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Abstract
4

In this paper, we study the domination number, the global dom-5

ination number, the cographic domination number, the global co-6

graphic domination number and the independent domination number7

of all the graph products which are non-complete extended p-sums8

(NEPS) of two graphs.9
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1 Introduction13

We consider only finite, simple graphs G = (V,E) with |V | = n and |E| =14

m.15

A set S ⊆ V of vertices in a graph G is called a dominating set if every16

vertex v ∈ V is either an element of S or is adjacent to an element of17

S. A dominating set S is a minimal dominating set if no proper subset18

of S is a dominating set. The domination number γ(G) of a graph G19

is the minimum cardinality of a dominating set in G [4]. A dominating20

set S is global dominating if S dominates both G and Gc. The global21

domination number γg(G) of a graph G is the minimum cardinality of a22

global dominating set in G [10].23

A graph which does not have P4 - the path on four vertices, as an induced24

subgraph is called a cograph. A set S ⊆ V is called a cographic dominating25

set if S dominates G and the subgraph induced by S is a cograph [9]. The26

minimum cardinality of a cographic dominating set is called the cographic27
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domination number, γcd(G). A set S ⊆ V is called a global cographic28

dominating set if it dominates both G and Gc and the subgraph induced by29

S is a cograph. The minimum cardinality of a global cographic dominating30

set is called the global cographic domination number, γgcd(G) [9]. A set31

S ⊆ V is independent if no two vertices of S are adjacent in G. A set S ⊆ V32

is called an independent dominating set if S is an independent set which33

dominates G. The minimum cardinality of an independent dominating set34

is called the independent domination number, γi(G) [4].35

A graphical invariant σ is supermultiplicative with respect to a graph36

product ×, if given any two graphs G and H σ(G × H) ≥ σ(G)σ(H) and37

submultiplicative if σ(G×H) ≤ σ(G)σ(H). A class C is called a universal38

multiplicative class for σ on × if for every graph H, σ(G×H) = σ(G)σ(H)39

whenever G ∈ C [8].40

Let B be a non-empty subset of the collection of all binary n-tuples which41

does not include (0, 0, ..., 0). The non-complete extended p-sum (NEPS) of42

graphs G1, G2, ..., Gp with basis B denoted by NEPS(G1, G2, ..., Gp;B), is43

the graph with vertex set V (G1) × V (G2) × ... × V (Gp), in which two44

vertices (u1, u2, ..., up) and (v1, v2, ..., vp) are adjacent if and only if there45

exists (β1, β2, ..., βp) ∈ B such that ui is adjacent to vi in Gi whenever46

βi = 1 and ui = vi whenever βi = 0. The graphs G1, G2, ..., Gp are called47

the factors of NEPS [2]. Thus, the NEPS of graphs generalizes the various48

types of graph products, as discussed in detail in the next section.49

In this paper, we study the domination number, the global domina-50

tion number, the cographic domination number, the global cographic dom-51

ination number and the independent domination number of NEPS of two52

graphs.53

All graph theoretic terminology and notations not mentioned here are54

from [1].55

2 NEPS of two graphs56

There are seven possible ways of choosing the basis B when p = 2.57

B1 = {(0, 1)}58

B2 = {(1, 0)}59

B3 = {(1, 1)}60

B4 = {(0, 1), (1, 0)}61

B5 = {(0, 1), (1, 1)}62

B6 = {(1, 0), (1, 1)}63

B7 = {(0, 1), (1, 0), (1, 1)}64

Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs with |Vi| = ni and65

|Ei| = mi for i = 1, 2.66
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The NEPS(G1, G2;B1) is n1 copies of G2 and the NEPS(G1, G2;B2) =67

