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Chapter 1

Introduction

In 1735, the renowned Swiss mathematician Leonhard Euler set-

tled the famous ‘Königsberg bridge problem’, which had per-

plexed scholars for many years, and his method of solution to

the problem initiated the study of an entire new branch of math-

ematics, called Graph Theory. The origin of graph theory is well

recorded in [13]. After Euler’s discovery, graph theory boomed

with major contributions made by great mathematicians like

Kirkman, Hamilton, Cayley, Kirchhoff, Sylvester and Polya.

This branch of mathematics has developed into a substantial

body of knowledge with a variety of applications in diverse fields

1



2 Chapter 1. Introduction

such as physics, chemistry, economics, psychology, business, so-

ciology, anthropology, linguistics and geography. Volumes have

been written on the rich theory and the very many applications

of graphs in [4, 11, 33, 71], including the pioneering works of C.

Berge [10], F. Harary [36] and O. Ore [58].

In the past decade, graph theory has gone through a remark-

able shift and a profound transformation. Graph theory is now

emerging as a central part of the information revolution. In

contrast to its origin in recreational mathematics, graph theory

today uses sophisticated combinatorial, probabilistic, and spec-

tral methods with deep connections with a variety of areas in

mathematics and computer science. The area of network sci-

ence calls for a solid scientific foundation and rigorous analysis

for which graph theory is ideally suited. Graph theory provides

a fundamental tool for designing and analyzing large scale net-

works [47]. Real world networks such as the World Wide Web,

collaboration networks, citation networks and social networks

lead to new directions for research in graph theory [5, 19].

This thesis aims at making a humble effort to contribute to

the innumerous set of results in graph theory.
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Domination is a well studied graph parameter, and a clas-

sical topic in graph theory. The historical roots of domination

dates back to 1862 when C. F. De Jaenisch studied the prob-

lem of determining the minimum number of queens necessary

to cover n × n chessboard [22]. The evolution and the sub-

sequent development of this fertile area of domination theory

from the chessboard problems is very well surveyed by Watkins

in [70]. The mathematical study of domination theory in graphs

started around 1960 by Berge [10] and Ore [58]. Domination has

applications in facility location problems, coding theory, com-

puter communication networks, biological networks and social

networks.

One of the reasons that stimulate much research into domi-

nation is the multitude of variations of domination. Each type

of domination meets a specific purpose in real life applications.

Various types of domination are obtained by imposing an ad-

ditional condition on the method of dominating. Domination

parameters are in general discussed and characterized for their

properties and bounds on various graphs. A detailed study on

the motivation and applications of graph domination, and com-

prehensive treatment of variety of domination parameters can
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be found in [20, 40, 41].

Power domination, introduced by Baldwin et al. [6] in 1993,

is a variation of domination which arises in the context of mon-

itoring electric power networks. A power network contains a set

of buses and a set of branches connecting the buses. It also con-

tains a set of generators, which supply power, and a set of loads,

where the power is directed to. The important task for electric

power companies is to monitor their power system continuously.

In order to monitor a power network, we need to measure all the

state variables of the network by placing measurement devices.

A Phasor Measurement Unit (PMU) is a measurement device

placed on a bus that has the ability to measure the voltage at

the bus and current phase of the branches connected to the bus.

PMUs are used to monitor large system stability and to give

warnings of system-wide failures. The ability to measure the

current phasors as well as the voltage gives the PMU an advan-

tage over other measurement units, some of which require one

measurement device per bus. As PMUs are expensive devices,

the goal of power system monitoring problem is to install the

minimum number of PMUs such that the whole system is mon-

itored. This problem has been formulated as a graph theoretic
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problem by Haynes et. al in [39] in 2002.

Two fundamental laws of physics that can be used to reduce

the number of PMUs required to achieve complete monitoring

of a power system are as follows:

1. Ohm’s law: The current through a conductor between two

points is directly proportional to the voltage across the two

buses, and is inversely proportional to the resistance between

them.

2. Kirchhoff’s current law: At any bus in a circuit, the sum

of currents flowing into it is equal to the sum of currents flowing

out of it.

Consider an 18-bus system depicted in Figure 1.1. We place

the PMUs at bus 5 and 14 and the associated phasor measure-

ments are assigned to the branches 5-4, 5-6, 5-10, 14-8, 14-12

and 14-15. From Ohm’s law, the voltage phasors at buses 4, 6,

8, 10,12 and 15 can be obtained from the branch current (Fig-

ure 1.2). From the known voltage phasors, the currents of the

branches 6-8 and 10-12 can be calculated using Ohm’s law (Fig-

ure 1.3). From the known currents of branches 5-6 and 6-8, the

current of the branch 6-7 can be inferred by using Kirchhoff’s
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Figure 1.1: 18-Bus system (From Baldwin et al. [6]).

Figure 1.2: 18-Bus system (From Baldwin et al. [6]).

law. Using Ohm’s law, the voltage phasor at bus 7 can be de-

duced. Similarly, the current of the branch 8-9 and the voltage

phasor at bus 9 can be calculated (Figure 1.4). Since the cover-

age of the two PMUs cannot be expanded any further, consider

the placement of PMUs at buses 4, 6 and 15. This allows us to

assign current measurements to the branches 4-1, 4-2, 4-3, 4-5,

6-5, 6-7, 6-8, 15-14, 15-16, 15-17 and 15-18, and to calculate
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Figure 1.3: 18-Bus system (From Baldwin et al. [6]).

Figure 1.4: 18-Bus system (From Baldwin et al. [6]).

the voltage phasors at buses 1, 2, 3, 5, 7, 8, 14, 16, 17 and 18.

From the voltages at buses 5 and 14, the current measurements

can be assigned to the branches 5-10 and 14-12 by Kirchhoff’s

law. Again by applying Ohm’s law, voltages at buses 10 and

12, and current of the branch 10-12 can be obtained. Finally by

applying Kirchhoff’s law, currents at branches 10-11 and 12-13

can be calculated, which will then give the voltage phasors at
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buses 11 and 13 by Ohm’s law. However, this placement set of

3 PMUs is an optimal one (Figure 1.5).

Figure 1.5: 18-Bus system (From Baldwin et al. [6]).

To see the power system monitoring problem and its graph

theoretic formulation [1, 2] in more detail consider a graph G =

(V (G), E(G)) that represents a power network. Here, vertices

represent buses and edges are associated with the branches join-

ing two buses. The resistance of the branches in the power

network is a property of the material with which it is made and

hence it can be assumed to be known. For simplicity, assume

that there are no generators and loads. Our goal is to measure

the voltages at all vertices and electrical currents at the edges.

By placing a PMU at a vertex v we can measure the voltage of

v and the electrical current on each edge incident to v. Next, by
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using Ohm’s law we can compute the voltage of any vertex in

the neighbourhood of v. Now, assume that the voltage on v and

all of its neighbours except w is known. By applying Ohm’s law,

we can compute the current on the edges incident to v except

the edge vw. Next by using Kirchhoff’s current law, we compute

the current on the edge vw. Finally, applying Ohm’s law on the

edge vw gives us the voltage of w. Once we get the value of

voltage at a vertex and electrical current on the edge incident

to it, we say that the corresponding vertex and the edge are

‘monitored’. Using Ohm and Kirchhoff laws, it is then pos-

sible to infer from initial knowledge of the status of some part

of the network the status of new edges or vertices. The graphi-

cal representation of the monitoring of 18-bus system discussed

earlier is shown in Figure 1.6.

In terms of graphs, the monitoring of vertices and edges by

a PMU can now be described by the following rules [39].

1. Any vertex where a PMU is placed and its incident edges are

monitored.

2. If one end vertex of a monitored edge is monitored, then the

other end vertex is monitored (by Ohm’s law).

3. Any edge joining two monitored vertices is monitored (by
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Figure 1.6

Ohm’s law).

4. If a vertex is of degree r > 1, and r − 1 of its incident

edges are monitored, then all r incident edges are monitored (by

Kirchhoff’s law).

The power system monitoring problem was considered in [39]

in a slightly more complicated way by treating both vertices and

edges of a given graph. It was later noticed in [2, 17, 28, 34, 52]

that the problem can be studied considering only vertices. How-

ever, it was easily shown that both approaches are equivalent,

as observed in [28]. The above four monitoring rules of a PMU

can now be simplified into following two monitoring rules.

• (Rule 1) A PMU on a vertex v monitors v and all its neigh-

bours.
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• (Rule 2) If a monitored vertex u has all its neighbours mon-

itored except one neighbour w, then w becomes monitored as

well.

The monitoring of vertices is governed by the above two

rules. The first rule is called the domination rule and the

second one is called the propagation rule. From this propa-

gation, a vertex can end up to be monitored even though it is

at a large distance from any vertex selected to carry a PMU.

A graph is ‘monitored’ if all its vertices are monitored ac-

cording to the domination and propagation rules. The power

domination problem in graphs consists of finding a set of

vertices of minimum cardinality that monitors the entire graph,

by applying the two monitoring rules- the domination rule and

the propagation rule. In terms of physical network, those ver-

tices will provide the locations where the PMUs should be placed

in order to monitor the entire network at the minimum cost.

Power domination is generalized to k-power domination by

Chang et al. [18] in 2012 by adding the possibility of propa-

gating up to k vertices, k a non-negative integer. The k-power

domination reduces to the usual power domination when k = 1
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and to the domination when k = 0.

This thesis is centered around the power domination problem

in graphs.

The basic notations, terminology and definitions used in this

thesis are from [4, 35, 36, 40, 71].

1.1 Notations

When G = (V (G), E(G)) is a graph,

V (G) : the vertex set of G

E(G) : the edge set of G, a collection of

2-element subsets of V (G)

|V (G)| : the order of G

|E(G)| : the size of G

dG(v) or d(v) : the degree of v in G

δ(G) : the minimum degree of G

∆(G) : the maximum degree of G

dG(u, v) or d(u, v) : the shortest distance between

u and v in G
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u, v-path : path from a vertex u

to a vertex v

r(G) : the radius of G

NG(v) or N(v) : the open neighbourhood

of v in G

NG[v] or N [v] : the closed neighbourhood

of v in G

NG(S) = ∪v∈SNG(v) or N(S) : the open neighbourhood

of a subset S of V (G)

NG[S] = ∪v∈SNG[v] or N [S] : the closed neighbourhood

of a subset S of V (G)

λ(G) : the edge connectivity of G

G ∼= H : G is isomorphic to H

G ∪H : union of G and H

< X > : the subgraph induced by

a subset X of V (G)

Pn : the path on n vertices

Cn : the cycle on n vertices

Kn : the complete graph on

n vertices

K1,n : the star of size n
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Km,n : the complete bipartite graph where m and

n are the cardinalities of the partitions

G− v : the subgraph of G obtained by deleting

the vertex v

G− e : the subgraph of G obtained by deleting

the edge e

G− A : the subgraph of G obtained by the deletion

of the vertices in A

G−B : the subgraph of G obtained by the deletion

of the edges in B

1.2 Definitions

Definition 1.2.1. [4] A graphG is trivial or empty if its vertex

set is a singleton and it contains no edges, and nontrivial or

nonempty if it has at least one edge. A vertex of degree zero

is an isolated vertex and of degree one is a pendant vertex.

The edge incident on a pendant vertex is a pendant edge. If

G is a graph of order n, then a vertex of degree n − 1 is called

a universal vertex. A spanning 1-regular graph is called a

perfect matching. A maximal complete subgraph of order p
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is called a p-clique.

