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PREFACE

Cosmological observations provide an increasingly precise picture of

our universe. The first giant step towards this was by Edwin Hubble who

obtained distances to various galaxies external to Milkyway and their ve-

locities using Cepheid variable star as the standard candle. This ultimately

led to the realization that the universe is expanding. Besides this, it led to

the understanding of the constituents of the universe. The baryon density

was found to be roughly 5% of the total content of the universe. Further

a multitude of observations such as galaxy rotation curves, cosmic mi-

crowave background radiation, baryon acoustic oscillations etc, indicated

that 23% of the total density of the cosmic component is in the form of

weakly interacting matter called dark matter.

Yet another spectacular discovery followed in the year 1998 as two

teams - the Supernova Cosmology Project led by Saul Perlmutter and the

High-Z Supernova Search Team lead by Brian P. Schmidt and Adam G.

Riess based on their observations on Type I a Supernovae, independently

reported that the expansion of the universe is accelerating. This seems to

be indicating further that about 72% of the total density is in the form of

yet another exotic component called dark energy.

Even though the exotic components like dark matter and dark energy

are adequate for the explanation of the known evolution of the universe

so far, the cosmological data doesn’t rule out the existence of other exotic

cosmic components. For example, it was observed by S. Dutta et al that

the presence of dark radiation in the cosmos, responsible for interaction

between proposed particles of dark matter, will not go against any prevail-

ing data. Another exotic component not violating the data on the universe

is the Zeldovich fluid proposed by Ya B. Zeldovich, which is the stiffest
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possible fluid reaching optimum pressure, having the speed of sound in it

equaling that of light. Its equation of state is
pz
ρz

= 1, where ρz and pz are

density and pressure of the stiff fluid respectively. There had been several

theoretical models, such as by R. Stiele et al, P. Horava, E. Kiritsis et al,

T.P. Sotiriou et al, C. Bogdanos et al, A. Ali et al, S. Dutta et al, J.D.

Barrow, and L. Fernandez-Jambrina et al speculated the presence of Zel-

dovich fluid in the early universe. The equation of state fo the Zeldovich,

through cosmological conservation implies that, the density of this fluid

behaves as, ρz ∝ a−6. Due to this ever faster decrease in the density of

Zeldovich fluid, if at all it has any effect on the evolution of the universe

it must in the early stage. The process of primordial nucleosynthesis, an

important process which took place in the early stage of the universe has

been invoked by S. Dutta and R.J. Scherrer to constrain the density of

the Zeldovich fluid as ρz/ργ < 30, at a fiducial temperature of 10 MeV,

where ργ is the density of radiation in the early stage of the universe. As

ρz ∝ a−6, the role of Zeldovich fluid is insignificant in the late universe.

However, an extended model of Zeldovich fluid by incorporating a bulk

viscosity can alter the density evolution of the universe, which can have

appreciable effect in the late universe. Our thesis is aiming at a detailed

analysis of this aspect in the context of the late acceleration of the universe.

The late acceleration of the universe was discovered around 1998 by

two teams, one team led by Saul Perlmutter and the other by Adam Riess,

by observing the Type Ia, supernovae. The acceleration was thought to

be caused by an exotic component of the fluid called dark energy, whose

nature is still unknown. The successful candidate for dark energy is the

cosmological constant, which lead to the most successful model of the

late accelerating universe, the standard ΛCDM model. Despite its highly

laudable success, the model has two major flaws: (i) the huge discrepancy

between the theoretical and observed value of the density of the Λ called

Cosmological constant problem and (ii) cosmological coincidence problem,
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the observation that the order of magnitude of the present densities of the

constituents cold dark matter and dark energy are the same. This paved

way to a variety of dynamical dark energy models like Quintessence, K-

essence, Tachyon field, Phantom ghost field, Dilatonic dark energy, Chap-

lygin gas model, Holographic dark energy model, etc. To explain the

accelerating universe there had been attempts with alternative theories of

gravity, such as f(R) gravity, f(T ) gravity, Gauss-Bonnet theory, Love-

lock gravity, Horava- Lifshitz gravity, scalar-tensor theories, braneworld

model, etc. Despite this intense theoretical physics activities, the nature

of dark energy still continues to be a mystery. An alternative way of

understanding the late acceleration without invoking to any exotic dark

energy form is by incorporating viscosity into the matter sector. There

were attempts to explain the early inflation by using viscous fluids by Pad-

manabhan and others. In the context of late acceleration also the viscous

models have been analyzed extensively by many. In the present thesis we

study the late universe having bulk viscous Zeldovich fluid as the dominant

component. We analyzed the background evolution and found that it is

predicting a transition from a prior decelerated epoch to a late accelerated

epoch by accounting for the cosmological parameters in a reasonable way.

The model was constrained with the supernovae data thus extracted the

values of the corresponding model parameter including the present value

of the Hubble parameter. A statefinder analysis of the model by using

the conventional parameter (r, s) has also been performed, which shows

that our model is arguably different from the ΛCDM model. We further

studied the dynamical system behavior of the model, thus obtained the

nature of the asymptotic behavior. We also explore the thermodynamic

evolution of the model in detail, which implies that the universe evolves

as an ordinary macroscopic system with an upper bound to the growth of

entropy. It was emerged from our analysis that, the model predicts under

age for the current universe. To alleviate this problem, we extended the

model by incorporating the decaying vacuum energy as an additional cos-
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mic component. By this analysis we found the previous age problem can

be solved to a great extend. The thesis consists of five chapters. Under-

neath, we give a brief account of the facts presented in different chapters

of the thesis.

Chapter 1

This chapter gives an introduction to standard cosmology, with emphasize

on the ΛCDM model. It begins with Einstein’s field equations and ends

by briefing with the disadvantages of the ΛCDM model, alongside its

successful features of explaining the cosmic dynamics. This chapter also

briefly discusses the discovery of accelerating universe, and motivates the

bulk viscous model of the universe.

Chapter 2

This chapter describes our work on the background evolution of the late

universe dominated with bulk viscous Zeldovich fluid. We describe the

evolution of the normal Zeldovich (stiff) fluid. Following this we briefly

discuss the origin of bulk viscosity and negative pressure which can arise

from the adiabatic thermodynamical disturbances and due to the tendency

of the overall cosmos towards restoration of equilibrium. We adopt the

Eckart’s approach in accounting the viscosity, using which we analytically

obtain expressions for scale factor, acceleration, q factor and the state

function ω and obtain their evolution profiles for various possible values

of bulk viscosity coefficient ζ̄ , thereby obtaining clues on their range of

values compatible with the observed features of the evolution of the late

universe. This includes seeing the criteria by which the age of the universe

is defined. We also analyze the thermal evolution of the model and the

validity of GSL (Generalized Second Law) has been checked. The use of

r-s plot as a diagnostic tool is explained, as the evolution of q factor and
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state function ω are not satisfactory enough to contrast the given model

with the standard one. It is discussed how the bulk viscous Zeldovich

fluid compares with the ΛCDM model regarding the prediction of future

of the universe in terms of its asymptotic limit. Overall, we arrive at the

conclusion that the dimensionless bulk viscous coefficient ζ̄ must be ζ̄ < 6

for predicting the conventional evolution of the universe. For 0 < ζ̄ < 4

the transition point of acceleration from a prior decelerated epoch is found

to be occurred in future. For ζ̄ = 4 the transition is at present. The

transition would appear in the past for 4 < ζ̄ < 6. For ζ̄ ≥ 6 the cosmos is

eternally accelerating, having no big bang. The analytically obtained age

of the universe is ∼ 13.7 GY(Giga Years) for ζ̄ ∼ 5.7.

Chapter 3

This chapter is devoted to the analysis of the asymptotic behavior of the

model. First we have obtained the best fit for value of ζ̄ and the present

value of Hubble parameter H0 by contrasting the model with the standard

Union 307 data of type Ia supernovae. This is done by a χ−square analysis

method. We found that Hubble parameter is H0 = 70.20 ± 0.58 km s−1

Mpc−1, which is comparable to the observed values and that predicted by

the standard ΛCDM model. The best fit value of bulk viscous coefficient is

5.25±0.14. Using the best estimated parameters we obtain the redshift at

which the universe entered the acceleration as z ∼ 0.6, which is agreeing

with the observations. The model predicts an asymptotic de Sitter phase,

agreeing with ΛCDM predictions. However, the age predicted for the

mentioned best fit ζ̄ and H0 is 10 GY which is not reasonable enough,

compared to the 13.7 GY obtained from Globular clusters observationally

and from ΛCDM model theoretically. The dynamical system analysis

shows that the model possess stable critical point corresponding to the end

de Sitter epoch. However, when the radiation is included as an additional

cosmic component there arise no stable critical point and hence the model



xiv

does not accommodate the radiation dominated era.

Chapter 4

In this chapter, we discuss the extended Zeldovich fluid model by including

decaying vacuum as an additional component. By this we hope to improve

the age prediction of the model. The justification of the two component

fluid is derived from scalar field models. The decaying vacuum of the form

Λ = αH2, having α a constant borrowed from Bessada et al’s research on

star formation rate analysis. We analyzed the evolution of scale factor,

state function and q factor for various values of ζ̄ and found there is big

bang for ζ̄ < 1.72. For values ζ̄ ≥ 1.72, besides having no big bang, the uni-

verse remains eternally accelerating. Therefore the age is not predicted for

ζ̄ ≥ 1.72, The mentioned analysis indicates the asymptotic de Sitter phase

too. Later, after having α fixed at 0.14(following the work of Bessada et

al), we constrained the values of ζ̄ and H0 with χ−square analysis using

the type Ia supernova, CMB(Cosmic Microwave Background) and BAO

(Baryon Acoustic Oscillations) data. We obtained the best fit value for ζ̄

as about 1.445, besides obtaining the best fit H0=70.03 km s−1 Mpc−1,

closer than the previous mono component fluid model to that predicted

by ΛCDM model. The transition point of acceleration is also around the

experimentally observed z ∼ 0. We also did the dynamical system analy-

sis which gave a stable critical point, again supporting the asymptotic de

Sitter phase. The theoretically predicted age of the universe for the best

fit values of H0 and ζ̄ with α = 0.14 had remarkably improved, having the

value to be about 11.8GY.

Chapter 5

In this chapter we summarize the overall work and present our conclusions.

We have also presented the future scope of the work.
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1
Standard Cosmology

Cosmology is the science dealing with the universe at large scale and

its evolution. The understanding of the cosmos in the large scale requires

telescopes good enough to see astronomical objects at distances more than

hundreds of megaparsecs. Having no such facilities available till the end of

nineteenth century, there were not much clues about galaxies external to

Milky Way and LSS(Large Scale Structures). The beginning of 20th cen-

tury initiated explosive revolutions in cosmology in terms of new theories

and observations. With his general theory of relativity, Einstein revolu-

tionized the concept of gravity, which led to the development of expanding

universe models. The idea of expanding universe turned out to be a re-

ality due to the land mark discovery by Edwin Hubble that the galaxies

are receding from each other. He observed the cosmos with a large tele-

scope, the first of its kind in optical astronomy having a diameter 2.5 m,

paving way to discoveries that Milky way is not the center of the universe

and there are other galaxies similar and different in shapes and sizes. Yet

again, it was a chain of spectacular discoveries in theory and experiment

those followed - big bang theory which logically and empirically chased out

the majority supported steady state theory, discovery of CMBR (Cosmic

Microwave Background Radiation), discovery of acceleration of universe

and recently the detection of gravitational waves in 2016.

1
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Gravity is the major controlling factor of the universe at large scale.

The concept of gravity evolved from astronomical observations since pre-

historic period. Based on Kepler’s laws of planetary orbits, Isaac Newton

arrived at the first widely successful law of gravity. It states that two

point masses, say m1 and m2 separated by a distance |~r12| will exert on

each other the forces given by

~F12 = −Gm1m2

r3
12

~r12, and ~F21 = −Gm1m2

r3
12

~r21; (1.1)

Newton stated the law as universal. However, the idea of instantaneous

action at a distance between point masses was later discarded because,

(i) No communication in terms of momentum/energy exchange can be

faster than light, as prescribed by special relativity theory,

(ii) The statement that gravity acts instantaneously, violates the relativity

of simultaneity and therefore the equations are not relativistically covari-

ant,

(iii) The law partially failed in predicting the shift in the perihelion of

planet Mercury[1] and

(iv)The law was also ignorant about the effect of gravity on light.

After around 250 years, the idea of gravity had undergone a paradigm

shift due to Albert Einstein. Unlike Newton’s idea that gravity is an ac-

tion at a distance, Einstein revolutionized the concept, that gravity is the

curvature of the space-time due to presence of matter/energy. So gravity

lost its status as a force, instead it has become the geometrical feature of

space-time. The triumphs were remarkable. The new law explained the

discrepancy on the perihelion shift of Mercury as observed by LeVerrier[1].

But more thrilling is the prediction of the bending of light, an effect which

was unknown to Newtonian gravity. This prediction was observationally

verified by Eddington in 1919 during a total solar eclipse. An important

achievement of Einstein’s gravity is its viability in applying to explain the

origin and evolution of the whole universe. However, Einstein missed the

chance of predicting the expanding universe due to his strong prejudice
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for a static universe. Friedmann and Lemaitre, contemporaries of Ein-

stein, were able to predict the expanding universe using Einstein’s theory

of gravity independently. Even though the idea of expanding universe was

in frozen state for a short period of time, it was resurrected and had be-

come widely accepted due to the seminal observational discovery by Edwin

Hubble in 1929. This led to the Big-bang theory of the universe, which

addresses the issues of the origin and evolution of the universe. The mile-

stones in the wide acceptance of the big-bang model are the prediction and

discovery of microwave background radiation, prediction and verification

of the abundance of light elements etc.

The observational capacities since 1930s, led to the measurements of

rotational velocities in the outskirts of many galaxies, which finally paved

way to the speculation of new cosmic component called dark matter. It

is an invisible form of matter interacting with surrounding matter-energy

only gravitationally. Later it was confirmed that galaxies have more dark

matter than the luminous matter[2–11]. In the days to follow, the gravi-

tational lens effects due to dark matter also were observed[7, 12, 13].

The year 1998 was that of yet another surprise, the discovery of late

acceleration of the universe which won the 2011 Nobel prize. Having only

normal matter and radiation, where matter includes both luminous and

dark matter as the cosmic components, it was expected that the velocity of

expansion must decrease. On attempting to observe this retardation in the

expansion of the universe, two teams, supernova cosmology project team

and High redshift supernovae search team, as a matter of total surprise,

observed that in fact the expansion is accelerating and this acceleration

had begun in the recent past of the universe[16–21]. This has opened up

a new area in cosmology, aiming to explain the fundamental reason for

this observed acceleration. On giving a general overview of the current

cosmology in this direction we start with the Einstein’s theory of gravity.
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1.1 Gravity and geometry of space-time

“The experimentally known matter independence of the ac-

celeration of fall is therefore a powerful argument for the fact

that relativity postulate has to be extended to coordinate sys-

tems, which, relative to each other, are in non uniform mo-

tion” - Albert Einstein, Nature[issue dedicated to Relativity],

Feb 17, 1921 .

Though Einstein’s attempt to find a covariant expression for gravity in

the special relativistic limit was far from fulfilling the objective, his efforts

led to discoveries of expression for gravitational red shifts with sufficiently

small path intervals of light in a gravitational field where principle of

equivalence holds[28]. The results indicated that the expression was of

first approximation kind to a more general treatment. As per Albert

Einstein’s acknowledgment, as regards his final hitting the mark with non

Euclidean, dynamic geometry of space-time depending on the presence of

matter-energy, his inspiration dates back to his days as a student attending

the lectures on Gaussian surfaces by a top mathematician Geiser. Next he

commemorates his contemporary mathematicians Ricci and Levi-Civita.

Yet again he acknowledges the help from his class mate and colleague at

teaching post, Grossmann, as of to the optimum. Einstein in his venture,

came to realize Minkowsky space-time is a special case to the (now known

as a pseudo manifold in) space-time with a metric of the form,

dS2 = gijdxidxj, (1.2)

Einstein summation convention being followed for the elementary compo-

nents along the four vector space-time axes xi and xj; dS being the line

element and dxi its component along ith coordinate axis. At once Gross-

mann supplied with the valuable guidance that what Einstein required

was Riemann space[28]. Finally a thankful Einstein obtained the field
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equations for gravity as a space-time curvature, as

Gµν = 8πGTµν (1.3)

where Tµν is the energy momentum tensor of matter and energy and Gµν =

Rµν − 1
2
Rgµν , the Einstein tensor representing the curvature of the space-

time. The second rank tensor Rµν is the Ricci tensor and R the Ricci scalar

obtained by the contraction of the Ricci tensor expressed by the equation

R = gµνRµν . The Ricci tensor is defined in terms of the Christoffel symbol

as,

Rµν = Γαµν,α − Γαµα,ν + ΓαµνΓ
β
αβ − ΓαµβΓβαν (1.4)

where Γλµν is the Christoffel symbol defined as,

Γλµν =
1

2
gλα(gαν,µ + gαµ,ν − gµν,α). (1.5)

Einstein theory thus eliminated the status of gravity as an interaction

between masses, instead it replaces it as the manifestation of curvature of

the space-time due to matter. Thus in a sense it is geometrical theory of

space-time dynamics.

The theoretical task is to find suitable solutions to the Einstein equa-

tion and is so hard as it is of non-linear kind. However a few solutions

were derived corresponding to respective standard conditions. The promi-

nent among them is the Schwarzchild metric, the solution corresponding

to a spherically symmetric matter distribution[24–27, 29]. This solution

finds its immediate application in resolving the half a century old problem

regarding the perihelion shift of planet Mercury exactly[30]. In fact this

is considered to be the first triumph of the Einstein’s equation of gravity.

The same solution was applied in calculating the bending of light when

it enters the premises of an astronomical body [32]. The corresponding

prediction of the theory was put in to observational test by Eddington

and others during a total solar eclipse who indeed verified the light from

a star very close to Sun in the field of view undergoes bending exactly as

per the theoretical prediction.
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The most profound application of Einstein’s gravity is in understanding

the origin and evolution of the universe. As it is envisaged by the Ein-

stein’s equation, if one knows the average density distribution of matter

in the whole universe, it is possible to predict the space-time geometry of

the entire universe in a macroscopic scale. The first attempt in this direc-

tion was initiated by Einstein himself. By knowing that his own equation

is leading to a dynamic universe, which he first hesitated to believe, he

introduced what is known as the cosmological constant to make the so-

lution corresponding to a static universe. In the mean time, Alexander

Friedmann and George Lemaitre came forward with expanding universe

solutions using Einstein’s gravity equation. The expanding universe model

was firmly established with the historic discovery of Edwin Hubble that

the distant galaxies were receding from us. The farther the galaxies are,

the faster they recede, in accordance with the standard law, what we now

call as the Hubble’s law.