NEPS(G2, G1;B1).68

In the NEPS(G1, G2;Bj) two vertices (u1, v1) and (u2, v2) are adjacent69

if and only if,70

• j = 3 : u1 is adjacent to u2 in G1 and v1 is adjacent to v2 in G2. This71

is same as the tensor product [1] of G1 and G2.72

• j = 4 : u1 = u2 and v1 is adjacent to v2 in G2 or u1 is adjacent to73

u2 in G1 and v1 = v2. This is same as the cartesian product [1] of G174

and G2.75

• j = 5 : Either u1 = u2 or u1 is adjacent to u2 in G1 and v1 is adjacent76

to v2 in G2.77

• j = 6 : This is same as NEPS(G2, G1;B5).78

• j = 7 : Either u1 = u2 and v1 is adjacent to v2 in G2 or u1 is adjacent79

to u2 in G1 and v1 = v2 or u1 is adjacent to u2 in G1 and v1 is adjacent80

to v2 in G2. This is same as the strong product [1] of G1 and G2.81

3 Domination in NEPS of two graphs82

3.1 NEPS with basis B1 and B283

The value of γ(NEPS(G1, G2;B1)), γg(NEPS(G1, G2;B1)), γcd(NEPS(G1,84

G2;B1)), γgcd(NEPS(G1, G2;B1)), γi(NEPS(G1, G2;B1)) are n1.γ(G2),85

n1.γg(G2), n1.γcd(G2), n1.γgcd(G2) and n1.γi(G2) respectively and the case86

of NEPS(G1, G2;B2) follows similarly.87

3.2 NEPS with basis B388

In [3] it was conjectured that γ(G×H) ≥ γ(G)γ(H), where × denotes the89

tensor product of two graphs. But, the conjecture was disproved in [6] by90

giving a realization of a graph G such that γ(G×G) ≤ γ(G)2 − k for any91

non-negative integer k.92

Theorem 1. There exist graphs G1 and G2 such that σ(NEPS(G1, G2;93

B3))− σ(G1)σ(G2) = k for any positive integer k, where σ denotes any of94

the domination parameters γ, γcd or γi.95

Proof. Let G1 be the graph defined as follows. Let u11u12u13, u21u22u23,96

..., uk1uk2uk3 be k distinct P3 s and let uj1 be adjacent to uj+1,1 for97

j = 1, 2, ..., k − 1. Then σ(G1) = k. Let G2 be K2. Then, σ(G2) =98

1. Also, σ(NEPS(G1, G2;B3)) = 2k. Therefore, σ(NEPS(G1, G2;B3)) −99

σ(G1)σ(G2) = k.100
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Theorem 2. The γg and γgcd are neither submultiplicative nor super-101

multiplicative with respect to the NEPS with basis B3. Moreover, given any102

integer k there exist graphs G1 and G2 such that σ(NEPS(G1, G2;B3)) −103

σ(G1)σ(G2) = k, where σ denotes γg or γgcd.104

Proof. Case 1. k ≤ 0 is even.105

Let G1 = Kn and G2 = K2. Then, σ(G1) = n and σ(G2) = 2. But,106

σ(NEPS(G1, G2;B3)) = 2. Therefore, the required difference is 2−2n which107

can be zero or any negative even integer.108

Case 2. k < 0 is odd or k = 1.109

Let G3 = P3 and G1 be as in Case 1. Then σ(G3) = 2. Also,110

σ(NEPS(G1, G3;B3)) = 3. Therefore, the required difference is 3 − 2n111

which can be one or any negative odd integer.112

Case 3. k > 1.113

Let G3 be as in Case 2. Let G4 be the graph defined as follows.114

Let u11u12u13, u21u22u23, ..., uk1uk2uk3 be k distinct P3 s and let uj1115

be adjacent to uj+1,1 for j = 1, 2, ..., k − 1. Then σ(G4) = k. Also,116

σ(NEPS(G4, G3;B3)) = 3k. Therefore, the required difference is k.117

3.3 NEPS with basis B4118

Vizing’s conjecture [11]. The domination number is supermultiplicative119

with respect to the cartesian product i.e; γ(G�H) ≥ γ(G)γ(H).120

Remark 3. There are infinitely many pairs of graphs for which equality121

holds in the Vizing’s conjecture [7].122

Remark 4. Vizing’s type inequality does not hold for cographic, global123

cographic and independent domination numbers. For example, let G be the124

graph obtained by attaching k pendant vertices to each vertex of a path125

on four vertices. Then, γcd(G) = γgcd(G) = k + 3 and γcd(G�G) =126

γgcd(G�G) = 16k + 8. For k ≥ 10, γcd(G�G) ≤ γcd(G)2.127

Theorem 5. There exist graphs G1 and G2 such that σ(NEPS(G1, G2;128

B4))− σ(G1)σ(G2) = k for any positive integer k, where σ denotes any of129

the domination parameters γ, γcd or γi.130

Proof. Let G1 = Pn and G2 = K2. Then, σ(G1) = bn+2
3 c [4] and131

σ(G2) = 1. Also, σ(NEPS(G1, G2;B4)) = bn+2
2 c [5]. Therefore, for any132

positive integer k, if we choose n = 6k − 2 the claim follows.133

Theorem 6. The γg and γgcd are neither submultiplicative nor super-134

multiplicative with respect to the NEPS with basis B4. Moreover, given any135

integer k there exist graphs G1 and G2 such that σ(NEPS(G1, G2;B4)) −136

σ(G1)σ(G2) = k, where σ denotes γg or γgcd.137
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Proof. Case 1. k ≤ 0 is even.138

