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Chapter O
INTRODUCTION

This thesis is a study, motivated by the work
done by N. Hindman and others, of the extension of the
semigroup operations in N, the discrete set of natural
numbers; Z x Z, where Z is the discrete set of integers
with componentwise operations of addition and multiplica-
tion and R, the set of real numbers considered with both
the discrete and usual topologies,to their Stone-Cech
compactifications BN, B(Z x Z) and BR (in the case when
R is discrete) and pR, the LMC-com@actification (when R
with usual topology is considered as a semitopological
semigroup). Various properties applying the arithmetic
on the growth X* = BX\ X, have been discussed when X is N,
Z x Z or R« We have also studied the general situation of
E-completely regular spaces X and in particular when E is
a topological field we have constructed the maximal

E-compactification ﬁEX in a manner analogous to BX.

A compactification of a topological space X is a
compact space K together with an embedding e:X —— K with
e(X) dense in K. We will identify X with e(X) and consider
X as a subspace of K. The Stone-Cech compactification is

that compactification of X in which X is embedded in such a
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way that every bounded, real-valued continuous function

on X will extend continuously to the compactification

and is denoted by BX. In 1930, Tychonoff discovered

that those topological spaces which can be embedded in

a compact Hausdorff space are precisely the completely
regular (Hausdorff) spaces. This was essentially the
beginning of the general study of Hausdorff compacti-
fications, since we can obtain a compactification of a space
by embedding it in a compact space and then taking

its closure. Once one compactification has been obtained,
others can generally be constructed as quotient space of
it. Tychonoff's original embedding was into a product of
closed intervals, using the set of bounded, continuous,
real-valued functions as the indexing set of this product.
By using an appropriate subset of this indexing set and
proceeding in essentially the same way, any given

Hausdorff compactification can be obtained. This technique
was studied extensively by Cech [1937]. It was this study
which apparently established the presently universal notation
of BX for the compactification. Using entirely different
techniques, Stone [1937] constructed a compactification
equivalent to BX and showed that it had the same universal
mapping property as that of BX. This construction was
simplified by Gelfand and Kolmogoroff{ 1939] and we use for

our purpose this mode of construction of BX. 1In this
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construction, BX is taken as the set of all Z-ultrafilters
on X with the following topology. Let Z = {pe BX:Ze p}.
Then {7:2 is a zero-set in X} is a base for the closed
sets in X. In particular,when X is adiscrete space, every
subset of X is a Zero-set so that {_T\:A.C. X} is a base for
the closed sets (as well as a base for the open sets).
(see [G;J] or [RC] for a detailed discussion of BX con-

structed in this way).

We also have the theory of compact right topological
semigroups and in particular, of semigroup compactification.
By a semigroup compactification, we mean a compact right
topological semigroup which contains a dense continuous
homomorphic image of a given semitopological semigroup.

The classical example is the Bohr (or almost periodic)
compactification (a, AR) of the usual additive real numbers
R. Here AR 1is a compact topological group and a:R —> AR
is a continuous homomorphism with dense image. An important
feature of the Bohr compactification is the following
universal mapping property which it enjoys: Given any
compact topological group G and any continuous homomorphism
¢: R —2? G, there exists a continuous homomorphism

\/.: AR /> G such that L= g.a.

Compactifications of semigroups can be produced in

a variety of ways. We have, for our purpose used the method
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based on the Gelfand-Naimark theory of commutative
C*-algebras. Compactifications of a semitopological
semigroup S now appear as the spectra of certain C¥*-
algebras of functions on S. There is the book [BE;

JU; MI] which gives a very good account of the whole
theory of topological semigroups and their compacti-
fications. When we take S to be a separately continuous,
completely regular and Hausdorff topological semigroup,
Cb(S), the space of continuous and bounded complex-
valued functions on S, then BS, the Stone-Cech compacti-
fication of S is the space of continuous, multiplicative
linear functionals on cb(s). BS is compact in the weak *
topology and the Gelfand map f — ? defined by

?(p) = u(f) is an isometric isomorphism of Cb(S) onto
c(ps).

We have adopted this technique to study the LMC-
compactification pR of R, the set of real numbers under
usual topology, considered as a semi-topological semigroup
and taking pR as a quotient space of BR. Neil Hindman has
considered the unique left continuous extensions of ordinary
addition and multiplication to BN, the Stone-Cech compacti-
fication of the (discrete) set N of positive integers. It
was known previousiy that there exist associative left

continuous operatibns on BN, but it was Glazer (GL) who



observed that these operations can be defined in terms of
ultrafilters. (By left continuous we mean that fx defined
by fx(y) = x*y is continuous). Glazer proved directly that
Galvin's almost translation invariant ultrafilters exist
and obtained as a corollary the proof of the finite sum
theorem. Glazer's observation was that an almost trans-
lation invariant ultrafilter is exactly an idempotent with
respect to an operation in BN which extends ordinary addi-

tion on N.

Hindman has extensively studied the problem of
extending an operation on a discrete semigroup S to its
Stone-Cech compactification BS and the relationsﬁip between
these extended operations. He has shown that these extens-
ions and their interrelation have been a useful tool in
combinatorial partition theory (Ramsey theory). Hindman
prefers to work with ultrafilters. To mention a few of
Hindman's work, he has proved that there is a multiplicative
idempotent in the topological closure of the set of additive
idempotents [HIl] and that there are no simultaneous additive
and multiplicative idempotents. He has presented several
results about whether p+qg = r.s is possible, where at least

one of p,q,r,s is in N and others in B N\N.

For the elementary definitions and results in
topology, reference may be made to [WI]; for theory of
ultrafilters, to [GJ], [WA] and [CO; NE].
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In chapter 1, we define a new kind of types of
ultrafilters on N, called S-types, 'S' standing for semi-
group, 8imilar to the types of ultrafilters on N. Types
of ultrafilters (on w) were first defined and considered
by W. Rudin [RU]. Frolik [FRl], [FRz] uses them in
connection with the non-homogeneity of Bw\ w. Hindman
and Strauss [H; S] have shown that the only topological
and algebraic copies of N* to be found in N* are the
trivial ones, namely k.N*, ke N. We have used this fact
to define S-types on N* which satisfy many properties
analogous to those satisfied by types and relative types.
The fundamental properties of the Rudin-Keisler order
were studied by M.E. Rudin [RU] and by H.J. Keisler [KE].
We have introduced an order relation among S-types similar
to Rudin-Keisler partial order on types of ultrafilters.
Though the properties of S-types seem exactly similar to
that of types, the members of S-types are different and
also the way they occur in the corresponding results is
different. Finally, we have shown using the restricted
distributive law in BN that the collection of S-types

form a semigroup under extended addition in BN.

-

In chapter II, we consider the space Z x Z, where
Z is the discrete set of integers. We have extended as in

BN, the componentwise addition and multiplication in Z x Z
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to B(Z x Z) which makes (B(z x 2), +) and (B(Zx 2),.)
semigroups. We have been able to.prove that the natural
map from B(Z x Z) to BZ x BZ 1is such that the component-
wise addition and multiplication in BZ x BZ result from
the extended operations of + and . in B(Z x Z). Also the
operations in BZ x BZ are not distributive. Considering
Z x Z as the Gaussian integers, we have extended the
product 'x' in Z x Z to BZ x BZ and have shown that this
extension of the product 'X' is non-associative. We have
also attempted some combinatorial results in BZ x BZ,

analogous to those in BN [Hll].

In chapter III, we conéider the discrete set R
of real numbers. Here we have first extended the ordinary
addition and multiplication in R to SR which make (BR,+)
and (BR,.) semigroups. We have shown that in contrast to
(BN,+) and (BN,.) [HI,], BR has solutions to equations
of the form p+q = p.n, p+m = p.q, p+q = p.q, where,
pP,d € BRN\R and my,n ¢ R. We have defined the fiotion of
a-remote points for an infinite cardinal a, in a discrete
topological field X with IXl > a and applied the arithmetic

defined in BX to the class of a-remote points in BX.

In chapter IV, we have studied the LMC-compécti-
fication (p, pR) of R, the set of real numbers with usual

topology, considered as a semitopological semigroup. It
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has been proved [BA; BU] that when R has the usual
topology, the ordinary addition and multiplication in R
can be extended to BR if and only if LMC(R) = Cb(R).
Here pR has been constructed as the quotient space of
BR in terms of Z-ultrafilters on R. Also, we have
obtained solutions to equations of the form f+t)= g.n,
where at least one of f, %, B, n is in R and others in
pR\R. In the case of R, we have the equalities

LUC(R) = CK(R) = K(R) = WLUC(R) = LMC(R ) [BE;JU;MI].
So the corresponding canonical compactifications are

the same so that all the properties that we have studied

in pR hold good in these compactifications.

In the fifth chapter, we have shown that remote
and non-remote points exist in pR\R. We have obtained
results analogous to those in chapter IV when we particularly

consider the remote and non-remote points.

In chapter VI, we have defined k-uniform
Z~-ultrafilters in pR, where the definition is analogous
to k-uniform ultrafilter [CO; NE]. We have obtained
results regarding the ideal structure of the collection
of k-uniform Z-ultrafilters in R, analogous to that for

a discrete space X.
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We have the Appendix A which includes the
concept of E-completely regular spaces defined by
Engelking and Mréwka [EN; MR]. We have considered E
to be a topological field and obtained the maximal
E-compactification BEX as the collection of all E-Z-
ultrafilters on X with the suitable topology. It turns
out that the E-compactification BEX plays a role within
a framework that runs parallel to that played by the
Stone-Cech compactification BX of a topological space X.
We can .study situations in BEX analogous to that in BgX,
as studied in previous chapters. However, we do not
embark on it since it involves, among other things,

a lot of spade work.



Chapter 1
S-TYPES OF ULTRAFILTERS ON N @

& 1.0. Introduction

In [GL] Glazer has defined addition '+' and
multiplication '.' in BN, the Stone-Cech compacti-
fication of N, the discrete set of natural numbers,
in the language of ultrafilters on N. Hindman [HIl]
has proved that these operations + and . are left
continuous, associative operations on BN which uniquely
extend the ordinary addition and multiplication on N.
(By left continuous we mean (in the case of addition)
that the function Ab: BN —> BN defined by Lkp(q)= p+q
is continuous for each p ¢ BN. The "topological center"
consists of those points for which fx is also continuous,
where rx(p) = p+x. Similar is the case with multiplication).
It is well known that (see [G;J]) any infinite closed
subspace of N* contains a topological copy of all of BN,
where N* = BN\\N. It was then a natural question raised
by Van Douwen D{Il]as to whether there are topological
and algebraic copies of (BN, +) in N*. Hindman and Strauss
[H;S] have shown that the only topological and algebraic
copies of N* to be found in N* are the trivial ones,

namely k. N*, for ke N.

@ An earlier version of this chapter has been published

%g ggr East J. Math. Sci. Special Volume (1997), Part I,



Types of ultrafilters (on w) were first defined
and considered by W. Rudin [RU]. Frolik [FRl] [FR,], uses
them in connection with establishihg the non-homogeneity
of puxw. The fundamental properties of the Rudin-Keisler
order were studied by M.E. Rudin [RU] and by H.J. Keisler
[KE].

We combine the above two concepts to define a
new kind of types of ultrafilters on N called the S-types,
'S' standing for semigroup. In section 1.2 we introduce
S-types using the left-continuous extensions in 8N, of
operations in N and using Strauss's result on the ultra-
filters on N. It is known that though there are 2¢ types
of ultrafilters on N in N* and 2% N* types [WA]; however
we prove that there are only countably infinite number of
points in N* of each S-~-type and 2¢ S-types of points in N¥,
We have also obtained that if p is a P-point, then every
member of the S-type of p is a P-point and that there are
2% S-types of P-points. Similarly for non-P-points.

In section 1.3 we introduce relative S-types
analogous to the relative types of ultrafilters on N.
We have shown that though the relative S-types have proper-
ties analogous to the relative types, any S-type is -produced
by at most c&o relative S-types and any S-type produces

2¢ S~-types and as a corollary we get the known result that



N* is not homogeneous. We have also introduced 'S-orbit!

similar to orbit in types of ultrafilters.

In section 1.4, as in the case of types and
N*~types of points in BN, we have shown that the producing
relation induces total order ' >p' on the set TQ[p, N%]
of relative S-types of p. We use the family {)p:pe,N* to
define a partial order '>' on the set T of all S-types in
such a way that the restriction of '>' to T;[p,N*] is >p’
for each p. Finally, we have shown using the restricted
distributive law in BN that the collection of S-types form

a semigroup under 'addition' of S-types, where addition

here is the extended addition in BN

§ l.,1., Preliminaries.

We take BN, the Stone-Cech compactification of N,
the (discrete) set of natural numbers to be the set of

ultrafilters on N with the following topology: Let
A = {pe BN : A¢ p}. Then, {K : A_C_N} is a base for the
closed sets of BN. See [G;J] or [Hll] for further details.

1.1.1. Definition [HI;]. Let AcN and xeN

A-x = {ye N: y+xe A} -
A/x ={yeN: y.xeA}

Let p,qe BN

p+q = {AQN: {xeN: A=-x¢ p}e q};
p.q ={AQN: {xe N: A/xep}e q}.



1.1.2. Theorem [HIl].

(a) The operation '+' on BN is the unique extension
of ordinary addition on N which is left-continuous
and has the property that adcition on the right by
any member of N is continuous. If p or g is in

BN "\\N, then so is p+q.

(b) The operation '.' on BN is the unique extension of
ordinary multiplication on N which is left-continuous
and has the pfoperty that multiplication on the right
by any member of N is continuous. If p or q is in

BN N, then so is p.q.

1.1.3. Remark. In BN, the distributive laws fail badly.

However, a special case does hold.

1.1.4. Lemma [HIa]. Let p,qe BN and meN. Then,

(p+q)em = p.m + g.m.

1.1.5., Lemma [H;S]. Let @ be a continuous one-to-one
homomorphism from N*¥ to N* and let e + e = e eN*\K( gN ),
where K(BN) is the smallest two sided ideal in (BN, +).
There do not exist myn e N such that @g(mte) = -n + @(e)

or #(-m+e) = n + @(e).

l.1.6. Theorem [H;S]. Assume that @ is a continuous one-to-
one homomorphism from N* into N*. There is some ke BN

such that for all pgN*, @(p) = k.p.



1.1.7. Conclusion [H;S]. The only algebraic-topological
copies of N* in N* are the trivial ones, namely k.N* for

ke N.

1.1.8. Definition (Types and N*-types) [WA]. Every
permutation o of N extends to a homeomorphism B(ag):8 N —BN
and the restriction of B(o) to N*, denoted by o* is an
automorphism of N¥*. For a pair of points p and q of N¥,
define p~q if o*(p) = q for some permutation o. Then

'~-! is an equivalence relation. Let T be the set of
equivalence classes. Let T:N* —2> T be the function which
assigns to each free ultrafilter on N, its equivalence
class. The elements of T are called types of ultrafilters.

If t =T(p), then t is called the type of p and p is said
to be of type t.

Two points of N* are said to be of the same N*-type
if there is an automorphism of N* which maps one to the
other. Clearly, if p,q are of the same type, they are of
the same N¥*-~type.

§ 1.2. S-types.

l.2.1. Definition. For a pair of points p,q ¢ N*, define
p~q if and only if o*(p) = q for some auto-homeomorphism
o* of N*, [The only auto-homeomorphism on N* are the
maps p —>mp, megN so that we may take q =mp for some

meN]. Evidently, '~_' is an equivalence relation.



Let T be the set of equivalence classes. Let 'CS:N* — T
be the function which assigns to each member of N*, its
equivalence class. The elements of T are called S-types
of ultrafilters. If t ='T;(P), then t is called the S-

type of p and p is said to be of S-type t.

1.,2.2. Remark. In the name S~-type, 'S' stands for semi-
group. Also, for meN, oh*(p) = m.p determines a homeo-
morphism of N¥ onto N*. So, an S-type is contained in a

type and an N*-type, but not conversely.

1.2.3. Theorem [WA]. There are 2% types of ultrafilters

in N* and there is a dense set of ¢ ultrafilters of each

type.

1.2.4. Theorem [WA]. There are 2¢ N*-types of points in

N* and N* contains a dense subset of each type.

1.2.5. Result. There are 2° S-types of points in N* and

there are countably infinite points in N* of each S-type.

Proof: For pe;N*,'I;(p) is the equivalence class containing
all members of N* that are equivalent to p under some
auto-homeomorphism ¢* on N* given by ¢*(p) = m.p for mgeN.
So each equivalence c;ass can contain only a countably~

infinite number of members of N¥.



Thus there are (Qo points in N* of each S-type. But
[N*|= 2°. So there must be 2° S-types.

1,2.6. Definition. A point of a topological space is
called a P-point if every Gs containing the point is a
neighbourhood of the point. Equivalently, a point is a
P-point if and only if every zero-set containing the

point is a neighbourhood of the point.

1.2,7. Theorem [WA]. N* has a dense set of 2° P-points

and dense set of 2° non-P-points.

1.2.8, Result. There are 2° S-types of P-points im N*
and if p is a P-point, then every member of 1;(p) is a

P-point.

Proof: We first show that if p is a P-point of N*, then
so is m.p for every me N. For this, we prove that every
zero-set Z(B(f)) containing m.p is open in BN. Every
zero-set in BN is a countable intersection of closures

in BN of zero-sets in N.

So, Z(B(f)) = (\l ClBN Z,,» where Z 's are zero-sets in N.
n= A

(-4
Hence, m. 1 .
e, P € an c BN Zn =—> m peclBN Zn for every n.

Thus, Zn € m.p for every n and Zn/m € p for every n.’
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h 1 is .
Hence p€1£21 clabfzn/m), where gll clgy (z“/m) open

o0
So, N clBN Z must be open by the homeomorphism
n=1 n :

p —> m.p. i.e., Z(B(f)) is open. Thusm.p is a P-point.
Thus all elements of 7;(p) are P-points. N* contains a
dense set of 2° P-points. So there are 2¢ S-types of

P-points.

1.2.9. Result. There are 2° S-types of non-P-points and

if p is a non-P-point, then so is every member of T;(p).

& 1.3. Relative S-~types

1.3.1. Definition. Any iso~homeomorphic copy of N in N*
is C*-embedded in N . By an iso-homeomorphic copy of N,
we mean an algebraic-topological copy of N. When the
iso-homeomorphism is from X onto X, we call it auto-
homeomorphism. Therefore, if X is such a copy of N in N#¥*,
then clﬂN X~BN . If we put X* = Cle XN\X, then X*aoN*,
A point p in X* must then have S-type as a point of X* as
well as a point of N*, Let h be an iso-homeomorphism of
X* onto N*. Define the S-type of p relative to X to be
T;(h(p)) and denote this relative S~type by T;(p,x). This
definition is independent of the iso-homeomorphism chosen,
since for any other iso-homeomorphism g of X* onto h*,
g.h-l sends h(p) to g(p) and is an auto-homeomorphism of
N* so that g(p) and h(p) are of the same S-type as p.



1.3.2. Convention. By a copy X of N in N* we mean an

iso-homeomorphic copy X of N in N¥*.

1.3.3. Result, Let X and Y be copies of N in N*., Then,

(a) If Y is contained in X and pe X*NY¥*, then
-(S(p’x) = Ts(pyY)o

(b) If p and q belong to X* and Y* respectively, then,
T;(p,x) = T (q,Y) if and only if there is an iso-

homeomorphism h of X* onto Y* such that h(p) = q.

(¢c) If h is an auto-homeomorphism of N¥ and p belongs

to X*, then 'Tg(p,x) = 1§(h(p), h[x]).

Proof:

(a) Let g be the iso-homeomorphism of Y* onto X* such
that g(p) = p. Let h be an iso-homeomorphism of X*
onto N*. Then,'t;(p,Y) ='t;(h.g(p)) ='T;(h(p))='1g(p,x).

(b) Let T;(p,x) = T;(q,Y). Then there exist iso-homeo-
morphisms f and g of X* and Y* respectively onto N*
such that 'T;(f(p)) ='fs(g(q)). Then, there exists
an auto-homeomorphism k. of N* which sends f(p) to

g(q). Then, h = g-l

«k.f is the required iso-homeo-
morphism. The converse follows from the definition

of the relative S-type.

(¢) Follows from (b).
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1.3.4, Definition.

(1) For an infinite subset S of N¥*, define,
T [p,S] ={Ts(p,X):XQS, XzN-} i.e., T.[p,S],
is the set of relative S-types of p which occur
relative to copies of N contained in S. Then
Z;[p, N*] is invariant. Also,'T;[p,N] ={:(s(pf}.