1.2 Expanding universe and standard ΛCDM

model

Edwin Hubble in the late 1920s observed the distant Cepheid variable stars

and confirmed the existence of galaxies other than ours, the Milkyway.

He measured both the redshift and the distances of these variable stars.

The distance measurements were done using Heavit’s theoretical relation

between the period and absolute brightness of the Cepheid variables. He

observed around 29 galaxies and came to the conclusion that, at large

scale, the galaxies were moving away from us [33]. He found a linear

relation between velocity and distance, such that the velocity V, of the

galaxies are found depending on the distance d as,

V = Hd (1.6)

where H was then known as the Hubble constant.
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Figure 1.1: The Hubble flow velocity vs distance profile of galaxies based on

Cepheid variable data in 1931 [Courtesy: Hubble E. and Humason M. L. [34]]

In due course, improvements in experimental setups led to Hubble-Humason

collaboration [34] and the Hubble’s theory of expanding universe became

an assertion beyond doubt, as evident from the figure (1.1).

Assuming that the universe is homogeneous and isotropic in the matter

distribution, he concluded that, the law is valid with respect to any galaxy

in the universe. This implies that the galaxies are in fact receding from

each other, which is essentially referred to as the expansion of the universe.

The discovery of Hubble is actually a verification of the theoretical

speculation made around 1917 by the Russian scientist, A Friedmann[35].

From Einstein’s theory of gravity and following assumption of homoge-

neous and isotropic distribution of matter, he argued that the universe is

expanding. The geometry of a homogeneous and isotropic universe satis-
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fying Einstein’s law of gravity, can be described by the metric,

ds2 = c2dt2 − a(t)2

(
dr2

1− kr2
+ r2(dθ2 + sin2 θ dφ2)

)
(1.7)

where c is the velocity of light, t the cosmic time, a(t) the scale factor

of the expansion of the universe, k the curvature parameter and (r, θ, φ)

is the comoving coordinates. In the preferred coordinate system (r, θ, φ)

the galaxies are at rest so that the time measured by all the observers

are identically same, the proper time, and is termed as the cosmic time

t. One can view this as the expansion of the 3-dimensional space with

time, responsible for the recession of galaxies along with it, a process

termed ‘Hubble flow. As a result, the coordinate separation between any

two galaxies will remain the same with time and the actual separation

between them becomes, d = a(t)r. Hence the real velocity of recession of

any galaxy with respect to an observer becomes, ḋ = ȧ(t)r, where the over-

dot represents the derivative with respect to cosmic time. This fact can

be suitably put as ḋ =
ȧ(t)

a(t)
r and is nothing but the Hubble law V = Hd

with V = ḋ and H =
ȧ(t)

a(t)
.

The parameter, k determines the future of the universe, in such a way

that, k = +1 corresponds to closed universe, k = −1 corresponds to

open universe and k = 0 corresponds to flat universe. The recent exten-

sive studies by Baryon Oscillation Spectroscopic Survey telescope (BOSS)

and Planck survey have established the curvature parameter k as nearly

zero[36, 37] and hence it is accepted that the universe is flat.

Lemaitre independently obtained the expanding universe models around

the same time. Years later the model was rediscovered by Robertson and

Walker, hence the model is popularly called as FLRW model. Follow-

ing Friedmann and Lemaitre, George Gamow could predict a radiation

dominated era in the early stages of the universe, which leaves a remnant

radiation background, known as the cosmic microwave background radi-
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ation (CMBR). Gamow also predicted a hot big bang event at the origin

followed by synthesis of light elements. The former assertion was verified

by an empirical discovery of CMBR by Penzias and Wilson and the lat-

ter one, came true from the data of abundance of light elements in the

universe.

The FLRW model is based on cosmological principle that universe

in large scale is isotropic and homogeneous. It was only an intelligent

guess until the end of 20th century. Later on, the SDSS, and WMAP

deep sky surveys were organized to the depths of the order of hundreds to

thousands of Mpcs and the distribution of galaxies were studied with the

type of computation power available at the time. A recent analysis with

galaxies within about 500 Mpc confirms to the homogeneity and isotropy

of cosmos when coarse grained in the range 70− 100 Mpc [38].

1.2.1 Friedmann Equations

FLRW metric given by eq(1.7) being applicable to universe in large scale,

it gives way to Copernican universe in which there is no point is special

in space and all points remains of equal importance too. The metric is

obviously diagonal with elements g00 = 1, g11 =
a2(t)

1− kr2
, g22 = a2(t)r2,

g33 = a2(t)r2sin2(θ) [24] . To find the respective Einstein equation, one

has to know the tensor representing the matter and energy, Tµν . For a ho-

mogeneous and isotropic distribution as seen by a comoving observer, the

energy-momentum tensor of matter(and energy) has all the off-diagonal

elements equal to zero and the diagonal elements given by,

Tµµ =
(
ρc2 + p

) vµvµ
c2
− pgµµ (1.8)

where ρ is the density of a given cosmic component, p is the pressure of

the component, vµ is the four velocity having component (1, 0, 0, 0)[39].

The diagonal time-time component for energy-momentum tensor is given



10 Standard Cosmology

by

T00 = ρc2 (1.9)

and radial space-space component

T11 =
pa2(t)

1− kr2
. (1.10)

The equation (1.10) for a FLRW flat space with k = 0 becomes T11 =

pa2(t). Any discussion on T22 and T33 components are superfluous as they

essentially cover the same physics as already discussed with the other two

energy momentum tensor components.

Substituting for the energy momentum tensor components in Einstein

field eq(1.3), Friedmann obtained the equations known after him as,(
ȧ

a

)2

= H2 = − k

a2
+

8πG

3
ρ (1.11)

and

2
ä

a
+

(
ȧ

a

)2

+
k

a2
= −8πGp. (1.12)

Here, use is made of the fact that
ȧ

a
= H and we took the units such that

c = 1. From eqs (1.11 and 1.12) we obtain,

ä

a
= −4πG(ρ+ 3p). (1.13)

For flat universe, k=0, one obtains a simpler form for the Friedmann

equations. Subtracting eq(1.11) from eq(1.12) and rearranging for like

terms we have,

−3aȧ
( p
c2

+ ρ
)

= ρ̇a2 (1.14)

Using
ȧ(t)

a(t)
= H, the above equation (eq(1.14)) leads to

ρ̇+ 3H(p+ ρ) = 0 (1.15)
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The eq(1.15) is of a very general nature, accounting for any value of k and

hence for any kind of curvature. Yet again, the most important aspect

all about the eq(1.15) and its general nature is that the overall change in

matter-energy components making the cosmos is zero. Thus, the expan-

sion of the cosmos is adiabatic. As regards the pressure due to matter,

it was proposed that, it is either zero or negligibly small with a profound

reasoning that the galaxies viewed in the macroscopic universe analogous

to molecules in an ideal gas, would have moved with random velocities if

matter contributed to pressure just as how molecules being the source of

pressure in the gas do.

To look into the evolution of the cosmos, one needs to understand the

density and scale factor dependence of its various components. We see

that here too the eq(1.15) is useful as we are able to obtain the equation∫
H(t)dt =

∫
ȧ(t)

a(t)
dt =

∫
d ln a =

∫
dρ

ρ(t)
(

1 + p(t)
ρ(t)

) (1.16)

which finally comes down to

ln a =

∫
dρ

ρ(t)
(

1 + p(t)
ρ(t)

) . (1.17)

The equation connects the state function
p

ρ
= ω with the scale factor a.

The solution becomes straight forward if pressure to density dependence

for the components in the universe are known. On using p = ωρ, in

eq(1.17) we arrive at the obvious conclusion that

ρ ∝ a−3(1+ω) = (1 + z)3(1+ω) (1.18)

where we assume that ω is a slowly varying function. Though the cosmic

redshift z is the observable physical quantity, we carry out the conse-

quences of eq(1.18) in terms of a, because the data on z is not available

before the recombination. Thus the radiation dominated, matter domi-

nated and dark energy dominated situations can be described as:
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i) The radiation dominated universe had relativistic hot gas. In this sit-

uation the particles in the universe underwent elastic scattering. The

statistical mechanics applies here as in ideal gas and hence we have

p =
1

3
ρr (1.19)

where ρr is the average density of radiation. Eq(1.19) implies that ω =
1

3
and substituting this into eq(1.18) we understand

ρr ∝ a−4 (1.20)

ii) For matter dominated era, we know that the pressure p = 0. Therefore,

from eq(1.17) this means ω = 0 and substituting this into eq(1.18) it is

seen the matter density ρm would evolve as,

ρm ∝ a−3 (1.21)

and

iii) For the cosmic component dark energy, the cosmological constant sat-

isfies the equation of state

p = −ρΛ, (1.22)

which implies ωΛ = −1 hence ρΛ is positive constant. It is important

to note that such a component exhibits uniform negative pressure. The

experimental verification of densities of various components in relations

to a, with data using light from past can be found in [43].

The visible universe, known as per HST (Hubble Space Telescope)

SDSS (Sloan Digital Sky Survey) deep field surveys is comprised of galaxies

to the order of 1013, each accommodating stars to the order of 1011, which

means a total number of stars as numerous as sand grains on all beaches of

earth as per a rough estimate by Carl Sagan[44]. However, it was realized

in 1930s an exotic form of matter called dark matter contributes much

more to the average density of the universe; the ratio of the exotic matter

to baryonic matter as per a recent estimate turning out to be 5 - 6. As dark



Friedmann Equations 13

matter interacts with components of baryonic matter and radiation only

through gravitation, its presence is known as well as optimum possible

information extracted only through its gravitational influence on stars

and galaxies forming LSS (Large Scale Structures). Another obvious way

of proofs about the exotic form of matter comes through gravitational

lensing effects[7, 12, 13] on distant galaxies, as dark matter falls in the

way of their light coming in. The space-time curvature by the presence of

dark matter deviates the light rays, thereby giving way to magnification

effects and multiple image formations.

The knowledge of dark matter and its role in the universe dynamics

was first abstracted by Zwicky in 1930s by collecting data on red shifts

with a few thousands of galaxies in Coma cluster. As in the N-body

problem dynamics as the galaxy clusters are, individual galaxies move

about a common center of mass, giving way to red shifts superposing

with the Hubble flow red shifts. The peculiar velocities of the individual

galaxies were in thousands of kms per second. The breakthrough result

came in as the overall mass was calculated using virial theorem. The

ratio of the lowest estimate of virial mass to luminosity ratio of Comma

cluster was around 500, whereas, in comparison, the mentioned ratio for

the local Kapteyn stellar system was 3 [2]. The virial theorem used by

Zwicky in this regard is valid as Subramaniam Chandrasekhar[14] and

Bonazzola[15] could prove it can be extended to GR (General Relativistic)

limits. The convincingly astonishing deviation from the expected mass in

Coma cluster was enough evidence for the invisible matter.

Later observations led to the findings that the exotic dark matter is

what largely dominates over the baryonic matter in the universe. The

contributions came from Rubin and Ford [3] studying the rotation curve

of Andromeda galaxy, which again, was not going as per luminous mass in

the galaxy as can be predicted using virial theorem applied to the axi sym-

metric, approximately static space-time case discussed in reference [15].

The profile of the orbital velocities of stars at the edge of the spiral arms
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were tending to go flat as per radial distance from their galaxy centers,

rather than fast decreasing as per inverse square of the mentioned dis-

tance. Einasto and Saar later obtained the rotation curve with galaxy IC

342 at 3.5 Mpc, which also indicates the influence of dark matter on stars

along the edges of the galaxy. In this regard, figure (1.2), for instance,

gives an excellent graphic account. This was followed by Einasto et al ob-

Figure 1.2: The profiles showing the mass (left figure) and the circular velocity

(right figure) distributions in the galaxy IC342, as a function of the radial dis-

tance from its center. The dashed curves indicate the theoretically anticipated

curves as per the stellar population, the black dots the experimentally observed

data points, the dotted curves the profile in corona and the solid lines the total

distribution. The deviation from the curves is a telltale sign of the exotic dark

matter surrounding the galaxy. [Courtesy: Einasto J. and Saar E.[45]]

taining from observations the data on the ratios of virial masses per galaxy

to their luminosities (figure1.3)which revealed that the dark matter has a

density coming up to 20% of the critical density of the cosmos[45]. Sim-

ilar extensive but independent studies by Ostriker, Peebles and Yahil[51]

matched the figure for dark matter density in the universe as obtained by
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Figure 1.3: The mean mass distribution < M(R) > obtained with 105 pairs of

galaxies in Coma cluster. R refers to the radial distance from the center of mass

of the cluster. Black dots represent the data points, dashed line the anticipated

profile as per luminous mass, dotted line the one that corresponding to corona

and the solid lines for total distribution. [Courtesy: Einasto J. and Saar E.[45]

Einasto et al. The CDM (Cold Dark Matter) theory that the universe has

20% of the critical density comprised of CDM and baryonic matter could

predict fluctuations in CMBR (Cosmic Microwave Background Radiation)

accordingly as per the figure which was falling into COBE probe obser-

vations. Planck and WMAP surveying Large Scale Structures also finally

obtained the dark matter contribution to the density of cosmos more pre-

cisely as about 5 - 6 times as baryonic matter. Theoretical calculations

of cosmological models, with dark matter density being approximated as

matter density, solutions to Friedmann equations and behavior of phase-

space trajectories close to critical points are obtained. During the matter

dominating era of the universe, the dark matter influence alone being con-

sidered for gravity, the occasion of late acceleration and even the age of
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the universe are not deviating significantly. In our works also we follow

the dark matter domination on evolution of the universe that the bary-

onic matter apparently has no role to play with the universe when viewed

macroscopically.

Yet again, there had been doubts as regards the constitution of the

universe. Friedmann also had the rare distinction of coming up with a

theoretical model of universe with an accelerating expansion as a possible

solution to Einstein’s field equations[35]. Despite this model not being

viewed seriously in his time, year 1998 onwards the course of physical

cosmology took a drastic turn that there was experimental confirmation

for universe subjected to accelerated expansion [16–21]. The standard

model of 21st century thus had a transition as regards its counterpart of

the previous century in that there was a shift from steadily expanding

universe to accelerating universe.

1.2.2 Accelerating Universe

As the technology of reception of light from distant celestial objects un-

derwent a quantum jump with very large telescopes aided by adaptive

optics and HST (Hubble Space Telescope) aided by CCDs (Charge Cou-

ple Devices), the clarity of information about objects billions of light years

distant improved spectacularly. Thus, two separate teams, one led by S.

Perlmutter and the other led by Reiss and Schmidt were motivated to

look for deceleration of the universe under gravity, which was quite natu-

ral a consequence if non-relativistic matter contributing zero pressure was

dominating in the cosmos[16–21].

The successes with their projects on obtaining precise data about Hub-

ble flow velocities in the past was made possible because type I a supernova

at its peak brightness is a standard candle. The manner in which a white

dwarf explodes makes the event unique and hence its peak luminosity be-

comes a constant. A type Ia supernova is an exploding white dwarf and
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comparable in brightness to its parent galaxy as a whole. This makes a

type Ia supernova visible even from a distance around 6-8 billion light

years, in contrast to Cepheid variable stars visible from not more than

0.1 billion light year, through the advanced optical instruments of the last

decade of 20th century.

A type I a supernova with a luminosity Ls in Minkowsky space will

have its flux at a point on a 2 sphere of known radius with the source at

the centre as given by the inverse square law in optics. In FLRW space,

the role of the distance is replaced by luminosity distance dL and so the

flux F at a point with radius dL is given by

F =
Ls

4πd2
L

, (1.23)

Therefore,

d2
L =

Ls

4πF
, (1.24)

If ∆E is the energy emitted in time ∆t and ∆E0 that reaches the

sphere of radius dL in time ∆t0,

Ls =
∆E

∆t
(1.25)

and

L0 =
∆E0

∆t0
(1.26)

But we have, the ratio of wavelength λ0 of light emitted from the supernova

and λ that received by the observer on earth as

λ0

λ
=

1

a(ts)
= (1 + z) (1.27)

Using (i) ∆E ∝ ν and ∆E0 ∝ ν0 where ν and ν0 are the frequency of

radiation emitted and that received by observer on earth after the cosmic

red shift respectively, (ii)
λ0

λ
=

ν

ν0

and (iii) ν∆t = ν0∆t0, we have

∆E

∆E0

=
ν

ν0

=
∆t0
∆t

=
λ0

λ
=

1

a(t0)
= 1 + z (1.28)
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Combining eqs(1.26, 1.25 and 1.28), we obtain

Ls = (1 + z)2L0. (1.29)

The light traveling from the type I a supernova to Earth, along ηs direction

traces a geodesic in FLRW space and hence c2dt2 − a2(t)dη2
s = 0; the

approximation of the path as a geodesic here being reasonable as the

average density of matter in the universe is only of the order of 10−26 kg

m−3. This means the distance travelled by the light to reach the observer

is,

ηs =

∫ t0

ts

dt

a(t)
, (1.30)

where ts is the time of emission of the light from super nova and t0 the time

at which the signal reaches the observer. Using
da

a(t)H(t)
= dt alongside

da = d

(
1

1 + z

)
in eqn(1.30) we obtain

ηs =
1

H0

∫ z

0

dz′

h(z′)
, (1.31)

where we have used z(ts) = z and z(t0) = 0. Here H0 is the current value

of Hubble parameter ∼ 70 km S−1 Mpc−1 and h(t) =
H(t)

H0

. Thus the flux

received by the observer can alternately be written as

F =
L0

4πη2
s

. (1.32)

Comparing RHS of eq(1.23 and 1.32) and using eq(1.29), finally we obtain

the luminosity distance as

dL =
1 + z

H0

∫ z

0

dz′

h(z′)
. (1.33)

It is possible to have a simple equation connecting dL with absolute mag-

nitude M and apparent magnitude m by taking logarithm of eq(1.23) and

using the relationships between F and Ls is as given below:

m−M = 5 log10

(
dL
Mpc

)
+ 25. (1.34)
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The eq(1.33) straight away gives the theoretical expression for Hubble

parameter corresponding to a given luminosity distance with a given z as,

H(z) =

[
d

dz

(
dL

1 + z

)]−1

. (1.35)

However, the critical density in the present universe due to all components

in space, as obtained from the Friedmann eq(1.11) for FLRW universe with

k=0 must be,

H2
0 =

8πG

3
ρcritical, (1.36)

where H0 is the present value of Hubble parameter, that is when z = 0. At

any arbitrary time when z 6= 0, having the knowledge of H = H(z) from

eq(1.11) and that of total density of cosmos components from eq(1.18) we

have,

H2(z) =
8πG

3
Σ
i
ρi(z). (1.37)

But using eq(1.18), and using the normalized density symbols Ω(z) =
ρ(z)

3H2
0

, ρ
(0)
i and Ω

(0)
i for present values of density and its normalized version

respectively of ith component of the cosmos, by using eq(1.37) and eq(1.18)

we have,

H(z) = H0

√
8πGΣ

i

[
Ω

(0)
i (1 + z)3(1+ωi)

]
. (1.38)

Thus, from eqs(1.33 and 1.38) we see obtain dL in terms of z and state

functions of components as,

dL =
1 + z

H0

∫ z

0

dz′√
8πGΣ

i

[
Ω

(0)
i (1 + z′)3(1+ωi)

] . (1.39)

In both radiation dominated era and the matter dominated one has p ≥ 0

and hence ω ≥ 0. As baryonic matter to a far lesser extent and dark

matter having ωm = 1 were the only components known at the time, it

was deceleration that was expected with the expansion of the universe at

the time the new accurate data was about to be interpreted.
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If z << 1 that even z2 term onward can be neglected, as is the case

with even the remotest observable Cepheid variables, from eq(1.39) we

have

dL =
z

4H0

√
2πGΩ

(0)
m

, (1.40)

which explains Hubble’s linear limit relationship between Hubble flow ve-

locity of an object and its distance from the observer. This also explains

how observations at distances far less than possible with type I a super-

novae will not carry the information about any acceleration/deceleration

of Hubble flow, with peculiar velocities and their variations suppressing

the information.

