - 2)2
, ~ 1

84

(4.3.20)

(4.3.21)

Now by repeating the arguments used to prove lemma 4.3.2 we can prove that as n~, n'

't, ~O and n-1Rn ~ R a.s and in p" moment, where R = Var(Zi) <00. Hence from (4.3.19)

we have rn - r~O.

Let us write

'" -Yn-Yn=

n

nIL (lJ,2 -U;2)(Z; -Z)

n

'1-1 L (Z; - 2)2
;=1

n

n-1L(Z, -2XV, -U,)(V, +U;)
;=1

n

1,-1L (Z; - 2)2
;=-1

n

l1-
I L (Z; -2)(b-bn)( X '_1- X;_I){2U; + (h-hn)(X;_1 - X;_I)}

, =1

n

n- I L (Z; - 2)2
;=1

where,

"n . -lR=n "}1 n, (4.3.22)

n

H;> L(Z; -2)(b-bn )( X ,_I - X;_I){2U;,+(b-bn)(X,_I-X:_1 ) } (4.3.23)
, =1

and R; is as defined by (4.3.21). Using similar arguments as before we can prove

rn-rn~Oa.s.

Lemma 4.3.3: Under the conditions of Lemma 4.3.2
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Proof: We write

Now let us calculate P[ Irn - r n I> ~] and P[ Ir n - rI> ~].

Using Minkowski inequality and Schwartz inequality in (4.3.20) we can write

Now using (4.3.18) and (4.3.4) each term in (4.3.25) can be written as

(4.3.24)

(4.3.25)

n

n-l~Z;;;
;=1 p

n

IIZl12P= 11 n-I~)(Xj_I-J1l +(,u-X:_1 ) 2 +2(Xj-J -,uX,u-X:-1 ) 112P
1=1

n

n-l~~;
;:=1 2p

From the proofs of earlier lemmas it follows that

n! IIr..t = O(n- l12
).

Using Markov inequality for &>0

(4.3.26)



86

On similar lines it can be shown that

Hence from (4.3.19), (4.3.26), (4.3.27) and Result 1.6.12 we get

H, defined in (4.3.23) can be written as

n

Hn = L[2P; (X;_I - X;_1)4(b - bn )+2s ;(X;_I - X;_I )3(b- bn )

;=1

(4.3.27)

(4.3.28)

Now repeating arguments in Lemma 4.3.2 here also we can show that

Now (4.3.27), (4.3.29), (4.3.22) and Result 1.6.12 leads to

Application of(4.3.28) and (4.3.30) in (4.3.24) gives

This completes the proof

(4.3.29)

(4.3.30)

Lemma 4.3.4: Suppose that the conditions ofLemma 4.3.2 hold, then for &>0
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Proof: Let a~ be the expression for a~ obtained by replacing U, in the place of V, In

equation (4.3.3).

Consider

n
--2 .s: -1""U 2 -- Z- ~Gn-a-n L..J j r r , -a

;=1

and

n

o-~- a~ = 1l-
I L (Vj

2 -0;2)-(Yn -Yn)Z,
1::·1

Nowusing lemma 4.3.3 and using similar arguments as before we can show that

and

But

P[ Ia~-a~ I> d2] = O(n-P12
) .

(4.3.31)

(4.3.32)

(4.3.33)p[1 a~-ifl>&]~p[1 a~-ifl>t;I2]+p[1 a~-a: l>d2].

Now Lemma 4.3.4 follows from (4.3.31), (4.3.32) and (4.3.33).

This completes the proof of Lemma 4.3.4.

The results of this chapter will be use~ in the following chapters for studying the

sequential estimation.



CHAPTERS

SEQIJENTIAI.J ESTIMATION OF

THE MEAN OF RCAR(l) PROCESS

5.1 Introduction

There are two basic reasons why sequential methods are used in Statistics.

Firstly, it is possible to reduce the sample size on an average as compared to corresponding

fixed sample size procedure. Secondly to solve certain problems which cannot be solved by

any procedure based on a predetermined sample size. Some of the examples to this effect are

discussed in Section 1.5. The discussion in the present chapter focuses on the first aspects of

the subject and deals in particular with Random Coefficient Autoregressive Processes of order

one RCAR( 1). The main problems discussed in this chapter are the sequential point

estimation, and interval estimation. We have already discussed in detail the properties of this

model in Chapter 4.

