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Notations and Abbreviations used

e : column vector of 1’s with appropriate dimension

0 : vector consisting of 0’s with appropriate dimension

O : zero matrix with appropriate dimension

ej : column vector of appropriate dimension with 1 in the

jth position and 0 elsewhere

e′j : row vector of appropriate dimension with 1 in the

jth position and 0 elsewhere

I : identity matrix of appropriate dimension

Ir : identity matrix of dimension r

PH : Phase type

CTMC : Continuous Time Markov Chain

QBD : Quasi-birth-and-death

LIQBD : Level Independent Quasi-Birth-and-Death process

⊗ : Kronecker product

⊕ : Kronecker sum





Chapter 1

Introduction

Most of us experience queueing systems directly or indirectly; directly through

waiting in line ourselves or indirectly through some of our items waiting in line,

such as a print job waiting in the printer buffer queue, or a packet waiting at a

router node for processing. In all the cases, we want the delay to be minimum

and also not to be turned away by the system due to the buffer space being not

available. These possibilities of delay and denial are the major issues in a queuing

system and how to minimize them is the concern. A trade off between the cost to

the system due to customers denied admission as a consequence of overflow and

profit due to large number of customers in the system is what is needed. Stochas-

tic modelling of the system along with construction of a suitable cost function

provides answers to most of the questions. Thus the performance of a queuing

system can be evaluated and information can be generated for making decisions

as to when and how to upgrade the system to improve its future performance.

In queueing systems, and all systems that operate over time with uncertainty

being model characteristic, we need a sequence or a family of random variables

to represent such a phenomenon over time. A stochastic process is a family

or a sequence of random variables indexed by a parameter, usually time. A

continuous time Markov chain is a continuous time stochastic process that enjoy

1



2 Chapter 1: Introduction

memoryless property which means that no matter what the past was, the current

state is all that is needed to predict the future. This memoryless property allows

flexibility in modelling and produces tractable models. This thesis analyzes a few

queueing models by means of continuous time Markov chains. Modelling tools

such as Markovian Arrival Process (MAP ) and Phase-type service distributions

(PH-distributions) are used in this regard.

Queueing systems with phase-type arrival or service mechanisms give rise to

transition matrices that are block tridiagonal and are referred to as quasi-birth-

death(QBD) processes. The matrix geometric method developed by Neuts is

employed in solving such queueing models. In this thesis we have extensively

made use of Phase type distributions for service time and Markovian arrival

process for arrival of customers. Hence it is apt to give a brief description of

these.

1.1 Phase Type distribution

(Continuous time)

Phase type(PH) distributions and related point processes provide a versatile

set of tractable models in applied probability. They are based on the method

of stages, a technique introduced by A. K. Erlang and generalized by M. F.

Neuts. The key idea is to model random time intervals as being made up of a

(possibly random) number of exponentially distributed segments and to exploit

the resulting Markovian structure without losing computational tractability.

The continuous PH distributions are introduced as a natural generalization

of the exponential and Erlang distributions. A PH−distribution is obtained as

the distribution of the time until absorption in a finite state space Markov chain

with an absorbing state. Phase-type distributions have matrix representations

that are not unique. Furthermore, phase-type distributions constitute a versatile

class of distributions that can approximate arbitrarily closely any probability
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distribution defined on the nonnegative real line.

A non-negative random variable X has a Phase-Type (PH) distribution if its

distribution function is given by

F (t) = P (X ≤ t) = 1−α exp(Tt)e ≡ 1−α

(
∞∑

r=0

trT r

r!

)
e, t ≥ 0

where,

• α is row vector of non-negative elements of order m(> 0) satisfying αe ≤ 1.

• T is an m×m matrix such that i) all off-diagonal elements are nonnegative

ii) all main diagonal elements are negative iii) all row sums are non-positive

and iv) T is invertible

The 2- tuple (α, T ) is called a phase-type representation of order m for the PH

distribution and T is called a generator of the PH distribution..

Let X = {X(t) : t ≥ 0} be a homogeneous Markov chain with finite state

space {1, ...,m,m+ 1} and generator

Q =

(
Tm×m T 0

0 0

)

where the elements of the matrices T and T 0 satisfy Tii < 0 for 1 ≤ i ≤ m, Tij ≥ 0

for i 6= j; Ti
0 ≥ 0 and Ti

0 > 0 for at least one i, 1 ≤ i ≤ m and T e+ T 0 = 0.

Let the initial distribution of X be the row vector (α, αm+1), α being a

row vector of dimension m with the property that αe + αm+1 = 1. The states

1, 2, . . . ,m shall be transient, while the state m+ 1 is absorbing.

Let Z = inf{t ≥ 0 : X(t) = m + 1} be the random variable representing

the time until absorption in state m + 1. Then the distribution of Z is Phase

type distribution (or shortly PH distribution) with representation (α, T ). The

dimension m of T is called the order of the distribution. The states 1, 2, ...,m are

also called phases.
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• The density function is

f(t) = α exp(T .t) T 0 for every t > 0

• E[Xn] = (−1)nn!αT −ne, n ≥ 1.

• The Laplace-Stieltjes transform of F (.) is

φ(s) = αm+1 +α(sI − T )
−1 T 0 for Re(s) ≥ 0.

Theorem 1.1.1 (see, Latouche and Ramaswami [43]). Consider a PH dis-

tribution (α, T ). Absorption into state m+1 occurs with probability 1 from any

phase i in {1, 2, . . . ,m} if and only if the matrix T is nonsingular.

More over, (−T −1)i,j is the expected total time spent in phase j during the

time until absorption, given that the initial phase is i.

For further information about the PH distribution, see, Neuts, [52], Breuer

and Baum, [9], Latouche and Ramaswami , [44] and Qi-Ming He, [55]. Usefulness

of PH distribution as service time distribution in telecommunication networks is

elaborated, e.g., in Pattavina and Parini [53] and Riska, Diev and Smirni [54].

1.2 Markovian Arrival Process

Markovian Arrival Processes (MAP ) are introduced in Neuts [50]. It is a rich

class of point processes that includes many well-known processes such as Poisson,

PH-renewal processes and Markov-modulated Poisson process. A salient feature

of the MAP is the underlying Markovian structure that fits ideally in the context

of matrix-analytic solutions to stochastic models. MAP significantly generalizes

the Poisson processes and still keep the tractability for modelling purposes. Cur-

rently, the MAP is the most popular mathematical model for the telecommuni-

cation networks traffic because it catches the typical features of this traffic such
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as correlation and burstiness. Furthermore, in many practical applications, no-

tably in communication engineering, production and manufacturing engineering,

the arrivals do not usually form a renewal process. So, MAP is a convenient tool

to model both renewal and non-renewal arrivals. In [10], Chakravarthy provides

an extensive survey of the Batch Markovian Arrival Process (BMAP ) in which

arrivals are in batches where as it is in singles in MAP .

A continuous time Markovian arrival process is a counting process that is

defined on a finite state continuous time Markov chain. However, unlike PH-

distributions an underlying Markov chain for a Markovian arrival process has

no absorption state (phase). A Markovian arrival process counts the number of

arrivals, which can be associated with changes of state in the underlying Markov

chain. The arrivals can also occur during the stay in each state of the underly-

ing Markov chain. For a MAP, the transitions of state with arrival, transitions

of state without arrival, and arrivals without a transition of state, are all re-

ferred to as events. Arrival rates of events can be customized for different states,

demonstrating the versatility inherent to MAPs.

In a MAP , the customers arrival is directed by an irreducible continuous

time Markov chain {φt, t ≥ 0} with the state space {1, 2, . . . ,m}. Let D be the

generator of this Markov chain. At the end of a sojourn time in state i, that

is exponentially distributed with parameter λi, one of the following two events

could occur: with probability pij(1) the transition corresponds to an arrival and

the underlying Markov chain is in state j with 1 ≤ i, j ≤ m; with probability

pij(0) the transition corresponds to no arrival and the state of the Markov chain

is j, j 6= i. The Markov chain can go from state i to state i only through an

arrival. Also we have

m∑

j=1

pij(1) +
m∑

j=1,j 6=i

pij(0) = 1, 1 ≤ i ≤ m.

The transition intensities of the Markov chain {φt, t ≥ 0} which are accompanied

by arrival of k customers are described by the matrices Dk, k = 0, 1. Define D0 =
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(d
(0)
ij ) and D1 = (d

(1)
ij ) such that d

(0)
ii = −λi, 1 ≤ i ≤ m, d

(0)
ij = λipij(0), for j 6= i

and d
(1)
ij = λipij(1), 1 ≤ i, j ≤ m.

By assuming D0 to be a nonsingular matrix, the inter-arrival time is finite

with probability one and the arrival process does not terminate. Hence, we see

that D0 is a stable matrix. The generator D is then given by D = D0 + D1.

Thus D0 governs the transitions corresponding to no arrival and D1 governs

those corresponding to an arrival. Vector η of the stationary distribution of the

process {φt, t ≥ 0} is the unique solution to the system

η(D0 +D1) = ηD = 0 and ηe = 1. (1.1)

Fundamental rate λ of the MAP is given by λ = ηD1e which gives the expected

number of arrivals per unit time in the stationary version of the MAP .

1.3 Quasi-birth-death processes

Quasi-birth-death processes (QBDs) are matrix generalizations of simple birth-

and-death processes on the nonnegative integers in the same way as PH distri-

butions are matrix generalization of the exponential distribution. Consider a

Markov Chain
{
Xt, t ∈ R+

}
on the two dimensional state space

Ω =
⋃
n≥0
{(n, j) : 1 ≤ j ≤ m}. The first coordinate n is called the level, and the

second coordinate j is called a phase of the nth level. The number of phases in

each level may be either finite or infinite. The Markov chain is called a QBD

process if one-step transitions from a state are restricted to phases in the same

level or to the two adjacent levels. In other words,

(n− 1, j′) ⇋ (n, j) ⇋ (n+ 1, j′′) for n ≥ 1.

If the transition rates are level independent, the resulting QBD process is called

level independent quasi-birth-death process (LIQBD); else it is called level de-

pendent quasi-birth-death process (LDQBD). Arranging the elements of Ω in
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lexicographic order, the infinitesimal generator of a LIQBD process is block

tridiagonal and has the following form:

Q =




B1 A0

B2 A1 A0

A2 A1 A0

. . .
. . .

. . .




(1.2)

where the sub matrices A0, A1, A2 are square and have the same dimension; ma-

trix B1 is also square and need not have the same size as A1. Also, the matrices

B2, A2 and A0 are nonnegative and the matrices B1 and A1 have nonnegative off-

diagonal elements and strictly negative diagonals. The row sums of Q are equal

to zero, so that we have B1e+A0e = B2e+A1e+A0e = (A0 +A1 +A2)e = 0.

Among the several tools that we employed in this thesis Matrix geometric

method plays a key role. A brief description of this is given below.

1.4 Matrix Geometric Method

Matrix Geometric Method introduced by M. F. Neuts is a tool to construct and

analyze a wide class of stochastic models, particularly queueing systems, using

a matrix formalism to develop algorithmically tractable solution. The transform

techniques employed in solving QBD processes are replaced largely by the matrix

geometric approach with the advent of high speed computers and efficient algo-

rithms. In the matrix geometric method the distribution of a random variable

is defined through a matrix; its density function, moments, etc. are expressed

with this matrix. The modelling tools such as Phase type distributions, Marko-

vian Arrival Processes, Batch Markovian Arrival Processes, Markovian Service

Processes etc. are well suited for Matrix Geometric Methods.

Theorem 1.4.1 (see Theorem 3.1.1. of Neuts [52]). The process Q in (1.2)

is positive recurrent if and only if the minimal non-negative solution R to the
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matrix-quadratic equation

R2A2 +RA1 +A0 = O (1.3)

has all its eigenvalues inside the unit disk and the finite system of equations

x0 (B1 +RB2) = 0

x0(I −R)−1e = 1 (1.4)

has a unique positive solution x0.

If the matrix A = A0 +A1 +A2 is irreducible, then sp(R) < 1 if and only if

πA0e < πA2e (1.5)

where π is the stationary probability vector of A.

The stationary probability vector x = (x0,x1, . . .) of Q is given by

xi = x0R
i for i ≥ 1. (1.6)

Once R, the rate matrix, is obtained, the vector x can be computed. We can

use an iterative procedure or logarithmic reduction algorithm (see Latouche and

Ramaswami [43]) or the cyclic reduction algorithm (see Bini and Meini [4]) for

computing R.

1.5 Computation of R matrix

There are several algorithms for computing rate matrix R. Here we list two of

them.

Iterative algorithm

From (1.3), we can evaluate R in a recursive procedure as follows.
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Step 0: R(0) = O.

Step 1:

R(n+ 1) = A0(−A1)
−1 +R2(n)A2(−A1)

−1, n = 0, 1, . . .

Continue Step 1 until R(n+ 1) is close to R(n).

That is, ||R(n+ 1)−R(n)||∞ < ǫ.

Logarithmic reduction algorithm

Logarithmic reduction algorithm is developed by Latouche and Ramaswami [43]

which has extremely fast quadratic convergence. This algorithm is considered to

be the most efficient one. The main steps involved in the logarithmic reduction

algorithm are listed below. For further details on the logarithmic reduction algo-

rithm refer Latouche and Ramaswami [43].

Step 0: H ← (−A1)
−1A0, L← (−A1)

−1A2, G = L, and T = H.

Step 1:

U = HL+ LH

M = H2

H ← (I − U)−1M

M ← L2

L← (I − U)−1M

G← G+ TL

T ← TH
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Continue Step 1: until ||e−Ge||∞ < ǫ.

Step 2: R = −A0(A1 +A0G)−1.

1.6 Supplementary variable technique

In most practical queueing systems inclusion of one or more supplementary vari-

able could make the system Markovian. The use of the supplementary variable

technique in queueing dates back to 1942 when it was introduced by Kosten [36].

In this method to get a Markov Process, we keep track of some additional informa-

tion together with the underlying random variable. Consider an M/G/1 queue,

where G denotes the distribution of service time. The process {Nt, t ∈ R+},

where Nt gives the state of the system or the system size at an arbitrary time

t is then non-Markovian. This process is not Markov. However such a process

could be made Markovian by the inclusion of variable xt defined as the amount of

time spent/remaining for the customer in service at time t, if any. In other words

the collection {(Nt, xt) ; t ≥ 0, xt ≥ 0} is a Markov process. For the GI/M/1 the

supplementary information on time elapsed until t since last arrival, in addition

to the number of customers at the pre-arrival epoch prior to time t, provides a two

dimensional Markv chain. For details of the supplementary variable techniques

applied to M/G/1 queue see Cox [19], Keilson and Kooharain [34] and Cohen

[18].

This thesis provides analysis of priority queues. These priorities need not be

on the basis of source of external (primary) customers. We have deviated from

the classical priority queue by bringing in ‘internal’ priority generation. This

root of internal priority generation is considered in Krishnamoorthy et al.[38]

and Gomez-Corral et al.[21]. Krishnamoorthy et al. [38] also analyze multi

priority queues with ‘internal priority generation’. Very often internal priority

generation may be t higher priorities (like patients waiting in a queue to consult
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a physician). In contrast the internal priority generation discussed in this thesis

takes the customer to lower priority queue; such queues get generated internally.

An example of such situation is a customer interrupting his service to attend a

phone call.

1.7 Review of related work

In queueing literature, priority queues stand for customers belonging to different

classes joining distinct waiting lines (one for each class) to receive service. The

highest classes of customers have priority (preemptive or non-preemptive) over

the rest; the next in the order gets priority over all lower class customers and so

on.

Priority queues are first considered by White and Christie [64] as a queue

with interruption of service of low priority customers to provide service to higher

priority customers. A priority queue with preemptive service can be regarded

as a queue with service interruption for e.g. a doctor renders his service to a

causality patient urgently by interrupting his other consultation. Jaiswal [27]

is on preemptive priority queue with resumption of service of the low priority

customer and Jaiswal [29] discusses time dependent solution in priority queues.

Cobham [17] considers a non-preemptive priority queue and derived equilibrium

expected waiting time. A detailed discussion of development in priority queues

until 1968 is given in Jaiswal [30]. More recent developments on priority queues

could be found in Takagi [61] and in Brodal [8].

Concept of interruption in service is introduced in the context of the failure

of service system (see the recent survey paper by A. Krishnamoorthy et al. [39]).

Customer induced service interruption as coined by Jacob et al. [26] is a contrast

situation to that of interruption due to server failure. This is done for the single

server case, where service interrupted customers are given priority over primary

customers. Here self-interrupted customer takes an exponentially distributed
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time to get out of interruption. This is extended to the multi-server case in

Krishnamoorthy and Jacob [37]. All underlying distributions (inter-arrival time,

service time, inter-interruption time, interruption fixation time) are assumed to

be independent exponential random variables. Dudin et al. [20] extend the

above case to Markovian Arrival Process and Phase type service with c servers

and negative customers with a few protected service phases.

The priority queuing system considered in the second chapter differs from

those discussed above as follows: We assume that the interrupted customers are

allotted low priority. As an e.g. a person who applies for credit card with bad

credit history. Also in the previous models discussed, the interrupted customers

are entered in a buffer space of finite capacity where as in this model the inter-

rupted customers join a waiting line with an infinite capacity. The interruption

for a customer can occur a finite number of times, say N , resulting in N + 1

queues. Each waiting line is generated by the customers in the immediately

preceding queue, except the highest priority customers who form the primary

queue (external source). Thus the low priority queues are dependent even in its

evolution. Both preemptive and non-preemptive service disciplines are analyzed.

Compared to the second chapter, the third chapter analyzes a priority queue-

ing model where low priority lines consists of customers who come back for service

getting repeated. Thus the third chapter focuses on priority queues with feedback

customers. Various feedback policies on different queuing models are studied in

detail in literature. Some of the works are reported in [7], [13], [14], [15], [32], [59]

and [60]. Krishnakumar et al. [40] consider M/G/1 retrial queue with feedback,

the feedback customer goes to the tail end of the queue. Krishnakumar et al. [41]

analyze a multiserver feedback system in which also feedback is to the tail end of

the queue. A single server retrial queue with collisions and feedback is analyzed

in Krishnakumar et al. [42]. The feedback considered in literature fall mainly

in two categories. Either the customer joins the tail end of queue on completion

of service to get his service repeated or he occupies the server immediately on
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completion of service without joining the queue. In the latter case, service at the

head of the queue is paused for a while to provide service to the immediately fed

back customer. In both cases there is no separate queue for feedback customers

and there is no way of identifying a feedback customer in the first case.

In the third chapter, we introduce feedback queue in a different setting. Even

though the customer feedback is instantaneous, it is assigned a lower priority in

our system, added to that we assume there is external entry also. For instance,

a company providing annual maintenance contract with certain number of free

services. Here the waiting lines are not as dependent as discussed in the second

chapter. Yet, if we block the external entry to the low priority lines, then the

queues will be formed only by the feedback customers( so that analysis of feedback

customers will be made easy). We restrict our attention to the case of a single

feedback.

From here the work proceeds to a different priority queuing model, which con-

tains a virtual queue of infinite capacity and a finite queue of physically arriving

customers. For example, a store may have two types deliveries-one direct and

other over phone. Crowdsourcing happens when the store decides to serve indi-

rect customers through willing direct customers, the store being main server and

willing customers being servers for the store. Crowdsourcing coined from ‘crowd’

and ‘outsourcing’ according to Howe [25] is the act of a company or institution

taking a function once performed by employees and outsourcing it to an undefined

(and generally large) network of people in the form of an open call. For a discus-

sion on the crowdsourcing queueing system one may refer to Chakravarthy and

Dudin [11]. They discuss the problem as a priority queue with non-preemption.

Motivated from this we analyze a preemptive priority crowdsourcing model.

In all the three models discussed above, it is assumed that the server is com-

pletely aware of the service requirement of a customer (see Gross and Harris [22],

though there is no mention about exact requirement). In fact this is the case with

all models discussed so far in queueing theory. Quite often only one type of ser-



14 Chapter 1: Introduction

vice is offered by the system and so conflict does not occur. It is also true that the

customers arriving to such system know the type of service needed. Thus there

is no conflict on the service provided to the customer. However, there are several

real life situations where the customer (or server or even both) is not knowledge-

able about the exact service requirement. This is especially the case when several

types of services are available at a service station. As a concrete example we have

vehicles for repair at service stations, patients consulting physicians for diagnosis

and medication and a specific call for a service at a customer care center. If

the right service required is not identified and instead the diagnosis turned out

to be wrong the result could be disastrous. A wrong diagnosis and consequent

service provided may sometimes turn out to be even fatal or may result in the

equipment being rendered unusable or the loss of a customer altogether. These

types of diagnostic problems are analyzed in the last two chapters of this thesis.

This thesis analyzes models providing explicit solution for system state dis-

tribution and also those that need algorithmic analysis. The matrix-geometric

structure of the steady-state distributions introduced by Neuts and an extended

version by Miller [49] for doubly infinite queues are used in the models for ob-

taining solutions.

1.8 Summary of the thesis

This thesis is basically analysis of some priority queues and a problem on diag-

nostics which we face in many real life situations. In this thesis a few queueing

models are studied by means of continuous time Markov chains. The modelling

tools such as Markovian Arrival Process (MAP ) and Phase type distributions

(PH-distributions) are used. We analyze the resulting systems as quasi-birth-

death processes, mainly using matrix geometric method.

Now we turn to the content of the thesis. The thesis entitled “Analysis of

some priority queues and a problem on diagnostics” is divided into 6 chapters
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including the introductory chapter. The chapters 2 and 3 discuss doubly infinite

queues, chapter 4 discuss a crowdsourcing model and chapters 5 and 6 are on

diagnostic problems. All models discussed in this thesis involve interruption in

service in some form or other.

In chapter 2 we consider a priority queueing system where low priority cus-

tomers are generated by self-interruption while at service. Customers arrive to a

single service station from a Poisson stream and form a queue (P1 line) of infinite

capacity, if the server is found busy. They are served one at a time according to

FIFO discipline. Customers may have a tendency to interrupt their own service

while availing the same due to various reasons. Self interrupted customers are

pushed to an infinite capacity low priority (P2) queue. If the customer at P2

line interrupts his service again, he is sent to a further lower priority queue (P3

-line) and this may go on a finite number (say N) of times. When at a service

completion epoch of a Pi customer, if there is none left behind in P1 line, then the

server goes to serve customers in Pi+1 line. The service time for each category

is assumed to follow exponential distribution, but at different service rates. The

interruptions that happen are also according to exponential distributions with

different parameters. We consider both preemptive and non-preemptive service

discipline. We analyze a two priority system in detail where we assume that

P2 customers are not allowed to interrupt their service. The joint system state

distribution is obtained from which the marginals are computed. Waiting time

distribution of both type of customers are derived. We extend the results to three

priority non-preemptive case and the case of N +1 priorities is briefly discussed.

Chapter 3 is a modification of the hitherto notion of feedback in queueing the-

ory (see page no.3). Here we analyze a two priority queueing system where high

priority (P1) customers may feedback according to a Bernoulli process if they are

not satisfied with the service provided. but they will have to join the tail end

of the low priority(P2) line. Arrival of both type of customers are according to

independent Poisson processes. Both waiting rooms have infinite capacity. Cus-
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tomers are served one at a time according to FIFO discipline on priority basis:

those in P1 are given priority over the ones in the waiting line P2. The service

time is class dependent phase type. P2 line customers will be serviced only when,

if there is none left behind in P1 line, at the service completion epoch of a high

priority customer. Being a two priority system we assume that P2 customers are

not allowed an additional feedback. Thus the system consists of a primary wait-

ing line and a second waiting line which is generated from the first as well as by

customers from outside. We consider both preemptive and non-preemptive ser-

vice discipline. The joint steady state probability distribution is derived and the

corresponding marginal probabilities are computed. The distribution of waiting

time of each type of customers is derived. We also point out a situation where

there is no external entry to the P2 line which makes the P2 line exclusively

for feedback customers. Even this special case does not boil down to the main

problem discussed in chapter 2, since there, the self-interruption is during service.

Going on, we analyze a crowdsourcing queueing model in chapter 4. We

consider a c−server queueing system providing service to two types of customers,

P1 and P2. Customers arrive according to two distinct Poisson processes. A P1

customer has to receive service by one of the c servers while a Type 2 customer

may be served by a P1 customer who is available to act as a server soon after

getting own service or by one of c servers. A P1 customer will be available

for serving a P2 customer with certain probability provided there is at least

one P2 customer waiting in the queue at the time of the service completion of

that P1 customer. With complementary probability, a P1 customer will opt out

of serving a P2 customer, if any, waiting in the system. A free server offers

service to a P1 customer on a FCFS basis. However, if there is no P1 customer

waiting in the system, that server will serve a P2 customer if one of that type

is present in the queue. The service time is exponentially distributed for each

category. P1 customers have priority over those of P2. We consider preemptive

service discipline. Condition for system stability is established. Important system
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characteristics including the average number of busy servers, the loss probability

and the expected waiting time of each type in the system are computed. Some

examples are numerically illustrated. Finally the characteristics of this model are

compared with that of Chakravarthy and Dudin [11].

Now we turn to the diagnostic problem. In real life, there are several service

providing systems offering a multitude of service. Neither the server nor the

customer may be fully aware of the exact service requirement. Very often this

results in irreparable damage to the customer being served. It is this type of

problems that we analyze in chapters 5 and 6.

Chapter 5 discusses a queueing model with a single server offering many ser-

vices to which arrival is according to aMAP forming a single line. The time taken

for completing service is phase type distributed. A service could be appropriate

or inappropriate for each customer. If the service starts in an inappropriate state

with a positive probability, we assume a clock to start ticking simultaneously. In

case the service time exceeds the realization of the clock, then that customer is

compelled to leave the system forever without being eligible for the service that

he actually requires. Otherwise the customer gets the required service and then

leaves the system. Several system performance measures including the rate of

loss of customers, rate of customers leaving with correct service, even if started

in incorrect service, are computed. Numerical illustrations of the system behavior

are also provided. Then this is compared with that of Madan [46] and Medhi

[48]. Also we employ arbitrarily distributed service time in certain special cases

of the model discussed here and analyze the system using supplementary variable

technique [19].

In Chapter 6, we extend the discussion in previous chapter to a single server

system offering n distinct services. Arrival of customers is according to MAP

and service time has phase type distribution. For a customer any one among

the n services is required and the remaining n − 1 are damaging (undesirable/

inessential) for him. For different customers the exact service requirement may
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differ. When the service starts, a timer starts simultaneously whose realization

determines the success of service. Several performance measures, including the

expected service time of a customer, are evaluated. Effects of various parameters

on the performance measures are numerically investigated.

Finally a section of “concluding remarks and suggestions for future study” is

included.



Chapter 2

Priority Queues Generated

through Customer Induced

Service Interruption

The purpose of this chapter is to introduce a priority queue through ‘self inter-

ruption’ of service by customers. Such self interrupted customers are asked to

join a lower priority queue. Earlier reported works considered server induced in-

terruptions only. This can be in the form of breakdown or going on vacation or to

attend higher priority customers and so on. Varghese Jacob [63] in his doctoral

thesis describes several queueing models where customers in service interrupt

their own service. However, he gives priority to such interrupted customers. Fur-

ther he assumes availability of only a finite waiting space for such self interrupted

customers. In contrast here we give lower priority for self interrupted customers

and the limitation in waiting for such customers as Varghese Jacob [63] is taken

Some results of this chapter are appeared in Neural, Parallel and Scientific Computations:

A. Krishnamoorthy and Manjunath A. S. : On Priority Queues Generated through Cus-

tomer Induced Service Interruption, Neural, Parallel and Scientific Computations. 23

(2015), 459-486

19
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away.

The priority queue considered by Miller [49] has two waiting lines, each of

infinite capacity which are served by a single server. The arrival process to the

two queues form two independent Poisson streams with parameters λ1 and λ2.

The low as well as high priority customers, whether in service or in queue, is

counted as the number of such customers in the system. The service time dura-

tion for high(low) priority customer has exponential distribution with parameter

µ1(µ2). Both preemptive and non-preemptive service disciplines are considered.

The system is analyzed as a three dimensional continuous time Markov chain.

The system is stable when λ1
µ1 + λ2

µ2
< 1. As an extension of the above, Sapna

and Stanford [58] studied a single server queue with arrivals from N classes of

customers on a non-preemptive priority basis. These arrivals follow independent

Poisson processes with rates λi, i = 1, 2, ..., N with class dependent phase type

service. The capacity of each waiting line is assumed to be infinite. They ana-

lyze the queue length and waiting time processes by deriving a matrix geometric

solution for the stationary distribution of the underlying Markov chain.

The above models consider distinct streams of independent Poisson arrivals

to the system. In contrast, in this chapter we consider a 2 priority queueing

system where input streams are dependent. The high priority(P1) line has input

from outside the system (external arrival) according to a Poisson process of rate

λ, whereas the low priority(P2) line has input from the high priority waiting

line. Thus, low priority queue is generated from within the system. Hence the

system that we consider is a highly dependent one as far as the formation of

the low priority waiting line is concerned unlike the priority queues with infinite

waiting lines that are so far considered in the literature. The same server serves

different customers one at a time according to their priority. As an example

consider the queue of patients(P1) waiting to consult a physician. A patient

while being examined may have to be referred to a specialist. After consulting

the specialist the patient returns to the first physician and waits in the second
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queue(P2). Unlike in [20, 26, 37] here we do not associate any specific distribution

for the duration of interruption of a customer; rather we assume that, once an

interrupted customer comes to P2, he is ready to receive service.

We do an extensive analysis in the two priority case: high priority of external

(primary or P1) customers and a second queue (low priority or P2) of customers

who interrupted their service while being served in the high priority queue. With

a maximum of a single interruption permitted, we analyze the system as a three

dimensional continuous time Markov Chain. Customers from each waiting class

is taken for service according to the head of the queue discipline. When no

high priority customer is available at a service completion epoch the server starts

service of the head of the low priority queue. By a suitable arrangement and

adjustment, we produce an upper triangular (infinite dimensional) rate matrix

R. Once this is achieved, we will be in a position to compute the steady-state

probability vector. Then this is utilized in the computation of performance of

the system. The performance measures here, unlike in other set up, will be of a

bit of curiosity as well. This is due to the dependence of the second queue on the

first for its generation. Having done these, we proceed to the case of 3 queues

(one primary and the other two generated from previous higher priority). Finally

we briefly extend our results to the case of N +1 queues, N ≥ 3. In all these the

systems are studied under steady-state. Therefore first we establish the condition

for stability of the system and then proceed to the analysis. A special feature of

the present model, unlike in classical priority models, is that when the server is

in Pi queue all Pj queues except P1 queue turn out to be empty for i > j.

This chapter is arranged as follows: In section 1, the case of two priorities is

extensively analyzed for the preemptive case. Section 2 is devoted to the study

of two priority, non-preemptive service discipline. The discussion in section 2 is

extended to three priority set up in section 3 and finally section 4 provides a brief

description of N + 1 priority system with N ≥ 3.
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2.1 Two priority queues -Preemptive priority

Consider a single server infinite capacity queuing system in which customers

from outside arrive according to a Poisson process with rate λ. Service time

of the external customers (P1) are exponentially distributed with parameter µ1.

Customers in primary queue interrupt their service according to an exponentially

distributed time with parameter θ1, in which case they have to go to the lower

priority(P2) queue; else, complete service and leave the system forever. Suppose

at the time when a P1 customer leaves the server by self interruption, and hence

joins P2, finds that none is ahead of him and there was none left behind him in P1.

In this case he is immediately taken for service in P2. Lower priority customers

are taken for service one at a time from the head of the line whenever the queue

of external customers is found to be empty at a service completion epoch. The

service of such customers is according to a preemptive service discipline following

an exponential distribution with parameter µ2. That is, the arrival of a P1

customer interrupts the ongoing service of a P2 customer and hence he joins

back as the head of the P2 queue. Consider the case where not more than one

interruption is permitted, that isN = 1. LetN1(t) be the number of P1 customers

including the one in service if any and N2(t) the number of P2 customers waiting

to get service. Whenever P1 is nonempty, the head of that line will be under

service.

Then Ω = {(N1(t), N2(t)) /t ≥ 0} is a continuous time Markov chain with

state space {0} ∪ {(i, j)/i ≥ 0, j ≥ 0}. Here 0 represents an idle server and (0, 0)

is the state where a P2 customer is in service with no P1 customer in the system.

The infinitesimal generator Q has as entries block matrices of infinite di-

mension since the phases (capacity of waiting line for interrupted customers) is
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infinite. It is given by

Q =




B00 B01

B10 B1 B0

B2 B1 B0

. . .
. . .

. . .




with

B00 =




−λ

µ2 −(λ+ µ2)

µ2 −(λ+ µ2)

. . .
. . .




, B10 = B2 =




µ1 θ1

µ1 θ1
. . .

. . .




B01 = B0 = λI∞and B1 = −(λ+ µ1 + θ1)I∞.

We now establish the system stability requirement.

Theorem 2.1.1. The condition for stability of the system is

ρ =
λ

(µ1 + θ1)
+

λ θ1
(µ1 + θ1)µ2

< 1.

Proof. By interchanging the level and phase in the model, the matrices B0,

B1 and B2 are B0 =

{
θ1, i = 1, 2, 3, ...; j = i− 1

0, elsewhere
,

B1 =





−(λ+ µ2), i = j = 0

−(λ+ µ1 + θ1), i = j = 1, 2, ...

λ, i = 0, 1, 2, ...; j = i+ 1

µ1, i = 1, 2, 3, ...; j = i− 1

0, elsewhere

and B2 =

{
µ2, i = j = 0

0, elsewhere
.

