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Chapter 1 

INTRODUCTION 

10 Variational Principles in Hydrodynamics 

The principle of least action put forward by 

Maupertius in the 18th century was of fundamental and 

far reaching importance in that it opened up a new 

field of research leading to invaluable results in many 

branches of physics. This result was developed into a 

beautiful theory of dynamics by the ingenious works of 

Euler, Lagrange, Hamilton and Jacobi. The credit for 

giving the first exact formulation of the principle of 

least action goes to Hamilton. The theorem known as 

Hamilton's varia~ional principle can be ~tated as follows: 

'~uring the motion in a conservative force field the 

ac.tion is stationary". i.e., 6J L dt = 0, where L is 

the Lagrangian of the dynamical system and 6 denotes 

the variation. In other words Euler-Lagrange conditions 
, J 

for the action integral JL dt of a dynamical system to 

be stationary are precisely the equations of motion of 

the systemc In later years this principle found applica­

tions in the studies of optics, dynamics of particles and 

rigid bodies, elasticity, electromagnetism, Einstein's 

laws of gravitation and many other branches of physics. 
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It was the great success of variational principles' in 

classical mechanics that stimulated the efforts to 

formulate the laws of hydrodynamics in a similar way. 

The two types of description in fluid dynamics­

Lagrangian in which field variables are expressed in 

terms of initial coordinates and time and Eulerian in 

which they are expressed as functions of current co­

ordinates and time-lead to two forms of variational 

formulations. The Lagrangian variational formulation 

is comparatively easy and analogous to that of a dynamical 

system of discrete particles. When Eulerian description 

is introduced, this close similarity is lost and it 

raises mathematical problems. 

Attemp~for variational formulations of hydro­

dynamics can be traced back to Bateman (1929), 

Lichtenstein (1929) and Lamb (1932). Assuming the 

Clebsch's representation (Clebsch, 1859) of the 

velocity field apriori, Bateman derived the equations 

of motion for barotropic flows of an ideal fluido 

Eckart (1938) and Taub (1949) tried to extend the 

variational principles to adiabatic compressible flows. 

The first successful variational formulation for 

compressible fluid flows was due to Herivel (1955). 
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Using the field variables velocity. density and 

entropy expressed in space-time coordinates, he presented 

both Lagrangian and Eulerian variational formulations for 

ideal fluid flows o However, his Eulerian variational 

principle was incomplete in the sense that for isentropic 

flows this principle led to irrotational motion of the 

fluid only. Introducing a new set of constraints­

constancy of particle identity- Lin (1963) extended this 

principle to rotational flows also o The modified version 

(Herivel-Lin variational formulation) appeared first in 

an article by Serrin (1959). Serrin showed that every 

flow of an inviscid fluid corresponds to an extremal of 

thIs principle if tne Clebsch's potentials are suitably 

defined. Eckart (1960) used the energy-momentum tensor 

to derive the equations of motion and some conservation 

laws in Lagrangian description. 

In Herivel-Lin variational formulation, the 

constraints are taken by means of Lagrangian multipliers 

(Monge potentials) which lead to a Clebsch's representa­

tion of the velocity field involving 8 potentials. It 

is difficult to ass~gn physical meaning to these potentials. 
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There have been attempts during the last three decades 

to find new variational techniques in Eulerian descrip­

tion avoiding the difficulties due to the redundancies 

and indeterminancies of these Clebsch's potentials. 

Hamilton's principle does not exist for the 

flows of viscous fluids except in some very restricted 

cases. Discussions regarding the non-existence of 

variational principle in viscous fluid flows can be 

found in Finlayson (1972a, 1972b) and Mobbs (1982). 

We sketch briefly some more important develop­

ments in the studies of variational formulations for 

ideal fluid flows. Identifying a suitable Lagrangian 

Penfield (1966a) has derived equations of motion ·for 

both relativistic and non-relativistic flows of 

compressible inviscid fluids using Lin's constraintso 

Seliger and Whitham (1968) have studied Eulerian and 

Lagrangian variational principles in continuum mechanics 

and shown that the number of Clebsch's potentials in 

Eulerian variational formulation of ideal fluid flows 

can be reduced to 4 from 8. But Bretherton (1970) has 

pointed out that though Seliger-Whitham representation 
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is locally valid, in isentropic case the flows determined 

by such a representation do not include those with non­

zero helicity. He has also shown that the relation 

between the Eulerian and Lagrangian variations of the 

field variables can be used to derive the equations of 

motion in Eulerian form from fundamental Lagrangian with­

out using any other constraints. Guderley and Bhutani(1973) 

have suggested a method to derive the variational principle 

for three dimensional steady flows of compressible fluids 

from the Herivel-Lin variational formulation for unsteady 

flows. 

Discussing different variational formulations of 

Herivel-Lin type, Mobbs (1982) has shown that the most 

general formulation is that due to Serrin (1959) in which 

the Clebsch's potentials are identified with initial 

coordinates and initial velocities. He has also attempted 

to extend the variational principles to thermally conduct­

ing viscous fluids using local potentials. Capriz (1984) 

has shown that Lin's constraint can be replaced by another 

one- Euler's expansion formula- in Eulerian formulation 

of ideal fluid flows. Katz and Lynden-Bell (1982) have 

suggested a variational principle using a Lagrangian 
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incorporating local conservation of mass, entropy, 

circulation and potential vorticity. Moreau (1981, 

1982, 1985) has introduced a new variational technique­

Method of horizontal variations- to derive Euler's 

equations of motion of inviscid non-barotropic fluidso 

Some other developments can be found in the works of 

Senjamin (1984) a~d Secker (1987). 

Arnold (1965a, 1965b), Grinfeld (1981, 1982, 1984) 

and Lynden-Sell and Katz (1981) have used variational 

techniques in the study of stability of stationary flows. 

Variational formulations suitable to the equations 

of water waves have been first introduced by Luke (1967). 

Some other contributions in this field are due to Whitham 

(1967, 1974), Miles (1977) and Milder (1977). Variational 

principles applied to other branches of physics are 

discussed by Lundgren (1963), Penfield (l966b), Mittag, 

Stephen et al (1968), Lanczos (1970) and Suchdahl (1987). 

20 Noether theorems and conservation laws 

The study of invariance properties of the action 

integrals in the calculus of variations was initiated in 



7 

the early part of this century by Emmy Noether (1918), 

influenced by the works of Klein (1918) and Lie (1912) 

on the transformation properties of the differential 

equations under continuous groups of transformations. 

Noether proved two fundamental results now known as 

Noether theorems. Since then a number of papers have 

appeared in the literature either modifying these theorems 

or applying the theorems to particular dynamical systems 

by relating familiar conservation laws to transformation 

groups. (Trautman (1967), Logan and Blakeslee (1975), 

Blakeslee and Logan (1976, 1977), Logan (1977), 

Cantrijn (1982), Benjamin and Olver (1982), Logan and 

Bdzil (1984) and Olver (1986a, 1986b) ). 

