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Chapter I

Introduction

In this thesis we study some problems in stochastic inventories with a
special reference to the factors of decay and disaster affecting the stock. The
problems are analyzed by identifying certain stochastic processes underlying
these systems. Our main objectives are to find transient and steady state
probabilities of the inventory states and the optimum values of the decision
variables that minimize the cost functions. Most of the results are illustrated

with numerical examples.

This introductory chapter contains some preliminary concepts in
inventory and stochastic process, a brief review of the literature relevant to our

topic and an outline of the work done in the present thesis.

1.1 INVENTORY SYSTEMS

Inventory 1s the stock kept for future use to synchronize the inflow and
outflow of goods in a transaction. Examples of inventory are physical goods
stored for sale, raw materials to be processed in a production plant, a group of
personnel undergoing training for a firm, space available for books in a library,

power stored in a storage battery, water kept in a dam, etc. Thus inventory
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models have a wide range of applications in the decision making of
governments, military organizations, industries, hospitals, banks, educational
institutions, etc. Study and research in this fast growing field of Applied
Mathematics taking models from practical situations will contribute

significantly to the progress and development of human society.

There are several factors affecting the inventory. They are demand, life
times of items stored, damage due to external disaster, production rate, the time
lag between order and supply, availability of space in the store, etc. If all these
parameters are known beforehand, then the inventory 1s called deterministic. If
some or all of these parameters are not known with certainty, then it is
justifiable to consider them as random variables with some probability
distributions and the resulting inventory is then called stochastic or
probabilistic. Systems in which one commodity is held independent of other
commodities are analyzed as single commodity inventory problems. Multi-
commodity inventory problems deal with two or more commodities held
together with some form of dependence. Inventory systems may again be
classified as continuous review or periodic review. A continuous review policy
is to check the inventory level continuously in time and a periodic review policy

is to monitor the system at discrete, equally spaced instants of time.

Efficient management of inventory systems is done by finding out
optimal values of the decision variables. The important decision variables in an
inventory system are order level or maximum capacity of the inventory, re-
ordering point, scheduling period and lot size or order quantity. They are
usually represented by the letters, S, s, 7 and g respectively. Different policies
are obtained when different combinations of decision variables are selected.
Existing prominent inventory policies are: 1) (s, S) - policy in which an order is

placed for a quantity up to S whenever the inventory level falls to or below s,
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i1) (s, q) - policy where the or;ier is given for g quantity when the inventory
level is s or below it, iii) (¢, S) - policy which places an order at scheduling
periods of ¢ lengths so as to bring back the inventory level up to S and

iv) (¢, g)- policy that gives an order for g quantity at epochs of / interval length.

In multi-commodity inventory systems there are different replenishment
policies. A single ordering policy is to order separately for each commodity
whenever its inventory level falls to or below its re-ordering point. A joint
ordering policy is to order for all the commodities whenever the inventory
levels are equal to or below a pre-fixed state. The pre-fixed state may be the re-
ordering point of at least one of the commodities, of at least some of the
commodities, or of all the commodities. In the latter two cases there is a

possibility of shortages of inventory.

The period between an order and a replenishment is termed as lead time.
If the replenishment is instantaneous, then lead time is zero and the system is
then called an inventory system without lead time. Inventory models with
positive lead time are complex to analyze; still more complex are the models

where the lead times are taken to be random variables.

Shortages of inventory occur in systems with positive lead time, in
systems with negative re-ordering points, or in multi-commodity inventory
systems in which an order is placed only when the inventory levels of at least
two commodities fall to or below their re-ordering points. There are different
methods to face the stock out periods of the inventory. One of the methods is to
consider the demands during the dry periods as lost sales. The other is partial or
full backlogging of the demands during these periods. Partial backlogging
policy is an interesting field for recent researchers, with the adaptation of

N-policy, T-policy and D-policy from queueing theory, in which local purchase



is made when either the number of backlogs or the lead time exceeds a pre-

fixed number.

In most of the analysis of inventory systems the decay and disaster
factors are ignored. But in several practical situations these factors play an
important role in decision making. Examples are electronic equipment stored
and exhibited on a sales counter, perishable goods like food stuffs, chemicals,
pharmaceuticals preserved in storage, crops vulnerable to insects and natural

calamity, etc.

Large stores usually stock more than one commodity at a time that are
also inter-related. For example, computer and its peripherals, electric equipment
and voltage stabilizers, sanitary wares and their fittings, automobile spare parts,

clothes for shirts and other suits, etc.

In this thesis we study single and multi-commodity stochastic inventory
problems with continuous review (s, S) policy. Among the eight models
discussed, four models are about single commodity inventory systems with a
special focus on natural decay and external disaster. The next two are their
extensions to multi-commodity. The last two models are two commodity
problems with Markov shift in demand. These problems are analyzed with the
help of the theories of stochastic processes, namely, Markov processes, renewal

process, Markov renewal processes and semi-regenerative processes.

1.2 SOME BASIC CONCEPTS IN STOCHASTIC PROCESSES

Many a phenomenon, occurring in physical and life sciences,
engineering and management studies are widely studied now not only as a

random phenomenon but also as one changing with time or space. The study of



random phenomena which are also functions of time or space leads to stochastic

processes.

1.2.1 Stochastic Process

A stochastic process is a family of random variables {X(t), tel} taking
values from a set E. The parameter t is generally interpreted as time though 1t
may represent a counting number, distance, length, thickness and so on. The
sets I and E are called the index set and the state space of the process
respectively. There are four types of stochastic processes depending on whether
I and E are discrete or not. A discrete parameter stochastic process is usually
written as {X, , nel}. If the members of the family of random variables {X(t),
tel} are mutually independent, it is an independent process. In the simplest
form of dependency the random variables depend only on their immediate
predecessors or only on their immediate successors, not on any other. A
stochastic process possessing this type of dependency is known as a Markov

process.

1.2.2 Markov Process

A stochastic process {X(t), t € I} with index set I and state space E is
said to be a Markov process if it satisfies the following conditional probability

statement:

Pr{X(t,)<x, | X(t¢)=x0,X(t1)=%1,...... X(tyo1)=xpy_1} =
Pr{X(t,)<x, | X(ty-1)=xp-1} forallzyg<t;<....

Discrete valued Markov processes are often called Markov chains. A Markov

process can be completely specified with 1) the marginal probability
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Pr{X(t;) = Xo}, called the initial condition and ii) a set of conditional density
functions Pr{X(t,) = x; | X(t;) = X, ; t; < t; }, called the transition probability

densities. The Markov process is said to be stationary or time homogeneous 1f

Pr{X(, +a)=j|X(t,)=i} =Pr{X(t; +a)=j|X(¢t;,)=i}; forallrands;, a >0
(1.2)

In that case (1.2) is denoted as p;* or pj(a). A discrete parameter stationary
Markov chain can be completely specified by the initial condition and the one
step transition probability matrix P = (p;); i, j € E, where p; = Pr{X..; = j |
X, =1}. For a stationary continuous parameter Markov chain the role of the one
step transition probabilities is played by the infinitesimal generator or the

transition intensity matrix, Q = (q;); i, j € E where

d L
J—ijj(o); Jor i=j

d n
PO for %)

The following results on limiting probabilities of stationary Markov
chains have wide range applications in many practical situations. Proofs of the
results quoted in this chapter can be found in standard books on stochastic

process.

Theorem 1.1

Let {X, , n € I} be an irreducible and aperiodic Markov chain with
discrete index set I and state space E. Then all states are recurrent non-null if
and only if the system of linear equations

Z”ip{]':”j; _]EE and Z”i: 1 (14)
iek iek



has a solution Il = (w; ,75 ,....... ). If there is a solution I, then it is strictly

positive, unique and 7; = lim p;; forall i,j € E.O0
n—»w

When E is finite all the states are recurrent non-null, therefore, a unique
solution IT exits always. I1 is calle¢ the invariant measure of the Markov chain

{Xq, nel}.

Theorem 1.2

Suppose {X(t), t € R.:} be an irreducible recurrent continuous time

Markov chain with discrete state space E. Then
z#(j)=lim Pr{X(t)=j}; jekE (1.5)
t—©

exists and is independent of X(0). If E is finite, then =(j)’s are given by the

unique solution of 2.7()g; =0, jeE and 2x@)=1 (1.6)
ieE ieE

1.2.3 Renewal Process

Suppose a certain event occurs repeatedly in time with the property that
the interarrival times {X, , n = 1, 2,...} form a sequence of non-negative
independent identically distributed random variables with a common
distribution F(.) and Pr{X, = 0}<I1. Let us call each occurrence of the event a
renewal. Since X, ‘s are non-negative, E(X,) exists. Let So =0, S, = X; + X,
+..+X, for n > 0. Then S, denotes the time of the n™ renewal. If

F.(t)=Pr{S, < t} is the distribution of S, , then F,(t) = F*(t) (n-fold



convolution of F(.) with itself). Define N(t) = Sup{ n | S, < t}. Then N(t)
represents the number of renewals in (0, t). The three interrelated processes,
{Xo,n=1,2,...}, {S,,n=0,1,...} and {N(t), t > 0} constitute a renewal
process. Since one can be derived from the other, customarily one of the

processes is called a renewal process.

The function M(t)= E[N(t)] is called the renewal function, and it can

easily be seen that M(t)= D F*1 (t). The derivative of M(t) is called the

n=1
renewal density, which is the expected number of renewals per unit time. The

integral equation satisfied by the renewal function,

M(t) = F(t) +jM(t-u) dF(u) (1.7)
0
is called the renewal equation. Suppose X, has a distribution different from the
common distribution of {X, , n >1}, then the process is called delayed or

modified renewal process.

The following two asymptotic results are used in the sequel.

Theorem 1.3 (Elementary Renewal Theorem)

Let p = E(X,) with the convention, 1/u = 0 when p = o« . Then,
My _1

too ! H

(1.8)



Theorem 1.4 (Key Renewal Theorem)

If H(t) i1s a non-negative function of ¢ such that TH(t)dt <o, then
0

L
lim | H(t - u) dM(u) = —1-TH(t)dt (1.9)

1= H 0

1.2.4 Markov Renewal Process

Markov renewal process is a generalization of both Markov process and
renewal process. Consider a two dimensional stochastic process {(X, ,T,),
ne NO} in which transitions from X, to X,.; constitute a Markov chain with
state space E, and the sojourn times T,.; — T, constitute another stochastic
process with state space R, which depends only on X, and X,.; . Then
{(X,,Tn), n eNO} is called a Markov renewal process on the state space E. We
restrict our discussion to the case where E is finite. Formally Markov renewal
process can be defined as follows: Let E, a finite set, be the state space of the
Markov chain { X, , n eN° } and R, , the set of non-negative real numbers, be

the state space of T, ( To=0, T, <Tu1,n=0,1,2,...). If

Pr{X,. =k Ty — T, <t1 X0, X1, X, To, Ty, Ty )

1.10
:Pr{Xn+l:k’Tn+l_TnSthn}( )

for all n, k €E, and teR,, then { (X, ,T,), n eN’ } 1s called a Markov renewal

ptocess on the state space E.
We assume that the process, { (X, ,T,), n eN° } 1s stationary and denote

QG j,0)=Pr{X, 1=, T - T, <t | X, =i} foralli,j € E, te Ry (l1.11)
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{0G,j,1),i,j € E, te R} is called semi-Markov kernel. The functions
R(i, j,1) = E[the number of transitions into state j in (0,t) | Xg =1, i,j€L]

are called Markov renewal functions and are given by

o0
RG,j,0)= ZQ * (i,j,1); where Q * denotes convolution of Q with itself. (1.12)

m=0

{R(,j,1), i,j € E, te R,} is known as Markov renewal kernel.
The stochastic process {X(t), t € R.} defined by X(t) = X, for T, <t<
Ty 1s called the semi-Markov process in which the Markov renewal process

{(Xa,Ta), n eN® } is embedded. Let p(i, j, 1) =Pr{ X(t)=j | X(0)=1}. Then

p(i, J, ¥) satisfies the Markov renewal equations

t
Pl ) =G ) ki) + YOGk du)plk.j.t—u). for ijek (1.13)

keE ¢
where, hi,n=1- 2, QG,k,1)
keE
L=
and 5(1"])_{0 otherwise.

Theorem 1.5

The solution of the Markov renewal equation (1.13) is

L
pl,j,0)= | RG,j,du) h(j,t —u); for i,jeE. (1.14)
0
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Theorem 1.6

If the Markov renewal process is aperiodic, recurrent and non-null, the

limiting probabilities are given by
im p(i, j,t Z JJ € .
k=E

and are independent of the initial state, where IT = (), j € E is the invariant
measure of the Markov chain {X,, n e NO} and m; 1s the sojourn time in the

state j.

1.2.5 Semi-Regenerative Process

Let Z = {Z(t), t 2 0} be a stochastic Process with topological space F,
and suppose that the function t - Z(t, ®) is right continuous and has left-hand
limits for almost all ®. A random variable T taking values in [0, o] is called a
stopping time for Z provided tha* for any t < o, the occurrence or non-
occurrence of the event {T <t} can be determined once the history {Z(u), u <t}

of Z before t 1s known.

The Process Z is said to be semi-regenerative if there exists a Markov

renewal process { (X, ,T,), n eN° } satisfying the following:

i) For each n eN°, T, is a stopping time for Z.
ii) For each n eN°, X,, is determined by {Z(u), u< T, }
ii1) For each n eNO, m21,0<t; <t <...... <t , the function f'd¢fined

on F™ and positive,
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Ef{Z(T, +11),....Z(Ty + tyy)} | {Z(w),u < T, }, {Xo =1}]
=E[f{Z(11),....Z(tm)} | {Xo =J}]  on{Xy=J}.

Theorem 1.7

Let Z be a semi-regenerative process with state space E; and let {Q(,,,
T,), n eN°} be the Markov renewal process imbedded in Z. Let the semi-
Markov kernel and Markov renewal kernel of { (X, ,T.), n €N° } be as defined

in (1.11) and (1.12) respectively. Then

pG,j,0)=P{Z(t)=j | Z(0)=X( =1}

1.16
= > |RG,k,ds) K(k,j,t-s), for icE, jeE (1.16)
1
keE o

where
K(i,j,0=Pr{Z(t)=j, T} >t | Z(0)= X, =i}
The limiting probabilities are given by the following
Theorem 1.8

In addition to the hypotheses and notations of Theorem 1.7 assume
further that {(X,,T,), n eNO} is irreducible, recurrent and aperiodic and the

sojourn time m; in the state j is finite. Then

S e Kk, 0
lim p(i,j,t):keE 0 ,JEE|, i€k (1.17)
t— Z My
keE

where 7’s are as in (1.15).
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1.3 REVIEW OF THE LITERATURE
1.3.1 Earlier Works

The mathematical analysis of inventory problem was started by Harris
(1915). He proposed the famous EOQ formula that was popularized by Wilson.
The first paper closely related to (s, S) policy is by Arrow, Harris and Marchak
(1951). Dvorestzky, Kiefer and Wolfowitz (1952) have given some sufficient
conditions to establish that the optimal policy is an (s, S) policy for the single-
stage inventory problem. Whitin (1953) and Gani (1957) have summarized

several results in storage systems.

A systematic account of the (s, S) inventory type is provided by Arrow,
Karlin and Scarf (1958) based on renewal theory. Hadley and Whitin (1963)
give several applications of different inventory models. In the review article
Veinott (1966) provides a detailed account of the work carried out in inventory
theory. Naddor (1966) compares different inventory policies by discussing their
cost analysis. Gross and Harris (1971) consider the inventory systems with state
dependent lead times. In a later work (1973) they deal with the idea of
dependence between replenishment times and the number of outstanding orders.
Tijms(1972) gives a detailed analysis of the inventory system under (s, S)
policy.

1.3.2 Works on (s, S) Continuous Review Policy

Sivazlian (1974) analyzes the continuous review (s, S) inventory system
with general interarrival times and unit demands. He shows that the limiting

distribution of the position inventory is uniform and independent of the
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interarrival time distribution. Richards (1975) proves the same result for
compound renewal demands. Later (1978) he deals with a continuous review
(s, S) inventory system in which the demand for items in inventory is dependent
on an external environment. Archibald and Silver (1978) discuss exact and
approximate procedures for continuous review (s, S) inventory policy with

constant lead time and compound Poisson demand.

Sahin (1979) discusses continuous review (s, S) inventory with
continuous state space and constant lead times. Srinivasan (1979) extends
Sivazlian’s result to the case of random lead times. He derives explicit
expression for probability mass function of the stock level and extracts stcady
state results from the general formulae. This is further extended by Manoharan,
Krishnamoorthy and Madhusoodanan (1987) to the case of non-identically
distributed interarrival times.

Ramaswami (1981) obtains algorithms for an (s, S) model where demand
is a Markovian point process. Sahin (1983) derives the binomial moments of the
transient and stationary distributions of the number of backlogs in a continuous
review (s, S) model with arbitrary lead time and compound renewal demand.
Kalpakam and Arivarignan (1984) discuss a single item (s, S) inventory model
in which demands from a finite number of different types of sources form a
Markov chain. Thangaraj and Ramanarayanan (1983) deal with an inventory
system with random lead time and having two ordering levels. Jacob (1988)
considers the same problem with varying re-order levels. Ramanarayanan and
Jacob (1987) obtain time dependent system state probability using matrix
convolution method for an inventory system with random lead time and bulk
demands. Srinivasan (1988) examines (s, S) inventory systems with adjustable
reorder sizes. Chikan (1990) and Sahin (1990) discuss extensively a number of

continuous review inventory systems in their books.
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An inventory system with varying re-order levels and random lead time
is discussed by Krishnamoorthy and Manoharan (1991). Krishnamoorthy and
Lakshmy (1991) investigate an (s, S) inventory system in which the successive
demand quantities form a Markov chain. They (1990) further discuss problems
with Markov dependent re-ordering levels and Markov dependent replenishment
quantities. Zheng (1991) develops an algorithm for computing optimal (s, S)
policies that applies to both periodic review and continuous review inventory
systems. Sinha (1991) presents a computational algorithm by a search routine
using numerical methods for an (s, S) inventory system having arbitrary

demands and exponential interarrival times.

Ishigaki and Sawaki (1991) show that (s, S) policy is optimal among
other policies even in the case of fixed inventory costs. Dohi et al. (1992)
compare well-known continuous and deterministic inventory models and
propose qptimal inventory policies. Azoury and Brill (1992) derive the steady
state distribution of net inventory in which demand process is Poisson, ordering
decisions are based on net inventory and lead times are random. The analysis of
the model applies level crossing theory. Sulem and Tapiero (1993) emphasize

the mutual effect of lead time and shortage cost in an (s, S) inventory policy.

Kalpakam and Sapna (1993a) analyze an (s, S) ordering policy in which
items are procured on an emergency basis during stock out period. Again they
(1993b) deal with the problem of controlling the replenishment rates in a lost
sales inventory system with compound Poisson demands and two types of re-
orders with varying order quantities. Prasad (1994) develops a new classifi-
cation system that compares different inventory systems. Zheng (1994) studies a
continuous review inventory system with Poisson demand allowing special
opportunities for placing orders at a discounted setup cost. He proves that the

(s, ¢, S) policy 1s optimal and developed an efficient algorithm for cornputing
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optimal control parameters of the policy. Hill (1994) analyzes a continuous
review lost sales inventory model in which more than one order may be
outstanding. In an earlier work (1992) he describes a numerical procedure for

computing the steady state characteristics where two orders may be outstanding.

Moon and Gallego (1994) discuss inventory models with unknown
distribution of lead time but with the knowledge of only the first two moments
of it. Mak and Lai (1995) present an (s, S) inventory model with cut-off point
for lumpy demand quantities where the excess demands are refused. Hollier,
Mak and Lam (1995, 1996) deal with similar problems in which the excess
demands are filtered out and treated as special orders. Dhandra and Prasad
(1995a) study a continuous review inventory policy in which the demand rate
changes at a random point of time. Perry et al. (1995) analyze continuous
review inventory systems with exponential random yields by the techniques of
level crossing theory. Sapna (1996) deals with (s, S) inventory system with
priority customers and arbitrary lead time distribution. Kalpakam and Sapna
(1997) discuss an environment dependent (s, S) inventory system with renewal
demands and lost sales where the environment changes between available and

unavailable periods according to a Markov chain.

