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Abstract

Two graphs G and H are Türker equivalent if they have the same set of Türker angles.

In this paper some Türker equivalent family of graphs are obtained.

1 Introduction

Let G be a graph with n vertices, m edges and adjacency matrix A. The eigenvalues of A are

the eigenvalues of G and form the spectrum of G denoted by spec(G) [1]. The energy of G,

denoted by E(G) is then defined as the sum of absolute value of its eigenvalues. The properties

of E(G) are discussed in detail in [2, 3, 4, 5, 6, 7]. In chemistry, the energy of a graph is well

studied since it can be used to approximate the total π− electron energy of a molecule.

In order to express the fine molecular-structure-dependent difference in behavior of the total

π electron energy of isomeric alternate hydrocarbons Lemi Türker in [8] introduced the concept

of angle of total π electron energy θ defined as

cos θ =
E

2
√

mn
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and two other related angles α and β connected by α + β = θ. These quantities are referred to

as the Türker angles. This notion was extended to all graphs by I.Gutman [9].

The Türker angle θ has proven to be a useful novel concept in the theory of total π− electron

energy and it has found numerous applications. The fundamental properties of θ, α and β are

discussed in [8, 9, 10, 11].

Recall from [9],

cos α =
n + E√

n
√

n + 2E + 2m
(1)

cos β =
E + 2m√

n + 2E + 2m
√

2m
(2)

Set Y =
√

2mn− E2. Using the trigonometric identity tan x =
√

1−cos2 x
cos x

we get

tan α =
Y

n + E ; tan β =
Y

2m + E and tan θ =
Y

E (3)

Now, we study the nature of these angles in some family of graphs.

We use the following lemmas and definitions in this paper.

Lemma 1. [1] Let G be graph with spec(G) = {λi} , i = 1 to n and H be a graph with

spec(H) = {µj} , j = 1 to n′. Then the spectrum of the cartesian product, G×H of G and H

is given by spec(G×H) = {λi + µj} , i = 1 to n, j = 1 to n′.

Lemma 2. [1] Let A and B be two matrices with spec(A) = {λi} , i = 1 to m and spec(B) =

{µj} , j = 1 to n . Let C = A
⊗

B , the tensor product of A and B . Then spec(C) =

{λi µj} , i = 1 to m and j = 1 to n .

Lemma 3. [6] Let G be an r regular graph on n vertices, r ≥ 3. Then its second iterated line

graph L2(G) has nr(r−1)
2

vertices, nr(r−1)(2r−3)
2

edges and energy 2nr(r − 2).

Definition 1. [4] Let G be a graph on V = {v1, v2, ........., vn}.Take a copy of G on U =

{u1, u2, ...., un} corresponding to V = {vi} . Then make ui adjacent to vertices in N(vi) for

each i, i = 1 to n. The resultant graph is called the double graph of G denoted by D2(G).

Definition 2. [12] Let G be a graph on n vertices labelled as V = {v1, v2, v3, . . . , vn} . Then take

another set U = {u1, u2, . . . , un} of n vertices corresponding to V = {vi}. Now define a graph
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H with V (H) = V
⋃

U and edge set of H consisting only of those edges joining ui to neighbors

of vi in G for each i i = 1 to n. The resultant graph H is called the identity duplication graph

of G denoted by DG .

Definition 3. [13] Let G be a graph on V = {v1, v2, ........., vn}. Take a set U = {u1, u2, ...., un}
of n vertices corresponding to V = {vi}. Then make ui adjacent to vertices in N(vi) for each i,

i = 1 to n. The resultant graph is called the splitting graph of G denoted by splt(G).

Illustration:

Lemma 4. [4] Let G be a graph.Then E [D2(G)] = E [D(G)] = 2E(G).

Lemma 5. Let G be a graph. Then E [splt(G)] =
√

5E(G).