Let π = (π0, π1, π2, ...) be the steady-state probability vector of the matrix

B(= B0 +B1 +B2) . Solving the relations πB = 0 and πe = 1, we get
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πj =
(

λ
µ1+θ1

)j
π0, j ≥ 1. As we have a level independent QBD model, the system

is stable if πB0e < πB2e, which simplifies to ρ < 1.

The infinitesimal generator Q constitutes a quasi birth and death(QBD) pro-

cess with exceptional boundary behavior and an infinite number of sub-levels.

The matrix geometric form of the steady-state distributions for both preemptive

and non-preemptive priority single server queues were investigated by Neuts [52]

in the case when number of phases in each level is finite. This is extended to

blocks of infinite size in Miller [49] and is contained in the following theorem.

Theorem 2.1.2. Let y = (y0,y1,y2, . . .) denote the invariant probability

vector for the QBD process Q, where yi is the probability vector of infinite

dimension corresponding to level i . Then the solution for y possesses a matrix

geometric structure

yi+1 = yiR, i ≥ 1. (2.1)

where the rate matrix R is the minimal non negative solution to

R2B2 +RB1 +B0 = O. (2.2)

The matrix geometric structure in equation (2.1) extended to level ‘0’ is

y1 = y0

(
1

λ
B01

)
R. (2.3)

Proof. The relations (2.1) and (2.2) are proved in [49].

From yQ = 0, the two boundary equations involving y0 are

y0B00 + y1B10 = 0, (2.4)

y0B01 + y1[B1 +RB2] = 0. (2.5)

From (2.2) it follows that

R[RB2 +B1] = −B0.

Since B0 = λI∞, the matrix R is invertible and (2.5) now simplifies to (2.3).
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Theorem 2.1.3. The infinite matrix R possesses the Toeplitz structure

R =




r0 r1 r2 r3 . . .

0 r0 r1 r2 . . .

0 0 r0 r1 . . .

0 0 0 r0 . . .

. . . . . . . . . . . . . . .




where rk are computed as

r0 =
(λ+ µ1 + θ1)−

√
(λ+ µ1 + θ1)

2 − 4λµ1

2µ1
,

r1 =
r20θ1√

(λ+ µ1 + θ1)
2 − 4λµ1

,

rk =

θ1

[
k−1∑
i=0

rirk−1−i

]
+ µ1

[
k−1∑
i=1

rirk−i

]

√
(λ+ µ1 + θ1)

2 − 4λµ1

, k > 1.

Proof. The structure of the process revealed by matrices in Q and the inter-

pretation of rate matrix imply the special structure of R. On expanding (2.2),

the following relations are obtained;

r20µ1 − (λ+ µ1 + θ1) r0 + λ = 0.

(
k−1∑

i=0

rirk−1−i

)
θ1 +

(
k∑

i=0

rirk−i

)
µ1 − (λ+ µ1 + θ1) rk = 0, k ≥ 1.

Solving these, the expressions for rk, k = 0, 1, 2, ... are established.
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2.1.1 The joint and marginal probabilities

The Joint Probabilities

The steady-state probability vector y = (y0,y1,y2, . . .) of Q is computed first.

The probability of idle state y0 = (y0,y00,y01,y02, ....) with y00 denoting the

probability that service is providing to a P2 customer when none is waiting in

either queue. yi = (yi0,yi1,yi2, ....) with yij representing the probability that

the number of P1 customers in the system is i and that in P2 queue is j for i > 1.

Equations (2.3) and (2.4) give

y0 = 1− ρ; ρ = λ
(µ1+θ1)

+ λ θ1
(µ1+θ1)µ2

,

y00 = 1
µ2

(λ− r0µ1)y0,

y01 = 1
µ2
{(λ+ µ2 − r0µ1)y00 − (r0θ1 + r1µ1)y0} ,

y0j =
1

µ2

{
(λ+ µ2 − r0µ1)y0,j−1 − θ1

j−2∑

k=0

rky0,j−2−k−

µ1

j−1∑

k=1

rky0,j−1−k − (rj−1θ1 + rjµ1)y0

}
, j > 1.

Thus y0j is recursively computed up to the desired range of values.

Substituting for y0 in equation (2.3) and expanding, y1j , j = 0, 1, 2, ... are com-

puted as

y10 = (1− ρ) r0,

y11 = (1− ρ) r1 + y00 r0,

y1j = (1− ρ) rj +
j−1∑
k=0

y0k rj−1−k, j = 2, 3, ...

Finally expression (2.1) on expansion results in

yij =

j∑

k=0

yi−1,k rj−k, i > 1. (2.6)

After obtaining y0j and y1j for j = 0, 1, 2, ..., the probabilities yij , i > 1 are

recursively computed using (2.6).
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The Marginal Probabilities

Let the marginal probabilities of the number of P1 customers in the system be

denoted by yi• =
∞∑
j=0

yij , i ≥ 0. Then in recursive form

yi• =
∞∑

j=0

j∑

k=0

yi−1,k rj−k =




∞∑

j=0

yi−1,j



(

∞∑

i=0

ri

)
= y(i−1)• ρ1.

Remark: As an arrival of a P1 customer preempts a P2 customer in service,

the system behaves as an M/M/1 queue as far as marginal probabilities of P1

customers are concerned. Hence

yi• = ρi1(1− ρ1), i ≥ 0; ρ1 =
λ

µ1 + θ1

The marginal distribution of P2 customers is computed numerically from

y•j =
∞∑

i=0

yij , j ≥ 0.

2.1.2 Waiting time analysis

Waiting time of high priority customers

As an arriving P1 customer preempts a P2 customer under service if there is any,

the distribution of waiting time in P1 line is same as in the case of an M/M/1

queue. Hence expected waiting time of a P1 customer in the system is

E(WP1) =
ρ1

λ (1− ρ1)
=

1

µ1 + θ1 − λ

Waiting time of Low priority customers

Expected waiting time E(WTP2) of an interrupted customer, provided he is the

head of the P2 line, is the sum of the following: expected busy cycle generated
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by the primary customers left behind by this customer when he interrupted own

service while in P1, the sum of the expected busy cycles generated at each preemp-

tion while chosen for service from P2 line and expected time taken to complete

service without a preemption. We get

E(WTP2) =
1

(µ1 + θ1)

ρ1

(1− ρ1)
2 +

1

µ2(1− ρ1)

Expected waiting time of a P2 customer if he is anywhere in the P2 line is

E(WP2) =
1

(µ1 + θ1)

ρ1

(1− ρ1)
2 +

1

µ2

1

(1− ρ1)
E(P2); E(P2) =

∞∑

r=1

ry•r

2.2 Two priority queues - Non-preemptive priority

We analyze a two-priority queueing model similar to that in the previous section,

except that service to P2 customers is according to a non-preemptive service disci-

pline. That is the arrival of a P1 customer does not interrupt the ongoing service

of a P2 customer. We follow the same notations. Let N1(t) be the number of P1

customers in the system including the one in service if any, N2(t) be the number

in the P2 waiting line and S(t) the status of the server which is 1 or 2 according

as the server is busy with P1 customers or P2 customers . Thus we get a contin-

uous time Markov chain Ω = {X (t) , t ≥ 0} = {(N1(t), N2(t), S(t)) /t ≥ 0}. Its

state space is given as {(0, 0)}∪{(0, j, 2)/j ≥ 0}∪{(i, j, k)/i > 0, j ≥ 0, k = 1, 2}.

Clearly, the system is stable if λ
(µ1+θ1)

+ λ θ1
(µ1+θ1)µ2

< 1,

The infinitesimal generator of this continuous time Markov chain consists of

block entries of infinite dimension and is obtained as

Q∗ =




A00 A01

A10 A1 A0

A2 A1 A0

. . .
. . .

. . .



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where,

A00 =




−λ

µ2 −(λ+ µ2)

µ2 −(λ+ µ2)
. . .

. . .




, A01 =




λ

λ 0 ...

λ 0 ...

λ 0
. . .




,

A10 =




(
µ1

0

) (
θ1

0

0

0

)

(
µ1

0

θ1

0

)

(
µ1

0

θ1

0

)

. . .




,

A2 =




M2 M3

M2 M3

. . .
. . .


 , A1 =




M1

M1

. . .


 , A0 = λI∞;

M1 =

(
−(λ+ µ1 + θ1) 0

µ2 −(λ+ µ2)

)
, M2 =

(
µ1 0

0 0

)
, M3 =

(
θ1 0

0 0

)
.

The infinitesimal generator Q∗ constitutes a quasi birth and death(QBD)

process with infinite number of sub-levels. As Q∗ is irreducible and recurrent,

following a similar argument to theorem 3 of Miller [49] we have,

Theorem 2.2.1. Let x = [x0,x1,x2, . . .] denote the invariant probability

vector for the QBD process Q∗ with infinite number of sub levels(phases), where

xi is the probability vector corresponding to level i of infinite dimension. Then



30 Priority queues generated through customer induced service interruption

the solution for x possesses a matrix geometric structure

xi = xi−1R, i > 1. (2.7)

where the rate matrix R is the minimal non negative solution to

R2A2 +RA1 +A0 = O. (2.8)

Theorem 2.2.2. The R matrix, which is the minimal non negative solution

to equation (2.8) possesses a Toeplitz structure (R0,R1,R2, ...). That is R has

the form

R =




R0 R1 R2 R3 . . .

0 R0 R1 R2 . . .

0 0 R0 R1 . . .

0 0 0 R0 . . .

. . . . . . . . . . . . . . .




where each of the matrices Rk is of order 2 represented as Rk =

[
ak 0

bk ck

]
.

Proof. The interpretation of R in Neuts [52] and the structure of the matrices

in the generator matrix Q proves the theorem.

Theorem 2.2.3. The elements Rk(k > 0) in theorem 2.2.2 are computed

as,

ak =
(
∑k−1

i=o aiak−1−i)θ + (
∑k−1

i=1 aiak−i)µ1

(λ+ µ1 + θ)− 2a0µ1
,

bk =
(
∑k−1

i=1 aibk−1−i + bk−1(a0 + c0))θ + (
∑k

i=1 aibk−i)µ1

(λ+ µ1 + θ)− (a0 + c0)µ1
,

ck = 0, k = 1, 2, 3, . . .
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and entries of r0 are

a0 =
(λ+ µ1 + θ)−

√
(λ+ µ1 + θ)2 − 4µ1λ

2µ1
,

b0 =
µ2c0

(λ+ µ1 + θ)− (a0 + c0)µ1
,

c0 =
λ

λ+ µ2
.

Proof. Expanding (2.8), we obtain the following relations:

R2
0M2 +R0M1 + λI = O,

R2
0M3 +

(
l∑

k=0

RkRl−k

)
M2 +RlM1 = O, l ≥ 1.

The result is established when these equations are expanded with respect to the

phases.

2.2.1 The joint and marginal probabilities

In this section recursive formulae for the joint distribution of i P1 customers in

the system and j P2 customers in the queue and marginal distributions of each

are derived. First we establish the following.

Theorem 2.2.4. The matrix geometric structure

xi = xi−1R, i > 1

given in theorem 2.2.1 extended to level 0 is

xi = x0

(
1

λ
A01

)
Ri, i ≥ 1.

Proof. From xQ∗ = 0, the two boundary equations involving x0 are

x0A00 + x1A10 = 0, (2.9)
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x0A01 + x1[A1 +RA2] = 0. (2.10)

From (2.8) it follows that

R[RA2 +A1] = −A0. (2.11)

Since A0 = λI∞, R is invertible.

From (2.10) and (2.11) we get

x1 = x0

(
1

λ
A01R

)
. (2.12)

Combining relations (2.7) and (2.12) we obtain

xi = x0

(
1

λ
A01

)
Ri, i ≥ 1. (2.13)

The Joint probability distribution

Let xij be the probability that there are i P1 customers in the system and j P2

customers waiting in queue. Further let the marginal distribution of the number

of P1 customers in the system be denoted by xi•. Then

xi• =
∞∑

j=0

xij , i ≥ 0.

To know the type of customer in service we partition xij as

xij = (xij(1),xij(2)).

We proceed to determine the joint probability vectors xij . Considering the

interrupted customers and the type of customer under service, equation (2.7)

gives

xij = xi−1,jR , i > 1, j ≥ 0. (2.14)
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where

xij = (xij(1),xij(2)).

Expanding (2.14) w.r.t. j

(xi0,xi1, · · · ) = (xi−1,0,xi−1,1, · · · )×




R0 R1 R2 · · ·

0 R0 R1 · · ·

0 0 R0 · · ·

0 0 0
. . .




.

In general,

xij =

j∑

k=0

xi−1,k Rj−k , i > 1, j ≥ 0. (2.15)

Expanding these equations once more to reveal the dependence on the type of

service, we obtain

xij(1) =

j∑

k=0

[aj−k xi−1,k(1) + bj−k xi−1,k(2)] (2.16)

xij(2) = c0 xi−1,j(2) ; i > 1, j ≥ 0. (2.17)

Equation (2.12) on expansion gives

x1j(1) = aj(1− ρ) +

j∑

k=0

bj−k x0k(2) (2.18)

x1j(2) = c0 x0j(2) ; i = 1, j ≥ 0. (2.19)

Hence the joint probabilities depend on x0k(2) for k = 0, 1, 2, . . . j. We compute

x0k(2) in the desired range in the next section.
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Marginal distribution of high priority customers

Adding equation(2.15) over j which is the low priority queue length, the marginal

distribution xi• for the number of P1 customers in the system is

xi• =

∞∑

j=0

xij =

∞∑

j=0

j∑

k=0

xi−1,k Rj−k =

∞∑

k=0

xi−1,k




∞∑

j=0

Rj




= x(i−1)•R+ (2.20)

= x1•R
i−1
+ , i ≥ 2; (2.21)

where

R+ =
∞∑

j=0

Rj =

[ ∑∞
r=0 ar 0

∑∞
r=0 br c0

]
.

Now, expanding (2.20) based on the type of service, we have

(
xi(1), xi(2)

)
=
(

xi−1(1), xi−1(2)
)[ ∑ ar 0

∑
br c0

]
, i ≥ 1

=
(

xi−1(1) (
∑

ar) + xi−1(2) (
∑

br), xi−1(2) c0

)

So we obtain

xi•(1) = xi−1,•(1) (
∑

ar) + xi−1,•(2) (
∑

br)

xi•(2) = xi−1,•(2) c0

Adding equations (2.18) and (2.19) over j

x1•(1) = (1− ρ)
(∑

ar

)
+ x0•(2)

(∑
br

)

x1•(2) = c0 x0•(2)

which in turn gives

x1• = ((1− ρ),x0•(2))R+ (2.22)
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Combining equations (2.21) and (2.22) we get

xi• = ((1− ρ),x0•(2))R
i
+ ; i ≥ 1.

Write x0• = ((1− ρ),x0•(2)) then

xi• = x0•R
i
+ ; i ≥ 1.

Expanding this we get the high priority marginals as

xi•(1) = (1− ρ)
(∑

ar

)i
+ x0•(2)

i−1∑

k=0

(∑
ar

)k (∑
br

)
ci−1−k
0

xi•(2) = x0•(2)c
i
0.

From the above relations it is clear that the marginal probabilities depend on

the probability that no P1 customer in the system and a P2 customer in service,

which is given by

x0•(2) =
∞∑

j=0

x0j(2). (2.23)

To compute x0•(2):

Substituting equation (2.12 ) in (2.9 ) we have

x0

[
A00 +

1

λ
(A01RA10)

]
= 0 (2.24)

where x0 = ((1− ρ),x00(2),x01(2),x02(2), ..., ...).

Expanding(2.24), the following relations are obtained:

x00(2) [b0µ1 + µ2] + (1− ρ) [a0µ1 − λ] = 0

x01(2) [b0µ1 + µ2] + x00(2) [b0θ1 + b1µ1 − (λ+ µ2)] +

(1− ρ) [a0θ1 + a1µ1] = 0

(1− ρ) [aj−1θ1 + ajµ1] +

j−2∑

k=0

x0k(2) [bj−k−1θ1 + bj−kµ1]+

x0(j−1)(2) [b0θ1 + b1µ1 − (λ+ µ2)] + x0j(2) [b0µ1 + µ2] = 0, j ≥ 2.
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On solving these, we obtain

x00(2) =
(λ− a0µ1) (1− ρ)

b0µ1 + µ2
(2.25)

x01(2) =
1

b0µ1 + µ2

{
[(λ+ µ2)− (b0θ1 + b1µ1)]x00(2)− (1− ρ) [a0θ1 + a1µ1]

}

(2.26)

x0j(2) =
1

b0µ1 + µ2

{
[(λ+ µ2)− (b0θ1 + b1µ1)]x0(j−1)(2)−

(1− ρ) [aj−1θ1 + ajµ1]−

j−2∑

k=0

x0k(2) [bj−k−1θ1 + bj−kµ1]

}
, j ≥ 2.

(2.27)

Hence x0•(2) in equation(2.23) is computed. Also the joint probabilities given

by relations (2.16) to (2.19) are evaluated.

Marginal distribution of low priority customers

Define x•j(1) =
∑∞

i=1 xij(1) and x•j(2) =
∑∞

i=0 xij(2) for j ≥ 0. Summing

equations (2.16) from i = 2 to ∞ and adding this to (2.18) we obtain

x•j(1) = aj(1− ρ) +
∑j

k=0 [aj−k x•k(1) + bj−k x•k(2)] (2.28)

Similarly adding equations (2.17) from i = 2 to ∞ and adding this to (2.19),

x•j(2) = x0j(2) + c0 x•j(2)

which gives

x•j(2) =
1

1− c0
x0j(2).

Hence the marginal probabilities of low priority customers while a P2 customer

is under service, is determined once we evaluate x0j(2) for the desired range of

values of j, which is done through equations (2.25) and (2.27). The marginal

probabilities of low priority customers, while a P1 customer is under service, is
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determined as follows. Substituting for x0j(2) and putting k = 0, 1, 2, ..., j in

(2.28) we get

x•0(1) =
a0 (1− ρ) + b0 x•0(2)

1− a0
,

x•j(1) =

aj (1− ρ) +
j−1∑
k=0

aj−k x•k(1) +
j∑

k=0

bj−k x•k(2)

1− a0
, j ≥ 1.

2.2.2 Waiting time distribution

High priority waiting time distribution

First we compute the expected waiting time of a P1 customer who joins as the nth

customer n(> 0), in the queue at the time when he joins. We construct a Markov

chain {N(t), t ≥ 0}, where N(t) is the rank of the customer at time t. The rank

of a customer is r if he is the rth customer in the queue at time t. His rank

improves by 1 as the customers ahead of him leave the system after completing/

self interrupting service. Two cases are to be considered according to whether a

P1 or a P2 customer is under service when the tagged customer joins.

State space of the Markov chain when a P1 customer is in service is {0} ∪

{(r, 1)} ∪ {n : 1 ≤ n < r} and that when a P2 customer is in service is {0} ∪

{(r, 2)} ∪ {n : 1 ≤ n < r}, where {0} is the absorbing state indicating that the

tagged customer is selected for service. The corresponding infinitesimal generator

matrices of dimension r + 1 are denoted by W1 and W2 respectively, and are

W1 =

[
Tr T 0

r

0 0

]
,W2 =

[
Sr S0

r

0 0

]
where,
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Tr =





−µ1 , i = j = 1, 2, ..., r.

µ1 , j = i+ 1, i = 1, 2, ..., r − 1

0 , elsewhere

;Sr =





−µ2 , i = j = 1

µ2 , i = 1, j = 2

−µ1 , i = j = 1, 2, ..., r.

µ1 , j = i+ 1, i = 1, 2, ..., r − 1

0 , elsewhere

and T 0
r = S0

r = [0, ..., 0, µ1]
T .

The expected waiting time of the rth tagged customer is −(T−1
r + S−1

r )e.

Hence the expected waiting time of a P1 customer in the queue, with

α = (1, 0, ..., 0) a row vector of dimension r is,

WP1 =
∞∑

r=1

[(
−αT−1

r e
)
x(r+1)•(1) +

(
−αS−1

r e
)
xr•(2)

]

.

Low priority waiting time distribution

We compute the bounds on the distribution of waiting time of an interrupted

(tagged) customer in the system. Suppose the tagged customer joins as rth(r ≥ 1)

in the system. Upon arrival a tagged customer observes either a free server or

the server is busy with a P1 customer or a P2 customer. The probability of these

events are respectively 1− ρ, xxx(r−1)•(1) and xxx(r−1)•(2). In the first case waiting

time is merely his service time. The distribution of waiting time in the second

case is Erlang of order r with rate parameter µ1. For the third case waiting time

distribution is the convolution of exp(µ2) with service time of r P1 customers.

Hence the distribution of waiting time in the system until the customer feedback is

F0(·) = (1−ρ)exp(µ1)+
∑

r;r≥2
E(r, µ1) xxx(r−1)•(1)+exp(µ2)∗

∑
r;r≥1

E(r, µ1) xxx(r−1)•(2).

E(i, α) stands for Erlang distribution of order i and parameter α.
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Now assume that the tagged customer interrupts his service. Probability to in-

terrupt service is θ1. We may assume, without loss of generality, that the tagged

customer leaves behind i P1 customers at his service interruption and join as jth

in the P2 line. Each of these i P1 customers generate a busy cycle exponentially

distributed with parameter (µ1 + θ1 − λ). So the service time of all these cus-

tomers is the i-fold convolution of exp(µ1 + θ1 − λ) with itself. The probability

to see i customers behind the tagged customer in P1 line is xxxi•(1) and thus the

distribution of service time of these i customers is

F1(·) =
∑

i

E(i, µ1 + θ1 − λ) xxxi•(1)

. The lower bound.

The waiting time of the tagged customer is minimum if all the (j − 1) customers

ahead of him in P2 line complete service in a row once service started in P2

queue. Assume that service started in P2 line and no P1 customer arrives until

the tagged(interrupted) customer is taken for service.

The probability that there are (j − 1) P2 ahead of tagged P2,

q
′

j = xxx0(j−2)(2) + xxx•(j−1)(1).

The probability that no P1 arrived during the service time of a P2 customer,

p0 =

∫ ∞

0
e−λtµ2e

−µ2tdt.

Therefore the probability that no P1 customer arrived during the service time of

((j − 1) P2),

qj−1 = pj−1
0

. Hence the distribution of service time until tagged customer completes service

is j-fold convolution of exp(µ2) with itself multiplied by the probabilities q
′

j and

qj−1. Therefore the service time distribution of j P2 customers is

F2(·) =
∑

j

E(j, µ2) q
′

j qj−1.
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So we get lower bound for the waiting time distribution in the system as

Fminwait(·) = F0 ∗ θ1F1 ∗ F2.

Here ∗ stands for the convolution of distributions.

The upper bound.

The waiting time of the tagged customer is maximum if P1 customers arrive

during the service of each of (j − 1) customers ahead of the tagged customer in

P2 line. Hence immediately after the service of each P2 the server goes to P1 line

and returns when no one in the P1 line. We suppose k P1 customers lined up

during the service of a P2 customer. The probability of occurrence of this event

is

pk =

∫ ∞

0

e−λt(λt)k

k!
µ2e

−µ2tdt.

Service time distribution of these k P1 customers is k-fold convolution of exp(µ1−

λ) with itself as each P1 arrival generates a busy cycle. Therefore service time

distribution for the P1 arrivals during the service of a P2 customer from among

the (j − 1) P2 customers is

∑

k

E(k, µ1 + θ1 − λ) pk.

Waiting time distribution generated by the service of all (j − 1) P2 ahead of the

tagged customer is

F3(·) =
∑

j

[
exp(µ2) ∗

∑

k

E(k, µ1 + θ1 − λ) pk

]∗(j−1)

q
′

j .

Here ∗r denotes the r-fold convolution of a function with itself. Hence the dis-

tribution of the maximum waiting time of a feedback customer in the system

is

Fmaxwait(·) = F0 ∗ θ F1 ∗ F3 ∗ exp(µ2).
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2.2.3 Additional performance measures

In what to follow, by a cycle we shall mean, the time duration starting with the

arrival of a P1 customer to an idle server, until all subsequent arrivals are also

served out from the P1 line, resulting in no P1 customer in the system.

1. The probability that all the P1 customers served in a given cycle complete

service without any interruption is

PAC =
µ1(µ1 + θ1 − λ)

(µ1 + θ1)2 − λµ1
.

This is equivalent to seeking the probability that there is no inflow to P2

from P1 during that cycle.

2. The probability that all the P1 customers served in a given cycle interrupt

before completing service and hence join P2 line is

PAI =
θ1(µ1 + θ1 − λ)

(µ1 + θ1)2 − λθ1

This is the probability for the other extreme case of 1.

We demonstrate below the impact of fixed values of λ, µ1, andµ2 on PAC and

PAI with variations of θ1. In tables 1 and 2, PAC and PAI have identical values

corresponding to θ1 = 6. However, this seems to be more input specific.

θ1 0 1 2 3 4 5 6 7

PAC 1 .6316 .5294 .4706 .4286 .3954 .3684 .3453

PAI 0 .0455 .1111 .1818 .2500 .3125 .3684 .4179

Table 2.1: λ = 5, µ1 = 6, µ2 = 5

The tables clearly shows that as the value of θ1 increases PAC decreases and PAI

increases.
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θ1 0 1 2 3 4 5 6 7

PAC 1 .7200 .6000 .5263 .4737 .4330 .4000 .3724

PAI 0 .0667 .1429 .2174 .2857 .3465 .4000 .4468

Table 2.2: λ = 4, µ1 = 6, µ2 = 5

2.3 Case of three priorities, non-preemptive:

As in the previous models here also we consider a single server infinite capacity

queuing system to which customers arrival (P1) is according to a Poisson process

with rate λ and form a queue if server is busy. Service time are exponentially

distributed with parameter µ1. Customers in P1 queue interrupt own service

according to a Poisson process of rate θ1, in which case he has to go to the lower

priority queue(P2). Else, he completes service and leaves the system forever. P2

customers are taken for service according to head of the line priority whenever

the queue of external customers is found to be empty at a service completion

epoch. The service of such customers is according to a non-preemptive service

discipline and the service time are independent and identically distributed ex-

ponential random variables with parameter µ2. A customer from P2 queue may

also interrupt his service and if so it is according to a Poisson process of rate θ2,

up on which he has to go to a third waiting line P3 (of infinite capacity) and

wait for his turn of service. The service time of customers in the third queue

are independent and identically distributed exponential random variables with

parameter µ3. Their service is also according to non-preemptive service disci-

pline and customers leave the system after completing service without further

interruption. When the server is in P3 line, P2 line will be empty whereas in P1

there may be none, one or more customers.

Let N1(t) be the number of P1 customers in the system, Nj(t) that of Pj

customers in the queue for j = 2, 3; S(t) the status of the server which is 1, 2 or

3 according as the server is busy with a P1, P2 or P3 customer respectively.
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Then Ω = {(N1(t), N2(t), N3(t), S(t)) /t ≥ 0} is a CTMC with state space {0}∪

{(0, n2, n3, k)/n2 ≥ 0, n3 ≥ 0, k = 2, 3}∪

{(n1, n2, n3, k)/n1 > 0, n2 ≥ 0, n3 ≥ 0, k = 1, 2, 3}. The condition for stability of

the system is

λ

(µ1 + θ1)
+

λθ1
(µ1 + θ1) (µ2 + θ2)

+
λθ1θ2

(µ1 + θ1) (µ2 + θ2)µ3
< 1.

The infinitesimal generator is obtained as

Q =




A
(3)
00 A

(3)
01

A
(3)
10 A

(3)
1 A

(3)
0

A
(3)
2 A

(3)
1 A

(3)
0

. . .
. . .

. . .




where,

A
(3)
0 = λI∞.

A
(3)
1 = I∞ ⊗H3, H3 =




L3 U
(2)
3

L3 U
(2)
3

L3 U
(2)
3

. . .
. . .

. . .
. . .




.

dim(L3) = 3, dim(U
(2)
3 ) = 3.

(L3)ij =





−(λ+ µi + θi) ; i = j = 1, 2.

−(λ+ µ3) ; i = j = 3.

µi ; j = 1, i = 2, 3.

0 ; otherwise

, (U
(2)
3 )ij =

{
θ2 ; i = 2, j = 1

0 ; otherwise
.
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A
(3)
2 =




I∞ ⊗M3 I∞ ⊗N3

I∞ ⊗M3 I∞ ⊗N3

. . .
. . .

. . .
. . .




dim(M3) = 3, dim(N3) = 3.

(M3)ij =

{
µ1 ; i = j = 1

0 ; otherwise
, (N3)ij =

{
θ1 ; i = j = 1

0 ; otherwise

A
(3)
01 =




K
(0)
3

I∞ ⊗K3

I∞ ⊗K3

I∞ ⊗K3

. . .




,

K
(0)
3 =

(
λ 0 0 ...

)
, dim(K3) = 2× 3, (K3)ij =

{
λ ; j = i+ 1, i = 1, 2.

0 ; elsewhere.

A
(3)
10 =




C∗
3 C

(0)
3 + I∞ ⊗ C

(1)
3

I∞ ⊗ C
(2)
3 I∞ ⊗ C

(1)
3

I∞ ⊗ C
(2)
3 I∞ ⊗ C

(1)
3

. . .
. . .

. . .




, C∗
3 =




µ1

0

0
...




C
(0)
3 =




0

B1

B1

B1

. . .




, dim(B1) = 3×2, (B1)ij =

{
µ1 ; i = 1, j = 2

0 ; elsewhere
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dim(C
(1)
3 ) = dim(C

(2)
3 ) = 3× 2.

(C
(1)
3 )ij =

{
θ1 ; i = j = 1

0 ; elsewhere
, (C

(2)
3 )ij =

{
µ1 ; i = j = 1

0 ; elsewhere

A
(3)
00 =




−λ 0

M E
(0)
3

E
(2)
3 E

(1)
3

E
(2)
3 E

(1)
3

. . .
. . .




,M =




(
µ2

µ3

)

0

0
...




E
(1)
3 = I∞ ⊗D31, dim(D31) = 2, (D31)ij =

{
− (λ+ µ2 + θ2) ; i = j = 1

− (λ+ µ3) ; i = j = 2

E
(2)
3 = E

(21)
3 + E

(22)
3

E
(21)
3 = I∞ ⊗D

(2)
3 , dim(D

(2)
3 ) = 2,

(
D

(2)
3

)

ij
=

{
µi+1 ; j = 1, i = 1, 2

0 ; elsewhere

E
(22)
3 =




0 g
(2)
3

g
(2)
3

. . .




,

dim(g
(2)
3 ) = 2

(
g
(2)
3

)

ij
=

{
θ2 ; j = i = 1

0 ; elsewhere

E
(0)
3 =




J
(1)
3

J
(11)
3 J

(1)
3

J
(11)
3 J

(1)
3

. . .
. . .




dim(J
(1)
3 ) = dim(J

(11)
3 ) = 2.
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(
J
(1)
3

)

ij
=





− (λ+ µ2 + θ2) ; i = j = 1

− (λ+ µ3) ; i = j = 2

θ2 ; i = 1, j = 2

0 ; elsewhere

,
(
J
(11)
3

)

ij
=

{
µi+1 ; i = 1, 2 ; j = 2

0 ; elsewhere

Theorem 2.3.1. Let xxx = [xxx0,xxx1,xxx2, . . .] denote the invariant probability

vector for the QBD process with infinite number of sub levels, where xxxi is the

probability vector of infinite dimension corresponding to level i. Then the solution

for xxx possesses a matrix geometric structure

xxxi = xxxi−1R, i > 1.

where the rate matrix R is the minimal non negative solution to

R2A2 +RA1 +A0 = O. (2.29)

Theorem 2.3.2. The rate matrix R in the above theorem possesses a block

upper triangular structure given by

R =




R0 R1 R2 · · ·

R0 R1 · · ·

R0 · · ·
. . .




,where Rj =




Rj0 Rj1 Rj2 · · ·

Rj0 Rj1 · · ·

Rj0 · · ·
. . .




; j ≥ 0,

in which Rji are matrices of the form Rji =




aji 0 0

bji cji 0

dji 0 fji


 ; i ≥ 0, whose

entries are as follows.

Let x = λ+ µ1 + θ1, y = λ+ µ2 + θ2, and z = λ+ µ3. Then,

a00 =
x−

√
x2 − 4µ1λ

2µ1
, b00 =

2µ2λ

xy + y
√

x2 − 4µ1λ− 2µ1λ
, c00 =

λ

y
,
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d00 =
2µ3λ

xz + z
√
x2 − 4µ1λ− 2µ1λ

, f00 =
λ

z
, a0k = 0; k ≥ 1,

b01 =
θ2c00

x− (a00 + c00)µ1
, b0k = 0; k ≥ 2, c0k = d0k = f0k = 0; k ≥ 1,

al0 =

θ1
l−1∑
k=0

ak0a(l−1−k)0 + µ1

l−1∑
k=1

ak0a(l−k)0

x− 2a00µ1
; l ≥ 1,

bl0 =

µ1

l∑
i=1

ai0b(l−i)0 + θ1

[
l−1∑
j=0

aj0b(l−1−j)0 + b(l−1)0c00

]

x− (a00 + c00)µ1
; l ≥ 1,

dl0 =

µ1

l∑
i=1

ai0d(l−i)0 + θ1

[
l−1∑
j=0

aj0d(l−1−j)0 + d(l−1)0f00

]

x− (a00 + f00)µ1
; l ≥ 1,

cl0 = fl0 = 0; l ≥ 1,

amn = cmn = dmn = fmn = 0; m,n ≥ 1,

bm1 =

µ1

l∑
i=1

ai0b(m−i)1 + θ1

[
m−1∑
j=0

aj0b(m−1−j)1 + b(m−1)1c00

]

x− (a00 + c00)µ1
; m ≥ 1,

bmn = 0; m ≥ 1, n ≥ 2 .
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Proof: Expansion of equation (2.29) gives the following system of equations:

R2
00M3 +R00L3 + λI3 = O

m∑

j=0

R0jR0,m−jM3 +R0,m−1U
(2)
3 +R0mL3 = O

l−1∑

k=0

Rk0Rl−1−k,0N3 +
l∑

k=0

Rk0Rl−k,0M3 +Rl0M1 = O

l−1∑

k=0

m∑

j=0

RkjRl−1−k,m−jN3 +
l∑

k=0

m∑

j=0

RkjRl−k,m−jM3+

Rl,m−1U
(2)
3 +RlmL3 = O.

