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Abstract

In this paper, we study the domination number, the global dom-
ination number, the cographic domination number, the global co-
graphic domination number and the independent domination number
of all the graph products which are non-complete extended p-sums
(NEPS) of two graphs.
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1 Introduction

We consider only finite, simple graphs G = (V, E) with |V| =n and |E| =
m.

A set S C V of vertices in a graph G is called a dominating set if every
vertex v € V is either an element of S or is adjacent to an element of
S. A dominating set S is a minimal dominating set if no proper subset
of S is a dominating set. The domination number v(G) of a graph G
is the minimum cardinality of a dominating set in G [4]. A dominating
set S is global dominating if S dominates both G and G¢. The global
domination number v4(G) of a graph G is the minimum cardinality of a
global dominating set in G [10].

A graph which does not have Py - the path on four vertices, as an induced
subgraph is called a cograph. A set S C V is called a cographic dominating
set if S dominates G and the subgraph induced by S is a cograph [9]. The
minimum cardinality of a cographic dominating set is called the cographic
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domination number, v.4(G). A set S C V is called a global cographic
dominating set if it dominates both G and G¢ and the subgraph induced by
S is a cograph. The minimum cardinality of a global cographic dominating
set is called the global cographic domination number, v,.4(G) [9]. A set
S C V is independent if no two vertices of S are adjacent in G. A set S CV
is called an independent dominating set if S is an independent set which
dominates G. The minimum cardinality of an independent dominating set
is called the independent domination number, v;(G) [4].

A graphical invariant ¢ is supermultiplicative with respect to a graph
product X, if given any two graphs G and H o(G x H) > o(G)o(H) and
submultiplicative if (G x H) < o(G)o(H). A class C is called a universal
multiplicative class for o on x if for every graph H, 0(G x H) = o(G)o(H)
whenever G € C [8].

Let B be a non-empty subset of the collection of all binary n-tuples which
does not include (0,0, ...,0). The non-complete extended p-sum (NEPS) of
graphs G1, G, ..., G, with basis B denoted by NEPS(G1, Ga, ..., Gp; B), is
the graph with vertex set V(Gi) x V(G2) x ... x V(G,), in which two
vertices (u1,uz, ..., up) and (v1,vs,...,v,) are adjacent if and only if there
exists (01, B2,...,0p) € B such that u; is adjacent to v; in G; whenever
B; =1 and u; = v; whenever 3; = 0. The graphs G1, Gy, ..., Gy, are called
the factors of NEPS [2]. Thus, the NEPS of graphs generalizes the various
types of graph products, as discussed in detail in the next section.

In this paper, we study the domination number, the global domina-
tion number, the cographic domination number, the global cographic dom-
ination number and the independent domination number of NEPS of two
graphs.

All graph theoretic terminology and notations not mentioned here are
from [1].

2 NEPS of two graphs

There are seven possible ways of choosing the basis B when p = 2.

By = {(07 1)}

By = {(170)}

Bz = {(17 1)}

By = {(07 1)’ (170)}

Bs = {(07 1)a (17 1)}

Bs = {(170)a (17 1)}

Br = {(07 1)7 (170)7 (1, 1)}
Let G; = (V4,Ey) and Gy = (Va, Es) be two graphs with |V;| = n; and
|E;| = m; fori=1,2.



67

68

69

70

72

73

74

75

76

7

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

99

100

The NEPS(G1,G2; B1) is ny copies of G2 and the NEPS(G1, Go; Bs) =
NEPS(GQ, G1; Bl)

In the NEPS(G1, Ga; B;) two vertices (u1,v1) and (ug,ve) are adjacent
if and only if,

e j =3: uy is adjacent to us in G; and vy is adjacent to ve in Go. This
is same as the tensor product [1] of G; and Ga.
e j =4: u; = us and v is adjacent to vo in G5 or w; is adjacent to

ug in G7 and v; = vy. This is same as the cartesian product [1] of G,
and Gs.

e j =5: Either u; = us or u; is adjacent to us in G and vy is adjacent
to vo in Gs.

j =6 : This is same as NEPS(Ga, G1; Bs).

e j = 7: Either u; = uy and vy is adjacent to vy in G5 or uy is adjacent
to ug in Gy and vy = vs or ug is adjacent to us in G and v is adjacent
to vy in G5. This is same as the strong product [1] of G; and Gs.