Type Ia supernovae at different redshifts were studied by Perlmutter’s

team and also by Schmidt’s and Reiss’s team, and it was found that they

are fainter than expected for a flat decelerated universe. The basic reason

could be an acceleration in the expansion of the universe. The simplest

cosmic component which can produce acceleration in the expansion is cos-

mological constant. They created the fitting plots by including the cos-

mological constant ΩΛ as an additional cosmic component. The H0dL− z
profile marked as (a) in fig (1.4) is the one that was expected for a de-

celeration of universe. The observational results implies profiles deviating

from the expected one. For instance the profile marked as (d) corresponds

to a universe in which cosmological constant is the only constituent, i.e.

ΩΛ = 1, which means universe subjected to acceleration alone. Any profile

among (b) and (c) has both non-relativistic matter and cosmological con-

stant as cosmic components and hence it has an early decelerating phase

and a late accelerating epoch. So in such cases the universe might have the

switching from a prior deceleration to a late acceleration. The switching

over from deceleration to acceleration will eventually result in larger values

of dL than expected of the case with deceleration alone (profile(a)). Profile

(c) corresponds to Ω
0)
m = 0.7 and Ω

(0)
Λ = 0.3 and (b) that of Ω

0)
m = 0.3 and
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Figure 1.4: Profile of luminosity distance in the units of H−1
0 vs Hubble flow

redshift for various values of Ω
0)
m and Ω

(0)
Λ . [Courtesy: Copeland E.J. et al[52]]

Ω
(0)
Λ = 0.7. The mentioned teams studying supernova data arrived at (b)

as the best fitting situation. They found that the universe enter a phase

of accelerated expansion at about a redshift of around z ∼ 0.7, which is

equivalently some five billion years ago in the past.

1.2.3 Standard ΛCDM model of the universe

“... we stand at a truly remarkable time in the history of

our subject, largely (but clearly not exclusively) by virtue of

a growth in the observational capabilities...most importantly a

standard model has emerged which, through detailed numerical
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simulations, is capable of detailed predictions and interpreta-

tion of observables,” - Ellis R. S.

The most successful model which explain the late acceleration of the

universe is standard ΛCDM model of the universe. This model considered

the cosmological constant as the so called dark energy responsible for the

late acceleration. Inclusion of cosmological constant consequently modifies

the Einstein field equation as,

Gµν = 8πGTµν − Λgµν , (1.41)

where Λ is a constant, means a simplest possible addition of a covariant

term contributing negative pressure to energy momentum tensor. In the

FLRW background with metric given by eq(1.7), modified Einstein’s field

equations as in eq(1.41) give the Friedmann equations as,

H2 =
8πG

3
ρ− k

a2
+

Λ

3
(1.42)

and
ä

a
= −4πG

3
(ρ+ 3p) +

Λ

3
. (1.43)

The eq(1.43) clearly shows Λ contributes a negative pressure term and

hence contributes a repulsive effect.

The term (ρ+3p) in the above equation refers to the contribution from

ordinary matter and radiation, and it turns out that the term is positive

for both of them. Hence ordinary matter causes only deceleration in the

velocity of expansion. The cosmological constant Λ, which accounting for

the negative pressure as, pΛ = −ρΛ, will give rise to the acceleration. The

densities of the non-relativistic dark matter matter and the cosmological

constant were constrained by the observation as, nearly 70% and 25%

respectively, with baryonic matter contributing 4% and radiation, 1%. The

model is also appreciated for its simplicity involving only two components

in the macroscopic FLRW universe picture.
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One can solve the Friedmann equations for the Hubble parameter and

scale factor for the two component ΛCDM model by assuming the equa-

tion of state. With dark matter and cosmological constant as cosmic

components, the solution can be obtained as,

H = H0

√
ΩΛ coth

(
3

2

√
ΩΛH0t

)
, (1.44)

and the scale factor,

a(t) ∼
(

Ωm0

ΩΛ

)1/3

sinh2/3

(
3

2

√
ΩΛH0t

)
. (1.45)

The above solution clearly indicates that as t→ 0 the scale factor evolves

as a(t) ∼ (H0t)
2/3 corresponding to the prior matter dominated deceler-

ated epoch and in the limit t → ∞ the scale factor will go as a(t) ∼
exp(

√
Λ/3) which represents the de Sitter epoch. Hence the universe

might undergo a transition from the prior decelerated epoch to a later

accelerated one.

Apart from predicitng the transition into the late accelerated epoch,

the model has made successful predictions in many respects, especially

regarding later phases of the universe. To list out the main among them:

i) It successfully predicts the redshifts of the observed type Ia supernovae,

as already discussed.

ii) The Age of the universe predicted by the model is very close to the one

obtained from the observations of oldest globular clusters,

iii) The model predicts in an almost successful way the formation of large

scale structures[53, 70] such as clusters of galaxies and superclusters of

galaxies,

iv) Presence of BAO (Baryon Acoustic Oscillation).

Let us now consider the age prediction by the model. The basic the-

oretical prediction for the age of the universe, t0, can be obtained using
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eq(1.11) as

t0 =

∫ 0

1

da

Ha
. (1.46)

In terms of red shift this equation becomes,

t0 =

∫ ∞
0

dz

H(1 + z)
, (1.47)

for a flat universe (the observed curvature of the cosmos from Planck data

is Ω
(0)
k = 0.000± 0.005 [37, 78, 79] and hence the flat 3−space approxima-

tion as in the FLRW universe is valid) the Hubble parameter becomes of

the form,

H(z) = H0

√
Ω

(0)
m (1 + z)3 + Ω

(0)
Λ . (1.48)

Therefore, from eqs (1.47) and (1.48)

t0 =
1

H0

∫ ∞
0

dz

(1 + z)

√
Ω

(0)
m (1 + z)3 + Ω

(0)
Λ

. (1.49)

The age of the universe is obtained as 13.1 GY when Ω
(0)
m = 0.3[37] and

Ω
(0)
Λ = 0.7 [52]. This is astonishingly close to the age obtained from

Globular cluster data[72–76]. It is also seen that if dark energy is absent

in eq (1.49), the age of the universe falls less than 10 GY, which is not

quite within decent error limits as per the mentioned observations with

the Globular clusters.

Einasto et al [45] and Ostriker et al[51], by their extensive research into

galaxies, had estimated the density of dark matter in the cosmos which

is in close agreement with the COBE, WMAP and Planck observations,

around 23%. This is in support of the ΛCDM model. Another indepen-

dent phenomenon which goes by ΛCDM model prediction is BAO (Baryon

Acoustic Oscillation) phenomenon. This occurred after the epoch of re-

combination. The baryon density and hence electron density falls enough

to increase the mean free path of photons, which then undergo Thomp-

son scattering. As the radiation escaped, the inward gravitational pull of
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Figure 1.5: The confidence contour plots for the present dark energy density vs

that of dark matter, constrained by type Ia supernova, CMBR and LSS galaxy

clustering. [Courtesy: Aldering[83]]

baryons and the outward inflatory forces counteracted with each other.

This resulted in acoustic oscillations within the baryonic matter sector.

Theoretical predictions were done [41, 42] on the propagation of these

density wavelength. Elaborate and highly precise SDSS observations on

the distributions of galaxies (baryonic matter) were fitting into the theo-

retical predictions [37] by ΛCDM model.

1.2.4 The Shortcomings with ΛCDM model

“Any one of these issues (cosmological coincidence and fine

tuning problems) would represent a serious challenge to physi-

cists and astronomers; taken together, they serve to remind us

how far away we are from understanding one of the most basic

features of the universe” - Carroll S. M.
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In spite of the remarkable successes of the ΛCDM model, there arise

some very serious draw backs. One of the most striking short coming

is the cosmological constant problem. As per the observational data, the

magnitude of the density of the cosmological constant dark energy is found

to be,

ρ
(0)
Λ =

Λm2
pl

8π
=
H2

0m
2
pl

8π
u 10−47GeV. (1.50)

To have a theoretical estimate of this, one should rely on the field theory,

according to which, the cosmological constant can be taken as the vacuum

energy density. The vacuum energy density, so evaluated as the sum of

zero point energies of quantum fields with mass m in units of c given by

ρvac =
1

2

∫ ∞
0

d3k

(2π)3

√
k2 +m2 =

1

4π2

∫ ∞
0

dk k2
√
k2 +m2 . (1.51)

The density, though large, is not infinity as there is a cutoff at k = kmax

in quantum field theory. In the extreme case, when kmax corresponds to

Planck mass mpl = 1.22 × 1019 GeV, one obtains ρvac u 1074GeV. The

discrepancy by a factor of the order 10121 is the largest ever between theo-

retical prediction and experimental observation, in the history of physics.

Unfortunately the standard ΛCDM model doesn’t have any explanation

for it.

The second important discrepancy is the problem of coincidence. Even

though the evolutions of the densities of the dark energy, the cosmological

constant and dark matter are different, the current densities of both these

entities are found to be of the same order. This is a surprising coincidence,

which has no explanation in the ΛCDM model. As we have mentioned

previously, the density parameters of the dark energy and dark matter

are ΩΛ ∼ 0.7 and Ωm ∼ 0.3 respectively. Since the critical density is

around ρc ∼ 10−27 g.cm−3, it is then clear that, the actual densities of

these components are approximately the same in the present epoch of the

universe, which needs explanation. These lead to the intriguing idea that,

the dark energy which is causing the recent acceleration of the universe
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may not be a constant, but can be a varying one. This opened up one

of the vast area of research in today’s physics. There are multitude of

proposals to realize the varying dark energy.

1.2.5 Attempted alternate models to ΛCDM model

. The shortcomings of the ΛCDM model, those we discussed in the previ-

ous section, invite many attempts for alternate models to alleviate mainly

the cosmological constant problem and the coincidence problem. Since

the fact that the late universe underwent a transition from deceleration

to acceleration is convincing by the type Ia supernova observations, any

model attempted must be behaving like ΛCDM model in this regards.

There arised various varying dark energy models in the recent literature.

We will go through the salient features of the prominent models.

Scalar field models of late accelerating universe

Quintessence

This is the case of a scale field φ minimally coupled to gravity, described

by the action,

S =

∫
d4x
√
−g
(
−1

2
(∇φ)2 − V (φ)

)
, (1.52)

where ∇φ = gµν∂µφ∂νφ and V (φ). The energy momentum tensor can be

expressed as

Tµν =
2√
−g

δS

δgµν
= ∂µφ∂νφ− gµν

[
1

2
gαβ∂αφ∂βφ+ V (φ)

]
, (1.53)

in the quintessence limit. In the FLRW universe, the energy density of

the scalar field is given by

ρφq = −T 0
0 =

1

2
(φ̇)2 + V (φ) (1.54)
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and the corresponding pressure is given by

pφq = T ii =
1

2
(φ̇)2 − V (φ) . (1.55)

Therefore the Friedmann equations for the uncoupled quintessence model

is

H2 =
8πG

3

[
1

2
(φ̇)2 + V (φ)

]
, (1.56)

ä

a
= −8πG

3

[
(φ̇)2 − V (φ)

]
. (1.57)

As obvious from e(1.57), the acceleration occurs when (φ̇)2 < V (φ).

Thus it can be concluded that acceleration takes place in the limit of

quintessence when V (φ) is slowly varying in time. From es(1.54) and

(1.55),

ωφq =
(φ̇)2 − 2V (φ)

(φ̇)2 + 2V (φ)
. (1.58)

As V (φ)→ −∞, ωφq → 1, and when V (φ)→∞, ωφq → −1. The cosmos

modeled with quintessence field coupled to matter with overall density
∼
ρ = ρφq + ρM has the overall state function given by

ω = −1− 1

3

d

dx
ln

( ∼
ρ

3H2
0

)
, (1.59)

where H0 is the current value of Hubble parameter.

The quintessence coupled matter modeled cosmos is matter dominated

and decelerating when ω > −1/3, at transition point to acceleration at

ω = −1/3, and dark energy dominating and accelerating towards de Sitter

phase asymptotically in the range −1 ≤ ω ≤ −1/3.

K-essence field

In this case the late evolution is driven by the dominant kinetic energy

term of the scalar field. The approach was motivated from the work of
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Armendariz Picon et al [46, 47], to deal with the inflation at high energies.

A work by Chiba et al had shown that the same can be applied to dark

energy too[48]. K-essence field was obtained by Armendariz Picon et al [49,

50] by obtaining a more general form of a Lagrangian, based on a work

by Chiba et al. The action representing K-essence is given by

S =

∫
d4x
√
−g p(φ,X), (1.60)

where p(φ,X) corresponds to a term with dimensions of pressure, being

a function of φ and a non canonic kinetic energy term X = −1

2
(∇φ)2. As

p = p(φ,X), K-essence model can also represent quintessence model. The

Lagrangian density is often represented by p taking the form[48–50]

p(φ,X) = f(φ)p(X) . (1.61)

By using string theory connections[46, 47] and appropriate redefinition of

the field [52], p(φ) takes the form[48]

p(φ,X) = f(φ)(−X +X2) . (1.62)

The energy density of the field is given by,

ρ = 2X
∂p

∂X
− p = f(φ)(−X + 3X2). (1.63)

Using equations(1.62) and (1.63), we obtain the equation of state as

ω =
p

ρ
=

1−X
1− 3X

. (1.64)

In eq(1.64), when X is a constant = −1

2
and hence we have ω = −1,

we have the constant Λ situation of dark energy. Cosmos accelerates for

X < 2/3 which corresponds to ω = −1/3.

The form of p(φ,X) as in eq(1.62) meets with difficulties when it comes

to dark energy dominating over matter and radiation situations. However,

Armendariz-Picon et al obtained a more general form of p(x) which he to

solve the coincidence problem of dark energy [49, 50].
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Phantom field

The scalar field action of the form

S =

∫
d4x
√
−g
(

1

2
(∇φ)2 − V (φ)

)
(1.65)

gives way to another class of minimally coupled scalar field to gravity

models known as phantom fields. The density of the field is given by

ρφph = −T 0
0 = −1

2
(φ̇)2 + V (φ) (1.66)

and the corresponding pressure[54], is given by

pφph = T ii = −1

2
(φ̇)2 − V (φ) . (1.67)

and therefore the state function of the noninteracting phantom field is

given by

ωφph =
φ̇2 + 2V (φ)

φ̇2 − 2V (φ)
. (1.68)

Phantom fields are when ωφph < −1. This is possible when φ̇2 < 2V (φ)

in eq(1.68).

Using eq(1.59) with
∼
ρ = ρφph+ρM , we obtain the overall state function.

As the expansion imparted by phantom component is all too rapid, a

phantom energy-cold dark matter model can apply only to late universe,

suppressing the early stages of evolution of cosmos accommodated by both

ΛCDM and quintessence models. The empirical data available brings in

restrictions as regards the applicability of phantom phase in the matter

dominated situation etc. Non canonical negative kinetic energy term also

arises problems violating weak energy conditions, Tµνv
µvν ≥ 0, where Tµν

is the energy momentum tensor, vµ and vν being µth and νth components of

geodesic tangent vector and hence, the range of validity of a phantom field

model is further limited. Phantom field based models are still a research

curiosity because they support the late acceleration of the universe.
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Tachyon Field Theory

Tachyon fields are described by a Lagrangian L = −V (φ)
√

1− ∂iφ∂iφ,
analogous to that of a relativistic particle of mass m, the one dimensional

Lagrangian of which is given by L = −m

√
1−

(
q̇

c

)2

, where q̇ is the

velocity of the particle [56]. In the field theory limit, q is upgraded to

be the field φ. Relativistic covariance requires φ = φ(x, t), and mass m is

replaced by V (φ).

The stress tensor of a Tachyon scalar field can be written as in the case

of a perfect fluid as [56]

T ik = (ρ+ p)uiuk + pδik (1.69)

where the density

ρ =
V (φ)√

1− ∂iφ∂iφ
, (1.70)

pressure

p = −V (φ)
√

1− ∂iφ∂iφ (1.71)

and four velocity field

uk =
∂kφ√
∂iφ∂iφ

. (1.72)

The form of stress tensor of Tachyon field as in eq(1.69) allows it to be

expressed as a sum of contributions due to the pressureless matter and a

cosmological constant[57]. When the stress tensor of the Tachyon field is

thus expressed in terms of the two components of matter and cosmological

constant, it is seen that (i) ω → −1 and hence dark energy dominating

case when φ̇ << 1 and (ii) ω ≈ 0 and hence matter dominating case when

φ̇→ 1.