Solving this system of equations the required result is obtained.

2.3.1 Joint and Marginal Probabilities

Let xxxijk be the probability of i high priority customers in the system, j customers

waiting in the P2 queue and k customers waiting in the P3 queue.

Then the marginal probability of i number of P1 customers is

xxxi•• =
∞∑

j=0

∞∑

k=0

xxxijk.

We have, from theorem (4.1) xxxi = xxxi−1R and proceeding as in the section 3,

xxxijk =

j∑

l=0

k∑

m=0

xxxi−1,lmRj−l,k−m forj, k ≥ 0.

To know the type of customer under service, we expand the above equation to

get the recursive formulas,

xxxijk(1) =
j∑

l=0

aj−l,0xxxi−1,lk(1) +
j∑

l=0

l∑
m=0

bj−l,l−mxxxi−1,lm(2) +
j∑

l=0

dj−l,0xxxi−1,lk(3),

xxxijk(2) = c00xxxi−1,jk(2),

xxxijk(3) = f00xxxi−1,jk(3); j, k ≥ 0, i ≥ 1.
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2.3.2 High Priority Marginal Distribution

Marginal distribution of high priority customers in the system is

xxxi•• =
∑∞

j=0

∑∞
k=0xxxijk

= xxxi−1,••R+

where
R+ =

∑∞
j=0Rj

=
∑∞

j=0

∑∞
k=0Rjk.

Expanding the above equation in lowest phases gives,

xxxi•• = [xxxi••(1), xxxi••(2), xxxi••(3)] = [(1− ρ), xxx0(2), xxx0(3)]R
i
+, i ≥ 1.

2.4 Case of N + 1 priorities, non-preemptive:

Model Description: Now we extend the number of priorities to N + 1. Thus

a customer can interrupt at most N times, exactly once while in a particular

priority, except the last. Consider a single server infinite capacity queuing system

in which customers from outside arrive according to a Poisson process with rate

λ and form a queue if server is busy. Service time are exponentially distributed

with parameter µ1. Customers in primary queue interrupt service according to a

Poisson process of rate θ1, in which case he has to go to a lower priority queue.

Else, he completes service and leaves the system forever. Lower priority customers

are taken for service according to head of the line priority whenever the queue

of external customers is found to be empty at a service completion epoch. The

service of such customers is according to a non-preemptive service discipline. A

customer from this low priority queue may interrupt his service according to a

Poisson process of rate θ2 up on which he has to go to a third waiting line (of

infinite capacity) and wait for his turn for service. The service time of customers

in the ith queue are independent and identically distributed exponential random

variables with parameter µi. Customers in the ith priority queue also interrupt
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their service according to a Poisson process with rate θi or else completes service

with service time exponentially distributed with parameter µi. A maximum of

N service interruptions is allowed for any customer so that i = 2, 3, . . . , N . Thus

there are N + 1 queues, the first one constituted solely by external (primary)

customers and the remaining queues are generated by customers from the just

preceding higher priority queue. Thus N dependent queues and one independent

stream of customers served by a single server, form our system. At the service

completion epoch of a low priority customer, the server checks whether there

is any higher priority customer in the system. If there is one in the highest

priority, he takes the head in that queue; else takes the one, if any, from the

second queue and so on. From the (N + 1)th queue, a customer in service leaves

on completion of service (following an exponential distribution with parameter

µN+1) or interrupts his service according to a Poisson process of rate θN+1. In

the latter case the customer leaves the system paying a heavy penalty.

The infinitesimal generator is

⌢

Q =




A
(n)
00 A

(n)
01

A
(n)
10 A

(n)
1 A

(n)
0

A
(n)
2 A

(n)
1 A

(n)
0

. . .
. . .




where,

A
(n)
0 = λI∞, A

(n)
1 = I∞ ⊗Hn

Hn =




Ln U
(n−1)
n 0 ... U

(n−2)
n 0 ... U

(3)
n 0 ... U

(2)
n 0 ...

0 Ln U
(n−1)
n 0 ... U

(n−2)
n 0 ... U

(3)
n 0 ... U

(2)
n 0

. . .
. . .

. . .

. . .
. . .

. . .




dim(Ln) = n, n ≥ 3, dim(Un(k)) = n, k = 2, 3, ..., n− 1
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(Ln)ij =





− (λ+ θi + µi) j = i = 1, 2, ..., n− 1.

− (λ+ µn) j = i = n

µi j = 1, i = 2, 3, ..., n

0 otherwise

, (Un(k))ij =

{
θk j = 1, i = k

0 otherwise

A
(n)
2 =




I∞ ⊗Mn I∞ ⊗Nn

I∞ ⊗Mn I∞ ⊗Nn

. . .
. . .

. . .




,

dim(Mn) = dim(Nn) = n

(Mn) ij =

{
µ1 ; j = i = 1

0 ; otherwise

(Nn) ij =

{
θ1 ; j = i = 1

0 ; otherwise

A
(n)
10 =




C∗
n C

(0)
n + I∞ ⊗ C

(1)
n

I∞ ⊗ C
(2)
n I∞ ⊗ C

(1)
n

I∞ ⊗ C
(2)
n I∞ ⊗ C

(1)
n

. . .
. . .

. . .




C∗
n =




µ1

0

0
...




, C(0)
n =




0

I∞ ⊗B1

I∞ ⊗B2

· · ·

· · ·

I∞ ⊗Bn−2




,

dim(Bk) = n× (n− 1), 1 ≤ k ≤ (n− k),

(Bk)ij =

{
µ1 ; i = 1, j = n− k

0 ; elsewhere

with 0 = [ 0 0 · · · ]

dim(C
(1)
n ) = dim(C

(2)
n ) = n× (n− 1)
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(C
(1)
n )ij =

{
θ1 ; i = j = 1

0 ; elsewhere
(C

(2)
n )ij =

{
µ1 ; i = j = 1

0 ; elsewhere

A
(n)
01 =




K
(0)
n

I∞ ⊗Kn

I∞ ⊗Kn

I∞ ⊗Kn

. . .
. . .




,

K
(0)
n = [ λ 0 0 ... ], dim(Kn) = (n− 1)× n,

(Kn)ij =

{
λ ; j = i+ 1, i = 1, 2, ..., (n− 1).

0 ; elsewhere.

A
(n)
00 =




−λ

M E
(0)
n

E
(2)
n E

(1)
n

E
(2)
n E

(1)
n

. . .
. . .




,M =







µ2

µ3

...

µn




0

0
...




E(1)
n = I∞⊗Dn1, dim(Dn1) = n−1, (Dn1)ij =

{
− (λ+ µi+1 + θi+1) 1 ≤ i, j ≤ n− 2

− (λ+ µi+1) i = j = n− 1

E
(2)
n = E

(21)
n + E

(22)
n

E(21)
n = I∞⊗D

(n−1)
n , dim(D(n−1)

n ) = n−1,
(
D(n−1)

n

)

ij
=

{
µi+1 j = 1, 1 ≤ i ≤ n− 1

0 elsewhere
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E(22)
n =




0 G
(n−1)
n ... G

(n−2)
n ... G

(2)
n ...

G
(n−1)
n ... G

(n−2)
n ... G

(2)
n ...

. . .
. . .

. . .




dim(G
(k)
n ) = (n− 1); (G

(k)
n )ij =

{
θk ; i = k − 1, j = 1

0 ; elsewhere, k = 2, 3, ..., n− 1

E(0)
n =




J
(1)
n

J
(11)
n J

(1)
n

J
(11)
n J

(1)
n

.

.

.
. . .

. . .

J
(21)
n J

(22)
n · · · J

(2)
n

J
(21)
n J

(22)
n · · · J

(2)
n

.

.

.
. . .

. . .
. . .

J
(31)
n J

(32)
n · · · J

(33)
n · · · J

(3)
n

. . .
. . .

. . .

J
((n−2)1)
n J

((n−2)2)
n · · · J

((n−2)3)
n · · · J

((n−2))
n

.

.

.
. . .

. . .
. . .




dim(J
(k)
n ) = dim(J

(km)
n ) = n− 1 ;

{
k = 1, 2, ..., , (n− 2)

m = 1, 2, ..., , k

(
J
(k)
n

)

ij
=





− (λ+ µi+1 + θi+1) ; i = j = 1, 2, ..., (n− 2)

− (λ+ µi+1) ; i = j = (n− 1)

θi+1 ; j = i+ 1, i = 1, 2, ..., (n− k + 1)

0 ; elsewhere

(
J
(k1)
n

)

ij
=

{
µi+1 ; i = 1, 2, ..., (n− 1) ; j = n− k

0 ; elsewhere
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(
J
(km)
n

)

ij
=

{
θn−m+1 ; i = n−m, ; j = n− k

0 ; elsewhere, : m = 2, 3, ..., k,

The stability of the system is given to be

λ

µ1 + θ1


1 +

N−1∑

i=1

i∏

j=1

θj
µj+1 + θj+1

+
θN

µN+1

N−1∏

j=1

θj
µj+1 + θj+1


 < 1.

The performance measures are not computed for this case. One can proceed on

the same lines as indicated in cases N = 1 and 2 respectively.



Chapter 3

Queues with Priority and

Feedback

The feedback queues discussed in literature fall in either of the following two

categories: Upon completion of service, the customer may decide to get his service

repeated with a positive probability and joins either the tail end of the queue or

occupies the server immediately after the first service is completed. In either case

there is no separate queue for feedback customers. Also identifying a feedback

customer in the system is not an easy task. Further, how many feedback, if any,

customer has taken is not considered.

In this chapter we consider a priority queueing system with feedback distinct

from what is being discussed in literature. Low priority (P2) as well as high

priority (P1) customers arriving according to two independent Poisson processes,

queue up separately for service at a busy service station and are served on priority

basis. We assume infinite waiting space for both priorities. If a P1 customer

decides to feedback immediately after completing service, then he has to join the

Some results of this chapter are included in the following paper.

A. Krishnamoorthy, Manjunath A. S.: On queues with priority determined by feedback

(communicated).
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P2 line as the last in that queue. Customers from P2 line are served only if none

is left in the P1 queue. The case of exactly one feedback is analyzed in detail.

That is no further feedback beyond P2. Both preemptive and non-preemptive

cases are studied. Thus the low priority queue has both feedback customers and

fresh customers.The case of more than one feedback can be analyzed in almost

the same way as the one with no more than one feedback, though the complexities

grow manifold. In this model customers complete their service and feedback for

another service whereas in the previous chapter customers interrupt their service

while service is in progress. Such customers form the immediately next lower

priority queue and the two models differ.

Section 1 analyzes feed back queue with non-preemptive priority. Here service

times are phase type distributed. Algorithms for computing the joint and the

marginal probabilities are presented in this section. Waiting time distributions

are also discussed.In section 2 we discuss the problem with exponential service

time. Feed back queue with preemptive priorities and exponential service time

are presented in section 3.

3.1 M/PH/1 Feedback queue with non-preemptive pri-

ority

We consider a single server queueing system with two distinct queues to which

customers of two different priorities arrive according to Poisson processes of rates

λi, i = 1, 2. Service time of both type of customers are phase type distributed with

representation (α,T) and (β, S) of orders m and n, respectively. High priority

(P1) customers who are not satisfied with the service already provided to them,

join(feedback) the low priority (P2) line immediately after completing service.

The probability of a P1 customer to feedback is θ on completion of his service.

Low priority (P2) customers are taken for service one at a time from the head

of the line whenever the P1 queue is found to be empty at a service completion
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epoch. The service of P2 customers is according to a non-preemptive service

discipline; that is the arrival of a P1 customer doesn’t interrupt the ongoing

service of a P2 customer. No feedback is permitted to customers in P2 line. This

means that there are only two types of customers P1 and P2.

Let N1(t) be the number of P1 customers in the system including the one in

service if any, N2(t) be the number in the P2 line and S(t) the status of the server

which is 1 or 2 according as the server is busy with P1 customers or P2 customers

and M(t) the phase of service. Thus we get a continuous time Markov chain

Ω = {X (t) , t ≥ 0} = {(N1(t), N2(t), S(t),M(t)) /t ≥ 0} with state space {0} ∪

{(0, n2, 2, j)/ n2 ≥ 0, 1 ≤ j ≤ n}∪{(n1, n2, k, j)/ n1 ≥ 1, n2 ≥ 0, 1 ≤ j ≤ m, k = 1, 2}.

The state 0 represents an idle server.

The infinitesimal generator of this continuous time Markov chain consists of

block entries of infinite dimension and is obtained as

Q̃ =




A00 A01

A10 A1 A0

A2 A1 A0

. . .
. . .

. . .




.

Let λ = λ1 + λ2, then we have A0 = λ1I∞,

A1 =




M1 M2

M1 M2

. . .
. . .




;

M1 =

[
T − λIm 0

S0α S − λIn

]

M2 = λ2Im+n
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A2 =




M3 M4

M3 M4

. . .
. . .




;

M3 =

[
(1− θ)T 0α 0

0 0

]

M4 =

[
θT 0α 0

0 0

]

A01 =




M∗
5

M5

M5

. . .




;

M∗
5 =

[
λ1α 0

]

M5 =
[
0 λ1In

]

A10 =




M∗
6 M7

M6 M7

M6 M7

. . .
. . .




;

M∗
6 =

[
(1− θ)T 0

0

]

M6 =

[
(1− θ)T 0β

0

]

M7 =

[
θT 0β

0

]

A00 =




−λ λ2β

S0 M8 M9

M10 M8 M9

M10 M8 M9

. . .
. . .




;

M8 = S − λIn

M9 = λ2In

M10 = S0β

System stability

If µ1 and µ2 denote the mean service rate of P1 and P2 customers respectively,

then 1
µ1

= −αT−1e and 1
µ2

= −βS−1e. The fraction of time the server is busy

with Pi customers is ρ̃i =
λi

µi
for i = 1, 2. We assume that ρ̃1 + ρ̃2 < 1, under this

condition the system is stable.

The infinitesimal generator Q̃ constitutes a QBD process with infinite number
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of sub-levels. As Q̃ is irreducible and recurrent, following an argument similar in

theorem 3 of Miller [49] we have,

Theorem 3.1.1. Let x̃xx = [x̃xx0, x̃xx1, x̃xx2, . . .] denote the invariant probability

vector for the QBD process Q̃ with infinite number of sub levels(phases), where

x̃xxi is the probability vector corresponding to level i of infinite dimension. Then

the solution for x̃xx possesses a matrix geometric structure

x̃xxi = x̃xxi−1R, i > 1. (3.1)

where the rate matrix R is the minimal non negative solution to

R2A2 +RA1 +A0 = O. (3.2)

We now compute the elements of the infinite dimensional matrix R.

Theorem 3.1.2. The R matrix, which is the minimal non negative solution

to equation (3.2) possesses a Toeplitz structure (R0, R1, R2, ...). That is, R has

the form

R =




R0 R1 R2 R3 . . .

0 R0 R1 R2 . . .

0 0 R0 R1 . . .

0 0 0 R0 . . .

. . . . . . . . . . . . . . .




where each of the matrices Rk is of the form Rk =

(
RkA 0

RkB RkC

)
where RkA

and RkC are matrices of order m and n respectively and RkB is a matrix of order

m× n.

Proof. Follows from the interpretation of R in Neuts [52] and the structure

of the matrices in the generator matrix Q̃.
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Theorem 3.1.3. The entries of the matrix Rk(k > 0) in theorem 3.1.2 are

computed from the following relations.

(1− θ)R2
0AT

0α+R0A(T − λIm) + λ1Im = O (3.3)

(1− θ)(R0BR0A +R0CR0B)T
0α+R0B(T − λIm) +R0CS

0α = O (3.4)

R0C(S − λIn) + λ1In = O (3.5)

θ

(
k−1∑

i=0

RiAR(k−1−i)A

)
T 0α+ (1− θ)

(
k∑

i=0

RiAR(k−i)A

)
T 0α+

λ2R(k−1)A +RkA(T − λIm) = O (3.6)

(
k−1∑

i=0

(
RiBR(k−1−i)A +RiCR(k−1−i)B

)
)
θT 0α+

(
k∑

i=0

RiBR(k−i)A +RiCR(k−i)B

)
(1− θ)T 0α+

λ2R(k−1)B +RkB(T − λIm) +RkCS
0α = O (3.7)

λ2R(k−1)C +RkC(S − λIn) = O (3.8)

Proof. We obtain the following relations after expanding (3.2).

R2
0M3 +R0M1 + λ1Im+n = O,

(
k−1∑

i=0

RiRk−1−i

)
M4 +

(
k∑

i=0

RiRk−i

)
M3 +Rk−1M2 +RkM1 = O, k ≥ 1.

The result is established when these relations are expanded with respect to the

phases (the phases of the system are the server status(idle/ busy with P1 cus-

tomers/ busy with P2 customers) and the number of P2 customers in the queue;

the level of the system is the number of P1 customers in the system).
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3.1.1 The joint and marginal probabilities

The recursive formulas for joint distribution of the number of P1 customers in

the system and P2 customers in the queue and marginal distributions of each are

derived below. First we establish the following.

Theorem 3.1.4. The matrix geometric structure

x̃xxi = x̃xxi−1R, i > 1

given in Theorem 3.1.1 extended to level 0 is

x̃xxi = x̃xx0

(
1

λ1
A01

)
Ri, i ≥ 1. (3.9)

Proof. From x̃xxQ̃ = 0, the two boundary equations involving x̃xx0 are

x̃xx0A00 + x̃xx1A10 = 0, (3.10)

x̃xx0A01 + x̃xx1[A1 +RA2] = 0. (3.11)

From (3.2) it follows that

R[RA2 +A1] = −A0. (3.12)

Since A0 = λ1I∞ , R is invertible.

From (3.11) and (3.12) we get

x̃xx1 = x̃xx0

(
1

λ1
A01R

)
. (3.13)

Combining relations (3.1) and (3.13) we obtain (3.9).
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The joint probability distribution

Let x̃xxij be the probability that there are i P1 customers in the system and j

P2 customers waiting in the queue. Further let the marginal distribution of the

number of P1 customers in the system be denoted by

x̃xxi• =
∞∑

j=0

x̃xxij , i ≥ 0.

To identify the type of customer in service, partition x̃xxij as

x̃xxij = (x̃xxij(1), x̃xxij(2)), i ≥ 1, j ≥ 0,

where x̃xxij(k) represents a Pk customer in service for k = 1, 2. We proceed to

determine the joint probability vectors x̃xxij .

Considering the P2 line, equation (3.1) gives

x̃xxij = x̃xxi−1,j R , i > 1, j ≥ 0.

Expanding this w.r.t. j

(
x̃xxi0, x̃xxi1, · · ·

)
=
(

x̃xxi−1,0, x̃xxi−1,1, · · ·
)
×




R0 R1 R2 · · ·

0 R0 R1 · · ·

0 0 R0 · · ·

0 0 0
. . .




.

That is, for j ≥ 0,

x̃xxij =

j∑

k=0

x̃xxi−1,k Rj−k , i > 1. (3.14)

On expanding this, incorporating the type of service, we obtain

x̃xxij(1) =

j∑

k=0

[
x̃xxi−1,k(1) R(j−k)A + x̃xxi−1,k(2) R(j−k)B

]
(3.15)
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x̃xxij(2) =

j∑

k=0

x̃xxi−1,k(2) R(j−k)C ; i > 1, j ≥ 0. (3.16)

Denoting the probability of an idle server by 1−ρ̃, the relation (3.13) on expansion

gives

x̃xx1j(1) = (1− ρ̃) αRjA +

j∑

k=0

x̃xx0k(2) R(j−k)B (3.17)

x̃xx1j(2) =

j∑

k=0

x̃xx0k(2) R(j−k)C ; j ≥ 0. (3.18)

We observe that the joint probabilities depend on x̃xx0k(2) for k = 0, 1, 2, . . . j and

are computed in the desired range in the next section.

Marginal distribution of P1 customers

Adding equation(3.14) over j, the marginal probability x̃xxi•, when there are i P1

customers in the system is given by

x̃xxi• =
∞∑

j=0

j∑

k=0

x̃xxi−1,k Rj−k =
∞∑

k=0

x̃xxi−1,k




∞∑

j=0

Rj




= x̃xx(i−1)• R (3.19)

= x̃xx1• R
i−1, i > 1; (3.20)

where

R =
∞∑

k=0

Rk =

[ ∑∞
k=0RkA 0

∑∞
k=0RkB

∑∞
k=0RkC

]
=

[
RA 0

RB RC

]

Now, expanding (3.19) on the type of customer in service, we have

(
x̃xxi•(1), x̃xxi•(2)

)
=
(

x̃xx(i−1)•(1), x̃xx(i−1)•(2)
)[ RA 0

RB RC

]

=
(

x̃xx(i−1)•(1)RA + x̃xx(i−1)•(2)RB, x̃xx(i−1)•(2)RC

)
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which implies for i > 1

x̃xxi•(1) = x̃xx(i−1)•(1) RA + x̃xx(i−1)•(2) RB

x̃xxi•(2) = x̃xx(i−1)•(2) RC

Also by adding equations (3.17) and (3.18) over j, we obtain

x̃xx1•(1) = (1− ρ̃) α RA + x̃xx0•(2) RB

x̃xx1•(2) = x̃xx0•(2) RC

This in turn gives

x̃xx1• =
(

(1− ρ̃)α, x̃xx0•(2)
)
R (3.21)

From relations (3.20) and (3.21) we get

x̃xxi• =
(

(1− ρ̃)α, x̃xx0•(2)
)
Ri ; i ≥ 1.

Writing x̃̃x̃x0 =
(

(1− ρ̃)α, x̃xx0•(2)
)
,

x̃xxi• = x̃̃x̃x0R
i ; i ≥ 1. (3.22)

On expanding the relation (3.22), the marginal probabilities of P1 are given as

x̃xxi•(1) = (1− ρ̃)αRi
A + x̃xx0•(2)

i−1∑

k=0

Ri−1−k
C RBR

k
A (3.23)

x̃xxi•(2) = x̃xx0•(2)R
i
C . (3.24)

Clearly the marginal probabilities depend on x̃xx0•(2) =
∞∑
j=0

x̃xx0j(2), the probability

that a P2 customer is in service with no P1 customer in the system.

Theorem 3.1.5. RA, RB and RC are explicitly given by

RA = λ1 (λ1Im − λ1eα− T )−1 . (3.25)

RB = eαRA. (3.26)

RC = λ1 (λ1In − S)−1 . (3.27)
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Proof. Adding relation(3.6) for all values of k from 1 to ∞ and this added to

relation (3.3) yields

R2
AT

0α+RA (T − λ1Im) + λ1Im = O (3.28)

Performing the same operation on relation(3.7) and (3.4) and then on relation(3.8)

and (3.5) yield

(RBRA +RCRB)T
0α+RB (T − λ1Im) +RCS

0α = O (3.29)

λ2RC +RC (S − λIn) + λ1In = O (3.30)

One obtains (3.27) directly from the relation (3.30). As customers in P2 line

play no role on those waiting in P1 line, RA is same as the rate matrix R of

the M/PH/1 queue in Neuts[52][p.84]. So using theorem 3.2.1 of Neuts we get

(3.25).

Now RB is obtained as follows. Multiply equation (3.28) by inverse of RA and

rearranging one gets the relation

RAT
0α = − (T − λ1Im)− λ1R

−1
A (3.31)

Pre-multiplying equation (3.28) by inverse of the matrix RC and substituting for

RAT
0α yields

RBT
0α+ S0α−R−1

C RB

(
λ1R

−1
A

)
= 0

Substituting for λ1R
−1
A from relation (3.25) and for R−1

C from (3.27) we get

RBT
0α+ S0α+ λ−1

1 (λ1In − S)RB (−λ1Im + λ1eα+ T ) = 0 (3.32)

Multiplying the above relation throughout by e on right side yields

RBT
0 = λ1e (3.33)

Now proper substitution of (3.25) in relation (3.32) gives

RBT
0α = (λ1In − S)RBR

−1
A − S0α (3.34)

Post multiplying relation (3.33) by e and equating the right hand side of the

resulting expression with right side of (3.34) yields the relation (3.26).
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Computation of x̃xx0•(2)

Substituting equation (3.13) in (3.10) gives

x̃xx0

(
A00 +

1

λ1
(A01RA10)

)
= x̃xx0B = 0, (3.35)

where x̃xx0 = (1− ρ̃, x̃xx00(2), x̃xx01(2), x̃xx02(2), . . . , . . . , ) and the matrix B is given

as follows.

Bij =





(1− θ)αR0AT
0 − λ ; i = j = 1

α ((1− θ)R1A + θR0A)T
0β + λ2β ; i = 1, j = 2

α
(
(1− θ)R(j−1)A + θR(j−2)A

)
T 0β ; i = 1, j ≥ 3

(1− θ)R0BT
0 + S0 ; i = 2, j = 1

((1− θ)R1B + θR0B)T
0β + S − λIn ; i = j = 2, 3, ...

((1− θ)R2B + θR1B)T
0β + λ2In ; i ≥ 2, j = i+ 1

(
(1− θ)R0BT

0 + S0
)
β ; i ≥ 3, j = i− 1

(
(1− θ)R(j−i+1)B + θR(j−i)B

)
T 0β ; j ≥ 4, 2 ≤ i ≤ j − 2

.

Expanding (3.35), the following relations are obtained:

(1− ρ̃)
(
(1− θ)αR0AT

0 − λ
)
+ x̃xx00(2)

(
(1− θ)R0BT

0 + S0
)
= 0. (3.36)

(1− ρ̃)
(
α ((1− θ)R1A + θR0A)T

0β + λ2β
)
+

x̃xx00(2)
(
((1− θ)R1B + θR0B)T

0β + S − λIn
)
+

x̃xx01(2)
(
(1− θ)R0BT

0 + S0
)
β = 0. (3.37)

θ

j−1∑

k=0

x̃xx0k(2)R(j−1−k)BT
0β + (1− θ)

j∑

k=0

x̃xx0k(2)R(j−k)BT
0β+

(1− ρ̃)α
(
(1− θ)RjA + θR(j−1)A

)
T 0β + λ2x̃xx0(j−2)(2)+

x̃xx0(j−1)(2) (S − λIn) + x̃xx0j(2)S
0β = 0, j ≥ 2. (3.38)
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Post multiplying the relation (3.36) by β and then adding to relations (3.37) and

(3.38) yields the following equation on simplification.

x̃xx0•(2)
(
RBT

0β + S0β + S − λ1In
)
= (1− ρ̃)

(
λ1 − αRAT

0
)
β (3.39)

Post multiplying
(
λ1 − αRAT

0
)
by α and using relations (3.25) and (3.31) we

have
(
λ1 − αRAT

0
)
α = λ1α (Im − eα)

Multiplying both sides of the above relation by e yields λ1 − αRAT
0 = 0. Then

the expression on the right hand side of (3.39) becomes zero and we get

x̃xx0•(2)
(
RBT

0β + S0β + S − λ1In
)
= 0

Now substituting for RBT
0 from (3.33) in the above equation yields

x̃xx0•(2) (S − λ1In) (In − eβ) = 0 (3.40)

In order to get the unique solution we need to replace any one of the n linear

equations in (3.40) by a normalizing condition. For this consider the probability

ρ̃2 that the server is busy with a P2 customer. That is ρ̃2 = x̃xx0•(2) +
∞∑
i=1

x̃xxi•(2).

But relation(3.24) yields

ρ̃2 = x̃xx0•(2) (I −RC)
−1 e (3.41)

Replacing RC from (3.27), equation(3.41) takes the form

ρ̃2 = x̃xx0•.(2)
(
I − λ1S

−1
)
e (3.42)

Equation(3.40) together with (3.41) or (3.42) provides the solution for x̃xx0•(2).

Marginal distribution of low priority(P2) customers

Define x̃xx•j(1) =
∑∞

i=1 x̃xxij(1) and x̃xx•j(2) =
∑∞

i=0 x̃xxij(2) for j ≥ 0, the marginal

probability of j P2 customers in the queue with a P1 or a P2 customer in service.
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Adding equations (3.15) from i = 2 to ∞ and adding this to (3.17) we obtain

x̃xx•j(1) = (1− ρ̃)αRjA +
∑j

k=0

(
x̃xx•k(1)R(j−k)A + x̃xx•k(2)R(j−k)B

)
(3.43)

Similarly, adding equations (3.16) from i = 2 to ∞ and adding this to (3.18) we

have

x̃xx•j(2) = x̃xx0j(2) +

j∑

k=0

x̃xx•j(2)R(j−k)C (3.44)

Hence it is required to compute x̃xx0j(2) for the desired range of values of j in

determining the marginal probabilities of low priority customers with a P2 cus-

tomer under service. This is done by using the generating function method.

Let U (x̃xx0j(2) ; z) =
∞∑
j=0

x̃xx0j(2)z
j be a generating function for x̃xx0j(2) for j ≥ 0

and RΛ(z) =
∞∑
j=0

RjΛz
j for Λ = A,B and C. Multiplying relations (3.36) by β,

(3.37) by z and (3.38) by zj and adding over all j we obtain

U (x̃xx0j(2) ; z) = (1− ρ̃)
[
(λ− λ2z)β − (1 + θz)αRA(z)T

0β
]

[
(1− θ + θz)RB(z)T

0β + S0β + (S − λIn)z + λ2z
2In
]−1

(3.45)

It remains to derive RΛ(z) for Λ = A,B and C.

Multiplying equation(3.8) by zj , adding over all values of j and adding the resul-

tant to (3.5) gives

RC(z)(S − λIn − λ2zIn) + λ1In = O (3.46)

Performing the same operation on equations (3.6) and (3.3) and then on (3.7)

and (3.4) yield

(1 + θ(z − 1))R2
A(z)T

0α+RA(z) (λ2zIm + T − λIm) + λ1Im = O (3.47)
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(1 + θ(z − 1)) (RB(z)RA(z) +RC(z)RB(z))T
0α+

RB(z) (λ2zIm + T − λIm) +RC(z)S
0α = O (3.48)

The last three equations give RΛ(z) for Λ = A,B and C

3.1.2 Waiting time analysis

Expected waiting time of P1 customers

The expected waiting time of an nth(n > 0) P1 customer in the queue is com-

puted first. We construct a Markov chain {(N(t), S(t),M(t)), t ≥ 0}, where N(t)

is the rank of the customer, S(t) the status of server and M(t) is the phase

of service at time t. The rank of a customer is r if he is the rth customer in

the queue at time t. The rank decreases to 1 as the customers ahead of him

leave the system after completing service. State space of the Markov chain is

{(k, 1, j)/ 1 ≤ k ≤ r, 1 ≤ j ≤ m}∪{(r, 2, j)/1 ≤ j ≤ n}∪{∆} where ∆ is the ab-

sorbing state indicating that the tagged customer is selected for service.

The infinitesimal generator of dimension r + 1 is Wr =

[
Gr G0

r

O 0

]
where,

Gr =




N1 N2

T T 0α

T T 0α
. . .

T




, G0
r =




0

0
...

0

T 0α




;

N1 =

(
T 0

S0α S

)

N2 =

(
T 0α

0

)

If αr =
(

xxxr•
xxxr•e

, 0, 0, · · · , 0
)
is a row vector of dimension rm+ n and e is

a column vector of ones then expected waiting time of the rth tagged customer

according to the position at the time of his arrival is −αrG
−1
r e. Hence the

expected waiting time of a P1 customer in the queue, if he does not feedback is

WP1 =

∞∑

r=1

−αrG
−1
r e
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.

Distribution of waiting time

We use the Uniformization method to determine the waiting time distribution of

feedback customers as well as customers who do not feedback.

Waiting time if a customer does not feedback

The later arriving P1 customers as well as those waiting in P2 line has no role

on the waiting time of a P1 customer already in the system. So further arrivals

to the system are not considered or we set λ = 0. This produces a Markov chain

with an absorbing state, where ‘absorbed’ means system has reached idle state.

The infinitesimal generator of this CTMC is

Q̃1 =




0

S0 S

t O U0

U−1 U0

U−1 U0

. . .
. . .




where

t =

(
T 0

0

)
U0 =

(
T O

S0α S

)
U−1 =

(
T 0α O

O O

)
.

Define υ = max |Tii, Sjj |. Then T̃1 = υ−1Q̃1 + I is the transition probability

matrix of a discrete time Markov chain of the embedded process for which the

time between transitions is exponentially distributed with rate υ. Writing
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V ∗
0 = υ−1S + I, V0 = υ−1U0 + I and V−1 = υ−1U−1,

T̃1 =




1 O

υ−1S0 V ∗
0 O

υ−1t O V0

V−1 V0

V−1 V0

. . .
. . .




.