The problem of sequential estimation of the parameters of AR( I) model are

studied by Sriram (1987, 1988). Recently Sriram's results have been extended to AR(P)

model and linear processes by Fakhre-Zakeri and Lee (1992) and Lee (1992).



Z Sequential Point Estimation

We study the problem of sequential point estimation of mean of RCAR( 1)

ocess in this section

Since {X, , i~O J defined in (4.2.1) is a stationary and ergodic sequence, a

rural estimator for u = E(X,) is the sample mean

n

X ==n-I"X
n L... I'

I 1

ippose that we want to estimate J.l by X" using the loss function

A,A >0 (5.2.1)

here A is a known constant and A is the cost per observation. The loss function defined by

.2.1) is the weighted error plus cost of inspection. An approximate expression of the risk

mbe calculated using (4.2.13) and is given by

a' 1+h
~ An ' 2 + At,.

1-(h +r)l-b
(5.2.2)

et 110 be the value of 11 for which l~n.A. is minimum. Treat Ig n as a continuous variable., we

fferentiate Rn.). w.r.t. 11 and obtaine n.; Thus

iJ I~".).
==0 implies

0/1

a' 1+h
-A'f2

J -- + A = O.
I - (b' -+- r) 1- b
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This gives

(5.2.3)

82R
n J..

Clearely ; is positive at no.on

Werefer noas the best fixed sample size procedure. The corresponding minimum value of

risk R'\).A can be obtained from (5.2.2) and is given by

(5.2.4)

If at least one of the parameters b. cl, r in (5.2.3) i~ unknown, there does

not exist any best fixed sample size procedure that will achieve the minimum risk Rno •A .

As a remedy we go for sequential procedure to estimate IJ by choosing a sample size such

that the associated risk will be close to R
fIo

•A , as cost per observation becomes small.

Towards this end we use the least squares estimators of b, cl and y. Properties of these

estimators are already discussed in Section 4.3.

Let us define a stopping time T by

(5.2.5)

where m is an initial sample size, h>O is a suitable constant to be defined later. Based on

this stopping rule the sequential point estimator of IJ is X T and the associated risk is

- 2
R7:..t =AE( X r -/J) + AE( T). (5.2.6)
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The main theorem in this chapter is stated below. This theorem establishes

the optimal properties of the sequential procedure for estimating )J using the stopping rule

(5.2.5) .

Theorem 5.2.1: Forp>2, ifEle l rp
< 00, Elb +~JP <1 and hE(O, (P-2)/4)

then as A.~ 0

T
I. -~ 1, a.s

110

.. T
11. E --1 ~ 0

/10

R... T•.,t 1
111. R~

no.A.

r;:; - d ( 0-
2

1+ b)
IV. vT(XT -p.) ~N O'I_(b 2 +r) I-b'

The proof of this Theorem depends on some lemmas, which are proved

below. The following notations are introduced for easy reference.

IF and~ denote the indicator and complement of a set F respectively.

Lemma 5.2.1: Suppose that Ele:pl < 00 and Elb +pJP<1 for p >2, then for every

e> 0
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Proof: Using Lemma 4.3.2, Lemma 4.3.3, Lemma 4.3.4 and Result 1.6.12 we can write

[
(l+bn) 1+b ] 0 -p12P A -- > e = (n )
(l-bn) I-b

and

Once again use Result 1.6.12 to obtain

This completes the proof ofLemma 5.2.1.

Lemma 5.2.2: Suppose that E\e:pl < 00 and Elb + pJP <1 for p >2, then for every e > 0

and

11. L P[T>n]= 0 (l;2).
n~lI)

Proof: From the definition of stopping rule (5.2.5), we have
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That is

T > (.d)1/2(1+h) =
- ..t Tl],

Now from (5.2.5) and (5.2.7),

Now from Lemma 5.2.1 we have

This proves the first part of the Lemma.