Bagla, Jassal and Padmanabhan in their work as in reference[56] had

shown there can be such models with tachyon field coexisting with matter

and significantly contributing to energy density of the universe. By fine

tuning the initial conditions in such models, the time of acceleration can
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be brought as in recent past. In the mentioned model, the tachyon field is

observed as of non negligible density in the matter dominated era. This

implies Tachyon field and their fluctuations are worthy of researching into.

Chaplygin gas

In 2001, a dark energy-matter coupled fluid model namely Chaplygin gas

was proposed to explain the late acceleration of the universe by Alexander

Yu Kamenshchik et al [61]. A generalized Chaplygin gas has the equation

of state as

p = − A
ρα
. (1.73)

where A and α are constants determined by the initial conditions. Thus

equation of state become,

ω =
p

ρ
= − A

ρα+1
. (1.74)

Using conservation equation and (1.74), we at once obtain

ρ =

[
A+

B

a−3(1+α)

] 1
1+α

, (1.75)

where B is a constant integration, to be determined from the initial condi-

tions. From equations (1.74) and (1.75), it is seen that in the early stages

of evolution of cosmos, when a is small enough that a <<

(
B

A

) 1
3(1+α)

,

ρ ∝ a−3 and ω ≈ 0 indicating the matter domination, and at late times,

when a >>

(
B

A

) 1
3(1+α)

, ρ ≈ A
1

1+α , a constant and ω ≈ −1 indicating the

dark energy domination, arousing the acceleration of the universe. Bean

and Dore[62] and Barreiro et al [64] had researched into how the current

data support the generalized Chaplygin gas model. The sole importance

of this model is the unification of dark matter and dark energy.
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f(T) models of accelerating universe

The f(T ) formulation is General relativity, instead of being stated in

terms of a metric tensor, viewed in a teleparallel framework of orthonormal

frames of tetrads. The teleparallelism was an attempt by Albert Einstein

to unify electromagnetism with gravity, both being distantly connected

in terms a dynamic, linear vector field called tetrad. A tetrad is a set

of four linearly independent vector fields denoted by ea(x), a=0,1,2,3 of

the vectors defined in the local space-time [63]. The index 0 indicates a

time like and indices {1, 2, 3} those of space like vectors. In terms of the

components eµa their orthonormality condition can be written as

εab = gµνe
µ
ae
ν
b = diag(1,−1,−1,−1) (1.76)

The metric gµν can be obtained in terms of components of a co-frame

ea(x) as,

gµν = εabe
a
µe
b
ν , (1.77)

where the components of co-frame is defined by

eaµe
µ
b = δab .

Eq(1.77) =⇒
√
−g = det [eaµ]. Teleparallel equivalent of General rela-

tivity can be constructed with dynamical equations using tetrad, as the

tetrad is connected to metric through eq(1.77).

f(T ) theories also can have equivalents of dark energy and gravity

modifying f(R) theories and so, in principle generate any possible evolu-

tion of H(t), and hence describes any possible cosmic expansion history,

including the recently accelerating universe. Yet again, f(T ) formulation

has a difference that the Lagrangian using f(T ) does not contain a second

derivative.

Holographic dark Energy

Holographic dark energy is based on holographic principle (HP) by G ’t

Hooft[95–97] which states that the information contained in a region of
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space can be represented as information on its boundary, though restricted

by the fact that the boundary must contain at most one degree of freedom

per Planck area.

In the context of the cosmos, according to HP, the energy density of

dark energy as a physical quantity inside the universe, can correspond to

some physical quantities at the particle horizon[95, 99]. Planck mass Mp

and a cosmological length scale L, are the appropriate quantities which

may decide the quantity.

Miao Li, had observed the distance from an observer to the future

event horizon can be the appropriate L, to be given by

L = a

∫ ∞
t

dt′

a
= a

∫ ∞
a

da′

Ha′2
, (1.78)

to obtain the recently accelerating cosmos and a proper expression for

equation of state[99, 100].

Dimensional analysis favour an expression of the form,

ρde = C1M
4
p + C2M

2
pL
−2 + C3L

−4 + ... (1.79)

where C1, C2 and C3 are constant parameters[101]. The first term in RHS

of eq(1.79) is not compatible with HP as it is 10120 times higher than

the observed value and so identified with the fine tuning problem[102].

Cohen et al also noted that the mentioned term is not compatible with

HP[103]. The contribution to dark energy density comes from second term

onward and yet again, third term in the RHS of eq(1.79) can be treated

as negligibly small and therefore, holographic dark energy density can be

represented in the form

ρde = CM2
pL
−2. (1.80)

The value of C is fitted as per the details of experimental observations

on the cosmos. C appropriately chosen accounts for the early inflation

and recent acceleration. C > 0 keeps ω < −1

3
, leading to acceleration,

choosing the appropriate values for C in which range gives way to con-

stant Λ, (ω = −1) and quintessence (ω > −1) and phantom (ω < −1)
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like behaviors[54, 55, 58, 99]. The questions on coincidence problem is

assumed in certain holographic dark energy models as can be obtained

by looking into the extremely low dark energy density to radiation den-

sity ratio[59, 100]. During the early inflation epoch, it is assumed there

were only dark energy and inflation energy components, the latter men-

tioned remaining a constant. According to this holographic dark energy

theory, after the inflation the second mentioned component decayed into

radiation. If the phenomenon of inflation is appropriately calibrated in

the theoretical holographic dark energy model, the coincidence problem

is explained. Kim et al also came up with the same explanation for the

coincidence problem[60].
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2
Cosmology with Zel’dovich Fluid

The present thesis is based upon the cosmology of a universe dominated

by bulk viscous Zel’dovich fluid[104, 105]. In the cosmological scenario,

the recent observations on the type Ia supernovae have revealed that, the

major component of the current universe is dark energy, causing the recent

acceleration of the inverse, which constitute nearly 70% of the total density

of the universe. Even before this discovery, a variety of observational data,

including weak[7] and strong[6] lensing, large scale structure[8], cosmic

microwave background[11], etc, led to the conclusion that, about 23% of

the total density is comprised of a weakly interacting matter called dark

matter. In spite of all these data in support of dark energy and dark

matter, the existence of other components like stiff fluid, which has an

equation of state, p = ρ, has not been ruled out.

Many have speculated about the possibility of a stiff nature of the

matter component in the early stages of the universe[107–110]. The ideal

Zel’dovich fluid, the stiff fluid, was first introduced by Zel’dovich Ya

B.[106] to tackle the equation of state problem of matter in heavy stars

condensing to ultra high densities, till the point of neutron degeneracy

pressure[111, 112]. In stellar models with neutron degeneracy pressure,

it was pointed out that the pressure reached such high values so that

the speed of sound in the matter became greater than c, the speed of

37
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light[106]. To avoid the paradox, the first attempt was to put special rel-

ativistic constraint to the pressure p as 3p ≤ ε in an adhoc fashion[113],

where ε is the energy density reaching the maximum value 3p = ε when

the fluid is radiation dominated. Zel’dovich considered the model with

baryons other than neutrons too, which interact through vector fields.

The field equations incorporating interaction energy of charged baryons

with the degeneracy pressure were obtained and this led to what was later

known as the Zel’dovich fluid, with pressure p = ε. This in the units of c,

as followed here, becomes p = ρ which means the speed of sound in this

medium is equal to speed of light. As speed of light is the maximum pos-

sible limit and speed of sound having reached the mark, Zel’dovich fluid

is the stiffest possible fluid and hence, very often referred to as ’stiff fluid.

Zel’dovich, on the basis of assumption that early universe was dominated

by cold baryons, hypothesized the stiff fluid like behaviour in the early

phase of the cosmos. However, with the advent of hot big bang theory,

Zel’dovich’s reasoning for the presence of stiff fluid in the early universe

was discarded.

The proposal on an early Zel’dovich fluid like behaviour of the con-

stituent fluid was revived with relativistic Scalar Field (SF) modeling of

cosmos. This is because the early kination epoch of the SF’s evolution

leads to stiff fluid behaviour. A fully relativistic SF Bose Einstein Con-

densate model was developed by Li et al [108] which had stiff fluid era

when SF oscillations were slower than Hubble expansion, followed by ra-

diation and matter dominating eras in succession, when SF oscillations

became faster than the Hubble expansion.

A theoretical model by Stiele et al [109] with dark matter components,

self interacting via exchange of vector mesons through minimal coupling,

have shown that the self interaction energy will resemble the presence of

a stiff fluid in the early universe.

Apart from cosmology with Einsteinian gravity, the presence of Zel’dovich

fluid in the early epoch appears in Horava - Lifshitz gravity based cosmol-
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ogy too. For a convenient simplification, a ’detailed balancing condition’

was imposed, a discussion on the merit of the ’balancing condition’ was

discussed in references[114–116]. When this detailed balancing condition

is relaxed, such models undergo a stiff fluid phase[117–122].

Having considered the Zel’dovich fluid as the one with an equation of

state p = ρ the continuity equation (1.15), then implies,

dρ

ρ
= −6

da

a
, (2.1)

which in turn implies that, the density of the Zel’dovich fluid follows as,

ρ ∼ a−6. (2.2)

This drastic decrease in the density of the stiff fluid with cosmic expansion

implies that, its effect will dominate in the very early stages of the universe

and become negligible in the later stages. One of the prominent scenario

in which one can find the effect of such a fluid might be the primordial

synthesis of light elements, which happened during the first week since

the beginning of the universe. Dutta and Scherrer have shown that, the

observed primordial abundance implies a constraint on the density of the

stiff fluid as, ρ
ρs
< 30. This categorically denies any effect of the Zel’dovich

fluid in the later evolution of the universe. But the situation will change

once the Zel’dovich fluid become viscous. We have found that a viscous

Zel’dovich fluid does affect the later evolution of the universe also.

The viscosity in the matter sector can be arised due to the restoration

of thermal equilibrium whenever the universe undergoes a fast expansion

or disturbances. The advantage of taking account of the viscosity is that,

it may cause even late acceleration of the universe, since it can produce

negative pressure like cosmological constant and therefore one can omit

requirement of any exotic form for dark energy. The viscosity can be as-

sociated with any of the cosmic component. We study the bulk viscous

stiff fluid in the context of the late acceleration of universe. Since many
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have speculated the existence of stiff fluid in the early universe, associ-

ating viscosity with it, is of great importance in the context of the late

acceleration of the universe. Eventhough the standard ΛCDM model is

matching almost well with the current observational results, the model is

in slight tension regarding the prediction of the age of the universe[38] . It

is interesting to check, whether the consideration of the viscous Zel’dovich

(stiff) fluid can alleviate this problem. We will first consider the effect of

viscous Zel’dovich fluid on the expansion of a single component universe.

Following this we consider the two component universe, with bulk viscous

Zel’dovich fluid and decaying vacuum as dark energy[88], which results

in an improved prediction of age of the universe, closer to the Globular

cluster related observations [72–76].

2.1 Bulk viscous Zel’dovich fluid

The ideal Zel’dovich fluid obeying the equation of state p = ρ, being

irrelevant at the later stages of the cosmos. Incorporating bulk viscosity

in the Zel’dovich fluid [104] results into a pressure, different from the pure

fluid and might have sensible effects on the later evolution of the universe

also. Following Eckart’s formulation [124] the effective pressure of the bulk

viscous Zel’dovich fluid can be written as,

p′ = p− 3ζH (2.3)

where ζ stands for viscosity and H for Hubble parameter. Eckart’s ex-

pression for pressure includes the effect of dissipative processes occurring

when there are deviations from local equilibrium. As it is seen from the

expression, viscosity introducing the negative pressure for restoration of

the equilibrium. Alternately Landau and Lifshitz also had arrived at an

equivalent treatment[123] for local disturbances. Eckart’s theory had a

short coming that the resulting equilibria will be unstable, leading to

the generation of signals with superluminal velocities, as pointed out by
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Israel[125, 126], which violate causality. A more general theory to over-

come this inconsistency was developed later by Israel and Stewart [127],

to which Eckart’s treatment arised as a first order limit. However, the

simple form of Eckart’s theory was worth exploiting to several researchers

for bulk viscous fluid modeling of the universe who were able to explain

the recent acceleration of the universe[128–132]. Besides, Hiscock et al

pointed out that Eckart’s theory can be preferred over the Israel-Stewart

model to generate the negative pressure which can give way to the infla-

tion [133]. Thus, in the context of the late acceleration of the universe

too, Eckart formulation is the more favourable candidate and so the works

on bulk viscous Zel’dovich fluid modeling of cosmos were based upon the

same [104, 105]. In the flat FLRW bulk viscous universe, the Friedmann

equations are

3H2 = ρ (2.4)

2
ä

a
+

(
ȧ

a

)2

= p′. (2.5)

Here we have adopted the units 8πG = 1 and c = 1. Differentiating (2.4),

along with the conservation equation, one arrives at,

Ḣ =
3H

2
(ζ − 2H). (2.6)

For convenience we change variable to x such that x = ln a so that
dx

dt
= H.

Then using Ḣ =
dH

dx
ẋ = H

dH

dx
the above equation become,

d2H

dx2
= 3H(ζ − 2H). (2.7)

On solving this we get the evolution of Hubble parameter as,

H =
H0

6
[ζ̄ + (6− ζ̄)a−3] (2.8)
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where ζ̄ =
3ζ

H0

, is the dimensionless viscous parameter brought in for con-

venience. The asymptotic behaviour of the Hubble parameter are follows.

In the early period as a → 0 the Hubble parameter evolves as, H ∼ a−3

representing the prior decelerated era. In the later era as a→∞ the Hub-

ble parameter tends to a constant, H → H0ζ/6 corresponding a de Sitter

epoch of late accelerated expansion. The corresponding density evolution

can then easily be obtained as,

ρ =
H2

0

36
[ζ̄2 + 2ζ̄(6− ζ̄)a−3 + (6− ζ̄)2a−6]. (2.9)

An interesting consequence of the above equation is the natural appear-

ance of a constant term and a term corresponding to a−3 apart from

the conventional term a−6 corresponding to the evolution of the ideal

Zel’dovich fluid. Eq(2.9) clearly indicates that for very early stages of

the universe, the a−6 term dominates over the other two and for an in-

termediate era, the term corresponding to a−3 will dominate and in the

extreme future the constant term will dominate over other two varying

terms. This subsequent dominance are arised due to the viscous nature of

the Zel’dovich fluid.

We obtained the corresponding solution for the scale factor of expan-

sion as,

a =

(ζ̄ − 6) + 6 exp
(
ζ̄
2
H0(t− t0)

)
ζ̄


1
3

. (2.10)

It is easy to see that the asymptotic behaviour of the scale factor is com-

patible with that of Hubble parameter. At prior stage, as t→ 0 the scale

factor evolve as, a ∼ (1+3H0(t− t0))
1
3 , while in the future stage it evolves

as a ∼ exp
(
ζ̄
2
H0(t− t0)

)
, which is the de Sitter epoch and this guar-

antee the transition from a prior decelerated epoch to a late accelerated

epoch. So the model predicts a transition to the late accelerating epoch

as warranted by the observational data.
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2.1.1 Case with zero viscosity

Here we briefly check the effect of switching off of the viscosity. A similar

result in the case of the early stage can be obtained by assuming zero

viscosity limit. For instance, Lt
ζ̄→0

(ζ̄ − 6) + 6 exp
(
ζ̄
2
H0(t− t0)

)
ζ̄

 = (1+

3H0(t− t0))

which implies, in the absence of viscosity the scale factor behaves as,

a = (1 + 3H0(t− t0))
1
3 (2.11)

and the corresponding acceleration is,

ä = − 2H2
0

(1 + 3H0(t− t0))
5
3

. (2.12)

The above equation shows that the model predicts eternal deceleration in

the absence of viscosity.

An important thing to be noted is the behaviour of the density of

the Zel’dovich fluid as a(t) → 0, at which it becomes singular as evident

from eq(2.9). This is an indication of a possible big-bang at the origin

of the universe. The existence of the singularity can be further verified

by calculating the curvature scalar for the flat FLRW universe, using the

equation

R =

(
ä

a
+H2

)
. (2.13)

A good reference for an understanding for the curvature scalar is[134].

Substituting for
ä

a
= Ḣ + 2H2, then for ζ = 0, eq(2.6) implies that Ḣ =

−3H2, the curvature becomes R ∼ −H2 and hence in this case |R| → ∞
as a→ 0 at the origin, thereby leading to a singularity.

The age predicted by the model can be obtained by setting a = 0

corresponding to a time tB, the time of big bang. From eq(2.11) it can

then be obtained, for zero viscosity, the age as

t0 − tB =
1

3H0

. (2.14)
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2.1.2 The case, 0 < ζ̄ < 6

From the evolution of the Hubble parameter given in (2.8), it is clear

that ζ̄ = 6 marks the border of the two distinct situations in this model.

For ζ̄ = 6 the Hubble parameter becomes a constant and it corresponds

to an everlasting de Sitter epoch. Hence for ζ̄ > 6 the evolution would

correspond to an eternal acceleration. It can be concluded that for a

transition from a prior decelerated epoch to a late accelerated epoch the

viscous parameter must lie in the range 0 < ζ̄ < 6.

The profile of density of viscous Zel’dovich fluid for various values of

viscosity in the range 0 < ζ̄ < 6 as per eq(2.9) is as given in fig(2.1).

The plot shows that density, ρs → ∞ as a → 0 for ζ̄ < 6 and it implies
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Figure 2.1: The profile of bulk Viscous Zel’dovich fluid density vs scale factor

for various ζ̄.

an initial singularity. The singularity as a → 0 can be confirmed from

curvature scalar in this case as per eq(2.13) and it turns out to be,

R =
3ζH

2
−H2 = H

(
3ζ

2
−H

)
(2.15)

and it goes to infinity as H →∞ when a→ 0.
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The age of the universe in this case is obtained from Eq(2.10) by ap-

plying the initial condition, a(t) = 0 when t = tB, the time of the big

bang. We arrived at the age as,

t0 − tB =
2

H0ζ̄
ln

(
6

6− ζ̄

)
. (2.16)

For a Hubble parameter H0 = 72.25 km s−1 Mpc−1[98], setting ζ̄ = 5.66,

the age of the universe is found to be around 13.73 GY, which is close

enough to that obtained from Globular cluster data and CMB anisotropy

data[135]. It is to be noted that, for ζ̄ > 6 the age is not defined in this

model due to the absence of big-bang, which justifies constraint on the

value of the viscous parameter with an upper limit as ζ̄ < 6.