Proof. By definition of splitting graph of G, the adjacency matrix of

splt(G) =




A A

A 0


 = A

⊗



1 1

1 0


.

Then the theorem follows, since the eigenvalues of




1 1

1 0


 are 1±√5

2
. ¥
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2 Some classes of Türker equivalent graphs

Definition 4. Two graphs G and H are Türker equivalent if they have the same set of values

for the Türker angles.

It is known [9] that isomorphic graphs are Türker equivalent. In this section we obtain

non-isomorphic Türker equivalent graphs.

Theorem 1. Let G = {G/G is an r− regular graph, r ≥ 3}. Let Fk = {Lk(G), k ≥ 2/G ∈ G}.
Then the family Fk is Türker equivalent for each k.

Proof. Let G be an r− regular graph on n vertices, r ≥ 3. Then by Lemma 2 and Eq.3, for the

family L2(G) we have the following,

Y = nr(r − 1)

√
2r − 3

2
− 4

(
r − 2

r − 1

)2

tan θ =
(r − 1)

√
2r−3

2
− 4

(
r−2
r−1

)2

2 (r − 2)

tan α =
2(r − 1)

5r − 9

√
2r − 3

2
− 4

(
r − 2

r − 1

)2

tan β =
2(r − 1)

2r2 − r − 5

√
2r − 3

2
− 4

(
r − 2

r − 1

)2

.

Here tanθ, tanα and tanβ are independent of n, the number of vertices of G and depend only

on r, regularity of G. Since Lk(G) = L2(H) for some regular graph H, this can be extended to

the family Lk(G), for k ≥ 3. ¥

Theorem 2. Let G be any graph. Let D =
⋃
k

DkG where DkG is defined iteratively by D0G =

G and DkG = D(Dk−1G), k ≥ 2. Then D is a Türker equivalent family of graphs.

Proof. Let G be an (n,m) graph with energy E and Türker angles α, β and θ. Then by [4], DG,

the duplicate graph of G is a (2n, 2m) graph with energy 2E .
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Let θ′, α′ and β′ be the Türker angles of DG. Then from Eq. 3 we have the following,

tan α′ =

√
2× 2m× 2n− (2E)2

2n + 2E =

√
2mn− E2

n + E = tan α

tan β′ =

√
2× 2m× 2n− (2E)2

2× 2m + 2E =

√
2mn− E2

2m + E = tan β

tan θ′ =

√
2× 2m× 2n− (2E)2

2E =

√
2mn− E2

E = tan θ

Thus the theorem follows. ¥

Theorem 3. Let Fk =
{
Lk(G)/G is an r − regular graph, r ≥ 3, k ≥ 2

}
and

Hk = {splt(Fk) where Fk ∈ Fk}. Then the family Hk is Türker equivalent for each k.

Proof. Let G be an (n,m) graph and k = 2. Then by [13], splt(G) is a (2n, 3m) graph. Then

N =
∣∣V [

splt
{
L2(G)

}]∣∣ = 2×
∣∣V [

L2(G)
]∣∣

= nr(r − 1)

M =
∣∣Edge

[
splt

{
L2(G)

}]∣∣ = 3×
∣∣Edge

{
L2(G)

}∣∣

= 3× nr(r − 1)(2r − 3)

2

E = Energy
[
splt

{
L2(G)

}]
=
√

5× Energy
{
L2(G)

}

= 2
√

5nr(r − 2) by Lemmas 3 and 5.

Also Y =
√

2MN − E2 =
√

3n2r2(r − 1)2(2r − 3)− 20n2r2(r − 2)2. Thus the Türker angles

are given as follows.

tan θ =
Y

E =

√
3(r − 1)2(2r − 3)− 20(r − 2)2

2
√

5(r − 2)
.

tan α =
Y

N + E =

√
3(r − 1)2(2r − 3)− 20(r − 2)2

(r − 1) + 2
√

5(r − 2)
.

tan β =
Y

2M + E =

√
3(r − 1)2(2r − 3)− 20(r − 2)2

3(r − 1)(2r − 3) + 2
√

5(r − 2)
.