For the second part, from the definition ofT it follows that for n '?:n3,

{[
" ]1/2 }"2

an 1+b; -1-h
= P "2 A " > K n - n

l-(bn +Yn) I-bn

(5.2.7)
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But

{[

A ]1/2 }"_ [l-(b; +r,,)](l-b) (A) 1/2 _1_ .

u 2 (1+b) a 1+8

Choose A small enough so that the above expression for K- 1(n3 - no) - n;" is greater than

Thus we can write

P[1>n]

Now using Lemma 5.2.1 and repeating the same argument as in the first part we get the

result.
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Proof of Theorem 5.2.1

h,)
a,s

In section 4.3 we have proved that as n ~, bn - ----.

,., 2 ".S ~,..

an )a,Yn a.s ) y. Also we have noted in (5.2.7) that

ThusT~ as A~ O.

Hence it follows that as A~ 0

"b; a.s) b

and (5.2.8)

,.. a.s
Yr ) r.

Fromthe definition of stopping rule T we can write

Hence dividing (5.2.9) by noand using (5.2.8) and then letting A ~O, we obtain

T
a.s ) 1.

As for part (ii) we have the result

where

x = Max (X,O)
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and

X- = Max (-X,O).

Here observe that

Therefore, by dominated convergence theorem and part (i) of the Theorem 5.2.1 we have

E(~ -I) ~0as A.~O.

Now we write

and hence

E(I..-I)· $(l-e)P(B)+e + no':LP[T>n]+P(C).
110 n~nJ

Since 0< &<1 is arbitrary, from Lemma 5.2.2 we have

E(~ -I)' ~0as A.~O.

So part (ii) of the thorem is also proved.

(5.2.10)

(5.2.11)

In order to prove the part (iii), (that is T is asymptotically risk efficient)

assume without loss of generality that IJ = 0.

Now using (5.2.4) and (5.2.6)

AEX2 ).ET
_~T+__
2Ano 2Ano '
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Since we have already proved (ii) it is enough to show

AEX 2

__T ~ l,asA~O.

Ano

Instead of proving (5.2.12) we will prove

and

(5.2.12)

(5.2.13)

Towards that end consider (5.2.13) and write

as A~O. (5.2.14)

using (4.2.7) we can write

s E Max[f YIY]2 lB
lit ~n~"2 j=O

2

co

~LEM~ ls + 2 LEMnjMnjo lB,
j:.:=O j<j'

where,

(5.2.15)

(5.2.16)

(5.2.17)
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and

Mn} = Max Iry .
nl$n~~

Observe that forj ~ 0, the sequence {Yni } is a reverse martingale w.r.t.{Gn} , where

Since

Leting Z; = nYn.f and using (5.2.17)

we have

z, = E[Zn Iz; Znt}, ...]

=E[Zn IGn]

= tE{[~(b+P;-k)};-jIGn}

=n E{[~(b+Pi-k)}i_jIGn}.

(5.2.18)

(5.2.19)
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Using (5.2.19) in (5.2.18) we get

Hence{Mn.f} and {M~. }are reverse submartingales. By Schwarz inequality

and Maximal inequality for reverse submartingale we have

An application ofM-Z inequality gives

Application of lemma 5.2.2 and (5.2.20) leads to

Since h < -7- we have

Using Schwarz inequality for the second term in (5.2.16)

E[M "M -t I ] < E 1I4( M 4
. )E 1I4(M .,)pll2(B)11) n) B - 11) 11) •

(5.2.20)

(5.2.21)
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So that

AAn E[MIIJ MIIJ·IBl ~O as A~ O.
o

Using (5.2.21) and (5.2.22) in (5.2.16)

Repeating the same arguments as above and using part (ii) ofLemma 5.2.2

Thus we have proved (5.2.13)

Next consider

(5.2.22)

(5.2.23)

Note that for each fixedj~O {Wn,noJ ' no5: n 9l3} is a reverse martingale w.r.t. {Gn } .

Consider

(5.2.24)
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Now applying Schwarz and maximal inequalities for reverse submartingale {Wn,noJ },

and

Thus from (5.2.24) we get

The second tern in (5.2.23) can be handled similarly. This completes the proof of part (ill).