In the case of hydrodynamics,only few attempts 

have been made in this direction. Drobot and Rybarski 

(1959) have introduced a variational principle for baro­

tropic flowsand adapted Noether theorems suitably. 

Moreau (1977) has obtained the conservation of helicity 

as a consequence of Noether theorem. Bretherton (1970) 

and Gouin (1976) have shown that Kelvin's circulation 

theorem is related to the invariance of the action under 

certain transformation groups. 
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3. Conservation laws related to vorticity 

Since almost all fluid flows are rotational, 

the study of rotational motion plays an important role 

in fluid dynamics. The foundations of the kinematics 

of vorticity have been developed by the pioneers in 

fluid dynamics like Euler, Cauchy, Lord Kelvin, 

Helmholtz and Beltrami. To Truesdell goes the credit 

for the creation and unification of the discipline of 

vorticity transport. 

The barotropic flows of an inviscid fluid are 

characterized by the familiar conservation laws: Kelvin1s 

circulation theorem, Helmholtz theorems, conservation 

laws of helicity and potential vorticity. Mobbs (1981) 

has generalized these conservation laws to non-barotropic 

case, replacing vorticity by generalized vorticity and 

velocity by another suitable vector in some of their 

occurrences in the relevant equations. Taub (1959) has 

proved the circulation theorem for relativistic hydro­

dynamics. Hollmann (1964) has tried to deduce conservation 

laws from known conserved quantities. Marris and Passman 

(1968) have studied generalized circulation preserving 
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flows and obtained generalizations of some conservation 

laws. Thyagaraja (1975) has exploited the concept of 

Helmholtz fields and proved that some conservation laws 

in barotropic flows related to vorticity can be generalized 

using this concept. Mc Donald and Witting (1984) have 

shown that the local conservation law for a surface 

velocity variable leads to Kelvin's circulation theorem 

when the surface is closed and the force field is conserva­

tive. Katz (1984) has proved the conservation law of 

potential vorticity for inviscid flows in general 

relativity. Moffat (1981) has pointed out the connection 

between Hopf-invariant in topology and helicity in fluid 

dynamics. 

40 Scope of the thesis 

In this thesis we consider a new variational 

formulation for non-barotropic flows and study some 

transformation groups leading to conservation laws. 

The conservation laws involving vorticity both in baro­

tropic and non-barotropic flows are brought under a 

general framework by. using the concept of Helmholtz 

fields. 
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It has been shown by Bretherton (1~70) that 

Kelvin's circulation theorem is a consequence of the 

indistinguishability of fluid elements with equal 

density, velocity and entropy in Eulerian description. 

In chapter 2 we give a proof of the Generalized Circula­

tion theorem based on similar arguments. 

In chapter 3 we present a variational formulation 

suitable for non-barotropic flows of an ideal fluid using 

quadri dimensional field variables. Following Drobot 

and Rybarski (1959), we restrict the variations of these 

field variables by explicitly given conditions and term 

these as hydromechanical variations. The conditions 

for the extremum of the action under hydromechanical 

variations of the field variables lead to Euler's 

equations of motion. This method is an alternative to 

other Eulerian variational formulations such as those 

proposed by Seliger and Whitham (1968) and Bretherton(1970). 

Chapter 4 is devoted to a discussion of Noether 

theorems and conservation laws in connection with the 

hydromechanical variations. We adapt Noether theorems 

to our variational principle. The conservation laws of 

energy, impulse and angular momenta are shown to follow 
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from an application of Noether's first theorem. As an 

application of the second theorem we consider a 

particular group of transformations of independent 

variables defined by the condition that hydromechanical 

variations of the field variables are vanishing identically. 

We characterize this group and show that generalized 

Helmholtz theorems are related to this group. 

In chapter 5 we generalize some conservation laws 

of barotropic (non-barotropic) flows such as conservation 

laws of helicity, potential vorticity etc. (their analogues 

in non-barotropic flows) using the concept of Helmholtz 

fields. This study shows that many of the conservation 

laws involving vorticity both in barotropic and non­

barotropic flows follow from the properties of Helmholtz 

fields. 

In chapter 6 we give a general discussion of the 

results in this thesis and point out the direction for 

further research work. 



Chapter 2 

GENERALIZED CIRCULATION THEOREM 

AND VARIATIONAL PRINCIPLE 

le Eulerian variational principle 

It has been shown by Herivel (1955) and Lin (1963) 

that the equations of motion for non-barotropic flows can 

be derived from the variational principle: 

t2 

~ jdt j {f [ ~ Iv1 2
- E(f'S) - U(x)] 

tl V 

3 
- p f3 OS + f 1: Y 0 

I Ot i=l l. 

OAo } 
Dt l. rfV = 0 , 

where v the velocity, F the density, S the specific 

entropy, E the internal energy and a, f3 and Yi the 

Lagrangian multipliers are considered as functions of 

current Cartesian coordinates x and time t. Here o 
Dt 

denotes the material differentiation and $ denotes the 

variation. 

(2.1) 

The results presented in this chapter have been publishedo 
(George'Mathew and MoJ. Vedan (1988) ). 
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0),. 
~ Ot = 0, i = 1,2,3 which 

correspond to particle identity are due to Lin (1963). 

In (201) V is an arbitrary volume fixed in space and 

[tl ,t2 ] is any given interval of time. 

The allowed ~ariations in v,p, S, a, ~, Yi and 

A., i = 1,2,3 are independent, continuously differentiable 
~ 

and vanish for Ixl or It I sufficiently large. The 

Lagrangian multipliers a and p ensure the conservation 

of mass and entropy respectively, 

%t + \7 .(pv) = 0 J 

OS 
Ot = 0 

From the Euler-Lagrange equations corresponding 

to the variation of V, we get 

-v = 
3 

\la+~\lS+ 1: 
i=l 

y. VA.· 
~ ~ 

so that the Clebsch's representation of v involves 

8 potentials. 

(202) 

(2.3) 

(2.4) 
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2. Generalized circulation theorem 

The famous circulation theorem due to Lord 

Kelvin can be stated as follows: 

'The circulation around a closed curve C 

consisting of material particles of the fluid lying 

on a surface of constant entropy is conserved during 

the motion' • 

D 
TIt ~ v. dI 

C 
= o. 

Eckart (1960) has introduced a new quantity called 

thermodynamic circulation, 

- ~("7S) 0 dl 

where ~ is the thermasy (Schutz and Sorkin,1977) 

defined by the relation 

Qn 
Dt = T, the temperature 

o 
} 

o 
A 

I 

(2.5) 

(2.6) 

(2.7) 
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and proved that in non-barotropic flows, the total 

circulation- the sum of the kinematic and thermodynamic 

circulations- around a closed curve C is conserved, as 

the curve moves with the fluid. Based on the work of 

Eckart, Mobbs (1981) has defined non-barotropic flows 

as follows: 

Definition (2.8). 

