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Abstract

Two graphs G and H are Tiirker equivalent if they have the same set of Tlirker angles.

In this paper some Tiirker equivalent family of graphs are obtained.

1 Introduction

Let G be a graph with n vertices, m edges and adjacency matrix A. The eigenvalues of A are
the eigenvalues of G and form the spectrum of G denoted by spec(G) [1]. The energy of G,
denoted by £(G) is then defined as the sum of absolute value of its eigenvalues. The properties
of £(G) are discussed in detail in [2, 3, 4, 5, 6, 7]. In chemistry, the energy of a graph is well

studied since it can be used to approximate the total m— electron energy of a molecule.

In order to express the fine molecular-structure-dependent difference in behavior of the total
7 electron energy of isomeric alternate hydrocarbons Lemi Tiirker in [8] introduced the concept

of angle of total 7 electron energy 6 defined as
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and two other related angles o and (3 connected by o + 3 = 6. These quantities are referred to
as the Tiirker angles. This notion was extended to all graphs by I.Gutman [9].

The Tiirker angle 6 has proven to be a useful novel concept in the theory of total 7— electron
energy and it has found numerous applications. The fundamental properties of 6, o and 3 are
discussed in [8, 9, 10, 11].

Recall from [9],
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Set Y = v2mn — 2. Using the trigonometric identity tan z = Y1252 we get
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Now, we study the nature of these angles in some family of graphs.

We use the following lemmas and definitions in this paper.

Lemma 1. [1] Let G be graph with spec(G) = {\;}, i =1 ton and H be a graph with
spec(H) ={p;}, j =1 ton'. Then the spectrum of the cartesian product, G x H of G and H
is given by spec(G x H) ={\;+p;}, i=1ton, j=1ton'

Lemma 2. [1] Let A and B be two matrices with spec(A) = {\;}, i =1 to m and spec(B) =
{r;},7 = 1ton. Let C = AQ B, the tensor product of A and B. Then spec(C) =

{Nip},i=1ltomandj=1ton.

Lemma 3. [6] Let G be an r regqular graph on n vertices, r > 3. Then its second iterated line

graph L*(G) has ”T(g_l) vertices, w edges and energy 2nr(r — 2).

Definition 1. /4] Let G be a graph on V. = {v1,v9, ......... ,Unt.-Take a copy of G on U =
{uy, ug,....;un} corresponding to V.= {v;} . Then make u; adjacent to vertices in N(v;) for

each i, i =1 to n. The resultant graph is called the double graph of G denoted by Do(G).

Definition 2. [12] Let G be a graph on n vertices labelled as V' = {vy, v, v3,...,v,} . Then take

another set U = {uy,us, ..., u,} of n vertices corresponding to V.= {v;}. Now define a graph
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H with V(H) =V U and edge set of H consisting only of those edges joining u; to neighbors
of v; in G for each i 1 =1 to n. The resultant graph H is called the identity duplication graph
of G denoted by DG .

Definition 3. [15] Let G be a graph on V = {vy, vg, ......... ,Un t. Take a set U = {uq, ug, ..., u, }
of n vertices corresponding to V- = {v;}. Then make u; adjacent to vertices in N(v;) for each i,

i =1 to n. The resultant graph is called the splitting graph of G denoted by splt(G).

Ilustration:

DG:

splt(G):

Lemma 4. [}] Let G be a graph. Then E[Do(G)] = E[D(G)] = 2E(G).
Lemma 5. Let G be a graph. Then E[splt(G)] = V/5E(G).

Proof. By definition of splitting graph of G, the adjacency matrix of

A A 11
splt(G) = =A
A0 10
11
Then the theorem follows, since the eigenvalues of are %5 [
1 0



2 Some classes of Tiirker equivalent graphs

Definition 4. Two graphs G and H are Tirker equivalent if they have the same set of values

for the Tirker angles.

It is known [9] that isomorphic graphs are Tirker equivalent. In this section we obtain

non-isomorphic Tiirker equivalent graphs.

Theorem 1. Let G = {G/G is an r— regqular graph, v > 3}. Let F, = {L*(G), k > 2/G € G}.

Then the family Fy, is Tirker equivalent for each k.