For part (iv) we have noted in Chapter 4 [See (4.2.13)] that as n ~ 00

C - d ( (72 l+b)-Jnt X; - p) ---=---+N 0, 2 :
l-(b +Y) I-b

Now write

From (5.2.14) we have

Using (5.2.3)

(5.2.25)
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That is, as A~ 0,

no E'(Xr - X1Jo)2~ O.

which implies that

From part(i) we have

Q.S ) 1 as A~ O.

(5.2.26)

Application of (5.2.26), part (i) of Theorem 5.2.1, (4.2.13) and Slutsky's Theorem in

(5.2.25) we get (iv). This completes the proof the theorem.

5.3 Sequential Interval Estimation

In Section 3.4 we have discussed the general frame work of sequential interval

estimation. Our problem in this section is to find an interval In for the population mean of

RCAR( 1) process having prescribed width 2d and a coverage probibility 1- a .

That is to find an interval In such that

Recall from section 4.2 (see (4.2.13» that

C - d (72 l+b
~n(Xn - ,u)~N(O, 2 .-).

l-(b +Y) I-b

Based on this result an appropriate confidence interval for p when b, cl and r are known

is given by

1"0 = [ X110 - d, X"o +d].
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where

no = [d 02
ZLU/2 0'

2
2 . 1+b].

l-(b +r) 1-b

and ZI-a12 is such that

1 21-0 /2

~ Jexp{- ~} du = I-a.
.y21r

-ZI-012

Note from (5.3.1) that no~ when d~O and

where

(5.3.1)

(5.3.2)

When at least one of the parameters b, d and r is unknown we proposes a

sequential confidence interval. For that we define a stopping rule as in the case of point

estimation,

N=inf{n~m:n~d-2Z2 [~~ A .1+~~+n-h }
1- a /2 1- (b; + r) 1-~ ,

(5.3.3)

where m is an initial sample size and h is a suitable constant to be defined later. Note that

from the above definition of stopping rule N ~ d 1
Z)2_ u , 2 .N II

.

(
2 ) 2/(1+11)

That is N ~ 1;;/2

Thus when d~O, N ~.
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The performance of the above stopping time N and the corresponding

confidence interval IN are discussed in the following Theorem.

I 1

4P I 1
4P

- 2Theorem 5.3.1 Forp>2, if EEl <00, Eb+Pl <1 andhE(O,~)

then as d --+0

(i)
N 0.3 ) 1
no

(ii) E (~) ~1

(iii) PLuE IN] -e l-c,

Proof: Proof of part (i) and part (ii) are very much similar to the proof of part (i) and (ii)

of Theorem 5.2.1 and hence we omit the details.

For part (iii)

PLuE IN] = p[lxN-.ul s d]

= P[~IXN-~~d'7l

where; is as defined in as (5.3.2).

Recall from Section (5.2) that

-IN(XN -,u)~N(O,; 2).

Now using the definition of no (5.3.4) becomes

-INI- I -INP-XN-.u~Z a'm'
~ 1-- V"o

2

(5.3.4)
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Also we have noted in Part(i) that N ~ 1 a.s.
no

That is rE ~ 1 a.s.V;:
Now Part (iii) follows from (5.3.4) and the above arguments. The proof of the Theorem is

complete.

The work of this chapter is summarised in Balakrishna and Jacob (1998). In the

next chapter we discuss the sequential estimation of b.



CHAPTER 6

SEQUENTIAL ESTIMAnON OF THE REGRESSION

PARAMETER OF RCAR(l) MODEI~

6.1 Introduction

The main problems of this chapter are to obtain a sequential point

and interval estimation of the autoregressive parameter of an RCAR(I) model.