The evolution of scale factor as per eq(2.10) for various values of ζ̄ < 6

is depicted in fig(2.2). The plot also contains the evolution corresponding

to ζ̄ > 6, in which case there is no big-bang. It is clear that, at relatively
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Figure 2.2: The profile of evolution of scale factor for various values of ζ̄.

low values of ζ̄ the scale factor evolves slowly in conformation with the

earlier result, a(t) ≈ (1+3H0[t−t0])1/3, implying a prior decelerated epoch.

But as time increases, the curvature of plot changes in such a way that, the
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scale factor evolves to represent an acceleration as, a(t)→ exp
(
ζ̄H0(t−t0)

6

)
.

So there occurs a switch over from deceleration to acceleration for 0 < ζ̄ <

6. This switching over would be shifted to the deep past as the value of ζ̄

increases. This means the bulk viscous Zel’dovich fluid resembles a cold
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Figure 2.3: The evolution of ä for various values of ζ̄. The two limits, one of

0 < ζ̄ < 6 having an initial decelerated phase switching over to acceleration

and the other of ζ̄ ≥ 6 with eternal acceleration are obvious in the profile. It

is also seen that for ζ̄ = 4 the transition point is at present, for ζ̄ < 4 in future

and for ζ̄ > 4, in the past.

dark matter nature in the past and a dark energy behaviour in the later

stage, thus unifying the dark matter and dark energy in the background

of the cosmos.

In the fig(2.2), each of the curves with 0 < ζ̄ < 6 has the slopes of the

tangents at various points decreasing progressively first till a transition

point, passing which, they keep on increasing and hence the a(t) vs t

graphs also is indicative of early deceleration and then transition to the

acceleration. It is seen from the plot that that at ζ̄ = 4 the switch over

from deceleration to acceleration takes place at the present. For 0 < ζ̄ < 4

the transition point from deceleration to acceleration is in future and for
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4 < ζ̄ < 6, the transition in the past. This important fact can be better

shown by obtaining the double derivative of a, the acceleration. For this

let us first recast the Hubble parameter equation eq(2.8) as,

ȧ =
H0

6
[ζ̄a+ (6− ζ̄)a−2]. (2.17)

Now taking derivative of this with respect to a leads to,

dȧ

da
=
H0

6
[ζ̄ − 2(6− ζ̄)a−3]. (2.18)

The transition scale factor a = aT is the one corresponding to
dȧ

da
= 0 and

is obtained as,

aT =

(
2(6− ζ̄)

ζ̄

)1/3

. (2.19)

In terms of redshift the above equation becomes,

zT =

(
ζ̄

2(6− ζ̄)

)1/3

− 1. (2.20)

From the eqs(2.19) and (2.20) it is clear that the transition would have

occurred at present corresponding to aT = 1 or zT = 0 for ζ̄ = 4. This

implies the transition will occur in the future for ζ̄ < 4 and would be in

the past for ζ̄ > 4. These things are geometrically clarified in figure 2.3.

Hence the value of the viscous parameter must be in the range 4 < ζ̄ < 6.

A further confirmation of the above fact is depicted in fig(2.4), where

we have plotted the evolution of the deceleration parameter. The deceler-

ation parameter can be defined as,

q = −1− Ḣ

H2
. (2.21)

Deceleration parameter q > 0 implies deceleration in expansion and q < 0

an acceleration in the expansion. Using eqs(2.6) and (2.8), the equation

for decelerating parameter becomes

q = −1 +
3(6− ζ̄)

ζ̄a3 + (6− ζ̄)
, (2.22)
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which alternately, in terms of red shift becomes,

q = −1 +
3(6− ζ̄)(1 + z)3

ζ̄ + (6− ζ̄)(1 + z)3
. (2.23)

For non-viscous Zel’dovich fluid, the deceleration parameter is q is 2, the
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Figure 2.4: The profile of deceleration parameter vs cosmic redshift for various

values of ζ̄. The negative values of z, despite not being physical, are included

here as they will indicate the future. This graph confirms to the fact that

the deceleration to acceleration transition point will be in future for ζ̄ < 4, at

present when ζ̄ = 4 and in the past when 4 < ζ̄ < 6. It is also visible that for

ζ̄ ≥ 6 the cosmos is eternally accelerating.

case of a constant deceleration. At the maximum value ζ̄ = 6, the decel-

eration parameter q = −1 and is corresponding to an ever accelerating de

Sitter universe. At present, z = 0, we have from eq(2.23) that

q0 = 2− ζ̄

2
, (2.24)

which implies that, the transition will occurred at present for ζ̄ = 4.

But observational results indicate that the transition occurred in the

past. Therefore the value of the viscous parameter must lie in the range
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4 < ζ̄ < 6. The current observational value on deceleration parameter is

q0 ∼ −0.64± 0.03, [135, 136] which therefore sets the value of the viscous

parameter as per the above equation as, ζ̄ > 4. This means the value of

the bulk viscosity is in the range as per 4 < ζ̄ < 6.

The equation of state function of the bulk viscous Zel’dovich fluid ω

given by

ωs = −1− 1

3

d

dx
lnh2, (2.25)
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Figure 2.5: The profile of state function vs cosmic redshift for various values of ζ̄

for the bulkviscous Zel’dovich fluid. The deceleration to acceleration transition

point according to eq(2.28) will be in future for ζ̄ < 4, at present when ζ̄ = 4

and in the past when 4 < ζ̄ < 6. It is also visible that for ζ̄ ≥ 6 the cosmos is

eternally accelerating. (please add name of different plots)

where the dimensionless h =
H

H0

, serves as a normalized Hubble pa-

rameter. Using eq(2.8) we have the equation of state in terms of redshift

as,

ω = −1 +
2(6− ζ̄)(1 + z)3

ζ̄ + (6− ζ̄)(1 + z)3
, (2.26)

The evolution of equation of state of the bulk viscous Zel’dovich fluid is as

shown in fig(2.5). For ζ̄ = 0, the non-viscous case, the equation of state
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become ω = 1. Irrespective of the value of ζ̄ it is seen that ω → −1, in

the extreme future corresponding to z → −1, (a→∞). For all the cases

of 0 < ζ̄ < 6.0, the cosmos is subjected to initial deceleration, crossing

over to later acceleration ending up in de Sitter phase, as ω starts from an

initial value of +1 to approach −1 in the asymptotic limit as mentioned

above. From Eq(2.23) it is seen that at the point of transition, at which

ω = −1/3, it follows,

(6− ζ̄)(1 + zT )3

ζ̄ + (6− ζ̄)(1 + zT )3
=

1

3
(2.27)

where zT is the transition redshift, which is then obtained as,

zT = −1 +

(
ζ̄

2(6− ζ̄)

) 1
3

. (2.28)

The present value of the equation of state can be obtained by taking z = 0

n equation (2.26) and is,

ω(present) = 1− ζ̄

3
. (2.29)

This again confirms that for the transition to occur in the past, the viscous

parameter must be in the range 4 < ζ̄ < 6. The observational value of

ω(present) is around −0.94± 0.1 [135].

2.1.3 The case ζ̄ ≥ 6, eternal acceleration

From (2.23) and (2.26), it is clear that the model predicts eternal accelera-

tion if ζ̄ ≥ 6. This is clearly seen in figs (2.3),(2.4) and (2.5). Interestingly,

there is no singularity in the past for ζ̄ > 6, and the scale factor never be-

comes zero but it attains a minimum value as t− t0 → −∞, (as indicated

in fig(2.2))

Lt
(t−t0)→−∞

a(t) = amin =

(
1− 6

ζ̄

)
. (2.30)

However as it is seen from (2.9) the density becomes zero at a = amin.
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2.2 State finder analysis for the bulk vis-

cous fluid.

From previous analysis especially from sect.2.1 it is seen that the viscous

Zel’dovich fluid model of universe with a bulk viscosity coefficient in the

range 4 < ζ̄ < 6 predicting reasonable the evolution of the late universe.

However, there are several dark energy models accounting for the late

stage evolution of the universe. Like the present model they also predict

the various cosmological parameters like, deceleration parameter, equa-

tion of state etc in a reasonable way. So it seems difficult to contrasts

between the merits various models. A sensitive diagnostic tool is essential

to distinguish between different dark energy models or to distinguish a

given model with the standard ΛCDM model[137].

As the acceleration of the universe is a recent phenomenon [16, 18–23]

the scale factor a = a(t) can be Taylor expanded as

a(t) = a(t0) + a|0 + ȧ|0(t− t0) +
ä|0
2

(t− t0)2 +

...
a |0
6

(t− t0)3 + ... (2.31)

as applicable to small (t−t0). The eq(2.31) can be examined for generating

a more sensitive discriminator of expansion. Thus, apart from deceleration

described in terms of second order derivative of a, it can be seen that

higher sensitive diagnostic tools are obtainable using a combination of both

second order and third order derivatives of a as present in eq(2.31)[137].

As the deceleration parameter is q = − ä

aH2
, in order to incorporate both

ä and
...
a , in addition to H and q, the state finder pair {r, s} are defined as

[137, 138],

r =

...
a

aH3
(2.32)

and

s =
r − 1

3(q − 1
2
)
. (2.33)

A good account of the sensitivity of the state finder pair {r, s} to non

dark energy brane world models and dark energy models of quintessence
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(ω 6= −1, but again a constant) and kinessence (ω is a function of time,

having quintessence one of the simplest form besides Chaplygin gas too one

of its kind) is given in [137]. These are degenerate models to the present

time values of q and ω. Differentiating twice the Hubble parameter with

respect to time, we have,

Ḧ =

...
a

a
− ä

a
H − 2ḢH. (2.34)

Writing RHS of eq(2.34) in terms of r and q = −1− Ḣ

H2
, we get,

present
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Figure 2.6: The r-s plot for the bulk viscous fluid with ζ̄ = 5.25. The trajec-

tory lies in the region r > 1 and s < 0. In the asymptotic limit as a → ∞,
{r, s} →{1, 0} which resembles the case of the ΛCDM model. It is seen that

when a = 1, at present, {r, s} = {1.14,−0.04}. For other values of ζ̄ in the

range 4 < ζ̄ < 6, the profiles remain close enough that they appear different

only in the high resolution limit.

Ḧ = H3

(
r + q − 2

Ḣ

H2

)
= H3 (r + 3q + 2) (2.35)
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Figure 2.7: The r-s plots for the bulk viscous fluids in high resolution, close to

Lambda point, for ζ̄ = 5.75, 5.25 and 5.00. It is seen that for different values of

ζ̄, the paths are different for {(r > 1), (s < 0)} and they merge to {r, s} = {1, 0}
as a→∞.

and therefore,

r =
Ḧ

H3
− 3q − 2. (2.36)

We have from eq(2.6),

Ḧ =
3Ḣ

2
(ζ − 4H) . (2.37)

From eqs 2.36, 2.37, 2.6, 2.8 and 2.22,

r = 1 +
9(6− ζ̄)2a−6

(ζ̄ + (6− ζ̄)2a−3)2
(2.38)

and

s =
2(6− ζ̄)2a−6

(6− ζ̄)2a−6 − ζ̄2
. (2.39)
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The equations (2.38) and (2.39) show that as a→∞, the state finder set

{r, s} → {1, 0}, and hence the bulkviscous Zel’dovich fluid model resem-

bles the ΛCDM model of the universe in remote future. Fig(2.6) is the

r-s plot of the bulk viscous Zel’dovich fluid model for the best estimate

(evaluated in a later section) of the viscous coefficient ζ̄ = 5.25. Apart

from the ΛCDM behaviour in the asymptotic limit, the evolution in the

r − s plane indicate that r > 1 and s < 0 in the profile of the Zel’dovich

fluid. This resembles the generalized Chaplygin gas model of the dark

energy[139]. The present position of the model in this plane is correspond-

ing to {r0, s0} = {1.14,−0.04}. From Eqs(2.39) and (2.38), it is seen that

for ζ̄ = 0 corresponding to the normal Zel’dovich fluid, (r, s) = {10, 2}.
The r−s evolution of the present model has also shown marked deviation

from another standard model of dark energy, the holographic dark energy

model, in which the dark energy density has been obtained using the cos-

mological holographic principle with the event horizon as IR cut off of the

length scale involved in the problem. The holographic dark energy evolves

from around (r, s) ∼ (1, 2/3) and ends at (r, s) ∼ (1, 0)[140, 141].

The evolution of r−s trajectory towards the ΛCDM point, is different

for different values of the viscous parameters. In figure (2.7) we have

plotted these evolution for different values of ζ̄ , showing that evolution

becomes more steeper as ζ̄ increases.

2.3 Entropy evolution and generalized sec-

ond law of thermodynamics

The theoretical works on entropy of the universe were inspired by the

course of thermodynamical studies on the dynamics of black holes which

involved their event horizons, in 1970s. Hawking proved that in all the

classical limit physical processes, the sum of areas of event horizons of in-

teracting black holes cannot decrease, which is an assertion resembling the
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law of entropy with interacting systems in isolation[142]. Later, Wheeler

raised a puzzle if given amount of matter crossing the horizon, over to

a black hole, will lead to a reduction in entropy for an outside observer,

which violates the law of entropy. The perplexity was overcome with

Bekenstein[143–145], exploiting the analogy between Hawking’s theory on

increase of sum of areas of event horizons of classically interacting black

holes with that of the law of entropy on a union of classically interacting

thermodynamical systems in isolation. Bekenstein attributed an entropy

to a black hole, proportional to the area of its event horizon. This led to

a version of second law of thermodynamics that

d

dt
(SBH + S ′univ) ≥ 0 (2.40)

where SBH = entropy of the black hole event horizon and S ′univ = the

entropy of the universe with the exception of the black hole, and the law

was termed as GSL (Generalized Second Law). The GSL finds its version

in the FLRW universe, in that it leads to the conclusion, the sum of the

entropies of the apparent horizon and the contents with in it is greater

than or equal to zero. Therefore, for the stiff fluid,

d

dt
(SH + Sz) ≥ 0 (2.41)

where SH = entropy of the apparent horizon and Sz = that of the Zel’dovich

fluid. This view of GSL resembles the same being viewed from inside a

black hole. The entropy of the Zel’dovich fluid within the apparent hori-

zon is related to its pressure and energy density through Gibb’s relation

as

TdSz = d(ρzV ) + p′zdV. (2.42)

Here, V =
4π

3H3
, the volume of a flat universe inside the apparent Horizon

of radius r = H−1 and T is the temperature of the universe. Assuming

the Zel’dovich fluid within the horizon is in thermodynamical equilibrium

with the apparent horizon, the temperature of the fluid is given by T =
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H

2π
, which is equal to the Hawking temperature of the apparent horizon.

Substituting for T , V , p′z using eq(2.3) and using pz = ρz in eq. (2.42),

dSz =

(
16π2

H3
− 24π2(2H − ζ)

H4

)
dH . (2.43)

Bekenstein-Hawking formula gives the entropy of the apparent horizon[146–

148] as,

SH = 2πA , (2.44)

where A = 4πH−2 is the area of apparent horizon. Hence,

dSH = −16π2

H3
dH . (2.45)

It follows from eqs (2.41), (2.43) and (2.45) that

−
(

24π2(2H − ζ)

H4

)
dH

dt
≥ 0 . (2.46)

For an accelerating universe this means,

(ζ − 2H)
dH

dt
≥ 0. (2.47)

From eqs(2.47) and (2.6), we have,

H(ζ − 2H)2 ≥ 0. (2.48)

As (ζ − 2H)2 is a positive number, the inequality (2.48) requires H ≥ 0

and hence, from eq (2.8),

(ζ̄ + (6− ζ̄)a−3) ≥ 0, (2.49)

as the required condition for validity of GSL. For 0 < ζ̄ ≤ 6 the condition

as in inequality (2.49) is satisfied throughout, as seen in fig(2.8). However,

for ζ̄ > 6 the condition is valid only for a ≥ amin, given by eq(2.30).
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Figure 2.8: The normalized Hubble parameter vs scale factor profile.

2.4 Summary - Bulk viscous Zel’dovich fluid

Ideal Zel’dovich fluid model with ω = 1 was well known as applicable

to early phases of the cosmos; however, its density diluted too swiftly

on being inversely proportional to sixth power of the scale factor. The

ideal stiff fluid model does not explain the later matter dominated phase

in which ρ ∝ a−3 and the late acceleration. Therefore, the prospects of

an alternate model of bulk viscous Zel’dovich fluid with constant bulk

viscosity is studied. It is found that when a constant, dimensionless bulk

viscous coefficient satisfying ζ̄ ≥ 0 is introduced, the effective pressure

of the fluid becomes p′z = pz − 3(3H0ζ̄)H, the model accounts for an

expanding universe which accelerate in the late stage. We found that

the viscous Zel’dovich fluid accounts for a universe starting with a big

bang followed by deceleration and later undergoing a transition to the

accelerating phase when 0 < ζ̄ < 6. For ζ̄ = 4 the transition point from

decelerating phase to accelerating phase happens to be at present. For

0 < ζ̄ < 4 the transition point will be in future, whereas for 4 < ζ̄ < 6,

the same occurred in the past. Therefore it is possible for a bulkviscous

Zel’dovich fluid model of cosmos to account for the recent acceleration.
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We have analytically solved for the Hubble parameter and scale factor

and extracted the age of the universe.

The behaviour of deceleration parameter q and the state function ω

with respect to the scale factor a is also studied. It is seen that the

conditions q < 0 and ω < −1

3
have been sissified during the past evolution

of bulk viscous fluid with 4 < ζ̄ < 6. For ζ̄ > 6 it is always q < 0 and

ω < −1

3
and hence the eternal acceleration. It is also seen that both q

and ω tends to −1 as a→∞ (alternately z → −1), which means de Sitter

epoch in the infinite future, regardless of the value of ζ̄ .

The state finder analysis was carried out in order to contrast the model

with the standard ΛCDM model and other prominent dark energy models.

From the r-s plot it is also observed {r, s} is different from that of ΛCDM

model at present and coincides with that of ΛCDM model in the infinite

future, as a→∞ and z → −1.

The model predicts a possible big-bang as a(t)→ 0 as t→ 0. This has

been verified by calculating the curvature scalar and found that it tends

to ∞ as (t− t0)→ 0.

The thermodynamical analysis as in section(2.3) proves Zel’dovich fluid

with 0 < ζ̄ < 6 to be in concordance with GSL, although, starting with a

big bang followed by deceleration progressing over to acceleration.