The flows in which V 11 x V s I:- 0 are called 

non-barotropic flows where 11 is as defined by (207) and 

S is the specific entropy. 

Mobbs (1981) has proved that generalizations 

are possible for almost all other conservation laws of 

barotropic flows associated with vorticity to non­

barotropic flows. He called the quantity, 

~ ( v - 11 \1 S). dI 

the 'generalized circulation' and the theorem proved by 

Eckart as 'generalized circulation theorem'. A detailed 

discussion of his generalization of other conservation 

laws is given in chapter 5. 
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. It has been proved by Bretherton (1970) that the 

equations of motion of an inviscid fluid flow in a 

conservative force field can be derived from the variation 

of the action 

w = J d t J f [ ~ I v 12 -E ( f ,S) -u ( x) ] eN 
V ) 

(2.10) 

using the relation between the Eulerian and Lagrangian 

variations without using any other constraints. He has 

also proved that the indistinguishability of fluid 

particles having the same velocity, density and entropy 

in Eulerian representation corresponds to Kelvin's 

circulation theorem in isentropic case. In this chapter 

we prove that the same indistinguishability of fluid particles 

leads to generalized circulation theorem in non-barotropic 

case. 

30 Derivation of generalized circulation theorem 
from displacement freedom of particles 

We consider an instantaneous displacement 

LlXl(x,t) under which the material particles in a closed 

solenoidal filament of infinitesimal cross section A and 

centre line Cl are substituted for one another cyclically, 
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the ma"ss b. m pas sing each cros s sec tion of the filamen t 

being the same. Particles outside the filament are 

undisturbed. This change can be viewed as due to 

localized body forces acting during an infinitesimal 

interval about time t l . This displacement ~Xl must 
1\ 

be parallel to the unit tangent vector n of the filament 

and 

!l m = f A I AXl I = constant. (2.11) 

i.eo, the density distribution "F after the displacement 

is the same as before (~f = 0). We do not restrict that 

Cl lies in a surface of constant entropy. An instantan­

eous displacement at time tl implies a particle velocity 

which is a Dirac delta function of time 

(2.12) 

For a small change 6 S carried along by the fluid 

particles we have 

(since (~) = T ) 
f 
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= J dt ~ f ~ Ss eN, 

(by equation (20 7 » 

= J dt DD t J f" ~~ eN, 

(by Reynold's transport theorem 

(Batchelor, 1968) and the condition 

corresponding to the instant~~eous displacement 

around t = t l • 

(2.13) 

The corresponding change in the variation of the 

total action W is 

D Wl = J dt ~ [F v. DV + ( ~jv,2_E_U_ f-¥ ) clf 

~E ( - f rs os] eN, 
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(2.14) 

Here dT = ri dl is the line element along Cl so 

that the element of volume of the solenoid is dV = A dl. 

Previous and subsequent to the infinitesimal interval 

around t = t l , we suppose tha t the field ' v - " \l S' is 

unaffected by the variation and except for the contribu­

tion (2.14) already calculated the variation of the total 

action vanishes. 

However, this particle substitution does not meet 

the requirements of a variation under Hamilton's principle. 

A particle displaced at time t = tl to a neighbouring 

point in a physical space will remain on the trajectory 

through that point. The displacement 4X changes for 

t ) tl like the infinitesimal line element separating two 

material fluid particles and does not vanish as t ~ + ~ • 
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To restore it to zero a second substitution displacement 

is necessary at some time t2 defined by. a mass exchange 

around the solenoid C2 consisting of the same material 

particles which were involved in Cl' of magnitude equal 

to ~m but in the opposite sense. The change in the 

total action under this second substitution displacement 

is 

~ m ~ (v - T) VS). dI. (2.15) 
C2 

Then for times t > t 2 , the variant trajectories 

coincide in all respect with the originals and Hamilton's 

principle applies. It states that, 

• 
ioe., (2.16) 

Clearly the same is true at any times t l ,t2 for 

any closed material filament C consisting of fluid 

particleso This is precisely the generalized circula-

tion theorem. 
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4. Remarks 

The instantaneous localized displacements 

considered here are not continuous and are not allowed 

under the rules of variational principles. However, 

we may approximate them by smooth functions as closely 

as we wish. 

Gouin (1976) has proved that Kelvin's circulation 

theorem is a consequence of the invariance properties of 

the action under certain group of transformations. Though 

it is evident that the circulation theorem can be associated 

with Noether's second theorem, it has not yet been derived 

by a direct application of the theorem. 



Chapter 3 

AN EULERIAN VARIATIONAL PRINCIPLE 

FOR NON-BAROTROPIC FLOWS OF AN IDEAL FLUID 

1. Introduction 

As discussed in chapter 1, the indeterminacies 

and redundancies in the definition of potentials in 

Eulerian variational principles like Herivel-Lin 

formulation demand new variational principles avoid­

ing these difficulties. Bretherton's (1970) work was 

an attempt in this direction. In this chapter, we 

introduce an Eulerian variational formulation for non-

barotropic fluid flows by using suitable field variables. 

Euler's equations of motion are obtained as Euler-

Lagrange equations of variations. It is a generalization 

of the variational principle for barotropic flows due 

to Drobot and Rybarski (1959). 

2. Matter and entropy flows 

We consider the Euclidean four dimensional space X. 

A point x in X has coordinates x«, « = 0,1,2,3, where Xo 

is time and x«, « = 1,2,3 are space like coordinates. 

Some of the results presented in chapters 3 and 4 have 
been published. (George Mathew and M.J.Vedan (1989) ). 
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p(x) and s(x) are four dimensional vector fields 

(4-vectors) with components pa and sa, a = 0,1,2,3 

defined as follows: 

Definition (301) : 

(a) P = (pO, pi, P 1.., p3) = ( I 1.. or ) r ' rv, IV , f v , 

( b) - (s 0 s' , z. S3 ) (t S-, pVI ~ .3) 
S = , s , = S, rv s, fV S " 

where f is the dens i ty, Vi, vl-, vJ are components of 

the velocity and S is the specific entropy. 

Let H denote any three dimensional hypersurface 

in X and dH a denote the oriented surface element on H, 

= 

I 

where e A = ea~y~ i; Levi-Civita tensor and dl~, dlY, 
at-'Y~ 

dl~ are three linearly independent vectors lying on H so 

that dH a is normal to the hypersurface H. 