For algebraic simplicity we assume )J = 0 and hence our model in

this chapter is

Xi = (b + Pi) Xi-J + e.; i=1,2, . (6.1.1)

In addition to the assumptions at-84 made in Section 4.2, here we further assume

that

Dj = E(&~) <00k , , for k =1,2,3,4. (6.1.2)

Sriram (1988) considered the sequential point estimation of

autoregressive parameter in a AR(I) model. Basu and Das (1995) obtained

sequential least square estimator for the autoregressive parameters in a AR(P)

model.
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In this chapter, Section 6.2 deals with the definition of stopping rule

and its properties for the point estimation of regression parameter. The main result

of this chapter is included in Section 6.3. Section 6.4 deals with the sequential

interval estimation.

6.2 Definition and Properties of the Stopping Rule

Given a sample of size n one wishes to estimate the autoregressive

parameter b by the least squares estimator given by

(6.2.1)

n

~X'X'1£..J ' I>:

;=1
A

b =----n

(6.2.2)

Using the equation (6. 1.1) and making some algebraic manipulations as in the

proofof lemma 4.3.2 we can write

A Jb _b=_n
n K '

n

where

n n

in = Lf3;X;~1 + L£;X;-1
;=1 ;=1

(6.2.3)
n

s, = LX;2_1 ·

;=1

The purpose of estimating the autoregressive parameter b is to use

the model in predicting the future values of the process given the past

observations. The minimum mean square error predictor of Xn+ J given Xo, X, .....

Xn based on the above RCAR(I) model is Xn+1 =i.x; From that point of view
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it may be legitimate to employ the mean squared error loss function with a

sampling cost given by

where A. is the sampling cost per unit.

Nicholls and Quinn (1982) pp.44 showed that ifE(XI~l) < 00 then

asn~,

where Vis as defined in (4.2.10). Also we have noted in Section 4.3 that

Hence

n

n-J ",", X.2 a.s) V£..J ,-1
;=1

as n~.

n

(LXi~1 )112 (b" - b) -4N(O, Oi + Vi E(Xi~l)r2).
;=1

Since the process is stationary we have E( X;~l) = E( X i

4
) for every i. Hence the

asymptotic distribution can be written as

where

n

(LX;~1 )112 (b" - b) -4N(O,H1
;=1

(6.2.4)

(6.2.5)
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Now the risk function R; = E(Ln) can be evaluated using (6.2.4). Thus

(6.2.6)

The value ofn which minimizes (6.2.6) can be obtained from

oR; 2 a
--= 0 = -An- H + A.on

The best fixed sample size no is given by

with corresponding minimum risk

s; = 2 Ano-

(6.2.7)

(6.2.8)

Note that the fixed sample size procedure no defined by (6.2.7) depends on the

nuisance parameters and hence the sample size cannot be specified in advance.

Under these circumstances a sequential method of estimation is preferable. For

this purpose, we define a stopping rule T by

(6.2.9)

where m is an initial sample size, Rn is obtained from H by replacing b, Y2, YJ, Y4,

U2 and U4 by their respective estimators. These estimators are obtained by using

the method suggested by Beran and Hall (1992).

For the model (6. 1.1), we define

U· = R. X· J + e,I PI 1- I,
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and

Constrain both aIn and rIn to be zero and'assume that the estimatesa2n , r2n

.... ,uJ:-Itn,r J:-I,n have already been computed.

Put

n
- -l~

~ J: = n L..J W;J: .
i=1

Then

and

For our model

A 2 A 2
Vi = (Xi - bnXi-1)

A

2Wi2 = u,
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n
A -J~UA2 A X-
a 2n = n £...J ; - r2n 2 .

;=1

Which are equilant to estimators for Y2 = E(Pi 2
) and a 2 = E(S/2) suggested by

Nichollas and Quinn (1982) pp.46 & 47.

Further,

n

u4n = n-J
L[(X; - bnX;~I) - 6Xi~lr 2n~2nl - r 4n X4·
i=1

Based on the stopping time define by (6.2.9) the sequential point estimator of b is

b; and the associated risk is
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T

Rr=AT-/ L[X, - E(XiIXi-l)f + AT
;=)

(6.2.10)

In the next section we will prove some results which establish the optimal

properties of the above sequential procedure.

6.3 Properties of the Stopping Rule

The important properties of the sequential procedure are stated in

the following theorem.