1.3.3 Works on Perishable Inventory

Ghare and Schrader (1963) introduce the concept of exponential decay in
inventory problems. Nahmias and Wang (1979) derive a heuristic lot size re-
order policy for an inventory problem subject to exponential decay. Weiss
(1980) discusses an optimal i)olicy for a continuous review inventory system

with fixed life time.- Graves (1982) apply the theory of impatient servers to
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some continuous review perishable inventory models. An exhaustive review of
the work done in perishable inventory until 1982 can be seen in Nahmias(1982).
Kaspi and Perri (1983, 1984) deal with inventory systems with constant life
times applicable to blood banks. Pandit and Rao (1984) study an inventory
system in which only good items are sold. These are selected from the stock
including defective items with known probabilities until a good item is

picked up.

Kalpakam and Arivarignan (1985a, 1985b) study a continuous review
inventory system having an exhibiting item subject to random failure. They
(1989) extend the result to exhibiting items having Erlangian life times under
renewal demands. Again they (1988) deal with a perishable inventory model
having exponential life times for all the items. Ravichandran (1988) analyzes a
system with Poisson demand and Erlangian life time where lead time is
assumed to be positive. Manoharan and Krishnamoorthy (1989) consider an
inventory problem with all items subject to decay having arbitrary interarrival

times and derive the limiting probabilities.

Srinivasan (1989) investigates an inventory model of decaying items
with positive lead time under (s, S) operating policy. Incorporating adjustable
re-order size he discusses a solution procedure for inventory model for decaying
items. Liu (1990) considers an inventory system with random life times
allowing backlogs, but having zero lead time. He gives a closed form of the
long run cost function and discusses its analytic properties. Raafat {1991)

presents an up-to-date survey of decaying inventory models.

Goh et al.(1993) consider a perishable inventory system with finite life
times in which arrival and quantities of demands are batch Poisson process with

geometrically sized batches. Kalpakam and Sapna (1994) analyze a perishable
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inventory system with Poisson demand and exponentially distributed lead times
and derive steady state probabilities of the inventory level. Later they (1996)
extend it to the case of arbitrary lead time distribution. Su et al. (1996) propose
an inventory model under inflation for stock dependent consumption rate and
exponential decay with no shortages. Bulinskaya (1996) discusses the stability

of inventory problems taking into account deterioration and production.

1.3.4 Works on Multi-commodity Inventory

Balintfy (1964) analyses a continuous review multi-item inventory
problem. Silver (1965) derives some characteristics of a special joint ordering
inventory model. Ignall (1969) deals with two product continuous review
inventory systems with joint setup costs. Some models of multi-item continuous
review inventory problems can be seen in Schrady et al. (1971). Sivazlian
(1975) discusses the stationary characteristics of a multi-commodity inventory
system. Sivazlian and Stanfel (1975) study a single period two commodity
inventory problem. Multi-item (s, S) inventory systems with a service objective
are discussed in Mitchell (1988). Cohen et al. (1992) study multi-item service
constrained (s, S) inventory systems. Golany and Lev-Er (1992) compare
several multi-item joint replenish-ment inventory models by simulation study.
Kalpakam and Arivarignan (1993) analyze a multi-item inventory model with

unit renewal demands under joint ordering policy.

Krishnamoorthy, Igbal and Lakshmy (1994) discuss a continuous review
two commodity inventory problem in which the type of commodity demanded
is governed by a discrete probability distribution. Krishnamoorthy and

Varghese (1995a) consider a two commodity inventory problem with Markov
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shift in demand for the type of the commodity. The quantity demanded at each
epoch is arbitrary but limited. Dhandra and Prasad (1995b) analyze two
commodity inventory problems for substitutable items. Krishnamoorthy and
Merlymole (1997) investigate a two commodity inventory problem with cor-
related demands. Krishnamoorthy, Lakshmy and Igbal (1997) study a two
commodity inventory problem with Markov shift in demand and characterize

the limiting distributions of the inventory states.

1.4 AN OUTLINE OF THE PRESENT WORK

The thesis is divided into eight chapters including this introductory
chapter. Chapter II deals with a single commodity continuous review (s, S)
inventory system in which items are damaged due to decay and disascer. We
assume that demands for items follow Poisson process. The lifetime of items
and the times between the disasters are independently exponentially distri-
buted. Due to disaster a unit in the inventory is either destroyed completely,
independent of others, or survives without any damage. Shortages are not
permitted and lead time is assumed to be zero. By identifying a suitable Markov
Process transient and steady state probabilities of the inventory levels are
derived . The probability distribution of the replenishment periods are found to
be phase type and explicit expression for the expectation is obtained. Some
special cases are deduced. Optimization probl.em is discussed and optimum
value of the re-ordering level, s, is proved to be zero. Some numerical examples

are provided to find out optimum values of S.

Chapter III is an extension of the model discussed in chapter II to

positive lead time case. Shortages are allowed and demands during dry periods
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are considered as lost. We derive transient and steady state probabilities of the
inventory levels by assuming arbitrary lead time distribution. A special case in
which the stock is brought back to the maximum capacity at each instant of
replenishment by an immediate second order is also discussed. The case in
which the lead time distribution is exponentially distributed is discussed in
detail. Expected replenishment cycle time is shown as minimum when s = 0.

The cost analysis is illustrated with numerical examples.

In chapter IV we study a single commodity inventory problem with
general interarrival times and exponential disaster periods. Here we assume that
the damage is due to disaster only. The quantity demanded at each epoch
follows an arbitrary distribution depending only on the time elapsed from the
previous demand point. Other assumptions are same as in chapter II. Transient
and steady state probabilities of the inventory level are derived with the help of
the theory of semi-regenerative processes. A special case in which the disaster
affecting only the exhibiting items and arriving customers demanding uiit item
is discussed and steady state distribution is obtained as uniform. [llustrations are

provided by replacing the general distribution by gamma distribution.

Chapter V considers a single commodity inventory problem with general
disaster periods and Poisson demand process. Here also the damage of item is
restricted to disaster. Concentrating on the disaster epochs which form a
renewal process, the transient and steady state probabilities of the inventory
level are derived. Special cases are discussed and numerical illustrations are
provided. In the special case where the disaster affects only an exhibiting item

the steady state probabilities of the inventory levels are proved to be uniform.

Chapter VI generalizes the results of chapter II to multi-commodity

inventory. There are n commodities and an arriving customer can demand only
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one type of commodity. Demands for an item follow Poisson process and life
times of items are independent exponential distributions. Disaster periods are
also exponential distribution and the disaster affects each unit in the inventory
independently of others. Fresh orders are placed and instantaneously replen-
ished whenever the inventory level of at least one of the commodities falls to or
below its re-ordering point. The inventory level process is an n-dimensional
continuous time Markov chain. Hence the time dependent and long run system
state solutions are arrived at. Cost function for the steady state inventory is
formulated and re-ordering levels are found out to be zeroes at optimum value.
Numerical examples help to choose optimum values for maximum inventory

levels.

The assumptions of chapter VII are similar to those in the previous
chapter except those concerning the replenishment policy and shortages. A new
order is placed only when the inventory levels of all the commodities fall to or
below their re-ordering levels. Hence there are shortages and the sales are
considered as lost during stock out period. Results are illustrated with numerical

examples.

In the last chapter there are two models of two commodity inventory
problems. Each arrival can demand one unit of commodity I, one unit of
commodity II or one unit each of both. The type of commodity demanded at
successive demand epochs constitutes a Makov chain. Shortages are not
allowed and lead time is assumed to be zero. Neither decay nor disaster affects
the inventory. The interarrival times of demands are i.i.d. random variables
following a general distribution. In the first model fresh orders are placed for
each commodity separately whenever its inventory level falls to its re-ordering
level for the first time after the previous replenishment. In the second model an

order is placed for both commodities whenever the inventory level of at least
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one of the commodities falls to its re-ordering level for the first time after the
previous replenishment. Transient and steady state probabilities of the system
states are computed with the help of the theory of semi-Markov processes.
Distributions of the replenishment periods and that of replenishment quantities
are formulated to discuss optimization problem. Numerical examples are given

to illustrate each model and to compare the two.

The notations used in this thesis are explained in each chapter.
Numerical examples provided at the end of each chapter are solved with the
help of a computer; for brevity, the respective computer programs are not

presented. The thesis ends with a list of references.



Chapter I1

Single Commodity Inventory Problem

Perishable due to Decay and Disaster”

2.1 INTRODUCTION

In this chapter we discuss a continuous review inventory system in which
commodities are damaged due to decay and disaster. The maximum capacity of
the warehouse is S and the sock is brought to S whenever the inventory level
falls to or below the re-ordering point, s . Shortages are not permitted and lead
time is zero . Demands are assumed to follow Poisson process with rate A . The
times between disasters and life times of an item have exponential distributions
with parameters L and o respectively. Each unit in the inventory , independent
of others, survives a disaster with probability p and succumbs to it with

probability 1-p.

Our objectives are to find transient and steady state probabilities of the
inventory level and long run optimum value of the pair, (s, S). Numerical

examples provided in the last section illustrate the results.

The review by Nahmias (1982) discusses most of the earlier perishable
inventory models. Kalpakam and Arivarignan (1988) deal with a perishable

" The results of this chapter are published in Optimization , 35, 85 - 93, (1995).
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inventory model in which the life time of an item is exponentially distributed
and the demands form a Poisson process. This chapter is an attempt to

generalize their model by adding the possibility of a disaster.

2.2 NOTATIONS

S : Maximum inventory level
S : reordering point
M :S-5s
q :1-p
R. : The set of non-negative real numbers
N° : The set of non-negative integers
E {st1, s+2,......... , S}
E; {st+1, s+2,......, S-1}
s {s,st1,.ccccc..... , S}
o {o, st1, s+2,....... , S}
Eum {1,2, . , M}
IT (TUss1, Ts2peeenennns , Ts}
e (1, Ly )T; e'e RM
a (0,0, ,0,1) e R™
o 0,0, ,0, 1) e RM!
A : (@ij)mxm; @i ‘s are defined by (2.5).
D, : the determinant of the sub matrix obtained from A4 by

deleting the first i-s rows, the last and first /-s-1 columns;
ieE|

Ds 1

AC(0,S) : C(0, S) — C(0, S-1).

A*C(0,S)  :AC(0, S)— AC(0, S-1)
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2.3 ANALYSIS OF THE INVENTORY LEVEL

Let X(¢) denote the inventory level at any time ¢ > 0. Then {X(¢), reR.}
is a continuous time Markov chain with state space E. We assume that the

initial probability vector of this chain is a.

Let
Pi(ty=Pr{X(N=i |X(0)=i}; i jeL. 2.1
Then the transition probability matrix,
P(t)= (Pj ()mxm; 1,J€E (2.2)
together with o will uniquely determine the Markov chain {X(t)}.

Theorem 2.1

The transition probability matrix P(t) is uniquely determined by

B" "

(e o]
P(t) =exp(Bt) =1+ ), ' (2.3)
vl 1
where matrix B = A+C, in which A and C are defined as follows :
Fas+1,s+1 Asil5+2 as+1S |
512 s+1 9542 542 dsi2 S
A= (2.4)
L 48 .s+1 as s+2 ass |
with
~(A+ prioy+p'y if i=j
) 2 D
Avio+| \p/gd Tu if i=j+1
W =| (2.5)
UP’(I"’# if i>j+1
10 otherwise

and C= (Cij) MxM3 i,jGE, with
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[ i (i) .
Atiw+ D, (klo'_qu,u if j=S;i=s+1
. k=i-s
4 i) .
cj=| 2 (k]p""q"p ifj=S.i>s+1 (2.6)
k=i—s
0 otherwise

Proof:
For a fixed i, we have the following:
Pi(t+8 )=P(0{1~ (A+ g+ j)d 1} + P, j (D[A+ ( + Dw)b £ +

S—j -

Jtk) . 2.7)
Z{Piﬂk(f)( j Jijkﬂ51+0(51); JjeE)
k=0

Pg(t+6 £)=Pg(){1— (A+ p +Sw)s t+ PS5 s 1}
+P,~S+1(t)[/1+(S +Dw]ét (2.8)

+Z ZP,,O)UD g pstro@

r=s+1 k=r-s

Hence the difference differential equations are
Pii(t) = Bi([~(A+ s+ jw)l+ £ j (D[A+(J + D]+

- +kY . 2.9
il’mk(t)[ﬁ jﬂjqkﬂ; JjeE 22
- k=0 J

is(0)=Ps (O[~(A+ p+ S©) + P° ]+ Pgy (D[A+(S + ]

+ i ZP,r(tU a* u

r=s+1 k=r-s

(2.10)

From (2.4) - (2.6), (2.9) and (2.10) we can easily see that the Kolmogorov
equations,

P (t)= P(t)B and P (t) = BP(t) (2.11)
with the condition,

P(0)=1 (2.12)
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are satisfied by P(t). The solution of (2.11) with (2.12) is (2.3). Since B is a
finite matrix the series in (2.3) is convergent and the solution is unique. Hence

the theorem.

2.3.1 Steady State Probabilities

Since in the Markov chain {X(t), t > 0} transition from any state i{i € E )

to any state j (j € E ) is possible with positive probability, it is irreducible.
Hence the limiting probabilities, tli?:o Pj()=r;; jeE exist and are given by

the unique solution of
1B =0 (2.13)
and e =1 (2.14)

Theorem 2.2

The steady state probabilities 7; (1 € E) are given by

D,
T = 5 . ieE (2.15)
F(s,8) kn.(_akk)
=i
S
D:
where F(s,8)= Y, S—l (2.16)
i=s+l I1 ("akk )
k=i

Proof:

Because of (2.14), the last column of B is not needed for solving the
equations. Hence it is enough to take A instead of B. Construct a series of
determinants from A as follows: Let D; be the determinant of the sub matrix

obtained from A by deleting the first i—s rows the last and first i-s—1 columns,
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i € E; and Dg = 1. Then we can easily see that the solution of (2.13) and (2.14)
is
T =S_lﬂs—;ieE1 (2.17)
II (-ag)
k=i

1

and 7§ (_ass)F(s>S)

(2.18)

Substitution of (2.18) in (2.17) yields (2.15). Hence the theorem.

Corollary 2.2.1

When there is no disaster and the items are non-perishable, then the

stationary probabilities are uniformly distributed.

Proof:

When there is no disaster and the items are non-perishable, p = 0 and
® =0. Then a,, =-A for every k, D; = ASH ,1 € E and F(s,S) = M/A . Therefore
from (2.15) , m; = 1/M, hence uniform distribution. This agrees with the result of
Sivazlian (1974).

Corollary 2.2.2

If there is only decay and no disaster, then

l
T = ;ie E (2.19)

S
1
A+
( +Iw)j£1(i+ja))

Proof:
In case of perishable items with no disaster, u = 0 .Then a;x = - (A + ko)

for every k and D; = Hf;,-l (-aj;1j+1); i€ Ey. Therefore from (2.16),
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S
1
F(s,S) = igl A1) (2.20)

and from (2.15) the corollary follows. (See Kalpakam and Arivarignan (1988)).

Corollary 2.2.3

If the goods are non—perishable and only an exhibited item affects the

disaster, then the stationary probabilities are uniform.

Proof:
In this case,
(A+qu) ifi=j

a; =V,+qp ifi=j+1 (2.21)
0 otherwise

Then ay = — (A + pq) for every k, D;= (A + pq)*™*, i e E. Hence from (2.15)
and (2.16),
;= /M. (2.22)

2.4 PROBABILITY DISTRIBUTION OF THE REPLENISHMENT
CYCLES

Let 0=Ty<T; <Ty<.u...... be the epochs when orders are placed.
The inventory level at T, is S, n € N°. Therefore {T,,n e No}is a renewal

process.

Theorem 2. 3
The probability distribution of the replenishment cycles is phase type on
[0, ) and is given by
G(t) = 1-a exp (At)e for t=0 (2.23)
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Proof:

Since lead time is zero, the inventory is replenished whenever stock level
is reduced to s or below it for the first time after each replenishment. Let o
denote the instantaneous state representing the states s, s—1,.....1, 0. Assume that
the stock level is ¢ for an infinitesimally small interval before making it S.
Define the Markov chain {Y(t), t € R.} with state space E, and initial

probability vector a, and transition probability matrix

ﬁ:{% ‘Z} where C= Ce. (2.24)

Since matrix A is non-singular, state o is absorbing and all other states
are transient (see Neuts (1978) ) for the Markov chain {Y(t), teR.}. If G(.) is
the probability distribution of the time until absorption into the instantaneous
state o with initial probability vector a,, then G(.) is the distribution of the
phase type on [0, ) and is given by (2.23). When the time spent in ¢ tends to
zero G(.) becomes the probability distribution of the replenishment cycles of the
Markov chain {X(t), teR.}. Hence the theorem.

Theorem 2.4

The expected time between two successive re-orders,

1
—assrws

E(T) = F(s,8) = (2.25)

Proof:
The characteristic values of the lower triangular matrix A are a; ‘s, hence

distinct. Therefore A can be represented as
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i1, 5+1 1

A1) 542 0 |

QI[ Q!
[ 0 aS,SJ

where Q = (Rs+1, Rss2,.....Rs) and R; is the right eigen vector corresponding to

(2.26)

the eigen value a; (i € E).

Thus,
[exp(as+l,s+1 1) 0 _]I
exp(a t
exp(At) _ Qi p( 5+2,5+2 ) IQ_1 (2.27)
|_ 0 exp(ag s "]
C -
0
Asils+1
1
and Texp(At)dt =-Q As5+2,5+2 Q! (2.28)
0 i
1
O -
L ass |
=_A"!
Therefore from (2.23)
E(T) =Ta exp(At)e dt (2.29)
0
=—aAle (2.30)

Let A" =(aj;); i,jeE. Then
D; .
ag;=—5——ick 2.31)
[T (—a)
k=i

Hence (2.30) becomes
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S S
D:
E(T)= 2asi= 2 (2.32)
i=s+1 i=s+1 17 (‘akk)
k=i

and from (2.18) and (2.16) the theorem follows.

Corollary 2.4.1
When there is no disaster and the items are non-perishable, then

E(D)=MA

Corollary 2.4.2

In case of perishable inventory, with no disaster, we have from (2.20),

1
(A+iw)

S
E(D= 2.

i=s+1

(2.33)

and the result reduces to Kalpakam and Arivarignan (1988).

Corollary 2.4.3

When the disaster affects only an exhibiting item,

M
A+qu

E(D)= (2.34)

2.5 OPTIMIZATION PROBLEM

Due to disaster, the stock level may go below s, at any instant. Hence the
re-ordering quantity is not always M =S — s, If M* represents the expected re-

ordering quantity at steady state, then

|- S ( i i o \-|
M*=E(T)L,1+ .Zl/riLia)wLp Zoj(j]p'—/quJ (2.35)
i=s+ J=

=E(T)[/1+(a)+q,u)H(s,S)], where H(s,S)= iiﬂ,— (2.36)

i=s+1
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Let A be the unit holding cost per unit time, ¢ the unit procurement cost
of the item, K the fixed ordering cost and d the unit cost for the damaged item.

Then the cost function to be minimized is

Cls.5)= K;sz)l "+ hH(s,S) +d@+ 4 DH(SS) (2.37)
= F6.5) cA+ [(c+d) (w+ugq)+h ]H(S,S) (2.38)

Theorem 2.5

The cost function C (s,S) is minimum for s = 0.

Proof:

Consider the matrix A =(d;), 1, ] € E;, where
~(A+ p+io)y+p'y if i=j

i L

Avio+| |\p/q 7y if i=j+1
a; =, (2.39)
A

Op’q”# if i>j+1

0 otherwise

Let D; = be the determinant of the sub matrix obtained from A by deleting the
first i-s+1 rows, the last and first i-s columns (i # S), and D =1. Then D; = D;
for i € E . Also observe that D; is positive for every i since it has negative

entries on the super diagonal, non-negative entries in the lower triangular

portion and zeros elsewhere. Then

S A~
D.
F(s=1,8)= 2 — ’
"=5kH’(l+ ko + py - pk p)
=i
J D Dy

=ZS +

i=s+l H.(l+;¢+ka)—pk,u) (l+u+kw—pk#)

k=l k=S

>F (s, S) (2.40)

jom L7



34

Also
H(s-1,8)=s+ F( p— Z < iDjys
=0 11 (/1+,u+ka)—pk,u)
k=i+s
1 iD;
<s+ F&.5) Z s by (2.40)
=g (2+ 4+ ko - p* )
k=i+s
= H(s, S) (2.41)

Thus from (2.38) , (2.40) and (2.41),
C(s-1, S) < C(s, S).