The matrix V0 contain the probabilities that the embedded process drops no level

in one step and V1 for dropping 1 level in one step. Let the matrix D
(n)
r contain

the probabilities that the embedded process drops precisely ‘r’ non-boundary lev-

els in ‘n’ steps. D
(n)
r is recursively given by D

(n)
r = D

(n−1)
r−1 V−1 +D

(n−1)
r V0 , r =

0, 1, 2, ..., n with D
(j)
i = 0 for i < 0 and i > j.

The number of transitions by time t of the embedded process follows a Pois-

son process with parameter υt. Therefore the probability that n transitions of

the Poisson process have occurred by time t is pn(t) = e−υt (υt)
n

n! . Suppose n

transitions of the embedded process have occurred in time t and qn denote the

probability that the idle state has not reached in these n transitions. Then the

probability that waiting time does not exceed t is 1−
∞∑
n=1

pn(t)qn(t). Two possi-

bilities are to be considered in obtaining qn.

First consider the case where a customer entering to the system finds a P2

in service and no one in P1 line. Then the probability that the customer is still

waiting after n transitions is qn(1) = xxx0•(2)(V0)
ne.

On the other hand an arriving customer joins the P1 line in the ith position. This

time the customer is not absorbed in n transitions if the maximum number of

level drops in the embedded process is i− 1 and the corresponding probability is

qn(2) =
∞∑
i=1

xxxi•
i−1∑
r=0

D
(n)
r e.

Substitution for xxxi• from eq.(3.22) yields the relation qn(2) = x̃̃x̃x0R(I−R)
−1F (n)e.
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Here F (0) = I and F (n) =
n∑

r=0
RrD

(n)
r and, are recursively computed from the

relation F (n) = RF (n−1)V−1 + F
(n−1)V1. Finally qn = qn(1) + qn(2).

Waiting time of a customer in the feedback queue

We proceed along the same lines as above after setting λ2 = 0, θ = 0 and

determine the first passage time until the idle state is reached since there are

other recurrent states. The generator matrix of newly constructed Markov chain

is

Q̃2 =




A∗
00 A01

A∗
10 A∗

1 A0

A∗
2 A∗

1 A0

A∗
2 A∗

1 A0

. . .
. . .

. . .




, where the elements of this generator matrix are

A∗
2 = diag(U−1, U−1, ...).

A∗
1 = diag(U0 − λ1I, U0 − λ1I, ...).

A∗
10 = diag((1− θ)T 0, T 0β, T 0β, ...).

A∗
00 =




−λ1

S0 S − λ1In

S0β S − λ1In
. . .

. . .




Letting the uniformization parameter υ̃ = υ+λ1, the transition matrix of the

embedded Markov chain is
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P̃2 = υ̃−1Q+ I =




V00 V01

V10 V1 Ṽ0

Ṽ−1 V1 Ṽ0

Ṽ−1 V1 Ṽ0

. . .
. . .




.

V00 = υ̃−1A∗
00 + I, V01 = υ̃−1A01, V10 = υ̃−1A∗

10, V1 = υ̃−1A∗
1 + I,

Ṽ0 = υ̃−1A0, Ṽ−1 = υ̃−1A∗
2.

Next we consider a special case of the problem discussed above.

3.2 M/M/1 Feedback queue with non-preemptive pri-

ority

We consider a queueing model similar to that in the previous section, except that

the service time are exponentially distributed with respective parameters µ1 and

µ2 for P1 and P2 customers. Moreover, we use the same notations to represent

the arrival rates and feedback probability. Let N1(t) be the number of P1 cus-

tomers in the system including the one in service if any, N2(t) be the number

of P2 waiting to get service and S(t) the status of the server which is 1 or 2

according as the server is busy with P1 or P2 customers. Thus we get a contin-

uous time Markov chain Ω = {X (t) , t ≥ 0} = {(N1(t), N2(t), S(t)) /t ≥ 0}. Its

state space is given as {(0, 0)}∪{(0, j, 2)/ j ≥ 0}∪{(i, j, k)/ i > 0, j ≥ 0, k = 1, 2}.

It is not hard to derive the condition for system stability as

ρ =
λ1

µ1
+

λ1 θ + λ2

µ2
< 1.
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The infinitesimal generator of this continuous time Markov chain consists of

block entries of infinite dimension and is obtained as

Q∗ =




E00 E01

E10 E1 E0

E2 E1 E0

. . .
. . .

. . .




where,

E00 =




−λ λ2

µ2 −(λ+ µ2) λ2

µ2 −(λ+ µ2) λ2

. . .
. . .

. . .




,

E01 =




λ

λ1 0 0

λ1 0 0

λ1 0
. . .




,

E10 =




M00 M01

M0

M0

. . .




, E2 =




M1 M2

M1 M2

. . .
. . .


 ,

E1 =




M3 M4

M3 M4

. . .


 , and E0 = λ1I∞.

Here,

M00 =

[
µ1(1− θ)

0

]
, M01 =

[
µ1θ 0

0 0

]
, M0 =

[
µ1(1− θ) µ1θ

0 0

]
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M1 =

[
µ1(1− θ) 0

0 0

]
, M2 =

[
µ1θ 0

0 0

]
,

M3 =

[
−λ− µ1 0

µ2 −λ− µ2

]
,M4 =

[
λ2 0

0 λ2

]

The infinitesimal generator Q∗ constitutes a QBD process with infinite num-

ber of sub-levels. If xxx = [xxx0,xxx1,xxx2, . . .] denotes the stationary probability vector

of Q∗ where xxxi is the probability vector corresponding to level i of infinite dimen-

sion, then along the same lines of Theorems 3.1.1, 3.1.2 and 3.1.4 we have the

following.

The solution for xxx possesses a matrix geometric structure

xxxi = xxxi−1R, i > 1. (3.49)

which is extended to level 0 as

xxxi = xxx0

(
1

λ1
A01

)
Ri, i ≥ 1. (3.50)

where the rate matrix R is the minimal non negative solution to

R2A2 +RA1 +A0 = O. (3.51)

The R matrix has the form

R =




R0 R1 R2 R3 . . .

0 R0 R1 R2 . . .

0 0 R0 R1 . . .

0 0 0 R0 . . .

. . . . . . . . . . . . . . .




where each of the matrices Rk is of order 2 represented as Rk =

[
ak 0

bk ck

]
.

The entries of R are explicitly computed in the following Theorem.
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Theorem 3.2.1. The elements Rk(k > 0) of the R matrix are computed as,

ak =
µ1θ

∑k−1
i=o aiak−1−i + µ1(1− θ)

∑k−1
i=1 aiak−i + λ2ak−1

(λ+ µ1)− 2a0µ1(1− θ)
,

bk =
1

(λ+ µ1)− (a0 + c0)µ1(1− θ)

{
µ1θ

k−1∑

i=0

bi(ak−1−i + ck−1−i)+

µ1(1− θ)
k−1∑

i=0

bi(ak−i + ck−i) + λ2bk−1 + µ2ck

}
,

ck =
λ1λ

k
2

(λ+ µ2)
k+1

, k = 1, 2, 3, . . .

and entries of R0 are

a0 =
(λ+ µ1)−

√
(λ+ µ1)2 − 4µ1λ1(1− θ)

2µ1(1− θ)
,

b0 =
µ2c0

(λ+ µ1)− (a0 + c0)µ1(1− θ)
,

c0 =
λ1

λ+ µ2
.

Proof. Expanding (3.51), we obtain the following relations:

R2
0M1 +R0M3 + λ1I2 = O,

(
l−1∑

k=0

RkRl−1−k

)
M2 +

(
l∑

k=0

RkRl−k

)
M1 +RkM3 +Rk−1M4 = O, l ≥ 1.

The result is established when these equations are expanded with respect to

the phases (the phases of the system are the server status(idle/ busy with P1

customers/ busy with P2 customers) and the number of P2 customers in the

queue; the level of the system is the number of P1 customers in the system).

3.2.1 The joint and marginal probabilities

The recursive formulas for the joint distribution of i P1 customers in the system

and j P2 customers in the queue and marginal distributions of each are derived

below.
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The Joint Probability Distribution

Denote by xxxij the probability that there are i P1 customers in the system and j

P2 customers waiting in queue. Let the marginal distribution of the number of

P1 customers in system be denoted by

xxxi• =
∞∑

j=0

xxxij , i ≥ 0.

Partition xxxij to distinguish the type of customer in service as

xxxij = (xij(1), xij(2)), i ≥ 1, j ≥ 0.

Counting the feedback customers also, relation (3.49) gives

xxxij = xxxi−1,jR , i > 1, j ≥ 0.

Expanding this over j,

(
xxxi0, xxxi1, · · ·

)
=
(

xxxi−1,0, xxxi−1,1, · · ·
)
×




R0 R1 R2 · · ·

0 R0 R1 · · ·

0 0 R0 · · ·

0 0 0
. . .




.

In general,

xxxij =

j∑

k=0

xxxi−1,k Rj−k , i > 1, j ≥ 0.

Expanding this fixing the type of customer in service, we obtain

xxxij(1) =

j∑

k=0

[aj−k xxxi−1,k(1) + bj−k xxxi−1,k(2)] (3.52)

xxxij(2) =

j∑

k=0

cj−k xxxi−1,k(2); i > 1, j ≥ 0. (3.53)
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Putting i = 1 in (3.50) and expanding we get

xxx1j(1) = aj(1− ρ) +

j∑

k=0

bj−k xxx0k(2), (3.54)

xxx1j(2) =

j∑

k=0

cj−k xxx0,k(2); j ≥ 0. (3.55)

Marginal distribution of P1 customers

The marginal distribution xxxi• for the number of P1 customers in the system is

xxxi• = xxx(i−1)•Rǫ (3.56)

Or,

xxxi• = xxx1•R
i−1
ǫ , i ≥ 2; (3.57)

where

Rǫ =
∞∑

j=0

Rj =

[ ∑∞
r=0 ar 0

∑∞
r=0 br

∑∞
r=0 cr

]
.

Indicating the type of customer in service, relation (3.56) gives

(xxxi•(1),xxxi•(2)) =
(
xxx(i−1)•(1),xxx(i−1)•(2)

)
[ ∑

ar 0
∑

br
∑

cr

]
, i > 1.

so that

xxxi•(1) = xxx(i−1)•(1) (
∑

ar) + xxx(i−1)•(2) (
∑

br)

xxxi•(2) = xxx(i−1)•(2)(
∑

cr), i > 1.

Adding equations (3.54) and (3.55) over j

xxx1•(1) = (1− ρ)
(∑

ar

)
+ xxx0•(2)

(∑
br

)

xxx1•(2) = xxx0•(2)(
∑

cr)
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which in turn gives

xxx1• =
(

(1− ρ), xxx0•(2)
)
Rǫ (3.58)

Combining relations (3.57) and (3.58) we get

xxxi• =
(

(1− ρ), xxx0•(2)
)
Ri

ǫ ; i ≥ 1.

Write xxx0• =
(

(1− ρ), xxx0•(2)
)
, then

xxxi• = xxx0•R
i
ǫ ; i ≥ 1.

Expanding on both sides the marginal probabilities of P1 customers are obtained

as

xxxi•(1) = (1− ρ)
(∑

ar

)i
+ xxx0•(2)

i−1∑

k=0

(∑
ar

)k (∑
br

)
(
∑

cr)
i−1−k.

xxxi•(2) = xxx0•(2)(
∑

cr)
i.

Clearly the marginal probabilities depend on the probability that a P2 customer

is under service and there is no P1 customer in the system which is given by

xxx0•(2) =
∞∑
j=0

xxx0j(2).

To compute xxx0•(2)

From xxxQ∗ = 0, the two boundary equations involving xxx0 are

xxx0A00 + xxx1A10 = 0, (3.59)

xxx0A01 + xxx1[A1 +RA2] = 0. (3.60)

Substitute for xxx1 in (3.59 ) from (3.50 ) yields

xxx0

(
A00 +

1

λ1
(A01RA10)

)
= 0 (3.61)
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where xxx0 = ((1− ρ), xxx00(2),xxx01(2), xxx02(2), . . .) .

Expanding(3.61), the following relations are obtained.

(1− ρ) [a0µ1(1− θ)− λ] + xxx00(2) [b0µ1(1− θ) + µ2] = 0, (3.62)

(1− ρ) [a0µ1θ + a1µ1(1− θ) + λ2]+

xxx00(2) [b0µ1θ + b1µ1(1− θ)− (λ+ µ2)]+

xxx01(2) [b0µ1(1− θ) + µ2] = 0, (3.63)

xxx0(j−1)(2) [b0θ + b1µ1 − (λ+ µ2)] + xxx0j(2) [b0µ1(1− θ) + µ2]+

j−2∑

k=0

xxx0k(2) [bj−k−1θ + bj−kµ1] + λ2x0,j−2(2)+

(1− ρ) [aj−1µ1θ + ajµ1(1− θ)] = 0; j ≥ 2 (3.64)

Solving these we get

xxx00(2) =
(λ− a0µ1(1− θ)) (1− ρ)

b0µ1(1− θ) + µ2
.

xxx0j(2) =
1

b0µ1(1− θ) + µ2

{
[(λ+ µ2)− (b0µ1θ + b1µ1(1− θ))]xxx0(j−1)(2)−

(1− ρ) [aj−1µ1θ + ajµ1(1− θ)]− λ2xxx0,j−2(2)−

j−2∑

k=0

xxx0k(2) [bj−k−1µ1θ + bj−kµ1(1− θ)]

}
, j ≥ 1.

Hence xxx0•(2) =
∞∑
j=0

xxx0j(2) is computed. Also the joint probabilities given by

relations (3.52) to (3.55) are evaluated.

Marginal distribution of P2 customers

Define xxx•j(1) =
∑∞

i=1xxxij(1) and xxx•j(2) =
∑∞

i=0xxxij(2) for j ≥ 0.
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Summing equations (3.52) for i = 2 to ∞ and adding it to (3.54) we obtain

xxx•j(1) = aj(1− ρ) +

j∑

k=0

[aj−k xxx•k(1) + bj−k xxx•k(2)] . (3.65)

Similarly adding (3.53) for i = 2 to∞ and adding the resulting to (3.55) we have

xxx•j(2) = xxx0j(2) + c0 xxx•j(2)

This implies,

xxx•j(2) =
1

1− c0

(
xxx0j(2) +

j−1∑

k=0

cj−k x•k(2)

)
.

Hence the marginal probabilities of P2 customers, while a P2 customer is under

service, is determined once we compute x0j(2) for the desired range of values of j,

which is done through relations (3.62) and (3.64). The marginal probabilities of

P2 customers, while a P1 customer is under service, is determined by substituting

for xxx0j(2) and putting k = 0, 1, 2, ..., j in (3.65) to get

xxx•0(1) =
a0 (1− ρ) + b0 xxx•0(2)

1− a0

xxx•j(1) =

aj (1− ρ) +
j−1∑
k=0

aj−k xxx•k(1) +
j∑

k=0

bj−k xxx•k(2)

1− a0
, j ≥ 1

3.2.2 Waiting time analysis

Expected waiting time in P1 queue

We construct a Markov chain {(N(t), S(t)), t ≥ 0}, where N(t) is the rank of

the (tagged)customer at time t. The rank of a customer is r if he is the rth

customer in the queue at time t. His rank decreases by 1 as the customers ahead

of him leave the system after completing service. Two cases are to be considered

according to whether a P1 or a P2 customer is under service at the time when

the tagged customer joins.
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State space of the Markov chain is {(n, 1) : 1 ≤ n ≤ r}∪{(r, 2)}∪{∆} where

{∆} is the absorbing state indicating that the tagged customer is selected for

service. The corresponding infinitesimal generator matrix of dimension r + 2 is

W =

[
Tr T 0

r

O 0

]
where,

Tr =





−µ2, i = j = 1

µ2, i = 1, j = 2

−µ1, i = j = 2, 3, ..., r + 1

µ1, j = i+ 1, i = 2, 3, ..., r

0, elsewhere

and T 0
r =




0
...

0

µ1




Let αr =
1

xxx(r−1)•

(
xxx(r−1)•(2), xxx(r−1)•(1), 0, ... , 0

)

xxx(r−1)• = xxx(r−1)•(1)+xxx(r−1)•(2) is a row vector of dimension r+1. Then expected

waiting time of the rth tagged customer is −αr T
−1
r e. Hence the expected waiting

time of a P1 customer who does not feedback is

WP1 =
∞∑

r=1

−αrT
−1
r e

Waiting time distribution of low priority/feedback customers

We compute the bounds on the distribution of waiting time if a customer feedback

in the system. Suppose the tagged customer joins as rth(r ≥ 1) in the system.

Upon arrival a tagged customer observes either a free server or the server is

busy with a P1 customer or a P2 customer. The probability of these events are

respectively 1− ρ, xxx(r−1)•(1) and xxx(r−1)•(2). Repeating the argument in section

2.2.2 of chapter 2 to compute the bounds on the distribution of waiting time of

a P2 customer, we arrive at the following:

The distribution of waiting time in the system until the tagged customer feedback
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is

F0 = (1−ρ)exp(µ1)+
∑

r;r≥2

E(r, µ1) xxx(r−1)•(1)+exp(µ2)∗
∑

r;r≥1

E(r, µ1) xxx(r−1)•(2).

Now assume that the tagged customer feedback in the system. Probability for

feedback is θ. We assume that the tagged customer leaves behind i P1 customers

at his feedback instant and join as jth in the P2 line. Then

The distribution of service time of these i P1 customers is

F1(·) =
∑

i

E(i, µ1 − λ) xxxi•(1)

. The probability that there are (j − 1) P2 ahead of tagged customer is

q
′

j = xxx0(j−2)(2) + xxx•(j−1)(1).

The probability that no P1 arrived during the service time of a P2 customer is

p0 =

∫ ∞

0
e−λtµ2e

−µ2tdt.

Therefore the probability that no P1 customer arrived during the service time of

((j − 1) P2) customers is

qj−1 = pj−1
0

Hence the service time distribution of the j P2 customers is

F2(·) =
∑

j

E(j, µ2) q
′

j qj−1.

• The lower bound for the waiting time distribution in the system is

Fminwait = F0 ∗ θF1 ∗ F2.

Let k P1 customers lined up during the service of a P2 customer. The probability

of this event is

pk =

∫ ∞

0

e−λt(λt)k

k!
µ2e

−µ2tdt.
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Waiting time distribution generated by the service of all (j − 1) P2 ahead of the

tagged customer is

F3(·) =
∑

j

[
exp(µ2) ∗

∑

k

E(k, µ1 − λ) pk

]∗(j−1)

q
′

j .

Then

• The distribution of the maximum waiting time of a feedback customer in

the system is

Fmaxwait(·) = F0 ∗ θ F1 ∗ F3 ∗ exp(µ2).

3.2.3 Additional performance measures

1. The probability that all the P1 customers served in a given cycle complete

service without any feedback

Pnfb =
(µ1 − λ1)(1− θ)

µ1 − λ1(1− θ)
.

This is equivalent to seeking the probability that there is no inflow to P2

from P1 during that cycle.

2. The probability that all the P1 customers served in a given cycle feedback

and hence go to P2 line

Pafb =
θ(µ1 − λ1)

(µ1 − λ1θ)

This is the probability for the other extreme of the case of no feedback in

a cycle.

We demonstrate below the impact of fixed values of λ, µ1 and µ2 on Pnfb and

Pafb with variations of θ. In tables 1 and 2, Pnfb and Pafb have identical values

corresponding to θ = 0.5.
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θ 0 0.1 0.2 0.3 0.4 0.5 0.6

Pnfb 1 0.8617 0.7347 0.6176 0.5094 0.4091 0.3158

Pafb 0 0.0714 0.1475 0.2288 0.3158 0.4091 0.5094

Table 3.1: λ1 = 4, µ1 = 13, µ2 = 5

θ 0 0.1 0.2 0.3 0.4 0.5 0.6

Pnfb 1 0.8741 0.7111 0.5895 0.4800 0.3810 0.2909

Pafb 0 0.0640 0.1333 0.2087 0.2909 0.3810 0.4800

Table 3.2: λ1 = 5, µ1 = 13, µ2 = 5

The table clearly shows that as the value of θ increases Pnfb decreases and Pafb

increases, as are expected.

Remark: Putting λ2 = 0, and hence replacing λ1 = λ, the whole problem

reduces to the case where there is no external arrival to P2 line. That is the case

where there is only one type of customers arriving to the system. The above

analysis can be extended to the case of more than one feedback. Dimension of

the Markov chain increases by one for unit increase in the number of feedback

allowed to a customer. This would result in infinite matrices within each phase.

That is to say with a specific number of customers with one feedback, we have

to look at all possible customers with 2 feedback and so on.

3.3 M/M/1 Feedback queue with preemptive priority

Here we analyze the feedback queueing system discussed above for preemptive

service discipline. Arrival of customers form a Poisson stream and service time

are exponentially distributed. The arrival of a P1 customer interrupts the ongoing
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service of a P2 customer and hence the latter joins back as the head of the P2

queue. Feedback is permitted only to P1 customers . Let N1(t) be the number of

P1 customers in the system and N2(t), the number of P2 customers in the queue

at time t. Whenever P1 is nonempty, the head of that line will be under service.

Then Ω = {(N1(t), N2(t)) /t ≥ 0} is a continuous time Markov chain with

state space {0∗} ∪ {(i, j)/i ≥ 0, j ≥ 0}. Here 0∗ represents the state where there

is no customer in the system(neither P1 nor P2) and (0, 0) is the state where a

P2 customer is in service with no P2 customer n wait.

The infinitesimal generator Q̂ has as entries block matrices of infinite dimen-

sion since the number of phase (capacity of waiting line for feedback customers)

is countably infinite. It is given by

Q̂ =




B00 B01

B10 B1 B0

B2 B1 B0

. . .
. . .

. . .




where,

B00 =




−λ λ2

µ2 −(λ+ µ2) λ2

µ2 −(λ+ µ2) λ2

. . .
. . .

. . .




, λ = λ1 + λ2.

B10 =

0∗ 0 1 2 ...

0

1

2
...




µ1(1− θ) µ1θ

µ1(1− θ) µ1θ

µ1(1− θ) µ1θ
. . .

. . .



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B2 =

0 1 2 3 ...

0

1

2
...




µ1(1− θ) µ1θ

µ1(1− θ) µ1θ

µ1(1− θ) µ1θ
. . .

. . .




B01 =

0 1 2 3 ...

0∗

0

1

2
...




λ1

λ1

λ1

. . .




, B0 =

0 1 2 3 ...

0

1

2

3
...




λ1

λ1

λ1

. . .




and

B1 =




−(λ+ µ1) λ2

−(λ+ µ1) λ2

−(λ+ µ1) λ2

. . .
. . .




We now establish the system stability requirement.

Theorem 3.3.1. The condition for stability of the system is

ρ̂ = λ1
µ1

+ λ1 θ+λ2
µ2

< 1. This is necessary and sufficient for system stability.

Proof. By interchanging the level and phase in the model, entries of the ma-

trices B0, B1, and B2 are



88 Queues with Priority and Feedback

(B0)ij =





λ2, i = j = 0, 1, 2, ...

µ1θ, i = 1, 2, 3...; j = i− 1

0, elsewhere

,

(B1)ij =





−(λ+ µ2), i = j = 0

−(λ+ µ1), i = j = 1, 2, ...

λ1, i = 0, 1, 2, ...; j = i+ 1

µ1(1− θ), i = 1, 2, 3...; j = i− 1

0, elsewhere

(B2)ij =

{
µ2, i = j = 0

0, elsewhere
.

Let π = (π0, π1, π2, ...) be the steady-state probability vector of the matrix

B(= B0 + B1 + B2). Solving the relations πB = 0 and πe = 1, we get πj =(
λ1
µ1

)j
π0, j ≥ 1. As we have a level independent QBD model, the system is stable

if πB0e < πB2e, which simplifies to ρ̂ < 1, ρ̂ being
λ1

µ1
+

λ1 θ + λ2

µ2
.

The infinitesimal generator Q̂ constitutes a QBD process with exceptional

boundary behavior and an infinite number of sub-levels. The matrix geometric

form of the steady-state distributions for single server queues with preemptive

priority also investigated by Neuts [52]when number of phases in each level is

finite. An extension of this is done to blocks of infinite size in Miller [49] and is

contained in the following theorem.

Theorem 3.3.2. Let yyy = (yyy0, yyy1, yyy2, . . .) denote the invariant probability

vector for the QBD process, where yyyi is the probability vector of infinite dimension

corresponding to level i . Then the solution for yyy possesses a matrix geometric

structure

yyyi+1 = yyyiR, i ≥ 1. (3.66)
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where the rate matrix R is the minimal non negative solution to

R2B2 +RB1 +B0 = O. (3.67)

The matrix geometric structure in relation (3.66) extended to level ‘0’ is

yyy1 = yyy0

(
1

λ1
B01

)
R. (3.68)

Proof. The relations (3.66) and (3.67) are proved in [49] extending the method

discussed in [52].

From yyyQ̂ = 0, the two boundary equations involving yyy0 are

yyy0B00 + yyy1B10 = 0, (3.69)

yyy0B01 + yyy1[B1 +RB2] = 0. (3.70)

From (3.67) it follows that

R[RB2 +B1] = −B0.

Since B0 = λ1I∞, the matrix R is invertible and the relation (3.70) now simplifies

to (3.68).

Theorem 3.3.3. The infinite matrix R possesses the Toeplitz structure

R =




r0 r1 r2 r3 . . .

0 r0 r1 r2 . . .

0 0 r0 r1 . . .

0 0 0 r0 . . .

. . . . . . . . . . . . . . .



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where rk are computed as

r0 =
(λ+ µ1)−

√
(λ+ µ1)

2 − 4λ1µ1(1− θ)

2µ1(1− θ)
,

r1 =
r20µ1θ + λ2r0√

(λ+ µ1)
2 − 4λ1µ1(1− θ)

,

rk+1 =

µ1θ

[
k∑

i=0
rirk−i

]
+ µ1(1− θ)

[
k∑

i=1
rirk+1−i

]
+ λ2rk

√
(λ+ µ1)

2 − 4λ1µ1(1− θ)
, k ≥ 1.

Proof. The structure of the process revealed by matrices in Q̂ and the inter-

pretation of rate matrix imply the special structure of R. On expanding (3.67),

the following relations are obtained;

µ1(1− θ)r20 − (λ+ µ1) r0 + λ1 = 0.

µ1θ

(
k∑

i=0

rirk−i

)
+ µ1(1− θ)

(
k+1∑

i=0

rirk+1−i

)
+

λ2rk − (λ+ µ1) rk+1 = 0, k ≥ 1.

Solving these, the expressions for rk, k = 0, 1, 2... are established.

The nice structure of R and the computability of its elements enable us to

have simple expression for the system state probability.



M/M/1 Feedback queue with preemptive priority 91

3.3.1 The joint and marginal probabilities

The joint probabilities

The steady-state probability vector yyy = (yyy0, yyy1, yyy2, . . .) of the Markov chain is

computed first. Here yyy0 = (y0, y00, y01, y02, ....), y0 being the probability of idle

server, y00 the probability of providing service to a P2 customer when none is

waiting in either queues and y0j representing the probability that number in the

P2 line is j(j ≥ 1) and no P1 in the system. yyyi = (yi0, yi1, yi2, ....) with yij

representing the probability that the number of P1 customers in the system is i

and number in the P2 line is j for i ≥ 0.

Substituting for yyy1 in (3.69) from (3.68) the following relations are obtained.

y0 = 1− ρ̂; ρ̂ =
λ

µ1
+

(λ1 θ + λ2)

µ2
,

y00 =
1

µ2
[λ− µ1(1− θ)r0] y0,

y01 =
1

µ2

{
[λ+ µ2 − µ1(1− θ)r0] y00 − [µ1θr0 + µ1(1− θ)r1 + λ2] y0

}
,

y0j =
1

µ2

{
[λ+ µ2 − µ1(1− θ)r0] y0,j−1 − [µ1θrj−1 + µ1(1− θ)rj ] y0

−

j−2∑

k=0

[µ1θrj−k−2 + µ1(1− θ)rj−1−k] y0k − λ2y0,j−2

}
, j ≥ 2.

Thus we can compute y0j recursively up to the desired range of values.

Substituting for yyy0 in (3.68) and expanding, y1j for j = 0, 1, 2, ... are computed

as

y10 = (1− ρ̂) r0,

y11 = (1− ρ̂) r1 + y00 r0,

y1j = (1− ρ̂) rj +
j−1∑
k=0

y0k rj−1−k, j = 2, 3, ...
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Now the relation (3.66) gives

yij =

j∑

k=0

yi−1,k rj−k, i > 1.

The marginal probabilities

Next we compute the marginal probabilities of the system state. These, in turn

help us compute the waiting time distribution. Denote the marginal proba-

bilities of the number of high priority (P1) customers in the system be yyyi• =
∑∞

j=0 yij , i ≥ 0. Then

yyyi• =
∞∑

j=0

j∑

k=0

yi−1,k rj−k =




∞∑

j=0

yi−1,j



(

∞∑

i=0

ri

)
= yyy(i−1)• ρ̂1.

Remark: As an arrival of a P1 customer preempts a P2 customer in service,

the system behaves as an M/M/1 queue as far as marginal probabilities of P1

customers are concerned. Hence

yyyi• = ρ̂i1(1− ρ̂1), i ≥ 0; ρ̂1 =
λ1

µ1

The marginal distribution of P2 customers is computed numerically from

yyy•j =
∞∑

i=0

yij , j ≥ 0.

3.3.2 Waiting time analysis

Waiting time of high priority customers

As an arriving P1 customer preempts the P2 customer, if any under service, his

waiting time distribution is same as in the case of an M/M/1 queue. Hence

expected waiting time of P1 customer in the system is

E(WP1) =
ρ̂1

λ (1− ρ̂1)
=

1

µ1 − λ1
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Waiting time of feedback customers

Expected waiting time of a feedback customer is the sum of the following: ex-

pected busy cycle generated by the high priority customers left behind by this

customer when he completed own service while in P1 queue, the sum of the ex-

pected busy cycles generated at each preemption while being served P2 line and

expected time taken to complete service without a preemption. We get

E(WP2) =
1

µ1

ρ̂1

(1− ρ̂1)
2 +

1

µ2

1

(1− ρ̂1)
E(P2); E(P2) =

∞∑

r=1

r yyy•r





Chapter 4

A Multi-server Priority Queue

with Preemption in

Crowdsourcing

This chapter does not appear to have any connection with contents of chapters

2 and 3. Nevertheless, the theme discussed here is also priority queues; with the

provision that the two priority queues are externally generated. High priority

customers have finite capacity waiting space whereas low priority customers have

waiting room of infinite capacity. We discuss a phenomenon called ‘crowdsourc-

ing’ which is a common feature in supermarkets and shopping malls. This notion

was introduced in to queues for the first time by Chakravarthy and Dudin [11].

In this chapter we analyze the impact of preemptive priority in the context

of crowdsourcing. Crowdsourcing coined from ‘crowd’ and ‘outsourcing’ accord-

ing to Howe [25] is the act of a company or institution taking a function once

Some results in this chapter are included in the following paper.

A. Krishnamoorthy, Dhanya Shajin, Manjunath A. S.: On a multi-server priority queue

with preemption in crowdsourcing (communicated).

95
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performed by employees and outsourcing it to an undefined (and generally large)

network of people in the form of an open call. For instance a store may have two

type deliveries-one direct and other over phone. Crowdsourcing happens when

the store decides to serve indirect customers through direct customers who are

willing to serve, the store being main server and willing customers being servers

for the store. For a discussion on the crowdsourcing queueing system one may

refer to Chakravarthy and Dudin [11]. This is the first reported work on crowd-

sourcing modelled in the queueing theory context. The content of this chapter

differs from that of Chakravarthy and Dudin in the fact that the former is on

preemptive priority discipline. Thus several of system performance measures in

the two cases differ significantly. Even the stability condition differ significantly

in the two cases.

The rest of this chapter is arranged as follows. In section 1 the model under

study is described. Section 2 provides the steady-state analysis of the model,

including key performance measures. Waiting time analysis of customers is dis-

cussed in section 3. Numerical illustrations are presented in section 4.

4.1 Mathematical formulation

We consider a multi-server priority model with two types of customers P1 and

P2 to which customers arrive according to Poisson process of rates λ1 and λ2

respectively. P1 has priority over P2, which is of preemptive nature. P1 and P2

customers are to be served by one of c servers and the service time are assumed to

be exponentially distributed with respective parameters µ1 and µ2. Services are

offered in the order of the arrivals of the customers. P2 customers may be served

by a P1 customer also who has been just served out, provided he is available to act

as a server. At the time of opting to serve there should be at least one P2 customer

waiting to get a service. We assume that a served P1 customer will be available

to serve a waiting P2 customer with probability p, 0 ≤ p ≤ 1. With probability
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q = 1−p, the served P1 customer will leave the system. If a P1 customer decides

to serve a P2 customer, then that P2 customer is immediately removed from the

system as the system no longer needs to track that customer. P2 customers are

taken for service one at a time from the head of the queue whenever the queue of

P1 customers is found to be empty at a service completion epoch. The service of

such customers is according to a preemptive service discipline, that is the arrival

of a P1 customer interrupts the ongoing service of any one of P2 customers if

any in service, and hence this preempted customer joins back as the head of the

P2 queue. P1 customers have a limited waiting space L, 1 ≤ L < ∞, while P2

customers have unlimited waiting space.

Let N1(t), S(t) and N2(t) be the number of P1 customers in the system, the

number of servers busy with P2 customers and the number of P2 customers in

the queue respectively. Then Ω = {(N2(t), S(t), N1(t)), t ≥ 0} is a continuous

time Markov chain (CTMC) with state space

{(0, 0, k)/0 ≤ k ≤ c+ L}∪ {(i, 0, k)/i ≥ 1, c ≤ k ≤ c+ L}∪

{(0, j, k)/1 ≤ j ≤ c, 0 ≤ k ≤ c− j}∪ {(i, j, k)/i ≥ 1, 1 ≤ j ≤ c, k = c− j} .