(2) 1f p is a point of N*, we say that a S-type t
produces 7;(p) or T;(p) is produced by t if
T;(p,x) = t for some copy X of N in N*, Thus
the set T;[p, N*] of relative S-types of a point
p of N* is the set of S~types which produce the
S-type t if there exists a copy X of N in'N* and
a point p of S-type t in X* such that‘T;(p,X) = s,

1.3.5. Result. Any S-type is produced by atmost
CQO S-types and any S-type produces 2° S-types.

Proof: Consider the countable partition of N* into a

Union Of ko N*, ke No ioeo, N* = U ko N*o Let
k=1

X, = ko N¥, Then each Xy» k€N is an iso-homeomorphic
copy of N*. Consider Xk. If Sk is countable discrete
subspace in Xk, then Sk will be a copy of N in N¥*,
and Clﬁbl Sy=BN . Since ]Xkl = 2%, X, should contain
2€ such sets Sk' So, if t is any given S-type, say
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t = Ts(q) for some qe¢ N*, then ClBNsk should contain
a point p, such that Ts(pk,sk) = Ts(q) = t. Thus
Ts(pk) is produced by t, by definition 1.3.4. Since
only No of such points p, can be of any given S-type,
t must produce 2% S-types.

Now, a given S-type t is produced by a S-type r
exactly when there is an ultrafilter p of S-type t and
a copy X of N in N* with p in X* and the S-type of p
relative to X is r. i.e., 'Cs(p,x) = r, where ‘Cs(p)=t.
Let r = Ts(q). Now, there are only f, members in N*
having the same S-type t (namely k.p, k€N). For any
of these (\}o points p_ (where 'Cs(pn) = T, (p) = t) we
have "Cs.(pn,x) = 'Cs(q) = r, where X=N and p_e X*.
iecee, 'C's(h(pn)) ='Cs(q), where h:X* —> N* is an iso-
homeomorphism. So, q = k.pn for some ke N, since there
exists some auto-homeomorphism g of N* that sends h(pn)
to q. But h and g being iso-homeomorphisms, we would
have q = k.pn, for some ke N. This is true for any
qge N*, So there can be only countably many copies Xn
of N in N* and p_€ xn* with T(p ,X ) = r = T (q). So,
t is produced by at atmost & relative S-types.

1.3.6. Corollary. N* is not homogeneous.

Proof. Let h be a homeomorphism of N* onto N* and p

and q be points of N* such that h(p)=q. If X is any
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copy of N in N¥ having p as a limit point, then we have
T;(p,x) ='ts(q,h(x)) from result 1.3.3. Thus the sets
T;[p,N*] and T;[q,N*] of relative's-types are identical.
The family {Ts[p, N*]:pe N*} of all such sets of
relative S-~-types covers the set T of S-types. However,
|T] = 2° and that of each member of this cover is atmost
c&o, since each S~-type is produced by atmost t¢o S-types.
So, there must exist points r and s of N* such that
Tglr, N*] # Tg[s, N*]. But then no homeomorphism on

N* can map r to s and so N* is not homogeneous.

1.3.7. Definition. The S-orbit of a point p in N* is
the set of points of N* which are images of p under auto-

homeomorphisms of N¥,

1.3.8. Result. For any point p in N¥, there are 2¢
points of N* which cannot be mapped to p by auto-

homeomorphisms of N¥*.

Proof. The S-orbifs of two points p and g of N¥ under
auto-homeomorphisms of N¥* are disjoint exactly when no
auto-homeomorphisms carries p to q. Thus the set of all
such S-orbits decomposes N¥* into a union of disjoint sets.
Since any two points belonging to the same S-orbit have

the same set of atmost CQO relative S-types, there must

be 2% distinct S-orbits.
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§ 1.4. Order relation in S-types.

l.s4.1. Result, If X and Y are copies of N in N*, then
the set Z = (XNY)U(X*NY) U(XNY*) is a copy of N in N*,
cl Z =clXlclYand Z* = X*¥NY*,

Proof. The set Z is discrete since each of the three

sets in the union 1s discrete and no point belonging to
any one of the sets can be accumulation point of the other
two sets. Also, we havep.mtg.m=(p+q).m. The .equalities
hold because a point belonging to both ¢c1X and clY must

belong to the closure of one of the three sets making up Z.

1.4.2. Remark. If t; and t, are both in 7%‘[p, N*], as a
consequence of the preceeding result, either two S-types
are equal or one produces the other. Just similar to the
situation that the producing relation induces a total order
on the set T[p, BN] of relative types of a point p, here
also we can see that the producing relation induces a
similar total order on the set Tg[p, N*] of relative S-

types of a point p.

The following results are analogous to those by

l.4.3. Definition. Write tl >p t2 if t2 produces tl and
define tl >p t2 if and only if tl=t2 or tl >p t2, where
tl,t2 are relative S-types of p in N¥*.
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l.4.4, Result. The relation >p is a total order on
1%[p, N*]}. Here two relative S-types of p are either

equal or one produces the other.

Proof. The arguments are identical to that for types
in BN. Here instead of considering countable discrete
subspaces X;,X, of BN, we have taken copies Xl,X2 of N
in N¥,

l.4.5. Remark. As in the case of types, each of the
total orders >p is defined only on the set Tg[p, N*]
of relative S-types of p. We will use the family
{>p:p€;N*}, to define a partial order > on the set T
of all S-types in such a way that the restriction of >

to Ts[p, N*] is > _ for each p.

p

l.4.6. Definition. For two S-types t; and t,, define

tl > t2 if tl >p t2 for some p. i.e., t, > t2 if and

1
only if t, is produced by t,. Then the relation > is
well-defined. 1i.e., for any two points p and g of N*,
the relation >p coincides with >q if and only if

Ts[p, N*] =Ts[q, N*]: suppose t; and t, belong to
Tg[p,N*]n'?;[q, N*] and that t; >p tz+ Then there are
copies of N, say X; and X, in N* such that 'Cg[p,xl]ztl
and Tg[p,X,) = t, and X, is contained in X" Since
t, belongs to Tglqg, N*], there is a copy Y of N in N*
such that 'Cs(q,Y) = t,. By result 1.3.3, there is an

iso-homeomorphism h of Xl* onto Y* such that h(p) = q.
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Then 'Z;(q,n[x2]) = t, and since h(X,) is contained in
Y*, b > .

l.4.7. Definition. If tl and t2 are S-types, write
t, > t, if and only if tl = t, or tl >ty

l.4.8. Result. The relation > is a partial order on
the set of S-types.

Proof: We proceed as in the case of types of BN except
for the fact that Xl,XQ,Yz,Y3 are coples of N in N* and

the iso~homeomorphism h must send p to q.

1.4.9. Result. If tl and t2 are S-types, then'so is
tl+t2, where + is the extended addition in BN.

Proof. Let t; =[m.p], meN, t, =[m.q], meN, where
pP,q € N*, We have the restricted distributive law in
BN given by (p+q).m = p.m + qe.m by Lemma 1.1.4. Hence,

[p.m] + [qem] = [ pem + qom]
= [(p+q) .m]

i.esy ti+ty, = [(p+q)em] 1s also a S-type.

1.4,10. Result. If tl’t2't3 are S-types, then the _
addition of S~-types as defined in 1.4.9 is associative.
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Proof: Let t; = {p.m], meN, t, = [q.m], meN,

ty = [r.m], me N, where p,q,r € N*. Then,

(ti+ty)+ty ([pem] + [qem]) + [r.m]

[(p+q).m] + [r.m]

[((p+q)+r).m]

[(p+(g+r)).m]}, since addition in BN is
associative [HIl]

[p.m] + [(g+r).m]

[p.m] + ([q.m] + [r.m])

t) + (t2+t3).

Conclusion. The S~types in N* is a semigroup under the

extended addition in BN and form a quotient set in BN.



Chapter-I1
ARITHMETIC IN BZ x Bz
2.0. Introduction

If y and § are cardinals, then Blass [BL] has
considered, the map @: B(y x&) —> B(y) x p(§), the
Stone-extension of the natural embedding (in fact
inclusion) of y x & into B(y) x B(8) in relation to the
products of filters to prove some topological properties.
In this chapter, we in particular consider the product
Z x Z, where Z 1is the set of integers with discrete
topology. We have component-wise addition + and multi-
plication '.' in Z x Z which we have extended to B(Z x Z ),
the Stone-Cech compactification of Z x Z, making B(Z x z ),
semigroups under + and . . The extension of the operations

is done in a way that is similar to that of BN (Chapter I).

In section 2.1, we have given the necessary defini-
tions and results extending the componentwise addition '+'
and multiplication '.' in Z x Z to B(Z x Z). Here we have
shown that the Stone extension of the natural map
@: p(Zz x 2 ) ——> BZ x BZ accounts for the componentwise
addition + and multiplication in BZ x BZ . Also, considering
Z x Z as the Gaussian integers, we have proceeded to extend

the product 'x' in Z x Z to BZ x BZ and have shown that

this extension is non-associative.

® Some results of this chapter were presented in the
National Conference at Pollachi-~ 'Recent Trends in
Topology', March 2-3, 1997.
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In section 2.2 we have attempted some combinatorial
results similar to that of BN [HIl]. We have been able to
prove that like BN, the distributive law fails in BZ x BZ

with componentwise addition and multiplication.

8 2.1. Extension of +, . and x to BZ x BZ

We know that, BZ, the Stone-éech compactification
of Z is the set of ultrafilters in Z, each point xe Z
being identified with the principal ultrafilter,
X =]AgZ: xeA}. For AC Z, we let A ={pe BZ : Ae p}.
Then the set {_A:AQ Z} forms a basis for the closed sets
(as well as a basis for the open sets of BZ). The opera-
tions + and . on Z extend uniquely to BZ so that (BZ,+)
and (BZ , . ) are left topological monoids with (z , +)
and (Z ,.) respectively contained in their topological

centres.

We have Z x Z with discrete topology and component-
wise addition + and multiplication . and also another
product 'x'. i.e., if (xl,yl), (x2,y2) € Z x 2, then we
have,

(x1571) + (%5,75) = (x34%x5, Y +Y5)

(x3071) o (X535¥5) = (X3e%X5, ¥;e¥5)

(xl’yl) X (x29Y2) = (xlx2 - Y1Y29 le2 + le2)
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B(Z x Z) is the set of all ultrafilters on Z x Z . As in
BZ , the addition + and multiplication . in Z x Z can be
extended to B(Z x Z) which make (B(Z x Z), + ) and

(p(z x 2),.), monoids, with respective identities. We
show that the extension of the product 'X' in Z x Z to

B(Z x Z) and thereby to BZ x BZ 1is non-associative.

2,1.1. Definition. Let CgZ x Z and (x,y)e Z x Z. Then,

C - (x,y) = {(a-x, b-y)e Z x Z: (a,b) € C}.

JIO {(a,p)ez x 2 2 (a,0).(x,1)€ C.
{(a,b)e Z xZ: (ax,by) € C}.

Let P,Qe B(Z x Z). Define,

P+Q ={CQZ X Z:{(x,y)e Z x Z: C=(x,Y)e P} € Q}.
P.Q ={c;z x Z:{(x,y)ez x Zt CI(X’Y)G p}e Q}.

2.1.,2, Result. The operations + and . are associative
left-continuous operations on B(Z x Z). If P or Q is in
B(Z x Z)\ Z x Z, then so are P+Q and P.Q.

Proof: We shall prove this for '+' only. The proof
for '.' is identical.

Let P,QeB(Z x Z). We first show that P+Qep(Zz x Z2) .
Trivially, ¢¢p+Q. Let C,D€ P+Q. Then,

{(X.y)ez x Z :+ C-(x,y)e P} eQ and
{(x,Y)S Z xZ: D-(x,y)e P}e Q.
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Therefore,
{(X.y) €Z x Z:C-(x,v)e P}n{(x,y)e Z x Z:D-(x,y)e P}e Q.

But {(x,y)e Z x Z :C=(x,Y)€E P} n {(x,y)ez x Z :D{x,y)e P}

e

={(x,y)e zx2z: (cnp) - (x,y)e P}

oo

So {(x,Y)EZ xz: (cND) - (x,y)eP}eQ. Thus CNDeP+Q.

Let C&Z x Z such that C&P+Q. Then,

{.(x,Y)eZ x Z 2 C-(x,y)€ P}#Q. Since Qe B(z x Z), this
means that [(Z x Z )\ {(x.Y)e Zx2Z: C-(x,y)eP}]e Q.

But (z x Z}\{Sx,y)e ZxZ: Cc-(x,y)€ P}
= {(x,y)ez xZ: ((zx2z )\C) - (x.Y)GP}

Thus.{(X.y)ez x2: ((Zx2)\C) - (x,y)€ P}eQ.
i.es (Z x ZNC € P+Q. Thus P+Q € B(Z x 2 ) .

As in BN , we can prove that the function .

fp t B(Z x 2) —> B(Z x Z) given by £ (Q) = P+Q is
continuous, both the addition as well as multiplication
are associative and that if P or Q is in g(z x Z ), then
so are P+Q and P}Q. The proofs are identical to those
for BN [HI;]. Also, these operations + and . on B(Z x Z)
are the respective unique extensions of componentwise
addition and multiplication on Z x Z, which are left-
continuous and have the property, component-wise addition
(respectively multiplication) on the right by any member
of Z x Z is continuous. (Here again proofs are identical

to those for BN[HIl] ).
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2.1.3. Remark. There is a natural map

@ : B(Z x 2) —> PBZ x BZ which is the Stone-extension
of the natural embedding of Z x Z. into BZ x BZ which
accounts for the componentwise addition and multiplication

in BZ x BZ , which we can see from the following results.

2.1.4. Construction. We construct a map

@ : 8(Z x2)—> BZ x pZ as given below.

Let PeB(Z x Z). Then P is an ultrafilter on
ZxZ . Consider,{Aa X Ba € P : Aa’ ch c Z}.

Let \,Q,p ={AagZ: Ay x By € P}. We can show that Ape BZ

(a) ¢ ¢& erp-

(b) Let Ay, Age ‘A.p. Then A, x B, € P and Ag X By € P.
Since Pep(Z x 2), (Aa X Ba)n(AB X BB) € P.

i.e., (AN AB) x (B,NBg)EP. So, Ay AgE \A,p,

(c) Suppose that ¢ kF AcZ such that A#.A—p. Then,
A x Ba # P for any Bag.,Z . Choose any Bagz so
that A x B 4: P. Since PeEB(Z x Z), this means
that (Z x Z)\\(A x B,)eP. Now,
(Z x Z)N(a xBy) = (A x (Z\BIU(( 2\ A) x B U
(Z\A) x (Z\B.). But A x (2\B,) & P.  _
So, either (Z\\A) x B, € P or (Z\A) x (Z\Ba)eP.
In either case, Z\ A€ A—p.
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In a similar manner, we obtain,
&, = {Bag.,z: Ay X BLE P} € Bz

Thus,
(ﬁ-p,Qp)e BZ x BZ .

We define ¢@: B(Z x Z) —> BZ x BZ to be,
3(?) = (&, B)

Evidently @ is well defined.

2.1.5. Result. The map @:8(Z x Z) —> BZ x BZ defined
by @#(P) = (\A-p, (Bp.) is a continuous map of B(Z x Z ) onto
BZ x BZ .

Proof: The map P —3 ( \B—p, (Bp) from B(Z x Z) is clearly
onto BZ x BZ , from the definition of @§. It is also
continuous. To prove this, let U x V be an open neighbour-
hood of ((A,p, (Bp)e BZ x BZ . Here U and V are open in BZ .
So,

UxVv= (Bz-NA;) x (pz - NBy),

where AiQZ, B.c Z.

j
So, - -
(A, B)) e (B2 -NE) x (Bz -NB,).

So,
Ai# \Q»p, Bj%‘ (ﬁp for some i,j, say for io,jo.

-

i.e.,
e Ai(ﬁ &A—p, Bjo% dbp'
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Hence by definition of Ap, &, Ay x By & P.

Since P€ @(Z x Z), this means that

P#‘:lﬁ(z X z) (Aio X BJO)’
So,
PeB(Z x Z)\clB(z x z) (Aio X Bjo) = W (say)

Thus W is an open neighbourhood of P in B(Z x Z ).
If Qe W, then Qé&cl (A;. x B, ).
: belg(z x 2 )Mo X By

i.e., Ay x By & Q. So, by definition, again,
(o] o

Aif s Bjﬁ By

i.e., &y e (82 -nAY, B € (pz -nBY)

i.e., (A, (BQ)e (B2 -NR;) x (B2 -NBy) =U xV

as desired.

2.1.6. Note. In BZ x BZ , we have pointwise addition
and multiplication. i.e., if (pl,ql), (p2,q2)€BZ x Bz ,
where Pysd;sPpsdy are ultrafilters on Z , then,

(pysa;) + (pysay) = (py+pyy qy+4,) and
(pl’ql) . (P29q2) = (Plop2, ql°q2) where,

P1+Pys d;+d53 PyePps d;ed, are the respective addition
and multiplication in BZ . (Ordinary addition and multi-
plication in Z have unique left-continuous extensions to

addition and multiplication in BZ , just similar to that
of BN [HI,]).



24

2.1.7. Result. The 'operations of pointwise addition and
multiplication in BZ x BZ can be obtained from the corres-
ponding extension of pointwise addition and multiplication
inZ x Z to B(Z x Z ) by the map P —> ("Ap’(Bp)‘

Proof: For P,Q € B(Z x Z ), we have,
P+Q ={CQZ X Z ¢ {(x,y)e ZxZ: C-(x,y)e P}e Q}.

Consider {Aa

x B € P+Q}. Then,

.

{(X.y)e Zxz: (A, xB) - (x,y)€ P}eQ.

.0

i.e., {(x,y) €2 x Z (Aa-x) X (Ba-y)e P}(-:Q.
Let C = {(x.y)e Zx Z: (Aa-x) X (Ba-y)ep}.
Then C€Q. Then CQCa X Da’ where Ca’DaQZ and Cax Dae Q.

We have, for ve Da’
Ca_D_ {er:Aa - xe\ﬁ-p} and {XEZ:Aa-xe p}e ‘AE)

Therefore, Ca € ﬁ—q. Since {xe Z:Aa-—x€ ﬁb}e ‘A— sy We have,

Q
AaE tgrp +\Qa. Thus for each yeDa, we have Aaeuarp -HA—Q.

Similarly, for each x € C,, we get B€ cﬁp + By
Thus,

{ag)s {Ba]) = (Bp +dg, & + 8 ) ‘
= (dp ,Bp) + (A, B
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Also we have,

&

P4Q {-Aagz Ag X Bg € p+Q}

CBP+Q = {Bagz Ay X By € P+Q},

where, ‘Q’P+Q’&P+Q EBZ.

So,
(\ﬁ'p_._Q, (f.‘»p+Q)e BZ x BZ and we have,

Bog = dp + B By g =By 485y

Likewise with respect to pointwise multiplication in

*
Z x Z , we have the extended multiplication in B(Z x Z )
given by

P.Q ={c:g_z x Z :{(x,y)e Zx2:C /(x’y)ep} € Q}.

As in the case of addition, we take {Aa x By € P.Q}.

Then we obtain,

({Aa},{Ba}) = (Bp. B B B
(B, Bp) (B, B in gz x p2

i.e., pointwise multiplication in BZ x BZ can be obtained
from the unique left continuous extension of pointwise

multiplication in Z x Z to B(Z x Z ).

2,1.8. Definition. We now define the product 'X' in
BZ x Bz . Let (py,ay), (py,ay)€ BZ x BZ .
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Define,

(py»ay) x (pysap) = (py+Py-a;-dp, P;-Ax+d;-Pp),
where,

~qy+9p = -l.ql.qz.
With respect to this product, BZ x BZ is a groupoid,
since,

(Py+Py = Q)+dps P;+Go+d;.Pp) € BZ x BZ .

2.1.9. Result. Let (p;,q;), (py,ay) €BZ x BZ . Then
the product in B8Z x BZ given by,

(pysay) x (pprap) = (pyePy=q;:dys Pj-Go+d;.Pp)
is non-associative.

Proof: We prove this result by an example.

Let (p,0), (1,1)€e BZ x BZ where p is a non-principal
ultrafilter on Z .

