Note

The $\langle t\rangle$-property of some classes of graphs

S. Aparna Lakshmanan*, A. Vijayakumar
Department of Mathematics, Cochin University of Science and Technology, Cochin - 682 022, Kerala, India

Received 26 April 2007; received in revised form 15 December 2007; aceepred 17 December 2007

Abstract

In this note, the $\langle t\rangle$-properties of five classes of graphs are studied. We prove that the classes of cographs and clique perfect graphs without isolated vertices satisfy the $\langle 2\rangle$-property and the $\langle 3\rangle$-property, but do not satisfy the $\langle t\rangle$-property for $t \geq 4$. The $\langle t\rangle$-properties of the planar graphs and the perfect graphs are also studied. We obtain a necessary and sufficient condition for the trestled graph of index k to satisfy the $\langle 2\rangle$-property. (C) 2008 Published by Elsevier B.V.

Keywords: Clique transversal number; $\langle t\rangle$-property

1. Introduction

$$
\begin{aligned}
& \text { We consider only finite, simple graphs } G=(V, E) \text { with }|V|=n \text { and }|E|=m \text {. } \\
& \text { A complete of a graph } G \text { is a complete }
\end{aligned}
$$

A complete of a graph G is a complete subgraph of G and a clique of a graph G is a maximal complete of G. A subset V^{\prime} of V is called a clique transversal if it intersects with every clique of G. The clique transversal number $\tau_{c}(G)$ of a graph G is the minimum cardinality of a clique transversal of G [13]. For details, the reader may refer to [1,6,12].

The order n of G is an obvious upper bound for the clique transversal number. In an attempt to find graphs which admit a better upper bound, Tuza [13] introduced the cique transversal number. In an attempt to find graphs which $\langle t\rangle$-property if $\tau_{c}(G)<\underline{n}$ for $\langle t\rangle$-property does not imply the $\langle t-1\rangle$-property.

It is known [7] that every chordal graph satisfies the $\langle 2\rangle$-property. In [13], it is proved that the $\langle 3\rangle$-property holds for chordal graphs; split graphs have the 44)-property, but do not have the $\langle 5\rangle$-property and hence the chordal graphs also do not have the $\langle 5\rangle$-property. It is proved [9] that the $\langle 4\rangle$-property does not hold for chordal graphs.

Motivated by the open problems mentioned in [7], we studied the $\langle t\rangle$-property for the cographs, the clique perfect perfect graphs [10] and also of the clique perfect graphs [12].
The $\langle t\rangle$-properties of the various classes of graphs which we studied in this paper are summarized in the following table.

[^0]| Class | Satisfy
 $(t\rangle$-property | Do not satisfy
 $\langle t\rangle$-property |
| :--- | :--- | :--- |
| Cographs | 2,3 | ≥ 4 |
| Clique perfect
 graphs | 2,3 | ≥ 4 |
| Planar graphs | - | $2,3,4$ |
| Perfect graphs | - | ≥ 2 |

2. The $\langle t\rangle$-property

2.1. Cographs and clique perfect graphs

A graph which does not have P_{4} - the path on four vertices - as an induced subgraph is called a cograph. The join of two graphs G and H is defined as the graph with $V(G \vee H)=V(G) \cup V(H)$ and $E(G \vee H)=E(G) \cup E(H) \cup\{u v$, where $u \in V(G)$ and $v \in V(H)\}$.

Cographs [5] can also be recursively defined as follows:
(1) K_{1} is a cograph;
(2) if G is a cograph, so is its complement \bar{G}; and
(3) if G and H are cographs, so is their join $G \vee H$.