3
Asymptotic behaviour of the viscous

Zel’dovich model

From the discussions so far, it is clear that the bulk viscous Zel’dovich

fluid model can be an alternative to ΛCDM model to accommodate late

acceleration and alleviate the cosmological constant and cosmological co-

incidence problems. It was deduced that for 4 < ζ̄ < 6, the transition to

accelerating phase takes place in the past and for ζ̄ ∼ 5.7 the predicted age

of the universe by the model is very near to that predicted by ΛCDM the-

oretical model and Globular cluster empirical data. The evolution of scale

factor, equation of state and deceleration parameter are analyzed with

the best fit values of the bulk viscosity coefficient and the present Hubble

parameter. In the present chapter we study the asymptotic properties of

the model by carrying out a phase space analysis.

3.1 Extraction of the model parameters us-

ing Type Ia supernovae data

The best fit values of the model parameter ζ̄ , the viscosity coefficient,

H0 the Hubble parameter etc are extracted using Type Ia supernovae ob-

servational data. Union data which consists of 307 data points [149] in

59
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the redshift range 0.01 ≤ z ≤ 1.55 were used in this regard. Since the

light curve fitter used by Kowalski et al. is SALT which is considered

to be more reliable and one can easily compare their results, notably the

stretch distribution with the one obtained using other light curves, like

the SNIFS acquisition light curves. The 580 data set in the redshift range

0.015 < z < 1.414, consists of more observations on low redshifts. It has

been noted that the interference with the background is high for obtaining

low redshift data, hence their accuracy is relatively less compared to the

high redshift data[150]. More over Kolmogorov-Smirnov[151] test of these

samples shows that the 307 data set have relatively larger, 85%, probabil-

ity of being originated from a common distribution compared to the 580

data set. In this regard one can rely more on the 307 data than 580 data

sets for the extracting fruitful values of the cosmological parameters. Even

if one uses the 580 data set for extracting the parameters, the changes in

their value will reflect only in the third decimal place or so hence of not

be much different from that obtained using 307 data. We hope this justi-

fication is sufficient enough in our usage of the 307 supernovae data. The

basic method is to compare the observational distances of supernovae with

the predicted value at various redshifts.The values of the parameters are

those for which the predicted distance is in close match with the observed

distance. The distance modulus of the supernova at a given red shift z, is

given by

µ(z) = (m−M) = 5 log10 dL(z) + 25 (3.1)

where m is the apparent magnitude, M is the absolute magnitude and

dL(z) is the luminosity distance in Mpc of a supernova in a flat FLRW

universe. The luminosity distance at a given redshift as a function of the

model parameters is given as,

dL(z, ζ̄, H0) =
c(1 + z)

H0

∫ z

0

dz
′

h(z′ , ζ̄, H0)
(3.2)

where h(z
′
, ζ̄, H0) = H/H0 is the normalized Hubble parameter. The

observed distance modulus µkob of a type Ia supernova corresponding to
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Figure 3.1: Confidence intervals for the parameters ζ̄ and H0. The outer curve

corresponds to 99.99% probability and the inner one corresponds to 99.73 %

probability. The lower dot represents the values of the parameters correspond-

ing to the minimum of the χ2.

a redshift zk is to be compared with the theoretical distance modulus

µkth corresponding to the same redshift. The statistical χ2 function for

extracting the parameter can then be obtained as,

χ2 =
n∑
k=1

[µkth − µkob]2

σ2
k

(3.3)

where n is the number of data points and σk is the statistical error as-

sociated with the measurement corresponding to a redshift zk. The best

estimates of the parameters (ζ̄ , H0) are then obtained by minimizing the

χ2 function. The minimum of the χ2 per degrees of freedom gives mea-
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sures the goodness-of-fit of the model. The confidence regions in figure

3.1 for the parameters ζ̄ and H0 are then constructed for 99.73% and

99.99% probabilities respectively to find the best estimate of the param-

eters. The values of the parameters are shown in table 3.1 in which, a

Model χ2
min χ2

min/d.o.f. ζ̄ H0

Bulk viscous model 300.264 1.011 5.25 70.20

ΛCDM model 300.93 1.013 - 70.03

Table 3.1: The best estimates of the parameters ζ̄ and H0 evaluated with

the supernova type-Ia union data 307 data points. But we avoided some

low red shifts data, so that the net number of data used is 297.

comparison is also made of the parameters of ΛCDM model of the uni-

verse. For ΛCDM model with dark energy density around, Ωde ∼ 0.7,

gives χ2
min/d.o.f ∼ 1.013, a value very much close to the bulk viscous

Zel’dovich model. The values obtained for the present Hubble parame-

ter by both the models are extremely close to each other. The proximity

of values of cosmic parameters and minimum χ2 mentioned imply that

the present model is a good alternative to the standard ΛCDM model in

predicting the background parameters of the universe. With the statis-

tical correction the values of parameters in the present model has finally

become, ζ̄ = 5.25 ± 0.14 and H0 = 70.20 ± 0.58. The viscous parameter

value is in the range 4 < ζ̄ < 6, hence the transition from deceleration

to acceleration took place in the past, as per a conclusion arrived in the

previous chapter.

3.2 Evolution of cosmic parameters

The behavior of scale factor in the Zel’dovich fluid dominated universe

for the best fit value ζ̄ = 5.25, given by eq(2.10), is seen in fig(3.2). The

time dependent evolution of a for a small value of ζ̄ = 0.002 and that for
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Figure 3.2: Evolution of scale factor with time. Thick line corresponds to

ζ̄ = 0.002, dashed line corresponds to ζ̄ = 5.25 (best estimate) and dotted line

corresponds to ζ̄ = 6.5.

ζ̄ > 6, and ζ̄ = 6.5, too are once again plotted for contrasting with the

evolution of state function corresponding to the best fit value of ζ̄ . The

initial deceleration, recent switch over to acceleration and the asymptotic

de Sitter phase are exactly as per as per the discussions in section 2.1.2.

For the best estimates of the parameters ζ̄ and H0, the age of the

universe obtained from eq(2.16) is around 10-12 GY. This predicted age

is significantly deviating from those obtained from Globular clusters data

and the ΛCDM model.

The fig(3.3), as per eq(2.26) depicts the variation of state parameter

against the red shift at the best fit ζ̄ = 5.25. The time dependence of

ωz for a small value of ζ̄ = 0.002 and that for ζ̄ = 6.5, too are added in

the figure for comparison. The equation of state of the Zel’dovich fluid

ωz → −1 as a → ∞ corresponding to de Sitter Universe. The point of

transition from deceleration to acceleration corresponds to ωz = −1

3
, and

it is occurs at a red shift given by eq(2.20), ie, at z ∼ 0.52, close to that

obtained from type Ia supernova data with standard ΛCDM model.
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Figure 3.3: Evolution of ωz with respect to scale factor. Thick line corresponds

to ζ̄ = 0.002, dashed line corresponds to ζ̄ = 5.25 and dotted line corresponds

to ζ̄ = 6.5

The figure(3.4), is a profile of deceleration parameter plotted against

the red shift z for best fit ζ̄ = 5.25. In this regard too the time dependence

of q for a small value of ζ̄ = 0.002 and that for = 6.5, are included for

comparison. The deceleration parameter q → −1 asymptotically, corre-

sponding to de Sitter Universe behaviour as seen in the distant future (ie

when z → −1). Throughout the evolution of the universe q depends on

bulk viscous parameter as according to the discussions in section 2.1.2.

The point where q = 0, corresponding to switchover from deceleration to

acceleration is again at z given by eq(2.20), ie at z ∼ 0.52, as confirmed.
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Figure 3.4: Evolution of deceleration parameter with respect to red shift. Thick

line corresponds to ζ̄ = 0.002, dashed line corresponds to ζ̄ = 5.25 and dotted

line corresponds to ζ̄ = 6.5

3.3 Phase-space perspective

To understand the evolution of a cosmological model one have to solve the

Friedmann equations fully. An alternative method to understand the gen-

eral behaviour of a model is to use the tools of dynamical system analysis.

This often used to understand the asymptotic properties of the model.

Some times it is generally difficult to solve the cosmological field equa-

tions with more than one cosmic components. A convenient method to

understand the global picture of the model is then to study the equivalent

phase space. A phase-space analysis of the model would indicate whether

the model is compatible with realistic evolution of the universe, i.e. the

possible existence of the different stages of the universe like radiation dom-

inated early phase, then a matter dominated phase followed by the late

accelerating phase. For the phase-space analysis, one has to identify the

phase space variables and be able to write down the cosmological equa-
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tions as a system of autonomous differential equations. The critical points

of these autonomous differential equations can then be correlated to the

cosmological solutions. The stability of such critical points can be deter-

mined by examining the system obtained by linearizing about the critical

point. If the critical points were a global attractor, then the trajectories

of the system near the critical point will always be attracted towards it in-

dependent of the initial conditions and it will be stable one. On the other

hand if the trajectories are emanating from the critical point irrespective

of the initial condition then it is an unstable point. The critical point will

be saddle if the emergence and starting of the trajectories near the critical

point depends on the initial conditions.

3.3.1 Analysis of Zel’dovich fluid in two dimensional

phase-space

In this section we analyze the phase-space behavior of flat universe dom-

inated with bulk viscous Zel’dovich fluid. The behavior of the system in

the two dimensional phase space with h = H/H0 and Ωz = ρz/3H
2
0 as the

coordinates is examined. The corresponding universe is the one with only

bulk viscous Zel’dovich fluid as the component. The coupled differential

equations are

ḣ = P (h,Ωz) (3.4)

and

Ω̇z = Q(h,Ωz), (3.5)

where

P (h,Ωz) = H0

(
ζ̄

2
− 3hΩz

)
h (3.6)

and

Q(h,Ωz) = −H0

[(
6 (Ωz − 1)h− ζ̄

)
Ωz − ζ̄

]
. (3.7)
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The over-dot refers to derivative with respect to time. By setting ḣ = 0.

and Ω̇z = 0, we obtain the following three critical points or roots

(hc,Ωzc) = (0, 1),

(
0.87667

Ωz

,Ωz

)
, (0.87667, 1). (3.8)

The first root (0,1) has Hubble parameter as zero and hence corre-

sponds to a static universe, while the second root depends on the instan-

taneous value of Ωz, that executes a trajectory as Zel’dovich fluid density

changes, and hence it is not single a fixed point rather a collection of fixed

points. The third root (hc,Ωzc) = (0.87667, 1) having a positive definite

value of the Hubble parameter and mass parameter of the Zel’dovich fluid

corresponds to an expanding universe dominated by Zel’dovich fluid. If

the system is stable in the neighborhood of a critical point, the linear

perturbation in its neighborhood in phase space decays with time. The

perturbations around the critical points must satisfy the following matrix

equation, [
ε̇

η̇

]
=

(∂P∂h )0

(
∂P
∂Ωz

)
0(

∂Q
∂h

)
0

(
∂Q
∂Ωz

)
0
.

[ε
η

]
(3.9)

Here ε and η are perturbations in h and Ωz respectively in the neighbor-

hood of a given critical point. The suffix ′0′ denotes the value evaluated

at the critical point, (hc,Ωzc). The corresponding Jacobian is(∂P∂h )0

(
∂P
∂Ωz

)
0(

∂Q
∂h

)
0

(
∂Q
∂Ωz

)
0

 = H0

[(
ζ̄
2
− 6hΩz

)
−3h2

6Ωz(1− Ωz)
ζ̄
2

+ 3h(1− 2Ωz)

]
. (3.10)

If the eigenvalues of the Jacobian matrix are all negative, then the critical

point is stable, otherwise the critical point is generally unstable. If the

eigenvalues are positive then the critical point is an unstable node and

if there are positive and negative eigenvalues, then the critical point is a

saddle point.

The eigenvalues corresponding to the first critical point (hc,Ωzc) =

(0, 1) are found to be (−368.2, 184.2). As they are of opposite signs the
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Figure 3.5: Phase space structure around the critical points. The first critical

point (0,1) is a saddle point. The vector diagram clearly indicate that the

trajectories approaching this point are repelled away and are finally converging

on to the attractor critical point on the right.

critical point is a saddle point and hence unstable. Depending on the

initial conditions the nearby trajectories around this point may approach

the saddle point, but repelled by it and finally approaching a possible

stable attractor in the future. As in the figure 3.5 the trajectories are

turning away from the equilibrium point as and when they approach it.

The second critical point

(
0.87667

Ωz

,Ωz

)
is not an isolated point, but

varies with Ωz. As per the relationship between h and Ωz, it represents a

rectangular hyperbola with the axes h = 0 and Ωz = 0 as asymptotes. The
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eigenvalues are found to be

(
−184.1,

−161.394

Ω2
z

)
. Since both the eigen-

values are negative and real, the neighboring trajectories will converge on

to the hyperbola and hence the critical point is a stable one. The hyper-

bola along which the Ωz dependent critical point moves has the coordinate

axes h = 0 and Ωz = 0 as the asymptotes, h = −Ωz as the directrix and

(0.9363, 0.9363) as the focus.

The third critical point is (hc,Ωzc) = (0.87667, 1). It is observed as in

figure 3.5, this critical point is a global attractor, and physically it corre-

sponds to a flat expanding universe dominated by bulk viscous Zel’dovich

fluid. We linearize the equation (3.4), around the third critical point,

and formulated the matrix equation similar to equation (3.9). The cor-

responding eigenvalues are found to be (−184.2, 0.0). The resulting two

eigenvalues clearly indicate that the model is stable for all possible initial

conditions around this critical point. It appears that the second eigenvalue

0 is suggestive of the absence of any isolated critical point and rather a

line segment as a continuous array of critical points. However, a close

examination of the vector field plot as in figure 3.6 shows that the field

directions are invariably tilted, though slightly, towards a fixed critical

point as they approach. However, on low resolution, it seems to be a

straight line towards the isolated critical point. This is evident from the

continuous plot in the phase space structure as shown in figure 3.7. So,

in reality the isolated critical point exists and the ′0′ eigenvalue leads to

a line segment as the best fit close to the critical point. This is clear from

the fact that the straight line does not arise from the original procedure

of setting ḣ = 0 and Ω̇z = 0 without the linear approximation and rather

results in an isolated point. So, as we said earlier, depending on the initial

conditions the trajectories emanating from the surroundings of the sad-

dle critical point are repelled away from it and they finally approach the

stable critical point, (0.87667, 1). From the eq( 2.21) of the deceleration

parameter , it can be easily seen that this critical point corresponds to
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Figure 3.6: Vector field plot of the phase space around the third critical point

(0,87667,1). The vectors encircled shows their continuous tilt towards the crit-

ical point.

q < 0 implies an accelerating phase. This, by and large implies the stabil-

ity of the universe dominated by the bulk viscous Zel’dovich fluid, which

accelerates the expansion in the later stage.

3.3.2 Analysis of Zel’dovich fluid in the three dimen-

sional phase-space

In the realistic case, the universe have radiation dominated phase followed

by matter dominated phase and a subsequent late accelerated epoch. In

order to imply a realistic evolution of the universe by the present model, it
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Figure 3.7: Plot of phase space trajectories around the critical point (0,87667,1).

All trajectories are converging to the critical point and hence it is stable.

should predict a prior radiation dominated phase followed by matter and

accelerating epochs. For knowing that, we include, besides the Zel’dovich

fluid, the conventional radiation also to study the phase-space structure.

On including the radiation component also, the first Friedmann equation

becomes

3H2 = ρz + ργ (3.11)

where ργ is the radiation density. The conservation equation for the radi-

ation component by assuming a pressure pγ = ργ/3, is

ρ̇γ + 4Hργ = 0 . (3.12)

.

The phase-space variables are h, Ωz and Ωγ among which the third

parameter is Ωγ = ργ/3H
2. The dynamical equations for these parameters

are represented by the coupled differential equations

ḣ = P (h,Ωz,Ωγ) =

(
(3Ωz + 2Ωγ)h−

ζ̄

2

)
h, (3.13)
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Ω̇z = Q(h,Ωz,Ωγ) =

[
2

(
(3Ωz + 2Ωγ)h−

ζ̄

2

)
− 6h

]
Ωz + ζ̄ (3.14)

and

Ω̇γ = R(h,Ωz,Ωγ) =

[
2

(
(3Ωz + 2Ωγ)h−

ζ̄

2

)
− 2h

]
Ωγ. (3.15)

The critical points are obtained by setting

ḣ = 0, Ω̇z = 0, Ω̇γ = 0 . (3.16)

and they are

(hc,Ωzc,Ωγc) = (
0.87667

Ωz

,Ωz, 0); (0, 1, 0); (1, 0.87667, 0) (3.17)

out of which, the first critical point is not an isolated one, since for that, h

is inversely proportional to the instantaneous value of Ωz. The second crit-

ical point, (0,1,0), have the Hubble parameter h = 0, hence corresponds to

static universe and third one corresponds to an expanding universe dom-

inated by bulk viscous Zel’dovich fluid. It is to be noted that there is no

critical point corresponding to a radiation dominated phase. The stability

of the equilibrium points in the case of these three critical points are ob-

tained (this time in the 3D phase-space case), once again by looking at the

behavior of phase-space trajectories close to them and generated due to

different initial conditions. The coupled differential equations in the lin-

ear limit in matrix representation, in the neighborhood of the equilibrium

points are  ε̇η̇
ν̇

 =


(
∂P
∂h

)
0

(
∂P
∂Ωz

)
0

(
∂P
∂Ωγ

)
0(

∂Q
∂h

)
0

(
∂Q
∂Ωz

)
0

(
∂Q
∂Ωγ

)
0(

∂R
∂h

)
0

(
∂R
∂Ωz

)
0

(
∂R
∂Ωγ

)
0


εη
ν

 (3.18)

where ε̇, η̇ and ν̇ are first order perturbation terms of P (h,Ωz,Ωγ) = ḣ,

Q(h,Ωz,Ωγ) = Ω̇z and R(h,Ωz,Ωγ) = Ω̇γ respectively, ε(t), η(t) and ν(t)
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being the first order linear perturbation terms of h,Ωz and Ωγ respectively.