Definition (3.3): 

The mass contained on H represented by the 
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integral ~ dHapa is called 'the complete matter flow'. 
H 

In particular when the hypersurface H is ~pace­

like three dimensional volume V, we have dH o = dV, 

dH I = dH2 = dH3 = 0 and 

(3.4) 

reduces to the usual mass. If H is closed and consists 

of Vt ,Vt and moving two dimensional boundary Lt of Vt o I 

for to < t < t l , then 

fJ dH a 
pa = J po dV

t J po dV t H Vt Vt I 0 

tl 

+ J dt J 0-
dL t · (3.5) p v. 

t rt 
0 

This is called the matter balance for moving 

region. In general, the hypersurface may be open. In 

this case the complete matter flow represents a generaliza­

tion of the motion of the mass contained on H. 
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Definition (3 0 5): 

j dHaS a is called 'the complete entropy flow'o­
H 

From the definition of pa(x) and sa(x) it is 

clear that 

and 

where o a 

= '\f + dive I v) 

= 

'div ' is the divergence operator in 

( 
I :t 

X , X , xJ
) space and v = ( v' , vl., v:z) 0 

Definition (3.8): 

The action W is the functional 

W = J dV L(x, p(x), sex) ) 
V 

in which the Lagrangian L is any given function 

depending on x, p and 5 only and V is a 4-dimensional 

volumeo 

(3.6) 

(3.7) 

(3 0 9) 



26 

The usual Lagrangian is given by 

(3.10 ) 

where E is the internal energy and U(x) is the potential 

energy. 

Let F be a function space of vector valued 

functions of the 4-vectors p and 5 supposed to be regular 

in X. We consider the following infinitesimal transforma­

tions of X and F into themselves: 

,..,a a Sxa(x), I x = x + 

_a . a ~pa(x), I (3.11) p = p + I 
,..,a s = sa + Ssa(x), i 

where 

b xa ( x) = e(a(x) + o(e), I 
~ 

$ pa( x) = e na(x) + o(e), I (3 c 12) 

and ~ 
d sa( x) = e Qa(x) + o(e). I 
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In (3012) ( , nand Q are arbitrary functions belonging 

to the space F and e is a scalar parameter. The functions 

bpa(x) and fsa(x) are called local variations of the 

fields p and 5 respectively. 

Definition (3.13): 

(a) ~ J dH a 
a P 

H 

,-
where H denotes the hypersurface obtained from H 

by the transformations (3.11) is called the 'total 

variation of the complete matter flow'. 

( b) 

is called the 'total variation of the complete entropy 

flow' • 

Following Drobot and Rybarski (1959), we have 

the following identities: 

Ll ~ dHapa = ~ dHa [~pa_ c)~(p~ 6Xa _ pa ~x~) 

+ c)~pl3. ~ xa J ( 3.14) 
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Definition (3016): 

The functional 

Aw = e [ :e J eN L (x, p (x), 5 (x» ] 
V e=O 

.-J 

where V is obtained from V by the transformations 

(3011) is called the total variation of the action W. 

Now we impose certain conditions on the variations 

of p and s. 

( i) For every hypersurface. H for which dH J xa = 0 the a 

total variations of the complete matter flow and complete 

entropy flow should vanish; 

i.e., L1J a 
= 0 and L1J dH sa = 0, (3.17) dHaP 

H H a 

and 

( ii) the variations b pa and [sa sa tisfy the equations 

aa( £ pal = 0 and a ( d sa) 
a = 0 . (3.18) 
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Definition (3.19): 

(a) The variations 6pa and Ssa satisfying conditions 

(3017) and (3.18) are called the 'local hydromechanical 

variations' of the fields p and 5 respectively. 

We denote the hydromechanical variations of pa 

and sa by ~pa and $osa respectively. 

(b) The variations given by 

= 

and 

= 

are called the 'total hydromechanical variations of pa 

and sa, respectively. 

Theorem (3 .20) : 

All local hydromechanical variations of pa and sa 

are of the form 
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6 pa = c)~ (pp [xa _ pa ~ xP) , I 0 I 
and I 

dOS a c)~ (s~ $ xa - a S x~) I = s I ) 

where dxa are arbitrary infinitesimal functions 

belonging to the space F. The proof is similar to 

that given by Drobot and Rybarski (1959). 

Thus equations (3.21) define an infinitesimal 

group of transformations of the vector fields p(x) and 

and sex) depending on arbitrary functions 6xa • 

(3.21) 

The conditions defining the hydromechanical 

variations are appropriate counterparts of the necessary 

constraints for fluid flows. 

3. Generalized Variational Principle 

We now state our variational principle as follows: 

, For all bxa vanishing on the boundary of the 

region V the total variation of the action vanishes, , 
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i.e., ~w == L1J dV L(X', P(.X'), s(X') ) 
o \( , 

= 

= 0, 

provided that dpa, £sa are hydromechanica1 variations'. 

Using the expressions for 

by (3.21), we have 

where 

) 

d sa given 
o 

(3.23) 

(3.24) 
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and 

= 

s ~ being the Kronecker delta. 

Definition (3.27): 

The expressions ~a' a = 0,1,2,3 are called 

'hydromechanical Euler-Lagrange expressions'. 

(3.26) 

Since dxa vanish on the boundary of V, the first 
\ 

integral on the right hand side of (3.24) vanishes. Thus 

we obtain from our variational principle (3.22) 

(3.28) 

Since dxa are arbitrary functions in the interior 

of V, we get the equations of motion as 

Since 

~ = 0, a = 0,1,2,3. a (3.29) 

(3.30) 
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the four equations (3029) are linearly dependent. 

When the Lagrangian takes the usual form (3010) we 

get the following equations: 

a = 0: 

o (11-1 2 ) -. ~( ~1-vI2.) at ~ v + v v ~ 

+ 'V.( VP + VU ) = 0, 
po 

, a = 1,2,3: 

where P 

V"P 
o 

p 
- VU , 

is the pressure. 

Note that the equation (3.31) is a generalized form of 

Bernoulli's equation and the equations (3.32) are 

Euler's equations of motion. 

(3.31) 

(3.32) 

All these equations are deduced under the assumption 

that the functions pa and sa are continuous in the whole 

region. 
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Thus we have extended the variational principle 

of Drobot and Rybarski to non-barotropic adiabatic 

inviscid fluid flows and obtained Euler's equa tions 

of motion as Euler-Lagrange equations of variations. 



Chapter 4 

NOETHER THEOREMS AND CONSERVATION LAWS 

1. Introduction 

In the calculus of variations the theorems 

of Noether (1918) describe a relationship between 

the invariance of the action integral with respect 

to given groups of transformations and some identities 

satisfied by Euler-Lagrange expressions. There are 

two types of Noether theoremso The first theorem 

deals with transformations depending on scalar para­

meters and the second theorem deals with transformations 

depending on functions. They can be roughly stated as 

follows (Logan, 1977): 

(i) If the action W is div-invariant under an 

r-parameter continuous group of transformations of 

the variables, then there result r identities between 

Euler-Lagrange expressions ~k and quantities which 

can be written as divergenceso 

(ii) If the action is div-invariant under a group of 

transformations which depend upon r arbitrary functions 

and their derivatives upto some order q, there exist r 
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"identities between the Euler-Lagrange expressions ~ k 

and their derivatives upto order q. 

In this chapter we adapt these theorems to the 

variational principle discussed in chapter 3 and examine 

some applications. 