Definition 1.2.2. [4] A subdivision of an edge e = xy of a

graph G is obtained by introducing a new vertex z in e, that is,

by replacing the edge e = xy of G by the path xzy of length

two so that the new vertex z is of degree two in the resulting

graph. The graph obtained by contraction of an edge e = xy,

denoted by G/e, is obtained from G − e by replacing x and y

by a new vertex vxy (contracted vertex) which is adjacent to all

vertices in NG−e(x) ∪NG−e(y).

Definition 1.2.3. [39] A spider is the tree formed from a star

by subdividing any number of its edges any number of times.

Figure 1.7: A spider graph obtained by subdividing the edges of
the star K1,6.

Definition 1.2.4. [4] The join of two graphs G and H, denoted

by G ∨ H, is the graph with vertex set V (G) ∪ V (H) and the
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edge set E(G)∪E(H)∪{gh : g ∈ V (G), h ∈ V (H)}. The graph

K1 ∨ Cn−1 is called the wheel, Wn. The graph K1 ∨ Pn−1 is

called the fan, Fn.

Definition 1.2.5. [35] The Cartesian product of two graphs

G and H, denoted by G✷H, is the graph with vertex set V (G)×

V (H) and two vertices (g, h) and (g′, h′) in V (G) × V (H) are

adjacent in G✷H if either g = g′ and hh′ ∈ E(H), or h = h′

and gg′ ∈ E(G).

Definition 1.2.6. [35] The direct product of two graphs G

and H, denoted by G×H, is the graph with vertex set V (G)×

V (H) and two vertices (g, h) and (g′, h′) in V (G) × V (H) are

adjacent in G×H if gg′ ∈ E(G) and hh′ ∈ E(H).

Definition 1.2.7. [35] The strong product of two graphs G

and H, denoted by G⊠H, is the graph with vertex set V (G)×

V (H) and the edge set E(G⊠H) = E(G✷H) ∪ E(G×H).

Definition 1.2.8. [35] The lexicographic product of two

graphs G and H, denoted by G◦H, is the graph with vertex set

V (G)×V (H) and two vertices (g, h) and (g′, h′) in V (G)×V (H)

are adjacent in G ◦ H if either gg′ ∈ E(G), or g = g′ and

hh′ ∈ E(H).
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(a) P4✷P3 (b) P4 × P3 (c) P4 ⊠ P3 (d) P4 ◦ P3

Figure 1.8: The four graph products.

Remark 1.2.1. The four product graphs, except for the lexico-

graphic product, are commutative [35].

Definition 1.2.9. [35] Let G ∗H be any of the graph products.

For any vertex g ∈ V (G), the subgraph of G ∗ H induced by

{g} × V (H) is called the H-fiber at g and denoted by gH.

For any vertex h ∈ V (H), the subgraph of G ∗ H induced by

V (G)× {h} is called the G-fiber at h and denoted by Gh. The

graphs G and H are called the factor graphs of G ∗H.

Definition 1.2.10. [40] A subset S ⊆ V (G) of vertices in a

graph G is a dominating set if every vertex v ∈ V (G)\S is

adjacent to at least one vertex in S. If S is a dominating set

then NG[S] = V (G). A dominating set of minimum cardinality

in G is called a minimum dominating set, and its cardinality,

the domination number of G, denoted by γ(G). A γ(G)-set

is a dominating set in G of cardinality γ(G).

Remark 1.2.2. A vertex v in a graph G is said to dominate
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its closed neighbourhood NG[v]. For two nonempty subsets S

and X of V (G), the set S dominates X if each vertex in X \S

is adjacent to a vertex in S.

Definition 1.2.11. [40] A subset S ⊆ V (G) of vertices in a

graph G is a total dominating set if every vertex v ∈ V (G)

is adjacent to at least one vertex in S. The minimum cardi-

nality of a total dominating set in a graph G is called its total

domination number, denoted by γt(G). A γt(G)-set is a total

dominating set in G of cardinality γt(G).

Figure 1.9: The graph G.

For the graph G in Figure 1.9, γ(G) = 3 ({a, c, d} is a γ(G)-

set) and γt(G) = 4 ({a, b, c, d} is a γt(G)-set).

Definition 1.2.12. [26] Let G be a graph and S ⊆ V (G). The

set monitored by S , denoted by M(S) is defined recursively
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as follows:

• (domination step) M(S)← S ∪NG(S),

• (propagation step) as long as there exists a vertex v ∈ M(S)

such that NG(v) ∩ (V (G) \M(S)) = {w}, set M(S)←M(S) ∪

{w}.

Remark 1.2.3. The set M(S) initially consists of all vertices

in NG[S]. This set is then iteratively extended by including all

vertices w ∈ V (G) that have a neighbour v in M(S) such that

all the other neighbours of v, except w, are already in M(S).

In that case, we say ‘v monitors w by propagation’. This is

continued until no such vertex w exists, at which stage the set

monitored by S has been constructed. For example, consider

Figure 1.10. For the set S = {u, v}, the vertices of M(S) are

coloured black in the figure.

Figure 1.10: M(S) where S = {u, v}.
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Definition 1.2.13. [26] A set S ⊆ V (G) is called a power

dominating set (PDS) of a graph G if M(S) = V (G) and

the power domination number of G, denoted by γP(G), is

the minimum cardinality of a power dominating set of G. A

γP(G)-set is a power dominating set in G of cardinality γP(G).

For the graph G in Figure 1.9, the set {a, c} is a γP(G)-set

and therefore γP(G) = 2.

Definition 1.2.14. [18] Let G be a graph, S ⊆ V (G) and k ≥ 0.

The sets
(
P i

G,k(S)
)

i≥0
of vertices monitored by S at step i

are defined as follows:

• (domination step) P0
G,k(S) = NG[S], and

• (propagation steps) P i+1
G,k (S) =

⋃{NG[v] : v ∈ P i
G,k(S) such

that
∣
∣NG[v] \ P i

G,k(S)
∣
∣ ≤ k}.

For i ≥ 0 we have P i
G,k(S) ⊆ P i+1

G,k (S). This is easy to

check by induction, using the fact that whenever NG[v] has been

included in P i
G,k(S), it is included in P i+1

G,k (S). This also implies

that P i
G,k(S) is always a union of neighbourhoods. Furthermore,

if a vertex v in the set P i
G,k(S) has at most k neighbours outside
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the set, then the set P i+1
G,k (S) containsNG[v]. We say, ‘v monitors

its k unmonitored neighbours by propagation at step i + 1’. If

P i0
G,k(S) = P i0+1

G,k (S) for some integer i0, then Pj
G,k(S) = P i0

G,k(S)

for every j ≥ i0. We thus denote this set P i0
G,k(S) by P∞

G,k(S).

Remark 1.2.4. When the graph G is clear from the context,

we simplify the notation to P i
k(S) and P∞

k (S). The definition

for the monitored set M(S) is obtained by replacing k by 1 in

the definition of
(
P i

G,k(S)
)

i≥0
.

Definition 1.2.15. [18] A set S ⊆ V (G) is a k-power domi-

nating set (k-PDS) of a graph G if P∞
G,k(S) = V (G). A k-PDS

of minimum cardinality in G is called a minimum k-PDS and

its cardinality is called the k-power domination number of

G, denoted by γP,k(G). A γP,k(G)-set is a k-PDS in G of cardi-

nality γP,k(G).

Remark 1.2.5. Observe that γP,0(G) = γ(G) and γP,1(G) =

γP(G).

Consider the graph G′ in Figure 1.11.

Case (i) : k = 0.

For S0 = {e, g, k, s}, P0
G′,0(S0) = V (G′).

Case (ii) : k = 1.
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Figure 1.11: The graph G′.

For S1 = {e, k, s},

P0
G′,1(S1) = {e, k, s, a, b, c, d, f, j, l,m, n, o, p, q, r, t}.

P1
G′,1(S1) = {g, i} ∪ P0

G′,1(S1).

P2
G′,1(S1) = {h} ∪ P1

G′,1(S1) = V (G′).

Case (iii) : k = 2.

For S2 = {e, k},

P0
G′,2(S2) = {e, k, a, b, c, d, f, j, l,m, n, o}.

P1
G′,2(S2) = {g, i, p} ∪ P0

G′,2(S2).

P2
G′,2(S2) = {h, s, t} ∪ P1

G′,2(S2).

P3
G′,2(S2) = {r, q} ∪ P2

G′,2(S2) = V (G′).

Case (iv) : k = 3.

For S3 = {e},

P0
G′,3(S3) = {e, a, b, c, d, f}.
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P1
G′,3(S3) = {g} ∪ P0

G′,3(S3).

P2
G′,3(S3) = {h, i, t} ∪ P1

G′,3(S3).

P3
G′,3(S3) = {j, s} ∪ P2

G′,3(S3).

P4
G′,3(S3) = {k, p, q, r} ∪ P3

G′,3(S3).

P5
G′,3(S3) = {o} ∪ P4

G′,3(S3).

P6
G′,k(S3) = {l,m, n} ∪ P5

G′,3(S3) = V (G′).

For k ≥ 4, we get that P5
G′,k(Sk) = V (G′), for Sk = {e}.

Thus, for each k, we can observe that Sk is a unique k-PDS

of G′. Therefore γP,0(G
′) = γ(G′) = 4, γP,1(G

′) = γP(G
′) = 3,

γP,2(G
′) = 2 and for k ≥ 3, γP,k(G

′) = 1.

Definition 1.2.16. [25] The radius of a k-PDS S of a graph G

is defined by radP,k(G,S) = 1+min{i : P i
G,k(S) = V (G)} . The

k-propagation radius of a graph G, denoted by radP,k(G),

is radP,k(G) = min{radP,k(G,S), S is a k-PDS of G, |S| =

γP,k(G)} .

For example, in Figure 1.11, radP,0(G
′) = 1, radP,1(G

′) = 3,

radP,2(G
′) = 4, radP,3(G

′) = 7 and for k ≥ 4, radP,k(G
′) = 6.

Definition 1.2.17. [31] The bondage number, denoted by

b(G), of a nonempty graph G is the minimum cardinality among

all sets of edges B for which γ(G−B) > γ(G).
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In Figure 1.11, γ(G′ − ae) = 5 > 4 = γ(G′). Therefore

b(G′) = 1.

Definition 1.2.18. [3] Color-change rule : If G is a graph

with each vertex coloured either white or black, v is a black

vertex of G, and exactly one neighbour w of v is white, then

change the colour of w to black. Given a colouring of G, the

derived coloring is the result of applying the color-change rule

until no more changes are possible.

Definition 1.2.19. [3] A zero forcing set of a graph G is a set

Z ⊆ V (G) such that if initially the vertices in Z are coloured

black and the remaining vertices are coloured white, the en-

tire graph G may be coloured black by repeatedly applying the

colour-change rule. The zero forcing number of G, denoted

by Z(G), is the minimum cardinality of a zero forcing set.

Figure 1.12: The graph H.
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In Figure 1.12, {u, v} is a minimum zero forcing set of H and

therefore Z(H) = 2

We will use the notations N0 : = {0, 1, . . .} and Nt := {t, t+

1, . . .} ⊆ N0, t ∈ N0. For t ∈ N1, [t] := {1, . . . , t} ⊆ N1, [t]0 :=

{0, . . . , t−1} ⊆ N0 and for t, s ∈ N3, [t]
s−2
0 = {as−2as−3 . . . a1 : ai ∈

[t]0 for all i}. Note that |[t]0| = t = |[t]|.