For convenience we group the set of states as follows.

0̂ = {(0, 0, k)/0 ≤ k ≤ c+ L}∪ {(0, j, k)/1 ≤ j ≤ c, 0 ≤ k ≤ c− j}

î = {(i, 0, k)/i ≥ 1, c ≤ k ≤ c+ L}∪ {(i, j, k)/i ≥ 1, 1 ≤ j ≤ c, k = c− j} ,

for i ≥ 1.

The level 0̂ has c+ L+ 1+ c(c+1)
2 states while the level î, i ≥ 1 has c+ L+ 1
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states. The infinitesimal generator of this CTMC is a LIQBD and is of the form

Q =




B1 B0

B2 A1 A0

B3 A2 A1 A0

A3 A2 A1 A0

A3 A2 A1 A0

. . .
. . .

. . .
. . .




. (4.1)

Note that the CTMC at hand is not a QBD. At a later stage we adopt a procedure

to make it a QBD. Define H
(i2,j2)
(i1,j1)

as the transition rates from (i1, j1) → (i2, j2)

where i1(i2) represents the number of P2 customers in service and j1(j2) repre-

sents the number of P1 customers in the system. Then the transition rates of

matrices appearing in Q are as follows:

B
(i2,j2)
0(i1,j1)

=





λ2 i2 = i1 = 0, j2 = j1, c ≤ j1 ≤ c+ L

λ2 i2 = i1, 1 ≤ i1 ≤ c, j2 = j1, j1 = c− i1

λ1 i2 = i1 − 1, 1 ≤ i1 ≤ c, j2 = j1 + 1, j1 = c− i1

0 otherwise,

B
(i2,j2)
1(i1,j1)

=





λ1 i2 = i1 = 0, j2 = j1 + 1,

0 ≤ j1 ≤ c + L − 1

λ1 i2 = i1, 1 ≤ i1 ≤ c − 1,

j2 = j1 + 1, 0 ≤ j1 ≤ c − i1 − 1

min{j1, c}µ1 i2 = i1 = 0, j2 = j1 − 1,

1 ≤ j1 ≤ c + L

j1µ1 i2 = i1, 1 ≤ i1 ≤ c − 1,

j2 = j1 − 1, 1 ≤ j1 ≤ c − i1

i1µ2 i2 = i1 − 1, 1 ≤ i1 ≤ c,

j2 = j1, 0 ≤ j1 ≤ c − i1

λ2 i2 = i1 + 1, 0 ≤ i1 ≤ c − 1,

j2 = j1, 0 ≤ j1 ≤ c − i1 − 1

−(λ1 + λ2) i2 = i1 = 0, j2 = j1 = 0

−(λ1 + λ2 + min{j1, c}µ1) i2 = i1 = 0, j2 = j1,

1 ≤ j1 ≤ c + L − 1

−(λ2 + cµ1) i2 = i1 = 0, j2 = j1 = c + L

−(λ1 + λ2 + j1µ1 + i1µ2) i2 = i1, 1 ≤ i1 ≤ c

j2 = j1, 0 ≤ j1 ≤ c − i1

0 otherwise,
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B
(i2,j2)
2(i1,j1)

=





cpµ1 i2 = i1 = 0, j2 = j1 − 1, c ≤ j1 ≤ c+ L

j1qµ1 i2 = i1 + 1, 0 ≤ i1 ≤ c− 1, j2 = j1 − 1, j1 = c− i1

j1pµ1 i2 = i1, 1 ≤ i1 ≤ c− 1, j2 = j1 − 1, j1 = c− i1

i1µ2 i2 = i1, 1 ≤ i1 ≤ c, j2 = j1, j1 = c− i1

0 otherwise,

B
(i2,j2)
3(i1,j1)

=

{
j1pµ1 i2 = i1 + 1, 0 ≤ i1 ≤ c− 1, j2 = j1 − 1, j1 = c− i1

0 otherwise,

A
(i2,j2)
0(i1,j1)

=





λ2 i2 = i1 = 0, j2 = j1, c ≤ j1 ≤ c+ L

λ2 i2 = i1, 1 ≤ i1 ≤ c, j2 = j1, j1 = c− i1

λ1 i2 = i1 − 1, 1 ≤ i1 ≤ c, j2 = j1 + 1, j1 = c− i1

0 otherwise,

A
(i2,j2)
2(i1,j1)

=





cpµ1 i2 = i1 = 0, j2 = j1 − 1, c+ 1 ≤ j1 ≤ c+ L

j1qµ1 i2 = i1 + 1, 0 ≤ i1 ≤ c− 1, j2 = j1 − 1, j1 = c− i1

i1µ2 i2 = i1, 1 ≤ i1 ≤ c, j2 = j1, j1 = c− i1

0 otherwise,

A
(i2,j2)
3(i1,j1)

=

{
j1pµ1 i2 = i1 + 1, 0 ≤ i1 ≤ c− 1, j2 = j1 − 1, j1 = c− i1

0 otherwise,

A
(i2,j2)
1(i1,j1)

=





λ1 i2 = i1 = 0, j2 = j1 + 1,

c+ 1 ≤ j1 ≤ c+ L− 1

cqµ1 i2 = i1 = 0, j2 = j1 − 1,

c+ 1 ≤ j1 ≤ c+ L

−(λ1 + λ2 + cµ1) i2 = i1 = 0, j2 = j1,

c ≤ j1 ≤ c+ L− 1

−(λ2 + cµ1) i2 = i1 = 0, j2 = j1 = c+ L

−(λ1 + λ2 + j1µ1 + i1µ2) i2 = i1, 1 ≤ i1 ≤ c, j2 = j1,

j1 = c− i1

0 otherwise.
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Rearranging the generator Q given in (4.1) by combining the set of states as

ĩ = {2̂i− 1, 2̂i}, i ≥ 1,

this model can be studied as QBD process with the generator Q̃

Q̃ =




B1 B̃0

B̃2 Ã1 Ã0

Ã2 Ã1 Ã0

. . .
. . .

. . .




(4.2)

where

B̃0 =
(

B0 O
)
, B̃2 =

(
B2

B3

)
, Ã0 =

(
O O

A0 O

)
, Ã1 =

(
A1 A0

A2 A1

)
,

and Ã2 =

(
A3 A2

O A3

)
.

4.2 Steady-state analysis

We proceed with the steady-state analysis of the queueing system under study.

The first step in this direction is to look for the condition for stability.

4.2.1 Stability condition

Now we examine the stability of the system. Define Ã = Ã0 + Ã1 + Ã2. Then

Ã =

(
A1 +A3 A0 +A2

A0 +A2 A1 +A3

)

is the infinitesimal generator of the finite state continuous time Markov chain.

Let η be the steady-state probability vector of Ã. Then

ηÃ = 0, ηe = 1. (4.3)
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Ã is a circulant matrix and hence the vector η is of the form

η =
(π
2

π

2

)
(4.4)

where π satisfies

πA = 0, πe = 1 (4.5)

with A = A0 +A1 +A2 +A3.

From (4.5) we get

πi(j) =





1
j!

(
λ1
µ1

)j
πc(0) 0 ≤ i ≤ c− 1, j = c− i

(
1
c

)j−c 1
c!

(
λ1
µ1

)j
πc(0) i = 0, c+ 1 ≤ j ≤ c+ L

(4.6)

where

πc(0) =

[
1 +

c−1∑

i=1

1

i!

(
λ1

µ1

)i

+
1

c!

(
λ1

µ1

)c L∑

i=0

(
λ1

cµ1

)i
]−1

. (4.7)

The following theorem provides the stability condition of the queueing system

under study.

Theorem 4.2.1. The system under study is stable if and only if

λ2 − pλ1a < cpµ1a1 + µ2a2 (4.8)

where

a =
c−1∑
i=0

1
i!

(
λ1
µ1

)i
πc(0),

a1 =
1
c!

(
λ1
µ1

)c L∑
i=1

(
λ1
cµ1

)i
πc(0),

a2 =
c−1∑
i=0

c−i
i!

(
λ1
µ1

)i
πc(0)

with πc(0) as given in (4.7).

Proof. The queueing system under study with the QBD type generator given

in (4.2) is stable if and only if (see Neuts [52]) the left drift rate exceeds the right
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drift rate.

That is,

ηÃ0e < ηÃ2e. (4.9)

From (4.4) and (4.5) we have

ηÃ0e =
πA0e

2
(4.10)

and

ηÃ2e =
πA2e

2
+ πA3e. (4.11)

Equation (4.6) yields the following

πA0e = λ2 + λ1

c−1∑

i=0

1

i!

(
λ1

µ1

)i

πc(0) (4.12)

πA3e = pλ1

c−1∑

i=0

1

i!

(
λ1

µ1

)i

πc(0) (4.13)

πA2e =

[
cpµ1

1

c!

(
λ1

µ1

)c L∑

i=1

(
λ1

cµ1

)i

+ qλ1

c−1∑

i=0

1

i!

(
λ1

µ1

)i

+

µ2

c−1∑

i=0

c− i

i!

(
λ1

µ1

)i
]
πc(0) (4.14)

From relations (4.13) and (4.14) we get

πA2e+ 2πA3e =

[
(p+ 1)λ1

c−1∑

i=0

1

i!

(
λ1

µ1

)i

+ µ2

c−1∑

i=0

c− i

i!

(
λ1

µ1

)i

+

cpµ1
1

c!

(
λ1

µ1

)c L∑

i=1

(
λ1

cµ1

)i
]
πc(0). (4.15)

Using (4.9), (4.12) and (4.15) we obtain the stated result.

How the stability condition looks like for a single server queue, is given in
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Theorem 4.2.2. In the case of a single server, the queueing system under

study is stable if and only if the following condition is satisfied

λ2 < pµ1 + (µ2 − pµ1)

(
1−

λ1

µ1

)[
1−

(
λ1

µ1

)L+2
]−1

. (4.16)

Proof. When c = 1, the steady-state equations in (4.5) reduce to

−(λ1 + µ1)π0(1) + µ1π0(2) + λ1π1(0) = 0,

λ1π0(i− 1)− (λ1 + µ1)π0(i) + µ1π0(i+ 1) = 0, 2 ≤ i ≤ L,

λ1π0(L)− µ1π0(L+ 1) = 0,

−λ1π1(0)− µ1π0(1) = 0,

(4.17)

subject to the normalizing condition

L+1∑

i=1

π0(i) + π1(0) = 1. (4.18)

Solving the set of equations in (4.17) we get

π0(i) =

(
λ1

µ1

)i

π1(0), 1 ≤ i ≤ L+ 1 (4.19)

Use (4.19) and the normalizing condition (4.18) to obtain

π1(0) =

(
1−

λ1

µ1

)[
1−

(
λ1

µ1

)L+2
]−1

. (4.20)

Using the relations

πA0e = λ2 + λ1π1(0)

πA2e

2
+ πA3e =

1

2
[pµ1 + λ1π1(0)− pµ1π1(0) + µ2π1(0)]

and substituting the expression for π1(0) we get stated result.
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Remark:

Under the assumption that λ1 < µ1, when L goes to ∞,

π1(0)→

(
1−

λ1

µ1

)
.

Then the stability condition reduces to

λ2 − pλ1 < µ2

(
1−

λ1

µ1

)
.

4.2.2 Steady-state probability vector

Let y = (y0,y1,y2, ...) be the steady-state probability vector of the generator Q̃.

That is,

yQ̃ = 0, and ye = 1. (4.21)

Note that y0 = x0 and yi = (x2i−1,x2i) for i ≥ 1 where x = (x0,x1,x2, ...) being

the steady-state probability vector of Q.

The vectors are partitioned as

x0 = {x0(0, k)/0 ≤ k ≤ c+ L}∪ {x0(j, k)/1 ≤ j ≤ c, 0 ≤ k ≤ c− j} and

xi = {xi(0, k)/c ≤ k ≤ c+ L}∪ {xi(j, k)/1 ≤ j ≤ c, k = c− j} for i ≥ 1.

Under the stability condition given in (4.8) the steady-state probability vector

y is obtained as

yi = y1R
i−1, i ≥ 2

where R is the minimal non-negative solution to the matrix quadratic equation

R2Ã2 +RÃ1 + Ã0 = O (4.22)

and the boundary equations are given by

(
y0 y1

)( B̃1 B̃0

B̃2 Ã1 +RÃ2

)
= 0.
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The normalizing condition of (4.21) results in

y0e+ y1(I −R)−1e = 1.

The matrix R of the equation (4.22) is given by

R =

(
O O

R1 R2

)
. (4.23)

Computation of R matrix

Logarithmic reduction algorithm developed by Latouche and Ramaswami [43]

has extremely fast quadratic convergence. This algorithm is considered to be the

most efficient one. We will list only the main steps involved in the logarithmic

reduction algorithm.

Step 0: H ← (−A1)
−1A0,L ← (−A1)

−1A2,G = L and T = H.

Step 1:

U = HL+ LH

M = H2

H ← (I − U)−1M

M← L2

L ← (I − U)−1M

G ← G + T L

T ← T H

Continue Step 1: until ||e− Ge||∞ < ǫ.

Step 2: R = −A0(A1 +A0G)
−1.

Define the (c+ L+ 1)-dimensional vector ξ as

ξ =
∞∑

i=1

yie = y1(I −R)−1(e⊗ I) = (x1 x2)(I −R)−1(e⊗ I). (4.24)



106 On a multi-server priority queue with preemption in crowdsourcing

Using the form of R given in (4.23), we have ‘

ξ = (x1, x2) (I −R)−1

(
I

I

)

= (x1, x2)

(
I 0

−R1 I −R2

)−1(
I

I

)

= (x1, x2)

(
I 0

(I −R2)
−1R1 (I −R2)

−1

)(
I

I

)

= (x1, x2)

(
I

(I −R2)
−1(I +R1)

)

= x1 + x2(I −R2)
−1(I +R1).

Partition ξ = (ξ0, ξ1, ..., ξc) as

ξ0 = (ξ(0, c), ξ(0, c+ 1), ..., ξ(0, c+ L)) and

ξj = ξ(j, c− j), 1 ≤ j ≤ c.

Note that ξ(j, k) gives the steady-state probability that j servers are busy with

P2 customers and there are k P1 customers in the system.

4.2.3 System performance measures

1. Probability that the system is idle is,

Pidle = x0(0, 0)

2. Probability that j servers are busy is,

bj =





x0(0, 0) j = 0
j∑

k=0

x0(k, j − k) 1 ≤ j ≤ c− 1

∞∑
i=0

[
c+L∑
k=c

xi(0, k) +
c∑

k=1

xi(k, c− k)

]
j = c
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3. Probability that j servers are busy with P1 customers is,

b
(1)
j =





x0(0, 0) +
c∑

k=1

x0(k, 0) +
∞∑
i=1

xi(c, 0) j = 0

x0(0, j) +
c−j∑
k=1

x0(k, j) +
∞∑
i=1

xi(c− j, j) 1 ≤ j ≤ c− 1

∞∑
i=0

c+L∑
k=c

xi(0, k) j = c

4. Probability that j servers are busy with P2 customers is,

b
(2)
j =





c+L∑
k=0

x0(0, k) +
∞∑
i=1

c+L∑
k=c

xi(0, k) j = 0

c−j∑
k=0

x0(j, k) +
∞∑
i=1

xi(j, c− j) 1 ≤ j ≤ c

5. Probability that an arriving customer is lost due to lack of space in buffer

is,

Plost = x0(0, c+ L) + ξ(0, c+ L)

6. Mean number of P1 customers in the queue is,

µN1 =
∞∑

i=0

c+L∑

k=c+1

(k − c)xi(0, k)

7. Mean number of P2 customers in the queue is,

µN2 =
∞∑

i=1

i



c+L∑

k=c

xi(0, k) +
c∑

j=1

xi(j, c− j)




8. Rate of P2 customers leaving with P1 customers denoted by RP2→P1 upon

service completion of P1 customers is,

RP2→P1 = pµ1

∞∑

i=1



c+L∑

k=c

cxi(0, k) +

c−1∑

j=1

(c− j)xi(j, c− j)






108 On a multi-server priority queue with preemption in crowdsourcing

9. Rate of P2 customers leaving the system denoted by RP2→S upon getting

service by one of c−servers is,

RP2→S = µ2




c∑

j=1

c−j∑

k=0

jx0(j, k) +

∞∑

i=1

c∑

j=1

jxi(j, c− j)




10. Rate of P2 customers preempted by P1 customers is,

RP2→P = λ1

∞∑

i=0

c∑

j=1

xi(j, c− j)

11. Probability of P2 customers leaving with P1 customers upon service com-

pletion of P1 customers is,

PP2→P1 =
pµ1

λ2



c+L∑

k=c

cξ(0, k) +
c∑

j=1

(c− j)ξ(j, c− j)




12. Probability that P2 customers leaving the system upon getting service by

one of c−servers is,

PP2→S =
µ2

λ2

c∑

j=1

[
c−j∑

k=0

jx0(j, k) + jξ(j, c− j)

]

13. Probability that a P2 customer is preempted by P1 customer is,

PP2→P =
λ1

λ2

c∑

j=1

[x0(j, c− j) + ξ(j, c− j)]

4.3 Waiting time analysis

4.3.1 Waiting time of an admitted P1 customer

We assume that all servers are busy with P1 customers and less than L customers

are waiting in P1 queue. For computing expected waiting time of an admitted
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P1 customer in the queue, we consider the Markov chain {M(t), t ≥ 0} where

M(t) is the rank of the admitted P1 customer in the queue. We arrange the state

space as {1, 2, ..., L} ∪ {∆} where {∆} is the absorbing state denoting that the

admitted P1 customer is taken for service. The infinitesimal generator is of the

form

W =

(
T T0

0 0

)

where

T =




−cµ1

cµ1 −cµ1

. . .
. . .

cµ1 −cµ1




,T0 =




cµ1

0
...

0




.

Thus waiting time of an admitted P1 customer follows a Phase type distribution

with representation (α, T ) of order L with the initial probability vector α =

(α1, α2, ..., αL) where

αj =
1

1− Plost
(x0(0, c+ j − 1) + ξ(0, c+ j − 1).

That is, αj , 1 ≤ j ≤ L is the probability that an admitted P1 customer finds

(j−1) P1 customers waiting in the queue with c servers busy with P1 customers.

Since P1 customers have preemptive priority over P2 customers, there is no need

to keep track of the number of P2 customers in the queue and future arrivals of

any type.

After some algebra we get the expected waiting time of an admitted P1 cus-

tomer in the queue as

µ
(1)
W = −αT (−1)e =

1

cµ1
(α1 + 2α2 + . . .+ LαL).

4.3.2 Waiting time of P2 customers

Now we consider the system with preemptive priority. Then the probability for

an arbitrary P2 in service being preempted is
λ1

i
when there are i P2 customers
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in service. In this case we have the infinitesimal generator of the form

W =




B∗
1 B∗

0

B2 A∗
1 A∗

0

B3 A2 A∗
1 A∗

0

A3 A2 A∗
1 A∗

0

. . .
. . .

. . .
. . .




where

B
∗(i2,j2)
1(i1,j1)

=





λ1 i2 = i1 = 0, j2 = j1 + 1,

0 ≤ j1 ≤ c + L − 1

λ1 i2 = i1, 1 ≤ i1 ≤ c − 1,

j2 = j1 + 1, 0 ≤ j1 ≤ c − i1 − 1

min{j1, c}µ1 i2 = i1 = 0, j2 = j1 − 1,

1 ≤ j1 ≤ c + L

j1µ1 i2 = i1, 1 ≤ i1 ≤ c − 1, j2 = j1 − 1,

1 ≤ j1 ≤ c − i1

i1µ2 i2 = i1 − 1, 1 ≤ i1 ≤ c, j2 = j1,

0 ≤ j1 ≤ c − i1

λ2 i2 = i1 + 1, 0 ≤ i1 ≤ c − 1,

j2 = j1, 0 ≤ j1 ≤ c − i1 − 1

−(λ1 + λ2) i2 = i1 = 0, j2 = j1 = 0

−(λ1 + λ2 + min{j1, c}µ1) i2 = i1 = 0, j2 = j1,

1 ≤ j1 ≤ c + L − 1

−(λ2 + cµ1) i2 = i1 = 0, j2 = j1 = c + L

−(λ1 + λ2 + j1µ1 + i1µ2) i2 = i1, 1 ≤ i1 ≤ c − 1, j2 = j1,

0 ≤ j1 ≤ c − i1 − 1

−(
λ1
i1

+ λ2 + j1µ1 + i1µ2) i2 = i1, 1 ≤ i1 ≤ c, j2 = j1,

j1 = c − i1

0 otherwise,

B
∗(i2,j2)
0(i1,j1)

=





λ2 i2 = i1 = 0, j2 = j1, c ≤ j1 ≤ c+ L

λ2 i2 = i1, 1 ≤ i1 ≤ c, j2 = j1, j1 = c− i1
λ1
i1

i2 = i1 − 1, 1 ≤ i1 ≤ c, j2 = j1 + 1, j1 = c− i1

0 otherwise,

A
∗(i2,j2)
0(i1,j1)

=





λ2 i2 = i1 = 0, j2 = j1, c ≤ j1 ≤ c+ L

λ2 i2 = i1, 1 ≤ i1 ≤ c, j2 = j1, j1 = c− i1
λ1
i

i2 = i1 − 1, 1 ≤ i1 ≤ c, j2 = j1 + 1, j1 = c− i1

0 otherwise,
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A
∗(i2,j2)
1(i1,j1)

=





λ1 i2 = i1 = 0, j2 = j1 + 1,

c+ 1 ≤ j1 ≤ c+ L− 1

cqµ1 i2 = i1 = 0, j2 = j1 − 1,

c+ 1 ≤ j1 ≤ c+ L

−(λ1 + λ2 + cµ1) i2 = i1 = 0, j2 = j1,

c ≤ j1 ≤ c+ L− 1

−(λ2 + cµ1) i2 = i1 = 0, j2 = j1 = c+ L

−(λ1
i
+ λ2 + j1µ1 + i1µ2) i2 = i1, 1 ≤ i1 ≤ c,

j2 = j1, j1 = c− i1

0 otherwise

The matrices B2, B3, A2, A3 are given in section 4.1.

Let ỹ be the steady-state probability vector of the generator

W̃ =




B∗
1 B̃∗

0

B̃2 Ã∗
1 Ã∗

0

Ã2 Ã∗
1 Ã∗

0

. . .
. . .

. . .




where

B0 =
(

B∗
0 O

)
, A0 =

(
O O

A∗
0 O

)
, A1 =

(
A∗

1 A∗
0

A2 A∗
1

)

and B̃2, Ã2 are given in section 4.1. Then

ỹW̃ = 0 and ỹe = 1. (4.25)

Here the stability condition is obtained as

λ2 + λ1d < (p+ 1)µ1d1 + cpµ1d2 + µ2d3 (4.26)

where

d =
c∑

i=1

ςi(c− i)

i
di =

c+L∑
i=c+1

ς0(i)

d2 =
c−1∑

i=0

(c− i)ςi(c− i) d3 =
c∑

i=1
iςi(c− i)
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with (ςi(j) denote the probability that i P2 customers in service and j P1 cus-

tomers in the system)

ςi(j) =





1

j!

(
λ1

µ1

)j c∏

k=i+1

1

k
ςc(0) 0 ≤ i ≤ c− 1, j = c− i

(
1

c!

)2(λ1

µ1

)j (1

c

)j−c

ςc(0) i = 0, c+ 1 ≤ j ≤ c+ L

and

ςc(0) =

[
1 +

(
1

c!

)2(λ1

µ1

)c L∑

i=1

(
λ1

cµ1

)i

+

c−1∑

i=0

(
1

(c− i)!

)(
λ1

µ1

)c−i c∏

k=i+1

1

k

]−1

.

Under the stability condition given in (4.26) the steady-state probability vector

ỹ is obtained as

ỹi = ỹ1ℜ
i−1, i > 1 (4.27)

where ℜ is the minimal non-negative solution to the matrix quadratic equation:

ℜ2Ã2 + ℜÃ
∗
1 + Ã∗

0 = O

with boundary equations

ỹ0B
∗
1 + ỹ1B̃2 = 0,

ỹ0B̃
∗
0 + ỹ1[Ã

∗
1 + ℜÃ2] = 0

subject to the normalizing condition

ỹ0e+ ỹ1(I −ℜ)
−1e = 1. (4.28)

Note that ỹ0 = x̃0 and ỹi = (x̃2i−1, x̃2i) for i ≥ 1 where x̃i, i ≥ 0 denote

steady-state probability vector of W.

An arriving P1 customer interrupt the service with equal probability, of any

of the P2 customers in service. Using this assumption we compute the following

performance measures:
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Waiting time of P2 customer in the queue

For computing the expected waiting time of a P2 customer who joins as the rth

customer, r(> 0), in the queue since the time he joins (joining time taken as time

origin) until taken for service for the first time. We consider the Markov chain

{(N(t), N2(t), N1(t)), t ≥ 0} where N(t) is the rank of the tagged P2 customer,

N2(t) is the number of servers busy with P2 customers and N1(t) is the number

of P1 customers in the system at time t. Rank of the tagged customer decreases

to 1 as the customers ahead of him leave the system after completing service

and increases to r + c due to preemption. Thus the state space of the process is

{(i, j, k)/1 ≤ i ≤ r + c, 1 ≤ j ≤ c, k = c − j} ∪ {(i, 0, k)/1 ≤ i ≤ r + c, c ≤ k ≤

c+L}∪{∆}∪{∆∗} where {∆} is the absorbing state indicating that the tagged

customer first selected for service and {∆∗} represents that the P2 customer leave

the system with a P1 customer. Thus the infinitesimal generator W
(2)
q (r) is of

the form

W (2)
q (r) =

(
T
(2)
q t0 t0∗

0 0 0

)

where

T (2)
q =




F1 F2 F3

F0 F1 F2 F3

. . .
. . .

. . .
. . .

F0 F1 F2 F3

F0 F1 F2

F0 F1




, t0 =




0

0
...

0

f

f∆




, t0∗ =




0

0
...

0

0

f∆∗




.

Define D
(k,m)
(i,j) , D = F0, F1, F2, F3 as the transition rates from (i, j) → (k,m)

where i(k) represents the number of P2 customers in service and j(m) denotes

the number of P1 customers in the system.

F
(k,m)
0(i,j) =

{
λ1
i

k = i− 1,m = j + 1, 1 ≤ i ≤ c, j = c− i

0 otherwise
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F
(k,m)
1(i,j) =





λ1 k = i = 0,m = j + 1, c ≤ j ≤ c+ L− 1

cqµ1 k = i = 0,m = j − 1, c+ 1 ≤ j ≤ c+ L

0 otherwise

F
(k,m)
2(i,j) =





cpµ1 k = i = 0,m = j − 1, c+ 1 ≤ j ≤ c+ L

jqµ1 k = i+ 1,m = j − 1, 0 ≤ i ≤ c− 1, j = c− i

iµ2 k = i,m = j, 1 ≤ i ≤ c, j = c− i

0 otherwise

F
(k,m)
3(i,j) =

{
jpµ1 k = i+ 1,m = j − 1, 0 ≤ i ≤ c− 1, j = c− i

0 otherwise

f(i,j) =

{
jpµ1 0 ≤ i ≤ c− 1, j = c− i

0 otherwise

f∆(i,j) =

{
jqµ1 + iµ2 0 ≤ i ≤ c, j = c− i

0 otherwise

f∆∗(i,j) =





cpµ1 i = 0, c ≤ j ≤ c+ L

jpµ1 1 ≤ i ≤ c− 1, j = c− i

0 otherwise

.

Expected waiting time of the tagged P2 customer in the queue just before taken

for service is given by

µ
(2)
Wq

= −ψ
(
T (2)
q

)(−1)
e

where ψ = (0, ...,0,ψr,0, ...,0) is the initial probability vector having (r+ c)(c+

L+ 1) elements with

ψr =
{(x̃r−1(0, k)), c ≤ k ≤ c+ L}∪ {(x̃r−1(j, k)), 1 ≤ j ≤ c, k = c− j}

x̃r−1e
.
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Waiting time of a P2 customer in the system

We compute the expected waiting time of a tagged P2 customer in the system.

Let r be the rank of the P2 customer in the queue. Preemption of P2 customer

by P1 customer has to be considered which, in fact, can be arbitrarily large for

any sample P2 customer. So first we give a bound on this and proceed. Here we

consider the Markov chain {(N(t), N2(t), N1(t)), t ≥ 0} where N(t) is the rank of

the tagged P2 customer, N2(t) is the number of servers busy with P2 customers

and N1(t) is the number of P1 customers in the system at time t. Thus the state

space of the process is {(0, j, k)/1 ≤ j ≤ c, 0 ≤ k ≤ c − j} ∪ {(0, 0, k)/0 ≤ k ≤

c + L} ∪ {(i, j, k)/1 ≤ i ≤ r + c, 1 ≤ j ≤ c, k = c − j} ∪ {(i, 0, k)/1 ≤ i ≤

r + c, c ≤ k ≤ c + L} ∪ {∆} ∪ {∆0} ∪ {∆1} ∪ ... ∪ {∆n}, n ≥ 0 where {∆} is

the absorbing state which means the tagged P2 customer leave the system with a

P1 customer and {∆i} indicates that the tagged customer complete service with

exactly i preemption. Thus the infinitesimal generator W
(2)
s (r) is of the form.

W (2)
s (r) =

(
T
(2)
s t̃ t̃0 t̃1 ... t̃n

0 0 0 0 ... 0

)

where

T (2)
q =




F1 F2 F3

F0 F1 F2 F3

. . .
. . .

. . .
. . .

F0 F1 F2 F3

F0 F1 H2

H0 H1




, t̃ =




0

0
...

0

h

0




, t̃i =




0

0
...

0

0

hi




, i ≥ 0.

Define E
(k,m)
(i,j) , E = H0, H1, H2 as the transition rates from (i, j)→ (k,m) where

i(k) represents the number of P2 customers in service and j(m) denotes the

number of P1 customers in the system.

H
(k,m)
0(i,j) =

{
λ1
i

k = i− 1,m = j + 1, 1 ≤ i ≤ c, j = c− i

0 otherwise
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H
(k,m)
1(i,j) =





λ1 k = i = 0,m = j + 1, 0 ≤ j ≤ c+ L− 1

λ1 k = i,m = j + 1, 1 ≤ i ≤ c− 1, 0 ≤≤ c− i− 1

λ2 k = i+ 1,m = j, 1 ≤ i ≤ c− 1, 0 ≤ j ≤ c− i− 1

minj, cµ1 k = i = 0,m = j − 1, 1 ≤ j ≤ c+ L

jµ1 k = i,m = j − 1, 1 ≤ i ≤ c− 1, 1 ≤ j ≤ c− i

(i− 1)µ2 k = i− 1,m = j, 2 ≤ i ≤ c, 0 ≤ j ≤ c− i

0 otherwise

H
(k,m)
2(i,j) =





jqµ1 k = i+ 1,m = j − 1, 0 ≤ i ≤ c− 1, j = c− i

iµ2 k = i,m = j, 1 ≤ i ≤ c, j = c− i

0 otherwise

h(i,j) =





cpµ1 i = 0, c ≤ j ≤ c+ L

jpµ1 1 ≤ i ≤ c− 1, j = c− i

0 otherwise

hk(i,j) =

{
pkµ2 1 ≤ i ≤ c, 0 ≤ j ≤ c− i

0 otherwise
, 0 ≤ k ≤ n

where pk = Prob.(k preemption), with
n∑

k=0

pk = 1.

Expected waiting time of an admitted P2 customer who finds (r − 1) P2

customers in the queue with j servers busy with P2 customer and k P1 customers

in the system, is given by

µ
(2)
Ws

= −ψ′

(
T (2)
s

)(−1)
e

where ψ′ = (0, ...,0,ψ′

r,0, ...,0)with

ψ′

r =
{(x̃r−1(0, k)), c ≤ k ≤ c+ L}∪ {(x̃r−1(j, k)), 1 ≤ j ≤ c, k = c− j}

x̃r−1e
.

• Probability that rth P2 customer leaves the system with a P1 customer is

−ψ′

(
T
(2)
s

)(−1)
t̃.
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• Probability that rth P2 customer completes his service with exactly k pre-

emptions is −ψ′

(
T
(2)
s

)(−1)
t̃k, 0 ≤ k ≤ n.

4.3.3 A different approach to the waiting time analysis of P2

customers

In this section we consider the system in a different angle. A queue of preempted

customers is introduced. Thus we get information about number of preempted

customers. They are taken again for service according to their rank in the waiting

line. These customers are assumed to have priority over P2 customers who have

not yet been selected for service.

Let N1(t), S(t), N(t) and N2(t) be the number of P1 customers in the system,

the number of servers busy with P2 customers, the number of preempted cus-

tomers in the queue and the number of P2 customers in the queue respectively.

Then Ω′ = {(N2(t),N (t), S(t), N1(t)), t ≥ 0} is a continuous time Markov chain

with state space

{(0, 0, 0, ℓ)/0 ≤ ℓ ≤ c+ L}∪ {(0, 0, k, ℓ)/1 ≤ k ≤ c, 0 ≤ ℓ ≤ c− k}∪

{(0, j, k, ℓ)/1 ≤ j ≤ c− 1, 1 ≤ k ≤ c− j; ℓ = c− k}∪

{(i, j, 0, ℓ)/0 ≤ j ≤ c, c ≤ ℓ ≤ c+ L, i ≥ 1}∪

{(0, j, 0, ℓ)/1 ≤ j ≤ c, c ≤ ℓ ≤ c+ L}∪

{(i, j, k, ℓ)/0 ≤ j ≤ c− 1, 1 ≤ k ≤ c− j; ℓ = c− k, i ≥ 1}.