Theorem 6.3.1: Let T be the stopping rule defined by (6.2.9) and p>2.

Suppose that EIsJl1p
<00, Elb+J311Ip

< 1 and h E (0, (P-2)/4) then as A, --+0 0

i.
T

a..r ) 1

II T
11. E - - 1 --+ 0

no

and

· Rr
IV. ---+ 1.

R"o

Proof of this theorem depends on a number of lemmas. The

following notations will be useful in the further discussion.
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Let

K = (~)1I2
A. ' n1

IF and f<: denote the indicator and complement of a set F respectively.

The asymptotic properties of the estimators are discussed in the

following lemma. We have proved that r2n ~ rand iT 2n~ CT2 almost surely as

n ~ 00, in chapter 4. Exactly in the same manner we can prove the a.s

convergence of r3n' r4n and iT4n .

Lemma 6.3.1 For pe 1, if E( e:tp )<00, Elb+J3112kp< 1 and h E (0, (P-2)/4) then as

n ~ 00, i : a.s) Yk ,Ukn a.s) o, for k = 1,2,3,4 and

Proof: Once we prove the asymptotic convergence of for k= I 3 and 4 proof of

the last part of this lemma is a direct consequence of Result 1.6.12. We have

already proved a similar result in Lemma 5.2.1 and hence omit the details.

We also skip the proof of the next Lemma as it is similar to the

proofof lemma 5.2.2.

Lemma 6.3.2 Under the conditions of lemma 6.2.1 for &>0
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and

L P[T>n] = 0
n?1I]

Lemma 6.3.3 If J" is as defined by (6.2.3), then the sequence {~, n ~ I} 15

stochasticaly bounded and uniformly continuous in probability.

Proof: We have already proved in Lemma 4.3.2 that

IIJnl1 = O(nll2
) , and hence {J" n ~ I} is stochasticaly bounded.

Now to prove u.c.i.p we write

J"+k ~" 1 IJ J I 1 ~ I~" c. I.-...J\r:-:-;- - c ~ C n+k - n + - ~ c' lor Ac=v.
vn + k vn ~n ",n+ k -en

(6.3.1)

For k s n8the secondterm in (6.3.1) is bounded by [1-(1+8)·112] I~i whichtends

to zero as 8 -+0 uniformly in n~l. For the first term applying the maximal

inequality for the martingale {J,,} and then using the independence of~ and (Bk, {3k

) for j<k we get

2
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= 0(5) as 8~O uniform in ne1.

From the above argument, it follows that {1n' n ~ I} is u.c.i.p by Definition

1.6.3 . This completes the proof of the lemma.

Lemma 6.3.4: The sequence {~,. , n z I} is u.c.i.p and stochastically bounded,

where K" is defined by (6.2.3).

Proof: We have the result (See Lemma 4.3.2) that

But stochastic boundedness and u.c.i.p holds if a sequence converges to a finite

limit a.s (cf. Remark 1.6.2. and Definition 1.6.1.). Hence the lemma follows.

Lemma 6.3.5 The sequences {.J; (b,.-b)} and {J;,.} are u.c.i.p and

stochastically bounded.

Proof: We have noted in Remark 1.6.3 that any continuous function ofu.c.i.p and

stochasticaly bounded sequence is also u.c.i.p and stochasticaly bounded..

Here we can write
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Hence {~(bn -b)} is u.c.i.p follows from Remark 1.6.3, Lemma 6.3.3 and

W · · I n I n I~ d · h abLemma 6.3.4. ntmg TV = ) an repeatmg t e ove arguments we
VKn K,. In

can provethat { J;n }is u.c.i.p. and stochasticaly bounded.

Lemma 6.3.6 If for p?l, EIEJI4p<oo, Elb+PlI4p
< 1 and

for. some positive integer M, then {lnW"IQ
} is uniformly integreable (u.i) for all

q <p, where

~ = n" K (b _b)2n n n

Proof: We have

J2
n W. =K (b _b)2 = nn n n

Kn

An application of Schwartz inequality gives

But note that IIJnl1 = O(nJ
/
2

) . [See Lemma 4.3.2]

and hence it follows that

(6.3.2)
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~ =0(1).