(py0) x (@,1) x (1,1) = (p,0) x (1-1,1+41) = (p,0)x(0,2)
(0-0, 2p+0) = (0,2p) (1)

(p,0) x (1,1)) x (1,1) (p-O,p-o-O) X (lrl) = (pyp)x(lyl)

(p-p, p+p) (2)

Evidently, (0,2p) # (p-p, p+p), where p-p = p + =lsp
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§ 2.2. Some combinatorial results in BZ x BZ

2.2.1. Notation. w represents the set of non-negative
integers viewed as ordinals. w is also the cardinality
of countable infinity. Given an infinite set A, we
denote by [A]Y, the infinite subsets of A and by G}(A)

the set of finite non-empty subsets of A.

2,2,2, Definition. Let AcZ x Z .

{zr Fe@um)}
{jTF :Fe@f(A)},

where the addition and multiplication taken here are

Define,
FS(A)
EP(A)

"

"

componentwise.

2.2.3. Result. There exist (pl,ql),(pz,qz)e BZ x BZ\(ZxZ)such

that (p),q;)+(py»q)) = (py,q;) and (py,a5).(pyya5)=(py,a5) .

Proof. + and . are associative left-continuous operations

on ( BZ x BZ N\(Z x Z ) which is compact.

2.2.4, Remark. As in BN [Hll] we have the following
results and the proofs are somewhat identical in some

results to those results for gN.

2.2.5. Result. Let (p,q), (p',q')€( BZ x BZ N\YZ x 2 )
such that (p,q)+(p,q) = (p,q) and (p',q').(p',q") = (p',q').
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If A xBe(p,q), CxDe(p',q'), then there exist
Ee[axB]¥, Fe[cxD]¥ such that FS(E)g AxB and FP(F)g CxD.

2.2.6. Corollary. Letz xz = U Aj+ Then there exist
i<r

iKr, j<r, Aela]", Be[Aj]w such that FS(A)G A;, FP(B)gAj.

2.2,7. Definition.

r ={A x BCZ x Z ¢ there exist C e [AxB]Y
such that FS(C)g AxB}.

—ﬁ = {(p,q)e BZ x BZ : (p,q)c.r'}-

2.2.8. Result. —ﬁ is a closed nonempty subset of BZ x BZ
and . :T‘xﬁ——)ﬁand X s r‘xr‘ -—)r‘.

Proof. That [ # @ is a consequence of the extension of

the finite sum theorem. To see that ' is closed, let
(p,q) € (BZ x Bz )\J". Pick AxBe (p,q)\ﬁ. Then
clig, x pz )(AXBIN M= ¢. That['a(Bz x BZ )N (z xZ)

follows from the fact that every member of r' is infinite.
We prove that x :T\ X P —-}F
Let (ploql)y (p2,q2)€ r‘y and AXBe(ploql) X (p2,q2)-

ioeo, AXBe (plopz b qloqz, ploq2 + qlop2)

ioeo, ({Xez H A-Xepl-p2} e-ql.qz ']
B-yepl-qz}e q;+P,) .

~
m
N
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Pick (x,y) # (0,0) such that A-xgp;.pPy, B-Yg Py-dye

[We have . :r,x P —_ r‘, the proof of which is identical
to that for BN ]. So there exist C € [A-x]¥ such that
FS(C)g A-x ; D€ [B-y]” such that FS(D) ¢ B-y.

Let E x F ={(x,y) + (Zi’zj) : (zi,zj)e C x D}.

Then, FS(E) x FS(F)g A x B €(p;,q;) x (p2,q2). Thus

(pl’ql) X (929q2) E-ﬁ°

2.2.9. Result. Let (p,q)e (BZ x BZ N(Z x Z );
(myn)ez xz . If (p,q) + (p,q) = (p,q), then,
mZ x nZ € (p,q)-.

Proof: We have,
(z x ZN{m} x {n})= @\{mPx {n} U ({m} x(Z\{n}])U
(Z\{m}x Z\{n})
Since {m} x {n} 4(p,a), (z x ZN{m}x {nDe (p,a).
icee, (2\{m})x {n}) U ({m} x (2\{n})U
(A{m} x 2\{n}) € (p,q)
Here the only possibility is Z\{mjx 2z\{n}e(p,q).

ie., ({x€2z :(2\{mD- xe?}, {y ez:(2\{n})-ve Pe (p,q),
because, (p,q) + (p,q) = (p,q).

Pick (x;,v,)€ Z\{m}x Z\{n} such that,
(Z\{m}- x;) x (Z\{n}- v;) € (p,q)
Pick (xp,v,5) € (Z\{m}x 2\ {n}) N(Z\{m}-x;) x (z\\{n}-y;))
= (\{m} N (2\{m}-x)) x (2\fa }nEZ\{n} - v,))
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We have,
(z x Z)\({m} x {n}) = U U mz +t) x (nZ +t)
t<n t<m
Pick (al’bl)’ (agsby) € Z x Z such that
(xl,yl) = (alm+t, bln+t)
Then (x2,y2) + (xl,yl) = (( al+a2)m+2t, (bl+b2)m+2t)
while (x2,y2)+ (xl,yl) € (mZ +t) x Z +t), a contradiction.

Thus t = 0. So, mZ x nZ € (p,q).

2.2.10. Result., Let {zn}= {(xn,yn)} be an increasing
n<w

sequence in Z x Z. Define
T: zxz— FS({zn:n<w}) by

T( ¢ 2f(“), z 2f(“)) = I z_, where
n€ F ne F ne F P

F g (Pf(w) and f: N —> 2Z such that
f(n) = n/2 if n is even

-(2_-9, if n is odd.

Let (p,q)€ (BZ x BZ )\(Z x Z ) such that (p,q)+(p,q)=(p,q).

Let (r,s) ={A x BCZ x Z : there exists CxD e (p,q) with
T(cxD)g AxB}.

Then (r,s)€ BZ x BZ\(Z x Z ) and (r,s)+(x,s) = (r,s).
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Proof:

Since (r,s) and (r,s)+(r,s) are both ultrafilters,
it suffices to show that (r,s)¢ (r,s)+(r,s). Let AxBg (r,s).
Pick CxDe (p,q) such that T(CxD)g AxB.

Let E = {(x,y)e Zx2Z: CxD - (x,y)e (p,q)}. We claim that
TE)e{(x,y)€zZ x 2 : AxB - (x,7)€ (r,9)}. Let (x,y)e T(E).
Pick (xo,yo) € E such that 't(xo,yo) = (x,y). Pick

y = (& 2f(n), g 2f(n) ).

Fe(Pf(w) with (x I o
n ne

0*Yo

Let m = max F. Since (xo,yo) ¢ E, (cxD) - (xo,yo)s (p,q).

i.e., (C-x,) x (D-y,) e (p,q).
Also, 2m+12 X 2m+lZe(p,q) by Result 2.2,8.

so, TL(C-x,) x (D-y ) N(2™1z x 2™1z )]¢ (A-x) x (B-y).
To prove this, let
(zz5) € [(C-x ) x (D-yo)r\(2m+lz x 2™17 3]

Pick

GE(Pf(w) with (zl,z2) =( z 2f(n)' T 2f.(n) )
ne G neG

Then min G > m, since (21,22)5'2m+12 x 2l

Thus, TC x,,v)+(z),z,) = (& 2f(n) 5 5f(n),

n€eFUYG ne FUG
= I (x b,y )= L (x,vy.)+ I (x_,y.)
ne FUG n’’n ne F n’’'n neG n’fn’.

T(xooyo) +T(21922)

(XQY) +I(zl’z2)°
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Since (xo,yo) + (21,22)5 CxD, we have,
(X‘,Y) + —C(zl’ZQ) €t(CXD)g_AXB.
Thus "C(zl,z2) c AxB - (x,y), as desired.

To see that (r,s) is an ultrafilter on Z x Z , let,
E{é@f(r,s) and pick %6 (Pf(p,q) such that for each
A xBe3, there is a CxDe% with T(CxD) c AxB.

Then ﬂ{(’{ e (p,q) and T(ﬂ% )¢ ni , so 1de(r,s).
Since ¢ ¢ (r,s), it suffices to prove that AxB ¢ (r,s)
or(Z x ZN\(AxB) ¢ (r,s) whenever AXBEZ x Z . Let
AXBC Z x Z and CxD = T (AxB). If CxDe(p,q), then,

T(cxD) =T( "C-l(AxB))g AxB so that AxBg (r,s). Other-
wise, (z x Z )\ .(cxD) € (p,q) in which case,

@z x Z NJ(cxD)g (z x 2 )\ _(AxB) so that
(z x Z\N(AxB) € (r,s). That (r,s) is non-principal

follows from the fact that T is finite to one.

We now establish that the distributive laws fail
on BZ and hence on BZ x BZ .

2.2.11. Result. Let{An:ne N} U {Bn:ne N} c [(z]¥

with lAnanI < w, whenever m,ng N. Then,

o ENCI <7\',,\z»nclﬁz\z<nL€) (Ba\2) = ¢

Proof. Let C = (A\ U By For ne N, we have,
k<n
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ANC = An\(kLé)n B,) so that [ANC| ¢ w. Thus for

ne N, we have, K;\ZQ C\Z . Also, for neN,

(C\Z)N(B\Z ) = ¢ because, CNB g é_(} (A ,NB)
n

so that lCﬂBnl < w. Therefore, C\Z is an open and
closed subset of BZ\ Z containing U (T\:\Z) and

neN :
missing U (B.\ 2).
n €N n\

2,2,12. Result. LetH ={pepz\z : for all q and r

in BZ\Z, p.(g+r) # p.q + p.r and (p+q).r # p.r + q.r}.
Then the interior in BZN\Z of H is dense in BZ\Z.

Proof: A basis for the open sets in BZ\\Z 1is,
{:ﬂ\ Z:A € [Z]w}. Let A [Z ]¥ and define a monotonically

increasing sequence {xn]} such that X € A, whenever

neN
neN. Let B ={xn:n € N}. Then B€ [A]¥. We show that

B\ZcH. To this end, let p g B\Z. Let,
C = CJ‘Bz\z U{ﬁm:mez}, D=cle\zU{_Bm+n, myneZ , m> n},
E = clg, U{an : myn € Z, mg n}.

We now establish the following.

(1) If mym',n,n' € Z, and (m,n) # (m',n'), then
[ (Bm+n) N (Bm'+n')| < w .

Let m,m',n,n' € Z with (myn) # (m',n'). Let a = min+m'+n’.

We show that if k>a, t>a, then X\ -1 # xtm'-o-n' (a' can be
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negative, zero or positive) and hence
|Bm+n) N (Bm'+n')| < 2a. Let k > a, t > a. Assume

first that k=t. If m=m', then n#n'. So, X M+ N # x, m'+n' .

Then we assume that m > m'. Then,

(ka+n) - (xtm’+n') = xk(m-m') + n-n'
# O except in the case when
xk=0 and n=n', in which case

)th

the difference between the (k+1 term onwards is different

from zero.
Now assume that k > t. Then,
] ] = - ! -
(ka+n) - (xtm +n') = x)m=x,m' + n-n' £0

even when n=n' because X) m > xtm'.

(2) c,D,E are pairwise disjoint.

We show that DNE = @, the other two proofs being
similar. If m,m',n,n' € Z such that (m,n) # (m',n'), then
by (1), |(Bm+n)N(Bm'+n')| < w. So by the previous result,
DNE = ¢.

(3) For any q,re BZ~2Z.

(a) p.gecC, (b) p.gtr e D, (c) (p+q).r €E.

Let q,r € BZ\Z. To see that p.qe C, let G € P.qg.
Then, {er:G/x e_p}eq. So pick meZ such that G, € p-
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Then |G/ NB| = w. So |GNBm| = w. Then, GNC # &.

So p.q ¢ C. To see that p.q+r ¢ D, let G ¢ p.qg+r.

Then {x € 2 :G-xep.q}er. So, pick ngZ with G-ngp.q.
Then {x (A :(G-n)/ xep}eq andgqe BZ\Z , so pick mdn
such that (G-n)[m € p. Then I(G-n)!mnBl = w. So,

|GN (Bm+n)| = w. So, GND # . Thus p.q+reD. To see
that (p+q).r ¢ D, let G € (p+q).r. Then,
{xe Z: Gl xep+q}er. So pick me Z with G[mep+q.

Then {x € Z: G[m —xep}eq, so pick x ¢ Z with G[m-xep.

Let n = mx. Then | [(G|m)-x]NB| = w, so, |GN (Bmn)|=w.
So GNE = @ and hence (p+q).r € E. Let q,r ¢ BZ\Z.

Then p(g+r)e C and p.g+p.r € D so that p.(g+r) ;é P.q + pP.Tr.
Also, (p+q).r €E and p.reD so that (p+q).r # p.r+q.r.

2.,2.13, Result. The distributive law fails in BZ x BZ
with componentwise addition and multiplication.

Proof follows from 2.2.12.



Chapter II1I
ARITHMETIC IN BR FOR DISCRETE R

3.0. Introduction

In this chapter we consider the set R of real
numbers with discrete topology. As in BN and BZ it can
be seen that the ordinary addition and multiplication
in R can be uniquely extended to BR, making (BR,+) and
(BR,.) semigroups with identities O and 1 respectively.
The extended operations are left continuous and associa-
tive and the topological centers of (BR,+) and (BR,.)
are (R,+) and (R,.) respectively. Though all these
properties are analogous to that in BN and BZ, here we
have obtained situations that are in contrast to those

in BN mainly because, R is algebraically a field.

In section 3.1, we define addition and multiplica-
tion in BR analogous to that in BN and discuss properties

characterizing sums and products in BR.

In section 3.2, using the characterizations
discussed in section 3.1, we obtain solutions to equations
such as p+q = r.s when at least éne of p,q,r,s is in R and
others in BRN\R. We have shown that solutions exist in

the case when the members of BR\R are strongly summable

ultrafilters on R. )
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In section 3.3 we introduce the concept of
a-remote points in BX for a discrete topological field X
where w { a |X| We have obtained several results using

the arithmetic in BX using the a-remote points.
§ 3.1. + and . in BR.

Taking R, the set of real numbers with discrete
topology, as mentioned earlier, BR is the collection of
all ultrafilters on R with the following topology.

Let A ={p € BR: A¢ p}. Then{l_\':AcR} is a base for
the closed sets in BR . The points of R are identified
with the principal ultrafilters.

Definition 3.1.1. Let p,geBR . We define + and . in
BR as follows:

p+q ={Ag:_R :{xeR A=x ep}eq}.
pP.q ={AQ_R :{xeR A/xep}e q}, where
for Ac R, and x€ R,

A-x = {yeR ! X+Yy € A} ={z—x:z € A}.
Alx ={yeR : XY e A} {zlx:ze A}, when x#£0

R, when x = O€ A

@ when x=0¥A .

Result 3.1.2. The operations + and . are associative
left continuous operations on BR . If p or q is in

BR\R, then so are p+q and p.q.
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Proof: We shall prove this for + only. The proof for .

can be similarly obtained.

Let p,ge PR. First of all p+q £ @, because, Rep, Req

and R + R € p+q, since for each xeR, R-x = R.

g & ptq , for

@ € p+q =){xeR : ¢-xep}eq

%{xeR

¢€P}€ d=) ¥ e 4, not possible.

Let A,B ¢ p+q. Then,

{xe_R

So {x € R : A-xg p} n {xe R:B-xep} € gq.

But {xe R A—xep} n {_xéR:B-xep}: {xe R:(ANB)-x € p}.

A-x¢g p} € 9 and {xe R :B-x e_p}eq.

Thus {xe R

(AnNB)-xe p}e g. Therefore ANB e p+q.

Let AC R and assume that Aé:p+q. Then,

{xe_R : A-x € p:H;q. So, R\{xe R:A-x € p}eq.
But R\{xe R:A-xep} = {xeR:(R\A)-xe p}.
Thus {x € R : (R\\A)-x€ p}eq. Therefore, R\ A € p+q.
Thus p+tq € BR.
Let pe BR and define fp: BR —> BR by fp(q) = p+q..
We show that fp 1s continuous. Let qe€ BR and U be an

open neighbourhood of p+q. Then V = BR\U is cloced set

in BR. So, V =M Z, where Z's are some subsets in R.
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Now, p+q é} V. So, there exists Z such that p+q %: Z.
i.e., Z&p+q. 1i.e., {xe R:Z-x ep}%;q.

Let B = {xeR:Z-—x ep}. Then, Béq. So, q* B.

Now C = BR\B is an open set in PR containing q.
Let r ¢ C. Thenr *: B. i.e., B¥ r.

i.e., {xe R:Z-x¢ p}# r. i.e., Z ¢ p+r. So, p+r ¢ Z.
Hence, p+r3f' NZ =V. Hence p+tr ¢ U. i.e., fp(r)e u.

i.e., fp(C)c. U. Thus q#+— p+qg 1s a left-continuous
operation on BR. To see that + is associative, let

p,q,r,€ BR and AcR.

Aep + (g+r) & {xe R: A-x € p}eq-o-r
<"}{.ye R:{_xeR:A-xep - Yeajer
& {veR:{xeR:(A-y)-xe p}eq}er
e>{yeR:A-yepraler
> Aec(prq) + T.

Let p,q € BR and assume p+q¢BR\R. Pick x€ R such that
p+q = {A QR:xeA}. Then {x}e p+q. So,{ye R:{x}- Ye p}e q.
Since y # z=)({x}- v)n ({x} -z) = @, there must be a

unique y such that {x} - yep. Then, {x—y}gp and {y}e q,
so both p and q are principal ultrafilters.

Result 3.1.3. The operations + and . are the unique

extensions of + and . respectively on R, which are left-

continuous.
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Proof: We prove the statement for + only, the proof
of . is essentially identical. Let e: R —> BR be the
{AgR:xe A}. Let
e(x+y). For this it

embedding, where for x ¢ R, e(x)

x,y € R. We show that e(x)+e(y)
suffices to prove that {x+y}e e(x) + e(y).

i.e., {ze R : {x+y} - zee(x)} € e(y). But for z € R,

{x+y} - z€e(x) if and only if x+z Q{X-M/}. Thus,

{ze R:{x+y}- zZ€ e(x)} = {y}.

Result 3.1.4, The centers of the monoids (BR, +) and
(BR,.) contain R.

Proof: Let x¢ R, p € BR\NR. We shall show that
p+e(x) = e(x)+p, the proof for . being essentially the
same. Let Ag p+e(x). Then, {zeR:A-zep}e e(x), so
that A-x ¢ p.

But A-x = {z € R: x+z ¢ A}
- {ze R: xeA-z}
= {z € R: A-zee(x)}.

Thus, A ge(x)+p. So, p+te(x)c e(x)+p. Both being ultra-
filters, equality holds. )

Notation 3.1.5. The principal ultrafilter e(m), meR

represents m of R and so we denote it by m rather than

e(m).
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Result 3.1.6. (R,+) is a sub group of the monoid
(BR,+,0) and ( R -{0},.) is a subgroup of the monoid
(BR,+,1).

Proof: The principal ultrafilter -x is the additive
inverse of the principal ultrafilter x and for x #£ O,
the principal ultrafilter 1/x is the multiplicative

inverse of the principal ultrafilter x.

Corollary 3.1.7. For p,q ¢ BR, meR,

m+p = Mg é pP=q
mep = m.q = p=q if m #£ O.

Result 3.1.8. For pe BR\R, meR, p+m ={A+m:Ae p}.

Proof: ¢ *-; p+m because, @ % p. Let A+m, B+m ¢ p+m.
Then (A+m) 1 (B+m) = (AN B)+me p+m, since ANB € p.
Let B& R be such that Bq,p-fm. Then, B-m#p. So,
R\\(B-m) ¢ p. But R\(B-m) = (R\B)-m so that

(R\\B)-m ¢ p. So, R\\Bg p+m. i.e., ptm e BR. By the
definition of addition in BR,

p+m = {_AQR H {xe R:A-xep}e m.
Let B € p+m. Then,
{xe R:B=x € p}e m. So, B=m ¢ p.

Hence (B-m)+m ¢ p+m. i.e., B € p+m, defined as above.
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Conversely, let Cegp+m = {A+m:Ae p}. Then C-m ¢ p.
So, me{x € R:C-x ¢ p}. So, {xeR:C-x € p}g m.

i.e., C€p+tm.

We now give the characterisation of sums and
products in BR. The proofs are omitted being similar

to those in BN [HI,].

Result 3.1.9. Let p,q ¢ BR and A¢R.

(1) A € p+tq if and only if there exist C€ q and a
family {B ine C}c_p such that A D |J (B +n).
n n
neC
(2) A€ p.q if and only if there exist Ceq and a
family {B tne€ C}C p such that AD U (B.n).
n ng C n

Result 3.1.10. Let pe BR\R, me R where m £ O. Then
there exists q¢ BR\\R such that g+m = p.