Define H
(b1,b2,b3)
(a1,a2,a3)

as the transition rates from (a1, a2, a3)→ (b1, b2, b3). Using

this definition first note that the matrices appearing inQ (see (4.1)) are as follows:

A
(b1,b2,b3)
0(a1,a2,a3)

=





λ2 b1 = a1, b2 = a2, b3 = a3

a1 = 0, a2 = 0, 0 ≤ a3 ≤ c+ L

a1 = 0, 1 ≤ a2 ≤ c, 0 ≤ a3 ≤ c− a2

0 ≤ a1 ≤ c, a2 = 0, c ≤ a3 ≤ c+ L

0 ≤ a1 ≤ c− 1, 1 ≤ a2 ≤ c− a1, a3 = c− a2

0 otherwise
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B
(b1,b2,b3)
1(a1,a2,a3)

=





λ1 b1 = a1 = 0, b2 = a2 = 0, b3 = a3 + 1

0 ≤ a3 ≤ c + L − 1

λ1 b1 = a1, b2 = a2 = 0, b3 = a3 + 1

1 ≤ a1 ≤ c, c ≤ a3 ≤ c + L − 1

λ1 b1 = a1 = 0, b2 = a2, b3 = a3 + 1

1 ≤ a2 ≤ c − 1, 0 ≤ a3 ≤ c − a2 − 1

λ1 b1 = a1 + 1, b2 = a2 − 1, b3 = a3 + 1

a1 = 0, 1 ≤ a2 ≤ c, a3 = c − a2

λ1 b1 = a1 + 1, b2 = a2 − 1, b3 = a3 + 1

1 ≤ a1 ≤ c − 1, 1 ≤ a2 ≤ c − a1, a3 = c − a2

min{c, a3}µ1 b1 = a1 = 0, b2 = a2 = 0, b3 = a3 − 1

1 ≤ a3 ≤ c + L

a3µ1 b1 = a1 = 0, b2 = a2, b3 = a3 − 1

1 ≤ a2 ≤ c − 1, 1 ≤ a3 ≤ c − a2

a2µ2 b1 = a1 = 0, b2 = a2 − 1, b3 = a3

1 ≤ a2 ≤ c, 0 ≤ a3 ≤ c − a2

λ2 b1 = a1 = 0, b2 = a2 + 1, b3 = a3

0 ≤ a2 ≤ c − 1, 0 ≤ a3 ≤ c − a2 − 1

cpµ1 b1 = a1 − 1, b2 = a2 = 0, b3 = a3 − 1

1 ≤ a1 ≤ c, c + 1 ≤ a3 ≤ c + L

cqµ1 b1 = a1, b2 = a2 = 0, b3 = a3 − 1

1 ≤ a1 ≤ c, c + 1 ≤ a3 ≤ c + L

a3pµ1 b1 = a1 − min{a1, 2}, b2 = a2, b3 = a3 − 1

1 ≤ a1 ≤ c, 0 ≤ a2 ≤ c − a1, a3 = c − a2

a3qµ1 b1 = a1 − 1, b2 = a2 + 1, b3 = a3 − 1

1 ≤ a1 ≤ c, 0 ≤ a2 ≤ c − a1, a3 = c − a2

a2µ2 b1 = a1 − 1, b2 = a2, b3 = a3

1 ≤ a1 ≤ c − 1, 1 ≤ a2 ≤ c − a1, a3 = c − a2

0 otherwise

A
(b1,b2,b3)
2(a1,a2,a3)

=





a3qµ1 b1 = a1 = 0, b2 = a2 + 1, b3 = a3 − 1

0 ≤ a2 ≤ c− 1, a3 = c− a2

cpµ1 b1 = a1 = 0, b2 = a2 = 0, b3 = a3 − 1

c+ 1 ≤ a3 ≤ c+ L

a2µ2 b1 = a1 = 0, b2 = a2, b3 = a3

1 ≤ a2 ≤ c, a3 = c− a2

a3pµ1 b1 = a1 − 1, b2 = a2 + 1, b3 = a3 − 1

a1 = 1, 0 ≤ a2 ≤ c− 1, a3 = c− a2

0 otherwise
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A
(b1,b2,b3)
1(a1,a2,a3)

=





λ1 b1 = a1, b2 = a2 = 0, b3 = a3 + 1

0 ≤ a1 ≤ c, c ≤ a3 ≤ c + L

λ1 b1 = a1 + 1, b2 = a2 − 1, b3 = a3 + 1

0 ≤ a1 ≤ c − 1, 1 ≤ a2 ≤ c − a1, a3 = c − a2

cqµ1 b1 = a1, b2 = a2 = 0, b3 = a3 − 1

0 ≤ a1 ≤ c, c + 1 ≤ a3 ≤ c + L

a3qµ1 b1 = a1 − 1, b2 = a2 + 1, b3 = a3 − 1

1 ≤ a1 ≤ c, 0 ≤ a2 ≤ c − a1, a3 = c − a2

cpµ1 b1 = a1 − 1, b2 = a2 = 0, b3 = a3 − 1

1 ≤ a1 ≤ c, c + 1 ≤ a3 ≤ c + L

a3pµ1 b1 = a1 − 2, b2 = a2 + 1, b3 = a3 − 1

2 ≤ a1 ≤ c, 0 ≤ a2 ≤ c − a1, a3 = c − a2

a2µ2 b1 = a1 − 1, b2 = a2, b3 = a3

1 ≤ a1 ≤ c − 1, 1 ≤ a2 ≤ c − a1, a3 = c − a2

0 otherwise

A
(b1,b2,b3)
3(a1,a2,a3)

=





a3pµ1 b1 = a1 = 0, b2 = a2 + 1, b3 = a3 − 1

0 ≤ a2 ≤ c− 1, a3 = c− a2

0 otherwise

B
(b1,b2,b3)
0(a1,a2,a3)

=





λ2 b1 = a1, b2 = a2 = 0, b3 = a3

0 ≤ a1 ≤ c, c ≤ a3 ≤ c+ L

λ2 b1 = a1, b2 = a2 = 0, b3 = a3

0 ≤ a1 ≤ c− 1, 1 ≤ a2 ≤ c− a1, a3 = c− a2

0 otherwise

B
(b1,b2,b3)
3(a1,a2,a3)

=





a3pµ1 b1 = a1 = 0, b2 = a2 + 1, b3 = a3 − 1

0 ≤ a2 ≤ c− 1, a3 = c− a2

0 otherwise

B
(b1,b2,b3)
2(a1,a2,a3)

=





a3qµ1 b1 = a1 = 0, b2 = a2 + 1, b3 = a3 − 1

0 ≤ a2 ≤ c − 1, a3 = c − a2

cpµ1 b1 = a1 = 0, b2 = a2 = 0, b3 = a3 − 1

c + 1 ≤ a3 ≤ c + L

a2µ2 b1 = a1 = 0, b2 = a2, b3 = a3

1 ≤ a2 ≤ c, a3 = c − a2

a3pµ1 b1 = a1 = 0, b2 = a2, b3 = a3 − 1

0 ≤ a2 ≤ c − 1, a3 = c − a2

a3pµ1 b1 = a1 = 1, b2 = a2 + 1, b3 = a3 − 1

0 ≤ a2 ≤ c − 1, a3 = c − a2

0 otherwise

In addition diagonal entries in A1 and B1 are non-positive, having numerical

value equal to the sum of the remaining elements of the same row, found in

B0, B1, B2, B3, A0, A1, A2 and A3.
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Let z̃ be the steady-state probability vector of Q̃ (see (4.2)). Then

z̃Q̃ = 0, and z̃e = 1 (4.29)

where z̃0 = z0 and z̃i = (z2i−1, z2i) for i ≥ 1 with z = (z0, z1, z2, ...) is the

steady-state probability vector of Q.

Under the stability condition given in (4.8) the steady-state probability vector

z̃ is obtained as

z̃i = z̃1R
i−1, i ≥ 2

where R is the minimal non-negative solution to the matrix quadratic equation

R2Ã2 +RÃ1 + Ã0 = O (4.30)

and the boundary equations are given by

(
z̃0 z̃1

)( B̃1 B̃0

B̃2 Ã1 +RÃ2

)
= O.

The normalizing condition of (4.29) results in

z̃0e+ z̃1(I −R)−1e = 1.

Waiting time of a P2 customer in the system

In this section we focus on the waiting time of a P2 customer in the system with-

out having a bound on the number of pre-emptions. Suppose W2 denotes the

waiting time of a P2 customer in the system in steady-state. Since P1 customers

have preemptive priority over P2 customers, the distribution of W2 may depend

on the arrival of P1 customers. The tagged P2 customer joins as the rth customer

in the queue. For computing the expected waiting time of a P2 customer we con-

sider the Markov chain {(R(t),N (t), S(t), N1(t)), t ≥ 0} where R(t) is the rank

of the tagged P2 customer, N (t) is the number of preempted customers, S(t) is

the number of servers busy with P2 customers and N1(t) is the number of P1
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customers in the system. Then the state space of this Markov chain is

{(0, 0, k, ℓ)/1 ≤ k ≤ c, 0 ≤ ℓ ≤ c− k}∪

{(0, j, k, ℓ)/1 ≤ j ≤ c− 1, 1 ≤ k ≤ c− j; ℓ = c− k}∪

{(i, j, 0, ℓ)/0 ≤ j ≤ c, c ≤ ℓ ≤ c+ L, 1 ≤ i ≤ r}∪

{(0, j, 0, ℓ)/1 ≤ j ≤ c, c ≤ ℓ ≤ c+ L}∪

{(i, j, k, ℓ)/0 ≤ j ≤ c− 1, 1 ≤ k ≤ c− j, ℓ = c− k; 1 ≤ i ≤ r}∪ {∆p}∪ {∆µ2},

where {∆p} is the absorbing state for which the tagged customer leave the

system with a P1 customer and {∆µ2} represents that the tagged customer leave

the system after completing his service.

Let γ1 be the probability that the tagged customer is chosen for service and

γ2 the probability that the tagged customer is chosen to leave the system with a

P1 customer. Then the infinitesimal generator is of the form

W(2)(r) =

(
T (2) tp tµ2

0 0 0

)

where

T (2) =




Z A2 A3

Z A2 A3

. . .
. . .

. . .

Z A2 A3

Z A2 Z2

Z Z1

Z0




, tp =




0

0
...

0

Zp

Z ′
p




, t0∗ =




0

0
...

0

0

Zµ2




.

Define D
(b1,b2,b3)
(a1,a2,a3)

, D = Z0,Z1,Z2 as the transition rates from

(a1, a2, a3)→ (b1, b2, b3).
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Z
(b1,b2,b3)
0(a1,a2,a3)

=





λ1 b1 = a1 = 0, b2 = a2, b3 = a3 + 1

1 ≤ a2 ≤ c − 1, 0 ≤ a3 ≤ c − a2 − 1

λ1 b1 = a1 + 1, b2 = a2 − 1, b3 = a3 + 1

a1 = 0, 1 ≤ a2 ≤ c, a3 = c − a2

λ1 b1 = a1, b2 = a2 = 0, b3 = a3 + 1

1 ≤ a1 ≤ c, c ≤ a3 ≤ c + L − 1

λ1 b1 = a1 + 1, b2 = a2 − 1, b3 = a3 + 1

1 ≤ a1 ≤ c − 1, 1 ≤ a2 ≤ c − a1, a3 = c − a2

a3µ1 b1 = a1 = 0, b2 = a2, b3 = a3 − 1

1 ≤ a2 ≤ c − 1, 1 ≤ a3 ≤ c − a2

a2µ2(1 − γ1) b1 = a1 = 0, b2 = a2 − 1, b3 = a3

2 ≤ a2 ≤ c, 0 ≤ a3 ≤ c − a2

cqµ1 b1 = a1, b2 = a2 = 0, b3 = a3 − 1

1 ≤ a1 ≤ c, c + 1 ≤ a3 ≤ c + L

cqµ1 b1 = a1 − 1, b2 = a2 + 1, b3 = a3 − 1

1 ≤ a1 ≤ c, a2 = 0, a3 = c

a3pµ1(1 − γ2) b1 = a1 − 1, b2 = a2, b3 = a3 − 1

a1 = 1, 1 ≤ a2 ≤ c − a1, a3 = c − a2

a2µ2(1 − γ1) b1 = a1 − 1, b2 = a2, b3 = a3

1 ≤ a1 ≤ c − 1, 1 ≤ a2 ≤ c − a1, a3 = c − a2

a3qµ1 b1 = a1 − 1, b2 = a2, b3 = a3 − 1

1 ≤ a1 ≤ c − 1, 1 ≤ a2 ≤ c − a1, a3 = c − a2

cpµ1(1 − γ2) b1 = a1 − 1, b2 = a2 = 0, b3 = a3 − 1

2 ≤ a1 ≤ c, c + 1 ≤ a3 ≤ c + L

cpµ1(1 − γ2) b1 = a1 − 2, b2 = a2 + 1, b3 = a3 − 1

2 ≤ a1 ≤ c, 0 ≤ a2 ≤ c − a1, a3 = c − a2

0 otherwise

Z
∆p

p(a1,a2,a3)
=





cpµ1 a1 = 0, a2 = 0, c ≤ a3 ≤ c+ L

a3pµ1 a1 = 0, 1 ≤ a2 ≤ c− 1, a3 = c− a2

0 otherwise

Z
′∆p

p(a1,a2,a3)
=





cpµ1 a1 = 1, a2 = 0, c ≤ a3 ≤ c+ L

cpµ1γ2 2 ≤ a1 ≤ c, a2 = 0, c ≤ a3 ≤ c+ L

a3pµ1γ2 1 ≤ a1 ≤ c− 1, 1 ≤ a2 ≤ c− a1, a3 = c− a2

0 otherwise

Z
∆µ2

µ2(a1,a2,a3)
=





µ2 a1 = 0, a2 = 1, 0 ≤ a3 ≤ c− 1

a2µ2γ1 a1 = 0, 2 ≤ a2 ≤ c, 0 ≤ a3 ≤ c− a2

a2µ2γ1 1 ≤ a1 ≤ c− 1, 1 ≤ a2 ≤ c− a1, a3 = c− a2

0 otherwise
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Z
(b1,b2,b3)
1(a1,a2,a3)

=





a3qµ1 b1 = a1 = 0, b2 = a2 + 1, b3 = a3 − 1

0 ≤ a2 ≤ c− 1, a3 = c− a2

a2µ2 b1 = a1 = 0, b2 = a2, b3 = a3

1 ≤ a2 ≤ c, a3 = c− a2

a3pµ1 b1 = a1 − 1, b2 = a2 + 1, b3 = a3 − 1

a1 = 1, 0 ≤ a2 ≤ c− 1, a3 = c− a2

0 otherwise

Z
(b1,b2,b3)
2(a1,a2,a3)

=





a3pµ1 b1 = a1 = 0, b2 = a2 + 1, b3 = a3 − 1

0 ≤ a2 ≤ c− 1, a3 = c− a2

0 otherwise

Z
(b1,b2,b3)
(a1,a2,a3)

=





λ1 b1 = a1, b2 = a2 = 0, b3 = a3 + 1

0 ≤ a1 ≤ c, c ≤ a3 ≤ c + L

λ1 b1 = a1 + 1, b2 = a2 − 1, b3 = a3 + 1

0 ≤ a1 ≤ c − 1, 1 ≤ a2 ≤ c − a1, a3 = c − a2

cqµ1 b1 = a1, b2 = a2 = 0, b3 = a3 − 1

0 ≤ a1 ≤ c, c + 1 ≤ a3 ≤ c + L

a3qµ1 b1 = a1 − 1, b2 = a2 + 1, b3 = a3 − 1

1 ≤ a1 ≤ c, 0 ≤ a2 ≤ c − a1, a3 = c − a2

cpµ1 b1 = a1 − 1, b2 = a2 = 0, b3 = a3 − 1

1 ≤ a1 ≤ c, c + 1 ≤ a3 ≤ c + L

a3pµ1 b1 = a1 − 2, b2 = a2 + 1, b3 = a3 − 1

2 ≤ a1 ≤ c, 0 ≤ a2 ≤ c − a1, a3 = c − a2

a2µ2 b1 = a1 − 1, b2 = a2, b3 = a3

1 ≤ a1 ≤ c − 1, 1 ≤ a2 ≤ c − a1, a3 = c − a2

0 otherwise

The diagonal entries in Z and Z0 are non-positive, having numerical value

equal to the sum of other elements of the same row found in Z,Z0,Z1,Z2,Zp,Z
′
p,Zµ2 ,

A2 and A3.

Thus the expected waiting time of a P2 customer who finds r−1 P2 customers

in the queue with i customers in the preempted queue, j servers busy with P2

customers and k P1 customers in the system, is given by

µ
(2)
W = −ϕ

(
T (2)

)−1
e
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where ϕ = (0, ...,0,ϕr,0, ...,0) with

ϕr =
1

zr−1e

{
(zr−1(i, 0, k)), 0 ≤ i ≤ c, c ≤ k ≤ c+ L}∪

{(zr−1(i, j, k)), 0 ≤ i ≤ c− 1, 1 ≤ j ≤ c− i, k = c− j

}
.

4.4 Numerical illustration

In this section we discuss a few numerical examples. In the following we define ρ

as

ρ =
λ2

pλ1a+ cpµ1a1 + µ2a2
. (4.31)

Whenever we need to fix a specific value for ρ, we can vary any of the system

parameters λ1, µ1, µ2, L, c and p to arrive at that value. However, a, a1, a2 and

the vector π are independent of λ2. Thus, for a specific value of ρ from (4.31) we

have λ2.

Example:1

In this example we consider the behaviour of the measure PP2→P1 . We fix λ1 =

1, µ1 = µ2 = 1.1, vary p to take values 0.5 and 1, c from 1 to 4 and ρ take values

0.1, 0.3, 0.5, 0.7, 0.9, 0.95 and 0.99 (see Table 4.1).

Table 4.1 gives a picture of the behaviour of PP2→P1 for p = 0.5 and 1 and

with ρ varying from 0.1 to 0.99. We notice that the fraction PP2→P1 decreases

with increasing value of ρ; in the case of single server and for fixed ρ, the fraction

keeps increasing with increasing value of L. The latter behaviour is seen to be

exhibited for the multi-server case also. However, when number of servers is 3 or

more the fraction PP2→P1 increases with increasing value of ρ. This is so since

more and more P1 customers get admitted to the system. However, for small

values of λ1, we notice that increase in value of c results in more and more P2
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customers getting served in the absence of P1 customers. This explains the reason

for small values for PP2→P1 for c = 3 and 4.

Example:2

Table 4.2 we investigate the behaviour of λ2 at which the measure PP2→P1 attains

its maximum. Fix λ1 = 1, µ1 = µ2 = 1.1, vary p to 0.1, 0.2, 0.5, 0.8 and 1, c

from 1 to 5, vary L to be 5, 10, 15 and 20. First we get the value of ρ at which

PP2→P1 attains its maximum then we obtain corresponding value of λ2.

Example:3

In Table 4.3 we compute the optimum value of L, say L∗ and value of λ2 at L∗.

The optimum L∗ is such that the system measure Plost is no larger than 10−4

when all other parameters are fixed. We fix λ1 = 1, µ1 = µ2 = 1.1, vary p to 0,

0.5, 1, c from 1 to 5 and ρ take values 0.1, 0.3, 0.5, 0.8, 0.9 and 0.95.

Table 4.3 reveals certain interesting observation: for small values of ρ (hence

small values of λ2 the optimal value of L is relatively small compared to moderate

to high values of L for larger values of ρ (hence large values of λ2).

Example:4

In this example we discuss the benefits of the crowdsourcing queueing model as

compared to the classical queueing model with two types of customers with one

type having a finite buffer and higher preemptive priority over the other type.

That is, we are comparing the model under study for the case when p > 0 with

the model when p = 0. Here we consider the system where the probability of a

P1 customer lost does not exceed 10−4. According to the maximum arrival rate

for P2 customers we define the following ratios:

λRatio
2 =

λp>0
2

λp=0
2

, µRatio
N1

=
µp>0
N1

µp=0
N1

, µRatio
N2

=
µp>0
N2

µp=0
N2

.
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Fix λ1 = 1, µ1 = µ2 = 1.1, vary p to 0.2, 0.4, 0.6, 0.8 and 1, c from 2 to 5 and

ρ to take values 0.1, 0.3, 0.5, 0.8, 0.9, 0.95 and 0.99. At the optimum values (see

Table 4.3) the ratios λRatio
2 , µRatio

N1
, µRatio

N2
are given in Tables 4.4 and 4.5.

Tables 4.4 and 4.5 provides certain ratios for different values of p and ρ. For

ρ values going up to 0.5 in Table 4.4 (0.99 in Table 4.5), µRatio
N1

remains 1, the

reason being that the number of P2 customers alone be affected by increasing

value of p. However, for value of ρ > 0.8 (in Table 4.4), this ratio is seen to be

increasing. Hence the µRatio
N2

increases with p and ρ.

Revenue function

Define revenue function as

Rf (µ1) = C1 RP2→P1 − C2 RP2→P − C3 Plost − C4 µN2 ,

where C1 : Revenue to the system on account of a waiting P2 customer,

served by a departing P1 customer

C2 : Preemption cost per unit P2 customer

C3 : Cost of a P1 customer lost due to finite waiting space

C4 : Holding cost per P2 customer

In order to study the variation in µ1 on profit/ revenue function we fix the

costs C1 = $50, C2 = $10, C3 = $15, C4 = $5.

For this profit function we get output as indicated in Table tab:6. There is

an indication for this profit function to have a global optimum. In the present

case the optimal service rate for P1 customers turn out to be µ1 = 12. Values of

µ1 above 12 result in very high preemption cost, whereas those below 12 result

in large number of P1 customers loss.
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c p ρ L = 5 L = 10 L = 15 L = 20 L = 25

1

0.5

0.1 0.8352 0.8828 0.9005 0.909 0.9136

0.3 0.8185 0.8729 0.8923 0.9016 0.9066

0.5 0.7855 0.8492 0.8710 0.8813 0.8872

0.7 0.7243 0.7920 0.8154 0.8276 0.8358

0.9 0.6464 0.7129 0.7378 0.7523 0.7629

0.95 0.6267 0.6927 0.7180 0.7329 0.7438

0.99 0.6112 0.6768 0.7024 0.7176 0.7286

1

0.1 0.8995 0.9282 0.9390 0.9442 0.9470

0.3 0.8927 0.9233 0.9348 0.9404 0.9434

0.5 0.8773 0.9103 0.9224 0.9284 0.9320

0.7 0.8336 0.8675 0.8805 0.8885 0.8944

0.9 0.7605 0.7948 0.8101 0.8208 0.8290

0.95 0.7402 0.7749 0.7907 0.8017 0.8101

0.99 0.7239 0.7590 0.7750 0.7862 0.7946

2

0.5

0.1 0.3648 0.3664 0.3664 0.3664 0.3664

0.3 0.3589 0.3606 0.3607 0.3607 0.3607

0.5 0.3499 0.3519 0.3522 0.3524 0.3527

0.7 0.3379 0.3412 0.3431 0.3451 0.3473

0.9 0.3236 0.3306 0.3369 0.3436 0.3505

0.95 0.3198 0.3281 0.3360 0.3443 0.3527

0.99 0.3167 0.3262 0.3354 0.3450 0.3549

1

0.1 0.4815 0.4828 0.4829 0.4829 0.4829

0.3 0.4880 0.4893 0.4893 0.4893 0.4893

0.5 0.4899 0.4914 0.4916 0.4917 0.4919

0.7 0.4853 0.4883 0.4904 0.4924 0.4946

0.9 0.4735 0.4825 0.4911 0.4997 0.5082

0.95 0.4696 0.4810 0.4921 0.5031 0.5139

0.99 0.4662 0.4798 0.4931 0.5062 0.5190

3

0.5

0.1 0.1261 0.1262 0.1262 0.1262 0.1262

0.3 0.1345 0.1346 0.1346 0.1346 0.1346

0.5 0.1425 0.1426 0.1426 0.1426 0.1426

0.7 0.1498 0.1499 0.1500 0.1501 0.1502

0.9 0.1563 0.1567 0.1571 0.1576 0.1580

0.95 0.1577 0.1583 0.1589 0.1595 0.1602

0.99 0.1589 0.1596 0.1603 0.1611 0.1620

1

0.1 0.1897 0.1898 0.1898 0.1898 0.1898

0.3 0.2111 0.2112 0.2112 0.2112 0.2112

0.5 0.2310 0.2311 0.2311 0.2311 0.2311

0.7 0.2487 0.2489 0.2490 0.2491 0.2493

0.9 0.2636 0.2644 0.2653 0.2662 0.2671

0.95 0.2669 0.2681 0.2693 0.2706 0.2719

0.99 0.2694 0.2709 0.2725 0.2742 0.2759

4

0.5

0.1 0.0344 0.0344 0.0344 0.0344 0.0344

0.3 0.0398 0.0398 0.0398 0.0398 0.0398

0.5 0.0457 0.0457 0.0457 0.0457 0.0457

0.7 0.0520 0.0520 0.0520 0.0520 0.0520

0.9 0.0585 0.0586 0.0586 0.0586 0.0586

0.95 0.0602 0.0602 0.0602 0.0602 0.0602

0.99 0.0615 0.0615 0.0615 0.0616 0.0616

1

0.1 0.0566 0.0566 0.0566 0.0566 0.0566

0.3 0.0706 0.0706 0.0706 0.0706 0.0706

0.5 0.0859 0.0859 0.0859 0.0859 0.0859

0.7 0.1019 0.1019 0.1019 0.1019 0.1019

0.9 0.1180 0.1180 0.1181 0.1181 0.1181

0.95 0.1220 0.1220 0.1221 0.1221 0.1222

0.99 0.1251 0.1252 0.1253 0.1253 0.1254

Table 4.1: Effect of c, p, ρ, L on PP2→P1
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c p L = 5 L = 10 L = 15 L = 20

PP2→P1
λ2 PP2→P1

λ2 PP2→P1
λ2 PP2→P1

λ2

1

0.1 0.2715 0.2919 0.3543 0.2397 0.3971 0.2200 0.4218 0.2105

0.2 0.4160 0.3805 0.5066 0.3340 0.5477 0.3165 0.5702 0.3081

0.5 0.6112 0.6462 0.6768 0.6171 0.7024 0.6062 0.7176 0.6009

0.8 0.6922 0.9119 0.7368 0.9003 0.7553 0.8959 0.7677 0.8938

1 0.7239 1.0890 0.7590 1.0890 0.7750 1.0890 0.7862 1.0890

2

0.1 0.0905 0.7432 0.0931 0.7404 0.0952 0.7404 0.0973 0.7404

0.2 0.1631 0.8416 0.1678 0.8394 0.1721 0.8394 0.1765 0.8394

0.5 0.3167 1.1366 0.3262 1.1364 0.3354 1.1364 0.3450 1.1364

0.8 0.4165 1.4317 0.4288 1.4333 0.4409 1.4334 0.4530 1.4334

1 0.4662 1.6284 0.4798 1.6313 0.4931 1.6314 0.5062 1.6314

3

0.1 0.0382 0.8018 0.0383 0.8016 0.0385 0.8016 0.0386 0.8016

0.2 0.0724 0.9007 0.0727 0.9006 0.0730 0.9006 0.0733 0.9006

0.5 0.1589 1.1974 0.1596 1.1976 0.1603 1.1976 0.1611 1.1976

0.8 0.2290 1.4940 0.2302 1.4946 0.2314 1.4946 0.2327 1.4946

1 0.2694 1.6918 0.2709 1.6926 0.2725 1.6926 0.2742 1.6926

4

0.1 0.0122 0.6398 0.0122 0.6398 0.0122 0.6398 0.0122 0.6398

0.2 0.0244 0.7387 0.0244 0.7388 0.0244 0.7388 0.0244 0.7388

0.5 0.0615 1.0356 0.0615 1.0358 0.0615 1.0358 0.0616 1.0358

0.8 0.0996 1.3325 0.0996 1.3328 0.0996 1.3328 0.0997 1.3328

1 0.1251 1.5305 0.1252 1.5308 0.1253 1.5308 0.1253 1.5308

5

0.1 0.0028 0.4666 0.0028 0.4666 0.0028 0.4666 0.0028 0.4666

0.2 0.0059 0.5656 0.0059 0.5656 0.0059 0.5656 0.0059 0.5656

0.5 0.0176 0.8626 0.0176 0.8626 0.0176 0.8626 0.0176 0.8626

0.8 0.03300 1.1596 0.0330 1.1596 0.0330 1.1596 0.0330 1.1596

1 0.0452 1.3575 0.0452 1.3576 0.0452 1.3576 0.0452 1.3576

Table 4.2: Value of λ2 at which PP2→P1 attains its maximum and its maximum

value

ρ p c = 1 c = 2 c = 3 c = 4 c = 5

L λ2 L λ2 L λ2 L λ2 L λ2

0.1

0 47 0.0101 7 0.0649 4 0.0711 2 0.0551 1 0.0381

0.5 47 0.0600 7 0.1148 4 0.1209 2 0.1036 1 0.0821

1 47 0.1100 7 0.1647 4 0.1707 2 0.1522 1 0.1261

0.3

0 48 0.0303 7 0.1946 4 0.2133 2 0.1653 1 0.1144

0.5 48 0.1801 7 0.3444 4 0.3627 2 0.3109 1 0.2463

1 48 0.3300 7 0.4942 4 0.5121 2 0.4565 1 0.3783

0.5

0 51 0.0503 7 0.3243 4 0.3554 2 0.2754 1 0.1906

0.5 60 0.3001 7 0.5740 4 0.6045 2 0.5182 1 0.4105

1 74 0.5500 7 0.8236 4 0.8535 2 0.7609 1 0.6304

0.8

0 163 0.0800 8 0.5185 4 0.5687 2 0.4407 1 0.3050

0.5 383 0.4800 8 0.9183 4 0.9672 2 0.8291 1 0.6569

1 425 0.8800 9 1.3182 4 1.3657 2 1.2174 1 1.0087

0.9

0 169 0.0900 8 0.5834 4 0.6398 2 0.4958 1 0.3432

0.5 483 0.5400 10 1.0331 4 1.0881 2 0.9327 1 0.7390

1 537 0.9900 16 1.4831 4 1.5364 2 1.3696 1 1.1348

0.95

0 171 0.0950 8 0.6158 4 0.6753 2 0.5234 1 0.3622

0.5 525 0.5700 13 1.0905 4 1.1485 2 0.9845 1 0.7800

1 589 1.0450 22 1.5655 4 1.6217 2 1.4456 1 1.1979

Table 4.3: Optimum value of L and corresponding value of λ2
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ρ p c = 2 c = 3

λRatio
2 µRatio

N1
µRatio
N2

λRatio
2 µRatio

N1
µRatio
N2

0.1

0.2 1.3066 1 0.7966 1.2798 1 1.0243

0.4 1.6147 1 0.7146 1.5597 1 1.0487

0.6 1.9229 1 0.6694 1.8410 1 1.0975

0.8 2.2311 1 0.6440 2.1209 1 1.1219

1 2.5377 1 0.6299 2.4008 1 1.1707

0.3

0.2 1.3078 1 0.8624 1.2798 1 1.1086

0.4 1.6156 0.9995 0.7969 1.5602 1 1.2173

0.6 1.9234 0.9995 0.7641 1.8406 1 1.3260

0.8 2.2317 0.9995 0.7489 2.1209 1 1.4456

1 2.5395 0.9995 0.7430 2.4008 1 1.5652

0.5

0.2 1.3080 0.9995 0.9284 1.2805 1 1.1716

0.4 1.6157 0.9987 0.8923 1.5607 1 1.3457

0.6 1.9238 0.9982 0.8763 1.8410 1 1.5243

0.8 2.2318 0.9974 0.9107 2.1212 1 1.7053

1 2.5396 0.9970 0.8770 2.4015 1 1.8932

0.8

0.2 1.3083 1.0217 1.0262 1.2802 1 1.2549

0.4 1.6169 1.0414 1.0530 1.5605 1.0032 1.5182

0.6 1.9253 1.0592 1.0810 1.8408 1.0065 1.7899

0.8 2.2337 1.0758 1.1108 2.1211 1.0098 2.0681

1 2.5423 1.1430 1.1436 2.4014 1.0164 2.3529

0.9

0.2 1.3083 1.0420 1.0576 1.2802 1.0032 1.2805

0.4 1.6165 1.1398 1.1144 1.5604 1.0098 1.5734

0.6 1.9250 1.2637 1.1647 1.8407 1.0196 1.8764

0.8 2.2336 1.5195 1.2144 2.1211 1.0295 2.1882

1 2.5421 2.0109 1.2620 2.4013 1.0393 2.5072

0.95

0.2 1.3080 1.1083 1.0811 1.2803 1.0065 1.2932

0.4 1.6165 1.3335 1.1584 1.5606 1.0163 1.6007

0.6 1.9251 1.7884 1.2306 1.8409 1.0294 1.9198

0.8 2.2336 2.4611 1.2890 2.1211 1.0424 2.2493

1 2.5422 3.8968 1.3441 2.4014 1.0588 2.5865

0.99

0.2 1.3084 1.1431 1.0936 1.2801 1.0098 1.3028

0.4 1.6171 1.5396 1.1925 1.5605 1.0228 1.6216

0.6 1.9257 2.5222 1.2913 1.8407 1.0392 1.9534

0.8 2.2344 3.8075 1.3540 2.1210 1.0588 2.2964

1 2.5431 6.2835 1.4074 2.4012 1.0849 2.6476

Table 4.4: Ratios of λ2, µN1 and µN2
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ρ p c = 4 c = 5

λRatio
2 µRatio

N1
µRatio
N2

λRatio
2 µRatio

N1
µRatio
N2

0.1

0.2 1.3520 1 1.25 1.4619 1 1

0.4 1.7041 1 1.5 1.9238 1 1.1111

0.6 2.0562 1 1.75 2.3858 1 1.1111

0.8 2.4101 1 2 2.8477 1 1.1111

1 2.7622 1 2.25 3.3097 1 1.1111

0.3

0.2 1.3520 1 1.4210 1.46153 1 1.5

0.4 1.7047 1 1.8421 1.9222 1 2

0.6 2.0568 1 2.3157 2.3837 1 3

0.8 2.4095 1 2.8421 2.8452 1 4

1 2.7616 1 3.3684 3.3068 1 5

0.5

0.2 1.3525 1 1.4791 1.4616 1 2

0.4 1.7051 1 2.0416 1.9233 1 3

0.6 2.0577 1 2.6667 2.3845 1 4.5

0.8 2.4103 1 3.3750 2.8462 1 6.25

1 2.7628 1 4.1250 3.3074 1 8.5

0.8

0.2 1.3526 1 1.6065 1.4616 1 2.1

0.4 1.7050 1 2.3442 1.9229 1 3.7

0.6 2.0574 1 3.2049 2.3842 1 5.8

0.8 2.4100 1 3.6885 2.8459 1 8.5

1 2.7624 1 5.3032 3.3072 1 11.8

0.9

0.2 1.3525 1 1.6433 1.4612 1 2.1538

0.4 1.7049 1 2.4331 1.9224 1 3.8461

0.6 2.0574 1 3.3757 2.3840 1 6.1538

0.8 2.4098 1 4.4585 2.8452 1 9.0769

1 2.7624 1 5.6815 3.3065 1 12.6923

0.95

0.2 1.3523 1 1.6610 1.4616 1 2.1333

0.4 1.7048 1 2.4745 1.9229 1 3.8667

0.6 2.0571 1 3.4519 2.3843 1 6.1333

0.8 2.4096 1 4.5819 2.8456 1 9.1333

1 2.7619 1 5.8587 3.3072 1 12.9333

0.99

0.2 1.3524 1 1.6701 1.4611 1 2.1176

0.4 1.7048 1 2.5103 1.9226 1 3.7647

0.6 2.0573 1 3.5154 2.3841 1 6.0588

0.8 2.4097 1 4.6804 2.8452 1 9.1176

1 2.7621 1 6 3.3067 1 12.8823

Table 4.5: Ratios of λ2, µN1 and µN2

µ1 2 4 6 8 10 12 14 16 18

Rf (µ1) 6.4723 12.6282 22.8559 27.8689 29.3834 29.6287 29.4716 29.2023 28.9182

Table 4.6: Effect of µ1 on Rf (µ1) for (c, L, λ1, µ2, p, ρ) = (4, 10, 2, 2.5, 0.7, 0.9)



Chapter 5

Single Server Queue with

Several Services

In the previous chapters we considered interruption of service either by self-

interruption (chapter 2), feedback (chapter 3) or through arrival of higher priority

customers (chapter 4). In present and the chapter to follow, we analyze cases

where permanent interruption (removal from service) takes place due to erroneous

service offered or exactly needed service is offered after going through one or

more undesired service. That is to say the previous chapters we followed the

conventional assumption that the server is completely aware of the exact service

requirement of a customer and customer is sure about the type of service he needs.