3 Domination in NEPS of two graphs

3.1 NEPS with basis B; and B,

The value of y(NEPS(G1,G2; B1)), 74(NEPS(G1, G2;B1)), v.a(NEPS(Gy,
G2;B1)), 79ea(NEPS(G1,G2;B1)), 7(NEPS(G1,Go; Br)) are ny.y(Ga),
n1.74(G2), 11.Yed(G2), n1.7ged(G2) and nq.y;(G2) respectively and the case
of NEPS(G1, Go; Bs) follows similarly.

3.2 NEPS with basis B;

In [3] it was conjectured that v(G x H) > v(G)v(H), where x denotes the
tensor product of two graphs. But, the conjecture was disproved in [6] by
giving a realization of a graph G such that y(G x G) < y(G)? — k for any
non-negative integer k.

Theorem 1.  There exist graphs G1 and Gy such that o( NEPS(G1, Ga;
B3)) — 0(G1)o(G2) = k for any positive integer k, where o denotes any of
the domination parameters vy, Yeq OT Yi-

PTOOf. Let G1 be the graph defined as follows. Let U11UI2UL3, U21U22U23,
.y, Uk1Uk2ug3 be k distinct P s and let u;; be adjacent to w;y;; for
j=1,2,...,k—1. Then o(Gy) = k. Let G2 be K3. Then, o(G2) =
1. Also, o(NEPS(G;,G2;B3)) = 2k. Therefore, o(NEPS(G1,G2;B3)) —
O'(Gl)O'(GQ) =k. O
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Theorem 2. The g and vgcq are neither submultiplicative nor super-
multiplicative with respect to the NEPS with basis B3. Moreover, given any
integer k there exist graphs G and Go such that c(NEPS(G1,G2;B3)) —
0(G1)o(G2) = k, where o denotes 4 0T Yged-

Proof. Case 1. k <0 is even.

Let G; = K,, and G2 = K3. Then, 0(G1) = n and o(G3) = 2. But,
o(NEPS(G1,G2;B3)) = 2. Therefore, the required difference is 2—2n which
can be zero or any negative even integer.

Case 2. k<0isoddor k= 1.

Let G35 = Ps; and G; be as in Case 1. Then o(G3) = 2. Also,
o(NEPS(G1,G3;B3)) = 3. Therefore, the required difference is 3 — 2n
which can be one or any negative odd integer.

Case 3. k> 1.

Let G3 be as in Case 2. Let G4 be the graph defined as follows.
Let UL1UI2UL3, U21U22U23, ...y UL1UL2UES be k distinct P3 s and let Uj1
be adjacent to u;y11 for j = 1,2,..,k — 1. Then o(Gs4) = k. Also,
o(NEPS(G4,Gs; Bs)) = 3k. Therefore, the required difference is k. O

3.3 NEPS with basis B,

Vizing’s conjecture [11]. The domination number is supermultiplicative
with respect to the cartesian product i.e; v(GOH) > ~(G)y(H).

Remark 3.  There are infinitely many pairs of graphs for which equality
holds in the Vizing’s conjecture [7].

Remark 4. Vizing’s type inequality does not hold for cographic, global
cographic and independent domination numbers. For example, let G be the
graph obtained by attaching k pendant vertices to each vertex of a path
on four vertices. Then, Y.a(G) = Y4ed(G) = k + 3 and v.4(GOG) =
Yged(GOG) = 16k + 8. For k > 10, 7.4(GOG) < v.a(G)>.

Theorem 5. There exist graphs Gy and Ga such that o(NEPS(G1, Ga;
By)) — 0(G1)o(Gsa) = k for any positive integer k, where o denotes any of
the domination parameters vy, Yeq OT Vi-

Proof. Let Gy = P, and Gy = K,. Then, o(Gy) = [*2] [4] and
o(G2) = 1. Also, o(NEPS(G1,Ga;Bs)) = |“£2] [5]. Therefore, for any
positive integer k, if we choose n = 6k — 2 the claim follows. O]

Theorem 6.  The v, and v4eq are neither submultiplicative nor super-
multiplicative with respect to the NEPS with basis B4. Moreover, given any
integer k there exist graphs Gy and Gy such that o(NEPS(G1,Ga;By4)) —
0(G1)o(G2) = k, where o denotes v4 0T Yged-
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Proof. Case 1. k <0 is even.