Hence the proof.

Let O(S) =F(0,S) and ¥ (S) =H(0,S). Then (2.38) becomes
C(o, S)—q)(—lfg)—+cx+[(c+d)(a) + 1 q) +h]¥(S)

K +cS

- XS)

+[d(@ + u q) + H]¥(S) (2.42)

2.6 NUMERICAL ILLUSTRATIONS

In general C(0,S) is not a convex function as evidenced by table 2.1.
However, numerical examples indicate that when S is large AC(0,S) tends to a
constant . This can be seen in figure 2.1. In practice the maximum capacity of
the warehouse is also delimited by other constraints and hence given an upper
limit we can easily find out the optimum value of S for a minimum value of
C(0,S) . Tables 2.2, 2.3 and 2.4 show variation of the optimal values of S for
different values of p, A,®, and p. The effect of decay and disaster on the cost
function is illustrated in figure 2.2.



Table 2.1
(Showing that the function C(0, S) in not convex)
A=2,0=1,u=10,p=0.1,K=50,¢=10,h=2,d=0.4.

C(0,8) - C(0.8-1)

C(0,5) AC(0,S) A%C(0,S)

693.566
42.351

735.917 2.663
45.014

780.931 -0.149
44.865

825.796 -0.792
44.073

869.869

Figure 2.1
(The graph of AC(0,S))

A=2,0=L,pu=10,p=0.1,K=50,c=10,h=2,d=0.4.
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Figure 2.2
(The effect of decay and disaster on the cost function)
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A=4, p=0.5,K=200,c=10,h=2,d=04.
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S VALUES
Table 2.2
=.1, K=200, ¢c=10, h=2, d=4
}t—) 4 35 3 2.5 2 1.5 1 ) 0
A
1 6 6 6 7 7 7 8 9 11
2 6 7 7 7 8 ' 8 9 10 12
3 7 7 8 8 8 9 10 11 13
4 7 8 8 9 9 10 11 12 14
1 6 6 6 6 6 7 8 9 11
2 6 6 6 7 7 8 9 10 14
3 6 7 7 7 8 9 10 12 15
4 7 7 8 8 9 10 11 13 17
1 6 6 6 6 6 6 6 7 14
2 6 6 6 6 6 7 7 9 20
3 6 6 6 7 7 8 9 12 25
4 6 7 7 7 8 9 10 14 28




Table 2.3

p=.5, K=200, c=10, h=2, d=4

\\4£:i 4 3.5 3 2.5 2 1.5 1 ) 0
Ad ,
1 9 9 10 10 10 10 10 10 11
2 10 10 10 11 11 11 11 12 12
3 11 11 11 11 12 12 12 13 13
4 11 12 12 12 12 13 13 14 14
1 9 9 10 10 10 10 10 11 11
2 10 10 11 11 11 11 12 13 14
3 11 11 12 12 12 13 13 14 15
4 12 12 12 13 13 14 14 15 17
1 9 9 9 10 10 10 11 11 14
2 10 11 11 11 12 12 13 15 20
3 11 12 12 13 13 14 15 17 25
4 12 13 13 14 14 15 17 20 28
Table 2.4

p=.9, K=200, c=10, h=2, d=.4
\\ii:) 4 3.5 3 2.5 2 1.5 1 5 0
A
1 10 10 11 11 11 11 11 11 11
2 12 12 12 12 12 12 12 12 12
3 13 13 13 13 13 13 13 13 13
4 14 14 14 14 14 14 14 14 14
1 11 11 11 11 11 11 11 11 11
2 13 13 13 13 13 13 13 13 14
3 14 14 14 14 15 15 15 15 15
4 15 16 16 16 16 16 16 17 17
1 12 12 13 13 13 13 14 14 14
2 15 16 16 17 17 18 18 19 20
3 18 18 19 19 20 21 22 23 25
4 20 21 21 22 23 24 25 26 28




Chapter II1

Single Commodity Perishable Inventory

Problem with Lead Time

3.1 INTRODUCTION

A continuous review inventory system with arbitrary lead time
distribution in which the commodities are damaged due to decay and disaster is
discussed in this chapter. The re-ordering level is s and the maximum capacity
of the ware house is S. Assume that S > 2s. The demands during stock out
period are assumed to be lost. Demands follow Poisson process with rate A and
the life times of an item follow exponential distribution with parameter . The
interarrival times of disasters is also exponential distribution, but with
parameter p. The lead times are 1.i.d. random variables with absolutely
continuous distribution function G(.) having finite mean m. A unit in the
inventory, independent of others, survives or not with respective probabilities p

and 1-p. All the distributions mentioned are independent of each other.

Kalpakam and Sapna (1994) deal with a continuous review (s, S)
perishable inventory system with exponential lead times. Later they (1996)
have extended it to the case of arbitrary lead time distribution. We further

extend the problem to disaster case.
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Section 3.6 deals with a special case of the problem where the inventory
level is brought back to S at each replenishment epoch. We come acgeross this
situation in the common market where the suppliers bring some items additional
to the prior order so as to get instantaneous order from the stockists to fill the
inventory. In section 3.7 exponentially distributed lead time case is discussed in

detail and useful results are obtained which are illustrated with numerical

examples.
Notations
M S-—s
E {0, 1,......., S}
Ewm #AM, M+1,....., S}
N° {0, 1,2,......}
e (1, Ly, ) e’ e RS
a (0,0,.cccoeenn.. 0,1) e R®!

Q*"(4,j,t)  : n-fold convolution of Q with itself where
Lif i= ]

0, .
Q (Ia.]st)_{o lf

1 # ]

3.2 MODEL FORMULATION AND ANALYSIS

Let X(t) be the inventory level at time t > 0. Then X(t) takes values from
E Let 0=Ty<T; < Tp<..... be the epochs at which the replenishments take
place. Concentrating on the pure death process X(t), in between two replen-

ishment epochs, and disregarding the order placement, let

#(t) = Pr {X(p+t) =3 | X(p+) =1, Ta< p < p+t < Tps1 , no order placed
evenif 1andj<s}; p>0; 1,j€E; (3.1)
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and o) = (#(V); ijeE (3.2)
be the square matrix of order S+1. Assume that
®0) =1, (3.3)
then the difference differential equations satisfied by the components ¢;(t) are
14x+u+‘ ) : - Sfﬁ*k}g ky
Jo)b; () +[A+(j+Dolb; j4+1() + uk=0 ;P i j+k
‘ | 0<j<i-1
;i (’)=‘[—(X+u+jm)+upf]¢y-(t) i=j 20 (3.4)
(X+m)¢i1(1)+u12qk¢;k(t) i>0;j=0
L0 €= otherwise
1, € E

Let A =(a;) s+1)xs+1); L, J € E, be the infinitesimal generator of the pure

death process. Then,

~(A+ p+io)+p' u i=j#0
i) ...
A+io+| . |p/q™ u i=j+1
aij = . (35)
1 N
Oplqw # AL
10 otherwise
We have
Theorem 3.1
The matrix ®(t) is given by
®(t) = H exp(Bt) H™! (3.6)

where H is a non-singular matrix formed with the right eigen vectors of A and
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1 0
0 et
exp(B?)=| ... 3.7)
0 0 efsst |

Proof:

From (3.4) and (3.5) we can see that O(t) satisfies the Kolmogorov

differential equations,

D'(t) = DA and  @'(t) = AD(1) (3.8)

The solution of (3.8) with (3.3) is

A ?
n!

d(r) = exp(Ar) = I+ i (3.9)
n=1

The eigen values of the lower triangular matrix A are a; (1 €E), hence

distinct. Let

0 0
0 all
B=|... (3.10)
L0 O ass |
Then
A" =HB" H' (3.11)

Substituting in (3.9), we get (3.6). Hence the theorem.

Now define X, = X(T,+); n € N°. Then we have

Theorem 3.2
{(X,, T.); n € N°} is a Markov renewal process with state space Ey and

semi Markov kernel, Q = {(0(j, }, t); 1, j €Em, t > 0} where



42

QG,j,0)=P{X,1=j, Thy1-T, <t | X, =i}

= 16,),)+0, (i, j,1) (.12)
where
4
010,10 =14+ (5+ 0] 1) 1 s10) 5 -pg () dGY e and
Ou
i k=S-)(k . Lt
06.00=8 2 X @p Tq I 4@ bror j_seir ) dGOYdu (3.13)
=s+1 r=k-s Qu

with ¢;; defined in (3.1).

Proof:

From the assumptions it is clear that {X;, T,} is a Markov renewal
process. To derive the expression for Q(l, j, t) note that the transition from 1 to
(1, j € Enm) occurs in the following two mutually exhaustive and exclusive ways:
1) The inventory level reduces to (s+1) and by a demand or by natural decay it
becomes s in between (u, u+du) causing placement of an order which
materializes at time v (v <t). 2) The inventory level reduces to k (k = s+1, .....,1)
and by a disaster it again falls to or below s resulting in placement of an order
in between (u, u+du) which materializes at time v (v <t). The Probability for

the first event is ©,(j,j,#) and for the second event is @1(i,j,1).

3.3 TIME DEPENDENT PROBABILITIES

Let p(i, j, t) = Pr{X(t) =j | X(0+) =1}, 1 € Eym, jeE. Once the inventory
level at 7, =Sup{T; <t} is known, the history of X(t) prior to T, loses its

i
predictive value. Hence {T, ;n € N° } are stopping times and {X(t); t > 0} is a

semi-regenerative process with embedded Markov renewal process, (X,, T,).
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The functions p(j, j, t) satisfy the following Markov renewal equations,

S t
pU,j,)=k(,jt)+ Z IQ(i,r,du)p(r,j,t—u); ieEy,jekE (3.14)

r=MoQ
where
k(i,j,)=Pr{X()=j, T1>t | X(O+)=i}; ieky,;, jek (3.15)
@i (1) st1<j <i
=161, J,0)+ B2, j,1) 0<j<s (3.16)
0 i<j <8
in which

ﬁl(i,j,1)=[/1+(S+1)w]j¢is+1(u) ¢sj(t-u) [1-G(t~u))du  and

o ° (3.17)
i I AL k-r rj’
B2, j,1)=u > i , q )Pix W) gy ;(t—1) [1-G(t - u)]du
k=s+1 r=k-s 0
The solution of (3.14) can be formulated as the following
Theorem 3.3
S
pij0= Y [RGrdike jt-uy icEy, jek; (3.18)
r=M o -
where RG, j,0)= 2.0, j,0); i,jeEy

n=0

3.4 STEADY STATE SOLUTION

Let Q; = (gi), 1, ] € Em , be the transition probability matrix of the

underlying Markov chain {X, , neN® } associated with the Markov renewal

process (X, , T, ). Then
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lim

ql_[ Q(i’jat)

Tt w®

=[A+(s+ Do) TT¢; s+1(#) @5 j-p (v) dG(v) du (3.19)

Ou

i k=S=N(k
+u 2 i (r)pk"q'TTm (u) $r—p j-S+k-r (v) dG(v) du
Ou

k=s+1 r=k-s
Since g; > O for every i, j € Ey , the finite Markov chain {X, , neN’ } is

irreducible and hence it is recurrent. Therefore it possesses a unique stationary

distribution,
T = (ﬂ:\,{,ﬂ;w,{,l, ........ 7's) which satisfies 7Q; =7 and En} = (3.20)
Let vV=(vg,V],eevvee... , vs) denote the steady state probability vector of

the inventory level. Since G(t) is absolutely continuous with finite expectation,

we get from (3.14) and (3.18) the following
Theorem 3.4

The limiting probabilities of the inventory levels are given by

> ,n}Tk(i,j,t)dt

_ iEEM 0

v, = ; e & 3.21
/ Z”;mi / ( )
iEEM
where
m; = E[ Ty — T,| X, =i]=E[T}| Xo =i]= 2, Tk(i,j,t)dt (3.22)

JEE 0

3.5 COST FUNCTION

Let the various costs associated with the inventory be: K, fixed ordering

cost per order; ¢, unit procurement cost of an item; h, unit holding cost per unit
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time; d, cost for a damaged unit; c¢3 , unit shortage cost. Let the different
expected rates at steady state be: R, rate of depletion of inventory due to decay

and disaster; R, ,rate of shortage; R; , rate of re-order. Then

S
Ri=(@+uq) 2 jv; Ry = Avg (3.23)
J=1
S j i
J| -
Ry=[A+(s+Do] v +4 2. v, ﬁ @pf kgk (3.24)

j=stl  k=j-s
Let M* be the expected re-ordering quantity at steady state, then
) N S
M*=——[4 2v; +(@+uq) 2.jv;] (3.25)
3 j=s+l j=s+1
Therefore, the steady state expected total cost,

S
C(s,8)=(K+cyM*)Ry + h 2, jv; +dRy +c3R,
j=1

S S S
=KRy+ci[A D vj+(@+pngq) 2 jv;1+[d@+pnq)+h] 2 jv; +c3hvg
J=s+1 J=s+1 J=1

(3.26)

3.6 SPECIAL CASE

Suppose the inventory level at Ty is S and at each replenishment epoch
it is brought back to S by a fresh order, if necessary, which is met instanta-

neously. Then {X(t), t 2 0}, is a regenerative process and 0 =Ty <T; < Tz<.....

are regenerative epochs.

Theorem 3.5

The transient probabilities are given by

S ¢
pS. 0= [RGSrdu) kS, jji-u) jeE (3.27)
r=M ¢



where p(S, j, t), k(S, J, t), and R(S, r, t) are as defined in section 3.3

Proof:

Conditioning on the first replenishment epoch T; we have,

t
p(S,j,t)=k(S,j,t)+Ip(S,j,t—u)dF(u) jek
0

S
where F@)= ZQ(S,r,t)
r=M

The solution of the above renewal equations is

s
P(S, ju0) = k(S, j,0) + | (S, j.1 —u) dMy(w);  j e E,

0
© S ©
where M= 2 F* ()= 2. 2.0*(S,r0)
n=] r=M n=l
Therefore we get
S 4
oS, i0=  [RSrdu) kS, jit-u): jeE
r=M ¢
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(3.28)

(3.29)

In the limiting case, since k(S, j, ¢) is non-negative, non-increasing and

tends to zero as ¢ tends to infinity, such that Ioook(S, Jj,t)dt <o, the application of

Key Renewal Theorem yields,

Theorem 3.6
. Tk(S,j,t)dt Tk(S,j,t)dt
lim . 0 0 o
t_>wP(S’.]’t)_n_]_ = ) JEE (330)

T[I—F(t)]dt > Tk(S, j,0)dt

0 JEE 0
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3.6.1 Cost Analysis

As in section 3.5 the expected quantity ordered at time of usual order 1s

S S
1 .
M*==[h 2, +(@+1g) 2] (3.31)
Jj=s+1 j=s+1
S ] ;
where Ry =[A+(s+Do]ng, + 1 z n; ﬁ (‘]i)pj—qu
j=s+1  k=j-s

The expected long run quantity to be ordered at the time of replenishment is

My*= sm [M-no + 22m))+ (@ +uq) 2. jm;] (3.31)
> Jj=0 Jj=0
Jj=0 !

where m is the mean of the lead time distribution. If ¢, 1s the unit procurement

cost of this order, and all other costs same as in Section 3.5, then the total cost

function in this case is

S
Ci(s,8) = [K +c1 M) *+cy My*IRy +[d(0+ pq) +h] 2, jmj +c3hng (3.32)
j=1

3.7 EXPONENTIAL LEAD TIMES

When the lead time distribution is exponential with parameter y, the
inventory level process {X(t), t > 0} is a continuous time Markov chain with
state space E. As in Section 3.6 assume that the inventory level is brought to S

at the time of replenishment by a new order, if necessary. The analysis is done

as in chapter 2.

Let Pi()=Pr{X()=j | X(0)=i} i,jeE

and P(1) =[P (D](S+1)x(S+1) ,jeE (3.32)
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If we assume that the initial probability vector is o then (3.32) uniquely
determine the Markov chain {X(t)}.

Theorem 3.7

The matrix P(t) is uniquely given by

A"

P(f) = exp(A1f) =1+ 2,

(3.33)
—  m!
m=1
where Ay =(@j;)(s+1yx(s+1) and
[~y ifi=j=0
~(h+ptio+y)+p'n if1<i=j<s
-(h+prio)+pln if s<i=j<S
AT
. J =) if 1=171
5= Atio+| plg u ifi=j+] (3.34)
AT
[})ﬂth—ju ifi>j+1
y 0<i<s, j=S§
0 otherwise

Proof:

For a fixed 1€E, we have the following difference differential equations.
Fj@)==(A+ p+jo+y)F () +[A+(j+Dwlf; j11(0)

Si(j+k) .
+ Z(j+ )quk‘upij-kk(t) O<j<s
k=0~ J

B j(0)==(A+ p+ jo) B j(O)+[A+( +DlF j41()

S(j+k) . 3.36
+Zl(j; jp’q"#i’i,-+k(t) s<j<8-1 (3:39)

(3.35)

k=0
N
Po(t) = =7 Pio(t)+ (A+ @) P (1) + 25 g% uPiy (1) (3.37)
k=0
Pis(O)=~(A+ u+So)Ps(O)+p° u Bs(O)+ 2y Py(t) (3.38)

k=0
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D:
Therefore, ;= Sl ; iek. (3.44)
Fs, I Tarp)
k=i
3.7.2 First Passage Times
Let To=0<T<T<...... be the epochs when the stock is replenished.

Then {Tn, m € N° } is a renewal process.
Theorem 3.8

If E(T) represents the expected time between two successive
replenishments,
E(T)zF(s,S):_; (3.45)
—assns.s
Proof:
By a similar argument as in Section 4 of Chapter 2 we can derive the

expression

E(D)= Ta exp(A (¢)ed! (3.46)
0

= —qAdAle

S
=2,
i=0

b (3.47)

-

(@ k)

&
u

From (3.42) and (3.43) the theorem follows.

Theorem 3.9

Let E(T*) represent the expected time between a replenishment and the

successive order. Then
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S D.
E(T*) = _Z e (3.48)
=t H(“Ek,k )

k=i
Proof:.

When the lead time is zero, the replenishment epochs and order epochs
coincide. Therefore, E(T*) is the expected time between two successive re-
orders in the zero lead time case. From (2.5) and (3.34) and from the definition
of D; we observe that a; and D; are equal in both cases for i € {s+I,

St2,....... ,S}. Hence from 2.32,

S
D:
E(T*) = Z S_I-
ol § (%%
k=i

Corollary 3.9.1

1 < D;

- >s— (3.49)

i § (9%
k=i

Proof:

Since the random variabl_es involved are independent of each other and
the mean of the lead time distribution is 17y,
E(T) = E(T*) + 1/y. (3.50)
Therefore from (3.48) and (3.47) the corollary follows.

3.7.3 Optimization of the Cost Function

Let I', and I'; be the expected rates of depletion of inventory due to

decay and disaster during the period between a replenishment and the
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successive order, and during the lead time period respectively, I'; be the

shortage rate. Then

S s
(@+nq) 2im (@+ng)2im;
T = A=l = —=0—;  T3=Ang (3.51)
Zﬂi Zﬂi
i=s+1 i=0
Theorem 3.10

If N* and N,* represent the expected quantities ordered at the time of

usual order and at the instant of replenishment respectively, then

S
Ni* = E(T) 2Zmi[A+i(o+pg)] (3.52)
i=s+1
No* = E(T){-mor+ im[w(wwqm (3.53)
i=0

Proof:

Since the expected quantity ordered is the product of expected time and

rate of depletion of inventory during the period,

Ni* =E(T*) [A +T']. (3.54)

S N
E(TH 2m; +(@+pq) 2]
- i=s+1 S i=s+1 (355)
Zﬂi

i=s+1

Therefore from (3.43) and (3.48)

S S
EM 2n +@+nq) 2in;]

Nl* _ i=s2‘l(T*) i=s+1 (356)

F(s,S)

and substitution of (3.45) gives (3.52).
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s

1
Na* = [M1- 0 yin. (3.57)
i=0 i

[M-mg + 2.m;) +(@+1gq)2.in;]
— i=0 i=0

= =0 ' (3.58)
Y Z“i
i=0
From (3.43) and (3.49) we get,
[M-mo+ 2m) +(@+nq) 2in;]
N, *= i=0 (3.59)

i=0
JF(s.5)

which is same as (3.53). Hence the theorem.