The present and the next chapter discuss models where service requirement of

a customer is exactly not known to him nor to the server(s) since a number

of distinct services are offered by the service provider. For example patients

approach a physician for medical help. The patient may not be aware of his

exact health problem, nor the physician be able to diagnose it correctly. Quite

often only one type of service is offered by the system and so conflict does not

occur. In real life there are several service providing systems offering a multitude

131
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of service. The service may start inappropriate and will turn correct. There is

also a chance of this service to continue in the incorrect mode and becomes an

unsuccessful service. In the latter case the result could be disastrous, especially

when life models are considered. The customer may even lose his life. We label

such models as diagnostic problems and try to find out a solution to reduce the

dilemma caused by this uncertainty.

Consider the example of a multi specialty hospital. A patient could be directed

to a physician who has nothing to do with the patient’s ailment. However, he still

starts medication - as per his diagnosis; the patient and/ physician subsequently

realizes that the nature of medication the patient needed was different and refers

to some other physician of a different specialty. Here again the patient may end

up in the same situation as in the first case. This process could go on until either

the patient or physician arrive at the exact nature of medication or the patient

reaches such a condition where no medication would work from that time point

on. Even in a hospital/ clinic with a single physician the above described is a

probable situation.

First we analyze the above described situation in a single server set up. A

service system with a preliminary service and a main service is then examined

which is found to be on similar lines. This model is then identified with that

of Madan [46] and Medhi [48]. We employed arbitrarily distributed service time

in certain special cases of the model discussed and analyze such system using

supplementary variables [19] to produce a CTMC.

Rest of the chapter is organized as follows. The mathematical model is de-

scribed in section 1. This section also provides the steady-state analysis and some

performance measures. Various cases of the model are considered in Sections 2

and 3. An illustration of the problem is given in Section 4. Numerical exam-

ple is described in Section 5. In Section 6 we extend the analysis in the case of

arbitrarily distributed service time for the undesired and desired stages of service.
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5.1 The MAP/PH/1 model

The assumptions leading to the formulation of the mathematical model are

• An infinite capacity queueing system where a single server is providing

different kinds of service.

• Arrival of customers to the system is according to the MAP (Markovian

arrival process). In a MAP , the customers arrival is directed by an ir-

reducible CTMC (continuous time Markov chain) {φt, t ≥ 0} with the

state space {1, 2, ...,m}. The transition intensities of the Markov chain

{φt, t ≥ 0} which are accompanied by arrival of k(= 0, 1) customers are

described by the matrices Dk. Vector η of the stationary distribution of

the process {φt, t ≥ 0} is the unique solution to the system

η(D0 +D1) = ηD = 0 and ηe = 1. (5.1)

Fundamental rate λ of the MAP is given by λ = ηD1e.

• A customer is selected for desired (required) service with probability p or

to the undesired (incorrect) service with probability q = 1− p.

• PH-representation(β1, S1) of order n1 gives the duration of the correct ser-

vice time distribution when the service of a customer starts in correct service

mode. Let S0
1 be such that S1e + S0

1 = 0. Let µ′
1 = β1(−S1)

−1e be the

mean of this PH-representation.

• PH-representation (β2, S2) of order n2 gives the duration of the incorrect

service time distribution when the service of a customer starts in incorrect

service mode. The rate (vector) of loss of customers is then given by S0
2

and the rate (vector) of getting into correct service mode is given by Ŝ0
2 .

Note that S2e+ S0
2 + Ŝ0

2 = 0. Let µ′
2 = β2(−S2)

−1e be the mean of this

PH-representation. A random threshold clock(timer) starts ticking from
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the beginning of service so that the customer is pushed out of the system if

the clock expires before service completion in undesired service. This timer

determines the vector S0
2 .

• PH-representation (β3, S3) of order n3 gives the duration of the correct

service time distribution when the customer has gone through incorrect

service initially. Let S0
3 be such that S3e+ S0

3 = 0. Let µ′
3 = β3(−S3)

−1e

be the mean of this PH-representation.

• Under the above assumptions the service time of a customer can be modeled

as a PH-distribution with representation (β, S) of order n = n1 + n2 + n3,

where

β = (pβ1, qβ2,0) (5.2)

S =




S1 O O

O S2 Ŝ0
2β3

O O S3


 .

Let S0 be such that Se+ S0 = 0 and S0 =
[

S0
1 S0

2 S0
3

]T
.

Let N(t) be the number of customers in the system, N∗(t) the nature of ser-

vice going on− whether direct admission to required/ undesired or one that

came from undesired service− designated by 1,2 and 3 respectively, S(t) the

phase of service and A(t) the phase of arrival at time t. With these the process

{(N(t), N∗(t), S(t), A(t)), t ≥ 0} is a continuous time Markov chain with state

space Ω = {0, 1, 2, ...}, where

0 = {(0, r)/1 ≤ r ≤ m}

(in the level zero we need consider only the phase of arrival) and

i = {(i, j, k, r)/i ≥ 1, 1 ≤ j ≤ 3, 1 ≤ k ≤ nj , 1 ≤ r ≤ m} , i ≥ m.
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Thus the infinitesimal generator of this CTMC is a LIQBD of the form

Q =




D0 A01

A10 A1 A0

A2 A1 A0

. . .
. . .

. . .




, (5.3)

where A01 = β⊗D1, A10 = S0⊗Im, A0 = In⊗D1, A1 = S⊕D0, A2 = S0β⊗Im.

5.1.1 Stability condition

Consider A(= A0 + A1 + A2), the generator matrix of the Markov chain corre-

sponding to the phase changes.

A = (S + S0β)⊕D

=




(pS0
1β1 + S1)⊕D qS0

1β2 ⊗ Im O

pS0
2β1 ⊗ Im (qS0

2β2 + S2)⊕D Ŝ0
2β3 ⊗ Im

pS0
3β1 ⊗ Im qS0

3β2 ⊗ Im S3 ⊕D




.

Let π = (π1,π2,π3) be the steady-state probability vector of (S + S0β). Then

π(S + S0β) = 0 and πe = 1. (5.4)

From the relation π(S + S0β) = 0 we have

π1(pS
0
1β1 + S1) + π2pS

0
2β1 + π3pS

0
3β1 = 0, (5.5)

π1qS
0
1β2 + π2(qS

0
2β2 + S2) + π3qS

0
3β2 = 0, (5.6)

π2Ŝ
0
2β3 + π3S3 = 0. (5.7)

Multiplying equation (5.7) by e on right hand side we get

π3S
0
3 = π2Ŝ

0
2 . (5.8)



136 Single server queue with several services

Putting this in equation (5.5) yields

π1S
0
1 = −

p

q
π2S2e. (5.9)

Substitute relations (5.8) and (5.9) in equation (5.6) to get

π2(S
0
2β2 + Ŝ0

2β2 + S2) = 0.

This implies, for an arbitrary constant c,

π2 = cβ2(−S2)
−1. (5.10)

Then from (5.9) we get

π1 =
cp

q
β1(−S1)

−1. (5.11)

Let δ = β2(−S2)
−1Ŝ0

2 be the probability that a customer, starting with incorrect

service, leaves the system after getting correct service. Then the relation (5.8)

gives

π3 = cδβ3(−S3)
−1. (5.12)

From the normalizing condition πe = 1, the value of c is computed as

c =

[
p

q
µ′
1 + µ′

2 + δµ′
3

]−1

. (5.13)

Now from (5.1) and (5.4) we get the steady-state probability vector of A as

π̂ = π ⊗ η.

Theorem 5.1.1. The stability of the system is given by

λ < (π ⊗ η)(S0β ⊗ Im)e. (5.14)

Proof. The queueing system under study with the LIQBD type generator

given in (5.3) is stable if and only if rate of left drift is less than the rate of right

drift, that is,

π̂A0e < π̂A2e. (5.15)
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The left drift rate is π̂( In⊗D1)e which when simplified reduces to λ. Now, the

right drift rate is (π ⊗ η)(S0β ⊗ Im)e.

Let ρ =
λ

(π ⊗ η)(S0β ⊗ Im)e
. Then from (5.14), we have ρ < 1.

5.1.2 Steady-state probability vector

A brief outline for the computation of the stationary probability vector of the

system is as follows. Let xxx denote the steady-state probability vector of the

generator Q. Then

xxxQ = 0 and xxxe = 1. (5.16)

Assuming that the stability condition (5.14) holds and partitioning xxx as xxx =

(xxx0,xxx1,xxx2, ...), we obtain

xxxn = xxx1R
n−1, n ≥ 1

where R is the minimal non negative solution to the matrix quadratic equation

R2A2 +RA1 +A0 = O.

The two boundary equations involving xxx0 are

xxx0D0 + xxx1A10 = 0,

xxx0A01 + xxx1[A1 +RA2] = 0.

These together with the normalizing condition in (5.16) gives

xxx1 = xxx0V where V = −A01[A1 +RA2]
−1

xxx0[I + V (I −R)−1]e = 1.

To see how the system performs, it is instructive to define yyy =
∞∑

i=1

xxxi. Then

yyy = (yyy1 yyy2 yyy3) where the yyyi’s indicate status of the customer in service.
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5.1.3 System performance measures

1. Probability that system is idle, Pidle = xxx0e = 1− ρ.

2. Rate of loss of customers, Rloss = y2S
0
2 = λq(1− δ).

3. Probability that a customer is lost, Ploss = q(1− δ).

4. Mean number of customers in the system, µNS =
∞∑
i=1

ixxxie.

5. Mean number of customers in the queue, µNQ =
∞∑
i=2

(i− 1)xie.

6. Probability that the server is serving in required mode,

PC = y1e+ y3e = ρ− λqµ′
2.

7. Probability that the server is serving in undesired mode,

PI = y2e = λqµ′
2.

8. Rate at which customers leave with required service starting in desired

service mode, RC = y1S
0
1 = λp.

9. Rate at which customers leave with correct service starting with undesired

service, RI = y3S
0
3 = λqδ.

10. Expected waiting time in the system WS =
µNS

λ

5.2 Poisson arrival and phase type service

In this section we analyze the system when arrival follows Poisson process. Service

time is phase type distributed as in previous section. Then {(N(t), N∗(t), S(t)), t ≥

0} (see section 5.1) is a continuous time Markov chain with state space {0, 1, 2, . . .}

where i = {(i, j, k)/1 ≤ j ≤ 3, 1 ≤ k ≤ nj} for i ≥ 1.
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Thus the infinitesimal generator is of the form

Q′ =




−λ λβ

S0 S − λI λI

S0β S − λI λI

S0β S − λI λI
. . .

. . .
. . .




.

Theorem 5.2.1. The system is stable if and only if ρ′ < 1 where

ρ′ = λ
[
pµ′

1 + q(µ′
2 + δµ′

3)
]
.

Proof. From the relation (5.15) we have λ < πS0βe where π = (π1,π2,π3)

(with πi’s as given in (5.10)-(5.12)) is the steady-state probability vector of S +

S0β. The right drift πS0βe =
3∑

i=1
πiS

0
i .

Multiplying (5.5) by e on right hand side we get

3∑
i=1
πiS

0
i =

c

q
−

1

p
πiS1e

=
1

p

cp

q
β1e from (5.11)

=
c

q

where c is given in (5.13). Hence the condition for system stability is given by

λ <
1

pµ
′

1 + q(µ′
2 + δµ

′

3)

The generator matrix corresponding to the phase changes is S+S0β and the

stationary probability vector is π = (π1,π2,π3).
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Theorem 5.2.2. The steady-state probability vector x = (x0,x1,x2, · · · ) of

Q′ is given by

x0 = 1− ρ′, xi = (1− ρ′)βRi, i ≥ 1,

where R is

R = λ




λI − λpeβ1 − S1 −λqeβ2 0

−λpeβ1 λI − λqeβ2 − S2 −Ŝ0
2β3

−λpeβ1 −λqeβ2 λI − S3




−1

. (5.17)

Proof. Let x be the steady-state probability vector of Q′. Then xQ′ = 0 and

xe = 1.

The steady-state equations are given by

−λx0 + x1S
0 = 0, (5.18)

λx0β + x1(S − λI) + x2S
0β = 0, (5.19)

λxi−1 + xi(S − λI) + xi+1S
0β = 0, i ≥ 2. (5.20)

From (5.18) we have

x1S
0 = λx0. (5.21)

Multiplying equations (5.19) and (5.20) by the column vector e on the right hand

side leads to

xi+1S
0 = λxie for i ≥ 1.

Writing B = e.β we get xi+1S
0β = λxiB for i ≥ 1 . Then from (5.19) and (5.20)

we obtain

x1(λI − λB − S) = λx0β (5.22)

and

xi(λI − λB − S) = λxi−1, for i ≥ 2.
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Denoting (λI − λB − S) by K, relation (5.22) takes the form x1 = λx0βK
−1,

provided K is invertible. We now prove the non singularity of K.

Let the vector u be in the left kernal of K. Then

λu− uS − λ(ue)β = 0. (5.23)

Suppose ue = 0. Then (5.23) reduces to u(λI−S) = 0. But (λI−S) is nonsingular

and hence u = 0.

If ue 6= 0, normalize u by setting ue = 1. Post multiplying (5.23) by e gives

uS0 = 0. (5.24)

Substituting for ue, (5.23) reduces to u = λβ(λI − S)−1.

From (5.24) we have

λβ(λI − S)−1S0 = 0. (5.25)

But β(λI − S)−1S0 is the Laplace-Stieltjes transform at s = λ > 0, of the

probability distribution F (t) = 1−β exp(St)e for t ≥ 0. Therefore (5.25) cannot

hold and hence u = 0. Thus K is nonsingular.

The irreducibility of the representation (β, S) leads to the irreducibility of the

stable K, so that the matrix R in (5.17) is positive.

We have sp(R) < 1, if ρ′ < 1. Therefore the quantity x0 is given by the

normalizing equation

x0 + x0βR(I −R)−1e = 1.

Substitution for R leads to

x0 − λx0β(λB + S)−1e = 1. (5.26)
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The inverse of (λB + S) is calculated as

(λB + S)−1 = S−1
(
I + λBS−1

)−1

= S−1
∞∑

n=0

(−1)nλn
(
BS−1

)n

= S−1

[
I − λ

[
∞∑

n=0

(−1)nλn
(
BS−1

)n
]
BS−1

]

= S−1

[
I − λ

∞∑

n=0

ρ
′nBS−1

]

= S−1
[
I − λ

(
1− ρ′

)−1
BS−1

]
.

From (5.26) we have

x0 − λx0β(λB + S)−1e = x0 − λx0β
[
S−1

(
I − λ

(
1− ρ′

)−1
BS−1

)]
e

= x0 − λx0βS
−1e+ λ2x0(1− ρ)−1βS−1BS−1e

= x0 + ρ′x0 + ρ
′2(1− ρ′)x0

= (1− ρ′)x0 = 1,

so that x0 = (1− ρ′).

Letting y =
∞∑

i=1

xi, it is obtained that y = ρ′π. In the sequel partition

y = (y1,y2,y3), so that yi = ρ′πi, 1 ≤ i ≤ 3.

5.3 Poisson arrival with exponentially distributed ser-

vice time

In this section we consider customers to arrive according to a Poisson process

with rate λ and desired (correct) service time follows exponential distribution

with parameter µ (µ′
1 = µ′

3 = µ) and the undesired (incorrect) part of service

following phase type distribution with representation (β2, S2) of order n2 (see

section 5.1). Let N(t) be the number of customers in the system, N∗(t) the type
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of service and S(t) the phase of service at time t. S(t) assumes a value between

1 and n2(including both) if server is in undesired phase of service, otherwise 0 or

n2 + 1 according as a desired service going on for a customer admitted directly

or from undesired state. Then {(N(t), N∗(t), S(t)), t ≥ 0} is a continuous time

Markov chain with state space {0, 1, 2, ...} where

i = {(i, 1, 0), (i, 3, n2 + 1)}∪ {(i, 2, j)/1 ≤ j ≤ n2} for i ≥ 1.

Thus the infinitesimal generator is of the form

Q =

0 1 2 3 .. ..

0

1

2
...
...




−λ b0

c0 A1 A0

A2 A1 A0

. . .
. . .

. . .




where

b0 = λ(p, qβ2, 0), c0 =




µ

Ŝ0
2

µ


 , A0 = λI

A1 =




−λ− µ 0 0

0 S2 − λI Ŝ
0
2

0 0 −λ− µ


 , A2 =




µp µqβ2 0

p S0
2 q S0

2β2 0

µp µqβ2 0




with Se+ S0
2 + Ŝ

0
2 = 0.

5.3.1 Stability condition

Consider A = A0 +A1 +A2

=




−µq µqβ2 0

p S0
2 S2 + q S0

2β2 Ŝ
0
2

µp µqβ2 −µ


 ,
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the generator matrix of the Markov chain corresponding to the phase changes.

Let

Π = (π0, π̂, πr+1) be the steady-state probability matrix of A. Solving the rela-

tions

ΠA = 0, Πe = 1 (5.27)

we obtain

−µq π0 + pπ̂ S0
2 + µp πr+1 = 0 (5.28)

µqπ0β2 + π̂( S2 + q S0
2 β2) + µq πr+1β2 = 0 (5.29)

π̂ Ŝ
0
2 − µπr+1 = 0. (5.30)

From equations (5.28) and (5.30),

µq π0 = p
(
π̂ S0

2 + π̂ Ŝ
0
2

)
. (5.31)

This together with (5.29) gives

π̂
(
S2 + S0

2 β2 + Ŝ
0
2 β2

)
= 0

so that

π̂ = c β2(− S2)
−1, (5.32)

c being a constant and is computed from the normalizing condition. Let δ be

the probability that a customer getting correct service following one or several

incorrect services, and η the probability of staying back in incorrect services.

Then

δ = β2 (− S2)
−1 Ŝ

0
2

and

η =
(
β2 (− S2)

−1 e
)−1

.

Then the probability that a customer leaves the system without getting required

service is

1− δ = β2 (− S2)
−1 S0

2
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and the mean time a customer stay back in incorrect services is

1

η
=
(
β2(− S2)

−1e
)
.

The normalizing equation is

π0 + π̂ e+ πr+1 = 1.

Substituting for the components of Π which are now computed as

π0 =
pc

µq
, π̂ e =

c

η
, πr+1 =

cδ

µ

we get
pc

µq
+

c

η
+

cδ

µ
= 1

which shows

c =
µqη

pη + µq + δqη
.

Theorem 5.3.1. The stability of the system is given by λ <
1

q
c.

Proof. The condition for the stability of the system is ΠA0e < ΠA2e. Sim-

plification gives ΠA0e = λ. Now A2e =
(
µ, S0

2 , µ
)T

. Therefore ΠA2e = µπ0 +

π̂
(
S0
2 + Ŝ

0
2

)
. Substituting for µπ0, right hand side becomes 1

q
π̂
(
S0
2 + Ŝ

0
2

)
.

Using equation(5.32) and the fact that ( S2)
−1( S0

2+ Ŝ
0
2) = e, the result follows.

Hence the system is stable if and only if ρ < 1, where

ρ = λ
q

c
. (5.33)

5.3.2 Steady-state probability vector

Let the steady-state probability vector x = (x∗,xxx(1),xxx(2), ...) of Q be such that

xQ = 0,xe = 1. Partitioning gives xxx(i) =
(
x0(i),

⌢
x(i), xr+1(i)

)
. The relation
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xQ = 0 gives the following system of equations:

−λx∗ + xxx(1)c0 = 0, (5.34)

x∗b0 + xxx(1)A1 + xxx(2)A2 = 0, (5.35)

For i ≥ 1, xxx(i− 1)A0 + xxx(i)A1 + xxx(i+ 1)A2 = 0. (5.36)

From the matrix geometric structure we obtain

xxx(i) = xxx(1)Ri−1, i ≥ 1

where R is the minimal non negative solution to the matrix quadratic equation

R2A2 +RA1 +A0 = O. (5.37)

Equation (5.34) shows

x∗ =
1

λ
xxx(1)c0.

Equation (5.35) together with normalizing condition gives

x∗b0 + xxx(1) (A1 +RA2) = 0

subject to x∗e+ xxx(1) (I −R)−1 e = 1.

Substituting for x∗ we get

xxx(1)

(
A1 +RA2 +

1

λ
c0b0

)
= 0

subject to xxx(1)

(
1

λ
c0 + (I −R)−1 e

)
= 1.

But c0b0 = λA2 which implies

xxx(1) (A1 +RA2 +A2) = 0

subject to xxx(1)

(
1

λ
c0 + (I −R)−1 e

)
= 1.
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Computation of R

R can computed explicitly along the following lines.

We have

A2 =




µp µqβ2 0

p S0
2 q S0

2β2 0

µp µqβ2 0


 =




µ

S0
2

µ



[
p qβ2 0

]

so that

A2e =




µ

S0
2

µ


 = c0

Also from the relation RA2e = A0e, we obtain

RA2e = λe (5.38)

Now,

R2A2 = R2




µ

S0
2

µ



(

p qβ2 0
)

= R2A2e
(

p qβ2 0
)

Substituting for RA2 from (5.38), we get

R2A2 = Rλe
(

p qβ2 0
)

Therefore equation (5.37) gives

λRe
(

p qβ2 0
)
+RA1 + λI = O

This gives

R = λ




µ+ λq −λqβ2 0

−λpe λI − λqeβ2 − S2 − Ŝ
0
2

−λp −λqβ2 λ+ µ




−1
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Lemma 5.3.1. x∗ = 1− ρ so that xxx(1) (I −R)−1 e = ρ

Proof. Multiplying by e on the right side of equation (5.35) and simplifying

we get the relation

λx∗ + xxx(1)




−λ− µ

S2 − λI + Ŝ
0
2

−λ− µ


+ xxx(2)




µ

S0
2

µ


 = 0. (5.39)

Equation (5.34) gives

λx∗ = xxx(1)




µ

S0
2

µ


 . (5.40)

Putting this in (5.39) the following relation is obtained.

xxx(2)




µ

S0
2

µ


 = λxxx(1)e. (5.41)

Multiplying equation(5.36) on right side by e and recursive use of the relation

results in

xxx(i)




µ

S0
2

µ


 = λxxx(i− 1)e for i ≥ 3. (5.42)

Adding (5.40), (5.41) and (5.42)

∞∑

i=1

xxx(i)




µ

S0
2

µ


 = λ. (5.43)
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Adding the system of equations (5.36) with equation (5.35) and using the fact

that

x∗b0 = xxx(1)A2 we get
∞∑

i=1

xxx(i) A = 0.

But the relation(5.27) says

∞∑

i=1

xxx(i) = d Π for some constant c

which in turn gives
∞∑

i=1

xxx(i) = (1− x∗) Π.

Multiplying on the right side by




µ

S0
2

µ


 and using the relation in (5.33)

∞∑

i=1

xxx(i)




µ

S0
2

µ


 = (1− x∗)

λ

ρ
. (5.44)

The result follows from(5.43) and (5.44).

5.3.3 System performance measures

1. Probability that the system is idle, P0 = x∗.

2. Rate of loss, Rloss =
∞∑
i=1

⌢
x(i) S0

2 = λq(1− δ).

3. Probability of loss, Ploss = q(1− δ).

4. Mean number of customers in the system,

µns =
∞∑
i=1

ixxx(i)e = xxx(1) (I −R)−2 e.
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5. Mean number of customers in the queue,

µnq =
∞∑
i=1

(i− 1)xxx(i)e = xxx(1) (I −R)−2 e− xxx(1) (I −R)−1 e.

6. Probability that the server is busy serving in correct mode,

Pc =
∞∑
i=1

xxx(i)




1

0

1


 = ρ (π0 + πr+1) = ρ− λq

η
.

7. Probability that the server is busy serving in incorrect mode,

Pi =
∞∑
i=1

xxx(i)




0

e

0


 = ρ

⌢
πe = λq

η
.

5.4 An illustration

In this section we consider a queueing model consisting of two service stations-

preliminary service and main service. Customers arrive to this system according

to a MAP (Markovian Arrival Process) with representation (D0, D1) of order

m. A customer, who is taken for service is directly selected for main service

with probability p or to the preliminary service with probability q(= 1 − p). A

threshold clock starts ticking if a customer enters to preliminary service. When

the duration of preliminary service exceeds the threshold clock, the customer

moves out of the system, else he goes to main service. The threshold clock follows

exponential distribution with parameter ζ. Service time of the customers at these

stations follow phase type distributions with representation (α, SP ), (γ, SM ) and

of order a, b respectively. Write S0
P + ζe = −SPe and S0

M = −SMe where e is

a column vector of 1’s of appropriate order. Hence service time of a customer

can be modeled as a phase type distribution with representation (ξ,U) of order

a+ 2b such that Ue+U0 = 0 where

ξ =
(

pγ qα 0
)
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U =




SM 0 0

0 SP S0
Pγ

0 0 SM


 ,U0 =




S0
M

ζe

S0
M


 .

Let N(t), N∗(t), S(t), A(t) denote respectively the number of customers in the

system, nature of service, phase of service and phase of arrival at time t with

N∗(t) =





1 main service

2 preliminary service

3 one that come from preliminary service

.

The process Ω = {(N(T ), N∗(t), S(t), A(t)), t ≥ 0} is a continuous time Markov

chain with state space {(n, i, j, k)/i = 1, 3; 1 ≤ j ≤ b, 1 ≤ k ≤ m}∪{(n, 2, j, k)/1 ≤

j ≤ a, 1 ≤ k ≤ m} for n ≥ 1.

Note that when N(t) = 0, the only other component in the state vector is A(t).

Thus the infinitesimal generator of Ω is of the form

Q∗ =




D0 A01

A10 A1 A0

A2 A1 A0

. . .
. . .

. . .




where A01 = ξ⊗D1, A10 = U0⊗Im, A0 = Ia+2b⊗D1, A1 = U⊕D0, A2 = U0ξ⊗Im.

The infinitesimal generator Q∗ is of the same form asQ of the model described

initially. Thus the analysis of the Markov chain with infinitesimal generator Q∗

can be done in the same way as for Q.

The significance of this model is as follows: customer arriving to a single

server belong to two categories, though they join the same waiting line. While

taking for service the category will be decided. Call them category 1 and category

2, respectively. Category 1 are qualified for the main service without undergoing

preliminary service. However, category 2 have to be given the preliminary service

before admitted to main service. However, if such customers do not get service in
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preliminary before realization of the timer (random clock), they get disqualified

and so leave the system forever. On the other hand those among category 2,

completing service successfully before timer realization in preliminary, are imme-

diately admitted to main service. On completion of that service such customers

leave the system.

Remark 5.4.1. In telecommunication it is this type of situation that is often

encountered. Packages have to identify the server in idle state; then wait for a

while. But in the mean time another message may get through, making the server

busy. Then the customer (packet) under consideration has to go through a series

of contention windows. These passages could be regarded as unwanted service.

In case the process of going through contention windows exceeds a threshold time

limit (time out/ clock realization), the message will not get served.

Remark 5.4.2. The problem discussed in Madan [46] and Medhi [48] could

be arrived at from our model as follows. Suppose that we reverse the order of

preliminary and main service, that is, main service first and preliminary (hereafter

we call the second as optional) service next. Then after completion of main

service, the customer asks for an optional service with probability 1 − q (this

optional service time has exponential distribution in Madan [46]). This could

be regarded as an instantaneous feedback as head of waiting line and get served

according to a different distribution. With probability q, the customer leaves the

system immediately after main service completion.

5.5 Numerical illustration

The following numerical illustration is based on the description in Section 2. We

fix parameters n1 = 2, n2 = 3, n3 = 4,β1 = (0.4 0.6),
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β2 = (0.3 0.5 0.2),β3 = (0.2 0.3 0.3 0.2),

S1 =

[
∗ 6

8 ∗

]
,S0

1 =

[
7

8

]
with S1e+ S0

1 = 0,

S2 =




∗ 5 5

6 ∗ 6

5 7 ∗


 ,S0

2 =




3

3

2


 , Ŝ

0
2 =




4

5

6


 with S2e+ S0

2 + Ŝ
0
2 = 0,

S3 =




∗ 7 8 9

6 ∗ 7 7

6 6 ∗ 6

8 7 6 ∗



,S0

3 =




6

7

8

9




with S3e+ S0
3 = 0.

For the arrival process, we consider the following two sets of values for D0 and

D1 as follows. The arrival processes labeled MNCA and MPCA respectively,

have negative and positive correlation for two successive inter-arrival time with

values -0.48891 and 0.48891. The standard deviation of the inter-arrival time of

these two arrival processes are, respectively, 0.2819 and 0.2819.

1. MAP with negative correlation (MNCA):

D0 =




−5.0111 5.0111 0

0 −5.0111 0

0 0 −1128.75


 , D1 =




0 0 0

0.05011 0 4.96099

1117.4625 0 11.2875




2. MAP with positive correlation (MPCA):

D0 =




−5.0111 5.0111 0

0 −5.0111 0

0 0 −1128.75


 , D1 =




0 0 0

4.96099 0 0.05011

11.2875 0 1117.4625




The output in Tables 5.1 and 5.2 are on expected lines. Note that Ploss

decreases with increasing value of p. The value of PC(RC) steadily increases with

p and values of PI(RI) and WS decrease with increase in value of p, as expected.
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p Ploss µNS PC PI RC RI WS

0.4 0.2136 7.5229 0.5242 0.3921 2 1.9320 1.5046

0.5 0.1780 4.9744 0.5483 0.3267 2.5 1.6100 0.9949

0.6 0.1424 3.6690 0.5724 0.2614 3 1.2880 0.7338

0.7 0.1068 2.8654 0.5965 0.1960 3.5 0.9660 0.5731

0.8 0.0712 2.3138 0.6206 0.1307 4 0.6440 0.4628

0.9 0.0356 1.9069 0.6447 0.0653 4.5 0.3220 0.3814

Table 5.1: Effect of p for MNCA

p Ploss µNS PC PI RC RI WS

0.4 0.2136 546.8179 0.5242 0.3921 2 1.9320 109.3646

0.5 0.1780 349.9587 0.5483 0.3267 2.5 1.6100 69.9924

0.6 0.1424 250.7699 0.5724 0.2614 3 1.2880 50.1545

0.7 0.1068 191.0008 0.5965 0.1960 3.5 0.9660 38.2005

0.8 0.0712 151.0402 0.6206 0.1307 4 0.6440 30.2083

0.9 0.0356 122.4351 0.6446 0.0653 4.5 0.3220 24.4873

Table 5.2: Effect of p for MPCA

The main comparison in Tables 5.1 and 5.2 is between values of µNS in

MNCA and MPCA. Both decrease with increase in value of p. However,

MNCA has much smaller values compared to their MPCA counter parts. This

indicates that positive correlation in the arrival process results in accumulation

of large number of customers in the system.