20 Noether's first theorem and Galilean 
group of transformations: 

We consider a class of transformations depending 

on scalar parameters. 

Let W = J eN L (x, 'P(x), sex) ) 
V 

be defined on a suitable function space. We consider 

the infinitesimal transformations defined by 

,...a a a x = x + b.x , a = 0,1,2,3, 

where ~xa are functions of x~, p~(x), s~(x) 

and their derivatives. 

Then the functional W is transformed to 

= 

(4.1) 

(4.2) 
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= J dV L ("X, P (x), 5 (X) ), ,.., 
V 

where" is the transformed region of V. 

Now we have, 

where 

and 

~w o 

= 

= 

Definition (4.8): 

(4.4) 

(4.7) 

(a) The functional W is said to be'hydromechanically 

invariant upto a divergence (div-invariant), with respect 

to the transformations (4.2) if there exists a vector 

(Ca) such that ~oW = 0aca identically in V. 

(b) If Ca = 0 in (a) so that ~oW = 0, then W is said 

to be 'absolutely invariant' with respect to the transfor­

mations (4.2). 
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Noether's first theorem can be adapted to our 

variational principle as follows: 

Theorem (4.9): 

If the functional W is div-invariant with respect 

to the transformations (4.2), depending on r arbitrary 

parameters, then exactly r linearly independent linear 

forms of the Euler-Lagrange expressions $t-a are 

divergences, provided the variations of the field 

variables are restricted to hydromechanical variations. 

Proof: 

.. 
By the hypothesis of the theorem, within the 

infinitesimals of first order, 

= (4.10) 

and 

= Ca "m m (.. , m = 1,2,3, • •• , r J (4 0 11) 

where ... , £r are infinitesimal scalar 

parameters and g:, c: are given functions. 
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From equation (3.24) we have 

Substituting from the equations (4.10) and (4011) in 

the equation (4 0 12), we get 

m identically in £ and V. Hence 

which completes the proof. 

During the motion we have 

equation (4.14) becomes 

o (T" 9 a - C" ) = o. f3 a m a 

~ = 0, and a 

(4.12) 

(4 0 13) 

(4 0 14) 

We apply the formula (4.15) to the case when 

(402) is the group of Galilean transformations. For 

this, we suppose that the action is absolutely invariant 
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with respect to the transformations defined by 

a,13 = 0,1,2,3, 

in which aa and a; are scalar parameters satisfying 

the conditions 

0 a 0, for CI,~ 0,1,2,3 I a~ = a o = = 
I 

and ~ 
aa + a~ = 0, for a, ~ = 1,2,3. ! ~ a 

In this case Ca = 0 and by equation (4.15) we have the 

following conservation laws: 

~a (T~a) -- 0,· a A-a 1 2 3 u , ... - , , , • 

and 

~a( M~y ) = 0,· a-a 1 2 3 u... - , , , 
~,y = 1,2,3. 

where 

a a y a A 
M = T x - T x .... 
~y ~ y 

(4.17) 

(4.18) 

(4.19) 

(4.20) 
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Substituting in equations (4.18) and (4.19) the 

expressions for T~ given by (3026), we get the conserva­

tion laws of energy, impulse and angular momenta 

respectively. If L takes the usual form given by (3.10) 

these laws become the familiar ones: 

(i) D (1 1_1 2 + U 1 (P+E) ) ~ rOt '2 v +- = Ft: f 

( ii) r gt (v) = - v P, 

and 

(iii) D 
f Dt ( 

-x Xv ) = - x X'VP. 

3. Noether's second theorem and generalized 
Helmho1tz theorems 

P, 

Now we state Noether's second theorem adapted 

to hydromechanical variations. 

Theorem (4 0 24): 

(4021) 

(4022) 

(4.23) 

If the functional W is div-invariant with respect 

to the transformations 
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+ ••• + 
a.Al A 2· •• A A q 
s 

(4.25) 

depending essentially on r arbitrary functions ~s, 

s = 1,2, ••• ,r and their derivatives upto a given order q, 
aAl 

the coefficients A~, As ' ••• etc. being given functions, 

there exist exactly r linearly independent identities 

between the Euler-Lagrange expressions 1_ and their 
~a 

derivatives, provided the variations of the field 

variables p and 5 are restricted to hydromechanical 

variations. 

Proof: 

By the hypothesis, W is div-invariant under the 

transformations (402). 

In definition (4.8a) we take 



43 

= r a ( ~s ) 
s 

a). a )lA2 
= Ca ~s + Cs lOA ~s + Cs 0 ~s + s 1 .A lit 2 

a~l A 2· •• Aq 
0 ~s, + ••• + Cs ~l • •• Aq 

where are given functions. 

Substituting from equations (4.25) and (4026) 

in equation (4.12), we have 

= J 
V 

identically in the functions ~s and in the region V • 

..v 

Let 1\ ~(.) be the operator adjoint to the operator 

1\ ~( .) 

(4.26) 

(4.27) 



44 

Integration by parts gives 

+ (4.29) 

As the functions ~s are arbitrary, we select 

them so as to vanish along with their derivatives upto 

order q-l on the boundary ~v of V. Therefore, from the 

identity (4.29), it follows that 

and these are the identities for the Euler-Lagrange 

expressions ~ 0 This completes the proof. a 

(4.30) 

We apply this theorem to the group of transforma-

tions (4.2), consisting of those L1 xa for which 

and Oosa = 0 (i.e., hydromechanical variations of the 

field variables are vanishing identically). The 

following theorem characterize this group of transforma-

tions. 
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Theorem (4 0 31): 

Hydromechanical variations of pa and sa vanish; 

ioe., bopa = o~{p~ b.xa _ pa .6xt3) = ° (4032) 

and 

6 sa = o~{s~ A x
a _ sa bxt3) = 0, 

0 

if and only if 

where fi is an arbitrary scalar function, u~ is an 

arbitrary four vector and ~ is any vector satisfying the 
~ 

conditions 

).. 
p ( o~ ~~ - o~ ~~) = ° (4.35) 

and 

(4 .. 36) 

S being the specific entropy. 
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Following Drob9t and Rybarski (1959, theorem 4), 

we have the following results. 

Lemma (4.37): 

J pa = 0 if and only if o 

I. xa arJ. 
£...::. = P ~ + (4.38) 

where ~ is an arbitrary scalar, (u~) an arbitrary 

4-vector and (~~) is any 4-vector satisfying the condi­

tions (4035) • 

Lemma (4039): 

If 

where~, (u~) and (~~) are chosen as in lemma (4.37), 

then 

Proof of the theorem (4.31): 

Let 

(4.40) 

(4.41) 
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a' = p S, 

= o~(s13 b.xa - sa Llx~), 

= o~[S(p~..6. xa _ pa ..6x~) 

= o~S f a
f;3 + S ~Opa • 

Necessary part: 

], 

Let 60pa = 0 and 60s
a 

= o. Then from 

equation (4043) we have 

Since [ pa = 0, by lemma (4.37), b. xa takes the form o 

(4034) with the conditions (4.35). Then lemma (4.39) 

and equation (4044) ensure the condition (4036). This 

completes the proof. 