Definition 1.2.20. [30] The Knödel graph on 2ν vertices,

where ν ∈ N1, and of maximum degree ∆ ∈ [1 + ⌊log2(ν)⌋] is

denoted by W∆,2ν . The vertices of W∆,2ν are the pairs (i, j) with

i = 1, 2 and j ∈ [ν]0. For every such j, there is an edge between

vertex (1, j) and any vertex (2, j+2ℓ−1 (mod ν)) with ℓ ∈ [∆]0.

Remark 1.2.6. An edge of W∆,2ν which connects a vertex (1, j)

with the vertex (2, j + 2ℓ − 1 (mod ν)) is called an edge in di-

mension ℓ.

Figure 1.13: The graph W3,16.
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Definition 1.2.21. [43] The Hanoi graph, denoted by Hn
p , for

base p ∈ N3 and exponent n ∈ N0 are defined as follows.

V (Hn
p ) = {sn . . . s1 : sd ∈ [p]0 for d ∈ [n]},

E(Hn
p ) =

{
{sis, sjs} : i, j ∈ [p]0, i 6= j, s ∈ [p]n−d

0 ,

s ∈ ([p]0\{i, j})d−1, d ∈ [n]
}
.

Remark 1.2.7. The edge sets of Hanoi graphs can also be ex-

pressed in a recursive definition:

E(H0
p ) = ∅,

∀n ∈ N0 : E(H1+n
p ) =

{
{ir, is} : i ∈ [p]0, {r, s} ∈ E(Hn

p )
}
∪

{
{ir, jr} : i, j ∈ [p]0, i 6= j, r ∈ ([p]0\{i, j})n

}
.

Figure 1.14: The graph H2
4 .

Definition 1.2.22. [45] For C,L ∈ N1, an L−levelWK-Recursive
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mesh, denoted by WK(C,L), consists of a set of vertices

V (WK(C,L)) = {(aLaL−1 . . . a1) : ai ∈ [C]0 for i ∈ [L]}. The

vertex with address (aLaL−1 . . . a1) is adjacent

1. to all the vertices with addresses (aLaL−1 . . . a2aj) such

that aj ∈ [C]0, aj 6= a1 and

2. to a vertex (aLaL−1 . . . aj+1aj−1(aj)
j−1), if there exists one

j such that 2 ≤ j ≤ L, aj−1 = aj−2 = . . . = a1 and

aj 6= aj−1.

Remark 1.2.8. The notation (aj)
j−1 denotes that the term aj

is repeated j − 1 times. The WK-Recursive mesh is isomorphic

to the Sierpiński graph, denoted by Sn
p , defined in [25]. Here the

parameters p and n of Sn
p correspond to C and L of WK(C,L),

respectively.

Definition 1.2.23. [45] For C,L ∈ N1, a WK-Pyramid net-

work, denoted by WKP(C,L), consists of a set of vertices

V (WKP(C,L)) = {(r, (arar−1 . . . a1)) : r ∈ [L], ai ∈ [C]0 for i ∈

[r]}∪{(0, (1))}. The vertex (0, (1)) is adjacent to every vertex in

level 1. A vertex with address (r, (arar−1 . . . a1)) at level r > 0

is adjacent
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1. to vertices (r, (arar−1 . . . a2aj)) ∈ V (WKP(C,L)), for aj ∈

[C]0, aj 6= a1,

2. to a vertex (r, (arar−1 . . . aj+1aj−1(aj)
j−1)), if there exists

one j such that 2 ≤ j ≤ L, aj−1 = aj−2 = . . . = a1 and

aj 6= aj−1,

3. to vertices (r+1, (arar−1 . . . a2a1aj)), for aj ∈ [C]0, in level

r + 1 and

4. to a vertex (r − 1, (arar−1 . . . a2)), in level r − 1.

Figure 1.15: The graph WKP(5,2).



1.3. New definitions 29

1.3 New definitions

Definition 1.3.1. [66] Let k ≥ 0. The k-power bondage

number, denoted by bP,k(G), of a nonempty graphG is bP,k(G) =

min{|B| : B ⊆ E(G), γP,k(G−B) > γP,k(G)}.

Remark 1.3.1. An edge set B with γP,k(G − B) > γP,k(G) is

the k-power bondage set of G. Clearly, bP,0(G) = b(G).

Figure 1.16: The graph H ′.

In Figure 1.16, {u, v, w} is a γ(H ′)- set and for k ≥ 1, {v}

is a γP,k(H
′)- set. Therefore γ(H ′) = 3 and γP,k(H

′) = 1 for

k ≥ 1. For the set B = {e1, e2}, γ(H ′ − B) = 4 and for the set

B′ = {e1}, γP(H ′ − B′) = 2. Hence b(H ′) = bP,0(H
′) = |B| = 2

and bP,1(H
′) = |B′| = 1. For k ≥ 2, γP,k(H

′ − B) = 2 and

therefore bP,k(H
′) = |B| = 2.

Definition 1.3.2. [27] For k ≥ 1, a k-generalized spider is a

tree with at most one vertex of degree k + 2 or more.



30 Chapter 1. Introduction

Remark 1.3.2. The spider in Definition 1.2.3 is a 1-generalized

spider and thus the k-generalized spider is the generalization of

spider. Figure 1.17 depicts a k-generalized spider for k ≥ 2.

Figure 1.17: A k-generalized spider, T .

Definition 1.3.3. A tailed star is a tree obtained from a star

by subdividing at most one edge any number of times.

Figure 1.18: A tailed star obtained by subdividing an edge of
K1,4.
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1.4 A survey of previous results

In this section, we shall provide a brief survey of literature on the

power domination problem, which we will require in subsequent

chapters of the thesis.

The problem of finding a dominating set of minimum cardi-

nality is an important problem that has been extensively studied

[14, 20, 35, 40, 41]. The following theorem gives a useful prop-

erty of dominating sets.

Theorem 1.4.1. [14] Let G be a graph without isolated vertices.

Then G has a γ(G)-set D such that for every u ∈ D, there exists

a vertex v ∈ V (G)\D that is adjacent to u but to no other vertex

of D.

Our focus is on a variation of domination called the power

dominating set problem. The computational complexity of the

power domination problem is considered in various papers [1, 2,

34, 39], in which it is proved to be NP-complete on bipartite and

chordal graphs as well as for bounded propagation variants. On

the other hand, the efficient solutions for the problem are known

for trees [39], interval graphs [56] and block graphs [74]. Upper
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bounds for γP(G) for an arbitrary graph G are given in [76]. The

power domination problem in planar graphs is studied in [75].

It is proved in [75] that if G is an outerplanar graph with di-

ameter 2 or a 2-connected outerplanar graph with diameter 3,

then γP(G) = 1 and if G is a planar graph with diameter 2, then

γP(G) ≤ 2.

The problem of characterizing the power domination number

of a graph is non trivial for simple families of graphs. Early

studies try to characterize it for products of paths and cycles [7,

26, 28]. The problem of finding the power domination number is

also studied in generalized Petersen graphs [73], hypercubes [21,

59] and hexagonal grids [29]. The following results from [7, 26,

28, 39, 62] are of interest to us.

Observation 1.4.2. [39] For any graph G, 1 ≤ γP(G) ≤ γ(G).

Theorem 1.4.3. [39] For any tree T ,

(a) γP(T ) = 1 if and only if T is a spider.

(b) γP(T ) = sp(T ), where sp(T ) is the minimum number of

subsets into which V (T ) can be partitioned so that each subset

induces a spider.

Theorem 1.4.4. [28] Let G = Pn✷Pm. For m ≥ n ≥ 1,



1.4. A survey of previous results 33

γP(G) =







⌈
n+1
4

⌉
, n ≡ 4 (mod 8);

⌈
n
4

⌉
, otherwise.

Theorem 1.4.5. [7] Let n ≥ 2, m ≥ 3 and G = Pn✷Cm. Then

γP(G) ≤ min{
⌈
m+1
4

⌉
,
⌈
n+1
2

⌉
}.

Theorem 1.4.6. [7] Let n,m ≥ 3 and G = Cn✷Cm. For

n ≤ m, γP(G) =







⌈
n
2

⌉
, n ≡ 2 (mod 4);

⌈
n+1
2

⌉
, otherwise.

Theorem 1.4.7. [62] We have,

(a)γP(Km ✷Pn) = 1,m, n ≥ 1.

(b)γP(Km✷Cn) = 2,m > 2, n ≥ 4.

(c)γP(Km ✷Fn) = 2,m, n ≥ 3.

(d)γP(Km ✷Wn) = 3,m, n ≥ 4.

(e)γP(Km × Cn) = γt(Cn),m ≥ 3, n ≥ 4.

Theorem 1.4.8. [26] For any nontrivial graphs G and H,

γP(G ◦H) =







γ(G), γP(H) = 1;

γt(G), γP(H) > 1.

Linear-time algorithms are known for computing minimum

k-power dominating sets in trees [18] and in block graphs [69].

In [18], the authors showed along with some early results about
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k-power domination that some bounds, extremal graphs and

properties can be expressed for any k, including the case of

domination. In [24], a bound from [76] on regular graphs is

also generalized to any k. Closed formulae for the k-power dom-

ination number of Sierpiński graphs [25] are also known.

Observation 1.4.9. [18] Let G be a graph and k ≥ 1. Then

(a) 1 ≤ γP,k+1(G) ≤ γP,k(G) ≤ γP,k−1(G) ≤ γ(G).

(b) If G is connected and ∆(G) ≤ k + 1, then γP,k(G) = 1.

(c) If G contains a vertex v which is adjacent to at least k + 2

pendant vertices, then v is in every γP,k(G)-set.

Theorem 1.4.10. [18] For k ≥ 1, if G is a connected graph

with ∆(G) ≥ k + 2, then there exists a γP,k(G)-set containing

only vertices of degree at least k + 2.

Theorem 1.4.11. [18] Let G be a connected graph of order n

and k ≥ 1.

(a) If n ≥ k + 2, then γP,k(G) ≤ n
k+2

.

(b) If G is (k+2)-regular and G 6= Kk+2,k+2, then γP,k(G) ≤ n
k+3

and this bound is tight.

Theorem 1.4.12. [25] Let k ≥ 1. The k-power domination

number of Sierpiński graph, Sn
p , p, n ≥ 1, is
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γP,k(S
n
p ) =







1, p = 1 or p = 2 or n = 1 or p ≤ k + 1;

p− k, n = 2, p ≥ k + 2;

(p− k − 1)pn−2, p, n ≥ 3, p ≥ k + 2.

Another recent but natural question about power domination

is related to the propagation radius. In a graph, a vertex that is

arbitrarily far apart from any vertex in the set S may eventually

get monitored by S. In practice, besides the minimum cardinal-

ity of a k-PDS, the information in how many propagation steps

the graph is monitored from a given k-PDS could also be impor-

tant. Therefore, it is natural to consider power domination with

bounded time constraints, as was first studied in [1] and then

in [57]. Inspired by this study, the k-propagation radius of a

graph G, radP,k(G), was introduced in [25] as a way to measure

the efficiency of a minimum k-PDS. It gives the minimum num-

ber of propagation steps required to monitor the entire graph

over all minimum k-PDS.

From the electric power network modelling perspective, if

there are |S| Phasor Measurement Units capable of monitor-

ing the entire network, then the propagation radius of S may
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represent the number of times that Kirchhoff’s law has to be

applied to achieve the monitoring of whole network. However,

the repeated application of Kirchhoff’s laws would induce an un-

reasonable cumulated margin of error and therefore the study of

propagation radius is important.