Result 3.1.11. Let peBR\. R, meé R, where m £ O. Then
there exists q ¢ BR\R such that gq.m = p.

Result 3.1.12, Let pe BRand n€e R. Then there exists
q € BR such that p+q = p.n if and only if for each"A€ p

and each function f: R —> p, there exists m ¢ R such that
(f(m)+m) N(A.n) £ @.
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Result 3.1.13. Let p g BR\NR, mER. Then there exists
q € BR such that p+m = p.q if and only if for each Agp
and each function f:R —> p, there exists n& R such that
(A+m) N (f(n).n) # &.

Result 3.1.14, Let p,q ¢ BR\R. Then p+q # p.q if and
only if there exists B€ q and a family {An:ne B}C:P such
that (n.An) N (mA ) = @, whenever m,n € B.

Corollary 3.1.15., Let p,gq€ BRANR. Then p+q = p.q if
and only if whenever B€q and a family {An:ne B}c P,
there exists m,n € B such that (n.An) N (;rH-Am) £ @.

§ 3.2. Solutions to some equations in BR .

Result 3.2.1. Let pgBR\R, neR, n £ 1. Then there
exists g€ BR\\R such that p+q = p.n.

Proof: Given pgepBR\\R, let Ag p. Also, neR, where
n # 1 is given. For each ag A, consider A.n - a.

Define, B, = U (A.n-a). Let d3= B,:A€ p}. Then
AT aea A

®# ¢ ana BAlnBA2§ BAln Ao for A;,A, € Py so that

45 is a filter base. Let q be an ultrafilter generated
by (B . For this q we claim that p+q = p.n. For this,
let A€ p. Then A.n ¢ p.n. Also BAe q. We claim that

for at least one m ¢ BA’ A.n-m ¢ p. Otherwise,
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A.n-m Qp for every m€B,. So, R\(A.n-m) e¢p for
every meBA. i.e., ( RNA.n)-m ep for every meB,.

A
Since Ag p, we get AN( R\A.n-m) e p for every me BA'
Let xe AN ( R\A.n - mi) for m;€ By. Then x € A and

x € ( R\A.n)-mi. i.e., x€A and x+m;€ R\ A.n = (R\\A) .n.

So, X + my =y.n, where y € R\A.
i.e., m; = y.n-x, where y € R\\A.
i.e., my € (R\\A) .n-x, where x€ A.

In a similar manner every me B, belongs to (R\\A.n)-a

for some a € A. So, we have, B, ¢ U (R\A.n - a).
ac€A

But by definition B, = UA(A.n-—a). So, we have,
ae

U (A.n-a) & U ( R\N\A.n-a) which is not possible.
agahA ag A

Hence for at least one még¢ BA’ where,

m € U (A.n-a)\ U ( RN\A.n-a), we should have,
agA agaA

A.n - megp. Suppose that for mje BA, A.n - mj € P,

where mj eU(A.n-a)\U( R\NA.n-a). Using 3.1.12, for any
acA ~ aeA

function f: R — p, f(mj) € p.

So, f(mj)n(A.n - mj)ep. If z g f(mj) n(A.n-mj), then

z 4+ my € f(mj)+mj and z + mjeA.n

i.e., z + my e(f(mj)+mj)nA.n so that,

(f(mj)-i-mj)ﬂ(A.n) # @. Thus p+q = p.n.
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This is contrast to what we have in the case of N.

Remark 3.2.2., Let p,ge BN\ N and ne¢ N\{l}. Then,

p+a # pon [ HI,].

Result 3.2.3. Let pg BR\R, meR, m # 0. Then there

exists g€ BR\R such that p+m = p.q.

Proof: Given pe€BR\R, let Ag¢ p. For each aeA, a # 0,

we take the set (A+m)/a, where me€R, m # O is given.

Define BA = U (A-ﬂn-). Then @:{B tA¢ p} is a
a A
a€A
aZ O

filter base. 1If g is any ultrafilter generated by(B ’

then we can show that for this g, p+m = p.q.

As in 3.2.1, we can prove that for at least one n¢g B

A’
n e U (Atm) U (R\(Aﬂ)), say n,, 2l cp,
a€p @ a€A a k? 'ng
a£ 0 az 0

Using 3.1.13, if f: R —> p is any function, then f(nk)e p.

So, f(nk)n(}j}%)ef:“ If xe f(nk) n (é\}:—_k'm)t then,

x.nke‘_(f(nk).nk and A+m)- So, (f(nk).nk) N(A+m) £ @.

Hence, p+m = p.q. -

Remark 3.2.4. We do not know whether the equation

ptm = p.q has solutions with me& N and pe BN\N [le].
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Result 3.2.5. Given pgBR\(R, there exists ge BR\\R

such that p+q = p.q.

Proof: Given peBR\R. Let Ag¢ p.
Define B, = {E?TI , b £1, a,b€ A}.

Let d3 = {BA:AG p}. Then (B is a filter-base. Let q be
any ultrafilter generated by @4 . For this q, we claim
that p+q = p.q, for,

Let C€q and {AntneC}cp- Since (Bgenerates d, C=BA,
for some A€ p. Then {A ﬂAn:ne C}c p. The number of
elements in BA is the same as the number of sets.AnAn,
which belong to p. Also, for each mg BA’ AﬂAmC.A so

that BAnAm,C_'. BA and the number of members in BA equals

the number of sets BAnA ’ meBA. So we have
m
B, = U (B ). Let the members in B, be such that
A . ANA A
j€B, 3
whenever mjeBA, then mj is a member of BAﬂAm . Consider,
J

any n, € BA’ Then by definition, n, € B(AnAnk). So
ny = Ei—f , b£1, a,be AN Ank. So (b-l)nk = a.
i.e., beny = a+ny, where b.n, € (AﬂAnk).nk and

a+n, € (A ﬂAnk)+nk. Thus (( AnAnk)-t-nk) nan Ank) .n};) £ @.
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Hence, (A +nk)ﬂ (A .nk) # ¢. Hence, using the
Ny My

corollary 3.1.5, we have p+q = p.q.

Definition 3.2.6. An ultrafilter p€ BR\R is strongly
summable if and only if for each A ¢ p, there exists
B€ [A]Y such that FS(B)C A and FS(B) ¢ p, where,

FS(B) = {ZF: Fe (Pf(B)}. Here [A]” means infinite
subsets of A and (Pf(B) denotes finite subsets of B.

Result 3.2.7. If p is a strongly summable ultrafilter
in BR\R, then so is g in each of the following equations.

(1) p+q = pe.n, given pe BR\\R and n€R, n # 1.
(2) p+tm = p.q, given pe BR\R and meR, m £ O.
(3) p+q = p.q, given pe BR\R .

Proof: We prove only the first one, the proofs of the
second and third being essentially identical. The existence
of qe BRNR in each of the above equations has been proved
in the previous results. In (1), given pe BR\\R, ne R, n#l,
we have obtained q to be any ultrafilter generated by the

filter base B3 =/B tA€ p}, where, B, = U (A.n-a). Since
A A aea

p is strongly summable, for each Ag¢ p, there exists Ce[A]w
such that FS(C)g A and FS(C)e p, by definition. For each

A€p, we have B, € q and FS(C)e p means Bes(c) € 9» by the
definition of q.
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w w _
Also, Ce[A] = B, e[BA] and we have BFS(C)- FS(BC),

for,
m

Let zePS(BC). Then, z = kil X, » where x, €B..
m
i.e., z = I (cy.n-b,), where c .n-b,  with ¢, b, € C, belongs to B,
k=1
by the definition of BC.
m m
=( % ck).n -( z bk)’ where Z bk—beFS(C)
k=1 k=1 k=1
m
z ¢ =¢ € Fs(c)
eBFS(C)’ by definition.

Conversely, let yeBFS(C)‘ Then, y = a.n-b, where a,beFS(C).

m p
i.e., yvy=1( I ak).n -( I bk)’ where,
k=1 k=1
m p
a = £ a and b = I b, a,b being members of Fs(cC),
k=1 k=1
ak,bkeCO ’
m
So, Y = kz—-:l (ak.n-bk) if md>p, where we take bp+l="’=bm=0
P
or Yy = kil (ak.n-bk) if p>m, where we take a_ ;=...=a _= 0.

Therefore, yeFS(BC), since a,.n-b € B,, for k=l,...,m or
k=l,.0.,pP.

Thus BFS(C) QFS(BC) .
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Therefore, BFS(C) = FS(BC) so that we have the desired

requirement.

§ 3.3. a~ remote points in BX, for a discrete topological
field X.

Convention 3.3.1.. X is a discrete topological field.

Definition 3.3.2. [CO; NE]. Let pepX. The norm of p
denoted by | p || is defined by [p|| = min {lzl:zs Py -

p is said to be k-uniform if |lpJl > k. The space

U (s) = {peBX: el > k} is closed in BX.

Definition 3.3.3. Let w ¢ a { |X|. A point pepBX is
said to be a-remote if p chBXD, where D& X such that

|ID] § @. For k > @ > w, every k-uniform ultrafilter in
BX is an a-remote point. Also, if p is a-remote in BX,
then p is p-remote for g<a. So, p will be ana-non-remote

point if peclg,D for some DcX such that |D|} a.

Result 3.3.4. Let p be an a-remote point in BX. If me X,

then, p+m is an a-remote point.

Proof: We have, p+m = {A-i-m:Ae p} and p —> p+m is a
homeomorphism. So, if p+mecleD, where Dc X such that
lD‘fa, then De p+m. i.e., D-me p. i.e., pe clé.x(D'-m),
where D-mcX and |D-m|} a, which means that p is G-non-remote.

So we must have p+m a-remote in BX.
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Result 3.3.5. Let p be a-non-remote. Then for any

meX, p+m is a-non-remote.

Result 3.3.6. Let p,q be a-remote. Then p+q is a-remote.

Proof: Suppose that p+qeclﬂxD, where Dc X such that
ID|$ «. Then Deptq. So, B = {xeX:D-xg p}eq. For
any m€ B, D-mep. 1i.e., Dep+tm. So, p+mecleD, which is a

contradiction by Result 3.3.4, So p+§ must be a-remote.

Result 3.3.7. Let p be a-remote and q a-non-remote in

BX. Then p+q is a-remote and g+p is a-non-remote.

Proof: Suppose that p+q is not a-remote. Let p+qce ClBXD’
where DC X is such that |D| # a«. Then De p+q. So,

A= {xeX:D-xe p}eq. Then for every me A, D-meg p.

i.e., D€ p+tm. So, p+meclBXD, which is a contradiction,
because of Result 3:3°4.Thus p+q is a-remote.

Suppose that q+pfclBXD for any DcX with |[D|# a. Then

D*q—{»p:} X\ D € g+p.
= B ={xe X: (X\\D)=-x¢ q}e p.

So for any me€B, X\D-mgq. 1i.e., X\\D € g+m. Hence
D ¢ g+m. i.e., q+m¢cleD for any DcX with |D| # a,
which is a contradiction because of Result 3.3.5. Thus q+p

is a-non-remote in BX.
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Result 3.3.8. If p is a-= non remote and q is - non
remote for P<a, then p+q is a-non-remote and g+p-is

B-non-remote.

Proof: Suppose that p+q¢ clBx D for any DcX such that
]D]}a. Then, as in Result 3.3.6, we obtain a contradiction.
So p+q is a- non remote. Similarly, we may prove that g+p

is B-non remote.

Result 3.3.9. If p is a-remote and q is B- remote then

p+q is a-remote and q+p is B-remote.

Result 3.3.10. We have the following similar situations.
Let w g B £ a.

(1) p is a-remote, q is P-non remotes) p+q is a-remote,
g+p is B-non remote.

(2) p is a-non remote, q is B-remote=3p+q is a-non remote,
g+p is p-remote.

Result 3.3.11. Given that p is a-remote in BX, where
wg ag |X|], neX, nfl, there exists q a-remote in BX

such that p+q = p.n.

Proof: As in BR, it can be shown that given pe X, neX,
n # 1, there exists qe¢ BX such that p+q = p.n, where we
obtain g as the ultrafilter generated by the filter base

B = By:A€ p}, where B, = U (A.n-a) [Result 3.2.1].
A acaA
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(Here A.n ={a.n:aeA}and -a is the additive inverse
of a). Now, given that p is a-remote, we have |A| > «
for every Ag p so that lBAl > a for every BAG(B and so

q generated by (B is also a-remote.

Result 3.3.12. Given p a-non-remote in BX where w§ag |X],

ne X, nfl, there exists q a-non-remote in BX such that

p+g = p.n.

Proof: As mentioned in Result 3.3.11, we have for a given

pe BX, neX, n £ 1, a qePX generated by the filter base

= {-BA:Ae p}, where B, = aLéJA (A.n-a) (Result 3.2.1).

Given that p is a-non-remote we have, pecle D with

]DI} @.. For this D, we get By = U (D.n-a) where,
aeD

ID.n-al;La for each ag D so that IBDl;L a. Thus qe¢ clBX Bp»

where ]BDl}a. Thus g is a-non-remote.

Result 3.3.13. Given pg BX, a- remote for wgag|X|, meX,
m # O, there exists gqge BX, where g is a-remote such that
p+m = p.q. When p given is a-non-remote, then so is the

solution q.

Proof: We can proceed as in Results 3.3.11 and 3.3.12 once
we know that given peg BX, meX, m £ O, q can be obtained

as an ultrafilter generated by the filter base
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-1
= JB, :A where, B, = L) (A+m)a” ~.
@ {A Cp}y ’ A A€ A
af 0
(where a~! denotes the multiplicative inverse of a).

[Result 3.2.3].

Result 3.3.14. Given pg BX, a-remote, wga§ |X|, there
exists qe¢ pX, a-remote such that p+q = p.q. When p is

a- non remote, then so is qg.

Proof: Proceed as in Results 3.3.1l1 and 3.3.12, where q is an
ultrafilter generated by the filter base (3 = {BA:Ae o}
where, B, = U A.(a-1)"" (Result 3.2.5).

a€ A
afg 1

Remark: In the case of BR, the above situations do

not hold, once we assume the continuum hypothesis. But
in the background where we assume negation of continuum
hypothesis, then the above definitions and resultshold
in BR .



Chapter IV

ARITHMETIC IN THE LMC-COMPACTIFICATION OF R

§410. Introduction

We shall take R to be the set of real numbers
considered as semitopological sémigroup. Let Cb(R)
be the C*-algebra of continuous and bounded complex-
valued functions on R and BR, the Stone-Cech compacti-
fications of R. Then BR is the space of continuous,
multiplicative linear functionals on C,(R) and BR is
compact in the weak » topology and the Gelfand map
f —- £ defined by £(p) = p(f), u e PR is an isometric
isomorphism of Cb(R) onto Cb(BR). \

In [BA; BU] it has been proved that for a large
class of semigroups S, it is impossible to introduce an
Arens type product onto BS, in particular, this is so if
S is a closed subsemigroup of a locally compact group

which is neither compact nor discrete.

In [MI], Mitchell has introduced the space LMC(S)
(a C*-subalgebra of Cb(S)). It is easy to see that there
is an Arens type product on BS, if and only if LMC(S)=Cb(S).
So, if (p,pS) denotes the canonical LMC(S)-compactification
of S, then it is of interest to study pS as a semigroup,
particularly when S = R.
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In section 4.1 we include the preliminaries
required for the construction of (b, pR), in order

that pR can be studied as a quotient space of B8R .

In section 4.2 we construct pR as the family of
equivalence classes of z-ultrafilters on R so that pR
is the quotient space ofPR. We then extend the operations
addition and multiplication on R to pRwhich makes pR
left-continuous semigroup with respect to 4+ and with

respect to . .

In section 4.3 we characterize the sums and

products in pR.

In section 4.4, using the characterization of sums
and products in pR, we have shown that there exist solutions
for equations in pR of the form[’+‘g= a.f, where at least

one of f,tg,a,ﬁ belong to R. This behaviour of pR is in
contrast to that of BN [HI,].

§ 4,1. Preliminaries

This section is devoted to a review of the main
definitions and results which are needed for the later
results. These are not original and they are included
here for the sake of completeness; in the treatment of

the topics which relate to them, we follow [BE; JU; MI],
(RU,], [wI].
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4,1.1. Convention. S is a separately continuous,

completely regular, Hausdorff topological semigroup.
4,1.2, Definitions

(1) Let s € S and f be a function on S. By the left
(resp. right) multiplication by s in S, is meant the
mapping Eks(resp. fs) defined from S into itself by
As(t) = st (resp. fs(t) = ts) for all te S.

(2) The left (resp. right) translate of f by s is the
function f+A_ (resp. f. P ) which we will denote by L f

(resp. Rsf).

(3) A set F of functions on S is said to be left
(resp. right) translation invariant if L f (resp. Rsf)
belongs to F whenever f ¢ F and s ¢ S. F is said to be
translation invariant if it is both left and right trans-

lation invariant.

(4) A subalgebra of Cb(S) is said to be perfect if it
is a translation invariant C*-subalgebra of Cb(S) contain-

ing the constant functions.

(%) Let F be a left translation invariant normed vector
subspace of Cb(S). For each pe F', the topological dual

of F, a bounded linear mapping 'I'p is defined from F into
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B(S), the set of all bounded complex-valued functions on

S, by

Ty f(s) = p (Lsf) for all fe F and s¢ S.

The space F is called left introverted if Tpfe_P for all
feF and pe F¥. 1In the situation where F is a Banach
sub-algebra of Cb(S), F is said to be left m-introverted,
if T feF for all fe¢ F and pe AF, the maximal ideal

B
space of F.

(6) Suppose that F is left m-introverted and perfect.
By an F-compactification of S, we mean a semigroup com-
pactification (Y,X) (i.e., a pair (’}u,x) such that X is
a compact right topological semigroup and \/, is a continuous

homomorphism from S into X) of S with the properties

(c)):p(S) e A(X), (cp) F = {f-‘y.:f € c(x)}.

(Here C(X) is the set of all continuous complex valued
functions on X and A(X) is the set of all x ¢ X such that

&x is continuous).

4,1.3. Theorem ([BE, JU, MI], p. 100 Corollary 2.6).

-

Let F be a left m-introverted perfect subalgebra
of C,(S) and let (% ,,Xy) and (%,,X,) be F-compactifica-

tions of S. Then there exists an isomorphic homeomorphism
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@ from X; onto X, such that ¢'\f’l =\l,2.

4,1,4. Proposition ([HA],p. 6 , Proposition III 2.5).

Let (\p,x) be a semigroup compactification with
property (c;). Then, F = {f.‘y, :fe c(x)} is a left m-
introverted perfect subalgebra of Cb(S). Then (yp,x) is

an F-compactification of S.

4.1.5. Definition ([BE; JU, MI]).

We have the following subspace of Cb(S).

LMC(S) = {f € Cb(S):st—é p(Lsf) is continuous on'S for

all p € ACb(S)}. This is a left m-introverted perfect
subalgebra of Cb(S). Hence S has an LMC-compactification
(p,pS). An important fact about (p,pS) is that it is maximal
with property (Cl) in the sense that it has this property

and given a semigroup compactification (HL,X) of S with
property (cl), there exists a continuous homomorphism ¥y

from pS onto X such that y—= YePo

Theorem [HA]. Let F be a left m-introverted perfect
subalgebra of Cb(S) and let (4,X) be an F~compactifica-
tion of S. Then y,is a8 homeomorphism from S into X if and
only if for every closed subset A of S and s¢ S\ A, there
exists f€F such that £(s) = 1 and £(A) = {0} .
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LMC(R ) satisfies the above properties and p: R — pR
is a homeomorphism where pR is the LMC-compactification

of R.

§4.2. pR as a quotient of BR
By definition, [BE; JU; MI], we have,

LMC (R) ={fer(R) P x> (fo) is continuous for
every p e BR}, where L f is defined by

Lf(y) = (f.4)(y) = f(xy).
So, p! R—> pR 1is defined as

p(x) (p(£)).= u(L,£), for every peBR, feC (R)
We can write

p(x) (F(1) = n(Lf) = u(£.2) = (£22 ) (),
for every pe BR, fer(R).
Given t€R, define,

F(t)

Let g% (t) = {(Bt: @, is a maximal Z-filter base in E(t)}.