Hence from the definition ofuniform integerability it is enough to prove that

sup~ < 00, for someM,
n~M+1 "K:l2P

To this end consider

,. 11-1 11-2 11-2

2 ~X;~l = 2 ~X;2 =~X;2 + ~X;:I + X;+X:_ 1
;=1 ;=0 ;=0 ;=0

,.-2

~ ~[X;2 + X;:1]
;=0

n-2

~ t ~[X; - X;+1]2 .
;=0

Letting

d;= X;-X;+l

we have

11-2 11-2
~(e;+1 -s; +P;+tX; -P;X;_1)2 = ~[d; -bd;_t]2
;=1 ;=0

11-2
= (1+1~)2~d;2

;=0

where, d -1= -Xs.

Now using (6.3.3) and (6.3.4) we can write

n 11-2

~Xi~1 ~ i (1+lbl)-2= ~(e;+1 -8; +P;+1X; -P;X;_1)2.
;=0 ;=1

For n ~ M+1, then there exist a q such that

qM+ 1 ~ n $:(q+ 1)M.

(6.3.3)

(6.3.4)
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n

Since L X;~1 is increasing in n we have
,=0

n__ < _(q_+_I_)M_
- qM+l

LX;~l
;=0

s 4M (1+IbD2
q q

LBiM
i=1

q

s 4M (1+lbl)2 Sup q-1Lll BIM ,

q~1 ;=1

iJ,I

whereBiM = L(Sj+l-Sj +Pj +1X j -Pj X j _1 )2 .
j=(i-I)M+l

where GqM = u{r' t,1 /RiM' I ~ q} .

An application of the maximal inequality for reverse submartingale yields

which is finite by assumption. Hence the proofof the Lemma is complete.

Now we proceed to prove the main theorem.
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Proof of Theorem 6.3.1

VVe have noted that bn
a.s ) b y"

, kn
a.s ") n , a tn

"k = 1,2,3,4 as n~oc. Thus H, a.s) H, as ;l~OO. Also from the definition of T

we have

T ~ (A A)1i2(h~ 1) and hence

l'--~JJ, as A ~o.

Hence

Hr a.s) H.

Using (6.3.5) and the definition of the stopping rule (6.2.9) we can write

(6.3.5)

(6.3.6)

Now by taking A~ 0 and dividing (6.3.6) by no and using the expression (6.2.7 )

for /10, we have

T
a.s ) 1.

Thus we have proved the part (i) of the theorem.

Part (ii) can be proved using Lemma 6.3.2 and Lemma 6.3.3. However we skip

the details as they follow similar to the proof of part (ii) of Theorem" 5.2.1.

We have noted in Section 6.2 that 11~OO,
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and

Now Anscombe's Theorem [See Result 1.6.5] can be applied to get part (iii) of the

theorem. The conditions for Anscombe's Theorem are verified in Lemma 6.3.5

and in part (i) of the theorem.

Now let us prove part (Iv),

We have

and

where Wn is as defined by (6.3.2). Thus we have

Rr = t H -I (A/Ai12 EWr + t E(T/no).
RfIo

By part (ii) of the theorem we have E(!-) ~l as A~ O.
110

Hence in order to prove Rr ~1 it is enough to show that as A~ 0,
Rno

and

Consider (6.3.7)

(6.3.6)

(6.3.7)

(6.3.8)
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Using Schwartz inequality we can write the first term in (6.3.9) as

H'/ (AA)12 EWrlH ~ H·/ (A'A)L2 IIWr1/r<''',1112pll2 [T~ 112]

~ H·/ (A A)I/2 (t. EW,,2rz

pill [Ts 112]

1/2 (p - 2)

-:;H·/ (A/A)L'2 ~~flrWnll,(~n 2) 0 A8(h+1)

(p- 2)

= (A/A)l i2 H'/ O(n
l
112)0 A8(h + 1)

~ 0, since h E (0,(P-2)/4) as A~°
The last inequality is due to Lemma 6.3.2, Lemma 6.3.5 and Lemma 6.3.6.