The following is an interesting observation from [25].

Proposition 1.4.13. [25] Let k ≥ 1 and let G be a graph. Then

γP,k(G) = γ(G) if and only if radP,k(G) = 1.

The k-propagation radius of Sierpiński graphs, Sn
p , is ob-

tained in [25] and the result is as follows.

Theorem 1.4.14. [25] For k, p ≥ 1,

radP,k(S
n
p ) =







1, n = 1 or p = 1;

2, n = 2 and (k = 1 or p = 2);

3, n = 2, k ≥ 2, p ≥ 3.

Theorem 1.4.15. [25] For k, p ≥ 1 and n ≥ 3,

radP,k(S
n
p ) =







3, p ≥ 2k + 3;

4 or 5, 2k + 2 ≥ p ≥ k + 1 +
√
k + 1;

5, k + 1 +
√
k + 1 > p ≥ k + 2;

r(Sn
p ), p ≤ k + 1.
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Some of the recent works related to the power domination

problem are in [9, 15, 32].

An important consideration in the topological design of the

network is fault tolerance, that is the ability of the network to

provide service even when it contains a faulty component or

components. The behaviour of the network in the presence of a

fault can be analyzed by determining the effect that removing

an edge (link failure) or a vertex (processor failure) from its

underlying graph G has on the fault tolerance criterion.

In 1990, Fink et al. [31] introduced the concept of bondage

number as a measure of the vulnerability of the interconnection

network under link failure. In [31], the exact values of b(G) for

some classes of graphs and sharp upper bounds for b(G) in terms

of its order and degree were obtained. In [38], Hartnell and Rall

gave other bounds for b(G) and disproved a conjecture proposed

in [31]. The bondage number was then studied in trees [68]

and planar graphs [50]. The bondage problem is proved to be

NP-complete in [48]. Variations of this notion such as total

bondage number [54], paired bondage number [61] and distance

k-bondage number [37] are also available in the literature. For
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a survey about the bondage number, see [72].

Knödel graphs, W∆,2ν , have been introduced by W. Knödel

in [53] as the network topology underlying an optimal-time algo-

rithm for gossiping among n nodes. They have been widely stud-

ied as interconnection networks mainly because of their favourable

properties in terms of broadcasting and gossiping [12]. Wr,2r is

one of the three nonisomorphic infinite graph families known to

be minimum broadcast and gossip graphs. The other two fami-

lies are the hypercube of dimension r, Hr [55] and the recursive

circulant graph G(2r, 4) [60]. Vertex transitivity, high vertex

and edge connectivity, dimensionality and embedding proper-

ties make the Knödel graph a suitable candidate for a network

topology and an appropriate architecture for parallel computing.

For a survey about the Knödel graphs, see [30].

The Tower of Hanoi (TH) problem, invented by the French

number theorist É. Lucas in 1883, has presented a challenge in

mathematics as well as in computer science and psychology. The

classical problem consists of three pegs and is thoroughly studied

in [42]. On the other hand, as soon as there are at least four pegs,

the problem turned into a notorious open question. The general
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TH problem has p ∈ N3 pegs and n ∈ N0 discs of mutually

different size. A legal move is a transfer of the topmost disc

from one peg to another peg, no disc being placed onto a smaller

one. Initially, all discs lie on one peg in small-on-large ordering,

that is, in a perfect state. The objective is to transfer all the

discs from one perfect state to another in the minimum number

of legal moves. A state (= distribution of discs on pegs) is

called regular if on every peg the discs lie in the small-on-large

ordering. The Hanoi graphs, Hn
p , form a natural mathematical

model for the TH problem. The graph is constructed with all

regular states as vertices, and two states are adjacent whenever

one is obtained from the other by a legal move. Many properties

of Hanoi graphs have been studied in [43].

The WK-Pyramid network, WKP(C,L), an interconnection

network based on the WK-recursive mesh [23], was introduced

in [45] for massively parallel computers. It eliminates some

drawbacks of the conventional pyramid network, stemming from

the fact that the connections within the layers of this network

form a WK-recursive mesh. It is of much less network cost than

the hypercube, k-ary n-cube and WK-Recursive networks. It

also has small average distance and diameter, large connectivity
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and high degree of scalability and expandability. Because of the

desirable properties of this network, it is suitable for medium or

large sized networks and also a better alternative for mesh and

traditional pyramid interconnection topologies.

WK-recursive networks [23] are very similar to the family

of Sierpiński graphs [25, 51] and they can be obtained from

Sierpiński graphs by adding a link to each of its extreme vertices.

Also, one can observe that the subgraph induced by the ver-

tices of each layer of a WK-Pyramid network form a Sierpiński

graph. The k-power domination number and k-propagation ra-

dius of Sierpiński graphs are studied in [25]. This motivates

the study of generalized power domination and propagation ra-

dius in WKP(C,L). Routing in WK-Pyramid network was stud-

ied in [45] and the Hamiltonian properties of the network were

studied in [44, 45, 46].

1.5 Summary of the thesis

This thesis entitled ‘Studies on the Power Domination Prob-

lem in Graphs’ deals with the power domination problem in
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graphs, motivated by the research contributions mentioned ear-

lier. It mainly discusses the heredity property of power domi-

nation, the problem of finding the power domination number of

certain classes of graphs such as product graphs, Knödel graphs,

Hanoi graphs and WK-Pyramid networks etc.

This thesis is divided into five chapters. The first chapter is

an introduction and contains the literature on the power domi-

nation problem and various graph classes studied in this thesis.

It also includes the basic definitions and terminology.

The second chapter deals with the heredity property of the

generalized power domination. We study the behaviour of k-

power domination number of a graph by small changes on the

graph such as removing a vertex or an edge, or contracting an

edge. The behaviour of the k-propagation radius of graphs by

similar modifications is also studied. We prove that though the

behaviour of the k-power domination is similar to the domina-

tion in the case of the removal of a vertex, the removal of an edge

can decrease the k-power domination number and the contrac-

tion of an edge can increase the k-power domination number,

both phenomena that are impossible in usual domination. A
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technical lemma is given that proves useful while considering

the different cases of vertex removal, edge removal and edge

contraction. The main results in this chapter are listed below.

◮ For any graph G, v ∈ V (G) and k ≥ 1, γP,k(G − v) ≥

γP,k(G) − 1 and there is no upper bound for γP,k(G − v)

in terms of γP,k(G).

◮ Let G be a graph and e be an edge in G. Then, for k ≥ 1,

γP,k(G)− 1 ≤ γP,k(G− e) ≤ γP,k(G) + 1 and

γP,k(G)− 1 ≤ γP,k(G/e) ≤ γP,k(G) + 1.

◮ Several examples of graphs for which the bounds are sharp.

◮ Characterization of graphs for which the removal of any

edge increases the k-power domination number.

In the third chapter, we extend the study on the k-power

domination number of a graph when several edges are deleted.

We introduce the notion of bondage number in power domina-

tion. The following are some of the results obtained.

� For any connected nonempty graph G with ∆(G) ≤ k+1,

where k ≥ 1, bP,k(G) = λ(G).
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� For k ≥ 1 and any connected nonempty graphG, bP,k(G) ≤

∆(G) + δ(G)− 1.

� For k ≥ 1 and n ≥ 2, bP,k(Kn) = n− 1.

� For k, n ≥ 1, bP,k(Kn,n) =







n, n ≤ k + 1 or n ≥ k + 3;

2n− 1, n = k + 2.

� For any nonempty tree T and k ≥ 1, bP,k(T ) ≤ 2.

� If the nonempty tree T has a vertex v that belongs to every

minimum k-PDS of T , then bP,k(T ) = 1.

In the fourth chapter, the power domination problem in

Cartesian product, direct product and lexicographic product is

studied. The main results are,

z For any two nontrivial graphs G and H,

γP(G✷H) ≤ min{γP(G)|V (H)|, γP(H)|V (G)|}.

z For any nontrivial graph G, sharp upper bounds for

γP(G✷Pn) and γP(G✷H), where H is a nontrivial graph

with a universal vertex.



44 Chapter 1. Introduction

z Let G and H be two graphs of order at least four. Then

γP(G✷H) = 1 if and only if one of the graphs has a

universal vertex and the other is isomorphic to a path.

z Sharp upper bounds for the power domination number of

direct products when one of the factor graphs has a uni-

versal vertex.

z For each positive integer ℓ, let Aℓ be the family of all

nontrivial graphs F such that γP,ℓ(F ) = 1. And, let Bℓ be

the family of all disconnected graphs F such that F = F1∪

. . .∪Fr, 2 ≤ r ≤ ℓ+1, where each Fi is a component of F ,

having the property that F1 is a connected nontrivial graph

with γP,ℓ(F1) = 1 and sum of the order of the remaining

components of F is at most ℓ, i.e. 1 ≤ |V (F2)| + . . . +

|V (Fr)| ≤ ℓ. Let Fℓ = Aℓ∪Bℓ. Let G be a nontrivial graph

without isolated vertices. For any nontrivial graph H and

1 ≤ k ≤ |V (H)| − 1, γP,k(G ◦H) =







γ(G), H ∈ Fk;

γt(G), H /∈ Fk.

z Let G be a nontrivial graph without isolated vertices and

H be a connected nontrivial graph. If k ≥ |V (H)|, then

γP,k(G ◦H) = γP,⌊ k
|V(H)|⌋(G).
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The power domination problem in more classes of graphs

such as Knödel graphs, Hanoi graphs and WK-Pyramid net-

works are discussed in the fifth chapter and we have the following

results.

⋆ Knödel graphs

∗ For ν ∈ N4, γP(W3,2ν) = 2.

∗ For r ∈ N4, γP(Wr,2r) ≤ 2r−3 and the bound is sharp.

⋆ Hanoi graphs

∗ For k ∈ N1 and p ∈ N4, γP,k(H
2
p ) =







1, k ∈ Np−2;

p− k − 1, k ∈ [p− 3].

∗ For k ∈ N1 and p ∈ N4, radP,k(H
2
p ) = 3.

⋆ WK-Pyramid networks

∗ Let k, C, L ∈ N1. Then

γP,k(WKP(C,L)) =







1, C = 1 or L = 1 or k ∈ NC ;

C − k, L = 2, C ∈ N2, k ∈ [C − 1];

(C − k − 1)CL−2, C, L ∈ N3, k ∈ [C − 2].

∗ For k ∈ N1 and C ∈ N2, radP,k(WKP(C,2)) =







2, k ∈ NC ;

3, k ∈ [C − 1].

All the graphs considered in this thesis are finite, undirected
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and simple. Unless otherwise stated, the symbol k denotes a

positive integer, in the subsequent chapters.

Some results of this thesis are included in the papers [27,

63, 64, 65, 66]. The thesis concludes with some suggestions for

further study and a bibliography.



Chapter 2

Heredity for generalized

power domination

In general, it remains difficult to establish lower bounds for the

power domination number of a graph. One of the reasons, why

it is so, is that power domination does not behave well when

we consider subgraphs. In this chapter, we explore in detail

the behaviour of the k-power domination number of a graph

by small changes on the graph, namely edge or vertex deletion,

Some results of this chapter are included in the following paper.
Paul Dorbec, Seethu Varghese, A. Vijayakumar, Heredity for generalized
power domination, Discrete Math. Theor. Comput. Sci. 18 (3) (2016).
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or edge contraction. We also consider the behaviour of the k-

propagation radius of graphs by similar modifications.