Let the various costs be as in section 3.6. Then the total cost function i1s

K+01N1 *+02N2 *

S
Cy(5,8) = +hYim; +d[T + T, ] +c3l;y

E(T) i=1
K S S
= +op Lmi[A+i(o+pg)]+ ey {-Ang + 2 mi[A+i(@ +pqg)]} (3.60)
E(T) i=s+1 i=0

S
+hZi7ti +d[F1 +r2]+C3)\.7t0

i=1

3.7.4 Numerical Illustrations

From (3.50) and (2.40) we get E(T) is maximum when s = 0. Naturally
¢1 £¢. When ¢; <c; numerical examples indicate that C(s, S) i1s minimum
when s = 0. However, when c; is large the optimum value of s need not be zero.
These are illustrated by Table 3.1. Table 3.2 gives optimum values of the pair
(s, S) for different values of u and y which explains the effect of disaster and

lead time on- the inventory system. Figures 3.1 and 3.2 show that s and S
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ecrease with the increase of p. Comparing these two figures we can conclude

1at higher the lead time greater the values of s and S when p is small.

Table 3.1

(Optimum values of (s, S) for different values of ¢, and c;)

A=10,p=1,p=70=1,y=3,K=300,h=10,d=5,c,=c, x 1.5

= | 10 20 30 40 50 60 70 80 90 100
GV
20 015 (012 |09 |08 |06 |05 |04 |04 |04 |04
40 017 {013 |010 |09 |07 |o6 |06 |05 |04 |04
60 0,18 | 0,14 | 0,11 {0,10 |0,8 0,7 0,6 0,6 0,5 0,5

) ) 3 3 I

80 0,20 {0,15 {0,12 [0,10 | 0,9 0,8 0,7 0,6 |0,6 0,5

b ) )

100 {021 [0,16 |0,13 |01 0,10 |09 |08 |07 |06 |06
120 1,23 |0,17 |0,14 |[0,12 |01 |09 |08 |08 |07 |06
140 |1,24 0,18 |0,15 |0,13 |0,11 {0,010 |09 |08 |07 {07
160 [225 |0,19 |0,16 | 0,14 |0,12 |0,11 |0,10 |09 |08 |07

180 |2,26 |1,21 0,17 |0,14 |0,13 |[011 |0,10 |09 |08 |08

b b b

200 [3,28 {122 0,18 |0,15 [0,13 {0,12 | 0,11 {0,10 |09 |08

3

220 3,28 {223 0,19 |0,16 |0,14 |0,13 |0,12 | 0,11 [ 0,10 |0,9

b

240  |429 223 | 1,19 |[o0,16 |0,14 |0,13 |0,12 [0,11 [0,10 [0,9
260 430 |224 |120 0,17 |0,15 |0,13 |0,12 | 0,11 | 0,10 |0,9
280 [431 [325 [221 |1,18 0,16 |0,14 |0,13 | 0,12 {011 |0,10

300 532 1325 1222 {1.19 1016 10.15 10.13 [0.12 {011 10.10
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Figure 3.1
(Optimum (s, S) values when y =0.5)
A=10, p=.7T0=1,K=300,h=10,d =35, ¢, = 10, ¢; =200, ¢, =15

o]
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Figure 3.2
(Optimum (s, S) Values when y = 20)
A=10, p=.70=1,K=300,h=10,d=35, ¢; = 10, ¢c3 = 200, c; =15
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(Optimum values of (s, S) for change of p and y)

Table 3.2
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A=10, p=.70=1,K=300,h=10,d =5, ¢; = 10, ¢; = 200, ¢, =15

— |0 1 2 3 4 5 6 7 8 9

vy

20 1,23 (1,22 0,20 [0,19 0,18 | 0,18 |0,17 |0,17 0,17 10,16
16 1,23 | 1,22 | 1,21 [0,19 |0,19 | 0,18 |0,18 | 0,17 0,17 | 0,16
12 1,23 1,22 [ 1,21 [1,20 | 0,19 |0,18 |0,18 | 0,17 0,17 10,17
8 225 | 1,23 (1,22 | 1,21 {120 [1,20 |0,18 0,18 10,17 |0,17
6 2,25 224 1,23 |1,22 | 1,21 |1,20 {1,20 {0,19 0,18 | 0,17
4 3,27 (2,26 1224 [223 |122 |1,21 |1,21 1,20 [ 1,19 {0,18
2 533 14,31 [3,29 |2,27 (2,26 224 |123 |1,22 1,21 0,20
1.5 5,36 14,33 [3,31 |3,29 [227 [226 1,24 1,23 1,22 | 0,21
1 |64l [538 (435 332 230 |128 |126 | 124 |023 | 022
b 7,51 14,45 1340 |236 133 131 [028 |026 |025 |0.23




Chapter IV

Single Commodity Inventory System Subject to

Disaster with General Interarrival Times

4.1. INTRODUCTION

In this chapter we discuss a single commodity continuous review (s,S)
inventory system in which commodities are damaged due to disaster only.
Shortages are not permitted and lead time is assumed to be zero so that
inventory is replenished instantaneously whenever the inventory level falls to or
below the re-ordering point s. The times between disasters follow independent
exponential distribution with parameter p. Each unit in the stock, independent
of others, survives a disaster with probability p, and perishes with probability
(1-p) = q. The failed items are disposed off immediately. The interarrival times
of demands constitute a family of ii.d. random variables with common
distribution function F(.). The quantity Aemanded at a demand epoch is r and
has an arbitrary distribution b(t) (r = 1, 2,....) depending only on the time t

elapsed from the previous demand point.

The main objective in this chapter is to derive the transient and steady
state probabilities of the inventory level. We have done this with the help of the
theory of semi-regenerative processes. A special case in which the disaster
affects only the exhibiting item and arriving customers demand unit item is

discussed in Section 4.4. In this case the steady state distribution of the
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inventory level is obtained as uniform. Optimization analysis is done and results

are illustrated with examples in Section 4.4.1.

Notations
E (s+1,5+2,........ ,S)
M :S-s
q t1-p
NO S0, 1,2, }
F(@) 1= F(f)
_ e o]
b, (1) Db (1), (k=12,....)
r=k '
, 1 if j=z20
o) Mo i
J<0

f()*g(t) : Convolution of the functions f(t) and g(t)

FAdC) . n-fold convolution of (f) ; where £ 0(f) =1
1 fi=)
0, .o
AV {O if 1#)

4.2. FORMULATION AND ANALYSIS

Let X(t) be the inventory level at time t. Then X(t) assumes values from
E = {s+1, st+2, ...... S}. Assume that the times at which the demand occurs are
0=To<T; <Tp <T3<...... Define X,=X(T,+),n e N°.

Let 06, < 06, <03 <..... be the times at which the inventory is
replenished. Define

(1) = Pr{X(p+t ) =3 | X(p+ ) =1, no demands in (p, p+t],

0, <p<ptt<B., }; forsomer(r=1,2,...).

Let 1" <1y <13 ... O <p <t <1 <13 ........ < ptt < 0,.1) be the successive

disaster epochs in (p, p+t]. Let 1,1y, i3,..... be the inventory levels just after the
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be the units destroyed at these epochs.

......

disaster at these epochs and j, ja, js,

Then

Y0

(@ M () o

> —’fl'u ) )24 ifi=j
. i

zn(fn)a I 1 .] (41)

n=0
=13 eH (uy
> > —— 0D U)o
n=l ji+jo ¥ tj=i—j :
0 otherwise
where .
1=k .
zk(jk):[k y k)d"" Teglks  g=iy iy =ipg- i
Jk
which reduces to
i@
e~ H1(-pY) if =]
© —ut n .
_4 Z Z € (u1) il pil-H'2+....+in qjl+j2+....+j,, if 1> (4.2)
- ... nl JUrtya . jn! ’
n=1 ji+jp 4.t jo=i—f 1°J2 n
0 otherwise

\

Define ®g(t) = the conditional probability that the inventory level

reaches for the first time at S by a replenishment in (t, t+8t) given that the

inventory level was initially at i and only disasters (at least one) in between

Then
2 e M u(un"! il
0s0=2 X TPy o e
Tj<i-s  (n=1)! G-+ Jjo+ 451t gn!

n=1 jitj2+...
Jitjateetj,2i=s
i+ iy +otip_—(1 o +.4)n) L Jitjattin
p q

(4.3)

Define g,(i,?) = alimoPr{t <@, <t+6t|X(0+)=i, Ty >t}/6t (4.4)
t— .
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Then g, (i,1) denotes the conditional probability that the n™ replenishment takes

place in (t, t+3t) given that the inventory level is initially ati and T) > t.

Since9n=91+92—91+ ........ +9,,—9,,_1 andel,ez—el, ...... 9,,—9,,_1
are independent random variables, we have
81(,1)=;Ps(?)
gn(i,)= 5 (1)*s @5 "D (1)

Theorem 4.1

The stochastic process { (Xa, Ta), n € N° } is a Markov renewal process
with state space E and semi-Markov kernel {Q (i ,j, t); 1,j € E, t 2 0 } where
G, j, ) =Pr{Xps; =), Tps1 - T, St X, = i} (4.6)

i—= L
SG-j-DS Jbw) ¥ diw)
r=1 9

e

S-j ¢
+ Z il Jbr (u)[gn(,u)* Sle+r W)dF@w) for j=S§
_d n=1 r= 0

2

r=

4.7)

-~

Er (u) Yoy () dF(u)

—

MSO'——;N

S

+ by (u) (G, u)* s¥,, (W]dF(u) for j=S

\ n

QO ™

1

~
Il
—

Proof:

The fact that {(X,, T.), ne N°} is a Markov Renewal Process with state
space E is clear from the assumptions. If we denote the number of

replenishments in (0, t) by N(t) and define
Q,0,j,0)=Pr{X,=j, N()=n, T;<t|X(O0+)=i}; n=0]12,..(4.8)

then the semi-Markov kernel is given by
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06, j,0) = ZOQ,, G, ),0) (4.9)

To derive the expression for Q, (3, j, 1), (n=0, 1, 2, ...... ), assume that
the next demand after the initial one occurs in (u, u+du) where u < t. There are

four cases.

() n=0andj#S
In this case there is no replenishment in (0, u]. Assume that the demand
that occurred at time u is forritems (r=1, 2,....... ,1-j ;1if1>]). In order that
the inventory level is j at time u, the inventory level must have reduced to j+r
(+r <1) due to disasters in (0, u) from the initial level 1. Therefore
i-j ot
Qo j,) =86~ ji- l)il { bp(u) ¥ () dF (1) (4.10)
r=
2 n#0,j#8S
Here the n™ replenishment occurs at some time v (< u) and the inventory
level is instantaneously brought to S. If the demand at u is for r items (r = 1, 2,
..., 3-j), 1n order to have the inventory level j, the stock must have reduced
from S to j+r due to disaster in (v, u). Hence
S—jt
Q. j,1) = Z{ { by () [8n (s 0) * ¥4, ()ldF (1) @4.11)
r=
(3)n=1, j3=S
Assume that there is no replenishment in (0, u) and a replenishment is
triggered by the demand at u. This will happen when the inventory level is s+r

and there is a demand for at least r units (r = 1, 2, ..., i-s) at time u. The

disasters in (0, u) must have destroyed (i—s—r) items of the stock. So we have
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06,5023 Ib W) Wysy () dF (1) (4.12)

r=1

4)n>1, j=8S

Suppose that the (n—1)" replacement is at some time v (< u) and another
replenishment is triggered by the demand at u. For this the inventory level is
brought down from S to s+r (r = 1, 2, ....., S—s) by the disasters in (v, u) and

there must have been a demand for at least r items of inventory at u. Then

—s L
Q,G,5,1) = Z [, ) (g 1Go) * ¥, (WIF () (4.13)
r=10

Substituting (4.10) - (4.13) in (4.9) we get (4.7). Hence the theorem.

4.3 TRANSIENT AND STEADY STATE SOLUTIONS

Let p(1,),t)=Pr {X(t)=j| X(0+)=1},1,j € E. Then we have

Theorem 4.2

The transient solution of the inventory levels is given by

p(, j, 1) = Z IR(i,r,du) k(r,j,t-u), i,je E (4.14)
r=s+l 0
S *N
where RG,j,t)= 220" G,j1);, i,jeE
n=0

F(OL ¥ (1) + 28,G,0*s¥s_; (DL, j#S

and kG, j,0)= | n=1 (4.15)
f(r)[ Fs(D+ 28,6 0*s¥s (DL, j=S

n=1



63

Proof:

The stochastic process {X(t), t 20} is a semi-regenerative process with
the embedded MRP {(X,, T,),n € N°}. Conditioning on the first demand epoch
T, we can find that p(j, j, t) satisfy the following Markov renewal equations,

S 4
Pl ji0) = kG j0+ 2 [QGrdu) pr,jst—u); i,je E (4.16)
r=s+1 ¢

where k(G,j,))=Pr{X(t)=j, Ty >t X(0+)=1i}; i,jeE.

To derive the expressions of k(i, j, t) in (4.15) note that, since T, > t, the
depletion of inventory is only due to disaster and there may be n(n=0,
1, 2,..... ) replenishments in (0, t).The solution of (4.16) is given by (4.14).

Hence the theorem.

Consider the underlying Markov chain { X,, ne N° } associated with the
MRP {(X,, T,), n € N°}. Its transition probability matrix Q = (q;;) ; i, j € E, is
given by

qjj = tli_r)r:oQ(i,j,f)

5(i - .] - l)i Tbr (u) i\Pj+r (u) dF(u)
r=1 0

o S-j

J + Z Z Tbr(u) (gnG,u)* S\pj+r(u)] dF(u) for j#S§ (4.17)
_ n=lr=l 0 )

I-S

2 TE, @) Ysir () dF (u)
r=1 0

S—s _
t Z Z Tbr (1) [gnG,u)* s¥sy, W)dF(w) for j=S§

L n=lr=1 o

If b,(t) # 0 for some interval in [0, o) it can easily be seen that the finite
Markov chain {X,,n € NO} 1S irreducibie and hence it 1s recurrent. Since the

chain is irreducible, it possesses a unique stationary distribution,
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M= (5413 Mg42seeenen mg) which satisfies [IQ=1II and Z7; =1 (4.18)

Let P = (ps+1, Ps+25 - - - - - » Ps) denote the steady state probability vector of the

inventory level where pj= lim p(,j,?).
t—o0

Theorem 4.3

If F(t) is absolutely continuous with finite expectation, m, then the steady

state probabilities of the inventory level are given by

3, ki
ieE 0 .
pj:“E - ., JekE. (4.19)

Proof:

Since F(t) is absolutely continuous with finite expectation, it follows
from (4.14) that

ZniTk(i,j, t)dt
ieE ¢ .
= ; cE 4.20
p; S J (4.20)

ieFE

where  m; = mean sojourn time in state i = TtdF (t)=m. Substitution yields
0

(4.19). Hence the theorem.

4.4 A PARTICULAR CASE

Suppose the disaster affects only an exhibiting item which is replaced
instantaneously by another one upon failure, and the arriving customers demand

only unit item, then the rate of disaster is puq and that of survival is pp whence
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otherwise.

1 if r=1
b, (1) :{O ) (4.21)

This results in

Theorem 4.4

If the disaster affects only an exhibiting item and each arrival demands
exactly one unit of the item, then the steady state probabilities of the inventory

level are uniformly distributed.

Proof:
Because of the special assumptions in this section,
(uqt)i=D K at

Y= (- ))!

0 otherwise

if i2] (4.22)

11 q(p gl =DM+i=s=11 o=pi gt

and g,(@,0)= (DM +i—s_1] for n=12,...... (4.23)

Therefore from (4.21)

o) — U qu k
oG jn= Y JETWP) piy fwij eE (4.24)
n=8 (-i) ¢ k!
k=(i-j+nM~-1)
-4 qu

and qij = QU, j,®) = Z T (,uq) dF(u) fori,j e E (4.25)

n=5 (j=i) o

k=(i- j+nM-1)

Since g;; 1s a function of (i-)),

- Hqu
Zt{,, Z T (” " 4w
i=s+

(4.26)
=TdF(u):1 forje E
0
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Therefore the transition probability matrix (g;) is doubly stochastic and
from the uniqueness it follows that the invariant measure n; = 1/M for j € E.

Also note that

S
> Tk(i, jodu)= T(l —F(u))du=m (4.27)

i=s+1 0 0

Therefore from (4.19) we get p;=1/M for j € E. Hence the theorem.

4.4.1 Illustrations

Now suppose that the interarrival times follow a gamma distribution

with parameters (v, A), then

© L —(uq+id)u k lvukﬂl—l
G, j,0= > Ie (9) du  fori,j eE (4.28)
n=8 (j-i) ¢ ki(v-1!
k=(i— j+nM~1)
and

© Te—(y q+l)u('u q)klvuk+v—l

=0, j,o) = Z du fori,je E
9= Q0.J iy 1 KI(v-1D) .
k=(i-j+nM-1
(=JamM=h ) (4.29)
= > fori,j e E.
n=8(j~i) k Hg+A) \puq+2
k=(i—-j+nM-1)
v-I1 a
. _ (A1)
Since F(H)=e AL L
E)(a— D!

®© v-1 b b 2 a
Tk(i,j,t)= > 1 Z(a; j( £d j [#th] for i,j € E. (4.30)
0

n=6 (j-i-1) H4+4, 5 Hq+a
b=(i- j+nM)

Therefore the steady state probabilities of the inventory level are given

by
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PR < 1[a+b]
pi== 2 m 2
7, n=8(j-i-1) ,uq+'10- b

b=(i- j+nM)

o
23 3 LSl J”( J
( |

n S(j-i-1) ,uq+/1
b=(i-j+nM)

i i 1(a+b}
=s+1n=8(j-i-1) "“I“L'1 b
b=(i—j+nM)

i) AV

( ]a+l( uq j—(a+l) =_1—
Hqg+i M

In this case, the expected replenishment cycle time is M/(uq+A/v).

él»

(4.31)

Therefore, if the fixed ordering cost is K , unit purchase cost of the item is c,

and the holding cost per unit time is h, the unit cost for a damaged item is d, the

cost function to be minimized is

(K+cM) h
Cs.9)= MI(uq+alv)’ ,§’1+d“q (4.32)

=[(K/M)+c] [,uq+/1/v]+hs+(h/2)(M+1)+d,uq

which is clearly minimum for s = 0. Therefore the cost function reduces to

C(0,S) =[(K/S)+c][y q+Alv]+(h/2)(S+1)+dugqg. (4.33)

Clearly C(0,S) is a convex function since,

2 _2K[,uq+(/1/v)]
A“C(0,8) = S(S+1(5+2) >0. (4.34)

If S* denotes the value of S minimizing C(0, S), then it is given by

§¥(s 1)< 2KLH q; A guisx s, (4.35)
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The following three tables give optimum values of S for different values
of K, h, p, v, A and q. Figure 4.1 Illustrates the effect of disaster on the cost
function.