{# +2(£2): fec (R), 1¢ Z(f-?tt)},

Collect all the Z-ultrafilters generated by a (B, € F*(t)

and identify them. This identification is an equivalence

relation in BR\|R.
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1f (BtG-?r*(t) and t # s, then there exists
(BS € ‘5-‘(5) that is "disjoint" from-(Bt. ( 1.e., there

exists zy € (Bt and z, € (Q)s such that zln zZ, = @ so
that the Z-ultrafilters on R generated by ('Bt and CBS

are different ).

The principal Z-ultrafilter e(t), teR, where
e: R —» BR is the embedding, is generated by the Z-filter

base

3 (t) {z(f. A ):fecCy (R), lez(f. ?\t)}

e(t) = {z(£):feCy(R), tez(f)}.

This extends the above equivalence to the whole of BR
which is trivial on R.

4,2,2, Result. The equivalence defined above can be
described alternatively as follows. Let, u,u'e BR .
Then p = p' in BR if and only if,

A
(f.A) () = (ff\?\t)(u'), f eC (R), for some t € R.

Proof: For ue BR, 2-(p) = {f.?\.t:fecb( R) and

B eclﬁR z(f. ?\t), teR fixed} and p = p' if and onl-y
< <

if Z(u) = Z(p'). This translated into Z-ultrafilters

will give the result.
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4,2.3. Result. Let Y be the set of all equivalence
classes with the quotient topology. Then Y is the LMC-

compactification pR of R.

Proof: With each f.?\te IMC(R), associate a function

ge RY as follows. g(y) is the common value of (f.?kt)(p)

at every point pey. Thus, f = g.T, where T:pR — Y

is the map which assigns to each p e BR, its equivalence
class .Cp' Let C' denote the family of all such functions g.
i.e., g€C' if and only if g.TeLMC(R). Now, the weak
topology on Y induced by C' is the quotient topology, for,
by definition, every function in C' is continuous'on Y.

Hence T is continuous.

If y,y' are distinct points of Y, then there exists

ge C' such that g(y) # g(y'). Thus Y is Hausdorff. Hence
Y is completely regular.

Consider any function he Cb(R). Since T is contin-
uous, h.T 1is continuous on Y. This says that he C'.
Therefore, C'>C (R). Thus C'=C,_(R) and this mapping
gt—>g.T 1is an isomorphism.

Here T is a quotient mapping, for, given any closed
set AcR and xe¢R\A, p(x)epRand A = FnpR, for some closed
subset F of pR . Since pR is compact Hausdorff, it is
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completely regular. So, there exists ger(pR) such
that g(F) ={0} and g(p(x))=1l. Let f = g.p. Then
f € LMC(R) and f(A) ={0} and f(x) = 1.

4,2.,4, The members of pR will be denoted by f,‘q,‘[‘ etc
where P = [(Bt] for some t€ R means that P is the equi-
valence class of all Z-ultrafilters generated by the

Z-filter base (Bte 3*(t).

4.2.5. Definition. Let P, ', € pR. Suppose that
P= [®,] and 1= [Cbs] for some t,s € R.

Define,®, +®, ={zgn, Z closed : {xeR:Z-x e(ﬁt}eass}.

Similarly,
By B _—.{29 R, Z closed :{xeR:z/xe &t}e&s},

where,
Z-x ={z-x P zZ€ Z.& and
Z/x {z/X : zeZ}, when x # O

R when x = 0€2Z

@ when x =042

4,2,6. Result. (bt +(}5s and (Bt.o'bs defined above are

Z-filter bases.
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Proof: We give the proof for '+' only, that for '.!'

being identical. Let (B, € T(t), B, € 1 (s).
Let z(f.A,) € ®» Z(g.A )€ By . Then,

clp (z(£.2,) + z(g.2)) € By +®B4 so that B+B, # g,
where,

Z(f.?\t)+z(g.?xs) ={x+y:x € Z(f.?\t) yY € Z(g.?&s)}.

Now, ¢¢(15t +®, , for

e B, +d§s=% {xeR : ¢-xedbt}€d$s
= {xER : ¢€d3t}e ®s

=» @e®, which is not possible.

Let Z,Z'% (Bt-&- (Bs. Then,
1
{xe R:Z=-x E(Bt} e ®, and {xe R:Z -x e@t}e@s.

Now, {xeR:Z-xe&t}n {xeR:Z'-x € th} ={x€R:(ZﬂZ' )-x € dﬁt}.

B s being a Z-filter base,

{xe R:Z-xe&t} n {x €R:Z'—x ed&t} contains a member of (..

Thus, {xeR:(ZnZ')-x th} eBg- So, ZNZ'e B+ B, -

Thus, B +®; is a Z-filter base.

4.2,7. Definition. LetfPs= [(Bt], 1 = [(Bs], where

By € 3.*(t),65$e 4*(s) for some t,se R. Define

P+ Y, = [®t+s]’ where @, . ¢ 3*(t+s) is such that every
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Z € (Bt +(}3s is contained in some Z'eg ®t+s' Define
. :
P.Y = [(Bt.s]’ where B, _e F (t.s) is such that every

. !
ZeE®, . ®, 1is contained in some Z €®t,s .

. +*
4.2.8. Result. Given (®,, & , there is some (Bt+s€ F (t+s)
| |
such that for every Ze®, + ®,, there is some Z'e (Bt+s

such that Zc Z', and hence the addition in 4.2.7 is well

defined.
Proof: Given 03tgg-*(t), ®, € 3*(5), let Zl=2(f.?\t)(»:(1;‘5t
= Z(g.?\.s)ed&sf Then

clp (Z,+4Z,) € B+ @B, (1)

Let ze Z;+Z,. Then z = x+y, where x € Z(f.?\t), Y€ 2(9-7\5)-
So f(tx) = 0, g(sy) = 0.

if s+t £ 0, z # 0.

i.e., (fl.?\ )(z) = 0 and (gl.?\ )(z) =0, where

t+s t+s

1= T2/ (t+s)z ECp(R) and

91 = 9A5y/(t+s)z ECp(R)
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Thus z€ Z(£,.A, )N 200y Ay, ) = Z((£40)) Ay, Je By

t+s

for some (B} € F*(t+s). Therefore,

clp (2;+425)G Z((f+gy) Ay, ) (2)

Now, if Z  is any member of (Bt-b(Bs, then,

z, =z, neclo(z,+42,)¢ (Bt-f-@s . As explained above, we get

t

i ximal
t4g 1S maxim

a member Z'e (St-t-s such that Z,¢ Z', since ®

with respect to finite intersection property. Since

U
Z,cZ,, we obtain a Z" € @ 4, such that Z c z", where,

1!

Z and Z((fl+gl).'(\ ) meet in Z' E(B't+s . Thus every

t+s

(B . . £ 1 *(‘t
yA3 t+(Bs is contained in some member o ®F‘*s€ T (t+s).

If t+4s = 0, then s = -t so that (Bs =(B-t’
But (B_; =®, for some Bie3*(t). So we need consider
only (Bt+ (B't in which case also we get the above conclusion.

Similarly when z = O, we can obtain the same result.

Now, if B¢ =(Btv, and (Bs = ®¢ » then by the above
argument, every Z € G'bt +(Bs is contained in some Z'e (Bt+5.

Similarly every ZC®t, +®,, is contained in some Z'€ ®t'+s"

But 03t+ ®, =<Bt' +(Bs. . So, every member of ®t+s should

meet some member of (B and the maximality of

tl+s!
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®t+$ ’ ®t1+s' impl‘/ that (Bt'f's = (Bt"f'S' . Thus the

addition in 4.2.7 is well-defined.

4.2.9. Note 1. We have a similar result for the product
defined in 4.2.7.

Note 2. Given @, ., there is some ®, € 1*(t),
say (b't , and some (Bseg.*(s), say, 03; such that every

Z€ B, is contained in some Z'e @, + B, -

Proof is similar to that of result 4.2.8.

4,2,10. Result. Addition and multiplication defined in

PR are left-continuous.

Proof: We give the proof for '+' only.

Define f: pR —3 pR by f(Y) =P+, where f = [(Bt] and
Y= [(Bs] for some t,s ¢ R so that f+¥ = [®t+s], where,

® € ?*(t+s) is such that every Z& CBt-q-s contains some 2!

t+s
in (Bt + (Bs. If q: BR —> pR is the quotient map and U

is an open neighbourhood of P+ Y then q-l(U) is open in BR
L

and every member in [(Bt-a»s] lies in q-l(U). Then BR-g ~(U)

is closed in BR and we have BR - q (U) = N Z, for some
zero-sets Z in R, where, Z = {All Z-ultrafilters on R

containing Z as a member}. So, no member of [®t+s]
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belongs to ﬂz . So some zero set in this closed set

N z, say Z,.does not belong to @By, .- So, Zo*:@t +®,
by definition of B, .. i.e., B ={xeR:Z°-x efl‘lt}§ ®,.

i.e., B%(Bs. So no member of BR\R generated by (Bs
belongs to B = clBRB. So, every Z-ultrafilter generated
by (Bs belongs to BR — B , which is an open set in BR.

So,t = [®,Je a(pR- B) =W (say), which is open in pR.

IfE}epR is such that feW, say, T, = [(Br], for some
r € R, then B #(Br. i.e., {xeR:Zo-xe (Bt}*;(gr.

iee., Zoé— CEJ,C-HBr , and so Z°¢ ® So, no member

t+r’
belonging to [(Bt.&] belongs to N Z. i.e., Every
member generated by @, . belongs to BR- nz = q-l(U).

i.e., B, . JeuU. i.e.,f+‘ﬁe_U. Thus, f is continuous.

t+r

4.2,11. Result. The operations + and . in pR are

associative.
Proof: We give the proof for '+' only.

Let P = [(Bt], r,= [(Bs]’{): [(Br] be members of pR, for some
t,s,re R.
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2eQ+( BB {ge R:Z-ge(ﬂst}e B+B,
= {he R:{g e_R:z-g'e(Bt}- he azas} €B,
= {heR:{gePs(Z-h)-ge(Bt}G(Bs}e(Br
&2 { heR: zZ-he®, + (BS}GCBI
é# Z € (®t+®$) +®r’
Thus the two Z-filter bases B, + (Gss+ (Br) and
((Bt"' (Bs) +@®, are the same. -But P+ ("[.,+'£,) = [®t+(s+r)1’
where,O?;t+(s+r) € H'* (t+(s+r)) is such that every

ze @ contains some Z'€ (Bt + ((Bs-!-(Br) and

t+(s+r)
] t
(P+%) +%,= [B'(tys)sr 1» "heTe B(iie)4r€ T ((t+s)+1)
is such that every Ze€ (B'(t+s)+r contains some member of
1
(By+®)+B .. So, we must have ®t+(s+r) = @ (tys)+r *
because the two Z-filter bases belong to 3-*(t+s+r).

Thus, P+ (5+7) = (P+%) +7 -

4,2,12. The operations + and . are associative left-
continuous operations on pR which extend ordinary addition

and multiplication on R. -

Proof: For any x,ye R, we have by definition,

p(x) = the equivalence class consisting of the Z-ultra-
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filter e(x) [e:tR —3* BR is the embedding of R into BR]

generated by the Z-filter base,

11(x) {¢ £2(£.2):1eZ(£2), fecb(R)}

= e(x) = {8 £ 2(0):x ez(n), fecy ()]

Similarly we have p(y) = e(y).

4.2.13, Result. The centers of the semigroups (pR,+)

and (pR,.) contain R.

Proof: Let.xeR and P= [(Bt] € pR\R for some teR.

We shall show that P+p(x) = p(x)+ P, the proof for . being
essentially identical.

Consider P+p(x), where P = [@,] and p(x) = [F](x)]

Now, Ze€ @, + E}I(x):%’{yeR:Z-y C(Bt}e ;}I(x)

= Z-l€¢ ®¢ , because 1 belongs to

every member of }I(x).

But Z-1

{zeR: l+zeZ}

= {zeR: leZ-z}. i.e., Z-z intersects every
member of }I(x).

-

= {ze R:Z~-z e};(x)}.

Therefore {ze R: Z-zeﬁ(x)} € (Bt.

Therefore Ze€ 3I(x) -1»(13t .
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Thus ®, + gz(x)_c_}j—:(x) +@®,. A similar argument yields

*
3'1(’() +®, Q(Bt + }I(x). Thus every member of (Bt+x
which generates members of f+ p(x) (and (Bx-t»t) contains
*
members of (Bt + B-l(x) and 3{(x) +®t . So [(Bt+x]=[ ®x+t]'

i.e., P4p(x) = p(x) +P.

4.2.14. Result. Let P=[@®,] epR, where teR and meR,
m # O. Then, P+m =f+p(m), where, p(m) = [}I(m)] is
such that P+ p(m) is the class of all Z-ultrafilters
generated by Z-filter base @+m ={Z+m:Ze(Bt}.

Proof: By m we mean p(m), where p(m) is the class
consisting of the Z-ultrafilter e(m) [where e:R — BR

is the embedding] generated by the zZ-filter base.
Fm) ={g £ 2(£2): 1 ez(£.2,), ec,(R)]

Let f’+p(m) = [(Bt-o-m]‘ Then Z € (Bt-o—m = Z22', where,

z'e By +31(m) = 2' e By + e(m)
‘=?{X€ R:Z'-x e(Bt} e e(m)
= Z'-me@t% 2'e ®t+m (defined as above)
Conversely,

2'e (Bt+m =% Z'-m e(Bt and m ¢ e(m)



71

g{m}g{xe R:Z'-x e(Bt}
= z'e (Bt + e(m)=>2'¢ (Bt + }I(m)

So, every member of (Bt-q-m which generates P +p(m)
contains some member of (B.+m ={Z+m:Z € (Bt} and
@ +m is a zZ-filter base. Hence, P+m = [(Bt+m]=[ CBt+m].

4,2,3. Result. Let fP= [CBt] € pR for some t € R and n eR,
n #1. Then P.n = P.p(n), where, p(n) = [}I(n)], is
such that P.p(n) is the class of all Z~ultrafilters
generated by the Z-filter base @..n = {Z.n: Ze(Bt} .

Proof is similar to that for addition.

We now have the following characterizations of sums

and products in pR.

§ 4.3 Sums and Products in pR

4.3.1. Result. Let P, ¢pR, where P=[®B,], ¥, = [6]

for some t,s € R. Let ZgR be closed. Then,

(a) ze (Bt +CBS if and only if there exists Z'e¢ 055 and

a family {Bx:x € zu} c®, such that( U v)cz, where,
xez' %

for each xe¢ 2', V, is closed locally finite subset of R
such that V_cInt(B +x) and{Vx-x:xe Z'} c®,-
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(b) Ze(ﬁt . ®, if and only if there exists Z' € (Bs

and a family {B_:x € z'} c®, such that/ U V) z,
X t XE 2

where, for each x ¢ 2Z2', Vx is a closed locally finite

subset of R such thatV, cC Int (Bx.x) and{vx/x:xe Z'}C(Bt'

Proof: We establish (a) only.

Necessity: Suppose that ZG.([‘Bt +(Bs. Then by definition,
z' = {xeR:Z-x eth} €B,. i.e., 2'€B,. PutB =Z-x,x€2'.
Then, {BX:xe Z'} cB;. Now,

U= {Int (R - (Int (Bx+x)):x€ Z'} U {-Int(Bx+x):xﬁ Z'}

is an open cover of R. Since R is paracompact, {jhas a

closed locally finite refinement, say ‘\f « Let

q ={vxe\f: V,cInt (B +x), ch'}. Then 4" is a

family of locally finite closed sets. So {J | v, is
xX€Z

closed and ( U Vx)cZ. Here, for each x ¢ Z', we have
xeZ!

ch_Int (Bx+x). So, Vx—x c Int Bxc,Z-x, where Z-x e(Bt,

which means that Z-x = Z(f.Qd4) for some fer(R). Also,
for each xg¢ 2', Vx—x is a closed set in R and hence a
zero-set, say V -x = Z(h) for some h € Cb(R). So,

@ # z(h)cz(£f.a,). So, z(h) = z(h)n z(f.a,), which is

a zero-set in R belonging to (Bt, since,

z(h)n Z(f.?\t):DZ((g2+f2).?\t), where, g= h‘.?\l/t €C (R).
Thus, {Vx-x:er'}c_ (Bt‘
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Sufficiency: Suppose that there exists Z'e(Bt and a

x€ Z!
for each xe 7', Vx is a closed locally finite subset

family {Bx:x € Z'} c (Bt such that< U V)ac. Z, where,

of R such that V_c Int(B +x) and {Vx—x:xe z'}cth.
It suffices to show that/ U v ®, +®_. suppose

x€Z'

not. Then, if p€ [ @, ], then there exists

t+s

AC R U Vx)such that Agu. But p is generated
xeZ'

by ®t+s‘ So, there exists Be (Bt-t- CBS such that BgA.

Now, Bé:@t + 035 = C = {xe R:B-x ¢ (Bt}e(Bs. Also,

z' € B,. So, there exists D¢ ®, such that Dccnz'.

Pick neD. Then, B=n e(Bt. Also Vn-n €<Bt° Pick

vy € (B=-n)N (Vn-—n). Then y+ne BNV _, a contradiction.

4.3.2. Result. Let P = [(Bt]epR\R and me R. Then,

(a) There exists f)épR\R such that ‘Q-ﬁ-m =f.

(b) There exists € PRN\R such that ¢, .m =f, m £ 0.

Proof:

(a) Define B ={Z-m:Z e(Bt . Note that (Bs is .
contained in B, = ®, +®_, -

(b) Define (B, ={z/m: ze@t}. Then ®  is contained
in (Bt/m =By- B1/m*
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4.3.3. Result. Let Pe pR\R, where f = [®,] for
some t€R and let megR. The following statements are

equivalent.

(a) There is some Y, = [(Bs] such that @t-c-m =(Bt.s .

(b) For each Z€®,_, there exists n € R such that

(¢) For each function f: R —> (Bt, there exists ne R
such that (f(m)+m) N (f(n).n) ;éﬁ.

Proof: (a) = (b). Note first that te PRN\\R. We have,
Bytm =@, - Let Ze€ ®,. Then Z+me B+m . So,

Z+m € (Bt s ° So, Z+m>Z', where 2Z'€ (Bt' (Bs so that
z' =zgq4me B,. B, , where Z € B,. So {xeR:(Zo-l-m)/xe(Bt}e(Bs,
and hence is infinite. So, there exists ne R such that

(z +m), €B,, which means that (z+m), € B,, by maximality
o /ot /n- Tt

of (Bt‘

(b) => (c¢). Let f:R—B,. Then f(m)e B,. So pick ngR
such that (f(m)+m)/n€(Bt. Let y ¢ f(n)N (f(rn)-&~m)/n .

Then(f(m)+m) N (f(n).n) # d.
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(c) => (b). Let ZECBt. Suppose that for each ne¢R,

one has (Z+m)/n§ (Bt. Consider,

U={Int(z+m)/ : ne R}U{R-(Z+m)/ : ne R}. Then U is
n n

an open cover of R. Since R is paracompact, U has a closed

locally finite refinement, say |/ . Let

t\f' :{Vn(-:\f : V. CR - (Z+m)/n y, NE R} . Then \f' is a

family of locally finite closed sets. So( U , Vn)is

Vne\f
closed. Define a function f:R —3 (Bt, by

f(n) Z if n=m

( U V)ifn;ém.

Vet "

Then a contradiction is obtained.

(b)=> (a). Let @ ={{xe Ri (zem)/ €@} zuﬁt} :
X
Then @ is a Z-filter base in which each member contains

a member of the Z-filter base (B(t-t-m) =B,-
t

Let \g be the class of all Z-ultrafilters generated by (Bs.

[1f B = {xeR:(Z+m)-/ e(Bt} is a member of (} for some-Z€ (Bt,
X
then BDB' where B'e (Bs .
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So, {xe R:(Z+m)/xe CBt}e (Bs . il.e., Z+me (Bt.(Bs and
*
hence Z+m € (Bt s+ Butze 031: and. so Z+me¢ (E)t + }l(m).

i.e., z+m ¢ B = (Bt+m. So CBt+m =B

t+m t.s ]

4,3.4. Result. Let Pg¢ pR\R, where f = [(Bt] for some
te R. Let meR, where m # 0. Then there exists

{ = [(Bs]e pR such that P+m = f., if and only if for
each Ze(Bt and each function f:R -—-}(Bt , there exists
n€ R such that (Z+m) N (f(n).n) # @.

Proof: Necessity. Let Ze(Bt and f:R —> ‘Bt given.
Then Z+m € @ +m. We have f+m =f .Y . Let Z+tme B +m.