A clique independent set is a subset of pairwise disjoint cliques of G. The clique independence number $\alpha_{c}(G)$ of a graph G is the maximum cardinality of a clique independent set of G. Clearly, $\alpha_{c}(G)$ is a lower bound for $\tau_{c}(G)$. A graph for which this lower bound is attained for all its induced subgraphs also is called a clique perfect graph $[3,11]$. The class of cographs is clique perfect [12]. A characterization of clique perfect graphs by means of a list of minimal forbidden subgraphs is still an open problem.
Lemma 1. If $G=G_{1} \vee G_{2}$ then $\tau_{c}(G)=\min \left\{\tau_{c}\left(G_{1}\right), \tau_{c}\left(G_{2}\right)\right\}$.
Proof. Any clique in G is of the form $H_{1} \vee H_{2}$ where H_{1} is a clique in G_{1} and H_{2} is a clique in G_{2}. If V^{\prime} is a clique transversal of G_{1} (or G_{2}), then any clique of G which contains a clique of G_{1} (or G_{2}) is covered by V^{\prime} and hence V^{\prime} is a clique transversal of G also.

Now, let V^{\prime} be a clique transversal of G. If possible assume that V^{\prime} does not cover cliques of G_{1} and G_{2}. Let H_{1} and H_{2} be the cliques of G_{1} and G_{2} respectively which are not covered by V^{\prime}. Then $H_{1} \vee H_{2}$ is a clique of G which is not covered by V^{\prime}, which is a contradiction. Hence V^{\prime} contains a clique transversal of G_{1} or G_{2}.

Therefore, $\tau_{c}(G)=\min \left\{\tau_{c}\left(G_{1}\right), \tau_{c}\left(G_{2}\right)\right\}$.

Lemma 2. The class of all cographs without isolated vertices does not satisfy the $\langle t\rangle$-property for $t \geq 4$.

Proof. The proof is by construction.
Case 1: $t=4$
Let $G=G_{1} \vee G_{2}$, where $G_{1}=\left(3 K_{1} \cup K_{2}\right) \vee\left(3 K_{1} \cup K_{2}\right)$ and $G_{2}=\left(3 K_{1} \cup K_{2}\right)$. Then $n=15, t=4$ and $\tau_{c}(G)=4$ which implies that $\frac{n}{t}<\tau_{c}(G)$.
Case 2: $t>4, G_{2}$, where $G_{1}=\left(3 K_{1} \cup K_{t-3}\right) \vee\left(3 K_{1} \cup K_{t-3}\right)$ and $G_{2}=\left(3 K_{2} \cup K_{t-2}\right)$.
Let $G=G_{1} \vee G_{2}$, where $G_{1}=(3 K$.
Then $n(G)=3 t+4$ and $\tau_{c}(G)=4$.
Every edge in G_{1} lies in a complete of size t in G since G_{2} contains a clique of size $t-2$. Every edge in G_{2} lies
Every edge in G_{1} lies in a complete of size t contains a clique of size $2 t-6$. An edge with one end vertex in G_{1} in a complete of size t for $t \geq 4$ in G since G_{1} conse size t since every vertex in G_{1} lies in a complete of size $t-2$ and and the other end vertex in G_{2} lies in a complete . every vertex of G_{2} lies in a complete of size 2 . Hence G is a cograph in wis Also, $\frac{n}{t}=3+\frac{4}{t}$

Therefore, $\frac{n^{t}}{t}<\tau_{c}(G)$ for $t>4$.

Theorem 3. The class of clique perfect graphs without isolated vertices satisfies the $\langle t\rangle$-property for $t=2$ and 3 and does not satisfy the $\langle t\rangle$-property for $t \geq 4$.