Table 4.1

(Optimum value of S when K =100 and h=2.5)

Ay 2 6 1 1.4 1.8 22 2.6 3 34 38
N
1
4
7
1
13

5 8 9 11 12 14 15 16 17 18
11 12 13 14 16 17 17 { 18
9 10 12 13 14 15 16 17 18 19
10 11 13 14 15 16 17 18 19 20

~
\O

11 12 14 15 16 17 18 19 19 20

1.6 12 13 14 15 17 17 18 19 20 21

1.9 13 14 15 16 17 18 19 20 21 21

2.2 14 15 16 17 18 19 20 20 21 22

25 15 16 17 18 19 19 20 21 22 22

2.8 15 16 17 18 19 20 21 22 22 23
Table 4.2

(Optimum value of S when K =200 and h =2.5)

Ay 2 6 1 1.4 1.8 22 2.6 3 3.4 3.8
N |
B 7 11 13 16 17 19 21 22 24 25
4 10 13 15 17 19 20 22 23 25 26
¥ 12 14 17 18 20 22 23 24 26 27
1 14 16 18 20 21 23 24 25 27 28
13 16 17 19 21 22 24 25 26 27 29
1.6 17 19 20 22 23 © 25 26 27 28 29
1.9 18 20 22 23 24 26 27 28 29 30
2.2 20 21 23 24 25 27 28 29 30 31
2.5 21 22 24 25 26 27 29 30 31 32
2.8 22 23 25 26 27 28 29 30 32 33




Table 4.3

(Optimum value of S when K =300 and h = 2.5)

69

100

80

22

29

S VALUES

36

Alv 2 .6 1 1.4 1.8 2.2 2.6 3 34 3.8
.
B 9 13 16 19 21 24 25 27 29 31
4 12 16 18 21 23 25 27 29 30 32
v 15 18 20 22 25 26 28 30 31 33
1 17 20 22 24 26 28 29 31 33 34
13 19 21 24 25 27 29 31 32 34 35
1.6 21 23 25 27 29 30 32 33 35 36
1.9 22 25 26 28 30 31 33 34 36 37
2.2 24 26 28 29 31 33 34 35 37 38
25 25 27 29 31 32 34 35 36 38 39
2.8 27 29 30 32 33 35 36 37 39 40
Figure 4.1
(The effect of disaster on the cost function)
K=100,¢=20,h=25,d=5A=2 v=10,q=0.5.
260
200
160
,g
Q

50



Chapter V

Single Commodity Inventory System

with General Disaster Periods

S.1. INTRODUCTION

This chapter deals with a single commodity continuous review (s,S)
inventory system in which commodities are damaged due to disaster only.
Shortages are not permitted and lead time is assumed to be zero. The demands
constitute Poisson process with parameter A. The times between disasters
follow general distribution G(.) which is absolutely continuous with finite
mean m. Each unit in the stock, independent of others, either survives a disaster
with probability p, or damages completely with probability (1-p)=q. The

failed items are disposed off immediately.

The structure of this chapter is similar to chapter 4. As in the previous
chapter, the principal aim of the present chapter is to derive the transient and
steady state probabilities of the inventory level. A special case in which the
disaster affects only the exhibiting item is discussed in Section 5.4. For this
special case, the steady state distribution of the inventory levels is shown to be

uniform. Illustrations are provided in Section 5.4.1.



Notations
E s+ 1s+2,... S}
M S—s
q I-p
N (0, 1,2, oo, }
G 1-G()
. 1 if j=z0
() { :
0 if j<O
0™ (i, j,0): n-fold convolution of Q(, j,f) with itself.
1 if i=j
0, oo

5.2. ANALYSIS OF THE INVENTORY LEVEL

71

Let X(t) be the inventory level at time t (t > 0). Then X(t) takes values on

E = {s+1,5+2,.....S}. Assume that the disaster epochs are 0 = Ty < T| <T,<

Define X,=X(T,+),n e N°.

Theorem 5.1

The stochastic process { (Xn, Tn), n € N° } is a Markov renewal process

with state space E and the semi-Markov kemnel {Q (i ,j, ), 1, j € E, t 20 } where

Q(i,j,t)=Pl’{X,,+1:j, Tn+1_Tn—<-t l Xn:.
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5(1 —_]) < [J +r )p'] "I (M)I j_r —/111 dG(u)

o —j-n°
o S kM+i—j-r
W}, RO g .
+ dG(u) for j#S
Zl ,_O( J I(kM+z j-nt¢ .

kM +i-s

“l56-55°] -Mdc(u)+szI—((W)+ ¢ ot G2)
0
i al ar r (21‘)1 “ -Au
3 @p q I———(i_a)!e aG(u)

a
2
a=s+l r=a-
S
2

e a (a o (M)WH a s
R R (e O ey
L k=1 a=s+1 r=a-s r 0 (kM+ )|

Proof:

Since the demand process is Poisson, the interarrival times are
exponentially distributed. Hence X,., depends only on X, and T,., — T,
Therefore {(X,, T,), ne No} is a Markov Renewal Process with state space E.
Let the number of replenishments in (0, t) be N(t) and define

QG j,)=Pr{X = j, N(T)) =k, T, <t | X(0+)=i}; k=0,1,2,.... (5.3)
then semi-Markov kernel Q(j, j, ) is given by

0G, j,0)= 2, j.1) (5.4)
k=0

To derive the expression for Q, (7, j, 1) (k=0, 1, 2, ......) assume that the

next disaster after the initial one occurs in (u, u+du) where u <t. There are five

cascs.

(1) k=0andj=#S.
In this case there is no replenishment in (0, u]. Assume that the disaster
that happened at time u destroys r items (r = 0,1, 2,....... ,1-3;1f127).

order that the inventory level is j just after this disaster, the inventory level must
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have reduced to j+r (j+r £ 1) due to demands in (0, u) from the initial inventory

level 1. Therefore

i—j (i s i—j-r —Au
P J+r) o L t(Auw)' e
%(I’jat)—a(l_j)rgo( r ]qu E)[ (I—j—r)' dG(u) (55)

(2) k#0,j=S.

Here there are k replenishments in (0, u) due to depletion of inventory by
demand and the stock level is instantaneously brought to S each time. If the
disaster at u destroys r items (r=0, 1, 2,......, S — j), in order to have the

inventory level j just after the disaster at u, the arrivals in (0, u) must have

demanded (kM +1 - j - r) units in (0, u). Hence

o , (ﬂ,u)kM'H Jj- ’ e -Au
Qi) f) = rzg( ]pf £ ey prmenl CORMNCE

3)k=1, j=S.

There are two possibilities. (1) There is exactly one replenishment due to
demand in (0, u) and the S units in the inventory survives the disaster at u. (ii)
There is no replenishment in (0, u) and a replenishment is triggered by the
disaster at u. The former case will happen when the demands in (0, u) are
exactly for 1 - s units and the disaster at u affects none of the items in the stock.

The latter case happens when the inventory level is a just before the disaster

and at least (a-s) units (s+1 <a<1) are destroyed by the disaster at u. So

we have
t i-s —Au
. .S (/111) 4
6.8, =" =50
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@k>1,j=S.

In this case also there are two possibilities. (i) There are exactly k
replenishments due to demand in (0, u) and the S units in the inventory survive
the disaster at u. (ii) There are (k - 1) replenishments due to demand in (0, u)
and a replenishment is triggered by the disaster at u. In the former case exactly
[(k - )M +1i - s] units are demanded in (0, u) and the disaster at u affects none
of the items in the stock. The latter case happens when the inventory level is
broughtto a by [(k-1)M +1-a] demands in (0,u) and at least a-s units

(s+1 < a <8) are destroyed by the disaster at u. So we have

/h‘)(k—l)M'H.—S e-—lu
[(k- DM +i—s]!

t
Q0,80 = p5 I
0

S a L (k-DM<+i-a _-Au
N ©— G

a=s+1 r=a-s 0 [(k_l)M+i_a]!

dG(u)
(5.8)

(5)k=0, j=S.

This happens only when i = S, when there is no demand in (0, u) and the

disaster at time u affects none of the units in the stock. So we get

t
0 (S,8,0)=p° [e=*aGu) (5.9)
0

Substituting (5.5) — (5.9) in (5.4) we get (5.2). Hence the theorem.

5.3 TIME DEPENDENT AND LIMITING DISTRIBUTIONS

Let p(i, j, ) =Pr {X(t)=/j | X(0+) =i}, i, j € E. Then we have
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Theorem 5.2

The time dependent probabilities of the inventory levels are given by

s ¢
pG,j)= Y JRGrdu)k(r g t-u), i,jeE (5.10)
r=s+1 0
> *N
where RG,jD= 20" G, )1, i,jeE
n=0

o _ ee] (M)HM'H—J e—;u
and k@, j,0)=G(t —
@, J:1) ()n=5§_,~-n VI

(5.11)

Proof:

The stochastic process {X(t), t > 0} is a semi-regenerative process with
the embedded MRP {(X,, T,),n € NO}. Conditioning on the first disaster epoch
T, we see that p(i, j, f)’s satisfy the following Markov renewal equations,

s ¢
pl,j,0)=k(,j,)+ Z IQ(i,r,du) pr,jt-u), i,jeE (5.12)

r=s+1 0

where k(i, j,0) =Pr{X(t)=j, Ty >t|X(0+)=i}; i,jeE.

To derive the expressions of £(i, j, f) in (5.11) note that, since T, >t, the
depletion of inventory is only due to demand and there may be n replen-
ishments in (0, t). If 1 <j then there should be at least one replenishment and n
varies from 1 to o in (5.11), otherwise n varies from zero to . The solution of

(5.12) is given by (5.10). Hence the theorem.

Consider the underlying Markov chain { X,, ne N° } associated with the

MRP {(X,, T,),n € NO}. Its transition probability matrix Q = (q;;);1,j € E, is
given by
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= lim QQ, j,1)

t—0

i—J ; . AT e
6(i—j)Zf [’ j.r)pfq’ ﬁe”{“ dG w)

Z‘” S j kM +i= j-r
* dG(u for j#S
k=1 r:O( j (kM +I j r)| ( ) .l

=4 . s{ —iu - S (Au)RM 1S Ju (5.13)
o(-S)p Ie dG(u)+l§)p I—(W+i—s)!e dG(u)

i a u i-a
f Y Y [ajp""q’T((T_)—e““ 4G )

a=s+l1 —s\ a)!

© S a A kM +i—a
I I @p a-r ’T&—I) ~ 4G (u) for j=S

L k=1 a=s+1 r=a-s r

Since the transition from any state i to any state j (i, j € E) is possible
with positive probability the finite Markov chain {X,, n € N°} is irreducible
and hence it is recurrent. Since the cha_in is irreducible, it possesses a unique
stationary distribution,

M= (g1, Wga2snee ng) which satisfies [IQ =IT and Z7; =1 (5.14)

Let P = (ps+1, Ps+2,- - - - » Ps) denote the steady state probability vector of

the inventory level where p; = lim p(, j,f). Then we have
>

Theorem 5.3

If G(t) is absolutely continuous with finite expectation, m, then the

steady state probabilities of the inventory levels are given by

ZmTk(i,j,t)dt

ieE 0 ,
j = - ; JeE. (5.15)
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Proof:

Since G(t) is absolutely continuous with finite expectation, it follows
from (5.10) - (5.12) that

ZmTk(i,j,z)dt

p‘_ieE 0 . jeE
/ Z”imi ’
iek

(5.16)

where m; = mean sojourn time in state i =Tth(t) = m. Substitution yields (5.15).
0

Hence the theorem.

S.4 A SPECIAL CASE

In this sub-section we discuss a special case in which the disaster affects

only an exhibiting item.

Theorem 5.4

If the disaster affects only an exhibiting item and it is replaced
instantaneously by another one upon failure, then the steady state probabilities

of the inventory level are uniformly distributed.

Proof:
In this case the semi-Markov kernel {Q (i ,j, 1), i, j € E, t 20 } is given

by
L —lu(lu)(i—j+kM)

. < e
QG j.1) pkza(fjl_i_l)g Yy

dG(u)
(5.17)
dGu) fori,j €E

@ j.e—lu (llu) (I—j+kM—1)

+q 2 —=
k=6 )0 (i-Jj+kM-1)!
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and the transition probabilities,

-Au (ﬂ.u)(l—j+kM)

qUZQ(I,j,w)=p Z Te

— dG(u)
k=s G-i-po (= +kM)! (5.18)
® -Au (i—j+kM=1) ’
e " (Au) ..
+qg D — dG(u) fori,j €E
qk:é‘(j—i)z (- j+ kM- 1) J
Since g;; 1s a function of (i - ),
S ) -Au n ) -Au n
e Au) e Au)
2ai=p2 T——('—dG(u) +92. T—(|dG(u)
i=s+1 n=0 ¢ m n=0 0 "
(5.19)
=(p+ q)TdG(u) =1 forje E
0

Therefore the transition probability matrix Q is doubly stochastic and
from the uniqueness of solution it follows that the invariant measure n; = 1/M

for j € E. Also note that

S o 1) -Au
> Tut =] EP20 - Gu= [ Gae=m (5.20

i=s+l 0 on=0 : 0

Therefore from (5.15) we get p;=1/M forj € E. Hence the theorem.

5.4.1 Illustrations

As in chapter 4 we shall illustrate the above results by taking the general
distribution of disaster periods as gamma distribution with parameters (v, ).

Then for i, j € E,
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—(AHp)u G- J+kM) v, li=j+iM+v-1)

0isn-p 3 J° du
k=6 (j-i-1) 0 (- j+kM)!(v—1)!
i Ie‘('“ﬂ)“ ;L(’ J+k-M) u(i—j+kM+V—2) (5.21)
+ du .
Therefore
il n+v-1 M Y /‘L h
i =QG, J P %_H) 2w \av72) a1z
=(i—7 kM
PED y . 5.22)
<~ n+v-1 i
g X ( j[ a ] ( j fori,j € E
k=6 (j—i) n H+A) \u+2
n=(i—j+kM-1)
and
S V o n
= 2
e +
i=§(llu » q)('”“L’l ngo n u+a
(5.23)
) (52
= 1_ — 1 f .
P PEY) or] e E
a
Since G(f)=e #! (#) 5.24
(0= azo(a—l)i ( )

<o) yv—1 a b
Tk(i,j,t)dt: > : Z(‘”bj( £ j ( A j;for i,je E (5.25)
0

n=8 Goi-l) H+As 0\ b JNu+d) \p+d
b=(i~j+nM)
Therefore
= U Tola+b A b
> Frejon =% ()5
i=s+1 BrAg\p+A) o b Juti
1 =l a+l 1 Y(@+D
= a ] 1- (5.26)
ﬂa=0 'u+‘/1 ﬂ+’1
== for jeE
7
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In this case, the expected replenishment cycle time is M/(A + pg/v).
Therefore, if the fixed ordering cost is K , unit purchase cost of the item is c,
the holding cost per unit time is h, and the unit damage cost is d, then the cost

function to be minimized is

K+ h &
C(S’S)—M/(l+pq/v)+M.Zl+dﬂq/V

i=s+1

=[(K/M)+cl[A+ g/ v]+hs+ I 2)(M+1)+dug/ v

(5.27)

which is minimum for s = 0. Therefore the optimum cost function reduces to

C(0,S)=[(K/S)+cl[A+ ug/ v]+(h/2)(S+ 1) +duq /v (5.28)
. 2 _2K[A+ pq/ v]
Since A°C(0,8)= SS+ (S +2) >0, (5.29)

the cost function in (5.28) is convex. If S* denotes the optimum value of S,
then it is given by

2K[A+ ugl v]

*(Qx_
S*¥(S*-DH< P

<S*(S*+1) (5.30)

The following three tables show that there is increase in the optimum
values of S with the increase of the values of A, pu and q. In all the tables K =

200, h= 2.5 and v = 3. Figure 5.1 depicts the effect of disaster on the cost
function.

Table 5.1
(Optimum values of S for A = 1)



(Optimum values of S for A = 6)

Table 5.2
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L 0 5 10 15 20 25 30 35 40 45 50
qv
B 31 31 32 32 33 33 33 34 34 35 35
2 31 32 33 33 34 35 36 37 37 38 39
3 31 32 33 35 36 37 38 39 40 4] 42
4 31 33 34 36 37 39 40 41 43 44 45
5 31 33 35 37 39 40 42 44 45 46 48
6 31 33 36 38 40 42 44 46 47 49 51
T 31 34 37 39 41 44 46 48 50 51 53
Table 5.3
(Optimum values of S for A = 11)
- 0 5 10 15 20 25 30 35 40 45 50
N
1 42 | 42 | 43 | 43 | 43 | 44 | 44 | 44 | 44 | 45 | 45
2 42 43 43 44 44 45 46 46 47 47 48
3 42 43 44 45 46 46 47 48 49 50 51
4 42 43 44 46 47 48 49 50 51 52 53
5 42 44 45 46 48 49 51 52 53 54 56
.6 42 44 46 47 49 51 | 52 54 55 57 58
7 42 44 46 48 50 52 54 55 57 59 60
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Chapter VI

Multi-Commodity Inventory Problem

Perishable due to Decay and Disaster”

6.1 INTRODUCTION

In this chapter an attempt is made to study a continuous review multi-
commodity perishable inventory system. The n commodities, C,, C,, ...... C,, are
diminished from the inventory due to demands, decay and disaster. The
maximum inventory level and the re-ordering point of commodity C are Sy and
s respectively, (k = 1, 2,......n). Shortages are not allowed and the lead time is
assumed to be zero. Fresh orders are placed whenever the inventory level of at
least one of the commodities falls to or below the re-ordering point for the first
time after the previous replenishment. Demands for commodity Cy are assumed
to follow Poisson process with rate A,. The life times of commodity Cy follow
exponential distribution with parameter ®,. The distribution of the times
between the disasters is exponential with mean 1/u. Each unit of commodity Cy
survives a disaster with probability py and is destroyed completely with
probability 1-p, independently of others. The damaged items are removed from

the inventory instantaneously.

" The results of this chapter have been presented in the International Conference
on Stochastic Processes held at Cochin (1996).
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This chapter generalizes the results of chapter II to multi-commodity
case. The objectives of this chapter are to find transient and stationary
probabilities of the inventory states and the optimum value of the 2n-tuple,
(s1,82,---8n  S1,5,,....S,) at steady state. The scheme of presentation of the
chapter is as follows: In section 6.2 the notations used are explained while in
section 6.3 the transient solution is arrived at. The stationary probabilities and
the expected length of the replenishment periods are derived in section 6.4.
Section 6.5 discusses optimization where as section 6.6 illustrates the model

with numerical examples.
6.2 NOTATIONS

Sk :Maximum inventory level of commodity Ci(k = 1, 2,......, n)
Sk :Re-ordering level of commodity C, (k =1, 2,......, n)

My S-Sk

M MixMyx...xM,

N

R, :The set of non-negative real numbers

N°  :The set of non-negative integers

Ey skt sct2,..... Sk}

Eio sy, sit+],....... 51}

E E\xEox oo, xE,

Eo E{oxEax.voiiii. xE,

* iy (e = DMy + (g — DM M+ 4G = DMy M;... M,
s* DSyt l4s, M, +s, oM, (M,+.. +s;M,.. M,

Si¥ s, tlEs, M, +s, oM, M+ (s - )M,y . M,

S* . Sn +(Sn-l - 1)Mn +(Sn-2 - 1)Mn—1Mn+""+(Sl - 1)M2Mn
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E* (s*, s*+1,. ... , S*)
a :(0,0,......... 1); M components
e (L1, I)T; M components
A a0 )mxm  Wwhere a;;  ;'s  are given by (6.4)
Je=Se=100\
Jk - .
Afk : i;) [I‘ jp/j{k rql’; k= Sk+1, Sk+2, ...... Sk; k= 1, 2, ...... I
r=

D;«  :The determinant of the submatrix obtained from A by deleting
the first i*-s*+1 rows, the last and first i*-s* columns;
1* € E*-{S*}

Dg« :1

8(1,J) :1ifi=j; 0 otherwise

6.3. ANALYSIS OF THE INVENTORY STATES

Let Xy(t) denote the inventory level of commodity C; (k = 1,2,.....n) at
any time t > 0. If X(1) = {X)(t), X5(¥),....Xu(1)} , then {X(1), teR.} 1s a
continuous time Markov chain with state space £. We assume that the initial

probability vector of this chain is a.