Then Z+m € (Bt < » SO, Z+m contains Z', where 2'g (Bt. (Bs ,
and Z' = Zo+m for Zoe(Bt . i.e.,{xeR:(Zoﬂn)/xe(Bt} E(Bs N
So, pick ngR such that (Zo+m)/ S(Bt. Also f(n)e€ (Bt.

n
So, (Zo+m)/nn f(n) £ 8. If x ¢ (Zg#m); N£(n), then
X en € (Z°+m)ﬂ(f(n).n). Thus (Z°+m)n(f(n).n) £d.

Therefore, (zZ+m) N (f(n).n) #£ &.

Sufficiency: Suppose that for each Ze‘.(ﬁ,c and each
f: Ry, C(2,6) = [neR:(zem) N(s(n)on) £ 6] -

We claim08={-g(z,f): zeB®,, £:R — (Bt} is a z-filter
base. In fact, given 21,22 € (Bt and fl,f2:R —> (Bt’
we have Z € (Bt such that Zc 21” Z2 and f:R — (Bt defined

by f(n)c £,(n) N £,(n). Then B(z,f)c 'G(zl,fl) n 'C(Zz,f2)
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and by assumption, G(Z,f)'# @#. In fact each member of £

contains a member of the Z-filter base ®t+m = (Bs.
t
Let ‘*L, be the class of all Z-ultrafilters generated by

® ¢+ We claim that for this {, P+m = .. For this,
we prove that (Bt+m =CBt.s + Suppose instead that there
is some Z € ®t+m\(3t.s . Then Z -m ed},t and there
exists Z;GRN\Z, such that Z; ¢ (Bt.s and so Z;DZ, where,

Z, €By.B, - Let B ={xeR:Z2/x€(Bt}. Then B € B _

Define f:R ——(}¢ by

f(n) = if ne B

YA
2/n

= U v_ifné B
neB M #'

where {Vn:ne B} is a family of locally finite closed sets
such that Vn(;R - Zz/n, for ne B .

[ U={Int Zg/n:ne B} U{R - 22/ ‘ng B} is an open cover
n

of R. Since R is paracompact, |\ has a closed locally finite
refinement say '\/ . Let ‘\f' ={Vne\f :Vnc_ R-22/ ‘ne B} .
n

Then l\f' is a family of locally finite closed sets a:nd

UB V,, is a closed set and hence a zero-set in R ]. Then
neE

ﬁ(Zo-m,f) belongs to the family £ . So, pick
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neB N "G(Zo-m,f). Then we have,

(Zo-m+m) N (f(n).n) = Z,NZ, £ @, a contradiction.

4.3.5. Result. Let PepR\R and neR, n £ 1, where
P=[® 4] for some te R. Then there exists \f) € PR such
that f +'4£= P.n if and only if for each Z € (Bt and each
function f:R ——)CBt, there exists me R such that
(f(m)+m) N (Z.n) # @.

Proof: The proof is essentially identical to that of the

previous result.

4.3.6. Result. Letf,fepR\R, where f =[®.],Y=[8 o

for some t,s € R. Thenf-i-‘g;éf ‘¢, if and only if there
exists Z e B and a family{Ax:xe z} c B, such that
(n.An) n (m+Am) = @, whenever n,m € Z.

Proof: Necessity. Since f +{ £f.Y we have B, #B, _.

In fact no member of B contains a member of (Bt and

t+s .S

no element of CBt.s contains an element of (Bt+s'
Pick D € (Bt-n-s\(Bt.s - Then there exists Z_¢ RN\.D such
that Z_ € (Bt.s. So, DDD_, Z_DZ, such that, Doe(Bt+<Bs

and Zle(Bt.(Bs . i.e.,{xeR:Do-x E(Bt} E(Bs and
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{xe R:Zl/xEdbt} e(Bs. Let B= {xe R:D -x e(Bt and Zl/xf:@t}'
Since (Bs is a Z-filter base, B contains a member Bo € (Bs.

For each n€B_, let G = (Do-n)n(zl/n). Since (Bt is

a Z-filter base, for each ng Bo’ there exists An eCBt

such that A_CG . Then {An:neBo‘}c®t and for n € B,

n+AcD, and n.A ¢ Z;, and so (n+ A )N(n.A)) = @.

Sufficiency: Suppose that there exists ZE(BS and a family
{An:nez} ;;(Bt .
cu.—. {R- (An+n):ne Z} U{Int(An+n):n€ Z} is an open cover

of R. Since R is paracompact, ‘U_ has a closed locally finite

refinement, say \f . Let “\f' ={Vne\fzvnc Int(An+n), ne Z}.

Then flf' is a family of locally finite closed sets. So,

D= U Vn is closed. Also,{-vn-n; ne Z}C(B s Since
nez

Vn--ncAn for each ne Z and Vn-n is a zero-set contained

in A_ which belongs to (Bt. We claim that De@t+s.

Suppose instead that D 4: (B

tes® Then every member of

[th+s] contains some zero-set Z, in the complement -of D.

If pne [(Bt-«-s]' then there exists Zoe(B

Z,& Z;GR\D. Now, Z, contains Z2€(Bt +(Bs. So,

{xeR:Zz-x e@t}e(gs. Also Z e(Bs. So pick m ¢ Z such
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that 22-m €(Bt- Pick x ¢ 22-m such that erm-mc:Int Am.

Then x+m ¢ Vm while x+m ¢ 22, a contradiction.

We now show that D ¢ (Bt.s . Suppose instead that
D€ CBt.s‘ Then D contains D'g (Bt.(Bs . So {xeR:D'/xﬂBt}E(Bs.

Also Z e(Bs. So, pick n€ Z such that D'/ € ®,. Pick
Y € Ann D'/n. Then y.ng¢ D'. So pick mg Z such that

y.n € V_cmA . Then y.n € (n.An) n(m+Am), a contradiction.

4.3.7. Corollary. Let f ,‘t’ng\R, where P = [@® t]’
‘ﬁ): [@s] for some t,s € R. Then f’+'f,= f‘t) if and only
if whenever Z G(BS and a family {An:nez} c®, there
exist m,n € Z such that (n.A ) N(m+A ) # &.

§ 4.4 Solutions of Equations

4.4.1. Result. Given P = (B t] € PRNR for some t € R and
n € R, nfl, there exists Y e PR\ R such that P +¥ = P.n.

Proof: Given P = [® t]e PR\ R, where t¢ R, consider "
Zﬁ(ﬁt. Ne construct a set BZQR as follows.

Let © ={Z.n:—x:xe z} be a family of closed sets. Then,

U ={R\C:C €"C} U{Int C:CE'C} is an open cover of R.
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Since R is paracompact, there exists a closed locally

finite refinement | of l.
Let 4" ={vxe\f: V. C Int C, x€ Z, ce{}. Then A"
is a family of locally finite closed sets. Let

B, = U V.. Then B, is a closed set and hence a
Z € Z X yA

zero-set.
Let U= {BZ:Z € CBJ]. Then () is a Z-filter base, each

member of which contains a member of the Z-filter base

(Bt(n—l) =(Bs- Let 'ﬂ be the class of all Z-ultrafilters
generated by (Bs. We claim that for this Y, we gét

f'+‘f’= P. n. We use the characterization result 4.3.5
to prove this equality. For this, we first prove that
for at least one m ¢ BZ, Z.n-m belongs to (Bt’ Suppose
not. Then for no mgB,, Z.n-m belongs to (Bt‘ So no

member of BR generated by (Bt contains Z.n-m for m € B,.

So every member of BR generated by (Bt must contain zero-
sets contained in R\ Z.n-m, for every m € BZ. If pe[B t]’
then there exists ZOQ_R\(Z.n-m) for some meBZ such that
Z,€p. But p is generated by CBt’ so, there exists ileﬁt
such that Z;g Z cR\Z.n-m. Also ze@t. So zZNz Dz,
where Zn e(Bt and Zog:_ R\ Z.n=m. If ye 22, then y e 2

and y € R\ Z.n-m. So y = d.n=-m, where ye Z and
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vye R\Z.n-m, d€ R\NZ. 1i.e., m=d.n-vy, where vYe Z,
de R\\Z. (Here R\Z.n-m = (R\Z).nh-m). Thus every

mie BZ has an expression my = di.n-yi, where
die R\ Z, yieZ. So, we would have,

B, & U (®\2).n-x). But, B, =(U Vx>,where
xX€Z x€ Z

v, C Int(Z.n-x), x€ Z. Thus we have,

B, ¢ U_1Int(z.n-x)C U (R\Z).n-x), which is
XeZ X€EZ

not possible. Thus for at least one mg Bz, say mg,

where moe( U VX)\ U ((R\Z).n-x), we have
x€ 2 x€Z

Z.n-moe(Bt. Also, for any function f:R — (Bt,
f(m,) € (Bt. so, f(m)) N (z.n-m_) # @. Therefore,

(£(m )+m ) N (z.n) # @.

4.4,2, Result. Givenf= [(Bt]e_pR\R, where t€R,
meR, m £ O, there exists f’epR\R such that f +m =f’.f‘.

Proof: Here, we can obtain ‘f‘ as the class of all Z-

ultrafilters generated by the Z-filter base (Bs=cB(t+m)
“t

each member of which is contained in some member of €the
Z-filter base (Q = {BZ:Z € d}t}, where B, for each z€ (B,

can be constructed as follows:
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We consider € = {C = (Z+m)/ , X0, xe¢ Z}, a family of
X

closed sets. Thenl = {R\C:C E'C} U{_Int C:CE'C} is an
open cover of R. R being paracompact, ’U_ has a closed

locally finite refinement, say \[ . Take
.\[' =lex c Int (Z+m)/x: X € Z} . Then 'lf' is a family

of locally finite closed sets. Let BZ =( U V . Then
xXeZ

BZ is a closed set and hence a zero-set. Let@ B ZE(B }
Let‘ﬁ\ be the class of all Z-ultrafilters generated by

(Bs =(B t+m each member of which is contained in a member

t
of { . For this { we can prove that f+m =f.%¢ .

proceed as in Result 4.4.1 and use the characterization

Result 4.3.4 to obtain this result.

4,4.3. Result. Given P = [(Bt1 € pPR\NR for some teR, t#l,
there exists 7, = [(Bs]epR\R such that P+'="f.y.

Proof: Given P = [(gt]e PR\R, for some te R. Consider @,.

Let Z€ (Bt' Let'C:{C =_x%l , X £ lix ez}. Then - is a

family of closed sets in R. {| =JR\C:Ce '@}U{Int c:ce{;,}

1s an open cover of R. Since R is paracompact, U, has

a closed locally finite refinement, say \/‘ « Let
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(\{' ={.Ve\f:VcInt c, Ce'C}. Then \f‘ is a family
of locally finite closed sets. Let B, =( U V)-
Ve 4!

Then BZ is a closed set and hence a Zero-set. Let

@ ={BZ:Z e(ﬁt} » Then @ is a Z-filter base, each

member of which contains a member of the Z-filter base

B = . . Let'f be the class of all Z-ultrafilters
(=)
generated by (Bs. We claim that for this ‘ﬁ ’ f+"[, = f’.‘L' .

To prove this we use the characterization in Corollary
4.3.70
Let 2! EO}S and {Am:meZ'} C(Bt be given. Then

' = Bz for some Z C(Bt and there exists Cme(Bt such
that C,c A, N Z for each meB,. So, {C :me BZ}C(Bt .

Now, Cme(Bt => che @ and hence BCp CCBS and
chc BAm n BZ for each meg BZ. So, {Cm:meBCm’}c(Bt .

Let the members meg BZ be such that m‘,j € BZ = mje chj.

Then mj € chjé mj = aj/bj—l' bj#lo aj’bj € ijo

ije(Bt. _
i.e., mjbj = mj + aj

i.e., (mj+cmj) n(mj.ij) £ d.

i.e., (mj+Amj)ﬂ(mj.Amj) £d.

Thus, there exists meg B, such that (m+Am)ﬂ(m.Am) £d.

Hence, f +¢ = f .‘(j).



Chapter-V
REMOTE POINTS IN pR

§ 5.0. Introduction

In this chapter, we prove the existence of
remote points in the LMC-compactification pR of R,
where R, the set of real numbers with usual topology
is considered as a semitopological semigroup. The
existence of remote points in BR\ R was proved, assum-
ing CH, by Fine and Gillman [FI, GI]. More information
on remote points in BR\R can be obtained from [PL],

[wo,], [wo,].

In section 5.1 we prove the existence of remote

and non-remote points in pR.

In section 5.2 the arithmetic in pR, as described
in chapter four is applied to the class of remote points
and incidentally we prove that the extended addition and

multiplication in pR are non-commutative.
§ 5.1. Existence of remote points in pR

S.1.1. Definition. A remote point of pR is a point which
does not belong to the closure of any discrete subgﬁace
of R. It is clear that any remote point of pR must lie
in pR\NR. A point of pR\R which is not 2 remote point is

called a non-remote point of pR.
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We have the following results concerning the remote

points in BX, for a topological space X.

5.1.2., Theorem [WA]. Let p be in X* where X is a metric
space of non-measurable cardinal and consider the follow-

ing conditions:-

(a) p is a C-point of X*
(b) p has no member which is nowhere dense
(¢) MP=0P

(d) p is a remote point in BX.

Conditions (a), (b) and (c) are equivalent and are
implied by (d). All the four conditions are equivalent if

the set of isolated points of X has compact closure in X.

5.1.3. Theorem [PL]. If X is a non-compact separable
metric space in which the set of isolated points has
compact closure, then BX contains 2% remote points which

form a dense subspace of X* (under CH).

5.1.4, Theorem [PL]. Consider the space R. Let R, and P
denote the set of remote points of BR and P-points of R*

respectively. Then R; and P' will denote the non-remote
1

lo) ?
P'f\Ro and P'F\Ré are each dense subsets of R¥ and each

points and the non-P-points. The set Pf)Ro, PNR

has cardinal 2° (under CH).
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5.1.5. Result. There exist remote and non-remote points

in pR.

Proof: The remote points in BR are generated by the

maximal Z-filter bases in the collection,

}R ={¢ £ z(f)c R:Z(f) is not nowhere dense, fer(R)}.

For each te€ R, the collection
®, ={¢ £2(f. A€ By, fec (R)}

is a Z-filter base in R. The class of all z-ultrafilters

generated by this Z-filter base is a remote point in pR.

BR also contains 2% non-remote points which form
a dense subspace of BR\R [PL]. This subspace in BR is
generated by the maximal Z-filter bases containing members

of the collection

}N = {¢ # Z(f)c R: Z(f) is nowhere dense} .

*
For each t € R, the maximal Z-filter bases @, in 3 (t), where,

(Bt,z{gé £ Z(f.?\t):fecb(R) and at least one Z(f.?Lt)

is nowhere dense} generate Z-ultrafilters that are non-

remote points in BR.

5.1.6. Result. Let f = [(If)t] € PR\R for some teR. Let
q: BR —2 pR be the quotient map. Then every member

belonging to q“l(f) is remote in BR, if f is a remote
point in pR .
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Proof: Suppose that q-l(f) contains at least one non-
remote point of BR which belongs to the closure in BR
of some discrete subspace D of R. Since q is continuous,
it follows that P would belong to the closure in pR of
the discrete subspace D of R so that, by definition,

f is non-remote.

5.1.,7. Result. If f: [(Bt]e PR\R for some t € R
is remote in pR, then no member of @,t is nowhere

dense.

Proof: 1If some Z ¢ (Bt were nowhere dense, then Z would
be the boundary of its complement. So, there wohld

exist a discrete space DCcR\Z such that DUZ = cl_D.

R
Thus fe °lpRZC°lpRD so that P is non-remote.

5.1.8. Corollary. The class consisting of all the Z-
ultrafilters on R which represents a non-remote point

in pR\R contains non-remote points in 8 R\\R.

5.2. Applications of Arithmetic on pR on Remote Points.

5.2.1. Result. Let f = [(Bt] for some t ¢ R be a remote

) )
point in pR. If meR, then f+ m and fem are remote points
in pR
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Proof: We give the proof for '+' only. P= [(Bt] is a
remote point in pR™\R means that every Z-ultrafilter
belonging to [(Bt] is a remote point in BR. Suppose that
r+ meclpRD, where D is a discrete subspace of R. Then
some member belonging to [(Bt-a-m] belongs to clBRD , where
[(Bt-t»m] =P+ m. Suppose that p ¢ [@t-o-m] is such that

v eclBRD. Then clRDe ke Then [’!——-) f+m being a homeo-
morphism, there exists p'e [(Bt] such that,

clpgD-mep' = n'e clBR(clRD-m). i.e., pu' which belongs
to [(Bt] belongs to the closure of the discrete subspace
clRD-m. This means that f is a non-remote point, which
is a contradiction. So, no member of [@t-i-m] can belong
to the closure of a discrete subspace of R. So, f+m is

a remote point in pR.

5.2.2. Result. Let P = [B,), ¥ = [®.], s,t € R be remote

points in pR. Thenf+‘i) and f’t) are remote points in pR.

Proof: We give the proof for '+' only, that for '.' is
identical. Given that P = [(Bt], Z=[B., s,t €R are
remote in pR, by definition, no member of (Bt and no
member of @  are nowhere dense. We have, f+%= [<Bt+s]’

Let ze B, .. Then z¢ @, +@8,. so, z'={xeazz-xe (Bt}e @,.

Let me 2'. Then Z-meg CBt’ i.e., ZE€ (Bt-f-m. By result 5.2.1,

B+m has no member that is nowhere dense because [B.]



remote in pR => [ Bt+m] is remote in pR. So, Z is not
nowhere dense. Since Z taken from (Bt-q»s is arbitrary,
this means that no member of ®t+s is nowhere dense. So,

[CBt+s] = f+ Y is a remote point in pR.

5.2.3. Result. The set of remote points in pR form a

subsemigroup under the extended operations + and . .

Proof: The result follows from 5.2.2 and the fact that

the extended operations are associative in pR.

5.2.4. Result. Let P=[@®,] for some t € R be a non-
remote point in pR and let meR. Then f+m = [th+‘m] and

Pom = [(Bt.m] are non-remote points in pR.

Proof: We give the proof for '+' only, that for '.' is
identical. f’e pR is a non-remote point in pR means that
f’ belongs to the closure in pR of some discrete subspace
D of R. i.e., f¢g ClpRD' If q: BR —> pR is the quotient
map, then q-l (ClpRD) is a closed set in BR and every
member of [(Bt] belongs to q'l(clpRD). If pe [(Bt]’

-1 )
then, p € q (clpR D) = clpDep. i.e., (clRD)+m € CBt+m.

i.e., P4m = [@t+m] belongs to the closure in pR of the

discrete space D+m of R. So, f+m is a non-remote point.
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5.2.5. Result. Let fP = [®]s Y= [(Bs] for some t,se R
be non-remote points of pR. Then P+ % and f.¢ are both

non-remote points of pR.

Proof: We establish the result for '4+' only. Given that

P= [(Bt], 1= [(Bs] are non-remote points of pR, f,Y,
belong to closure in pR of discrete subspaces, say, -
D,,D, respectively of R. i.e., [(Bt](-;clpRD1 and

[(Bs]eclpRDQ. If yy€ [®] and py e [B,), then

we have B € clBR Dl and By € CJ'BRD2'

Therefore, clp D, € p) and cl D, epy. Since pje [(Bt],

By € [(Bs], there exist zl€d3t, z,€ B, such that

zycelpD, and zyccly Dy. Consider zl+z2={x+y:x€ Z,,ve 22}.

Then, clg (zl+z2)€65 So clR(zl+z2)€ 03t +(Bs. Also,

t+s”’
zy+z,ccl g (zl+z2) so that [+, =[CBt+s e clp R (zl+22) ,

where z,+2, is a discrete subspace of R. So, [’+L£, is a

non-remote point in pR .

5.2.6. Corollary. The set of non-remote points form a

subsemigroup of pR under the extended operations in pR.

Proof: The result follows from 5.2.5 and the fact that

the extended operations in pR are associative,
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5.2,7. Result. LetfP= [(Bt], ¥ = [(Bs] for some
s,t € R be members of pR, where f is a remote point
and lﬁ’ » a non-remote point. Thenf+yY is a remote
point and Y + f is a non-remote point. Thus addition

in pR is non-commutative.

Proof: f = [@t] is a remote point and Y = [(E;s], a
non-remote point in pR, for some t,s € R. Let

Z€ (Bt-ﬁ-s’ Then Z€ @t +®s. Then
A ={xe R : Z-xe@t}e@)s. Let mg Z2'. Then,

Z-m e(Bt = Z&@t-l—m . [(Bt] is a remote point = [®t+m]
is a remote point by result 5.2.1 => Z is not nowhere

dense. Thus z ¢ ® is not nowhere dense. Since

t+s
Z€ (Bt-f-s’ was taken arbitrary, it follows that no member

of B

is nowhere dense. So, [ (B

t+s t+s] = f+‘£,, is a

remote point of pR.