Proof. Let G be a clique perfect graph in which every edge lies in a complete of size t. G being clique perfect, $\tau_{c}(G)=\alpha_{c}(G)$.
Case 1: $t=2$
Since G is without isolated vertices $\alpha_{c}(G) \leq \frac{n}{2}$. So $\tau_{c}(G)=\alpha_{c}(G) \leq \frac{n}{2}$ and hence the class of clique perfect
graphs satisfies the $\langle 2\rangle$-property.
Case 2: $t=3$
Every edge of G lies in a clique of size 3 . So, the size of the smallest clique of G is 3 . Therefore, $\alpha_{c}(G) \leq \frac{n}{3}$ and $\tau_{c}(G)=\alpha_{c}(G) \leq \frac{n}{3}$.
Case 3: $t \geq 4$
The class of cographs is a subclass of clique perfect graphs. So by Lemma 2, the claim follows.
Corollary 4. The class of cographs without isolated vertices satisfies the $\langle t\rangle$-property for $t=2$ and 3 . Moreover, for the class of connected cographs without isolated vertices, $\tau_{c}(G)$ is maximum if and only if G is the complete bipartite Proof. Since the class of cographs is a subclass of clique perfect graphs, it satisfies the $\langle t\rangle$-property for $t=2$ and 3 . Since the class of cographs satisfy the $\langle 2\rangle$-property and $\tau_{c}\left(K_{\frac{n}{2}, \frac{n}{2}}\right)=\frac{n}{2}$, the maximum value of $\tau_{c}(G)$ is $\frac{n}{2}$. Conversely, let G be a connected cograph with $\tau_{c}(G)=\frac{n}{2}$. Since G is a connected cograph, $G=G_{1} \vee G_{2}$. Therefore, $\tau_{c}(G)=\min \left\{\tau_{c}\left(G_{1}\right), \tau_{c}\left(G_{2}\right)\right\}$. But, $\tau_{c}\left(G_{1}\right)$ and $\tau_{c}\left(G_{2}\right)$ cannot exceed the numbers of vertices in G_{1} and G_{2} respectively and hence the number of vertices in G_{1} and G_{2} must be $\frac{n}{2}$. Again, since $\tau_{c}(G)=\frac{n}{2}$ all these vertices must be isolated. Therefore, $G=K_{\frac{n}{2}, \frac{n}{2}}$.

Corollary 5. For the class of clique perfect graphs withom isolated vertices, $\tau_{c}(G)$ is maximum if and only if tiere exists a perfect matching in G in which no edge lies in a triangle.
Proof. The class of clique perfect graphs without isolated vertices satisfies the $\langle 2\rangle$-property. Therefore, the maximum value that $\tau_{c}(G)$ can obtain is $\frac{n}{2}$. Let G be a clique perfect graph with $\tau_{c}(G)=\frac{n}{2}$. G being clique perfect, $\alpha_{c}(G)=\tau_{c}(G)=\frac{n}{2}$. Since each clique must have at least two vertices and there are $\frac{n}{2}$ independent cliques, the cliques are of size exactly 2 . Again, this independent set of $\frac{n}{2}$ cliques forms a perfect matching of G and a clique being maximal complete, the edges of this perfect matching do not lie in triangles.

Conversely, if there exists a perfect matching in which no edge lies in a triangle, the edges of this perfect matching form an independent set of cliques with cardinality $\frac{n}{2}$. Therefore, $\alpha_{c}(G) \geq \frac{n}{2}$. But, $\alpha_{c}(G) \leq \tau_{c}(G) \leq \frac{n}{2}$ and therefore
$\tau_{c}(G)=\frac{n}{2}$.

2.2. Planar graphs

It is known that a graph G is planar if and only if it has ne subgraph homeomorphic to K_{5} or $K_{3,3}$.

Theorem 6. The class of planar graphs does not satisfy the $\langle t\rangle$-property for $t=2,3$ and 4 and \mathcal{G}_{t} is empty for $t \geq 5$.

 the class of planar graphs does not satisfy the $\langle 2\rangle$-property.The graph in Fig. 1 is planar and every edge lies in a triangle. Here, $n=8$ and the clique transversal number is 3 which is greater than $\frac{n}{3}$ and hence planar graphs do not satisfy the (3)-property. Also, the graph in Fig. 2 is planar and every edge lies in a K_{4}. Here, $n=15$ and the clique transversal number is 4 which is greater than $\frac{n}{4}$ and hence planar graphs do not satisfy the $\langle 4\rangle$-property.

Since K_{5} is a forbidden subgraph for planar graphs, there is no planar graph G such that all its edges lie in a K_{t} for

Fig. 1.

Fig. 2.