Let the transition probability matrix of the Markov chain {X{?)} be

where

6.1)

Theorem 6.1

The transition probability matrix P(t) is uniquely determined by
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P(/)=exp(B)=T+ Q. — (6.2)
m=1 ;
where the matrix B=A + G, in which A and G are defined as follows:
A= [ailiZ '''' bn N\ja-ee j"]MXM and G = [gilig ..... by W2 j"]MXM (63)

with

Qitiy.dyy  Jijgedn

< N iy i iy L
u+ Z(/{ k+’kwk)J+,UP1 Dy e Pk if ipy=jr k=12,...n
k=1

. e\ Ge =i X 0 e .
(ik+1kwk)+#L.kjpljckq;f Tk HP?’ ifiy=jr+Lip=j(I=12,..m1#k)

_ Ik (6.4)
i) g i . <,
#{HL ij 9k } if 2 lk—jk)>1
k=1Vk k=1
(k)20
L0 otherwise

iy 12

n

26(s, + L i)[A g+ (s + Dog 1+ p (1= 4 4y 4 ) 0 jp =5

k=1

forevery k (6.5)

0 otherwise

Proof:

For a fixed 1y = (13,13,......,1,) the difference.differential equations satisfied

by the transition probabilities are:
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Pi;) J1Jg e (t)—_[/l'*'kz:l(’lk + Jjk@k )1, io  Jifz j,,(t)

+k21(ak g A= 8Sk B, 0 i (O 66

—18=/2 S —Jn| N +/
k k| Jje !
+ #{ 2 E """ H } g k lo _]1+11 j2+12 ..... _]n+1 ( )

11=0 12=0 =

k=1
n

+ Z (lk+sk+1wk)x

k=1
r=i if i<k
r=i+l if i2k
S S S 1
DD YD Y AR (6.7)
j,l=s,1+1 Iy =5py +1 Jr, =175, 1+1 (U, =5c+D)

S, S S,
+#{P1]P22 ..... Pn B ss,..5,(1)

S, S S
+ i i ----- 2 By, gy (=45 45 A )}

h=si+lp=8+1  j, _1=51+]

From equations (6.3) - (6.7) we can easily see that the Kolmogorov
equations,
P' (t)= P(t)B and P' (t) = BP(t) (6.8)
with the initial condition,
P(0)=1 (6.9)
are satisfied by P(t). The solution of (6.8) with (6.9) 1s (6.2). The finiteness of
B guarantees the convergence of the series in (6.2) and the solution obtained is

unique. Hence the thereom.
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6.4. STEADY STATE PROBABILITIES AND REPLISHMENT
PERIODS

Since the transition from any state (iy, 1z,....., 1) to any state (Ji, J2,-..--» Jn)
in E is possible with positive probability the Markov chain {X(t), t > 0} is
irreducible. Therefore

llm Plllz .I _]1_]2 _]n(t) 7r_]1_]2 ..... _]n (.]].’.]2’ """ ,jn)EE (610)
exist. 7 ; ;. ;s are obtained by solving

I[IB=0 and Ile=1 (6.11)
simultaneously. To solve (8) we define a function ffrom E to E” as

Frsigersig ) =i* =i +(iyq = DMy, + (ipy = DMy My +.......

6.12
+(i1—1)M2M3 ..... Mn; (il,iz ..... in)EE; i*EE*( )

Since f'is one-one and onto , henceforth (iy,i,

Theorem 6.2

The steady state probabilities of the inventory states are given by,

D,“ * *
i, = . ieE (6.13)
YT (ape e
k=it
* * S '
where F(s', 8= Z (6.14)

Proof:
Let D;« be the determinant of the submatrix obtained from A by deleting
the first i* — s* + 1 rows , the last and first i* — s* columns, i* € E* — {§*}, and

Ds. = 1. With these notations we can see that the solution of (6.11) is
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iy =7 == iTeET (8"} (6.15)

and ”SISZ S, = T = (616)
Substituting (6.16) in (6.15) we get (6.13). Hence the theorem.

LetTy, =0<T;,<T,<.... be the epochs when the orders are placed.
This occurs whenever the inventory level of one of the commodities Cy falls to
sk or below it for the first time after the previous replenishment (k = 1,2,........ n).

Since lead time is assumed to be zero, the stock level is immediately brought to

(S1, Szyeennen. , Su). Thus clearly {T,,, meN"} isa renewal process.

Theorem 6.3

If E(T) represents the expected time between two successive re-orders,
then
1
E(T) = F(s* §*) = ———— (6.17)
—a5*3* 7Z'S*
Proof:
By a similar argument as in section 4 of chapter 2 the probability

distribution of the replenishment cycles can be proved as phase type on [0, «)

and is given by

G(t) = 1-a exp (At)e for t>0 (6.18)
Therefore
E(T) =Ta exp(Al)e d! (6.19)
0

=—aAle (6.20)



S D
= 6.21
i=s S ( )
H (<@ o
= F(s*, S*).

From (6.16), the theorem follows.

6.5 OPTIMIZATION PROBLEM

Let My* represent the random variable of the re-ordering quantity of

commodity Cy, then

E(M*)
[ S S s i . 1
" . N AN
—E(7)l‘/1 K+ 2 i ----- 2 iy | kO + 4 i JkL. JP"‘ J f]”‘}l
i1=sl+l j2=82+1 in=Sn+l jk=0 k J

=E(T)[}» i+ (o +qu 1) Hy (S*,S*)]

S S S,
* * .
where Hpy(s ,§8 )= i i e 2o Tiin.i,

i1=S|+li2=S2+l in=Sn+l

(6.22)

Let hy be the unit holding cost per unit time, ¢, the unit procurement cost
and d; the unit damage cost of commodity Cy (k =1, 2,....., n). Assume that the
fixed ordering cost for placing an order is K irrespective of the number of

different items ordered for replenishment. Therefore the cost function is

n
K+ 2 e E(M*)

C(51,82,5-..-»8, $1,8,..,8,)= kzlE(T)

+ 2l +di (g + pay )|Hp (5%,8%) (6.23)
k=1

K n
“Fon 5y " ol +llew di o nae) ¢ i sn.50)
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Since shortages are not allowed and lead time is assumed to be zero it is

reasonable to expect that s, =0, (k =1, 2,...., n) for the optimum cost function.

Theorem 6.4
The cost function C(sy,s5,...5, S1,S2,...S,) 1s minimum for s;=s,=....=s,= 0

Proof:

Suppose sy > 0. Let sl* =1+s, +8, M, +s, oM, _|M,+. +(5y-1)M,.. M,

Consider the matrix A=y, i jij,.)s Glizsdn), (laJasedn) € Eg

-
n . . .
. iy i . . .
{,uwh Z(A k“kwk)}L ,upllp?_2 ........ pk" if ip=jr k=12,..n
k=1

i N
(A ptipop)+ ,uLk ]/J,j("q;f J 1—[/’7 ifip=jr+Lip=j(I=12,...n1#k)
k /=1

_ 1ok (6.24)
B (KRN ; S
w17 i af if 2k =) >
k=1NMk k=1
Uk =/ )20
0 otherwise

Let 51.. be the determinant of the submatrix obtained from A by deleting the

¥ . ¥ . =
firsti —s," +1rows, thelastand firsti —s," columns (i * # S*), Dgx = 1.

Then D+ = Dj« fori* € E* and D« is positive for every i*.

From (6.15) we get
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F(sy=1,59,....8, 81,890 Sy)=F(s1,87)
S* B
l*

= Z‘ S*
i*=s H(—ak*’k*)

k*=j*

e Dy s Dy

|
g

k*=j* k*=j¥
> F(s*,8%) (6.25)
Also
S S S . A
2 (i) — 51 +851)Djx
Hi(s;-1,59,...5, §1,8,....8,)= i i ........ Z < '

h=si =t = et 60 T (<apn o)

k*=i*

S YD S S UL 2

S*
=5+l =5+l Q=8+ rest,sH T (_ak*k*)

fx=j*
S* .
— s )D:x
<spt Y @ ;{) ’ by (6.25)
j*=g* F(S*,S*) H (—ak*,k*)
k*=j*
=H1(Sl,32,...sn Sl’SZ""Sn) (626)

Thus, from (6.24) — (6.26) we have
C(Sl—l,Sz,....,Sn Sl,Sz,....,S")<C(S1,S2,...,S" Sl,Sz, ..... ’Sn)
Therefore,

C(O,Sz,....,Sn Sl,Sz,‘...,Sn) < C(Si,Sz,...,S,, Sl,Sz, ..... ,Sn).
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If sy > 0 for k > 1, then interchanging the position of s; and s; we can

similarly prove that the cost function is minimum for s, = 0 for each k. Hence

the theorem.
Let F(0, S*) = ®(S*) and Hy(0, S*) = y (S*)
Then (6.24) will become
C(0,0,...,O Sl,Sz,....,S,, [Ckﬂk + (Ck +dk)(a)k + /qu)+hk \PL (S*)]

¢(S*) =
(6.27)

6.6 NUMERICAL ILLUSTRATIONS

In this section we provide some numerical examples. Table 6.1 gives the
optimum (S, S, S3) values of a three commodity problem when p = 5. Figure
6.1 depicts that optimum values of S; and S, decrease with the increase of value
of . The last three tables compare the optimum (S,, S;) values of a two com-
modity inventory problem when the disaster rates are p = 10, 5, 1 respectively.

Table 6.1
(Optimum values of (S,, Sy, S3)

=5 pi=1, p2=2, ps=.3, K=100, c;=25, c,=10, ¢ = 30,
hy=5,h,=2,h;=6,d,=5/3,d,=2/3,d,=2.

AL22,03)— | (1,1,1) (1,1,4) (1,2,4) G,L,D 3,1,4) (3,2,4)
(01,000,033
(0,0,0) (1,2,D) (1,2,2) (1,2,2) 2,2,1) (2,2,2) (2,2,2)
(0,3,5) (1,3,2) (1,3,3) (1,2,4) (2,3,2) (2,3,3) (2,3,3)
(2,0,5) (2,2,2) (2,2,3) (2,2,3) (2,2,2) (2,2,3) (2,2,2)
2,3,0) (2,3,1) (2,3,2) (2,3,2) (2,3, (2,3,2) (2,3,2)
(2,3,5) (2,3,2) (2,3,3) (2,3,3) (2,3,2) (2,3,2) (2,3,2)
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Figure 6.1
(Optimum values of (S, S)

p1 =3, p2=1,K=100, ¢; =20, ¢; =10, h; =4, h, = 2,
d1=4/3, d2=2/3, }\,1=2, }\,2= 1, (01'_—0, 0)2=0.

14
12
—0—31
10 + —0O—52
8 +
6 <
4 4
2 4
0 } } } } } 2|
0 0.5 1 1.5 2 2.5 3
TR
Table 6.2

(Optimum values of (S, S; when = 10)

p1=.3, P2 =.1, K=100, 01=20, C2=10, h1 = 4, hz = 2, dy = 4/3, d, = 2/3

(A= | (LD 1 (1,2) | (1,3) | (21 [(22) [(23) |G |(B2) | (3.3)
(0)1,0)2)\1/
(0,0) (1,2) [ (1,2) [(1,2) |(2,2) {(2,2) |(2,2) | (2,2) | (2,2) | (2,2)
o,1) (1,2) [ (1,2) {(1,2) | (2,2) | (2,2) |(2,3) | (2,2) | (2,2) | (2,3)
(1,0) (2,2) [(2,2) 1(2,2) [(2,2) [(2,2) [(2,2) [(2,2) {(2,2) | (2,2)
(L) (22) 1(22) 1(23) [(22) |(22) [(23) [(22) [(22) |(2.2)




Table 6.3
(Optimum values of (S, S; when 1 =5)

pi=.3, p.=.1, K=100, ¢,=20, ¢;=10, h; =4, h,=2,d,=4/3,d, = 2/3
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ALd)— | (LD [ (1L2) | (1,3) | (2,1) | (22) | (23) |3, | (B)2) | (B3)3)
(@10
(0,0) (2,2) 1(2,3) 1(2,3) | (2,2) 1(2,2) {(2,3) [(2,2) {(2,2) | (2,3)
(0,1) (2,3) 1(2,3) [(2,3) |(2,2) 1(2,3) {(2,3) |(2,2) |(2,3) |(2,3)
(1,0) (2,2) 1(2,2) {(2,3) | (2,2) 1(2,2) 1(2,3) |(3,2) [ (3,2) | (3,3)
(1,1 2,2) 1(2,3) 1(2,3) 1(2,2) [(2,3) 1(2,3) [(3,2) | (3,3) [(3,3)

Table 6.4
(Optimum values of (S, S; when p = 1)
pi=3, p2 =1, K=100, ¢;=20, =10, h; =4, h, =2, d,=4/3,d,=2/3

ALh)— | (L) | (1,2) | (1,3) | (21 | (2,2) [(23) |B.)D) | (B2) [ (3.3)
(01,0 ¥
(0,0) (3,3) 1 (3,5 {(3,6) | (43) { (45 [(406) |(53) |54 |45
(0,1) (3,4) {(3,5) | (2,6) | (4,4) [ (3,5 [(3,6) | (4,4) | (4,5 |(4,6)
(1,0) (3,3) 1 (3,4) [ (3,5 | (4,3) [ (44) (4,5 [(53) 1(54) 149
(1,1) (3,4) 1 (3,5 [ (3,6) | (44) 1 (4,5 [(4,6) {(4,4) | (4,4) | (4,5




Chapter VII

Multi-Commodity Perishable Inventory
Problem with Shortages

7.1 INTRODUCTION

A continuous review (s, S) multi-commodity inventory system perishable
due to decay and disaster allowing shortages is studied in this chapter. The n
commodities are denoted by Cy, C,, ...... , C,. The maximum inventory level and
the re-ordering point of commodity C, are Sy and s, respectively, (k = 1,2,...n).
Lead time is assumed to be zero and the sales are considered as lost during
stock out period. Fresh orders are placed whenever the inventory levels of all
the commodities fall to or below their re-ordering points after the previous
replenishment. Demands for commodity C, are assumed to follow Poisson
process with rate A, and the life times of commodity Cy follow exponential
distribution with parameter wy. The distribution of the times between the
disasters is exponential with mean 1/p. Each unit of commodity Cy, independent
of others, survives a disaster with probability p, or is destroyed completely with
probability 1-py. The damaged items are disposed off from the inventory

immediately.

The objectives of this chapter are to find transient and stationary

probabilities of the inventory states and the optimal value of the 2n-tuple,
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(51,82,--»8n  S1,52,....,S,) at steady state. The scheme of presentation is simnilar
to chapter VI. The time dependent solution is arrived at in section 7.3. Section
7.4 deals with the stationary probabilities and the replenishment periods where
as section 7.5 discusses optimization problem. Some numerical examples are
provided in the last section. The present chapter also generalizes the results of

chapter II to multi-commodity case.

7.2 NOTATIONS

Sk :Maximum inventory level of commodity Cy (k =1, 2,......, n)
Sk :Re-ordering level of commodity Cy (k= 1, 2,......, n)

My :Si-sk

M MixMyx... . xM,
Qe 1-px

N :{0,1,2,......... }

R. :The set of non-negative real numbers

E (ErxEpX.vviiiiinnnn, XE) = (Ey sxEygXuunnnnnni.n. xEqs)

Ay {0, 00) € E| i =0}

s* 1 (T T sn)); f1s defined in (7.12)

S* (S$1+D)x(Sp+Dx......... X(Spt1) — (si+D)x(sp+1)x......... x(spt1)
E* {1,2, i, , S*}

a 0, 0,......... 1); S* coriponents

e (1, 1,......... ,I)T; S* components

A @y, ) sHs ajj,...q,'s  are given by (7.4)

8(1,j) :1ifi=j; O otherwise
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I Jk i
Jk | jp-r . .
. 2 (rjpkk % i Jk >k
Je o =ik

1 if Jk Ssk

A

Dy« :The determinant of the submatrix obtained from A by deleting
the first i* rows , the last and first i* — 1 columns, i*eE* — {S*}

Ds- 'l

7.3. TRANSIENT PROBABILITIES

Let X; (1) denote the inventory level of commodity Cy (k=1,2,......,n) at
any time t 0. If X(1) = {X;(1), Xo(1),.....X,(1)}, then {X(1), teR.} is a
continuous time Markov chain with state space £. We assume that the initial
probability vector of this chain is a.

Let the transition probability matrix of the Markov chain {X{?)} be

>

where (7.1)
Higody  Jijgedy D= PHX (D) = j1,, Xy () = jp [ X1(0) =1y, X (0) =i}
(11*12 """ in)’(jl’jz’ """ .jn)EE
Theorem 7.1
The transition probability matrix P(t) is uniquely determined by
e o} Bm tm
P(f)=exp(B)=1+ 2 ' (7.2)
m=1 m:
where the matrix B= A + G, in which A and G are defined as follows:
[
A=la. . .. . —lg.. . ..
Qsin oy j1fg el Sy SH and G I.glllz ok Jifgedn ]S*xS* (7.3)

(11,12 """" l,))’ (.]]’/2 """"" /n)e 1’“
with
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I— . N
‘L/H 2[1—5(0,11()](11( +1kwk)J+#P1 py...px Wig=jrk=12,...n
k=1

. ik =i T2 j . R . .
(G +1kwk)+uLkai"qZ‘ j"g[pﬁl if ig = jx +Lip=ji(=12,..m 1 2k)

_ Iok (7.4)
A Ik jk ik_jk . L . .
mI T il if 2k —jg)>1
k:l k k=1
(e=J)20
L0 otherwise

and  giio . iy,
([ﬂ* +(sp + Doy 1+ p (A Aiy . A ) if g =5 +l,andi; <s; for j#k,

n
=Vu (44, 4 ) i kz_:l(ik—jk)>l;(il,j2, ..... ) =(51,.S9,.....8y)

(ix=Jx)20
0 if (j],jz, ..... ,jn)¢(81,82 ...... ’Sn)

Proof:

For a fixed iy = (i, 1,......,1,) the difference-differential equations sat-

isfied by the transition probabilities are the following:

AT OE +l§{1—6(o,jk>}<ﬂk+jkwk>]1’,~0 o @
+ 2L + Uk + Do =8 Sk, WPy .Gty O
k=1 (7.6)

ChS Sl 1
{ ; :j Z_ L (Jk +lkj qu;(k JPIO AFl o+l e jatl, ()JL

(1:J2sdn) € E={(S1,82,....Sp)}
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k=1

+ ,;,“* +(sg + Dy ]

r=i if i<k

r=i+l if izk

s s Sy
X.i i ~~~~~~~~ i By jjyed, O (7.7)
In=Y In= Jrp-1=0 (J,=s+D

+ . ZPIO JiS2 e j"(t)(Ale/.Z"’Ajn)
(J1sJ2seefn)EE

From equations (7.3) - (7.7) we can easily see that the Kolmogorov
equations,
P' (t)= P(t)B and P' (t) = BP(t) (7.8)
with the condition,
P(0)=1 (7.9)
are satisfied by P(t). The solution of (7.8) with (7.9) is (7.2). The finiteness of

B guarantees the convergence of the series in (6.2) and the solution obtained

is unique. Hence the theorem.

7.4. STEADY STATE PROBABILITIES AND REPLENISHMENT
CYCLES

Since the transition from any state (i, i, .....,iy) to any state (ji, /2, ....../x)

in E is possible with positive probability the Markov chain {X(t), t > 0} is

irreducible. Therefore

M Poiyin jijzda = P iy Ulsdarndn) €L (7.10)

li
t—>
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exist and are independent of the initial state. z; ;, _; ’s are obtained by solving

[B=0 and Ile=1 (7.11)

simultaneously.

Define a relation < in E as follows:

For (il, iz, ..... ,in), (/1,]2, ..... Jn) € E, (il, iz, ..... ,in) < (].l,jz, ..... Jn) if
(1) i<

or (2) iy=Jj1; i <Jjz

or (3) iy=Jj1; ip=jy; i3<]J3

O o

or (n) il:-jl; iz Ijz; ........... ;in——l:jn—l; in Sjn
Then clearly < is a partial order relation in E. Arrange the elements of E in
ascending order. In this arrangement (0, O, ....... , spt1) will be the first element
and (S, S,,....., S;) will be the S*th element. Now define a function f from [ to
E*. as
iy, da, ..0d)) = i* Af (i, ia,...,0,) 1s the i*th element in the arrangement, /i*e /-*.

(7.12)

Since f'is a bijection, henceforth (i, is,...,i,) will be represented by 1"

Let D;» be the determinant of the submatrix obtained from A by deleting
the first 1* rows , the last and ﬁ'rst i* — 1 columns, i*xeE* — {S§*}, and Dg« = 1.

With these notations we have

Theorem 7.2

The steady state probabilities of the inventory states are given by
D
Ty iy = ’ . iTekE” (7.13)

S‘

Lk

Fs" ST (a0
k=it '
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s D
where F(s',8") = Z—S.'— (7.14)

i=1 1—[
* t(—ak‘)k‘)
k =i

Proof:

As in the previous chapter, we can see that the solution of (7.11) is

Di‘”S‘ * * *
gy =T = i* e E* (S} (7.15)

! S -1
[T a0
k =i

1

and r == 7.16)
,5,..8, = T g o F 5 (
Substituting (7.16) in (7.15) we get (7.13). Hence the theorem.
LetTy =0<T,<T;<.... be the epochs when the orders are placed.