We have Y, = [(Bs] non-remote and f = [(Bt],
remote in pR.

Let z€ (3¢, t- Then ze B¢ +O®¢. So,
B = {x € R:Z-x e(BQ}E‘ (Bt' For m¢ B, Z-mecﬁs. i

So, Ze(Bs-rm. Since [dbs+m] is non-remote by Result 5.2.4,

\£’+ m is non-remote. So,‘t'-i»m belongs to the closure of

some discrete space D of R. So clgDe (Bsm. So, ZNeclgDD2Z,,
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where Z; € ®s+m and Z; is nowhere dense. So, Z,-me@_.

Thus for each m; € B, we get ije(bs + my, where 2"5 is

nowhere dense. So, ij- ijCBs and ij-mj is nowhere

dense. If T ={ijz ms € B}, then € is a family of closed

nowhere dense sets in R.

(U,={R\C:C€. ’C} U {Int C:C¢e 'ﬂ} ,» 1s an open cover
of R. Since R 1is paracompact, U has a closed locally

finite subcover '\f . Let \f‘ ={V€.\f tvcilnt C, C Q‘C} .

Then ‘\f' is a family of locally finite, nowhere dense,

closed sets. Then( U V) is closed and nowhere dense
Vel

®
and (V\éj\/" cZ where ZEX .. So,(vgv'v G3$’+‘t'

(Since U V) is a closed set in R, it is a zero-set
vey!

in R, say z(h), and Z(h)C Ze®s+t' So z(h) = z(h)NZ
and if Z = 2(£.0,,), then, Z(n)2 2 £2). A o e Psrt)
and so Z(h)€ dss-rt’ This is possible for every Ze(Bs+t.

So, dbsq»t contains nowhere dense zero-sets. So ‘[)+f

is non-remote.

5.2.8. Result. Let P=[®,],7=[®] belong. to pR
for some t,s € R. If P is remote and 't) is non-remote,
then, f. Y, is remote and "()f is non-remote and thus

multiplication in pR 1is non-commutative.
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Proof: The proof is identical to that for addition.

5.2.9. Result. Given P = [(Bt] € pPR\\R, a remote point
in pR\ R and ne R, there exists Y ¢ pR\\R, where Y, is
remote in pR such that f +¥= f.n. If P given is non-

remote in pR\ R, then Y, is also non-remote.

Proof: f = [@® 4] € PR\R for some t€R and neR are given.
We have shown that there exists l(,,e PR\ R such that

r+‘f‘= P.n (Chapter IV, Result 5.4.1). We have obtained
‘{, as the class of all Z-ultrafilters on R generated by
the Z-filter base @, = ®(t(n-1)) each member of which

is contained in members of the Z-filter base

@: {BZ:Z € (Bt}’ where for each Ze(Bt’ BZ:(V‘E:J‘\V V),

where, ,\[" ={VQR, Vv ~locally finite and closed:
Vc Int(Z.n-x), xe Z} .

Suppose that r is a remote point in pR\\R. Then, by
definition, no member of (Bt is nowhere dense. So, for
every ZE(Bt, BZ constructed as above is also not nowhere
dense. Thus (B is a Z-filter base consisting of not
nowhere dense members. So, (Bs also contains no nowhere
dense members. Hence % , the class of all Z-ultrafilfers

generated by (Bs is a remote point in pR.

Suppose that r: [(Bt] is a non-remote point in pR.

Then, by definition, (Bt contains at least one nowhere



95

dense number. Let Z E(Bt be such that Z is nowhere
dense. Then, IntBR (clBR Z) = @¢. So, IntﬁR(clBRZ)r\R=¢.

Then,1§=={?.n-x:xe,2} is a family of closed nowhere

dense sets in R. So, for each x¢g Z, Z.n-x is the frontier

of an open set, say, Cx‘ So,?l_:{g\\z.n-x:xe Z}LJ{.CX:XG.Z}
is an open cover of R. Since R is paracompact, 1l.has a

closed locally finite refinement, say,\f .

Let ' ={ve\/' : Vec,, xe z}. Then, ' is a family of

locally finite closed sets that are nowhere dense. If

B, = \J V), then B, is a closed nowhere dense set.
Z ' Z
eV
Then G}:_{BZ:Z e,d3t} contains nowhere dense sets.' Also,
is a Z-filter base, each member of (» containing a

member of the Z-filter base, (Bs = dat(n-l) which also

contains nowhere dense sets. So,ﬁ%, which is the class
of all Z-ultrafilters generated by GBS, is therefore, a

non-remote point in pR.

5.2.10. Result. LetP=[B.] € PR\\R for some t € R be
a remote point in pR\ R and let me R, m # O. Then there
exists ‘ﬁ) € PR\ R such that Y, is remote and fP+m = r.‘[).
If P is a non-remote point in PR\(R, then Z is also non-

remote.

Proof: We proceed as in Result 5.2.9 to prove this result,

once we know that % is generated by the Z-filter base
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(Bs = (B(t+m) » each member of which is contained in a
t

member of the Z-filter base (B = {Bzzze(ﬁt} where, for
each ZE(Bt’ B, is constructed as follows:

‘BZ =<Vg'\!\' V) , where ‘\I',={Vclnt(z+m)/x:xe Z, x £ O}

is a family of locally finite closed sets in R. (Result
4.4.2)'

5.2.11. Result. Let f = [(Bt]e PR\ R be a remote point in
PR\ R for some t€ R. Then there exists ‘t’ e PR\ R, remote

in pR\|R such that f-&-‘[’: f. 7. If P is non-remote then
so is 'ﬁ, .

Proof: The proof is similar to that of Result 5.2.9 and
5.2,10, once we know that given f = (B t]€ pR\\R, for some
t € R, there exists ‘g , the class of all Z-ultrafilters

generated by (Bs = B , each member of which is

t
(t-l
contained in a member of the Z-filter base@ ={BZ:Z€'(B1:}’

where for each Z€ (Bt’ Bz is obtained as follows:

B. = U \' where,
Z <V€ V\t )’

:\f' ={VC. R, V locally finite and closed: VC Int (;—_Z_T), X#l,x€ Z}.

(Result 4.4.3).



Chapter VI

k-UNIFORM Z-ULTRAFILTERS ON A SEMITOPOLOGICAL
SEMIGROUP S

8 6.0. Introduction

We take S of infinite cardinality to be a
completely regular and Hausdorff Semitopoliogical 9emi-
group. Suppose that S is locally compact. Then pS,
the LMC-compactification of S is the family of all
equivalence classes of Z-ultrafilters on S, where,

a member of pS is of the form P = [(Bt] for some
te S, where (Bt is a maximal Z-filter base in the
family F*(t) = {¢ F2(£.2): 142(£.2,),fec (9)]

and [@t] is the set of Z-ultrafilters .on S generated
by (Bt. The Z-filterbase, 3-;(1:) ={¢ # Z(f.?.t):
l€Z(f.at), fe Cb(S)} generates the principal Z-
ultrafilter e(t), where, e:S —3 BS is the embedding.
The construction of pS is analogous to pR, where R
is the set of real numbers with usual topology, considered
as a semitopological semigroup (see Chapter IV). 1In this
chapter we define and discuss various properties of k-
uniform Z-ultrafilters analogous to k-uniform ultra=-
filters [CO; NE]. Given a set A and a cardinal k,

[al¥ ={Bg,A: |B]=k} and [a]¢K ={BQA : |B| < k}.
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In section 6.1 we give the necessary definitions

and results concerning k-uniform Z;-ultrafilters in pS.

In section 6.2 we study the ideal structure of
the space of k-uniform Z-ultrafilters in pS with respect
to the arithmetic defined in pS (analogous to that for

pPR).

8 6.1, k-Uniform Z-ultrafilters on S.

6.1.1. Definition. Let P = [B,] for some teS be a
member of pS. The norm of @, denoted by |[@,[l is
defined by ||®,ll = min{|Z| : Ze(Bt}- The norm of f is

defined as ||P || = @ .l
J Pl » k. We denote by ‘Uk(s), the set of k-uniform

. f’ is said to be k-uniform if

Z-ultrafilters on S.

6.1.2. Note. When Pe¢pS is such that P is w-uniform,
then Pe pS\S, otherwise Pe S. A |[S|- uniform member
of pS is called uniform. The set of all |S|-uniform
Z-ultrafilters on S is denoted by {/(S). Thus, we

have BS\S = Uw(s)-

6.1.3. Definition. Let A be a non-empty family of zero
sets. Then A has k-uniform finite intersection property

if | r;\ A;l » k, whenever n<w and A€ A for i¢n.
i¢n
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6.1.4. Note. If J has |S|-uniform finite inter-
section property, then ﬁ-is said to have uniform finite
intersection property. It is clear that.& has the
finite intersection property if and only if A-has the

l-uniform finite intersection property.

6.1.5. Result. Define 3“(S) ={A§S | A is a zero set
and |S\A]| < k} . If wg kg |S|, then FX(S) is a z-
filter on S.

Proof: Now EF(S) # @, since S ¢ gk(s), and @ ¢ 3*(5)
is clear. If 2),Z, € $°(S), then |S\Z,|¢k, |S\ Z,|<k.
Since, lS\(Zlﬂ 22)|= I(S\Zl)U (5\22)l < k, we get

Z,Nz,€ 3*(S). Further if Z € FX(S) and 2'DZ then
Is\z'| ¢ IS\z| < k. Therefore, z'€ 3X(S). Thus

4%(s) is a z-filter on S.

6.1.6. Result. Let w { k€ |S|. Then,

(a) A Z-ultrafilter p on S is k-uniform if and only
R k
if 3(s)c p.

(b) There is a k-uniform Z-ultrafilter on S.

iee, Ugls) # 8.
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(¢) Each family of zero-sets on S with k-uniform
finite intersection property is contained in

a k-uniform Z-ultrafilter on S.

Proof:

(a) Let p be k-uniform. Let A € gk(S). Then
IS\ A|] ¢ k and so any zero-set ZC S\ A also
has cardinality less than k. So, Z&p. Since
p is a Z-ultrafilter, we have, Ag¢ p. Conversely,
let g¥(S)c p and let Agp. If [A| < k, then
S\ A contains a zero-set B, where Bea“(s)c )
and so @ # ANBg p; thus |A| ) k.

(b) Since w ¢ k € |S|, the family g9¥(S) is a z-filter
on S. So, there is a Z-ultrafilter p on S such

that 3k(s)c p and p is k-uniform by (a).

(c) Let ’3 be a family of zero-sets of S with k-uniform
finite intersection property. We claim that 9 U&k(S)
has finite intersection property. Let myne w and
let {Akzk’gn} c¢d and {_Bi: igm} ¢ 3%(s). Then

| DAl »k and S\ B,] < k.
k¢n =~ i<m

so, ( N Ak)n( M Bi) #@. So, there is a Z-ultra-
k¢n igm

filter p on S such that 3u3k(s)c p and p is k-uniorm
by (a) above.
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6.1.7. Note: We have the following special cases of

this lemma.

(1) There is a uniform Z-ultrafilter on S.

(2) A Z-ultrafilter p on S is uniform if and only
it 4(s)={a e P(s), A, a zero set:]S\AI(lSI}C p.

(3) 1f % is a non-empty family of closed subsets of
S with the uniform finite intersection property,
then ¥ is contained in a uniform Z-ultrafilter

on S.
§ 6.2. The Semigroup Vk(S)

6.2.1. Definition.. Let P ¢ pS, where P = [(Bt] for
some t€S. Let k=1 or kjw. Define,

C(®y) ={Ag_8: A a zero set and | {xe‘S:A-xQ(Bt}I < k}

i.e., Ck((Bt) is the set of zero-sets of $ which k-almost
always translate to a member of (Bt‘ (Cl((Bt)) is the

set of zero-sets, which always translate to a member of

B

6.2.2. Result. Let P =[®B,] for some t€S and k(l-sl
(with k=1 or k) w). Then
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(1) Ck((Bt) has finite intersection property.

(2) @, + U(S) ={All z-filter bases @ :C, (®,) c®}
where Uk(S) is the family of all Z-filter bases
in S, where the members of each Z-filter base

have cardinality ) k.

Proof: Given Z,,Z, € C, (B,), I{xe S:Zl-xéﬁtH(k

and I{XES:ZQ-X¢®1;}I < k. Now,
{xe S: (z;nzZ,) - x#@t} = {xe S:Z;-x # (Bt}U
{xeS:ZQ-x 4: ®t}

SoZ;NZ, € ck((gt). Thus Ck(ﬁt) has finite inter-

section property.

(2) LetBeB, + U (S). Pick @, € U,(S) such that

B= B, +®,. Let z € C(®,). Then

| {xesiz-x § @y} | < k. So, {xes:zx{B,} & B

Thus there exists 2'C S\{x€S:Z-x ¢ B} such that Z'e@®,.
i.e., {x€S:Z-x €B,le®, = 2B, +B, =B
Thus C, (®,) ¢ ®, + 8 = ®, +@ € RHS.
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Thus, @, + U, (S) c{all z-filter bases B :C, (B ) cd}.

Conversely, let € be a Z-filter base in S such that
C, ( (Bt ) €t . For each Z ¢, let D(Z)= {xe S:Z-xecﬁt}.

Observe that if Z,,Z, € €, then D(Z;NZ,)=D(Z;) N D(Z,).

Further, if Z €€, then S\ Z has no zero set belonging
to C, (@) (since C (B )ct). So, [D(Z)| » k. Thus

{D(Z):Ze‘C}has k-uniform finite intersection property.
Pick Bs € Ug(S) such that {D(2):z€ €}c®, . Then,

'C QCBt +@s, and conversely, if Z € (Bt +(Bs, where,
(Bs € Uk(S). Then, {xeS:Z-x ed}t} € Bg-

Since B4 € Uy(S), l{xeS:Z-xe(Bt} | » k.

ice., | [xes:z-x § By}l < k. So, ZeCu(®4)et.

So,(Bt-t-(Bsg’C. Thus ’C:(Bt + ®_.

S

Hence, (Bt + Uk(s) ={All Z-filter bases@ :Ck( (Bt') c@}.

6.2.3. Definition. Let Vk(S) be the equivalence classes
consisting of all Z-ultrafilters generated by members of

Uk(s). Then vk(s) is a semigroup. Evidently, Vl(S)=pS.

6.2.4. Result. Let w  k € |S|. The following statements

are equivalent.
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(a) V,(S) is a subsemigroup of pS.

(b) For all PeV,(S), where f = [‘Bt]' teS and all
zero-sets A€ [S]<k, S\ A contains members belonging

to Ck( @t) .

(c) For all zero-sets A€ [S]<k and all zero-sets B¢ [S]kii,

there exists Fe [B]<” such that | [ A-x| < k .

x€EF

Proof: To see that (a)=> (b).

Let P = [(Bt] € vk(s) and let Ae [S]<k, where A is a zero-
set in S. Suppose that S\ A contains no zero-set belonging

to C,(®4). Then C (B) U{A} has finite intersection

property. (If BECk((Bt) and BNA =@, then BC S\\A. So
S\A € Ck(@tj). Pick ®,, a Z-filter base in S such that

Ck((Bt)U{A}g._(Bs. Pick by the previous result, (Br € Uk(S)
such that @, . =@®,. Since A€®s, (Bs * U (s). so,

(Bt+r 4: Uk(S) , a contradiction.

To see that (b) = (c¢).
Let A€ [S]<k and let Be [S]k. Suppose that for each

Fe [B]<w, | QF A-x] 3 k. Then{A-x:xe B} has the
X

&

k-uniform finite intersection property. So, pick
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B, e U, (S) such that {A-x:xe B} ¢ ®,. Then
Bg{xeS:A-x € @s}. So, S\ A does not contain members

belonging to Ck( (Bs), a contradiction.

To see that (c) => (a).

Let (Bt, (Br € Uk(S). Let (Bs =<Bt+r. Then by the
previous result, Ck(CBt) Q(Bs. Suppose that (Bs#‘ Uk(S)
and pick A € B, such that |A] < k. Let D={xeS:A-xe(Bt}.
Then D € B_. So, |B| » k. Pick Be[D]¥, where B is a

zero set. Pick Fe [B]Y such that | N A-x| ¢ k. Then
: x€F
N A-x e B,. So, @ ¢ U,(S), a contradiction.
t t k
X €EF
6.2.5, Definition. Let P= [th]epS for some t € S.

Then (gt is (k,y)-regular, where y is an infinite cardinal

if there is a family {A‘i, :t)< y} of zero-sets in S,
contained in (B, such that if §cvy and || = k, then

"Q Ay = @. The family {Aﬁ t{e y} is called (k,y)-

regular family for @,.

If B, is an (w,|S|)-regular Z-filter base, we _
simply say that B is regular. We get a family

A= {Ai, :f < ISI} of members of @B, such that if
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|9] < |S| and |4] = w, then ‘i,?w Ai.,=¢ .

i.e., countable intersection of members of the family

is empty. Then (Bt is said to be simply regular.

6.2.6. Result. Let w ¢ k § |S|]. Statements (a) and
(b) are equivalent and imply statement (c¢). If k is

regular, all three statements are equivalent.

(a) Vk(S) is a right ideal of pS

(b) For all Ae [S]<k, A zero set, and for all x¢ S,
|A-x] < k.

(¢) For all x,yeS, If;l[{y}]l < k.

Proof: To see that (a) = (b).

Let A€ [S]<k where A is a zero-set and let x ¢ S.
Suppose that |A-x| » k and pick fer(S), where f:[@t]

for some t€S with (Bt € Uk(S) such that A-x € th.
Then A € CBt+x = AeB, +B, . So, Bux g B,y ¢ U (s),

a contradiction.

To see that (b) = (a). )

Let B, € U (S) and T, epS, where T, = [(Bs], for some
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s € S. Suppose that B

t+s

*; Uk(s). Pick A ¢ (Bt+$

such that |A] < k. Since Ae B, _ = aeB, +8,,

{xes:a-xe@, | # @. Pick x€S such that A-x e B,.

Then |A-x| ) k.

To see that (b) => (c).

We have fx-l[{y}] = {y}-x . Assume that k is regular.

To see that (c) => (b).
Let A € [S]<k, where A is a zero-set and let x¢ S.

Then A-x = f;l[A] = LEJA f;l[{y}]. Since k is 'regular,
Y

|[A|] < k and for each ye A, | f;l[{y}]l € k, we have
|A-x] < k.

6.2.7. Corollary. Let w € k  |S|. If right cancellation
holds in S, Vk(S) is a right ideal of pS.

Proof: Since Fx is one-to-one, for each A¢ S, A, a zero

set, |A-x| ¢ |A].

6.2.8. Theorem. Let w ¢ k € |S|. The following stat2ments

are eqgquivalent.
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(a) vk(s) is a left ideal of pS.

(b) For all P = [(Bt] € Vk(S), t€eS, and all zero-
sets A¢ [S]<k, S\ A contains members belonging
to Ck( (Bt)’

(¢) For all zero-sets Aeg [S]<k and all Be¢ [S]k,
there exists F € [B]Y such that [ A-x = @.

x€ F

Proof:

The proof is similar to that of Result 6.2.4.

6.2.9. Corollary: vk(s) is an ideal of pS.



Appendix

ON E-COMPACT SPACES

We consider here the more general situation of
E-~compact spaces, for a topological space E. By taking
E as a topological field, we can construct ﬁEX, the maximal
E-compactification of X as the collection of all E-Z-
ultrafilters on X. Having obtained ﬁEX in this manner,
and assuming further that E is a topological field, we
can study the problem of extending the semi-group operation
on X to BpX and also various situations analogous to what
have been studied in the various chapters of this thesis.
Still more general situation arises if we consider E -compact
spaces of Herrlich ( E being an epireflective subcategory
of the category of all Hausdorff spaces). We do not

propose to embark on this, in this thesis.

A.0. Introduction

In [EN; MR] the idea that any compact Hausdorff
space can be characterized as a space that is homeomorphic
to some closed subspace of a topological product of the
closed wunit interval {x:O £ x l} in the real line is
generalized and the class of topological spaces, the members

of which are homeomorphic to any closed subspace of
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topological powers of some given space E, is considered.
Further investigations have appeared in the papers [BL],
[HE], [MR] and so on. One special instance of that
generalization is the case in which the space E 1is the
real line. This class of spaces is necessarily the class

of real compact spaces.