Sufficient part: 

(4.42) 

(4.43) 

( 4.44) 

Let .6 xa take the form given by (4.34), together 

with conditions (4.35) and (4.36). Then bopa = 0 by 
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lemma (4037) and fa~ = ea~).~ 0;.. ~ll' by lemma (4.39) • 

. (' a a~ r a 
Thus 00p = 0 and o~S f = 0, which imply 00s = 0 

by the relation (4 043). This completes the proof. 

As the differential opera tor defining b. xa in 

(4034) has to satisfy the side conditions (4035) and 

(4.36) we cannot apply the theorem (4.24) directly to 

get identities like (4.30). We use Lagrangian multipliers 

to incorporate the side conditions and derive identities 

corresponding to (4 0 30) in an indirect way. 

Since 

(4.12) we get 

cl pa = 0 and 
o 60sa = 0, from equations 

(4.45) 

'1ve trans form the righ t hand side of the equa tion 

(4.45) by Gauss formula into a hypersurface integral 

over the boundary oV of the region V. On oV we take 

~ = ~~ = 0 and the vector u~ normal to it. Then 

~ xa 
= 0 on oV and equation (4.45) becomes 

(4.46) 



49 

provided that the side conditions (4035) and (4036) 

hold. (Here we have used the relation (3.30) ). 

These side conditions are taken by means of the 

Lagrangian mul tipliers f1 ~ and Ca.. 

Thus we have 

(4.47) 

where the functions ~ are arbitrary functions provided 
~ 

that they vanish on the boundary aV. Integrating by 

parts, the last identity leads to the following conclusion: 

there exist vectors n~, Ca. such that 

These are the identities corresponding to (4.30). 

As n ~, C~ do not depend on the particular choice of 

u~, we can choose u~ arbitrarily. As the side condi­

tions (4.35) are linearly dependent, one of the 
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Lagrangian multipliers can be chosen arbitrarily. 

Put ting U o = 1, u 1 = u2 = u3 = 0, n 0 = 0 in the 

equation (4 0 48), we get the following identities: 

~ = 0: 

div (11 + Z x VS) = 0 , 
where 

D= ( Ponl 2. 0 3 ) , pD , p , 

( = 
, 2 .J 

({,e,C ), 

and 'dive is the divergence operator and three 

dimensional vector notations are used for convenience. 

~ = 1,2,3: 

o -
- at (12 + 'x VS) 

- \l.x « 1) + Z x VS) x v ) 

+ V ( t,0 + V 0 Z ) x VS, 

using the relation OS 
Ot = o. 

(4.50) 
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Since ~ = 0 during the motion, equations (4.50) 

reduce to 

h (h) + \l x Ch. x v ) + h (Z xV'S) 

+7x C( CxVS) x v) 

= '\1 ( CO + v. Z ) x VS. 

We shall show that these identities lead to the 

conditions equivalent to generalized Helmholtz theorems, 

when the Lagrangian takes the usual form given by (3.10). 

Since the usual Lagrangian does not depend on 

s', S2 and S3 the last three condi tions in (4 0 36) can 

be deleted. Then the equations (4.51) reduce to 

\ 

(4.52) 

If we define the quantity -r as the time integral 

of CO P 

t 
i.e., -C = J CO(x,t)dt, 

o 

using the condition 

(4.52) in the form 

DS fit = 0, we can write the equation 

(4.53) 
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%t (11- \71: x \7 S ) + "V x (( ?l -'V 1: x vs) x v) = 0 

which is the 'Helmholtz-Zorawski criterion' (Truesdell 

(1954), Truesde11 and Toupin (1960) ) for the conserva-

tion of the vector lines and the strength of the vector 

tubes of the vector field 'n - V! x VS' 

Note that when L takes the usual form the 
-Euler-Lagrange equations ~ = 0 become the vector 

equation (3032). 

Using the thermodynamic relation 

= 9'1 - T VS, 

where I is the specific enthalpy and taking 

curl of the vector equation (3 032) we get 

%t ew) + \l x (w x v) = "V T x VS. (4.55) 

"" Comparing the equations (4 052) and (4.55) we can easily 

see that 

n = w 

equation (4 052). 

and CO = T is a solution of the 
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t 
In this case, "'[; =. J T dt = 11, the thermasy defined by 

o 

(207) and the equation (4 052) becomes the 'Helmholtz-

Zorawski criterion' for the generalized vorticity 

vector I W - \711 x \] SI. Thus we have the following 

results: 

(i) -The vector lines of I w - 711 x VS I are 

material lines" 

(ii) The strengths of the generalized vortex tubes 

are conserved during the motion. 

These are precisely generalised Helmholtz 

theorems. Thus the identity (4,,52) obtained as the 

Noether identity of the transformation group defined 

by (4.34, 4.35 and 4.36) corresponds to generalized 

Helmholtz theoremso 



Chapter 5 

HELMHOLTZ FIELDS AND GENERALIZED CONSERVATION LAWS 

1. Introduction 

In barotropic flows of an ideal fluid we have the 

following conservation laws related to vorticity field w. 

Kelvin's circulation theorem (5;1): 

If C is a closed curve consisted of material 

particles lying on an isentropic surface, then 

~ fP v. dl ;:: 0, (5.2) 

where v is the velocity vector. 

Helmholtz vorticity theorems (5.3): 

(i) If Cl and C2 are any two circuits encircling 

a vortex tube in the same direction then the circulation 

around Cl is equal to the circulation around C2 

i.e., (5.4) 

Some of the results presented in this chapter will appear 
in the Journal of Mathematical and Physical Sciences. 
(Thomas Joseph and George Mathew). 
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(ii) Vortex lines are material lines. 

(iii) The strength of vortex tube defined as the 

circulation around any closed circuit encircling the 

tube remains constant as the tube moves with the fluid. 

Cauchy's vorticity formula {5.5}: 

o (~) 
Ot f = 

Conservation of helicity (5 0 7): 

If V is a volume of fluid bounded by a closed 

vortex tube then 

OH Dt = 0, 

where H is the total helicity of the region V 

defined by 

H = J VoW dV . 
V 

This conservation law was discovered by Moreau (1961) 

and Moffat (1969, 1978, 1986) independently. 