This occurs whenever the inventory levels of all the commodities Cy fall to their
reordering levels or below those for the first time after the previous replen-
ishment (k = 1,2,....., n). Since lead time is assumed to be zero, the stock level is
immediately brought to (S,,S,,.....,S,). Thus clearly {T,, meNO} 1s a renewal

process.

Arguing in the similar lines of Theorem 6.3, the expected replenishment

cycle time is obtained by

Theorem 7.3

If E(T) represents the expected time between two successive re-orders,
then
1

E(T)ZF(S*,S*)ZW (7.17)
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7.5 COST ANALYSIS

Let M* represent the random re-ordering quantity of commodity Ci.
Then

E(M*)
i ; . ]
) U
=E( ) Tiiy iy | e +ik@p + 4 i JkL- ]ﬁ"‘ Tk gk ll
(i1,ig,nd YEE—A, =0 Mk J
} (7.18)
=EMY( Xy &)+ g + g u)He (s, S7)
(I.l,iz,....in)EE.—Ak J
where He(s™,8%)= 2igr gy

(il,iz ..... in)EE—Ak

Let, hy be the unit holding cost per unit time, ¢, the unit procurement
cost and dy the unit damage cost, b, be the unit shortage cost of commodity Cy

(k=1,2,.....n), K be the fixed ordering cost per order. Then the cost function is

n
K+ 2 ch (M ¥)

C(Sl,Sz,...,Sn Sl,S2 ..... ,Sn)z k=1E(T)
n n
+ Z[hk +d(op + #qk)]Hk (5%, %)+ 2 Zlkbk”iliz ....... i
k=1 k=1 (ipiyyndy) €Ay
[
K n
=——+ Dl u0- Ty )
E(T) o (il,iz,.......i,,)ellzlszk J"
;
+{(Ck +dy oy + ugy) +hk}Hk(S*,S*)+ Zﬂkbk”mz ...... i |
(i oo ) E A |

= d h, (H, (s*,5*
F(S*,S*)+/(Z=1[Cklk+{(0k+ k)(wk+/1qk)+ k} k(s’ )

+ A (b —cy) Z”iliz iy ]
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7.6 NUMERICAL ILLUSTRATIONS

In this section we provide some numerical examples for two commodity
inventory problems. Numerical examples show that optimal values of s = 0,
(k= 1, 2, ...., n) when shortage cost is zero. This can be seen from tables 7.3
and 7.4. Figure 7.1 illusrates the effect of disaster on the optimum values of
(s1, S1), (2, S3). Tables 7.1 and 7.2 compare the optimum values (s;, S1), (s2, S2)
of a two commodity problem for disaster rates i = 1 and O respectively when
100. The third and fourth tables

compare the same when shortage costs are set at zero. The effect of shortage on

the shortage costs are b, = 200 and b, =

the optimum inventory level can be seen by comparing tables 7.1 and 7.3, and
tables 7.2 and 7.4. The optimum values are found out with the aid of a computer

giving upper bounds to S; = 9 and assigning 5;=0, 1 ;i = 1,2.

Table 7.1
Optimum values (s, S1), (s2, S7) for p =1 and b,=200, b,=100,
p1=.3, P2 =.1, KZlOO, 01220, 02210, h1 = 4, h2 = 2, d1= 4/3, d2 =2/3.

ALA)— | (LD (1,2) (1,3) (2,1 (2,2) (2,3)
(@L0)¥
(0,0) (0,3),(1,3) [(0,3),(0,5) 1(1,3),(0,6) {(0,4),(1,2) |(0,4),(1,4) {(0,4),(1,6)
o,1) (0,3),(0,3) {(0,2),(0,5) | (1,2),(0,6) {(0,4),(1,3) | (0,4),(1,5) {(0,3),(1,6)
(1,0) (0,3),(0,3) {(0,3),(0,4) | (1,3),(0,5) { (0,4),(1,2) | (0,4),(1,3) {(0,4),(1,4)
(1,1) (0,3),(0,3) 1(0,3),(0,5) |(0,2),(0,5) | (0,4),(1,2) {(0,4),(1,4) {(0,4),(1,5)




Optimum values (s, S1), (s2, S2) for u =0 and b;=200, b,=100,

Table 7.2
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p1=.3, P2 =.1, K=100, C)=20, Cz=10, h1 = 4, hz = 2, d1= 4/3, dz =12/3.

A | L) | 12 [ a3y [ ey | @ | @3
(@1,
(0,0) (0,8),(1,8) 1(1,6),(1,9) | (1,5),(0,9) | (0,9),(1,5) {(1,9),(1,9) | (1,8),(1,9)
(0,1) (0,4),(1,6) {(1,4),(0,9) {(1,3),(0,9) |(0,6),(1,6) | (0,6),(1,9) }(1,5),(0,9)
(1,0) (0,5),(1,3) 1(0,5),(1,6) 1 (1,5),(0,8) 1(0,6),(1,2) { (0,7),(1,4) 1 (0,7).(1,6)
(D 0,4),(1.4) 1(0.4),(0,7) [(1,4).(0,9) [ (9,5),(1.3) 1(0,5).(1,5) | (0.5),(1,7)
Table 7.3

Optimum values (s;, Si), (s2, S2) for u =1 and b,;=0, b,=0,

p1=.3, P2 =.1, K=100, 01=20, Cz=10, h; = 4, h, = 2, d1= 4/3, d, = 2/3.

(AM,A2)—> (1,1) (1,2) (1,3) (2,1 (2,2) (2,3)
(01,0)%
(0,0) (0,2),(0,3) 1(0,2),(0,4) | (0,2),(0,5) {(0,3),(0,3) | (0,3),(0,4) | (0,3),(0,5)
0,1) (0,3),(0,2) 1(0,3),(0,3) {(0,2),(0,4) [(0,4),(0,2) {(0,3),(0,3) {(0,3),(0.4)
(1,0) (0,2),(0,3) [(0,2),(0,4) | (0,2),(0,6) [ (0,2),(0,3) | (0,2),(0,4) {(0,2),(0,5)
(1,1) (0,2),(0,3) {(0,2),(0,4) 1(0,2),(0,5) {(0,2),(0,3) | (0,2),(0,4) | (0,2),(0,5)
Table 7.4

Optimum values (s1, S1), (s2, S2) for p =0 and b;=0, b,=0,

pi=3, p2=.1, K=100, ¢,=20, ¢;=10, h, = 4, h, = 2, d,= 4/3, d; = 2/3.

M= | (LD (1,2) (1,3) (2,1) (2,2) (2,3)
(01,0)¥
(0,0) (0,5),(0,7) | (0,4),(0,9) | (0,4),(0,9) | (0,7),(0,6) | (0,7),(0,9) | (0,6).(0,9)
(0,1) (0,4),(0,4) | (0,4),(0,6) | (0,4),(0,7) | (0,7),(0,4) | (0,6),(0,6) | (0,5),(0.7)
(1,0) (0,2),(0,6) | (0,2),(0,8) | (0,2),(0,9) | (0,3),(0,5) | (0,3),(0,7) | (0,3),(0,8)




Figure 7.1
(Optimum values of (s, Sy), (s2, Sz)

P: =.3, P2 =.1, K =100, Ci =20, C? =10, h] = 4, hz =2, d1 = 4/3, d2 = 2/3,
b,=200, b2=100, k] =2, A.z = 1, W = 1, Wy = 1.

o

106



Chapter VIII

Two Commodity Inventory Problem

with Markov Shift in Demand’

8.1 INTRODUCTION

Two models of a two commodity - C; and C; - inventory problem are
discussed in this chapter. The type of commodity demanded at successive
demand epochs constitutes a Markov chain. Each arrival can demand one unit
of C;, or one unit of C, or one unit each of C, and C,. Shortages are not
permitted and the lead time is assumed to be zero. The interarrival times of
demands are i.i.d. random variables with absolutely continuous distribution

function G(.) having finite mean p.

In the first model, the replenishment policy is to order for C; alone so as
to bring the inventory level to S; whenever the inventory level of C; falls to the
reordering point s; after the previous replenishment (i = 1, 2). In the second
model, the replenishment policy is to order for both C; and C; so as to make
the inventory levels maximum (S; and S,;) whenever the inventory level of at
least one of the commodities reaches its reordering point (s; or s,) after the

previous replenishment.

" The results of this chapter are published in International Journal of Information and
Management Sciences, Vol. 5, 3, (1994).
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The objectives are to find time dependent and steady state system state
probabilities, to find optimum values of (s;, S;), i = 1, 2, at steady state and to
compare the two replenishment policies in the two models. Section 8.2 explains
the notations used in this chapter. Section 8.3 is devoted to Model I and section
8.4 deals with Model II. Numerical problems are discussed in section 8.5 in

which the last two problems compare the two models.

Krishnamoorthy , Igbal and Lakshmy (1997) deal with a two commodity
inventory problem with Markov shift in demand in which each arrival can
demand only unit item of either of the commodities but not both. They provide
characterization for the limiting distribution of the system states.
Krishnamoorthy and Varghese (1994a) generalize their model to arbitrary units
of demands. In this chapter we generalize the problem to arrivals demanding
unit item of either of the commodities or both. As an application of the models
studied here consider computer and printer. Initially both are purchased and

subsequently one or the other or both are replaced at various epochs.
8.2 NOTATIONS

Ci : Commodity of type 1 (i=1, 2)

S; : Maximum inventory level of C;(1= 1, 2)

S; : Reordering point of C;(i=1, 2)

M, S-s50=12)

G(.) : The distribution function of inter arrival times of demands.
R. : The set of non-negative real numbers.

N’ :The set of non-negative integers.

O[x,y] :1lifx=y ;0 otherwise.

Dij : Pr{demand is for C; | the previous demand was for C;}

P I(pij) i,jzl, 2,3
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(a4, da, a3 ): Invariant probability measure of P.

pi Doy putaspsizi=1,2,3.

G o Pxytaspy;i=1,2,3.
(al if ny=0,1;=0,i=0]1,...n
brl,i _l ri0-1 =0 0
n = a2p22 le Ir ny = ,rlj:t .
L_I,O b_l,l ...... 51,,,1 if m 20.
(a3 if rl,o =0.
b_lo = rio—1
’ a,p 21’20 J if rno=0.
B P33 if r; =0
bl,l =9 r”_l . i: 1,2,....”1 _1
Py P, Py if n; #0
B Jp:;l if rl,,,l =0.
b = -1
l,nl rl,nl .
[pn P, Py if ryp #0
~ jpn if rjo=0
b; = -1 =23,.... k
_/,0 rj’o 3~y )
Lplz P, Pn if rj0 #0
5 JP33 lfr/’ 0 =12,...n; -1
A ! - =23 k
Lpn Py Pxu if ry; #0 JZ S0 ’
B Jp:;l if rj,,,j =0
in = rj,n -1 ) J= 2,3, ...... ,/(
/ {1)32 p 221 P, if Tjin, * 0
(p” if nj :O;rj,i:O;iZO,l, ..... Ilj.
b —J 07k if n, =0, 0. j=23.. .k
ny T1Pu Py 21 Whnyp=0rjo#0 Jj=25...,
[bj,o bj,l ...... i if n; #0.
r. ] . r r.i - . -
dnj " :are obtained from bnj " by interchanging the subscripts 1 and 2

of p; ‘sand q; °s.
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h’ : are obtained from b;’_"i by interchanging the subscripts 1 and 3
J

of p; ‘sand o; ‘s.

gnrl W : are obtained from b,::’i by replacing o; by p;
~F1i . . ri .

ny . are obtained from hnl by replacing o; by p;
~rl,1 . . rl,i .

" : are obtained from hnl by replacing o; by o;
J,; b - are obtained from d,:ll” by replacing o; by o;
E; {s;+1, s+2,....... ,S93,1=1,2
E; {s;+1,5,+2,........ , 5, -13;1=1,2
Es {1, 2,3}

El . E1 X Ez X E3
E' (BuxEnxE) U(Enx {2} x {1 U ({Si} x Ex x {2})

U ({S1} x {S2} x E3)
E*n {(la.]’k) I (la.]ak) =(11 - S]ajl — S, kl)a (il,jla kl ) <€ E“ }a n :1» 2.
T [ Gk G k) e B n=1,2.

8.3 MODEL I

In this model, the replenishment policy is to order for C; alone so as to
bring the inventory level to S; whenever the inventory level of C; falls to the

reordering point s; after the previous replenishment (i = 1, 2).
8.3.1 Analysis of the Model

Let 0 = Ty < T;<T,<....<T, <.. be the successive demand epochs.
Denote by an, Ynl ,n eNO, the inventory levels of C, and C, respectively, just

after meeting the demand at T, and .X'(t), Y'(t) the respective inventory levels at
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time t. We assume that X'o =X (0)=S; and Y', = Y' (0) = S, and the initial
demand at Ty 1s for C;. Let

Jl if the demand at T, is for C,
Z, =42 if the demand at T, is for C,
3 if the demand at T, is for both C; and C,

and Pr{Z,., = jlZ, =i} = p; ; (ij = 1, 2, 3; n eN°%. Then {Z,, neN°} is a
Markov chain on the state space E;, with initial probability vector (1, 0, 0) and
one step transition probability matrix P = (p;); 1, j = 1,2,3. Assuming that P is
irreducible and aperiodic {Z,, neN°} will be an irreducible ergodic Markov
chain.

We have the following

Lemma 8.1

{(Xln,Yln, Zy), neNo} 1s a Markov chain, whose states space is £ ' with

initial probability,

Pr{(X(l),Yol,Zo):(i,j,k)}={1 yosE=EnRD (8.1)

0 otherwise.

and one step transition probability matrix,
Pl =[q (G 1k) g ja ko V) Gndi k) (o k) € £ (82)

where g {(i1, j1,k1). (2. j2.k2))

(Pklkz if ky =L j1=j2iia=i1—Lsp+1<i

Piky, W hky=Lj1=j2iip =8 =5+1

Pk, W hy=2j1-1=jp;iy =i;s +1<

Pkk, T hka=201=0y;/p=8;j1=5+1

=\ Pk, if ky =3;iy =i - ;5| +1<ip; jo=j1 - Ls, +1<
Pik, W k=30 =8 /0=j1-Lip=s1+1j1>504
Pik, Uhkry=3ip=j1-Ljy=8pi1>s+Lj1=5+]
Pik, W hy=3iy=8;,ja=5i1=s1+Lj1=5 +1

0 otherwise

(8.3)

\
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Lemma 8.2

{(X,ﬁ,Y,},Z,, ), T, ;n¢e N®}is a Markov renewal process on the state space
E' with semi-Markov kernel,
Q' =[0M(y, j1.k1). g Ja ko Wt} (i1, j1ok1) (g s ja k) € EN e R, (8.4)
where
0 (i1, j1 k1), (2, jnn k), 1)
=Pr{(Xpa1 =in, Vi1 = J2s Znat =k ) Tyer = Iy < U(Xp =iy, Y = j1,Z, = k1)}(8.5)
=g (G, 1, k1) (g, 2 k). GQY; Gy, 1, k) i, g k) € B

8.3.2 Time Dependent System State Probabilities

Since the depletion of inventory is only due to demand, we have,
X'0)= X,i}
: : for T, <t<T,,. (8.6)
ria=v,
If we define Z(1)=2, for T, <t<T,,i,then {{X 1),y (1),Z(1)], 1eR,}isa
semi-Markov  process in  which the Markov renewal process,
(X}, vk z,), nenN°}, is embedded with semi-Markov kernel Q'.
If PGk (o, dy ko )t
=Pr{X ! (1)=iy, Y (1) = j2, Z(1) = k(X 1 (0) =iy, Y1 (0) = j1, Z(0) = K1)} (8.7)
(i1, j1, k1), (2, j ko) € EL 1 € R,

we have the following

Theorem 8.1
The transient probabilities of the inventory states are given by

l
PH(S, S DG L) Lk ),z}:f RY(S1, S, 1),G ,) Lk ),du}{l—G(t—u)}(g N
0 .

for all (i ,j .,k )eEl,tER+
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where

RYSLSD.G ,j k)ty= 2 O™ (SLS .G ) .k )1

m=0
1 if x=y

. . 1%
with the convention, x,y,1)= )
Q" (ex.0) {O otherwise

Proof:

Define
1o, . B 1o, . .. . 1
oG, jknty=1- 2 QNG k)G k)t Gk e ENreR,

(i],jl,lq)eEl

then, (8.9)
O G, j,k),1}=1-G(t) for all (i,j,k)eE',1eR,.

Conditioning on the first demand epoch T,, we have
PHSLSD.G L) k)

=Pr{[X'()=i,Y (t)=j,Z(1) = k]; T} >t|[X‘<0)=S1,Y‘<0)=Sz,2(0)=1]}(8 10)
FP{[X (=07 ()=, Z0) =k}, [y <t|[ X (0 =5,V (0)=$,,2(0)=1]}
=8[(S1,52,1), 3, j, k)] ©{(S},82.1),}

(8.11)

t
T 0SS D G k) pHGy k) G k)t )
0 (if,j.k)eE!

The solution of the above Markov renewal equations are

PH(81,82,1), G, j, k), 1)

¢
=I 2 RY(S1,85,0), (1, 1, Ky ), ) 8161, j1.k1), G, j,k)1O (G, j, k), t — u}
0 (Il :jl 7k1)EE.l

(8.12)

from which the theorem follows easily.
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8.3.3 Limiting Probabilities

At steady state the one-step transition probability matrix ,

lim QY{(i1,j1,k1), (g, ja, k), 1}]

[ —©

is P' (see (8.2) - (8.5). Since the comesponding Markov chain,
(x).r!.z),ne N%}, is irreducible and ergodic, the invariant probability
measure, HI, of this Markov chain obtained as the solutions of

27 0, ). k) g i, k), Gy kDY = 7 Gy k) forall G,y k) € E1(8.13)
G,jk)eE!

with D xlG,jk)=1, is unique. (8.14)
(i,j,k)eE'

Theorem 8.2

The probabilities that the system state is at (i,j, k) at steady state,
lim p {(Sy,8,0,G, j, k), 0} = w2, j k), (G, j k) e k! (8.15)
t >

which are independent of the initial state.

Proof:

From theorem 8.1, we have

7Y, j,k) nG,jk)
k)eE! w1 k) m(iy, g1, ky)

lim p'{(S1,52.1),0, /, k), 0} = (8.16)
! Z (i1 i

where ml(ilJ,,kl) is the mean sojourn time in the state (7;,/;,k;) of the Markov

renewal process, {[(X,E,Y,,I,Z,, ), T, ],ne N} and

n(i, j k) = T@l{(i, Jj. k), 0yt

0 (8.17)

=T[1—G(l)]dl~

0
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But Gy, jy k)= ElTyy - Ty (X} =08} = /.2, = k] = J[1- G (8.18)
0

Substituting these values in (8.16) we get (8.15). Hence the theorem.

Theorem 8.3.

The probabilities that the inventory system state is at (i, j, k) at steady

state is independent of 7 and j and is given by

) leso . _ 274 L -1
lim (S, S 06,00 = 3k Gk Bl (819)

They are uniformly distributed if and only if P is doubly stochastic.