2.1 Variations on the k-power domi-

nation number

Before considering the different cases of vertex removal, edge

removal and edge contraction, we propose the following technical

lemma which should prove useful. It states that if two graphs

differ only on parts that are already monitored, then propagation

in the not yet monitored parts behave the same. For a graph

G = (V (G), E(G)) and two subsetsX and Y of V (G), we denote

by EG(X, Y ) the set of edges uv ∈ E(G) such that u ∈ X and

v ∈ Y . Note that if X ⊆ Y , EG(X, Y ) in particular contains all

edges of the induced subgraph < X > of G on X.

Lemma 2.1.1. Let G = (VG, EG) and H = (VH , EH) be two

graphs, S a subset of vertices of G and i a nonnegative integer.

Define X = VG \ P i
G,k(S) and the subgraph G′ with vertex set

NG[X] and edge set EG(X,NG[X]).
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Suppose there exists a subset Y ⊆ VH such that the subgraph

H ′ = (NH [Y ], EH(Y,NH [Y ])) is isomorphic to G′ with a map-

ping ϕ : NG[X] → NH [Y ] that maps X precisely to Y . Then,

if for some k-power dominating set T ⊆ VH and some nonnega-

tive integer j, Y ⊆ VH \ Pj
H,k(T ), then S is a k-PDS of G and

radP,k(G,S) ≤ i− j + radP,k(H, T ).

Proof. For ℓ ≥ 0, denote the sets X ∩P i+ℓ
G,k(S) and Y ∩Pj+ℓ

H,k (T )

by Xℓ and Y ℓ, respectively. We prove by induction that for all

ℓ, Y ℓ ⊆ ϕ(Xℓ).

By hypothesis, X0 = ∅ and so ϕ(X0) = ∅ = Y 0, so it holds

for ℓ = 0. Now assume that the property is true for some ℓ ≥ 0.

Suppose that some vertex v = ϕ(u) ∈ NH [Y ] satisfies the con-

ditions for propagation in H at step j + ℓ, i.e. v ∈ Pj+ℓ
H,k (T ) and

|NH [v] \ Pj+ℓ
H,k (T )| ≤ k. We show that u also satisfies the condi-

tions for propagation in G. First, remark that u is monitored at

step i+ℓ: indeed, if u /∈ X, then by definition ofX, u ∈ P i+ℓ
G,k(S),

otherwise if u ∈ X, then v ∈ Y ∩ Pj+ℓ
H,k (T ) = Y ℓ, and thus by

the induction hypothesis, u ∈ Xℓ ⊆ P i+ℓ
G,k(S). Now consider

any neighbour u′ of u not yet dominated. Then u′ ∈ X \ Xℓ

and ϕ(u′) ∈ Y \ Y ℓ. Moreover, by the isomorphism between
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G′ and H ′, ϕ(u′) is also adjacent to v, and was among the at

most k unmonitored neighbours of v in H. Therefore, u has

at most k unmonitored neighbours in G, and also propagates

in G. Applying this statement to all vertices in G′, we in-

fer that Y ℓ+1 ⊆ ϕ(Xℓ+1). By induction, this is also true for

ℓ = radP,k(H, T )− j − 1, and we deduce that

X = ϕ−1(Y ) ⊆ϕ−1
(

Y ℓ =
(
PradP,k(H,T )−1

H,k (T ) ∩ Y
))

⊆
(

Xℓ =
(
PradP,k(H,T )−j+i−1

G,k (S) ∩X
))

,

and thus that S is a k-power dominating set ofG and radP,k(G,S)

≤ i− j + radP,k(H, T ).

We now use this lemma to state how the k-power domination

number of a graph may change with atomic variations of the

graph, such as the vertex or edge removal and edge contraction.

2.1.1 Vertex removal

Similar to what happens for domination [40], we have the fol-

lowing:
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Theorem 2.1.2. Let G be a graph and v be a vertex in G. There

is no upper bound for γP,k(G − v) in terms of γP,k(G). On the

other hand, we have γP,k(G − v) ≥ γP,k(G) − 1. Moreover, if

γP,k(G− v) = γP,k(G)− 1, then radP,k(G) ≤ radP,k(G− v).

Proof. We first prove the lower bound, using Lemma 2.1.1. We

define H = G − v with the obvious mapping ϕ from V (G) \ v

to V (H). Let T be a k-PDS of H = G − v, that induces the

minimum propagation radius. Then for the set S = T ∪{v}, the

conditions of Lemma 2.1.1 hold already from i = 0 and j = 0 and

the bound follows. Moreover, we also get that radP,k(G,S) ≤

j − i + radP,k(H, T ) = radP,k(G − v) . For proving there is no

upper bound for γP,k(G−v) in terms of γP,k(G), we can consider

the star with n pendant vertices K1,n, for which the removal

of the central vertex increases the k-power domination number

from 1 to n.

We now describe examples that tighten the lower bound

of the above theorem or illustrate better the absence of upper

bound (in particular for graphs that remain connected). A first

example for which the tightness of the lower bound can be ob-
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served is the 4×4 grid P4 ✷P4, for which we get γP(P4 ✷P4) = 2

(see [28]) and γP((P4 ✷P4) − v) = 1 for any vertex v. Simple

examples for larger k are the graphs Kk+2,k+2, for which the re-

moval of any vertex drops the k-power domination number from

2 to 1 (those were the only exceptions in [24]), as well as the

complete bipartite graph Kk+3,k+3 minus a perfect matching.

We now describe infinite families of graphs to illustrate these

bounds. The family of graphsDk,n was defined in [18]. It is made

of n copies of k+3-cliques minus an edge, organized into a cycle,

and where the end vertices of the missing edges are linked to the

corresponding vertices in the adjacent cliques in the cycle (see

Figure 2.1). Note that γP,k(Dk,n) = n, as each copy of Kk+3− e

must contain a vertex of a k-PDS. Its k-propagation radius is 1

since Dk,n has a dominating set of cardinality n. The removal

of an end vertex of the edges linking two cliques (e.g. u in

Figure 2.1) does not change its k-power domination number, but

the removal of any other vertex (e.g. v in Figure 2.1) decreases

it by one, and increases the k-propagation radius from 1 to 2.

So this forms an infinite family tightening the lower bound for

any value of k and γP,k(G).
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Figure 2.1: The graphs Dk,n and Wk,n obtained by the addition
of vertex c.

Now, an infinite family of graphs proving the absence of an

upper bound is a generalization Wk,n of the wheel (depicted in

Figure 2.1). It is made of Dk,n together with a vertex c adjacent

to three vertices of degree k + 2 in one particular clique and to

one vertex of degree k+2 in all the other cliques. Observe that

for n ≥ k+2, {c} is the only k-PDS of Wk,n of cardinality 1, and

thus we get radP,k(Wk,n) = radP,k(Wk,n, {c}) = 2+3⌊n−1
2
⌋+2(n−

1 (mod 2)). The removal of c induces the graph Dk,n, increasing

the k-power domination number from 1 to n, and dropping the

k-propagation radius from roughly 3n
2
to 1.

More constructions could be proposed to show that the prop-
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agation radius of a graph can evolve quite freely when a vertex

is removed, and there is little hope for other bounds on this pa-

rameter when a vertex is removed. The most unlikely example is

that the removal of a vertex increase both the k-power domina-

tion number and the k-propagation radius by unbounded value.

This is possible with the following variation on Wk,pn.

Consider pn subgraphs (Hi)0≤i<pn, all isomorphic to a clique

minus an edge, on k + 3 vertices when i ≡ 0 (mod p) and on

k + 1 vertices otherwise. We again connect the end vertices

of the missing edges in the clique into a cycle joining Hi to

Hi+1 (mod pn), and add a vertex c adjacent to three vertices of

degree k + 2 in all copies Hi when i ≡ 0 (mod p), and to one

vertex of degree k in all the other copies. Let G be the graph

thus obtained.

We get that {c} is a k-PDS of G inducing a k-propagation

radius of 2. On the other hand, γP,k(G − c) = n (one vertex is

needed in each Hi, i ≡ 0 (mod p)). The k-propagation radius of

G is 1 + 3⌊p−1
2
⌋+ 2(p− 1 (mod 2)).
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2.1.2 Edge removal

In a graph G, removing an edge e can never decrease the domi-

nation number. More generally, we have that for any graph G,

γ(G) ≤ γ(G−e) ≤ γ(G)+1. On the contrary, the removal of an

edge can decrease the k-power domination number as stated in

the following result. Indeed, it may happen that the removal of

one edge allows the propagation through another edge incident

to a common vertex, and thus decreases the k-power domination

number.

Theorem 2.1.3. Let G be a graph and e be an edge in G. Then

γP,k(G)− 1 ≤ γP,k(G− e) ≤ γP,k(G) + 1 .

Moreover,







if γP,k(G)− 1 = γP,k(G− e), then radP,k(G) ≤ radP,k(G− e).

if γP,k(G− e) = γP,k(G) + 1, then radP,k(G− e) ≤ radP,k(G).

Proof. We first prove that γP,k(G − e) ≤ γP,k(G) + 1. Let T

be a γP,k(G)-set. If T is also a k-PDS of G − e, then we are

done, so assume T is not. Let j0 be the smallest integer j such
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that Pj
G,k(T ) ) Pj

G−e,k(T ), and let v be a vertex in Pj0
G,k(T ) \

Pj0
G−e,k(T ). Since v ∈ Pj0

G,k(T ), there exists some neighbour u of

v in Pj0−1
G,k (T ) such that |NG[u]\Pj0−1

G,k (T )| ≤ k. Since NG−e[u] ⊆

NG[u], NG−e[u] is also included in Pj0
G−e,k(T ), and v cannot be a

neighbour of u any more, so e = uv. Thus we choose S = T∪{v}

and using Lemma 2.1.1 (with the obvious mapping from G − e

to G, and i = j = j0), we get that S is a k-PDS of G − e

of cardinality γP,k(G) + 1. We also get that if γP,k(G − e) =

γP,k(G) + 1, then radP,k(G− e) ≤ radP,k(G).

We now prove that γP,k(G) − 1 ≤ γP,k(G − e). Let T be a

minimum k-PDS of H = G− e and u be an end vertex of e. We

apply Lemma 2.1.1, for S = T ∪ {u} and i = j = 0. We get

that S is a k-PDS of G and radP,k(G,S) = radP,k(G− e, T ). We

infer that if S is minimal (that is γP,k(G) = γP,k(G − e) + 1),

then radP,k(G) ≤ radP,k(G− e).

As a first illustration of these possibilities, in the graph G

drawn in Figure 2.2, the removal of the edge e1 decreases the k-

power domination number, the removal of the edge e3 increases

it, and the removal of the edge e2 does not have any consequence.
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Figure 2.2: A graph G where γP,k(G) = 2 = γP,k(G −
e2), γP,k(G− e1) = 1, γP,k(G− e3) = 3.

We now propose a graph family where the removal of an edge

decreases the k-power domination number but increases its k-

propagation radius arbitrarily. The graph Gk,r,a represented in

Figure 2.3 satisfies γP,k(G) = 2 and radP,k(G) = a + 2 (which

is reached with the initial set {u, v}). If the edge e is removed,

we get a new graph whose k-power domination number is 1 and

which has k-propagation radius (r+ 3)(a+ 1) + 2. So no upper

bound can be found for radP,k(G − e) (in terms of radP,k(G))

when the removal of an edge decreases the k-power domination

number.