56 

Conservation of potential vorticity (5.10): 

then 

If A is a fluid property satisfying g~ = 0, 

gt ( w. \lA ) = 0 . 

f 
(5.11) 

The quanti ty We \lA is called potential vortici ty. 
f 

This conservation law is due to Ertel (1942) where he 

uses S, the specific entropy, in the place of • 

In non-barotropic flows none of these conserva-

tion laws hold. But Mobbs (1981) has shown that all 

these conservation laws can be extended to non-

barotropic case by replacing the velocity v by v-" VS 

and vortici ty field W by w - '\7" x V S in some of their 

ocurrences in the relevant equations. Mobbs calls the 
\ ~ 

quanti ty w - V" xV S, the generalized vortici ty. Thus 

in non-barotropic flows we have the following results: 

Generalized circulation theorem (5.12): 

D 
Dt: ~ (v-1') VS) .dl = 

C 
o 

} 
( 5.13) 
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where C is any closed curve moving with the fluid but 

need not be on an isentropic surface. 

Generalized Helmholtz theorems (5.14): 

(i) If Cl and C2 are any two circuits encircling a 

generalized vortex tube in the same direction then the 

generalized circulation around Cl and is equal to that 

around C2 • 

(ii) Generalized vortex lines are material lines. 

(iii) The strength of a generalized vortex tube, defined 

as the generalized circulation around any circuit encircling 

the tube, remains constant as the tube moves with the fluid. 

Generalized vorticity formula (5.15): 

~( w- Vu x VS) = 0 w -'"Vu x""V'S ).v) v.(5.16) 
f f 

Conservation law of generalized helicity (5.17): 

For any fluid region bounded by a closed generalized 

vortex tube the total generalized helicity is conserved. 
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i • e • , ~ J ( v-Tt 'V S) • (w- V Tt x VS) eN = 0 . 
V 

(5.18) 

Conservation of generalized potential vorticity (5.19): 

If A is a fluid quantity such that A. -= A (s, T) 

and DA 
Dt = 0, then 

o (( w- V n x VS). '1)", ) = 0 . 

TIt r (5.20) 

In this chapter we show that the properties of any 

smooth solenoidal vector field g(x,t) satisfying the 

differential equation of the type (5.6) lead to conserva-

tion laws similar to those discussed above. Using this 

concept we generalize some conservation laws related to 

generalized vorticity field. We borrow the terminology 

'Helmholtz fields' for such fields from Thyagaraja (1975), 

who has studied some of its properties in barotropic flows. 

We use the following equations describing non-

barotropic flows of perfect fluids: 

Conservation of momentum, 

Dv 
Dt = - ~(I+U) + T \l S , 
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The continuity equation, 

~ + fyr. v = 0, 

and conservation of entropy, 

OS 
Dt = 0, 

-where v is the velocity vector, f the density, 

5 the specific entropy, I the specific enthalpy 

and U is the potential energy due to any conservative 

body forces. It is assumed that the equation of 

state can be written in the form 

E = E( f ,5), 

where E is the internal energy. 

20 Helrnholtz fields and conservation laws 

Definition (5.25): 

A Helmholtz field is a vector field g(x,t) 

satisfying the equations 

\le g = ° 
and 

I 
I 
I 

(5.22) 

(5.24) 

(5.26) 
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From the equations (5.6) and (5.16) it 

follows that wand 'w- \7T} xY"S' are Helmholtz 

fields in barotropic and non-barotropic flows 

respectivelyo 

The general solution of the equations (5.26) 

are discussed in Truesdell (1954), Lamb (1932), 

Serrin (1959) and Marris and Passman (1968). 

Definition (5.27): 

(a) A g- tube in a fluid is a material structure 

formed by closed field lines of a Helmholtz field g. 

(b) A g- filament is a g- tube of infinitesimal 

cross sectiono 

Theorem (5028): 

In a non-barotropic flow 

~ ~ g. Cv- T} \l S) eN = 0 , 

where V is any volume of fluid bounded by a g- tube t. 
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-Rt ~ g. (v-T)VS)dV = ~ ~ ( 1 ) . (v-T) V S) f eN I 

-
= ~ ~ ( ~ ). ( 'v -T) VS) f eN 

-

-
+ ~ ( 1 ). ~ (V-T) VS) feN, 

} 

(by Reyno1ds transport theorem) 

-
~ ( f. V) v. (v-T) 'V S) r dV 

+ J g.[-V"(I+U) + TV'S - ~(T)VS)]eN) 
V 

(by equations (5.21) and (5026) ) 

+ J «g.V)v).v - J g.V(I+U)dV, 
V V 

(5.31) 
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where we have used 

~(TJVS) = TV'S + TJ[-( VS. V)v - VS x w ] , 

which follows from the equations (2.7), (5.23) and 

the identity 

o ~ -i5t( '\7 A) = 7 ( D t ) + w x \lA - (Y'A. • V ) v . 

By straight forward simplifications we can show that 

the integrand of the first integral in the right hand 

side of the equation (5.31) vanishes identically. 

Now, 

/« g. V' )v).v dV = / V. ( ~lvl2 9 ) dV, 
V V 

J 1 1-1 2 - I-
le '2 vg. n d1: = 0 , 

1: 

since g.~ = 0 on the g-tube bounding the volume V. 

Similarly, 

- I g. 'V (I+U)dV IC - IV· «1+U)g) dV, 
V V 

- 1\ = - J ( I+U ) g.n d1:, 
E 

= 0, 

- ,.. 
since gon = 0 on E. 

Hence the theorem. 

(5.32) 

(5.33) 

(5.34) 

(5.35) 
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Theorem (5.36): 

Let C be a curve defined by a closed g- filament 

and let the volume of the filament be VC. Then 

= 191 do ~(v-Tl Y"s) .d"i , 

where' do' is the infinitesimal cross sectional 

area of the filamentc 

Proof: 

The result follows from the solenoidal nature of 

the g-field which makes the strength of the g-filament 

191 do constant along the tube. 

Theorem (5.37): 

for any closed curve C defined by a g-filament. 

Proof: 

The proof follows from theorems (5.28) and (5.36). 
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Theorem (5038): 

In a non-barotropic flow of an inviscid fluid, 

the quantity g. \lA is constant in time for each fluid 
f' 

element if A is a fluid property such that Dil 
Dt = O. 

Proof: 

D (g. Vii. ) :; 
Dt f gt ( ~ ) .V~ + P 0 gt (V), ) , 

V)'.( .9 V)v + g [ Y' (DA ) 
- ·F • f Dt 

+ w x V-i - ( \l A 0 V) V ] . 

(By equations (5 0 26) and (5.33) ) 

By straight forward simplifications we can show that the 

right hand side of the equation (5.39) is identically zero 

if gt = O. This completes the proof. 

Theorem (5.40): 

In the class of non-barotropic flows in which 

g. ~S vanishing identically, 
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D J --Dt v.g dV = 0 
V 

where V is any fluid region bounded by a closed 

g-surface I. 

Proof: 

~ J v.g dV 
V 

-
= gt J 

V 
f V.( 1 ) dV, 

= 

= 

-
~ f gt Cv. F ) dV, 

(by Reynold's transport theorem) 

J [p Dv 
V I Dt • ~ + f v. ( ; . V ) v] eN, 

= J (-\7(I+U) + TV5)."9 dV 
V 

+ J v. (g. V )v dV 1 

= J\l·(~lvI2_I-u)9)dV, 
V 

(since g. V 5 = 0) 
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- 1\ -since g.n = 0 on the g- surface t. 