Let Gy = K, and G2 = K. Then, 6(G1) = n and o(G3) = 2. But,
o(NEPS(G1,G2;By)) = 2. Therefore, the required difference is 2—2n which
can be any positive even integer.

Case 2. k < 0 is odd.

Let G35 = P3; and G; be as in Case 1. Then o(Gs) = 2. Also,
o(NEPS(G1,Gs;B4)) = 3. Therefore, the required difference is 3 — 2n
which can be any negative odd integer.

Case 3. k> 1.

Let G4 = P, and G5 = Py. Then, 0(G4) = |*$2] and 0(G5) = 2. For
any positive integer k, if we choose n = 3k+4, then o (NEPS(G4, Gs5; B4)) =
n. (Note that the value is n+ 1 only when n =1,2,3,5,6,9 [5]). Therefore
the required difference is k. O

3.4 NEPS with basis B5 and Bg

Theorem 7. There exist graphs G1 and Go such that c(NEPS(G1,Go;
Bs)) — 0(G1)o(G2) = k for any positive integer k, where o denotes any of
the domination parameters =y, Yeq OT ;-

Proof. Let G; = P, and Gy = K5. Then o(G;) = L"T”J and o(Gg) = 1.
Also, o(NEPS(G1, Ga; Bs)) = [2£2]. For a positive integer k, if we choose
n = 6k — 2 then the difference is k. Hence, the theorem. O]

Theorem 8.  There exist graphs G1 and Gy such that c(NEPS(G1,Go;
Bs)) — 0(G1)o(G2) = k for any negative integer k, where o denotes v, or
Vgcd-

Proof. Let G; = P, and Gy = K5. Then ¢(G;) = L"THJ and o(Gs) = 2.
Also, 0(NEPS(G1,G2; Bs)) = |%£2|. Therefore, if we choose n = 6k — 2,
the required difference is —k. O

3.5 NEPS with basis B;

Theorem 9.  The v,v; and v, are submultiplicative with respect to the
NEPS with basis Br.

Proof.  Let Dy = {uj,us,...,us} be a dominating set of G; and Dy =
{v1,v2,...,v:} be a dominating set of Go. Consider the set D = {(uy,v1),
(U1,v2), ey (U1,0t), .ovy (s, v1), (s, V2), ooy (Us, V) }. Let (u,v) be any vertex
in NEPS(G1, Ge; B7). Since Dy is a y-set in G, there exists at least one
u; € Dy such that u = u; or u is adjacent to u;. Similarly, there exists at
least one v; € D, such that v = v; or v is adjacent to v;. Therefore, (u;, v;)
dominates (u,v) in NEPS(G1, Gs;Br). Hence, v(NEPS(G1,Ge; Br)) <
Y(G1)V(G2). O
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Similar arguments hold for the independent domination and global dom-
ination numbers also.
Note. The difference between v(G1)v(G2) and v(NEPS(G1, Ga; Br)) can
be arbitrarily large. Similar is the case for 7; and v,. For, let G; be
the graph, n copies of Cy s with exactly one common vertex. Then,
¥(G1) = 7i(G1) = n+ 1. Also, v(NEPS(G1,G1;B7)) < n? + 3 and
7 (NEPS(G1,G1;B7)) < n? + 5. Also, 74(K,) = n, v(P;) = 2 and
’yg(NEPS<G2, Gs; 67)) =n+2,ifn>1.

Theorem 10. The veq and Ygeq are neither submultiplicative nor super-
multiplicative with respect to the NEPS with basis B7. Moreover, for any
integer k there exist graphs Gy and Gy such that o(NEPS(G1,Ga;B7)) —
0(G1)o(G2) = k, where o denotes Yeq OT Yged-

Proof. Case 1. k£ <0.

Let G1 be the graph Ps with k pendant vertices each attached to all
the three vertices of the P3. Let Go be the graph P, with k& pendant
vertices each attached to all the four vertices of the P;. So, o(G1) = 3
and o(Gy) = k+ 3. Also, oNEPS(G1,G2;B7)) = 2k + 10. Therefore, the
required difference is 1 — k.

Case 2. £ > 0.

Let G1 be as in Case 1 and G3 be the graph Pz with k& pendant vertices
each attached to all the six vertices of the Ps. So, o(G3) = k + 5. Also,
oNEPS(G4, G3; Br)) = 4k + 14. Therefore, the required difference is k — 1.

O
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