Similar graphs where the edge removal increases the k-power
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domination number can also be found. For example, in the graph

Gk,r,a (Figure 2.3), if we remove the topmost path of length a+2

from w to v, except for the vertex adjacent to v, we get another

graph G′ such that {u} is the only γP,k(G
′)-set of cardinality 1,

and with radP,k(G
′) = (r + 2)(a + 1) + 3. Removing the same

edge e, now {u, v} is a γP,k(G′−e)-set and radP,k(G
′−e) = a+2.

This illustrates the fact that no lower bound can be found for

radP,k(G − e) (in terms of radP,k(G)) when the removal of an

edge increases the k-power domination number.

Figure 2.3: The graph Gk,r,a for k = 3 and r = 4 (zigzag edges
represent paths of length a).

We now characterize the graphs for which the removal of any

edge increases the k-power domination number. Recall that,
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a k-generalized spider is a tree with at most one vertex of

degree k + 2 or more (Figure 1.17).

Theorem 2.1.4. Let G be a graph. For each edge e in G,

γP,k(G − e) > γP,k(G) if and only if G is a disjoint union of

k-generalized spiders.

Proof. First observe that if G is a disjoint union of k-generalized

spiders, then its k-power domination number is exactly its num-

ber of components, and clearly γP,k(G − e) > γP,k(G) for any

edge e in G.

Let G be a graph and let S be a γP,k(G)-set. We label the

vertices of G with integers from 1 to n and consider the sub-

sequent natural ordering on the vertices. For i ≥ 0, we define

E ′
i ⊆ E(G) as follows:







E ′
0 = {uv ∈ E(G) | v ∈ N(S) \ S, u = min{x ∈ N(v) ∩ S}}

E ′
i+1 = {uv ∈ E(G) | v ∈ P i+1

k (S) \ P i
k(S),

u = min{x ∈ P i
k(S) ∩N(v), |N [x] \ P i

k(S)| ≤ k}}

where the minima are taken according to the ordering of the

vertices. Let E ′ be the union of all E ′
i for i ≥ 0. If we consider
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the edges of E ′ as defined above oriented from u to v, then the

in-degree of each vertex not in S is 1, of vertices in S is 0. Also

the graph is acyclic, and each vertex not in S has out-degree at

most k. Thus the graph induced by E ′ is a forest of k-generalized

spiders. Observe that each k-generalized spider contains exactly

one vertex of S, which forms its k-PDS . Hence S is a k-PDS

of this forest of k-generalized spiders. We now assume that for

any edge e ∈ E(G), γP,k(G − e) > γP,k(G), and we then prove

that E ′ = E(G).

By way of contradiction, suppose there exists an edge e in

E(G) and not in E ′. We prove that S is a k-PDS of G− e. For

that, we prove by induction that for all i,P i
G,k(S) ⊆ P i

G−e,k(S).

First observe that P0
G−e,k(S) = P0

G,k(S). Indeed, suppose there

exists a vertex x in P0
G,k(S) but not in P0

G−e,k(S), then e has to

be of the form xv with v ∈ S. But since e /∈ E ′
0, there exists

another vertex u < v in S such that ux ∈ E ′
0, and x ∈ P0

G−e,k(S).

Assume now P i
G,k(S) ⊆ P i

G−e,k(S) for some i ≥ 0, and let us

prove that P i+1
G,k (S) ⊆ P i+1

G−e,k(S). Let x be a vertex in P i+1
G,k (S).

If x ∈ P i
G,k(S), then by the induction hypothesis, x ∈ P i+1

G−e,k(S).

If x /∈ P i
G,k(S), then there exists a vertex v ∈ P i

G,k(S), x ∈ NG[v]
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such that |NG[v] \ P i
G,k(S)| ≤ k. Suppose e 6= xv. Then,

since NG−e[v] ⊆ NG[v] and by the induction hypothesis, v ∈

P i
G−e,k(S), x ∈ NG−e[v] and |NG−e[v] \ P i

G−e,k(S)| ≤ k, which

implies x ∈ P i+1
G−e,k(S). If e = xv then by the choice of E

′

i+1,

there exists a vertex w ∈ P i
G,k(S), w < v, wx ∈ E

′

i+1 such

that |NG[w] \ P i
G,k(S)| ≤ k and x ∈ NG[w] \ P i

G,k(S). Then

by the induction hypothesis, w ∈ P i
G−e,k(S), x ∈ NG−e[w] and

|NG−e[w] \P i
G−e,k(S)| ≤ k, which implies x ∈ P i+1

G−e,k(S). There-

fore E(G) = E ′ and G is indeed a union of k-generalized spi-

ders.

Observe that there also exist graphs for which the removal

of any edge decreases the k-power domination number, though

we did not manage to characterize them. The simplest example

is the complete bipartite graph Kk+2,k+2, in which the removal

of any edge decreases the k-power domination number from 2 to

1. Another example is the graph Kk+3,k+3 −M , where M is a

perfect matching, in which we have γP,k(Kk+3,k+3−M) = 2 and

γP,k((Kk+3,k+3 −M)− e) = 1 for any edge e.

More complex examples are the Cartesian product of K4

and W5, where the k-power domination number decreases from
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3 to 2. A general family of graphs having this property is the

Cartesian product of two complete graphs of the same order

Ka✷Ka, which shall be described in subsection 2.1.4.

2.1.3 Edge contraction

Contracting an edge in a graph may decrease its domination

number by one, but can never increase it [49]. We have that

γ(G) − 1 ≤ γ(G/e) ≤ γ(G). As we prove in the following,

increase of the k-power domination number may occur.

Theorem 2.1.5. Let G be a graph and e be an edge in G. Then

γP,k(G)− 1 ≤ γP,k(G/e) ≤ γP,k(G) + 1 .

Moreover,







if γP,k(G)− 1 = γP,k(G/e), then radP,k(G) ≤ radP,k(G/e).

if γP,k(G/e) = γP,k(G) + 1, then radP,k(G/e) ≤ radP,k(G).

Proof. Let e = xy be an arbitrary edge in G, we denote by vxy,

the vertex obtained by contraction of e in G/e. We first prove
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that γP,k(G/e) ≥ γP,k(G)− 1.

Let T be a minimum k-PDS of H = G/e. Suppose first

that the vertex vxy ∈ T , then by taking S = T \ {vxy} ∪ {x, y},

the conditions of Lemma 2.1.1 hold from i = j = 0 with the

natural mapping from G − {x, y} to H − vxy. We infer that S

is a k-PDS of G and radP,k(G,S) = radP,k(G/e, T ). We now

consider the case when vxy /∈ T . Let j0 be the smallest j such

that vxy ∈ Pj
G/e,k(T ). Let w be a neighbour of vxy that brought

vxy into Pj
G/e,k(T ), i.e. if j0 = 0, w is a neighbour of vxy in T ,

otherwise when j0 > 0, w is a neighbour of vxy in Pj0−1
G/e,k(T ) such

that |NG/e[w]\Pj0−1
G/e,k(T )| ≤ k. By definition of edge contraction,

the edge wvxy corresponds to an edge wx or wy in E(G). If

wx ∈ E(G), then take S = T ∪{y}, otherwise take S = T ∪{x}.

Then, by applying Lemma 2.1.1 (with the natural mapping from

G−{x, y} to H − vxy and i = j = j0), we get that S is a k-PDS

of G and radP,k(G,S) = radP,k(G/e, T ). This implies that if

γP,k(G) = γP,k(G/e) + 1, then radP,k(G) ≤ radP,k(G/e).

We now prove that γP,k(G/e) ≤ γP,k(G) + 1. Let T be a

minimum k-PDS of G and let S = T \ {x, y} ∪ {vxy}. Let j0

be the smallest j such that NG[x] ∪ NG[y] ⊆ Pj
G,k(T ). Here
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also, we can use Lemma 2.1.1 (with the natural mapping from

(G/e) − vxy to G − {x, y} and i = j = j0), and get that S is

k-PDS of G/e. We also get that if γP,k(G/e) = γP,k(G)+1, then

radP,k(G/e) ≤ radP,k(G).

The bounds in Theorem 2.1.5 are tight. For example, the

lower bound holds for the graphs Kk+2,k+2 and Kk+3,k+3 −M ,

where M is a perfect matching, but also for the Cartesian prod-

uct of two complete graphs of same order Ka✷Ka, as is de-

scribed in the next subsection. The upper bound is attained

for example for the k-generalized spider T in Figure 1.17, which

satisfy γP,k(T ) = 1 and γP,k(T/a1b1) = 2 for k ≥ 2. For the

1-generalized spider (Figure 1.7), the contraction of any edge in

the graph does not have any consequence.

2.1.4 On the Cartesian product of twin com-

plete graphs

The Cartesian product of two complete graphs of same (large

enough) order is such that removing a vertex, removing an edge

or contracting an edge decrease its k-power domination number.
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Observation 2.1.6. Let a ≥ 1 and G = Ka✷Ka. Then

γP,k(G) =







a− k, a ≥ k + 2 ;

1, a ≤ k + 1.

Proof. Let the vertices of Ka be denoted by {v1, . . . , va}. If

a < k + 2, then any vertex in G = Ka✷Ka is a minimum k-

PDS. Now, assume a ≥ k+2. Let S = {(vi, vi) : 1 ≤ i ≤ a− k}.

Then P0
k(S) = {(vi, vj) : i ≤ a − k or j ≤ a − k} and the set

of vertices A = {(vi, vj) : a − k + 1 ≤ i, j ≤ a} is yet to be

monitored. Since any vertex in P0
k(S) \ A has either 0 or k

neighbours in A and each vertex in A is adjacent to some vertex

in P0
k(S), P1

k(S) covers the whole graph. Thus S is a k-PDS of

G. Therefore, γP,k(G) ≤ a− k.

We now prove that γP,k(G) ≥ a−k. By way of contradiction,

suppose S is a k-PDS of G such that |S| ≤ a− k − 1. Without

loss of generality, assume that the elements of S belong to the

first a− k − 1 columns and rows of G. Then the vertices in the

set A′ = {(vi, vj) : a − k ≤ i, j ≤ a} are not adjacent to any

vertex in S, and P0
k(S)∩A′ = ∅. Since any vertex in G−A′ has

either 0 or k+1 neighbours in A′, no vertices from this set may

get monitored later on, a contradiction.
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Observation 2.1.7. Let a ≥ k + 2 and G = Ka✷Ka. Then

γP,k(G− v) = a− k − 1 for any vertex v in G.

Proof. Let the vertices of Ka be denoted by {v1, . . . , va}. We

prove the result for v = (v1, v1) which implies the result for any

v by vertex transitivity. First observe that S = {(vi, vi) : 2 ≤

i ≤ a − k} is a k-PDS of G − v. Indeed P0
k(S) = {(vi, vj) : 2 ≤

i ≤ a− k or 2 ≤ j ≤ a− k} then vertices (vi, v1) (resp. (v1, vi))

with 2 ≤ i ≤ a − k have only vertices (vj, v1) (resp. (v1, vj))

with a − k + 1 ≤ j ≤ a as unmonitored neighbours, which are

thus all in P1
k(S). The next propagation step covers the graph.

Thus S is a k-PDS of G−v and γP,k(G−v) ≤ a−k−1. Now by

Theorem 2.1.2 and Observation 2.1.6, γP,k(G−v) ≥ a−k−1.

Observation 2.1.8. Let a ≥ k + 2 and G = Ka✷Ka. Then

γP,k(G− e) = a− k − 1 for any edge e in G.