5.6 M/G/1 Model

In this section we consider an M/G/1 system with two service stations – pre-

liminary service and main service. Customers arrive to this system according to
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a Poisson process with rate λ. A customer, when taken for service, is directly

selected for main service with probability p or to the preliminary service with

probability q (= 1 − p). A threshold clock starts ticking if a customer enters to

preliminary service. When the duration of preliminary service exceeds the thresh-

old clock, the customer moves out of the system, else he goes to main service.

The threshold clock follows exponential distribution with parameter ζ. Here the

service time, Vp, Vm of the preliminary and main services are independent hav-

ing general distributions with distribution function G1(.), G2(.), LST G∗
1(.), G

∗
2(.)

respectively.

The (total) service time V of a unit is

V =





Vf with probability q • P (G1(.) > exp(ζ))

Vp with probability q • P (G1(.) < exp(ζ))

Vm with probability p

where Vf is the duration of threshold clock realization. Thus

G(t) = P (V ≤ t)

= q

[∫ t

0
ζe−ζu(1−G1(u))du+

∫ t

0
e−ζuG1(u)dG2(t− u)

]
+ p

∫ t

0
dG2(u)

The LST G∗(s) of V is given by

G∗(s) =

∫ ∞

0
e−stdG(t).

Remark 5.6.1. This modelling closely resembles the protocol IEEE 802.11.

This is so because of a message generated has to wait before checking for idle

server; if server is busy it has to go through a series of contention windows and

then look for idle server. In case this process takes longer duration than the life

of message (before its significance is lost), then the message does not serve any

purpose. In the opposite case it is transmitted before its expiry time.
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Remark 5.6.2. Assume the random clock to be of infinite duration (ie., its

rate of realization goes to zero). Now interchange the roles of preliminary and

main services (in this case, we call the preliminary service, which is the second

one now, as optional service). Invariably main service is given for all customers.

Thus the main service is followed by an optional service to which customers, on

completion of main service, proceed with probability q. Then our model reduces

to Madan [46] with exponentially distributed optional service and to Medhi [48]

in the case of arbitrarily distributed optional service time.

Transient solution

The supplementary variable technique (see Cox [19], Medhi [47]) could be used to

get the transient solution. Suppose that the general distribution G(x) = P (V ≤

x) has the hazard function h(x) =
dG(x)

1−G(x)
and the probability density function

of V is given by

g(x) = h(x) exp{−N(x)}

where

N(x) =

∫ x

0
h(u)du;N(0) = 0 and

d

dx
N(x) = h(x).

If V is the total service time, then h(x)dx = P (service will be completed

in (x, x + dx) given that service time exceeds x) and E(V ) =

∫
xg(x)dx =

−G∗(1)(0).
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The supplementary variable X(t) considered is defined below. Let

N(t) = system size at time t

X(t) = time already spent in service up to t of a unit receiving service

pn(t) = P (N(t) = n) with p0(0) = 1

pn(t, x)dx = P (N(t) = n, x ≤ X(t) < x+ dx), n ≥ 1

pn(t) =

∫ ∞

0
pn(t, x)dx

Q(t, z) =
∞∑

n=0

pn(t)z
n

Q(t, x, z) =
∞∑

n=1

pn(t, x)z
n

Now we have

p0(t+ δt) = [1− λδt+ o(δt)]p0(t) +

∫ ∞

0
p1(t, x)h(x)dxδt.

As δt→ 0,

∂

∂t
p0(t) = −λp0(t) +

∫ ∞

0
p1(t, x)h(x)dx. (5.45)

For δx > 0,

p1(t+ δt, x+ δx) = [1− λδt+ o(δt)][1− h(x)δx+ o(δx)]p1(t, x).

Subtracting and adding a term p1(t, x+ δx) to the LHS, then dividing by δt(δx)

and taking as δt→ 0(δx→ 0), we get

(
∂

∂t
+

∂

∂x

)
p1(t, x) = −(λ+ h(x))p1(t, x). (5.46)
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For n ≥ 0,

(
∂

∂t
+

∂

∂x

)
pn(t, x) = −(λ+ h(x))pn(t, x) + λpn−1(t, x). (5.47)

We have the following boundary conditions:

p1(t, 0) =

∫ ∞

0
p2(t, x)h(x)dx+ λp0(t) (5.48)

and

pn(t, 0) =

∫ ∞

0
pn+1(t, x)h(x)dx, n ≥ 2. (5.49)

Multiplying (5.47) by zn, n = 2, 3, ... and (5.46) by z, then adding all the terms

we get

(
∂

∂t
+

∂

∂x

) ∞∑

n=1

pn(t, x)z
n = −(λ+ h(x))

∞∑

n=1

pn(t, x) + λ
∞∑

n=2

pn−1(t, x)

(
∂

∂t
+

∂

∂x

)
Q(t, x, z) = −(λ− λz + h(x))Q(t, x, z). (5.50)

Now multiplying (5.49) by zn, n = 2, 3, ... and (5.48) by z, then adding the terms

we have

Q(t, 0, z) =

∫ ∞

0

(
∞∑

n=1

pn+1(t, x)z
n

)
h(x)dx+ λzp0(t). (5.51)

Now

∫ ∞

0

(
∞∑

n=1

pn+1(t, x)z
n

)
h(x)dx
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=

∫ ∞

0

(
1

z

) ∞∑

n=1

pn+1(t, x)z
n+1h(x)dx

=

∫ ∞

0

(
1

z

)[ ∞∑

n=1

pn(t, x)z
n − p1(t, x)z

]
h(x)dx

=

(
1

z

)∫ ∞

0
[Q(t, x, z)− p1(t, x)z]h(x)dx

=

(
1

z

)[∫ ∞

0
Q(t, x, z)h(x)dx− z(p′0(t) + λp0(t))

]
by (5.45)

Thus (5.51) reduces to

Q(t, 0, z) =

(
1

z

)[∫ ∞

0
Q(t, x, z)h(x)dx− z(p′0(t) + λp0(t))

]
+ λzp0(t)

=

(
1

z

)[∫ ∞

0
Q(t, x, z)h(x)dx− z(p′0(t) + λp0(t)) + λz2p0(t)

]

zQ(t, 0, z) =

∫ ∞

0
Q(t, x, z)h(x)dx− zp′0(t) + λz(z − 1)p0(t). (5.52)

The partial differential equation (5.50) can be solved using the boundary condi-

tion (5.52) and the normalizing condition
∞∑

n=0

pn(t) = 1.

Steady-state distribution

Let

limt→∞pn(t) = pn, n ≥ 0

and
limt→∞ pn(t, x) = pn(x), x > 0, n ≥ 1

= p0(x) = 0, x > 0.
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Then {pn, n ≥ 0} gives the distribution of the general time system size.

Let

Q(x, z) =
∞∑

n=1

pn(x)z
n

=
∞∑

n=1

[
lim
t→∞

pn(t, x)
]
zn

= lim
t→∞

[
∞∑

n=1

pn(t, x)z
n

]

= lim
t→∞

Q(t, x, z)

and

Q(z) =

∫ ∞

0
Q(x, z)dx.

Then

(5.45)⇒ λp0 =

∫ ∞

0
p1(x)h(x)dx

(5.46) and (5.47)⇒
∂

∂x
pn(x) = −(λ+ h(x))pn(x) + λpn−1(x), n ≥ 1

(5.48)⇒ p1(0) =

∫ ∞

0
p2(x)h(x)dx+ λp0

(5.49)⇒ pn(0) =

∫ ∞

0
pn+1(x)h(x)dx, n ≥ 2.

The partial differential equation (5.50) and the boundary condition (5.52) reduces

to
d

dx
Q(x, z) = −(λ− λz + h(x))Q(x, z) (5.53)

zQ(0, z) =

∫ ∞

0
Q(x, z)h(x)dx+ λz(z − 1)p0 (5.54)

and

p0 +Q(1) = 1. (5.55)
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From relation (5.53)
∫

dQ(x, z)

Q(x, z)
=
∫
−(λ− λz + h(x))dx

log(Q(x, z)) = logc (−λ(1− z)x−N(x))

Q(x, z) = c exp(−λ(1− z)x−N(x))

Q(0, z) = c

Q(x, z) = Q(0, z) exp(−λ(1− z)x−N(x)) (5.56)

Substituting (5.56) in (5.54) we get

zQ(0, z) =

∫ ∞

0
Q(0, z)e(−λ(1−z)x−N(x))h(x)dx+ λz(z − 1)p0

= Q(0, z)

∫ ∞

0
e−λ(1−z)x

[
e−N(x)h(x)

]
dx+ λz(z − 1)p0

= Q(0, z)G∗(λ(1− z)) + λz(z − 1)p0.

Thus

Q(0, z) =
λz(z − 1)p0

z −G∗(λ− λz)
. (5.57)

Now from (5.56) we have

Q(z) =

∫ ∞

0
Q(x, z)dx

=

∫ ∞

0
Q(0, z)e(−λ(1−z)x−N(x))dx

= Q(0, z)

∫ ∞

0
e(−λ(1−z)x e−N(x)dx

=
Q(0, z)

λ(1− z)

[
1−

∫ ∞

0
e−λ(1−z)x

(
e−N(x)h(x)

)
dx

]
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Q(z) =
Q(0, z)

λ(1− z)
[1−G∗(λ− λz)]

From this and equation (5.57) we get

Q(z) =
z[G∗(λ− λz)− 1]p0
z −G∗(λ− λz)

Using L’Hospital rule, we get

Q(1) = lim
z→1

Q(z)

= p0
[G∗(λ− λz)− 1] + zλG∗(1)(λ− λz)

1 + λG∗(1)(λ− λz)

= p0
λE(V )

1− λE(V )

From (5.55) we obtain

p0 = 1− λE(V ).

Hence

Q(z) =
z[G∗(λ− λz)− 1][1− λE(V )]

z −G∗(λ− λz)
.

Busy period

Let T be the length of a busy period (starting with a customer arrival to an

idle server, until the becomes idle again). Define B(t) = P (T ≤ t). Then B(t)

satisfies the relation

B(t) =

∫ t

0

∞∑

k=0

(λu)k

k!
e−λuB∗k(t− u)dG(u) (5.58)
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The Laplace Stieltjes Transform (LST) of busy period B(t) be denoted by B∗(s).

That is,

B∗(s) =

∫ ∞

0
e−stdB(t) (for Re(s) > 0)

=

∫ ∞

0
e−st

∫ t

0

∞∑

k=0

(λu)k

k!
e−λuB∗k(t− u)dG(u)dt

=

∫ ∞

0

∞∑

k=0

(λu)k

k!
e−λue−su

∫ ∞

u

e−s(t−u)B∗k(t− u)dtdG(u)

=

∫ ∞

0

∞∑

k=0

(λu)k

k!
e−λue−su (B∗(s))k dG(u)

=

∫ ∞

0

∞∑

k=0

(λB∗(s)u)k

k!
e−(λ+s)udG(u)

=

∫ ∞

0
e−(λ+s−λB∗(s))udG(u)

Therefore

B∗(s) = G∗(λ+ s− λB∗(s)).

From this the mean and higher moments of the number of customers in the system

can be computed.





Chapter 6

A MAP/PH/1 Queue with

Uncertainty in Selection of

Type of Service

In the previous chapter we assumed that the server offered n distinct services,

of which only one was the needed/ desired service for each customer. However,

due to certain complex situation neither the server nor the customer is aware of

the exact needed service. The rest of the services may turn out to be harmful/

ineffective. A typical example is the Chikungunya, the symptoms of which varied

from person to person. Accordingly physicians prescribed medicines to the pa-

tients; however, those who did not receive the right medication within a specified

time were rendered physically/ mentally handicapped. In this chapter we extend

the model described in chapter 5 to the case of n(n > 1) distinct services offered

by a server with distinct customers requiring any one among the n services which

Part of this chapter is included in the following paper.

A. Krishnamoorthy, A. S. Manjunath, and V. M. Vishnevsky : An M/M/1 Queue with n

Undesired Services and a Desired Service, V. Vishnevsky and D. Kozyrev (Eds.): DCCN

2015, CCIS 601, pp. 102110, 2016. Springer International Publishing Switzerland 2016
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we label as the desired service for that customer. The desired service may vary

from customer to customer. For example, a customer dialing a customer care

center for a specific service.

We analyze a single server system providing n distinct services; customer ar-

rival follows a Markovian arrival process. At the time when taken for service

the service requirement is correctly diagnosed with probability θ; with comple-

mentary probability (1 − θ) the identification goes wrong. As a consequence of

correct diagnosis, service in correct mode immediately starts, whose duration has

exponential distribution with parameter µi if service required is in state i and

the customer leaves the system after service. However, if initially the customer

is admitted to one of the incorrect services (with probability pi, it is diagnosed

as requiring type i service, i = 1, 2, ..., n), it may stay in this class, moving from

one incorrect to another incorrect, until finally all turn out to be failure and the

customer turns out to be unfit for further service. It may also happen that at

some stage of service in incorrect class, the service provider identifies that the

customer is being served in the incorrect set of services and so immediately takes

him to the actually required service stage. At this point, the customer starts

required service and leaves the system on completion of service. But then how

long is it possible to stay in service in the incorrect set of states? We assume

that a timer with exponentially distributed duration starts ticking the moment

a customer starts getting his service. If correct diagnosis is made of the desired

service during its sojourn in the incorrect set of states before this random clock

(timer) realizes, then the customer is immediately transferred for service to the

correct state. On completion of service, assumed exponentially distributed with

parameter µi, the customer leaves the system. On the other hand if the timer

realizes before the customer’s service need is correctly diagnosed, then no further

service is provided to that customer since it is rendered useless as a consequence

of service in the incorrect set of states.

In Section 1, the mathematical model is described. Section 2 provides the
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steady-state analysis and some performance measures including the expected ser-

vice time of a customer. Effect of various parameters on performance measures

of the system are numerically computed in Section 3.

6.1 Mathematical formulation

The assumptions leading to the formulation of the mathematical model are

• Arrival of customers to the system is according to the MAP. We use the

same notations used in the previous chapter associated with MAP.

• The probability that a customer gets desired (correct) service from the very

beginning is θ; denote 1− θ = θ̂.

• The probability that a customer requires the ith type of service is pi so that

p1 + p2 + . . .+ pn = 1.

• If i is the required type of service for a customer and service starts correctly

then corresponding service time is exponentially distributed with mean ser-

vice rate µi, i = 1, 2, . . . , n.

• If i is the required type of service for a customer write β(i) =
(
β
(i)
k

)
; 1 ≤

k ≤ n, k 6= i where β
(i)
k is the probability that a customer in need of

ith service starts with kth(k 6= i). The rate of transition to jth state of

incorrect service after completing service in kth state is µkj for, k 6= i; j ∈

{1, 2, . . . , n}, j 6= i .

• A random threshold clock(timer) which follows exponential distribution

with mean rate γ starts ticking from the very beginning of service to the

specific customer so that the customer is pushed out of the system if the

clock expires before service completion in undesired service.
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The last two assumptions indicate that only if the service requirement is correctly

diagnosed right at beginning when taken for service, does the customer has an

exponentially distributed service time. In the other case the service time turns

out to be phase type distributed (initially in state(s) which are not the correct one

and then get absorbed due to realization of timer or in the absence of realization of

timer during service in the undesired states, thus escaping to the correct state of

service, where there is additional exponentially distributed service requirement).

Let N1(t) be the number of customers in the system, N2(t) and N4(t) respec-

tively the required service type and the type of service being provided and N3(t)

the mode of service whether desired from the very beginning of service, unwanted

or moved from undesired to desired, designated by 1, 2 and 3 respectively and

A(t) be the arrival phase at time t.

Then, {(N1(t), N2(t), N3(t), N4(t), A(t)) , t ≥ 0} is a CTMC with state space

Ω = {(0, a)/1 ≤ a ≤ m} ∪ {(i, j, k, ℓ, a)/i ∈ Z+, 1 ≤ j ≤ n, ℓ = j; k = 1, 3; 1 ≤

a ≤ m}∪ {(i, j, 2, ℓ, a)/i ∈ Z+, 1 ≤ j, ℓ ≤ n; ℓ 6= j; 1 ≤ a ≤ m}. The infinitesimal

generator Q of this CTMC is a LIQBD where

Q =




B00 B01

B10 B1 B0

B2 B1 B0

. . .
. . .

. . .




.

In the above matrix B00 = D0, B01 = α̃⊗D1, B10 = C ⊗ Im, B0 = In(n+1) ⊗

D1, B1 = T ⊕D0, B2 = H⊗ Im. Here α̃ =
(

p1α1, p2α2, · · · , pnαn

)
with

αi =
(

θ, θ̂β(i), 0
)
, 1 ≤ i ≤ n, and C =

(
c(1), c(2), · · · , c(n)

)T
.

Let ∆
(i)
1 =




µi

0

µi


 , and ∆2 =




0

γe

0


 . Then c(i) = ∆

(i)
1 +∆2.
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H = [Mij ] where Mij =




µipjθ µipj θ̂β
(j) 0

U0pjθ U0pj θ̂β
(j) 0

µipjθ µipj θ̂β
(j) 0




, 1 ≤ i, j ≤ n.

T = diag(T1, T2, ..., Tn), Ti =




−µi 0 0

0 S(i) S0
i

0 0 −µi




, 1 ≤ i ≤ n

with

S(i) =

1 2 i− 1 i+ 1 n

1

2

i− 1

i+ 1

n




µ
(i)
1 µ12 · · · µ1(i−1) µ1(i+1) · · · µ1n

µ21 µ
(i)
2 · · · µ2(i−1) µ2(i+1) · · · µ2n

...
...

. . .
...

...
. . .

...

µ(i−1)1 µ(i−1)2 · · · µ
(i)
(i−1) µ(i−1)(i+1) · · · µ(i−1)n

µ(i+1)1 µ(i+1)2 · · · µ(i+1)(i−1) µ
(i)
(i+1) · · · µ(i+1)n

...
...

. . .
...

...
. . .

...

µn1 µn2 · · · · · · µ
(i)
n




.

Here, µ
(i)
k = −




n∑
j=1
j 6=k

µkj + γ


 , k = 1, 2, ..., i− 1, i+ 1, ..., n and

S0
i =

(
µ1i µ2i · · · µ(i−1)i µ(i+1)i · · · µni

)T
.
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6.2 Steady-state analysis

We proceed with the steady-state analysis of the queueing system under study.

Naturally we have to look for the condition for stability.

6.2.1 Stability condition

We consider the matrix B(= B0 + B1 + B2) representing the phase changes for

determining the stability condition of the original system.

We have B = (T +H)⊕D

where T +H = (Eij)1≤i,j≤n , Eij = Mij for i 6= j

and Eii =




−µi(1− piθ) µipiθ̂β
(i) 0

U0piθ U0piθ̂β
(i) + S(i) S0

i

µipiθ µipiθ̂β
(i) −µi




.

Let π̃ = (π̂1, π̂2, ..., π̂n) be the stationary probability vector of the Markov

chain corresponding to the generator T +H and η be that of D. Then

π̃(T +H) = 0, π̃e = 1.

ηD = 0, η e = 1.

Thus the stationary probability vector of B is Π = π̃ ⊗ η.

An algorithm for computing π̃ is given below:

π̂n−k =
n−k−1∑
i=1

π̂iFi(n−k) ; 0 ≤ k ≤ n− 2

For 1 ≤ i ≤ n− 1,
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Fi(n−k) =





−BinE
−1
nn ; k = 0,

−

(
Bi(n−k) +

k∑
m=1

Uim

)(
E(n−k)(n−k)+

k∑
m=1

U(n−k)m

)−1

;

1 ≤ k ≤ n− 2,

with

Uim =
∑

Jr−1+1≤jr≤n−m+r
1≤r≤m, j0=n−k

Fij1Fj1j2 ... Fjm−1jmBjm(n−k).

π̂1 is obtained from

π̂1

(
I +

n−1∑

m=1

Vm

)
e = 1,

where

Vm =
∑

rj−1+1≤rj≤n−(m−j)
1≤j≤m, r0=1

F1r1

m−1∏

j=1

Frjrj+1 .

The LIQBD description of the model indicates that the queueing system is stable

if and only if the rate of left drift is larger than right drift rate (see Neuts [52]).

That is

ΠB0e < ΠB2e.

This gives the stability condition as

Lemma 6.2.1. The system under study is stable if and only if

λ < (H ⊗ Im)e (6.1)
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6.2.2 Steady-state probability vector

Assuming that equation (6.1) is satisfied, we briefly outline the computation of the

steady-state probability of the system. Let yyy denote the steady-state probability

vector of the generator Q. Then

yyyQ = 0, yyye = 1. (6.2)

Assuming that the stability condition (6.1) holds and partitioning yyy as

yyy = (yyy0, yyy1, yyy2, ...) with

yyyi =





yyy0(a), 1 ≤ a ≤ m, i = 0

yyyi(j, 1, j, a) ∪ yyyi(j, 2, ℓ, a) ∪ yyyi(j, 3, j, a), 1 ≤ j, ℓ ≤ n; ℓ 6= j,

1 ≤ a ≤ m, i ≥ 1

we obtain

yyyn = yyy1R
n−1, n ≥ 2

where R is the minimal non negative solution to the matrix quadratic equation

R2B2 +RB1 +B0 = O.

The two boundary equations involving yyy0 are

yyy0B00 + yyy1B10 = 0,

yyy0B01 + yyy1[B1 +RB2] = 0.

These together with the normalizing condition in (6.2) gives

yyy1 = yyy0V where V = −B01[B1 +RB2]
−1

yyy0[1 + V (I −R)−1e] = 1.



Steady-state analysis 173

6.2.3 Expected service time of a customer

Let i be the required/correct service of tagged customer. Consider the Markov

chain {(N2(t), N3(t), N4(t))/t ≥ 0} with state space {(i, j, k)/j = 1, 3; k = i} ∪

{(i, 2, k)/1 ≤ k 6= i ≤ n} ∪ {∆1} ∪ {∆2}, where {∆1} denotes the absorbing

state which is completion of service from the in correct phases of service before

the threshold clock is expired and {∆2} the absorbing state which represents the

realization of the random threshold clock (that is, expulsion from service). The

infinitesimal generator of this CTMC is

Wi =

(
Ti T 0

µi
T 0
γ

0 0 0

)

where

Ti =




−µi 0 0

0 S(i) S0
i

0 0 −µi


 , T 0

µi
=




µi

0

µi


 , T 0

γ =




0

γe

0


 .

The service time of a customer is the time until absorption of the Markov chain.

The distribution ofWi is phase type with initial probability vectorαi =
(
θ, θ̂β(i), 0

)

of order n + 1. The expected time a tagged customer spends in service is

EWi
= −αiT

−1
i e. Therefore the service time of an arbitrarily chosen customer is

Est =
n∑

i=1
pi EWi

.

6.2.4 Performance measures

Now we look at a few of the system performance measures. Let a customer enters

in to incorrect service with initial probability vector (ψ1, ψ2, ..., ψn), ψi being

piβ
(i) for 1 ≤ i ≤ n. Let l = (n+ 1)d.

1. Probability that the system is idle, Pidle = yyy0e.
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2. Probability that the server is busy in direct correct mode,

YYY 1 =
∞∑
i=1

n∑
j=1

m∑
a=1

yyyi(j, 1, j, a).

3. Probability that the server is serving in the incorrect mode,

YYY 2 =
∞∑
i=1

n∑
j=1

n∑
ℓ=1,ℓ6=j

m∑
a=1

yyyi(j, 2, ℓ, a).

4. Probability that the server is busy in correct, service of which started in

incorrect mode, YYY 3 =
∞∑
i=1

n∑
j=1

m∑
a=1

yyyi(j, 3, j, a).

5. Expected number of customers in the system, µNS =
∞∑
i=1

i yyyie.

6. Expected number of customers in the queue, µNQ =
∞∑
i=2

(i− 1) yyyie.

7. Probability of customers leaving with correct service starting in incorrect

service mode, Pcs = θ̂
n∑

i=1
ψi (−Si)

−1 S0
i .

8. Rate at which customers leave with correct service initially starting in in-

correct service mode, Rcs = λPcs.

9. Probability that a customer is lost (leaving the system without getting

correct service),

Ploss = θ̂
n∑

i=1
ψi (−Si)

−1 γe.

10. Rate of loss of customers due to incorrect service, Rloss = λPloss.

11. Rate of customers leaving successfully after being selected in correct service,

Plc = λθ.

6.3 Numerical illustration

In this section we provide numerical illustration of the system performance with

variation in values of underlying parameters.
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We fix parameters n = 4, (p1, p2, p3, p4) = (0.1, 0.2, 0.3, 0.4), µ1 = 8, µ2 =

9, µ3 = 8, µ4 = 9,

S(1) =




∗ 6 8

7 ∗ 6

5 9 ∗


 , S0

1 =




5

8

5


 , β(1) =

[
0.3 0.3 0.4

]
,

S(2) =




∗ 7 6

8 ∗ 6

5 9 ∗


 , S0

2 =




6

7

5


 , β(2) =

[
0.2 0.4 0.4

]
,

S(3) =




∗ 6 6

5 ∗ 8

5 5 ∗


 , S0

3 =




7

6

9


 , β(3) =

[
0.1 0.5 0.4

]
,

S(4) =




∗ 6 7

5 ∗ 6

8 7 ∗


 , S0

4 =




6

8

6


 , β(4) =

[
0.5 0.3 0.2

]
,

D0 =




−5.0111 5.0111 0

0 −5.0111 0

0 0 −1128.75


 , D1 =




0 0 0

4.96099 0 0.05011

11.2875 0 1117.4625


 .

Effect of θ

The entries in Table 6.1 are on expected lines: Pidle increases with increasing value

of θ - this means that customers, when selected in incorrect mode of service, spent

a long time in the system before departure; the value of YYY 1 steadily increases with

θ since, for example all customers are selected for correct service at the beginning

stage itself when θ = 1; values of YYY 2 and YYY 3 decrease with increase in value of θ,

as expected and when θ = 1, both turn out to be zero; in Pcs column all entries

against corresponding values of θ decrease and reach zero when θ = 1. Loss
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probability of customers, when admitted first to undesirable phases of service

who leave without going to desired phase of service, decrease with increasing

value of θ.

θ Pidle YYY 1 YYY 2 YYY 3 Pcs Ploss Est

0.5 0.0647 0.2917 0.3625 0.2811 0.4819 0.0181 0.1871

0.6 0.1351 0.3500 0.2900 0.2249 0.3855 0.0145 0.1730

0.7 0.2055 0.4083 0.2175 0.1687 0.2891 0.0109 0.1589

0.8 0.2759 0.4667 0.1450 0.1124 0.1928 0.0072 0.1448

0.9 0.3463 0.5250 0.0725 0.0562 0.0964 0.0036 0.1307

1 0.4167 0.5833 0 0 0 0 0.1167

Table 6.1: Effect of θ for γ = 0.25

Effect of γ

γ Pidle YYY 1 YYY 2 YYY 3 Pcs Ploss Rlc Est

0.1 0.1969 0.4083 0.2223 0.1724 0.9852 0.0148 3.5 0.1606

0.2 0.2027 0.4083 0.2191 0.1699 0.9708 0.0292 3.5 0.1595

0.3 0.2083 0.4083 0.2159 0.1675 0.9568 0.0432 3.5 0.1583

0.4 0.2137 0.4083 0.2128 0.1651 0.9432 0.0568 3.5 0.1573

0.5 0.2190 0.4083 0.2098 0.1628 0.9301 0.0699 3.5 0.1562

0.6 0.2242 0.4083 0.2069 0.1605 0.9172 0.0828 3.5 0.1552

Table 6.2: Effect of γ for θ = 0.7

The output in Table 6.2 also are on expected lines. Note that Ploss increases

with increasing value of γ, since clock realized faster for higher value of γ. The

column corresponding to YYY 1 has all entries with same value; this is so since

the clock realization time does not affect the probability of getting into correct
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service. Columns corresponding to YYY 2 and YYY 3 should have values decreasing with

γ increasing since faster clock realization leads to moving out of incorrect service

states faster. Further Pcs decrease with increase in value of γ. This is due again

to the fact that clock realizes faster for larger values of γ, resulting in customers

at undesirable phases of service leave the system (due to clock realization).

Effect of arrival process

For the arrival process, we consider the following five sets of values for D0 and

D1 as follows.

1. Exponential (EXPA):

D0 =
[
−5

]
, D1 =

[
5
]

2. Erlang (ERLA):

D0 =

[
−10 10

0 −10

]
, D1 =

[
0 0

10 0

]

3. Hyper-exponential (HEXA):

D0 =

[
−9.5 0

0 −0.95

]
, D1 =

[
8.55 0.95

0.855 0.095

]

4. MAP with negative correlation (MNCA):

D0 =




−5.0111 5.0111 0

0 −5.0111 0

0 0 −1128.75


 , D1 =




0 0 0

0.05011 0 4.96099

1117.4625 0 11.2875




5. MAP with positive correlation (MPCA):

D0 =




−5.0111 5.0111 0

0 −5.0111 0

0 0 −1128.75


 , D1 =




0 0 0

4.96099 0 0.05011

11.2875 0 1117.4625



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The above MAP processes will be normalized so as to have a specific arrival rate.

However, these are qualitatively different in that they have different variance and

correlation structure. The first three arrival processes, namely, EXPA,ERLA

and HEXA have zero correlation for two successive inter-arrival times. The

arrival processes labeled MNCA and MPCA, respectively, have negative and

positive correlation for two successive inter-arrival times with values -0.48891

and 0.48891. The standard deviation of the inter-arrival times of these five arrival

processes are, respectively, 0.2, 0.14142, 0.44894, 0.2819 and 0.2819.

The main comparison in Tables 6.3 and 6.4 is between values of µNS in

MNCA and MPCA. Both decrease with increase in value of γ (θ) in both

tables. However, MNCA has much smaller values compared to their MPCA

counter parts. This indicates that positive correlation in the arrival process re-

sults in accumulation of large number of customers in the system.

γ EXPA ERLA HEXA MNCA MPCA

0.1 4.0165 3.0730 10.5391 4.2115 203.9659

0.2 3.8699 2.9622 10.1056 4.0638 196.7258

0.3 3.7355 2.8609 9.7083 3.9285 190.0795

0.4 3.612 2.7677 9.3429 3.8041 184.2689

0.5 3.498 2.6819 9.0058 3.6892 178.2982

Table 6.3: Effect of γ for θ = 0.7

θ EXPA ERLA HEXA MNCA MPCA

0.5 13.3258 9.7995 40.6466 13.5708 721.7476

0.6 6.1198 4.5998 17.2625 6.3312 319.9786

0.7 3.8013 2.9105 9.9027 3.9947 193.3331

0.8 2.6298 2.0452 6.3133 2.8092 131.2621

0.9 1.9059 1.9059 4.2039 2.0729 94.3918

Table 6.4: Effect of θ for γ = 0.25
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Concluding remarks and suggestions for future study:

In this thesis we discussed priority queueing models with self generation of lower

priorities through interruption or feedback. A multi server priority model in the

context of crowdsourcing was analyzed. Also discussed are queueing systems

where uncertainty prevails in the selection of service.

Chapter 2 dealt with a highly dependent priority queueing system where low

priority customers join the queue from immediately preceding waiting lines due

to interruption of service by self. We assumed all underlying distributions to be

exponential. Analytical expressions for system state probabilities were computed.

The second chapter discussed an analogous situation but customers joined the

low priority queue only after completing their service from high priority line. A

multi server priority queueing model with two types of customers was discussed

in chapter 4. The main advantage with the problem we analyzed in this chapter,

in comparison with that of Chakravarthy and Dudin [11] is that the loss of high

priority customers is reduced due to preemption. This results in a larger number

of low priority customers being served by high priority customers. However, pre-

emption of a low priority, sometimes even more than once, may lead to its longer

waiting time in the system. Nevertheless if suitable incentive is provided to the

high priority customer who serve a low priority customer on leaving the system,

the probability to offer service may become close to 1, if not equal to 1. The the-

sis then focused some diagnostic problems where uncertainty in the selection of

service type plays a prominent role. In chapter 5 we analyzed a situation where

service starts without knowing whether it is going to be inappropriate for the

customer, but service is compulsorily needed for customer arriving at the service

point. We assumed the case of two types of services of which one is correct and

services are offered in phases. In the last chapter we examined a queueing model

offering n distinct services, but for any customer one among the n services was

required and the remaining n − 1 were damaging (undesirable/ inessential) and
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both of these cases were analyzed for a single server case.

In a future work we propose to extend the models in chapters 2 and 3 to the

case of correlated arrivals. Crowdsourcing model is to be analyzed in the context

of queueing-inventory scenario. In the diagnostic problems further analysis is

needed when required service constitutes more than one correct service. The

advantage in using multiple service channels to improve the performance of the

system is to be explored. Also, analysis of the case of arbitrarily distributed

service process is under progress.
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