Proof:
From (8.13) we get

3
2w g, k) e = 7w (<i=1>, /1)
k=1

3
2l kpry =7 i< j-1>2) (8.20)
k=1

3
Dl jpry=rl(<i-1><j—1>3)
k=1

where

1 {i—l if i#s+1
STTITELS, i i=sp el

J-1 s+

and <]—1>:{S2 if syt

It can be easily verified that

ol

.. . _ .
s (Ia]ak)_MlxMza

(i, j,k) € E! (8.21)

is a solution to the system (8.20) and (8.14) .Since the solution is unique, there
is no other solution to the system. Substituting (8.21) in (8.15) we get (8.19). If

P is doubly stochastic the uniqueness forces the invariant measures (o, ao, o3)
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to be uniform. Therefore from (8.21) 7Y, j, k), (,j,k)e E' will be uniform,
hence from (8.19) the steady state probabilities are uniform. Conversely, if the
probabilities at steady state are uniform, then from (8.19) and (8.21), a,=cx=a3
3
and substituting in 2 a; p; =a;; j=12,3
i=1

we at once see that P is doubly stochastic. Hence the theorem.
8.3.4 Time between the replenishments

In the present model, the replenishment of one commodity is
independent of the other. Hence considering the replenishment epochs of C,

alone we have the following

Theorem 8.4
Let T' represent the time elapsed between two consecutive replenishment

epochs of commodity C; and F' {(S1,j1,k1 ),( S1,j2.k2), t} be its distribution, then

F' {(Si.j1.k1 ).( Swjzka), t}=Fi' {(S1.j1.ki ),( Siijas 1), t}
+ B {Sujuki W (Suin3)ty,  (ki=1,3)  (8.22)
where

Fi' {(S1.j1,k1 ),( Snaiz, 1),t}

- 2 2 i ZMZ%_jz b~'l,i er,i brk,i
Al nl ------ nk

k=1 Ny, nk=0 z=z, n,05M,1 50 Nn 1 12 0 Tg " =0 (823)
Zn; +k=M, Zry;+2n=2My+ji— o

x G*k+ Xy +Zn;) (1)
and F2'{(S1,ji.k1 ),( S1.j2,3).t)

2 2 i ZM2+£—12 Erl,i h’z,i hrk,i
n May e e

k=1 nm I e nk—O z=2 rl,o ,rl’l ....... rl’,, 1 ,rz’o ........ rk ’nk =0 (824)
Zn +k= Ml er,i +k=ZM2+j1—j2

y G*(’”er,i +2n,) (1)
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0 if j1=27J
in which Zo={ J 120

Vif 1<)z
Proof:

Assume that there is a replenishment of commodity C; just after the n"
demand epoch ,then Z, may be 1 or 3. Hence (8.22). Consider a replenishment
period ending with the n™ arrival ,where Z, =1, in which there are exactly k(k =
1,2,...M)) demands for C; alone after the previous replenishment. In this
replenishment period there may be z (varying from z, to «) replenishments of
commodity C,. Denote by nj(j = 1,2,.....k) the number of demands for both C,
and C, in between the (j—1)™ and j* demands for C, alone and T
0=12,.,k 1=12,.,n-1) the number of demands for C, alone in between
the i and (i + 1)™ demand for both C, and C, that happened after the (j — 1)"
demand for C; alone, and j[h demand for C; alone. Since there are exactly k

demands for C, alone and the replenishment is due to a demand for C, alone, n;

can vary from zero to M, — k with the condition that £ +» n =M, and r;;’s
can vary from zero to zM,+j -j, with the condition that

dr,+ . n, =M, + j, - j,. With these notations (8.23) follows easily.

Now consider a replenishment epoch of C, ending with the n™ arrival,
where Z, = 3. Suppose that there are exactly k combined demands for C,; and C,
Let n; denote the number of demands of C, alone in between the (j - 1)™ and i
combined demands, rj; j=1,2,..k;i=12,..n;-1) denote the number of
demands of C, alone in between the i and (i+l)lh demand of C, that happened

after the (j - 1)‘h combined demand of C; and C, , r i denote the number of

demands of C; alone in between the n," demand of C, that happened after the
g- 1)th combined demand of C; and C, , and the jlh combined demand of C,
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and C,. Since there are exactly k combined demands for C, and C,,

>r,.+k=2zM,+ j - j, during this period. Hence (8.24).

In a similar way considering the replenishment epochs of commodity C,

we can prove the following

Theorem 8.5

Let T* represent the time elapsed between two consecutive replenishment
epochs of commodity C, and F? {(1, Sy, ky), (12, Sy, ky), t} be its distribution,
then

F* {(i1, S, k1), (iz, Sa, ko), t}=Fi* {(i}, S, k1), (i, S, 2), t}
+ Fo2 {(i1, S, ki ), (i Sa 3), t}; (=2, 3)(8.25)
where F,? {(i}, Sz, ki), (ia, S, 2), t}

M M. —k oo M +i —fz
=z i Z Lzl‘ ‘7’1,: er,i d’k,i

k=1 nmng,.n= z=z, r1.0s7 1,1 rin l,rz’o ........ rk,,,k =0 (8.26)
an+k=M2 er,i +an=ZM1+il—i2

x G*k+2r, +an)(l)
and F>*{(i), s2, ki ), (12, $2,3), t},

M o0 ZM1+i1'—i2 My—k ~p . o
DD )3 )3 P G e
k=1 z=z,

nom 3
nyiy e Ny, =0 r 1,05 r 11w r 1,n 1,"2’0 ........ rk,nk =0 (8 27)
2onj+k=zMy+ij—i; ry; +h=M, '
X G*(k+er,,» +Z”j)(t)
. . 0 ifi2i
i which 2z, = f Lo
1 if i <i,

8.3.5. Optimization Problem

Let w; be the holding cost for one unit of C; per unit time (j =1,2).Then

the expected holding cost per unit time,
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EHY= X Gw + w0, k)
(,jk)eE!

| (8.28)
= Z (iW1+jW2)7[ (I 1+Sl,j1+52, k)+SIW1+S2W2
(iy,/1,k) € E™
Hence E(Hl) is minimum for s;= s, = 0. Also because of (8.19),
E(H1)= Z(iw1+jw2) A/[a—kM+s1w1+s2w2
G, jk)e E* 1 M2
1
=7[w] (M +1)+wy (Mg +1)]+s1w) + 53w (8.29)

1
= E(H|)+ E(H,), where E(H;) = E[Wi (M; + D] +s;w;,i=12.

From (8.22) - (8.27) we can easily calculate the expected replenishment
cycle times, E(T') and E(T?). Also note that M; is the quantity of C; ordered at
each replenishment epoch of C; (1 =1, 2).

If K; is the fixed ordering cost and c¢; is the unit procurement cost for
Ci(i=1, 2), then the total expected cost (TEC') for the inventory system per

unit time is

Ki+eM; K M
rECt = SLIATL DA TR gl
E(T") E(T7)
[_Kl'f‘ClMl W] (M 1) _] [_Kz +02M2 L) (M )
= ——— +D+wisy |+ — 5+ T1)+wys
LB e ¢ T by 4 gy |

(8.30)

= Total expected cost of C, + Total expected cost of C,.

Since E(T') is independent of s; for a given value of M; (i = 1,2), TEC" is

minimum when s; = s,= 0.
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8.4 MODEL 1I

In this model, the replenishment policy is to order for both C; and C, so
as to make the inventory levels maximum (S; and S;) whenever the inventory
level of at least one of the commodities reaches to its reordering point (s; or s,)

after the previous replenishment.

8.4.1 Analysis of the Model

Let 0 = Ty < T;< Tp<.....<T, <... be the successive demand epochs.
Denote by X,,z, Yn2 .n eN° the inventory levels of C; and C; respectively, just
after meeting the demand at T,, and X*(t), Y*(t) the respective inventory levels
at time t. We assume that X%, = X? (0)=S, and Y23 = Y2 (0) = S, and the
initial demand at Ty is for C,. Let {Z,, neNO} be the Markov chain as defined

in section 8.3.1.

We observe that {X2 1?2 Z,),ne N°}is also Markov chain, whose state
space is E'. Here, starting from the state (S;, S,, 1) some of the states are not
visited by the process. Hence the Markov chain will not be irreducible. So

excluding these states we have the following:
Lemma 8.3

{(in,an, Z), neNO} with state space E? is an irreducible and ergodic

Markov chain, having initial probability,

U if(7,),k)=(81,582,1)

0 otherwise.

Pr{(on,Yoz,zo):o,j,k)}:{ (8.31)

and one step transition probability matrix,

P2 =[q2{(i), /1, k1), (s oo kY] (i1sro k1) (g jn k) € 2 (8.32)

where
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R (W RN N2

’Pklkz if ky =11 = jpsip =11 —Lisp+1<y

Pk, I ka=1j3 =580 =801 =5+1

Pik, U ky=2i1-ip=jyjp=J1- L5 +1<

=Pk, S hka=201=82j2=53)1=5+1

Pk, I ky=3i=ij-Lsi+1<ipjp=j1-Ls3+1<]j
Pig, W k=303 =81;/2=5; =51+l or ji=s

L0 otherwise

(8.33)

Lemma 8.4

{(X 3,Y,,2,Z,, . 1,;ne N 0}is a Markov renewal process on the state space
E? with semi-Markov kernel,
Q* =[0* {1, 1. k1) Gig, ook 1) (i k)G, jn ko) € EXr e Ry (834)
where
0 {(iv, J1.ky), (i, J2,k2).8
= Pr{(Xa1 =ig, 12 = o, Znsa = ko) Ty = Ty <O(XG =017 = 1,2, = k)

=g (G J1. K1) G k). G(O; 1 1 K1), (g s J  Kp) € E2 (8.35)

8.4.2 Transient and Steady State Probabilities

Since

x2(1)= x2|

Y2(y=Y? tfor T,<t<T,, (8.36)

=12,

and if we denote  p2 {(iy, j1.k1),(ip, Jp ko), 1}
=Pr{X2(1) =iy, Y (1) = j2,Z(t) = kp)|(X 2(0) =iy, Y2 (0) = /1, Z(0) = k)}
(G J1 k1), Gau o k) e B2t e Ry

(8.37)

we have, similar to Theorem 8.1, the following
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Theorem 8. 6

The transient probabilities of the inventory states are given by

!
PASL S G oJ k=] RE(SLS.G ) ok ).dubl- Gt - )]

0
for all (i,j.,k)e Ez,te R,

where (8.38)
el -

RES1, S, oj ok L ty=20 Q¥ {(S1,S. 0.6 ) .k )1}
m=0

. . 20 L ox=y
with the convention, 0 (x, y,t)—{o otherwise

As in section 8.3.3, the invariant probability measure, [1* of the Markov

chain, {X 3,Y,,2,Z,, 2,ne N}, is obtained as the unique solution of

272G, k) g G, k), Gy kDY =72 G, k) forall Gy, ky) € B 8.39)
G,j,k)eE?

with > 2@, jk)=1. (8.40)
(i,jk)eE?
Also by the argument that led to theorem 8.2 we can prove that the probabilities

that the system state is at (i,j, k) at steady state,
lim p2 {(S], 8, 1),G, j. k), 0y = w2, j, k), G, j.k)e 2. (8.41)
>

8.4.3 Replenishment Cycles and Optimization

In this model, the stock levels of both C, and C, are brought to their
maximum whenever the inventory level of at least one of the commodities has
reached to its reordering point . The expression for the distribution of inter

replenishment times is derived in the following
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Theorem 8.7
Let T represent the time elapsed between two consecutive replenishment

epochs and F{(S), Sz, k1), (81, S2, k2), t}, its distribution. Then

3
F{(81.82,k1),(81,82,k2), 1} = D F{(S1,82,k1),(S1,82,k), 1} ki = 1,2,3; (8.42)

k=1
where  Fi{(S1, S2, k1), (S1, S2.1), 1}
M M,y-1 M,-1 , , ,
= 2 ﬁ ﬁ bbb GrktIr Tn) (1)
k=1 MmNy ety =0 1o, A 1P| 72,00y =0 P k
an+k=M1 er,,- +an< M,
(8.43)
and  FR{(S:.5:.k1), (51,52,2),}
M, M-l M1 e
$ % £y ce I
k=1 n,ny,..0; =0 1,00 M,1>Nn 1 ,rz,o,....,rk,,,k =0
an+k=M2 er,, +an< M
(8.44)
and  F3{(51,52,k1), (51,52,3), 1} }= O+ D, (8.45)
where
M, M-k M,-k
CDI _ 2 z i h’l,i h’z,i h’k,f
k=1 nyg,.0y, =0 )‘1’0, )‘1’1 ....... rly,, 1 ,I‘2,0 ........ rk,nk =0 om Mk (8 46)
ksMy  Tnj+k=M, ry, +k < M, '
« G*(k+erJ +ZI1J )(1)
and
M. M,—k-1 M-k
®, = i 2 i h’l,i h’z,, h’k;
k=1 ny g ity =0 1,001,105 Mon | ,rz,o,......."k,nk =0 o "k (8 47)
k<M, Zn;+k<M, 2tk =M, '
x G* (k+er‘, +an ) (1)
Proof:

If the replenishment is just after the n™ demand epoch, then Z, may be 1,
2 or 3. The expressions (8.43) and (8.44) are derived on the same lines as (8.22)
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harrival

and (8.25). Now consider a replenishment epoch ending with the n'
where Z, =3. If the replenishment has happened due to the falling of inventory
level of C, to s; or the levels of both C; and C, together to (s, s;), then its

distribution is given by (8.46), otherwise by (8.47).

If w; be the holding cost for one unit of C; per unit time (i = 1,2),then

the expected holding cost per unit time,

EHYY= 2. (wy+jwy)m 23 (+51,J1+52, k) +spw; +s5w,.  (8.48)
(i1./1 k) €E™?

Therefore E(H?) is minimum for s; = s;= 0.

The quantity ordered at each replenishment epoch is not fixed in the
present model. Let M' and M? represent the random replenishment quantities of

C, and C,; respectively. Since each arrival can demand utmost one unit of C,

from (8.42),
M Myl Ml Hi B n
EMY=2, 2 2 BY BB M,
k=1 mi...n=0 g "1,1a-'~~--"1,n1,"2,0,~--~--~fk,nk=0
2n k=M, 2 +2n <My
M M;-1 M-l , , ,
i P %,i
+i t > dn"' a’nz" ....dnk" {(Zrj; +Zn;}
k=1 ny,n9,..0,=0 1,00 N, 15-M,m g 572,00k "k:0
an+k=M2 er’,- +an-< M,
M M-k M,—k P p
+ 2 X 2 h ,‘;l' h,;" ...... h,,i "M,
k=1 ny,.ng =0 .05 11,10 A on 1 NoXi) snneec bl pp = 0
ksMy  Tn +k=M, Srp, +k < My
M Mil."—] My—k , , , k
| ¥ 2, ko
+ 5 oyl e by th+ 2n; )
k=1 nmnay.,..Jn =0 rl’o, rl’l ,......rl,,, 1 ,r2,0 ........ rk’,,k =0 _/:1
k<My  Fn k<M, Yr,; +k = My

An expression for £(M?) can be obtained similarly from (8.42).
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Let K, K; be the fixed ordering costs for C,, and C, respectively and K
be the joint fixed ordering cost. Then
Kl SKSKI +K2 and K2 SKSKI +K2 (850)

Though the replenishment policy is to order for both C, and C, there
may be replenishment periods without a single demand for C,. The probability

for this event is

My-1
Pr=aip

(8.52)
Similarly the probability for a replenishment period without a single demand for
Cl is
My-1
pr=arp,’ (8.53)

Therefore the expected fixed joint ordering cost is

EK*)=K(1- 51 -B)+K 1 p1+ K253, (8.54)

The expected replenishment cycle time, £(7) can be derived from (8.42).
If ¢; is the unit procurement cost for C; (1= 1, 2), then the total expected cost
(TEC?) for the system per unit time is

E(K*)+clls(MYy+ E(M?)
E(T)

TEC? = + I(H?) (8.55)

Since E(T), E(M'), E(M?) are dependent only on M; (i = 1, 2), and not on

s;, TEC? is minimum when s1=5=0.

8.5 NUMERICAL ILLUSTRATIONS

In this section, we provide some numerical results for the models
discussed. There are three sets of two problems each. The first set (Problem 8.1

and 8.2) contains problems related to Model I. The second set (Problems 8.3
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and 8.4) illustrates the second model. The third set (Problems 8.5 and 8.6)
compares the expected total cost of the two models for different values of XK.
Figure 8.1 shows that the second model is not preferable if K > 53. Similarly we
can conclude from Table 8.6 that the first model is better than the second if K >
70. The probability of demanding C, is more than that of C; in Problems 8.1,
8.3, and 8.5 where as in the other problems it is reversed. In each table the
optimum values of the pair (M), M>) and the corresponding total expected cost

are indicated.

Problem 8.1

(1 8 1]
p=l3 6 1]
L.l 7 .2J
K =40 ,K;=30,¢=5,c,=4, wi=1,wy= 8, u=3

Table 8.1
(TEC' of Problem 8.1)

M, M, E(H;) Or Cost Totalcost E(H;) Or. Cost Total cost
of C, of C; of C, of C, TEC'

2 1.5 28782 43782 1.2 5.031% 6.2319  10.610095
3 1.0 52174 6.2174 1.6 3.6668 52668  11.484222
1 20 21050 4.1050 0.8 9.2727 10.0727 14.177761
3 1.5 28782  4.3782 1.6 3.6668 5.2668  9.645047

2 20 21050 4.1050 1.2 5.0319 6.2319  10.336912

20 21050 41050 1.6  3.6668 52668 [ 9.371865

L B W — N

(2

Problem 8.2

6 1 .ﬂ'

P=7 2 1
L.s 1 _1J

K1=40,K2=50,01=6,Cz=8,W1=1.2,W2=1.6,}1:3



Table 8.2

(TEC' of Problem 8.2)

M; M; E(H,;) Or. Cost Total cost E(H;) Or. Cost Total cost
of C, of C, of C, of C; TEC'

2 2 1.8 77037 9.5037 24  3.7993  6.1993  15.702962
1 3 12 13629 4.8296 32 28323 60323 20.861941
3 1 24 57284 81284 16 67246 83246 16.453034
2 3 18 77037 95037 32 28323 60323 15.536015
3 2 24 57284 81284 24 37993  6.1993  14.327653
[3 3] 24 57284 81284 32 28323 60323 [14.160706
Problem 8.3

[ 1 8 .1]
P={3 6

Ll 7 .2J
K=60,K;=40,K;=30,¢;=5,¢c,=4,w;=1 ,wy=8,pu=3

Table 8.3
(TEC? of Problem 8.3)

(M, M, E(H) EM,) E(M>) E(T) TEC® |
2 2 2.903213  0.748667  1.875667  7.030000 11.198045
1 3 2.809675  0.748000  1.617333  6.360000 12.136090
3 ] 3.549750  0.336667  0.998333  3.550000 16.125337
3293567  1.099400  2.585000  9.902000  [10.155178
3 2 3767602  0.777200  1.981900  7.393000 11.772507
33 4.031526  1.202287  2.911327 11.051400 10.371303
Problem 8.4

(6 1 3
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P=|3
g

K1=40,K2=30,Cl=5,Cz=4,W1=1,W2=.8,H=3

COST

1

10.5

10

9.5

8.5

6 1
1 2

[.1 8 .1]

]

Joint Or.
Ind. Or.

Figure 8.1
(Comparison of TEC' and TEC?in problem 8.5 when M, =2 and M;=3)

40

45

50

55
K VALUES

60

65

70

Table 8.4
(TEC? of Problem 8.4)

(M, M, E(H) E(M)) E(M>) E(T) TEC |
2 2 4660237 1893333 0.711667  6.490000 6.902662
13 5799283 0.994667  0.348000  3.480000  23.210777
31 4314512 1.874667  0.748000 6360000  17.388726
2 3 6.129279 1975467  0.741800 6.786000  18.040154

5163030  2.708433  1.029600 9221000  [15.314576
3 3 6.496425  2.924533  1.105983 9.981300  16.129946

Problem 8.5



129

Table 8.5
(TEC' and TEC? for different values of K in Problem 8.5)

M, M, TEC'  TEC?(K=40) TEC®(K=45) TEC?(K=50) TEC? (K=60)|
2 2 10.610095  9.595390  9.996054  10.396717  11.198045
1 3 11.484222 10307998  10.765021  11.222044  12.136090
30001 14.177761  14.444585 14.864773  15.284961  16.125337
[2 3] 9645047 | 8.678035 | [ 9.047321 | [ 9.416606 | [10.155178
3 2 10.336912  10.207964  10.599100  10.990236  11.772507
3 3 | 9.371865] 9.020645  9.358309  9.695974  10.371303
Problem 8.6

6 1 .ﬂl
P={7 2 1

s 1)

K1=40,K2=50,01=6,Cz=8,W1=].2,W2=].6,M=3

Table 8.6
(TEC' and TEC? for different values of K in Problem 8.6)

M, M, TEC'  TEC?(K=50) TEC? (K=60) TEC’(K=70) TEC?(K=80)]
2 2 15702962  14.344880 15.197474  16.050068  16.902662
1 3 20.861941  20.670548 21.517291  22.364034  23.210777 |
3 ] 16.453034  14.489355  15.455812  16.422269  17.388726
2 3 15536015  15.499629  16.346471  17.193312  18.040154
3 2 ]| 14327653 [12.967759 | [13.750031 | |14.532303 | [15.314576 |
3 3 14.160706 | 13.897772 14.641830 15385888  16.129946

% %k 3 %k %k %k 5k %k %k %k ok %k %k %k 5k %
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