Proof. Let the vertices of Ka be denoted by {v1, . . . , va}. By

edge transitivity of G, we can assume that e = (v1, v1)(v2, v1).

Let S = {(vi, vi) : 2 ≤ i ≤ a − k}. Then P0
k(S) = {(vi, vj) : 2 ≤

i ≤ a − k or 2 ≤ j ≤ a − k}. Now the vertex (v2, v1) has

only k unmonitored neighbours, namely the vertices (vj, v1) for
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a−k < j ≤ a, and they all are in P1
k(S). Then all vertices (vj, v2)

for a − k < j ≤ a have only k unmonitored neighbours and

thus P2
k(S) contains all vertices (vi, vj) for i ≥ 2. Then P3

k(S)

contains the whole graph and γP,k(G−e) ≤ a−k−1. The lower

bound follows from Theorem 2.1.3 and Observation 2.1.6.

Observation 2.1.9. Let a ≥ k + 2 and G = Ka✷Ka. Then

γP,k(G/e) = a− k − 1 for any edge e in G.

Proof. Let the vertices of Ka be denoted by {v1, . . . , va}. By

edge transitivity of G, we can assume that e = (v1, v1)(v2, v1)

and we denote by ve the vertex in G/e obtained by contracting

(v1, v1) and (v2, v1). Let S = {ve} ∪ {(vi, vi) : 3 ≤ i ≤ a − k}.

Then P0
k(S) contains all vertices (vi, vj) with 1 ≤ i ≤ a − k

and 1 ≤ j ≤ a. After one propagation step, the whole graph is

monitored so γP,k(G/e) ≤ a − k − 1. The lower bound follows

from Theorem 2.1.5 and Observation 2.1.6.

Note 2.1.1. We are not aware of any general results relating

γP,k(G− e) and γP,k(G/e) for any graph G.
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Chapter 3

The k-power bondage

number of a graph

In the previous chapter, we studied the behaviour of the k-power

domination number of a graph when a single edge is deleted.

Then it is natural to extend the study on the power domination

number of a graph when several edges are deleted. Also, in the

monitoring of electric power networks, the links of the network

Some results of this chapter are included in the following paper.
Seethu Varghese, A. Vijayakumar, The k-power bondage number of a graph,
Discrete Math. Algorithms Appl. 8 (4) (2016) 1650064 pp. 13. (DOI:
10.1142/S1793830916500646)
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through which the propagation occurs play a significant role.

Any sort of failures to such links may lead to an increase in

the number of PMUs required to monitor the network, thereby

increasing the cost for monitoring the entire network. So we

must consider whether its function remains good when the net-

work is attacked and thereby any link failures have occurred.

Motivated by these observations, we initiate the study of the

k-power bondage number of a graph G, denoted by bP,k(G). It

gives the number of edges to be deleted from G which is just

enough to increase its k-power domination number. bP,k(G) is a

generalization of the bondage number, b(G).

In this chapter, we consider all graphs to be nonempty.

3.1 k-power bondage number in gen-

eral graphs

In this section, we establish an upper bound for bP,k(G).

Theorem 3.1.1. If G is a connected graph and ∆(G) ≤ k + 1,

then bP,k(G) = λ(G), where λ(G) is the edge connectivity of G.
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Proof. By the hypothesis, γP,k(G) = 1 (see Observation 1.4.9

(b)). Let B ⊆ E(G) be a set of cardinality λ(G) such that the

subgraph G− B is disconnected. Then γP,k(G− B) ≥ 2 > 1 =

γP,k(G). Now, for any B ⊆ E(G) with |B| < λ(G), the subgraph

G−B is still connected with ∆(G−B) ≤ k + 1, which implies

that γP,k(G−B) = 1.

On the other hand, γP,k(G) = 1 in general does not imply

that bP,k(G) = λ(G). For example, in Figure 3.1, for k = 1

we get γP,1(P4 ✷K2) = 1, λ(P4 ✷K2) = 2 but for the edge uv,

γP,1((P4 ✷K2)− uv) = 2, hence bP,1(P4 ✷K2) = 1.

Figure 3.1: The graph P4 ✷K2.

Theorem 3.1.2. Let G be a graph. Then

bP,k(G) ≤ min{d(u) + d(v)− 1: uv ∈ E(G)}.

Proof. Let α denote the right side of the above inequality and let

u and v be adjacent vertices of G such that d(u)+ d(v)− 1 = α.

Assume that bP,k(G) > α. If E ′ denotes the set of edges that
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are incident with at least one of u and v, then |E ′| = α and

therefore γP,k(G − E ′) ≤ γP,k(G). Since u and v are isolated

vertices in G−E ′, we get γP,k(G− u− v) ≤ γP,k(G)− 2. Let S ′

be a γP,k(G− u− v)-set.

We claim that the set S = S ′ ∪ {u} is a k-PDS of G.

Clearly, P0
G−u−v,k(S

′) ( P0
G,k(S). We prove by induction that

for all ℓ,Pℓ
G−u−v,k(S

′) ( Pℓ
G,k(S). The result is true for ℓ = 0.

Suppose that Pℓ
G−u−v,k(S

′) ( Pℓ
G,k(S) for some ℓ ≥ 0. Let

x be a vertex in Pℓ+1
G−u−v,k(S

′). If x is an isolated vertex in

G − u − v, then clearly x is in S ′ and thereby in S. Other-

wise, there exists a vertex y ∈ Pℓ
G−u−v,k(S

′), y ∈ NG−u−v[x] such

that
∣
∣NG−u−v[y] \ Pℓ

G−u−v,k(S
′)
∣
∣ ≤ k. If y /∈ NG(u) ∪ NG(v),

then NG[y] = NG−u−v[y]. Therefore, by the induction hypothe-

sis, y ∈ Pℓ
G,k(S) and

∣
∣NG[y] \ Pℓ

G,k(S)
∣
∣ ≤ k, which implies that

x ∈ Pℓ+1
G,k (S). If y ∈ NG(u) ∪NG(v), then NG[y] ⊆ NG−u−v[y] ∪

{u, v}. But, since u, v ∈ P0
G,k(S) and by the induction hy-

pothesis, y ∈ Pℓ
G,k(S) and

∣
∣NG[y] \ Pℓ

G,k(S)
∣
∣ ≤ k, which im-

plies that x ∈ Pℓ+1
G,k (S). Since S ′ is a γP,k(G − u − v)-set,

V (G− u− v) = Pℓ′

G−u−v,k(S
′) ( Pℓ′

G,k(S) for some ℓ′ ≥ 0. Since

u ∈ S, V (G) = Pℓ′

G,k(S). Thus S is a k-PDS of G of cardinal-

ity at most γP,k(G) − 1, which is a contradiction. Therefore,



3.2. k-power bondage number of some graph classes 73

bP,k(G) ≤ α.

Corollary 3.1.3. Let G be a connected graph. Then bP,k(G) ≤

∆(G) + δ(G)− 1.

Proof. Let u be a vertex such that d(u) = δ(G) and let v be any

neighbour of u. Then, by Theorem 3.1.2,

bP,k(G) ≤ d(u) + d(v)− 1 = δ(G) + d(v)− 1

≤ δ(G) + ∆(G)− 1.

Sharpness of Theorem 3.1.2 and Corollary 3.1.3 are given in

Remark 3.2.1.

3.2 k-power bondage number of some

graph classes

In this section, we shall compute the value of bP,k(G) for some

well known classes of graphs. We first determine bP,k(Kn). It is
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known that b(Kn) =
⌈
n
2

⌉
, for n ≥ 2 [31].

Theorem 3.2.1. Let G = Kn, n ≥ 2. Then bP,k(G) = n− 1.

Proof. The result is true for n = 2, 3. Let n ≥ 4. The removal of

n− 1 edges incident to a vertex v ∈ V (G) yields a disconnected

graph H with γP,k(H) = 2. Hence bP,k(G) ≤ n− 1.

If B ⊆ E(G) is a set of edges with cardinality less than n−1,

then the spanning subgraph G−B has a vertex of degree at least

n − 2. Otherwise, if every vertex in G − B has degree at most

n− 3, then |B| is at least n, which is a contradiction. If G−B

has a vertex of degree n − 1, then clearly B is not a k-power

bondage set of G. Now, suppose G−B has no vertex of degree

n − 1. Then G − B has a vertex, say v, of degree n − 2. Take

S = {v}. Then the n− 2 neighbours of v belong to P0
G−B,k(S).

Since λ(G) = n − 1, the graph G − B is connected. Thus the

remaining one unmonitored vertex, say u, which is adjacent to

some vertex in NG−B(v), gets monitored by propagation, i.e.

u ∈ P1
G−B,k(S). Thus P1

G−B,k(S) = V (G − B), which implies

that S is a k-PDS of G−B. Thus B is not a k-power bondage

set of G. Hence bP,k(G) ≥ n− 1.
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We now determine the k-power bondage number of the com-

plete bipartite graph Kn,n, n ≥ 1. The graph Kk+2,k+2 already

played a noticeable role among the k + 2-regular graphs, as ob-

served in [24]. Observe that for any n ≥ 1,

γP,k(Kn,n) =







1, n ≤ k + 1;

2, n ≥ k + 2.

Lemma 3.2.2. Let G = Kk+2,k+2. Then bP,k(G) = 2k + 3.

Proof. Let V (G) = V1 ∪ V2, where V1 = {u1, . . . , uk+2},

V2 = {v1, . . . , vk+2} is the bipartition. We know γP,k(G) = 2.

Let the edge set B = {u1vj : 1 ≤ j ≤ k + 2} ∪ {ujv1 : 1 ≤

j ≤ k + 2}. Then the spanning subgraph G − B = Kk+1,k+1 ∪

{u1, v1}. Since ∆(Kk+1,k+1) = k + 1, γP,k(Kk+1,k+1) = 1 (by

Observation 1.4.9 (b)). Hence γP,k(G − B) = 3 > 2 = γP,k(G),

which implies that B is a k-power bondage set of G. Thus

bP,k(G) ≤ |B| = 2k + 3.

We now prove that bP,k(G) ≥ 2k + 3. Let B ⊆ E(G) be a

set of edges with cardinality at most 2k + 2. If every vertex in

G−B has degree at most k, then the spanning subgraph G−B

has at most k(k + 2) edges. Thus |B| is at least 2k + 4, which
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is a contradiction. Hence G− B has a vertex of degree at least

k+1. Suppose G−B has a vertex of degree k+2. Without loss

of generality, assume dG−B(u1) = k+ 2. Since |B| ≤ 2k+ 2, the

subgraph G−B has at most one isolated vertex. Hence G−B

can either be connected or of the form G′ ∪ {uj} for some j,

where G′ is a connected component in G.

Case (a): G− B is connected.

If G− B contains at least one vertex vi of degree k + 2, say v1,

then the set {u1, v1} forms a k-PDS of G − B, which implies

that γP,k(G − B) ≤ 2. If not, 1 ≤ dG−B(vi) ≤ k + 1 for all i

such that 1 ≤ i ≤ k + 2. Let S = {u1}. Then P0
G−B,k(S) =

{u1, v1, . . . , vk+2}. Now, since
∣
∣NG−B[vi]\P0

G−B,k(S)
∣
∣ ≤ k for all

i, each vi can monitor their neighbours in V1. Since G − B is

connected,
⋃k+2

i=1 NG−B(vi) = V1. Hence P1
G−B,k(S) = V (G−B),

which implies that S is a k-PDS of G−B.