The square matrix term in the equation (3.18) is the Jacobian evaluated

at the critical point. We then decouple the differential equations (3.18)

by means of the secular equation and in the process the eigenvalues cor-

responding to the equilibrium point

(
0.87667

Ωzc

,Ωzc, 0

)
are obtained as

λ1 =
0.5

Ωz

(−368.2 + 365.57Ωz−
√

135571− 269206Ωz + 13364Ω2
z

)
,

(3.19)

λ2 =
0.5

Ωz

(−368.2 + 365.57Ωz+
√

135571− 269206Ωz + 13364Ω2
z

)
(3.20)

and

λ3 =
245.466

Ωz

, (3.21)

all depending on the instantaneous value of Ωz. The critical point in this

case drifts with the variation of Ωz along a rectangular hyperbola on the

h−Ωz plane; with the details of the hyperbola same as in the case of the

second critical point in the section 3.3.1. The eigenvalues indicate that the

phase space trajectories corresponding to various initial conditions, move

away from the critical point and hence there is no stable situation. Even

when Ωz = 0 the eigenvalues are such that, λ1 is negative, λ2 = 0 and λ3

positive, and so no stable solution is implied.

The second critical point (0, 1, 0) corresponding to static epoch has the

eigenvalues (−368.2, 368.2, 184.1) and the third critical point has the eigen

values as (−403.778, 280.0, 167.878). There is one negative eigenvalue and

two positive eigenvalues for each critical points which again means there

is no stability for the equilibrium points. This means, the phase space

trajectories are not attracted by any of the critical points in the three

dimensional case. For example the vector field plot as in the figure 3.8

clearly indicates how the phase-space trajectories corresponding to various

initial conditions are repelled away, rather than being attracted to the
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Figure 3.8: Vector field plot of the phase-space structure around the critical

point (1,0.87667,0)

second critical point. So none of the critical points in this case corresponds

to a radiation dominated phase and even the existing critical points are

not stable also. In fact the third critical point which corresponds to a

Zel’dovich fluid dominated one is unstable, it can be concluded that the

inclusion of the radiation component may lead to a complete break down

of the model. The bulk viscous coefficient is taken as a constant in the

present study. Since it is a transport coefficient which may depend on

the velocity of the fluid component also. Such a velocity dependent bulk

viscous coefficient may be checked for consistency of a prior radiation

dominated phase and that we reserve for a future work.
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3.4 Summary - Bulk viscous Zel’dovich fluid

and its asymptotic properties

By constraining with type Ia supernova data, the optimum values for

present Hubble parameter H0 and the bulk viscous parameter ζ̄ were ob-

tained and the corresponding evolution of scale factor, state function and

q-factor were studied. The role of ζ̄ is to modify the pressure in the FLRW

universe as per p = p− ζ̄H0H, contributing a negative pressure and hence

generating the acceleration of the universe. It is seen that the bulk viscous

fluid model accounts for the late accelerating universe. For the best fit

values ζ̄ ∼ 5.25 and H0 ∼ 70.2 km s−1 Mpc−1, the switchover of accel-

eration takes place at z ∼ 0.52, which is closely in agreement with the

observed values. The asymptotic de Sitter phase also is indicated by the

evolution profiles of the mentioned parameters. Thus the Zel’dovich fluid

is likely to be an alternative to the ΛCDM model for the accelerating uni-

verse. χ-square minimum, the measure of accuracy too closely matches

with that of ΛCDM model. However, the prediction of age of the universe

is not so satisfactory in comparison with that due to ΛCDM model and

the empirical data owing to globular cluster observations.

A two dimensional phase space analysis with Ωz =
ρz

3H2
0

and h =
H

H0

as

co-ordinates obtains a stable critical point corresponding to accelerating

universe, while having the critical point corresponding to a static uni-

verse, unstable. In the three dimensional phase-space analysis including

radiation as third component, there is no stable point.
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4
Bulk viscous Zel’dovich Fluid in

decaying vacuum

In the previous chapter we discussed how the late acceleration of the uni-

verse can be accounted by considering bulk viscous stiff fluid as the dom-

inant cosmic component. However, the age predicted by the model is less

than the observed value. Therefore, we consider a flat universe with vis-

cous stiff fluid and decaying vacuum energy as the cosmic components for

improving the prediction of its age.

4.1 Scalar field approach to stiff fluid and

interacting vacuum

It can be shown that the Zel’dovich fluid with decaying vacuum can be

justified via scalar field theory approach. Let us consider the evolution

of a self interacting scalar field, φ which is minimally coupled to gravity

in flat isotropic and homogeneous universe. In describing the evolution of

the scalar field we mainly follow the reference [152], so for more details

see that reference. The evolution of the scalar field is governed by the

equations,

3H2 = 8πGρφ (4.1)

77



78 Bulk viscous Zel’dovich Fluid in decaying vacuum

and

φ̇φ̈+ 3Hφ̇2 = φ̇
dV (φ)

dφ
(4.2)

where H is the Hubble parameter, V (φ) is the potential, dot represents

a derivative with respect to cosmic time and equation(4.2) represents the

dynamical evolution of the field. The equation of state of the field is,

ωφ =
pφ
ρφ

. (4.3)

The pressure and density of the scalar field are given by,

ρφ =
φ̇2

2
+ V (φ), pφ =

φ̇2

2
− V (φ) . (4.4)

The self interacting scalar field can be effectively treated as the mixture

of two interacting fluids, with densities ρ1 and ρ2 which are having the

equation of state ω1 and ω2 respectively. Then the effective pressure is,

Peff = ωeffρeff =
ω1ρ1 + ω2ρ2

ρ1 + ρ2

ρeff , (4.5)

where ρeff = ρ1 + ρ2. Hence it is now possible to have two fluids, one

with equation of state, ω1 = 1, corresponding to stiff fluid and the other

with equation of state, ω2 = −1 corresponding to vacuum energy, if one

identifies the corresponding densities and pressures as,

ρ1 =
φ̇2

2
, p1 =

φ̇2

2
(4.6)

and

ρ2 = V (φ), p2 = −V (φ). (4.7)

One can either take these components as isolated from each other, so that

each one of them satisfying separate conservation laws or can be taken as

interacting components following the conservation equations,

ρ̇1 + 3H (ρ1 + p1) = Q, ρ̇2 + 3H (ρ2 + p2) = −Q, (4.8)
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for Q > 0 the energy flows from ρ2 to ρ1 and for Q < 0 the energy flow

in the reverse direction. From equations (4.6),(4.7) and (4.8), it follows

that,

φ̇φ̈+ 3Hφ̇2 = Q(t), φ̇
dV (φ)

dφ
= −Q. (4.9)

These equations are the equivalent evolution equation of the scalar field.

Hence it is possible to consider a scalar field as a mixture of a stiff fluid

interacting with an effective vacuum energy.

4.2 Background evolution with viscous

Zel’dovich fluid and decaying vacuum

Λ(t)

In reference [152], the authors have described the evolution of such a uni-

verse. Our aim is not in line with that. Instead we consider a phenomeno-

logical form for the decaying vacuum along with the bulk viscous stiff

fluid (Zel’dovich fluid) and analyze both the background evolution of the

universe, particularly in finding the age and also the asymptotic behav-

ior. In this model of FLRW universe following the standard metric given

by eq(1.7), the cosmic components are the bulk viscous Zel’dovich fluid

and a varying cosmological constant. As the ideal, non viscous Zel’dovich

fluid obeying the equation of state pz = ρz[106] dilutes too rapidly as per

ρ ∝ a−6, the viscosity is introduced in the Zel’dovich fluid in this model

too, to alter the evolution of ρz, appropriate enough to account for late

universe. This motivation behind bringing in viscosity is the same as dis-

cussed in section(2.1). The physics behind the viscosity so introduced is

discussed in detail in section(2.3), as to how it arises to restore equilibrium

when there are local thermodynamical disturbances. Here too, the viscos-

ity alters the pressure as pz → p′z = pz−3ζ̄H, where the component −3ζ̄H

generates the acceleration. The Eckart formalism, used in the single com-



80 Bulk viscous Zel’dovich Fluid in decaying vacuum

ponent bulk viscous Zel’dovich fluid model of cosmos (also equivalent to a

formalism being discussed by Landau and Lifshitz [123]), is also extended

over to the current Zel’dovich fluid and decaying vacuum two component

model.

The second cosmic component in the present model is the time varying

cosmological parameter given by[154],

Λ(t) = 3αH2 (4.10)

where α is a free parameter, value of which would be less than one. Earlier

introduction of this kind of decaying vacuum was considered by Carvalho

and Lima[155], where the authors restricted to α ≤ 1/2. A higher value

of α resulted into incompatible age for the universe as claimed by many

authors like [154], so the values of α is usually restricted to below one.

Since this is effectively a form of time varying vacuum energy, its equation

of state is taken as, ωΛ = (pΛ/ρΛ) = −1. Basically the Λ(t) models have

been originated from curved space quantum field theories[156]. Often

there appears a constant additive term along with the time varying part

in the equation for Λ(t), which, as argued by many [157, 158] facilitate the

transition from the decelerating to an accelerating epoch of the expanding

universe. But in the present model such an additive constant is not needed

due to the presence of viscosity in the Zel’dovich fluid component, which

will otherwise guarantee such a transition from an early deceleration to a

later accelerating phase of expansion.

The Friedmann metric along with the standard Einstein’s field equa-

tion will give the Friedmann equation for a flat universe as,

3H2(t) = ρz + ρΛ (4.11)

where ρΛ = Λ(t) (in standard units, 8πG = 1, c = 1), is the time varying

cosmological parameter, equivalent to the standard dark energy density.

These components together satisfy the conservation law (in the absence

of any source, i.e. Q = 0),

ρ̇Λ + ρ̇z + 3H (ρz + p′z) = 0. (4.12)
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where a dot represents a derivative with respect to cosmic time. Com-

bining the Friedmann equation and the conservation equation, leads to

ρ̇z + ρ̇Λ = −6H

(
ρz −

3

2
ζH

)
. (4.13)

But from Friedmann equation, ρ̇z + ρ̇Λ = 6HḢ and substituting this, the

above equation becomes,

Ḣ = −
(
ρz −

3

2
ζH

)
. (4.14)

Again from Friedmann equation one can substitute for ρz as,

ρz = 3 (1− α)H2. (4.15)

From equations (4.14) and (4.15),

Ḣ + 3H

(
(1− α)H − ζ

2

)
= 0. (4.16)

Solving equation (4.16) we obtain the Hubble parameter as,

H(t) = η [1 + coth (3(1− α)η(t− t0) + φ)] (4.17)

where η =
ζ

4(1− α)
, φ = coth−1

(
H0

η
− 1

)
and H0 is the current value of

Hubble parameter. Integrating the above equation, we obtain the equation

for the scale factor as

a(t) = eη(t−t0)

(
sinh[3η(1− α)(t− t0) + φ]

sinh(φ)

) 1
3(1−α)

. (4.18)

Using this equation, the Hubble parameter in equation (4.17) can be recast

as,

H =
ζ

2(1− α)
+

(
H0 −

ζ

2(1− α)

)
a−3(1−α). (4.19)

In the asymptotic limit a(t) → ∞ the Hubble parameter becomes a con-

stant, H → ζ

2(1− α)
which corresponds to the de Sitter phase with expo-

nential increase in the scale factor, while in the limit a(t)→ 0, the Hubble
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parameter evolves as, H ∼ a−3(1−α), which points to an earlier decelerated

epoch dominated with Zel’dovich fluid with density ρz ∼ H2 ∼ a−6(1−α).

Thus the existence of the transition from an early decelerated to a late

accelerated epoch is guaranteed. In these limits the scale factor will evolve

as follows. As t→∞ the scale factor will evolve as, a(t)→ e2η(t−t0), this

exponential increase corresponds to the de Sitter epoch, while in the early

stage of the evolution, corresponding to 3η(1 − α)(t − t0) < 1 the above

form of a(t) almost implies that, a(t) ∼ ((1 + 3η(1− α)(t− t0))1/3(1−α) ,

representing a decelerating epoch. What is important here is that the tran-

sition occurs without the aid of an additive constant in the Λ(t). In non-

viscous models like entropic dark energy[159] or Ricci dark energy[158],

the presence of a bare constant cosmological term is essential for having a

transition from the early decelerated epoch to the late accelerated epoch.

The evolution of the cosmological parameters, like Hubble parameter,

scale factor etc are depending upon the numerical values of the model pa-

rameters α and viscous coefficient ζ. However it is clear from the expression

of scale factor in equation(4.18) that for a constant α the beginning of the

universe corresponding to a = 0 would have occurred earlier into the past

of the universe as ζ assumes higher values. For constant ζ and increasing

α, the situation will be the same too. In both the cases the age of the

universe increases compared to a model with only Zel’dovich fluid as the

cosmic component. However, only with an extraction of these parameters,

a final conclusion regarding the age of the universe can be made.

We have considered a flat universe (k = 0), since observations strongly

indicate that our universe is flat [153]. The inflationary models theoret-

ically propose a very small value for curvature around Ωk0 ∼ 10−5 while

observations favor a value of the order of 10−2. Basically for non-flat uni-

verse, the Friedmann equation becomes,

3H2 = ρz + ρΛ + ρk. (4.20)

where ρk = −ka−2. Since the interaction is only between Zel’dovich fluid
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and the vacuum, the conservation law is,

ρ̇z + ρ̇Λ + 3H (ρz + p′z) = 0. (4.21)

Using p′z = pz − 3ζH and eq(4.15) and through simple algebra we can

rewrite the above equation as,

Ḣ + 3H

(
(1− α)H − ζ

2

)
= ρ̇k. (4.22)

In our original work we took, ρk = 0 consequently the RHS of the above

equation is zero. But for non-flat universe the contribution due to the

RHS term, ρ̇k = −2Hρk is extremely small especially in the late stage,

first of all due to the decreasing nature of H and secondly due to the

extremely low magnitude of ρk. Hence the solution of the above equation

(our model) would be almost close to the solution of the corresponding

homogeneous equation with zero curvature.

4.3 Extraction of model parameters and evo-

lution of cosmic parameters

The best fit values for ζ, α and H0 are estimated using type Ia supernova

observational data. Union data containing 307 data points [149] in the

red shift range 0.01 < z < 1.55 has been used here. The distance modulus

µi for ith supernova at a red shift zi, having an apparent magnitude m

and absolute magnitude M being obtained from eq(3.1), the luminosity

distance dL, as in eq(1.33) in the χ-square

analysis is a function of α too so that now dLz = dLz(z, ζ̄, α,H0), while

having h =
H(z, ζ̄, α,H0)

H0

= h(z, ζ̄, α,H0), where ζ̄ =
ζ

H0

, not same as

the dimensionless bulk viscous coefficient previously used.

Equation for h in terms of z, the cosmological red shift is obtained by
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Figure 4.1: Contour plot for the parameters H and ζ̄ for fixed α = 0.14.

substituting for scale factor using a =
1

1 + z
in equation(4.19) as

h(z
′
, ζ̄, α) =

ζ̄

2(1− α)
+

(
1− ζ̄

2(1− α)

)
(1 + z)3(1−α). (4.23)

The theoretical distance moduli for various supernova with observed

red shifts z and apparent magnitudes m are obtained using eq (3.1) and

eq(3.2) and are compared with the corresponding observed distance mod-

uli, m − M, as in eq(3.1), where m is from the data. The statistical

χ2 function for comparing the theoretical and observational values of the

distance moduli is again computed from eq(3.3) using the available 307

supernova data. By minimizing the χ2 function, the best estimates of the

parameters (ζ̄ , α,H0) are obtained . The minimum of the χ2 indicates the
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goodness-of-fit of the model apart from giving the best estimates of the

model parameters.

For obtaining the χ2 function we also used Background (CMB) data

from the WMAP 7-yr observation and the Baryon Acoustic Oscillation

(BAO) data from Sloan Digital Sky Survey(SDSS). The BAO signal has

been directly detected by SDSS survey at a scale ∼100 Mpc. The BAO

peak parameter value was first proposed by Eisenstein, D. J. et al[160]

and is defined as

A =

√
Ωm

h(z1)
1
3

(
1

z1

∫ z1

0

dz

h(z)

) 2
3

. (4.24)

Here h(z) is the weighted Hubble parameter, z1 = 0.35 is the red shift of

the SDSS sample. Using SDSS data from luminous red galaxies survey

the value of the parameter A(for flat universe) is given by A = 0.469 ±
0.017[160]. The χ2 function for the BAO measurement takes the form

χ2
BAO =

(A− 0.469)2

(0.017)2
. (4.25)

The CMB shift parameter is the first peak of CMB power spectrum[161]

which can be written as

R =
√

Ωm

∫ z2

0

dz

h(z)
. (4.26)

Here z2 is the red shift at the last scattering surface. From the WMAP

7-year data, z2 = 1091.3. At this red shift z2, the value of shift param-

eter would be R = 1.725 ± 0.018[153]. The χ2 function for the CMB

measurement can be written as

χ2
CMB =

(R− 1.725)2

(0.018)2
. (4.27)

Considering three cosmological data sets together, i.e. (SNe+BAO+CMB),

the total χ2 function is then given by

χ2
total = χ2

SNe + χ2
BAO + χ2

CMB . (4.28)
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By minimizing the χ2, we found parameter values as, α = 0.14, H0 =

70.3 km s−1Mpc−1, and ζ̄ = 1.446 for χ2
min per degrees of freedom, χ2

dof =
χ2
min

n−m = 1.016, where n is the number of data points and m = 3 the

number of free parameters. We have constructed the confidence interval

plane for the parameters H and ζ̄ keeping α = 0.14, its best estimated

value. The confidence intervals corresponding to 68.4% and 95.4% show

fairly good behavior and are given in figure.4.1. The best fit values for

the parameters H0 and ζ̄ with corrections for a confidence of 64.8% are

H0 = 70.03+0.54
−0.46 and ζ̄ = 1.446+0.018

−0.023. For 95.4% probability the corrected

parameter values are H0 = 70.3+0.565
−0.47 and ζ̄ = 1.446+0.095

0.032 for α = 0.14.

It may be noted that in reference [154], the authors have extracted an

upper limit for the parameter α by constraining a model with a decaying

vacuum, Λ = Λ0 + 3αH2, as α ≤ 0.15.