Since Lk(G) = L2[H] for some regular graph H, the theorem follows. ¥
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Theorem 4. Let Tk =
{
D2

[
Lk(G)

]
/G is an r − regular graph, r > 3, k ≥ 2

}
. Then the fam-

ily Tk is Türker equivalent for each k.

Proof. Let G be an (n,m) graph and k = 2. Then by [4], D2(G) is a (2n, 4m) graph. Assume

that G is r ≥ 3 regular. Then

N =
∣∣V [

D2

{
L2(G)

}]∣∣ = 2×
∣∣V [

L2(G)
]∣∣ = nr(r − 1)

M =
∣∣Edge

[
D2

{
L2(G)

}]∣∣ = 4×
∣∣Edge

{
L2(G)

}∣∣

= 2nr(r − 1)(2r − 3)

E = Energy
[
D2

{
L2(G)

}]
= 2× Energy

{
L2(G)

}

= 4nr(r − 2) by Lemmas 3 and 4.

Also Y =
√

2MN − E2 = 2nr
√

(r − 1)2(2r − 3)− 4(r − 2)2. Thus the Türker angles are as

follows.

tan θ =
Y

E =

√
(r − 1)2(2r − 3)− 4(r − 2)2

2(r − 2)
.

tan α =
Y

N + E =
2
√

(r − 1)2(2r − 3)− 4(r − 2)2

5r − 9
.

tan β =
Y

2M + E =

√
(r − 1)2(2r − 3)− 4(r − 2)2

2 [(r − 1)(2r − 3) + (r − 2)]
.

Since Lk(G) = L2[H] for some regular graph H, the theorem follows. ¥

The following theorems provide some more Türker equivalent graphs, the proof of which are

on similar lines.

Theorem 5. Let G = {G/G is an r − regular graph} and H = {H/H is an r′ − regular graph }
where r, r′ > 4. Then the family Lp (G)×Lq (H) is Türker equivalent for each p ≥ 2 and q ≥ 2.

Theorem 6. Let G = {G/G is an r− regular graph, r ≥ 4}, Fk = {Lk(G), k ≥ 2/G ∈ G} and

Rk = {R = F1

⊗
F2 /F1 and F2 ∈ Fk}. Then Rk is Türker equivalent for each k.

Theorem 7. Let G be an r− regular graph, r ≥ 3. Then the family {Lk(G)
⊗

Kp} is Türker

equivalent for each p and each k ≥ 2.
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Theorem 8. Let G be an r− regular graph, r ≥ 4. Then the family {Lk(G) × Cp} is Türker

equivalent for each p ≥ 3 and k ≥ 2.

3 Some operations on a graph

In this section we define some operations on a graph G with V (G) = {v1, v2, ..., vn}.

Operation 1. Introduce two copies of G on U = {ui} and W = {wi} corresponding to V =

{vi}. Make ui and wi adjacent to the vertices in N(vi) for each i, i = 1 to n . Then remove

the edges of G only.

Operation 2. Introduce two copies of G on U = {ui} and W = {wi} corresponding to V =

{vi}. Make ui adjacent to the vertices in N(vi) and N(wi) and make wi adjacent to the vertices

in N(vi) and N(ui) for each i, i = 1 to n. Then remove the edges of G only.

Operation 3. Introduce two copies of G on U = {ui} and W = {wi} corresponding to V =

{vi}. Make ui adjacent to the vertices in N(vi) and N(wi) and make wi adjacent to the vertices

in N(vi) and N(ui) for each i, i = 1 to n. Then remove the edges of G on vertex sets V and

W .

Operation 4. Introduce two copies of G on U = {ui} and W = {wi} corresponding to V =

{vi}. Make ui and wi adjacent to the vertices in N(vi) for each i, i = 1 to n.