Proof. Let G be an r— regular graph on n vertices, r > 3. Then by Lemma 2 and Eq.3, for the

family L?(G) we have the following,

2 — —2\?
Y:m“(r—l)\/ 7’23_4(r 1)
r —
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= —4
anae =y \/ 2 (r—l)
20r—1) [2r—3 r—2\"
tan 3 = —4 .
anp 27’2—7‘—5\/ 2 (r—l)

Here tanf, tana and tanf are independent of n, the number of vertices of G and depend only

tanf =

on r, regularity of G. Since L*(G) = L?(H) for some regular graph H, this can be extended to
the family L*(G), for k > 3. |

Theorem 2. Let G be any graph. Let D = |J D*G where D*G is defined iteratively by D°G =
k
G and D*G = D(D*'G),k > 2. Then D is a Tiirker equivalent family of graphs.

Proof. Let G be an (n,m) graph with energy £ and Tiirker angles «, § and 6. Then by [4], DG,

the duplicate graph of G is a (2n,2m) graph with energy 2&.



Let ¢, o and (' be the Tiurker angles of DG. Then from Eq. 3 we have the following,

/ \/2><2m><2n—(25)2 Vomn — &2

t = —= — t
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tan 3’ = = = tan (3
2% 2m + 2& 2m + &

\/2 X 2m x 2n— (26)°  omn — &2

tan @ = = = tan6
28 E
Thus the theorem follows. [ |

Theorem 3. Let F, = {L*(G)/G is anr — regular graph, r >3, k > 2} and
Hy, = {splt(Fy) where Fy € Fi}. Then the family Hy is Tirker equivalent for each k.

Proof. Let G be an (n,m) graph and k = 2. Then by [13], splt(G) is a (2n,3m) graph. Then

N = |V [t {EO ] =2 ¢ |V [
=nr(r—1)

M = |Edge [splt {L*(G)}]| = 3 x |Edge { L*(G)}|
nr(r—1)(2r — 3)

2
& = Energy [splt {L*(G)}] = V5 x Energy {L*(G)}

=3 X

= 2v/5nr(r — 2) by Lemmas 3 and 5.

Also Y = V2MN — &% = /3n2r2(r — 1)2(2r — 3) — 20n?r2(r — 2)2. Thus the Tiirker angles

are given as follows.

—1)2 _ _ _9)2
tan g — Y _ V3(r —1)2(2r — 3) — 20(r — 2) .
& 2v/5(r — 2)
—1)2 _ _ _9)2
NS S V3(r —1)2(2r — 3) — 20(r — 2) '
N+¢& (r—1)+2V5(r —2)
tan 3 = Y o /3(r—1)2(2r —3) — 20(r — 2)?
C2M+E 3(r—1)(2r —3)+2V5(r—2)
Since L*(G) = L?[H] for some regular graph H, the theorem follows. |
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Theorem 4. Let T}, = {DQ [Lk(G)} /G is an r — regular graph, r > 3, k > 2}. Then the fam-

ily Ty, is Tiirker equivalent for each k.

Proof. Let G be an (n,m) graph and k = 2. Then by [4], D3(G) is a (2n,4m) graph. Assume

that G is r > 3 regular. Then

N =V [D {L*(G)}]| =2 x |V [L*(G)]| =nr(r — 1)
M = |Edge [D> {L*(G)}]| = 4 x |Edge { L*(G) }|
= 2nr(r — 1)(2r — 3)
& = Energy [D; {L*(G)}] =2 x Energy { L*(G)}

=4nr(r —2) by Lemmas 3 and 4.

Also Y = V2MN — &2 = 2nry/(r — 1)2(2r — 3) — 4(r — 2)2. Thus the Tiirker angles are as

follows.
—1\2(0r _ ) _ —ov3
fan = = — V(r—1)(2r—3) —4(r—2) |
& 2(r — 2)
—12(97 — 2y _ —v3
tana = _ 2/ —1Pr —3) —4(r —2°
N+¢& 5r—9
120 _ 2 _ —v3
tan 3 = Yy _ V(r—=1)2(2r = 3) —4(r — 2) |
2M + & 2[(T—1)<2r_3)_|_(r_2>]
Since L*(G) = L?[H] for some regular graph H, the theorem follows. u

The following theorems provide some more Tiirker equivalent graphs, the proof of which are

on similar lines.

Theorem 5. LetG = {G/G is an r — reqular graph} and H ={H/H is an 1’ — regular graph }

where r, v = 4. Then the family LP (G) x L1 (H) is Tirker equivalent for each p > 2 and q > 2.

Theorem 6. Let G = {G/G is an r— regular graph, v > 4}, F, = {L*(G),k > 2/G € G} and
Ry ={R=FQF, /F| and Fy € Fi.}. Then Ry, is Tiirker equivalent for each k.

Theorem 7. Let G be an r— reqular graph, r > 3. Then the family {L*(G) @ K, } is Tiirker

equivalent for each p and each k > 2.