2.3. Perfect graphs

A graph G is perfect if $\chi(H)=\omega(H)$ for every induced subgraph H of G, where $\chi(H)$ is the chromatic number and $\omega(H)$ is the clique number of H [10]. By the celebrated strong perfect graph theorem [4], a graph is perfect if and only if it has no odd hole or odd anti-hole as an induced subgraph.

Theorem 7. The class of perfect graphs does not satisfy the $\langle t\rangle$-property for any $t \geq 2$.
Proof. Let G be the cycle of length $3 k$, say $v_{1} v_{2}, \ldots, v_{3 k} v_{1}$ where $k>2$ is odd, in which the vertices $v_{1}, v_{4}, \ldots, v_{3 k-2}$ are all adjacent to each other. Then G is perfect and $\tau_{c}(G)=\left\lceil\frac{3 k}{2}\right\rceil>\frac{3 k}{2}$, since $3 k$ is odd. Therefore the class of perfect graphs does not satisfy the $\langle 2\rangle$-property. not satisfy the $\langle 3\rangle$-property since $\overline{C_{8}}$ is a perfect graph in which every edge Now, the class of perfect graphs doe
lies in a triangle and $\tau_{c}\left(\overline{C_{8}}\right)=3>\frac{8}{3}$. Ferfect graphs [5], by Lemma 2, the class of perfect graphs also does not Since the cographs are a subclass satisfy the $\langle t\rangle$-property for $t \geq 4$.

2.4. Trestled graph of index k

For a graph $G, T_{k}(G)$ the trestled graph of index k is the graph obtained from G by adding k copies of K_{2} for each edge $u v$ of G and joining u and v to the respective end vertices of each K_{2} [8]. The vertex cover number of a graph G, denoted by $\bar{B}(G)$, is the minimum number of vertices required to cover all the edges of G.

Lemma 8. For any graph G without isolated vertices, $\tau_{c}\left(T_{k}(G)\right)=k m+\beta(G)$.
Proof. We shall prove the theorem for the case $k=1$. The cliques of $T_{1}(G)$ are precisely the cliques of G together Let $V^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{\beta}\right\}$ be a vertex cover of G. The G. Corresponding to each edge $u v$ of G choose the vertex with the three K_{2} s formed corresponding to each edge , if present in V^{\prime}. If u is present in v^{\prime}, then, choose the vertex which corresponds to u of the corresponding K_{2}, corresponding to v, irrespective of whether v is piality $m+\beta(G)$. Therefore, $\tau_{c}\left(T_{1}(G)\right) \leq m+\beta(G)$.
Then $V^{\prime \prime}$ is a clique transversal of $T_{1}(G)$ of cardmatity

Let $V^{\prime}=\left\{v_{1}, v_{2}, \ldots, v_{t}\right\}$, where $t=\tau_{c}\left(T_{1}(G)\right)$, be a clique transversal of $T_{1}(G)$. Let $u v$ be an edge in G and let
$u^{\prime} v^{\prime}$ be the K_{2} introduced in $T_{1}(G)$ corresponding to this K_{2}. At least one vertex from $\left\{u^{\prime}, v^{\prime}\right\}$, say u^{\prime}, must be present in V^{\prime}, since V^{\prime} is a clique transversal and $u^{\prime} v^{\prime}$ is a clique of $T_{1}(G)$. Remove u^{\prime} from V^{\prime}. If V^{\prime} contains v^{\prime} also then replace v^{\prime} by v. If $v^{\prime} \notin V^{\prime}$ then $v \in V^{\prime}$, since V^{\prime} is a clique transversal and $v v^{\prime}$ is a clique of $T_{1}(G)$. In either case, one vertex v of the edge $u v$ is present in the new collection. Repeat the process for each edge in G to get $V^{\prime \prime}$. Clearly, $V^{\prime \prime}$
is a vertex cover of G with cardinality $\tau_{c}\left(T_{1}(G)\right)-m$. Hence, $\beta(G) \leq \tau_{c}\left(T_{1}(G)\right)-m$. Thus, $\tau_{c}\left(T_{1}(G)\right)=m+\beta(G)$.
By a similar argument we can prove that $\tau_{c}\left(T_{k}(G)\right)=k m+\beta(G)$.
Notation. For a given class \mathcal{G} of graphs, let $T_{k}(\mathcal{G})=\left\{T_{k}(G) ; G \in \mathcal{G}\right\}$.
Theorem 9. The class $T_{k}(\mathcal{G})$ satisfies the $\langle 2\rangle$-property if and only if $\beta(G) \leq \frac{n}{2} \forall G \in \mathcal{G}$ and $T_{k}(\mathcal{G})$, is empty for $t \geq 3$.
Proof, Let $G \in \mathcal{G} . n\left(T_{k}(G)\right)=n+2 k m$ and by Lemma $8, \tau_{c}\left(T_{k}(G)\right)=k m+\beta(G)$. Therefore,