The graph obtained from G using operation i is denoted by Hi, i = 1, 2, 3 and 4.

Theorem 9. Let G be a graph on n vertices with spectrum {λ1, λ2, ......., λn} and Hi,

i = 1, 2, 3 and 4 be the graphs obtained as above. Then

1. E(H1) = 4E(G) 2. E(H2) = 2
√

3E(G)

3. E(H3) = [2
√

2 + 1]E(G) 4. E(H4) = [2
√

2 + 1]E(G)

Proof. The table 1 gives the adjacency matrix, its tensor partition and the eigenvalues of Hi,

i = 1, 2, 3 and 4.
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Table 1

Operation Adjacency Matrix Eigenvalues

1




0 A A

A A 0

A 0 A




= A
⊗




0 1 1

1 1 0

1 0 1




{2λi, λi,−λi}

2




0 A A

A A A

A A A




= A
⊗




0 1 1

1 1 1

1 1 1




{(
1±√3

)
λi, 0

}

3




0 A A

A A A

A A 0




= A
⊗




0 1 1

1 1 1

1 1 0




{(
1±√2

)
λi,−λi

}

4




A A A

A A 0

A 0 A




= A
⊗




1 1 1

1 1 0

1 0 1




{(
1±√2

)
λi, λi

}

Column 3 of Table 1 gives the eigenvalues of Hi, i = 1, 2, 3 and 4 and hence the theorem

follows. ¥

Note: H3 = H4 when G is bipartite.

Theorem 10. Let G be the collection of all r− regular graphs, r ≥ 3 and Fk = {Lk(G), k ≥
2/G ∈ G}. Let Fki = {Fki/Fk ∈ Fk}, i = 1, 2, 3 and 4 as defined by the above operations. Then

each family Fki, i = 1, 2, 3, 4 and k ≥ 2 is Türker equivalent.

Proof. Let G be an r− regular graph on n vertices, r ≥ 3 and k = 2. Then by Lemma 3 and

from the above operations we have the order, size and energy of F2i for i = 1, 2, 3 and 4 are

as given in table 2.
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Table 2

i Order of F2i Size of F2i E(F2i)

1 3nr(r−1)(2r−3)
2 3nr(r − 1) 8nr(r − 2)

2 3nr(r−1)(2r−3)
2 4nr(r − 1) 4

√
3nr(r − 2)

3 3nr(r−1)(2r−3)
2

7nr(r−1)
2 2

(
2
√

2 + 1
)
nr(r − 2)

4 3nr(r−1)(2r−3)
2

7nr(r−1)
2 2

(
2
√

2 + 1
)
nr(r − 2)

Now for each i, the Table 3 gives the three Türker angles.

Table 3

i tan θ tan α tan β

1
√

18r3−127r2+328r−283
8(r−2)

2
√

18r3−127r2+328r−283
6r2+r−23

√
18r3−127r2+328r−283

2(7r−11)

2
√

18r3−127r2+328r−283
4
√

3(r−2)
2
√

18r3−127r2+328r−283
6r2+r(8

√
3−15)−(16

√
3−9)

√
18r3−127r2+328r−283

4[(2+
√

3)r−2(1+
√

3)]

3
√

6r3−33r2+72r−57

[1+2
√

2](r−2)

4
√

6r3−33r2+72r−57

[6r2+r(8
√

2−11)−(16
√

2−1)]
2
√

6r3−33r2+72r−57

[r(4
√

2+9)−(8
√

2+11)]

4
√

6r3−33r2+72r−57

[1+2
√

2](r−2)

4
√

6r3−33r2+72r−57

[6r2+r(8
√

2−11)−(16
√

2−1)]
2
√

6r3−33r2+72r−57

[r(4
√

2+9)−(8
√

2+11)]

Since Lk(G) = L2[H] for some regular graph H for k ≥ 3, the theorem follows from table 3. ¥
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