Let G1 = Kn and G2 = K2. Then, σ(G1) = n and σ(G2) = 2. But,139

σ(NEPS(G1, G2;B4)) = 2. Therefore, the required difference is 2−2n which140

can be any positive even integer.141

Case 2. k < 0 is odd.142

Let G3 = P3 and G1 be as in Case 1. Then σ(G3) = 2. Also,143

σ(NEPS(G1, G3;B4)) = 3. Therefore, the required difference is 3 − 2n144

which can be any negative odd integer.145

Case 3. k ≥ 1.146

Let G4 = Pn and G5 = P4. Then, σ(G4) = bn+2
3 c and σ(G5) = 2. For147

any positive integer k, if we choose n = 3k+4, then σ(NEPS(G4, G5;B4)) =148

n. (Note that the value is n+1 only when n = 1, 2, 3, 5, 6, 9 [5]). Therefore149

the required difference is k.150

3.4 NEPS with basis B5 and B6151

Theorem 7. There exist graphs G1 and G2 such that σ(NEPS(G1, G2;152

B5))− σ(G1)σ(G2) = k for any positive integer k, where σ denotes any of153

the domination parameters γ, γcd or γi.154

Proof. Let G1 = Pn and G2 = K2. Then σ(G1) = bn+2
3 c and σ(G2) = 1.155

Also, σ(NEPS(G1, G2;B5)) = bn+2
2 c. For a positive integer k, if we choose156

n = 6k − 2 then the difference is k. Hence, the theorem.157

Theorem 8. There exist graphs G1 and G2 such that σ(NEPS(G1, G2;158

B5)) − σ(G1)σ(G2) = k for any negative integer k, where σ denotes γg or159

γgcd.160

Proof. Let G1 = Pn and G2 = K2. Then σ(G1) = bn+2
3 c and σ(G2) = 2.161

Also, σ(NEPS(G1, G2;B5)) = bn+2
2 c. Therefore, if we choose n = 6k − 2,162

the required difference is −k.163

3.5 NEPS with basis B7164

Theorem 9. The γ, γi and γg are submultiplicative with respect to the165

NEPS with basis B7.166

Proof. Let D1 = {u1, u2, ..., us} be a dominating set of G1 and D2 =167

{v1, v2, ..., vt} be a dominating set of G2. Consider the set D = {(u1, v1),168

(u1, v2), ..., (u1, vt), ..., (us, v1), (us, v2), ..., (us, vt)}. Let (u, v) be any vertex169

in NEPS(G1, G2;B7). Since D1 is a γ-set in G1, there exists at least one170

ui ∈ D1 such that u = ui or u is adjacent to ui. Similarly, there exists at171

least one vj ∈ D2 such that v = vj or v is adjacent to vj . Therefore, (ui, vj)172

dominates (u, v) in NEPS(G1, G2;B7). Hence, γ(NEPS(G1, G2;B7)) ≤173

γ(G1)γ(G2).174
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Similar arguments hold for the independent domination and global dom-175

ination numbers also.176

Note. The difference between γ(G1)γ(G2) and γ(NEPS(G1, G2;B7)) can177

be arbitrarily large. Similar is the case for γi and γg. For, let G1 be178

the graph, n copies of C4 s with exactly one common vertex. Then,179

γ(G1) = γi(G1) = n + 1. Also, γ(NEPS(G1, G1;B7)) ≤ n2 + 3 and180

γi(NEPS(G1, G1;B7)) ≤ n2 + 5. Also, γg(Kn) = n, γg(P3) = 2 and181

γg(NEPS(G2, G3;B7)) = n + 2, if n > 1.182

Theorem 10. The γcd and γgcd are neither submultiplicative nor super-183

multiplicative with respect to the NEPS with basis B7. Moreover, for any184

integer k there exist graphs G1 and G2 such that σ(NEPS(G1, G2;B7)) −185

σ(G1)σ(G2) = k, where σ denotes γcd or γgcd.186

Proof. Case 1. k ≤ 0.187

Let G1 be the graph P3 with k pendant vertices each attached to all188

the three vertices of the P3. Let G2 be the graph P4 with k pendant189

vertices each attached to all the four vertices of the P4. So, σ(G1) = 3190

and σ(G2) = k + 3. Also, σNEPS(G1, G2;B7)) = 2k + 10. Therefore, the191

required difference is 1− k.192

Case 2. k ≥ 0.193

Let G1 be as in Case 1 and G3 be the graph P6 with k pendant vertices194

each attached to all the six vertices of the P6. So, σ(G3) = k + 5. Also,195

σNEPS(G1, G3;B7)) = 4k + 14. Therefore, the required difference is k − 1.196

197
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