3. Remarks 

From the present discussion we find that most 

of the conservation laws involving vorticity fields 

both in barotropic and non-barotropic flows follow from 

the properties of Helmholtz fields. 

Since for non-barotropic flows • w- V"1l x VS' 

is a Helmholtz field, replacing g by 'w-Vll x'\7S' in 

theorem (5.28) we get the conservation law of generalized 

helicity. Note that the theorem (5.37) is a particular 

case of generalized circulation theorem. Theorem (5 0 38) 

is a generalization of the conservation law (5020) and 

theorem (5.40) is a generalization of the result proved 

by Gaffet (1985): The total helicity in fluid region 

bounded by a closed vortex tube is conserved during motion 

of non-barotropic flows of an ideal fluid in which potential 

vorticity is indentically zero every where. 



Chapter 6 

DISCUSSION 

Kinematics of rotational motion contains the 

essence of fluid dynamics. In particular classical 

hydrodynamics may be characterized by the kinematical 

statement of Kelvin's circulation theorem and in this 

way all the general properties of barotropic flows of 

inviscid fluids subject to extraneous forces will 

appear as certain purely kinematical theorems valid 

for arbitrary medium. As Mobbs (1981) has generalized 

almost all the conservation laws related to vorticity 

in barotropic flows to non-barotropic cases, the 

kinematical theorems valid in barotropic flows can 

be studied as special cases of more general ones. 

This is the basis of our studies contained in this 

thesis. 

In the second chapter we have used the familiar 

Eulerian variational principle to derive generalized 

circulation theorem. In a homogeneous fluid, particles 

with the same velocity, density and entropy are 

indistinguishable and they may be interchanged without 

affecting the physically interesting properties of the 



system at all. Associated with the' invariance of the 

action integral under a reshuffling of particles 

which leaves the velocity, density and entropy un­

altered, we expect some fundamental invariants of 

motion and these are shown to be those implied by 

generalized circulation theorem. It is to be noted 

that unlike in Bretherton's (1970) treatment we are 

allowing the variations of entropy also. 

In the third chapter we have suggested an Eulerian 

variational principle in a quadridimensional formalism 

using the field variables p and 5 defined by 

and 

( " I 5 = s, s 

as functions of space-time coordinates. Note that in 

this vector notation the familiar conservation laws of 

mass and entropy take the simple forms, 

and ~ sa = 0 va • 



69 

The variations of these field variables are restricted 

by conditions conformable to the familiar constraints 

of fluid flows. We call the variations of these field 

variables as hydromechanical variations. It may be 

noted that the conditions used for defining the hydro­

mechanical variations of pa and sa have the following 

implications: Condition (3.17) requires that for the 

variations axa tangential to the hypersurface H, 

the total variation of the complete matter and entropy 

flows contained on H shall vanish and this corresponds 

to the conservations of particle identity and particle 

entropy, as pointed out by Finlayson (1972a). 

Condition (3.18) is equivalent to 6(Oapa ) = 0 and 

&(0 sa) = 0, which require that no local variations a 
of the sources of mass flux and entropy flux. We have 

shown that the hydromechanical variations of the action 

leads to Euler-Lagrange equations of motion and a 

generalization of Bernoulli equation. In this variational 

formulation we do not use any Lagrangian multipliers as 

in other Eulerian variational formulations like Herivel-

Lin or Seliger-Whitham methods. It may be noted that 

though Zaslovskii and Perfilev (1969), Bretherton (1970), 

Wilhelm (1977) and Bampi and Morro (1984) have obtained 
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equations of motion of ideal fluid flbws without using 

Lagrangian multipliers, they had to apply hybrid methods-

mixing both Lagrangian and Euler~n variations. 

In the third chapter we have disscussed the 

invariance properties of the action (3.9) in connection 

with the hydromechanical variational principle. We have 

adapted Noether theorems to our variational principle 

suitably. Noether's first theorem is applied to the 

Galilean group of transformations to obtain the conserva-

tion laws of energy, impulse and angular momenta. To 

apply Noether's second theorem it is necessary to find 

transformation groups depending on arbitrary functions 

under which the action is div-invariant. This in 

general depends on the form of the Lagrangian. But 

whatever be the form of the Lagrangian, there is a 

transformation group leaving the action div-invariant; 

viz. those variations of the independent variables for 

which ~pa = 0 and We have characterized 

this group and obtained the associated conservation laws. 

As the differential operator defining ~xa in theorem 

(4.31) needs to satisfy the side conditions (4.35) and 

(4.36), we have to use Lagrangian multipliers to derive 
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identities. equivalent to Noether identities. We have 

shown that when the Lagrangian takes the usual form, 

these identities correspond to 'Helmholtz-Zorawski 

criterion' (Truesdell, 1954) leading to generalized 

Helmholtz theorems. As generalized circulation 

theorem is implied by generalized Helmholtz theorem, 

it can also be considered to follow from Noether's 

theorem. The direct application of Noether's second 

theorem, without using Lagrangian multipliers, to 

derive generalized Helmholtz theorems is an open 

problem. The problem of identifying suitable trans­

formation groups associated with the conservation laws 

of generalized helicity and generalized potential 

vorticity can also be investigated. 

In chapter 5 we have used Cauchy's formula to 

define a solenoidal vector field g (Helmholtz field) 

which is a generalization of vorticity in barotropic 

flows and generalized vorticity in non-barotropic flows 

respectively. Using this mathematical concept we are 

able to prove some conservation laws involving g-field 

from which the familiar results related to vorticity 

and generalized vorticity can be recovered by giving 
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particular values to g. We have obtained these 

conservation laws involving g-fields with the help 

of the differential equation (5 0 26), Euler's 

equations of motion, equat~on of continuity and con­

servation of particle entropy. 

This shows the importance of Cauchy's vorticity 

formula both in barotropic and non-barotropic flows. 

Truesdell's remark (1954): 'although both Stokes 

and Kirchoff appreciated the central importance of 

the Cauchy's vorticity formula in classical hydro-

dynamics, it is rarely given the prominence it deserves' 

is valid even today. The work presented in chapter 5 

is an attempt to shed some more light on this topic. 

It seems that the g-fields are related to the 

Clebsch's representation of the velocity field in an 

Eulerian variational principle. We can see that the 

conservation laws associated with generalized vorticity 

are closely related to generalized Weber transformations 

(Serrin (1959), Mobbs (1981) ), 

.... 
v 

.... 
where Vo and a are Lagrangian variables. 
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I t follows tha t 9 = ~ A x VB, where A and Bare 

Lagrangian variables defines a class of Helmholtz 

fields. The exact relation between the g-fields 

and Clebsch's potentials remains to be investigated. 
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