$$
\tau_{c}\left(T_{k}(G)\right) \leq \frac{n\left(T_{k}(G)\right)}{2}\left\langle\Rightarrow k m+\beta(G) \leq \frac{n+2 k m}{2}\left\langle\Rightarrow \beta(G) \leq \frac{n}{2} .\right.\right.
$$

Hence, $T_{k}(\mathcal{G})$ satisfies $\langle 2\rangle$-property if and only if $\beta(G) \leq \frac{n}{2} \forall G \in \mathcal{G}$.
If G contains at least one edge then $T_{k}(G)$ has a clique of size 2 and hence $T_{k}(\mathcal{G})_{t}$, is empty for $t \geq 3$.

Acknowledgements

The authors thank the referees for their suggestions for the improvement of this paper.

References

[1] T. Andreae, On the clique-transversal number of chordal graphs, Discrete Math. 191 (1998) 3-11.
[2] R. Balakristuan, K. Ranganathan, A Text Book of Graph Theory, Springer, 1999.
31 F. Bonomo, M. Chundnovsky, G, Durán, Partial characterization of chigue perfect graphs, Electron. Notes Discrete Math. 19 (2005) 95-101,
4] M. Chundnovsky, N. Robertson, P. Seymour, R. Thomas, The strong perlect graph theorem, Ann. of Math. 164 (2006) 51-229.
[5] D.G. Corneil, Y. Perl, ,.K. Stewart, A linear recognition algorithm for cographs, SIAM J. Comput. 14 (1985) 926-934.
[6] G. Durán, M. Lin, J.L. Szwarefiter, On clique-transversal and elique-independen: sets, Amn. Oper. Res. 116 (2002) 71 - 77.
[7] P. Erdös, T. Gallai, Z. Tuza, Covering the cliques of a graph with vertices, Discrete Math. 108 (1992) 279-289.
[8] M.R. Fellows, G.H. Fricke, S.T. Hedetniemi, D. Jacobs, The private neighbor cube, SIAM J. Discrete Math. 7 (1) (1994) 41-47.
[9] C. Flotow, Obere Schranken für die Clique-Transversalzahl eines Graphen, Diploma Thesis, Uni. Hanburg, 1992.
(10] M. Golumbic, Algorithmic graph theory and perfect graphs, in: Ann. Disc. Math., vol. 57, North Holland, Amsterdam, 2004.
[11] V. Guruswami, C. Pandu Rangan, Algorithmic aspects of clique-transversal and clique-independent sets, Discrete Appl. Math. 100 (2000) 183-202.
[12] C.M. Lee, M.S. Chang, The clique-transversal and the clique-independent set problems on distance-hereditary graphs, in: Int. Computer Symposium, Taipei, Taiwan, 15-17 Dec. 2004.
[13] Z. Tuza, Covering all cliques of a graph, Discrete Math. 86 (1990) 117-126.

[^0]: * Corresponding author.

 E-mail addresses: aparna@cusat.ac.in (S. Aparna Lakshmanan), vijay@cusat.ac.in (A. Vijayakumar),