Using similar arguments we can show that the second term in (6.3.9) as

(6.3.10)

H -1 (A/A)1I2 EWrID ~ 0 as A~ O.

Now combining (6.3.10) and (6.3.11) we get the required result (6.3.7).

In order to prove (6.3.8) it is enough to show that as A~ 0,

and

{H -1 (A/A)V2 E(Wr) t, } is uniformly integrable.

Here X~ denote a Chi-square r.v with one degree of freedom.

From part (iii) of the theorem using (6.3.2) we have

(6.3.11)

(6.3.12)

(6.3.13)
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H -I [tW] --"-~ N(O,] ) as A ~ 0

and hence we have

H o2J'Wr ---~ X: as A~o .

•~SO usmg part (i), definition of "0, (6.2.7), Slutsky Theorem and .the fact

Hence we the equation (6.3.12).

To prove (6.3.13) we have consider for £>1,

n' (A A)L2 E w; 18 S H -t (A/A)L'2 E Max wnt
n, <n<n,

t 21

s H ·1 (AIA.)112 n/' Sup..!!..- 11 Max J" 11 .
n~M +1 K "2<11<11) 21

n 21

5: H -I (AI).,)t/2 11;21 o( n~) = o( 1).

The last inequality follows from Lemma 6.3.5 and maximal inequality for the

martiangale {In } .

H~nceH-J(A/A.)1/2EWT IBisu.i. Thus

Rr--- ~1 as A. ~o.
R

rL,

'This complete the proof of the Theorem.
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6.4 Sequential Interval Estimation

In Section 5.3 we have discussed the sequential interval estimation problem

for the mean of RCAR(1) model. Our problem in this section is to find an interval

In for the regression parameter b of RCAR(1) process having prescribed width 2d

and a coverage probibility 1-a .

That is to find an interval In such that

Recall from Section 6.2 that

Ji,(b -b)~N(O~O" V-I + V-
2
[1- (b

2
+Y2)]U4 +6u~(b2 +Y2) 'I

n 2 [1- (b2+Y 2 )][1- (b4 +Y 4 +6b2y 2 +4by 3)j)

Based on this result an appropriate confidence interval for b when all the

parameters are known is given by

where

and Zl-a12 is such that

1 Zl-G/1

~ fexp{- u;rdu = i-a.
-v2n

-Zl-G/1
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Note from (6.4.1) that n ~oo when d~O

and

[JiJ I'" I dF ]P[belll ] =P -;-bll -b ~-K- ~ i-a,

where

(6.4.2)

When at least one of the parameters b, eT2, CTJ, CT4, n; ~, y. is

unknown we proposes a sequential confidence interval. For that we define a

stopping rule as in the case of point estimation,

_. { . d.i 2 [ A 2 -hJ }Nb - inf n ~ m. n z ZI_ a / 2 K n +n ,

A

where K n is obtained from (6.4.2) by replacing the parameters by

corresi.iponding estimators defined in Section 6.2.

Here m is an initial sample size and h is a suitable constant to be defined later.

Note that from the above definition of stopping rule Nb ~ d 2 Z;_a/2.Nb-".

(
z J2/(I+h)

That is Nb ~ 1;/2

Thus when d~, Nb--.oo.

The performance of the above stopping time N, and the corresponding

confidence interval I N. are discussed in the following Theorem. Since the

proofis similar to that of Theorem 5.3.1 we omit the details.
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. I liP I liP P - 2Theorem 6.4.1 Forp>2, if Eel <oo.Eb+PI <1 and h e tt), 4 )

(i)

then as zr-e-O

Nb
n

a.s ) 1

6.5 Directions of future work

In this thesis we have considered the sequential estimation for some

Markovian models, like autoregressive minification models and Random

Coefficient Autoregressive model. We have also discussed the optimality

properties of the sequential procedures.

We have the plan to extend this work to ptb order Random Coefficient

Autoregressive model (ReAR (pj), vector valued RCAR (P) model. Also we

would like to work on the second order approximations for the expected values of

the stopping rules. The investigations towards these directions are in progress.

The work of this chapter is summarised in Balakrishna and Jacob (1991~).
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