For our purpose, we have considered E to be a

(Hausdorff) topological field.

gA.l. Preliminary Concepts.

A.l.l. Definition [EN; MR]. A space X is E-completely
regular if X is homeomorphic to a subspace of a product
of copies of E and X is called E-compact if X is homeo-

morphic to a closed subspace of a product of copies of E.

A.1.2, Definition [EN; MR]. A subset U of X is called
E-open if it is of the form f-l(V), where V is an open
subset of some finite power E" and f € C(X,E"). A subset

F of X is E-closed if and only if its complement is E-open.

A.1.3. Theorem [PO; WO]. Let X and E be spaces. The

following are equivalent.

(1) X is E-completely regular
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(2) For each closed subset A of X and each
p€ X\ A, there is a positive integer n and
f € C(X,E™) such that f(p)¢c1Enf(A).

ioe.,LJ{p(X,En)uxe N} separates points and

closed sets of X.

(3) E-open subsets of X form a base for the open

subsets of X.

In general, we cannot replace U c(X,E™:ne N}
by C(X,E).

§ A.2., Some Definitions and Results.
A.2.1. Convention.

(1) We take w copies of E and name them {.Ei:ie w}.
Then by En, we mean E; x E, x oo X En’ If n{m, there
is an obvious embedding of E" in E® namely,
(xl,xz,...,xn)!—-—é (xl,x2,...,xn, 0,0,...,0). This
convention is needed for defining algebraic operations
in our further developments. However, this does not
conflict with notation used in [PO; WO] in situations
like the theorem A.l.3, since any rearrangement of

coordinates is a homeomorphism.
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(2) We consider the class of all spaces X such that for
each closed set ACX and a point x € X\ A, there is a
positive integer n and f € C(X,E™) such that f(A) = 0O
and f(x) # 0.

A.2.2. Definition. Cg(X) = u{c(x,x—:“):n € N}.
ZEn(f) = {x € X: f(x) = O}, where f € C(X,E™), is called

an E-zero set of f. For f,g € CE(X), define (f+g)(®=f(x)+g(x),
for every x € X. If fe C(X,E™), g e C(X,E™) and if n > m,
then, since E™ is embedded in E" as described above, g(x)

can be taken as a member of E". i.e., gg C(X,E®). So,
f(x)+g(x) makes sense. Likewise, (f.g)(x)=f(x).g(x) for

every x € X.

A.2.3. Result. By convention (2), X is E-completely

reqular.

Proof. By convention (2), given X, for each closed set *
Ac X and a point x € X\ A, there is a positive integer n
and fe C(X,E™) such that f(A) =0 and f(x) # O. Then,

f(x) § clEx(A), so that X is E-completely regular.

A.2.4. Result, X is E-completely regular if and only if
its topology is the weakest for which each f € CE(X) is

continuous.
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Proof. Suppose that (X,T) is E-completely regular and
T' ¢ T and each f € C(X,T) is continuous with respect
to T'. If F is a closed set with respect to T, then
for each x ¢ X\\F, there is some fxeCE(X) such that
fx(F) ={O} and fx(x) # 0. Since f, is continuous, with

respect to ', Z n(fx) is closed for any n€ N with
E

respect to '+ Thus F = N VA n(fx) is closed with
xe X\N\F E

respect to ' and so ' =T.

Conversely suppose that T is the weakest topology
on X for which each f ¢ CE(X) is continuous. Then, a
subbase for the closed sets (with respect toT) is the
family {{x e X:f(x) = r} : feCE(X), reE™ ne N}.
We show that the base this family generates is the family
of all E-zero sets of members of CE(X)‘ The result then

follows from A.2.3.

First, every E-zero set Z n(f), ne N, f e C(X,E") is
E
in this family. A typical member in this family is
m m
{xexit(=r, re £ £e clxE )= 2 g9
E

Now a finite union of E-zero-sets is anE-zero-set
ZEkl(fl)U ZEk2(f2)U cee UZEkm(fm)-_- ZEk(flonQ ) 'ofm) s

where, k = max (kl’kz"“’k ).

m
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It follows that the base generated by the family above
is simply, the family of all ZE"(f)’ ne N, feC(X,ER).

A.2.5. Definition. Two subsets A and B of X are said
to be E-completely separated (from one another) in X,
if there exists a positive integer n such that for

fec(X,E™), f(x) = O for every x€ A and f(x) # 0, for

every x € B.

Evidently, two sets contained in E-completely

separated sets are E~completely separated.

When an E~zero set Z is a neighbourhood of a set A,

we refer to Z as an E-zero-set neighbourhood of A.

A.2.6. Result. If two sets are contained in disjoint

E~zero-sets, then, they are E-completely separated.

Proof: If Z (f)N Z_ (g) =@, then, we may define
En Em

h(x) = f(x), x € X. Then, he C(X,E™) or he C(X,E™)

depending on whether n > mor m > n. Also, h is equal

to O on zEn(f) (ZEm(f)) and non-zero on ZEn(g) ( ZEm(g))-

A.2,7. Result. If A, A' are E-completely separated,‘
then there exists E-zero-sets F,Z such that Ac X-ZC FcX-A'.



115

Proof: If A, A' are E-completely separated, then,

there exists a positive integer n 'such that fg c(x,EM)
and f(x) = O for every xe A and f(x) # O for every xeA'.
The set F = {x € X:f(x) = 0} is a zero-set neighbourhood
of A. LetZz =cl {x ex:£(x) £O}. Then ACX-ZCFCX-A'.

A.2.8. Definition. A subspace S of X is Cg-embedded in X
if every function in CE(S) = L){Q(S,En):nelﬂ} can be
extended to a function in Cg(X) =U{-C(X,En):n € N}.

A.2.9, Result. If a subspace S of X is C.-embedded in X,

E
then, any two E-completely separated sets in S are E-

completely separated in X.

Proof: If A and B are E-completely separated in S, then,
there exists a positive integer n such that f € C(S,En),
where f is O on A and non-zero on B. By hypothesis, f

has an extension to a function g in CE(X), particularly,

g € C(X,E"). Since g is O on A and non-zero on B, they

are E-completely separated in X.

g A.3. E-Z-Filters

A.3.1. Definition. An E-Z-filter on X is a collection %

of E-zero-sets of X with the properties:
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(1) ¢& T
(2) 21,22e3 = ZNzZ,e3.
(3) 1f Z isan E-zero-set in X and ZD>Z;, where

zle'ﬁ , then, Z2e¢ 3% .

If in addition, the following condition is satisfied, we

say F isan E-Z-ultrafilter.

(4) 3 is not properly contained in anE-Z-filter.

Every family ® of E-zero-sets that has finite
intersection property is contained inan E-Z~filtex: the
smallest such is a family 3- of all E-zero-sets containing
finite intersections of members of @ . We say that B
generates the E-Zfilter } . When (@ itself is closed under
finite intersection, it called the E-base for % .

Clearly, every family ) of E-zero-sets that has
finite intersection property is contained in anE-Z-ultra-
filter. Thus anE-Z-ultrafilter is a maximal subfamily of

ZE(X) with finite intersection property.

A.3.2., Definition. By a prime E-Z-filter, we shall méan
anE-Z-filter with the following property:
Whenever the union of two E-zero-sets belongs to 3‘ » then

at least one of them belongs to F.
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A.3.3. Result. Let A be an E-Z-ultrafilter on X. If

an E-Zero-set Z meets every member of A , then Z € \A .

Proof: & U {Z} generates anE-Z-filter. As this contains
the maximal E-Z-filter ,,Q- , it must be A— .

A.3.4. Result. Every E-Z-ultrafilter is aprime E-Z-
filter.

Proof: If E-zero sets Z and Z' do not belong to anE-Z-
ultrafilter \A-, then by the previous result, there exist
A, A' ¢ & such that ZNA = Z'AA' =@. Then Z U 2

does not meet the member AN A' of \,A', and hence does not

belong to \A' .

A.3.5. Result. Let 3- be a non-empty collection of E-zero-
sets in X such that # & 3 and ¥ has finite intersection
property. Then } isan E-Z-ultrafilter if and only if
whenever Z is an E-zero-set such that Z* 3 , then

(X\ 2)22', an E-Zero-set such that z'e¢ %

[ 2

Proof: Suppose that I isan E-Z-ultrafilter. We have

X€ 3 and since X = ZU(X\ 2, and } is a prime E-z-filter,

the result follows. )
Conversely, assume that either Ze¢ 3 or (X\2)52z',

where Z' ¢ 3 , for every Z¢ ZE(X). Since 3 1is closed under
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finite intersection and @ % 3, 3 has finite intersection
property. Suppose that 1 is not mgximal and pick

3' C ZE(X) such that 3' has finite intersection property
and 3¢ 3'. Pick Z)€ 3\3. Then z,Ed . sox\z
contains Z, such that Z, €d which implies Z, € F'. But
then Z)NZ, = @, which is false.

§A.4. Convergence of E-Z-Filters.

We now discuss the convergence of E-Z~filters on an
E-completely regular space. It is analogous to the
standard theory of convergence of Z-filters or Z-filter

bases on an arbitrary Hausdorff space.

A.4.1., Definition. Let X bean E-completely regular space.
A point pe¢ X is said to be a cluster point ofan E-Z-filter
3 if every E-neighbourhood of p meets every member of 3 .
Thus, since the members of a are E-closed sets, p is a

cluster point of 3 if and only if pe N3 .

If S is a non-empty subset of X, then E-cl S(the E-
closure of S in X) is the set of cluster points of the E-Z
filter ﬁ of all E-zero sets containing S, because, the E-
zero sets in the E-completely regular space X form a base

for the E-closed sets. -

A.4.2. Definition. The E-Z-filter 3 1s said to converge to
the limit p if every E-neighbourhood of p contains a member

of 2 . If ﬁ converges to p, then p is a cluster point of 3 .
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A.4.3. Result. 3 converges to p if and only if 3
contains the E-Z-filter of all E-zero-set neighbourhoods

of p.

Proof: In the E-completely regular space X, every
E-neighbourhood of p contains an E-zero-set neighbourhood

of p.

A.4.4, Result. If p is a cluster point of %, then at

least one E-Z-ultrafilter containing 3- converges to p.

Proof: Let € be the E~Z-filter of all E-zero-set
neighbourhoods of p. Then IUE has the finite intersection
property and so it is embeddable inan E-Z-ultrafilter A- .
Since ‘Qr contains 'g s 1t converges to p. In particular,

an E-Z-ultrafilter converges to any cluster point.

A.4.5. Result. Let p ¢ X, where X is E-completely regular
and 3 be a prime E-Z-filter on X. The following are

equivalent:

(1) p is a cluster point of
(2) 4 converges to p.

(3) n# ={p} .
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Proof: It suffices to show that (1) = (2). Let V be any
E- zero-set neighbourhood of p. Since X is E-completely
regﬁlar, V contains an E-neighbourhood of p of the form
X-Z, where Z is an E-zero-set. Since VUZ = X, either

V € 3- or Ze:}, since 3’ is prime. But Z cannot belong

to 3 because p{;‘ Z. Sove® . Thus } converges to p.

A.4.6. Notation. The family of all E-zero-sets contain-
ing a given point p is denoted by \A-p. ‘A‘p is an E-Z-
filter. Since any E-zero-set not containing p is completely

separated from {p}, \A—p is an E-Z-ultrafilter.

A.4,7. Result. p is a cluster point of E-Z-filter % if
and only if Ec\ﬁ—p.

Proof: p is a cluster point of } if and only if p belongs

to every member of ?{ .

A.4.8. Corollary:

(1) ‘A’p is the unique E-Z-ultrafilter converging to p.

(2) Distinct E-Z-ultrafilters cannot have a common
cluster point.

(3) If ¥ is an E-Z-filter converging to p, then \A,
is the unique E-Z-ultrafilter containing %.
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A.4.9. Definition. The mapping TTE ¢ Let T be a
continuous mapping from X to Ek for some k € N. Let F
be an.E-Z-filter on X. The image of 3 under T is not
an E-Z-filter. The total pre-image of an E-~Zero-set,

however is an E-zero-set, since,

< 129 1= (e 7).

The collection of all Z k(g), k € N, whose pre-images
E

. k x*
belong to # , is an E-Z-filter on E°, denoted by <% .
ie., T3= {zEe zg (EK) <Hzg)e d, ke N}-
Clearly, T % is an E-Z-filter on U{En:ne N}. It
need not be an E-Z-ultrafilter, even when §-itself is.

But when 3 is an E-Z-ultrafilter, then tﬁﬁ will be

prime.

A.4.10. Result. Let Z be an E-zero-set in X. If

P € clTZ, where T is an E-compact space, then at least

one E-Z-ultrafilter on X contains Z and converges to p.

Proof: Let-ﬁ be the E-Z-filter on T of all E-zero~set
neighbourhoods (in T) of p and (} be the trace of  on %.
Since p ¢ clTZ, ® U{Z} has finite intersection property

and so is contained in E-Z-ultrafilter'JL. Then £—converges

to p.
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Result. Let X be dense in an E-compact space T.

The following statements are equivalent.

(1)

(2)

(3)

(4)

(5)

Every continuous mapping T from X into any
E-compact space Y has an extension to a contin-

uous mapping from T into Y.
X is CE-embedded in T.

Any two disjoint E-zero-sets have disjoint

E-closures in T.

For any two E-zero-sets 21,22 in X,
clp(z3N Zy) = clyZ)NeclsZ,.

Every point of T is the limit of a unique
E-Z-~ultrafilter on X.

Proof: (1) =» (2). A function f ¢ CE(X), say

f € C(X,Ek), for some k € N, is a continuous mapping into

the E-compact subset cl ,[f(X)]. Hence (2) is a special
E

case of (1).

(2) =» (3). This follows from A.2.9.

(3) =» (4). If pgecl Z,Ncl Z,, then for eve‘ry

E-zero-set neighbourhood V (in T) of p, we have pe cl(Vr\Zl)

and pg cl(Vr]ZQ). i.e., V meets Z;N Z,. Therefore,

pecl(zln Z,). Thus, cl ZNecl 22c,cl(zln22). The reverse

inclusion is always true.
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(4) => (5) Since X is dense in T, each point of T is

the limit of at least one E-Z-ultrafilter. On the other
hand, distinct E-Z-ultrafilters have disjoint E-zero-sets
and (3) implies that a point p cannot belong to the closures
of both these E-zero-sets. Hence, the two E-Z-ultrafilters

cannot both converge to p.

(5) = (1) Given peT, let \a-denote the unigue E-Z-
ultrafilter on X with limit p. We write,

Tpd = [Rezm: Thrped].

This is an E-Z-filter on the E-compact space Y and so has

a cluster point. Moreover, since -ﬁ-is a prime E-Z-filter,

so 1s Tedk. So, TAA has a limit in Y. Denote this family
by -"E'Ep. Then,

ﬂ‘C;Jh{’—fE p} (A)

This defines a mapping =C—E:T — Y. In case pg X, we
have p ¢ n.A— so that TgP € T E.ﬁ' Therefore ——EE agrees

]
with T on X. For FE’ Fp on ZE(Y), let us write
z. =N, zo = TR (R ). 1f ;
E g \Felr Zg = T (Fg ). Pecly Zg, Zg belongs

to \ﬁ-and so FE € 'CEA. Thus, pecl ZEQTEp e F To

E.
establish continuity of ’T,'E at the point p, we consider an

arbitrary E-zero-set neighbourhood PE of —'E'Ep and exhibit an
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E-neighbourhood of p that is carried by ‘f% into Fg.
Let Fé be an E-zero-set whose complement is an E-

neighbourhood of i;p contained in F. Then FElJFé =Y
so that Z;UZg = X and therefore cl Zg Ucl 7 = T.
Since :?éPk Pé, we have p&,cl ZE'. Therefore, T-cl zé

is an E-neighbourhood of p. Also, every point g in this
neighbourhood belongs to cl Zp, whence ?E':quE.

A.4.12, Result. The E-completely regular space X has

an E~-compactification BEX with the following properties.

(1) Every continuous mapping Tp from X into any

E-compact space Y has a continuous extension

from ﬁEX into Y.

(2) Every function f in C (X) has an extension to a
function f in CE(BEX).

(3) Any two disjoint E-zero-sets in X have disjoint

E-closures in BX.

(4) For any two E-zero sets Z, Zé in X,

' _ 1
clBEx (zEn Zp ) = ClBEX(ZE)n clBEx(zE)
(5) Distinct E~Z-ultrafilters have distinct limits in

BEX.



125

Furthermore, BEX is unique in the following sense.
If an E-compactification T of X satisfies any one of the
listed conditions, then there exists a homeomorphism of

BEX onto T that leaves X pointwise fixed.

Proof: We first prove the uniqueness. By theorem A.4.1ll,

if T satisfies (1) - (4) it satisfies all of them.

By (1), the identity mapping on X, which is continuous
mapping into the E-compact space T has an extension fromall
of BEX into T. Similarly, it has an extension from T

into BEX. Hence these extensions are homeomorphisms.

We now consider the construction of BEX. There is
a one-one correspondence between the E-Z ultrafilters on X
and the points of BEX, each E-Z ultrafilter converging to
its corresponding point. We have a correspondence between
the fixed E-Z-ultrafilters and the points of X. Hence X
constitutes an index set for the fixed E-Z-ultrafilters.
The points of BEX are defined to be the elements of the

enlarged index set in order to include all the E-Z-ultra-

filters on X.

The family of all E-Z-ultrafilters on X is written

((Ap)pe 5Ex , where for p ¢ X, AP is the family of all

E-zero-sets containing p. The topology on BEX is defined
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in such a way that p is the limit of the E-Z-ultrafilter

Ap, for every p ¢ BgX, not only for pge X.

For an E-zero set Z.c X, let ’IZE denote all elements

of BEX of which ZE is a member. We claim that the set

6 = {2E:ZE is an E~zero set in X} is a base for the E-
closed sets for a topology on BEX.

(1) @ is an E-zero set in X and so @€ @® . However,
@ ={peBEX= g€ p}=¢. .o ged . Also,

% = {peBEX: X € p}= BeX. .t BXed .

- =T
(2) Suppose that Zg, ZE ed . zEuzé € (ﬁp if and only
if ZE € \Q-p or Zée(ﬂp. Thus the elements of BEX

which contain ZEUZI's are precisely those which

contain Zg or Zé. So 'iEuié = ZE UZ]:: and so

is closed under finite unions.

Give BpX the topology having ® as a base for the
closed sets. Define B.: X —> B.X by BE(x) = :}x, where
3, = {ZE X € ZE}. Then ¥ 1is an E-Z-ultrafilter and
hence belongs to B.X. Now, }x € ZEnaE(x) if and only

if z € F, if and only if x ¢ Z: .
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Thus, 'z’En BE(X) = eE(zE). This says that B is a contin-
uous and closed mapping. For x,y ¢ X, if ﬁE(x) = 5E(y),
then 3, = ‘}y so that every E-zero-set containing x also
contains y. 1i.e., x=y. Thus ﬁE : X —> ﬁEX is a
topological embedding. We have, B(Zp) ='ZE|1BE(X).

Therefore,

clg y (Be(Zg)) ¢ Zg (1)

E

For any basic E-closed set Zé containing ﬂE(ZE), it follows
1]
that B(Zg) = 2z N Be(X) > Be(Zg). Thus,

Zé DZ and so CIBEX (ﬂE(ZE)) ) -Z'E C(2)

Thus from (1) and (2),
1y x(Be(z) = Zg-

This gives us that clBEX (Bg(X)) =X = BpX, so that B-(X)

is dense in ﬁEX.

To show that BEX is an E-compactification of X,

we prove that it is an E-compact Hausdorff space.

To see that BEX is Hausdorff space, consider any two

distinct point p and p'. Choose disjoint E-zero-sets A € d;p
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and A'e AP'. Now, there exist an E-zero set Zg disjoint

from A and an E~zero-set Zé disjoint from A' such that
1
rAS ¥) Zé = X, (Result A.2.7). So, p¢cl Ze, p' ¢ cl Zp .

Since ¢l Zg Ucl Zg = BcX, the neighbourhoods BpX-cl Zp

t

of p and BEX-cl ZE

of p' are disjoint.

Finally, consider any collection of basic E-closed
sets 75 with finite intersection property, ZE ranging over
some family . Now, {} itself has finite intersection
property so that(ﬁ is embeddable in a E-~Z-ultrafilter 3 .
Then,

so that the latter intersection is non-empty. Therefore,

BEX is compact.
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