Theorem 8. Let G be an r— reqular graph, r > 4. Then the family {L*(G) x C,} is Tiirker

equivalent for each p >3 and k> 2.

3 Some operations on a graph

In this section we define some operations on a graph G with V(G) = {vy, vq, ..., v, }.

Operation 1. Introduce two copies of G on U = {u;} and W = {w;} corresponding to V =
{v;}. Make u; and w; adjacent to the vertices in N(v;) for each i, i =1 to n . Then remove

the edges of G only.

Operation 2. Introduce two copies of G on U = {u;} and W = {w;} corresponding to V =
{vi}. Make u; adjacent to the vertices in N(v;) and N(w;) and make w; adjacent to the vertices

in N(v;) and N(u;) for each i, i =1 to n. Then remove the edges of G only.

Operation 3. Introduce two copies of G on U = {u;} and W = {w;} corresponding to V =
{vi}. Make u; adjacent to the vertices in N(v;) and N(w;) and make w; adjacent to the vertices

in N(v;) and N(u;) for each i, i =1 to n. Then remove the edges of G on vertex sets V and

w.

Operation 4. Introduce two copies of G on U = {u;} and W = {w;} corresponding to V =

{vi}. Make u; and w; adjacent to the vertices in N(v;) for each i, i =1 to n.

The graph obtained from G using operation ¢ is denoted by H;, ¢ = 1,2,3 and 4.

Theorem 9. Let G be a graph on n vertices with spectrum {Aq, Ag, ....... , At and H;,
1=1,2,3 and 4 be the graphs obtained as above. Then

1. E(H,) = 4£(G) 2. E(Ha) = 2V3E(Q)

3. E(Hs3) = [2v/2 4+ 1)E(G) 4. E(Hy) = [2V2 +1]E(G)

Proof. The table 1 gives the adjacency matrix, its tensor partition and the eigenvalues of H;,

1=1,2,3 and 4.



Table 1

Operation Adjacency Matrix Eigenvalues

A 01 1

1 01

—
B s O

AQ |1 1 1 || {(1£V3)A,0}

[\
o . N )

e e N N N e NS
I

=AQ |1 1 1| [{@£vV2) N, N}

=AQ |1 10 {(1£V2) N, N}

S e I S~ S e s~ N T N N

o O SO SO I SO
o U e B N M )

—_

—_

—_

Column 3 of Table 1 gives the eigenvalues of H;, i = 1,2,3 and 4 and hence the theorem
follows. u

Note: Hs; = H, when G is bipartite.

Theorem 10. Let G be the collection of all r— regular graphs, v > 3 and F, = {L*(G), k >
2/G € G}. Let Fri = {Fyi/Fr € Fr}, i =1,2,3 and 4 as defined by the above operations. Then

each family Fri, 1 = 1,2,3,4 and k > 2 is Tiirker equivalent.

Proof. Let G be an r— regular graph on n vertices, r > 3 and k£ = 2. Then by Lemma 3 and
from the above operations we have the order, size and energy of Fy; for i = 1,2,3 and 4 are

as given in table 2.



Table

i | Order of Fy; | Size of Fy; E(Fai)

1 w 3nr(r—1) 8nr(r — 2)

2 w dnr(r — 1) 4/ 3nr(r — 2)

3 3m"(1"712)(21"73) 7717"(;71) 2(2v2+ 1) nr(r — 2)
4 3m"(r—12)(27"—3) 7m“(;“—1) 2 (22 + 1) nr(r — 2)

Now for each 7, the Table 3 gives the three Tiirker angles.

Table 3
i tan 0 tan «a tan 3
1| V18r3—127r24328r—283 | 2V18r3—127r2+328r—283 V18r3—127r2+328r—283
8(r—2) 61241 —23 2(7r—11)
o | V18r3-127r2+328r—283 | 2V18r3—127r24328r—283 | V/18r3-127r%1328r—283
44/3(r—2) 6r24r(8v3-15)—(16v3-9) | 4[(2+V3)r—2(1+V3)
3| V6ri-33r2+72r—57 | AV6ri-83ri4+72r—57 | 2V6ri-—33r24+72r—57
14+2v/2|(r—2) 6r2+r(8v2—11)—(16v2-1)] | [r(4v2+9)—(8v2+11)
4| MOr3-33r2472r—57 | 4vV6rd—33r2472r—57 | _2V6r3-33r2472r 57
14+2v/2](r—2) 6r2+r(8v2-11)—(16v2-1)] | [r(4v2+9)—(8v2+11)

Since L*(G) = L*[H] for some regular graph H for k > 3, the theorem follows from table 3.
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