In discussing the evolution of different cosmological parameters, it is

better to start with the equation of state parameter. As it was shown

in some of the earlier works[104], the equation of state of the viscous

Zel’dovich fluid has natural evolution from its extreme stiff nature (cor-

responds ω = 1) to the de Sitter type behavior through radiation (cor-

responds to ω = 1/3) like and matter like (corresponds to ω = 0) na-

tures. First we will consider the net equation of state, comprising both

the Zel’dovich fluid and the decaying vacuum, which can be obtained by

the standard procedure as,

ω(z) = −1− 1

3

d

dx
(lnh2) (4.29)

From the equations (4.23)and (4.29), the equation of state can be ex-

pressed as,

ω(z) = −1 +
(
2(1− α)− ζ̄

) 1

h
(1 + z)3(1−α). (4.30)

For α = 0, and ζ̄ = 0 equation of state tends to ω(z) → 1 for very large

redshift, which corresponds to the early epoch dominated with Zel’dovich
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Figure 4.2: Evolution of ω with time for constant α = 0.14 and varied values

of the viscous coefficient, ζ̄.

fluid with negligible viscosity. For the chosen value of the parameter, α =

0.14 a transition into the late accelerating phase would occur for a range of

values of the viscous coefficient, 1.72 > ζ̄ > 0. For the best fit values of the

parameters, (α, ζ̄, H0) = (0.14, 1.445, 70.03) the evolution of the equation

of state parameter is as expected (see figure 4.2), that is, starting with

a value corresponding to stiff fluid and gradually approaching the value

corresponding to de Sitter epoch. The current value of ω corresponding

to the best fit values of the parameters is found to be ω ∼ −0.72, very

much close to the range of values of the equation of state from WMAP

data[153].

The equation of state of the viscous Zel’dovich fluid can be obtained

using a similar approach as,

ωz = −1− 1

3

dΩz

dx
= −1− (1− α)

3

d lnh2

dx
. (4.31)

The difference in ωz compared to ω(z) is that the second term on the right

hand side of the above equation contains an extra term, (1 − α), so that



88 Bulk viscous Zel’dovich Fluid in decaying vacuum

the final expression for ωz becomes,

ωz = −1 + (1− α)
(
2(1− α)− ζ̄

) 1

h
(1 + z)3(1−α). (4.32)

The general evolution of ωz is hence similar to that of ω(z) except in the

particular numerical values corresponding to different epochs. But both

will approach the de Sitter value as a→∞.
The deceleration parameter q(z) is a measure of the acceleration and

can be obtained from the basic equation(2.21) and eq(4.19). Deceleration

Figure 4.3: Evolution of deceleration parameter with α = 0.14 and varying ζ̄.

parameter then takes the form

q = −1 +

 3(1− α)

1 + ( 1
2(1−α)

ζ̄
−1

)(1 + z)−3(1−α)

 . (4.33)

When both the model parameters α and ζ̄ are equal to zero, the cosmic

component becomes pure Zel’dovich fluid and q = 2. For the best esti-

mated values of the model parameters, the transition is found to occur at

a redshift, z ≈ 0.61 which is again close to the observed value. Irrespective

of the values of ζ̄ the deceleration parameter asymptotically approaches

the value, q = −1.
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Finally we will discuss about the evolution of the scale factor. The

age of the universe can be directly obtained for the evolution of the scale

factor. The evolution of the scale factor is given in equation(4.18). We

have already shown its asymptotic behavior in a previous section, that in

the early epoch it evolves as in the decelerated phase and in the extreme

future it evolves as in de Sitter epoch. In general, the form of a(t) indicates

the presence of big-bang as (t− t0)→ −∞. The evolution of it is as shown

in Figure (4.4) for the best fit values of the model parameters. But for

higher values of ζ̄ it is found that the big-bang occur at earlier times as

evident from figure (4.5). It is also clear that, for extremely high values

-1.0 -0.5 0.0 0.5 1.0

0.0

0.5

1.0

1.5

2.0

2.5

H0 (t-t0 )

a
(t
)

Figure 4.4: Evolution of scale factor with time. The profile corresponds to best

fit values, α = 0.14, ζ̄ = 1.445 and H0 = 70.03 km−1s−1Mpc−1.

of the viscous parameter, the scale factor would have no-zero values in the

beginning indicating the absence of big-bang. It is found that, there is no

big-bang in the model for ζ̄ > 1.72. This means that age of the universe

defined only for ζ̄ < 1.72.

The age of the universe in the present model can be obtained by equat-
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Figure 4.5: The spectrum of curves on evolution of a(t) with α = 0.14 and

varying ζ̄. There is big-bang for ζ̄ < 1.72.

ing the scale factor to zero, which leads to,

Sh [3η(1− α)(tB − t0) + φ] = 0. (4.34)

where we took, t = tB, as the big bang time. This leads to the equation

of the age of the universe as,

t0 − tB =
φ

3η(1− α)
. (4.35)

On substituting the expressions for φ and η, the above equation can be

simplified into,

t0 − tB =
2

3ζ̄
ln

(
1

1− 2η̄

)
H−1

0 , (4.36)

where η̄ = η/H0. For the best estimated values of the model parameters, it

is found that, the above equation gives an age of the universe in the range,

11.39 − 12.18 GY. First of all, this age is higher than the age predicted

by the model in which Zel’dovich fluid is the dominant component[105].

Secondly it is near to the age of the universe obtained from the data on

oldest globular clusters[73–76]. In this sense the model seems to solve the
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problem of age which existed in the model with Zel’dovich fluid as the

only cosmic component. So it can be concluded that, the inclusion of a

varying dark energy component along the bulk viscous Zel’dovich fluid is

essential for the consistency with the age in this model.

The analysis so far reveals that, the inclusion of the additional com-

ponent, the decaying vacuum to the viscous Zel’dovich fluid, the model

gives a reasonable back ground evolution of the universe. Apart from this,

the age of the resulting universe will be high compared to the model with

Zel’dovich fluid alone as the cosmic component. The viscous Zel’dovich

fluid component evolves in such a way that, during the very early period

the matter component is a stiff fluid, compatible with many theoretical

speculations[77]. But as the universe evolves, the equation of state is

smoothly evolving towards that of pressureless fluid, corresponding to the

non-relativistic matter. Hence the model supporting the speculation that

in the early period the matter would have existed as a stiff fluid. In the

late stage, the evolution is compatible with the standard ΛCDM model, in

predicting the observational parameters, including the age of the universe.

In next section we do a dynamical system analysis of the model, which

may throw more light on the viability of the present model.

4.4 Dynamical system analysis

Dynamical system analysis is an effective method to extract the useful

information about the stability of the asymptotic behavior of the model.

For this, we have to express the cosmological equations governing the

evolution of the model as a set of autonomous differential equations. Then

the concerned information can be obtained by finding critical points and

analyzing the nature of the trajectories in the neighborhood of the critical

points. Eventually it will become clear from this analysis whether the

model in question is consistent with the presently accepted cosmological

paradigm. In the present case this means whether the model predicts a



92 Bulk viscous Zel’dovich Fluid in decaying vacuum
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Figure 4.6: Plot of vector field of the phase space around the critical

point(0.607,0.457). The arrowhead of trajectories are tilted towards the critical

point.

stable evolution from a pre-decelerated epoch to a later accelerated epoch.

The first step in the dynamical system analysis is to identify proper

phase-space variables. In the present case, we define,

u = Ωz = (1− α)h2, v =
1

1 + 1
h

(4.37)

as the phase-space variables where the quantities have their usual meaning.

These variables will take the range, 0 ≤ u ≤ 1 and 0 ≤ v ≤ 1. The

resulting coupled autonomous differential equations can then be formed
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using the Friedmann equations and they are,

u̇ = 6H0
u

1− α

(
ζ̄

2
− (1− α)v

1− v

)
(4.38)

and
v̇√

1− α
= 3H0v

2

(
ζ̄

2
√
u
−
√

1− α
)
. (4.39)

The points in the phase space exhibit isomorphism with the exact solu-

v

u
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Figure 4.7: Plot of vector field of the phase space close to the critical point.

tions of cosmological field equations. The ODEs are easier to be solved

when the derivatives in them are written in terms of τ = ln(a). The be-

havior of ODEs in the linear, closeby regions of critical points can be

expressed in terms of a matrix equation accommodating u′ =
du

dτ
and
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Figure 4.8: Stream plot of the trajectories around the critical point (0.607,0.457)

v′ =
dv

dτ
enabling flux analysis in terms of τ parameter of the equivalent

autonomous ODE system. We then establish the correspondence of the

dynamics of ρz = ρz(t), ρΛ = ρΛ(t) and H = H(t) with the mentioned

simplified flux analysis in phase space for small perturbations in the linear

limit u→ u + δu(τ) and v → v + δv(τ), where δu and δv are the pertur-

bations. The critical points are the solutions of the algebraic equations

P (u, v) = 0 and Q(u, v) = 0 where P (u, v) = 6H0
u

1− α

(
ζ̄

2
− (1− α)v

1− v

)
and Q(u, v) = 3H0v

2

(
ζ̄

2
√
u
−
√

1− α
)
. The perturbations around the

critical points satisfy the equation,(
δu
′

δv
′

)
=

( (
∂P
∂u

)
0

(
∂P
∂v

)
0(

∂Q
∂u

)
0

(
∂Q
∂v

)
0

)(
δu

δv

)
(4.40)
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where the suffix,′0′ denotes the value at the critical point and 2×2 matrix

in the above equation is the Jacobian. The nature of the eigen values of

the Jacobian matrix determine the behavior of the system near the critical

points.

The critical point of interest corresponding to the equations (4.38)

and (4.39) is (uc, vc) = (0.607, 0.457). It can be seen that the critical value

vc corresponds to the end de Sitter epoch, where the Hubble parameter

becomes, h → ζ̄

2(1− α)
. Then using the relation v =

1

1 + 1
h

and the best

fit values of the model parameter, it can be seen that vc = 0.457 for the

end de Sitter phase. The value uc = 0.607, the mass parameter of the bulk

viscous Zel’dovich fluid also corresponds to the end de Sitter epoch. That

is, in the end de Sitter epoch, u→ ζ̄2

4(1− α)
, which for the best estimated

values of the model parameters will become equal to 0.607 and is uc. The

eigen values corresponding to this critical point is (0,−4.11). The first

eigenvalue, 0 apparently suggests the absence of any isolated critical point.

But it is seen that such a situation does not arise originally from the ODEs

by setting u̇ = 0 and v̇ = 0. So the apparent discrepancy suggestive of lack

of an isolated critical point arises from the errors of linear approximation

of trajectory flux of the system in its immediate neighborhood. A low

resolution view of vector field in phase-space is depicted in the figure

(4.6). Higher resolution vector field plot as in figure (4.7) makes the view

of the critical point as an attractor. The high resolution stream plot as in

figure(4.8) also is a clear indicator that the critical point is an attractor.
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5
Summary, conclusions and future

scope

Many have speculated that matter present in the early stage of the universe

were of stiff nature, with equation of state, p/ρ = 1. But owing to the fast

decrease in its energy density as ρ ∼ a−6, it would have effect only on the

early stages of the universe, on processes like primordial nucleosynthesis

But the conventional evolution of the universe is such that it might have

undergone a matter dominated epoch and a later accelerated phase of

expansion. There are no conclusive theories so far to explain a smooth

transition of the early stiff fluid dominated epoch to later ‘ordinary’ dark

matter then to dark energy dominated configurations. In the present thesis

we have considered a universe dominated bulk viscous Zel’dovich fluid

(stiff fluid). By comparing the model with the latest observational data

on Supernovae type Ia, we have found that the resulting model predicts

an earlier stiff fluid universe which subsequently make a transit over to

the ordinary dark matter era and further a late accelerated epoch without

the assistance of any conventional dark energy form.

In the first chapter we have given an introduction to the discovery

of late accelerating universe and standard ΛCDM model of the universe

which account for this discovery. In this model the late acceleration of the

97
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universe is caused due to the vacuum energy, Λ, the so called cosmological

constant. This model is turn out to be the most successful model to

explain particularly the late evolution of the universe. However the model

has severe drawbacks, like fine tuning of the vacuum energy density and

the problem of the coincidence between the dark matter and cosmological

constant densities. We have given a sufficiently elaborate discussion on all

these facts about the standard model.

In the second chapter we have considered a universe with Bulk vis-

cous Zel’dovich fluid as the dominant component. The viscosity of the

stiff matter was treated as per the Eckart’s formalism. We have assumed

the viscosity as a constant characterized by the constant coefficient ζ̄ . We

found that for ζ̄ = 0 the model reduces to a non-viscous stiff fluid domi-

nated universe beginning with a big bang and the density of the component

is decreasing as ρz ∼ a−6. We have constrained the parameter value of the

viscosity as 0 < ζ̄ < 6 and the model predicts a universe began with a

big bang followed by a decelerated expansion and finally make a transit

in to an accelerating epoch in the final stage. The time of transition in to

the late accelerated epoch is strongly depending on the viscous parame-

ter ζ̄ . By considering the fact that for ζ̄ = 4, the transition into the late

accelerating phase would have occurred in the present time, we have fur-

ther constrained the range of the viscosity parameter as 4 < ζ̄ < 6. For

0 < ζ̄ < 4 the transition would have occur only in the future. We have

solved the Friedmann equation for the Hubble parameter and scale factor

and obtained the age of the universe as t0 − tB = −2(2/H0ζ̄) ln(1− ζ̄/6).

We have studied the evolution of deceleration parameter and the equation

of state for the viscous parameter range 0 < ζ̄ < 6. We have found that

the deceleration parameter starts from positive values in the prior stages

and as a→∞ the deceleration parameter q → −1 which corresponds to a

de Sitter epoch. The equation of state behaves in such a way that, starting

from a value +1 in the early stages it evolves finally to ωz → −1 as a→∞.
We have also executed the statefinder analysis of the model the present
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values of the parameters is (r, s) = (1.25,−0.08), implies that the model

is arguably different from the standard ΛCDM model. As a → ∞ the

statefinder finder parameters become (r, s)→ (1, 0) a value corresponding

the standard ΛCDM model. The GSL analysis shows that, the entropy

always increases, if ζ̄ < 6.

In the third chapter the model is constrained with SNe Ia data and

evaluated the bulk viscous coefficient as ζ̄ = 5.25 ± 0.14 and the present

value of Hubble parameter H0 = 70.20± 0.58. We have studied the evolu-

tion of the Hubble parameter. The behavior of the resulting scale factor

shows that the model predicts a late acceleration in the expansion of the

universe. Hence the bulk viscous Zel’dovich fluid can mimic the role of

the conventional dark energy.

We also studied the model to analyze the stability of the solutions

corresponding to various epochs using the phase space analysis method.

We first analyzed the two dimensional phase-space behavior, where the

contribution due to radiation is neglected (for late universe, radiation is

almost irrelevant) and found that there is a past unstable saddle critical

point corresponding to a static universe and a stable future fixed point

corresponds to accelerated epoch. The phase-space trajectories originat-

ing from the vicinity of this saddle like point are repelled away from it

and move towards the stable critical point corresponding to an expanding

universe dominated by Zel’dovich fluid.

Next, we have considered a three dimensional phase-space case by in-

corporating the radiation component too. We obtained the analytical so-

lution of the resulting autonomous differential equations generated from

the Friedmann equations. In this case no critical points are found corre-

sponding to a prior radiation dominated phase and more over none of the

existing critical points are stable. Hence the model of the universe with

bulk viscous Zel’dovich and relativistic radiation, in which bulk viscosity

is characterized by a constant coefficient is found to be first of all failing to

predict a prior radiation dominated phase and secondly the very inclusion
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of radiation makes the model unstable.

The Fourth chapter is devoted to the study of a two component uni-

verse, in which we have incorporated decaying vacuum as an additional

component. Even though the model with bulk viscous stiff fluid alone can

even cause the late acceleration of the universe, the main drawback was

that, it predicts less age for the present universe. So we studied a model

with Bulk viscous stiff fluid and decaying vacuum energy as cosmic com-

ponents. We compared the model with thee observational data on Type-Ia

supernova, CMB data from WMAP observation, BAO data which led to

the value of the viscous parameter as ζ̄ ∼ 1.445, which is considerably less

than the value of the parameter, for the single component minimum. We

found that the model possesses reasonably good back ground evolution, so

as to produce a late acceleration at about a redshift compatible with the

observational results. The model also predicts a de Sitter epoch as the end

phase. It is found that the transition in to the late acceleration is mainly

due to the effect of bulk viscosity, because for the decaying vacuum to

produce a transition into the late acceleration, there has to be an additive

constant in the vacuum energy density. But the decaying vacuum we have

considered doesn’t have such a constant. The effect of varying vacuum

energy is reflected in the age of the universe. It was found that the age of

the universe was increased compared to the model with viscous Zel’dovich

fluid alone as the component. Age obtained is in agreement with the age

deduced from the observations of the oldest globular clusters.

It was found that the equation of state of the fluid starts from the

stiff nature, but eventually reduces to that of the matter and finally goes

over to that of a pure cosmological constant corresponding to the de Sitter

epoch. The dynamical system analysis shows that, the end de Sitter phase

is a stable one. During this stable end de Sitter phase, the density of the

Zel’dovich fluid is found to be around 0.6, which itself confirms that the

late phase of the universe in this model is dominantly controlled by the

viscous nature of the Zel’dovich fluid rather than the decaying vacuum
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energy.

Let us now give some glimpses about future scope of our work. Being

motivated by the explanation of late universe behaviour and having the

improvement in the prediction of age of the universe, in going from our

first model to the second one, we look forward to have considerable scope

for future research. One of the immediate scope is to study the effect of

the bulk viscous Zel’dovich fluid in the primordial nucleosynthesis process.

Previous studies on this aspect doesn’t take care of the viscous effect of

the stiff fluid. We expect that the viscous effect can cause small dilution in

the production of light elements, which may throw some hope on solving

the overproduction problems of some light elements as per the present

speculations.

Another interesting problem is effect of this model in the structure

formation scenario. It will be better to study such an effect and to com-

pare the results with the star formation data obtained observationally.

Bessada and Mirando [154] did a similar work with ordinary dark matter

and decaying vacuum. It is interesting the carry over such a formalism

with Zel’dovich fluid and decaying vacuum. The star formation rates are

straight away linked with the density fluctuations in the dark matter and

the time dependent Λ background, which is responsible for the dynamical

expansion of the universe. In our case, one can enquire into the prospec-

tus of resolving the dark matter cusp and the missing satellite problem

by making use of the bulk viscous Zel’dovich fluid, again, with the time

dependent dark energy generating the expansion of the universe.

In the present work we have incorporated viscosity using Eckart for-

malism. Even though this formalism is giving reasonable results, it is

not relativistically invariant. A relativistically invariant formalism for in-

corporating the viscosity in the cosmological scenario was developed by

Israel and Stewart [167]. It is worth exploring the status of Zel’dovich

fluid model using such a formalism. We expect that such work may lead

to some good results in including the radiation component of the universe.
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