Case (b): G−B = G′ ∪ {uj}, for some j.

Let S = {u1, uj}. Then P0
G−B,k(S) = {u1, uj , v1, . . . , vk+2}.

Since uj is an isolated vertex in G−B,
∣
∣NG−B[vi]\P0

G−B,k(S)
∣
∣ ≤

k for all i. Hence the vertices vi, i ∈ {1, . . . , k+2}, can monitor

their neighbours in V1 by propagation. Since G′ is connected,
⋃k+2

i=1 NG′(vi) = V1\{uj}. Hence P1
G−B,k(S) = V (G− B), which
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implies that S is a k-PDS of G− B.

Hence in both the cases, we get γP,k(G − B) ≤ 2. Now

suppose G − B has no vertices of degree k + 2. Therefore,

dG−B(v) ≤ k + 1 for every v ∈ V (G − B). Then we have the

following three cases.

Case 1: G−B is connected.

Case 2: G− B = G′ ∪ {e}, where the edge e = uivj for some i

and j, and G′ is a connected component in G.

Case 3: G − B = G′ ∪ {v}, where v is an isolated vertex in

G−B and G′ is a connected component in G.

In Case 1, since G − B is connected with ∆(G − B) ≤ k +

1, γP,k(G − B) = 1. In Case 2 and Case 3, γP,k(G − B) = 2.

Hence an edge set B with |B| ≤ 2k + 2 cannot be a k-power

bondage set of B.

Remark 3.2.1. It follows from Lemma 3.2.2 that the bounds

in Theorem 3.1.2 and Corollary 3.1.3 are sharp.

Theorem 3.2.3. For n ≥ 1,

bP,k(Kn,n) =







n, n ≤ k + 1 or n ≥ k + 3;

2n− 1, n = k + 2.
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Proof. LetG = Kn,n and V (G) = V1∪V2, where V1 = {u1, . . . , un},

V2 = {v1, . . . , vn} be the bipartite sets. When n ≤ k+1, by The-

orem 3.1.1, we have bP,k(G) = λ(G) = n. And, by Lemma 3.2.2,

the result holds for n = k + 2. One can easily verify the result

for n ∈ {1, 2, 3}. So, let n ≥ 4.

Assume now that n ≥ k+3. Then we have γP,k(G) = 2. The

removal of n edges incident to any vertex, say u1, in G results in

a disconnected graph H = Kn−1,n ∪ {u1}. Any single vertex in

Kn−1,n cannot itself monitor the entire graph as each of the mon-

itored vertices has at least n−2 unmonitored neighours after the

domination step, thereby prevents the propagation step. Thus

γP,k(Kn−1,n) = 2 and hence we get γP,k(H) = 3 > 2 = γP,k(G).

Let B ⊆ E(G) be an edge set with cardinality at most n − 1.

Then the spanning subgraph G − B is a connected bipartite

graph having at least one vertex with degree n in G−B. With-

out loss of generality, assume dG−B(u1) = n. Then there exists

at least one vertex vi that has degree n − 1 in G − B. Oth-

erwise, 1 ≤ dG−B(vi) ≤ n − 2 for all i, which implies that B

has at least 2n edges, a contradiction. We may assume that

dG−B(v1) = n− 1. Then the set {u1, v1} clearly forms a k-PDS

of G−B and thus B is not a k-power bondage set of G. Hence
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bP,k(G) = n.

Observation 3.2.4. For n ≥ 3, bP,k(Cn) = 2 and for n ≥ 2,

bP,k(Pn) = 1.

Observation 3.2.5. In general, the values of b(G) and bP,k(G)

are unrelated.

For example, let G be a graph obtained from the star K1,n,

n ≥ 1 by subdividing each of its edges exactly twice. Then

γ(G) = n+1, γP,k(G) = 1 and b(G) = 2 > 1 = bP,k(G), whereas

in the graph H = Kk+2,k+2, γ(H) = 2 = γP,k(H) and b(H) =

k + 2 < 2k + 3 = bP,k(H). Also bP,k+1(H) = k + 2 = bP,k−1(H).

For complete graphs, we have b(Kn) < bP,k(Kn) for n ≥ 4. On

the other hand, b(G′) = bP,k(G
′) when G′ is a star.

3.3 k-power bondage number of trees

Lemma 3.3.1. Let G be a graph and e = uv be an edge in G.

Let S ′ be a k-PDS of G−e. Suppose there is a set S and integers

i and j such that P i
G−e,k(S

′) ⊆ Pj
G,k(S) and u, v ∈ Pj

G,k(S).

Then S is a k-PDS of G.
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Proof. We prove by induction that for all ℓ, P i+ℓ
G−e,k(S

′) ⊆ Pj+ℓ
G,k (S).

By the hypothesis, it holds for ℓ = 0. Now assume that the prop-

erty is true for some ℓ ≥ 0. Let x be a vertex that satisfies the

conditions for propagation at step i + ℓ, i.e. x ∈ P i+ℓ
G−e,k(S

′)

and |NG−e[x] \ P i+ℓ
G−e,k(S

′)| ≤ k. Then we have NG−e[x] ⊆

P i+ℓ+1
G−e,k(S

′). By the induction hypothesis, x ∈ Pj+ℓ
G,k (S) and

|NG−e[x] \ Pj+ℓ
G,k (S)| ≤ k. Now possibly x is u or v and has one

more neighbour in G than in G− e, namely v or u. In that case

though, by the initial hypothesis, both u and v are in Pj+ℓ
G,k (S)

and so |NG[x] \ Pj+ℓ
G,k (S)| ≤ k. Thus again NG[x] ⊆ Pj+ℓ+1

G,k (S)

and applying this to all vertices satisfying the propagation prop-

erties, we get P i+ℓ+1
G−e,k(S

′) ⊆ Pj+ℓ+1
G,k (S).

It was proved in Chapter 2 that γP,k(G − v) ≥ γP,k(G) − 1

and γP,k(G)− 1 ≤ γP,k(G− e) ≤ γP,k(G)+1. However for a tree

T we have,

Theorem 3.3.2. Let T be a tree and e be an edge in T . Then

γP,k(T − e) ≥ γP,k(T ).

Proof. Let e = uv be an edge in T . Let S be a k-PDS of

T − e. If either u or v belong to S, then S is also a k-PDS of
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T . Hence assume neither u nor v belong to S. Let T1 and T2

be the components in T − e containing u and v, respectively.

Also, let S = S1 ∪ S2, where S1 and S2 are k-PDS of T1 and

T2, respectively. Let i, j be the smallest integers such that u ∈

P i
T−e,k(S) and v ∈ Pj

T−e,k(S), where i, j ≥ 0. This means that

u ∈ P i
T−e,k(S1) and v ∈ Pj

T−e,k(S2). Without loss of generality,

assume that i ≤ j.

Claim 1: Pℓ
T−e,k(S1) ⊂ Pℓ

T,k(S), 0 ≤ ℓ ≤ i.

If ℓ = 0, then P0
T−e,k(S) = P0

T,k(S), since u, v /∈ S. Hence

P0
T−e,k(S1) ⊂ P0

T,k(S). Thus, for ℓ > 0, assume that Pℓ−1
T−e,k(S1) ⊂

Pℓ−1
T,k (S). Let x be a vertex in Pℓ

T−e,k(S1). Then there exists

a vertex w ∈ Pℓ−1
T−e,k(S1), w ∈ NT−e[x] such that

∣
∣NT−e[w] \

Pℓ−1
T−e,k(S1)

∣
∣ ≤ k. Since ℓ ≤ i and by minimality of i, w 6= u.

Thus NT−e[w] = NT [w]. Now, by the induction hypothesis,

w ∈ Pℓ−1
T,k (S) and

∣
∣NT [w] \ Pℓ−1

T,k (S)
∣
∣ ≤ k. Thus x ∈ Pℓ

T,k(S).

Claim 2: Pℓ
T−e,k(S2) ⊂ Pℓ

T,k(S), 0 ≤ ℓ ≤ j.

The proof of Claim 2 is similar to Claim 1.

We now prove that P i+1
T−e,k(S) ⊆ Pj+1

T,k (S). Let x be a ver-

tex in P i+1
T−e,k(S), x 6= u, v. Then there exists a vertex w ∈
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P i
T−e,k(S), w ∈ NT−e[x] such that

∣
∣NT−e[w] \ P i

T−e,k(S)
∣
∣ ≤ k. (3.1)

By Claim 1, P i
T−e,k(S1) ⊂ P i

T,k(S) and by Claim 2, P i
T−e,k(S2) ⊂

P i
T,k(S). Therefore,

P i
T−e,k(S) = P i

T−e,k(S1) ∪ P i
T−e,k(S2) ⊆ P i

T,k(S). (3.2)

Case 1: w /∈ {u, v}.

Clearly, NT−e[w] = NT [w]. Hence the equations (3.1) and (3.2)

imply that w ∈ P i
T,k(S) and

∣
∣NT [w] \ P i

T,k(S)
∣
∣ ≤ k. Thus x ∈

P i+1
T,k (S) ⊆ Pj+1

T,k (S).

Case 2: w = u.

The equations (3.1) and (3.2) imply that u ∈ P i
T,k(S) and

∣
∣NT−e[u] \ P i

T,k(S)
∣
∣ ≤ k. Since i ≤ j,

∣
∣NT−e[u] \ Pj

T,k(S)
∣
∣ ≤ k.

Now, u has one more neighbour, v, in T than in T − e. But,

v ∈ Pj
T−e,k(S2) ⊂ Pj

T,k(S), thus
∣
∣NT [u] \ Pj

T,k(S)
∣
∣ ≤ k. Hence

x ∈ Pj+1
T,k (S).

Case 3: w = v.

This is the case when i = j. Again, the equations (3.1) and (3.2)

imply that v ∈ P i
T,k(S) and

∣
∣NT−e[v] \ P i

T,k(S)
∣
∣ ≤ k. But, by
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equation (3.2), u ∈ P i
T,k(S) and hence

∣
∣NT [v] \ P i

T,k(S)
∣
∣ ≤ k.

Thus x ∈ P i+1
T,k (S).

Hence there exist integers i and j such that P i+1
T−e,k(S) ⊆

Pj+1
T,k (S). Now, u ∈ P i

T,k(S1) ⊂ P i
T,k(S) ⊆ Pj+1

T,k (S) (by Claim

1). And v ∈ Pj
T,k(S2) ⊂ Pj

T,k(S) ⊆ Pj+1
T,k (S) (by Claim 2).

Thus, by Lemma 3.3.1, S is a k-PDS of T . Therefore, γP,k(T ) ≤

γP,k(T − e).

Figure 3.2: The tree T .

For the tree T in Figure 3.2, {v, x} is a γP,k(T )-set and

γP,k(T ) = 2. For each i, j, 1 ≤ i ≤ k + 2 and 2 ≤ j ≤ k + 1,

γP,k(T − xxi) = γP,k(T − uu′
j) = 3 > γP,k(T ). For edges

vw and wx, γP,k(T − vw) = γP,k(T ) = γP,k(T − wx). Also,

for each j, 1 ≤ j ≤ k + 1, {x, uj} is a γP,k(T − vuj)-set and
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therefore γP,k(T − vuj) = γP,k(T ). Hence for any edge e in T ,

γP,k(T − e) ≥ γP,k(T ).

Proposition 3.3.3. Let u be a pendant vertex and v its neigh-

bour in a tree T . Then γP,k(T − uv) = γP,k(T ) if and only if

γP,k(T − u) = γP,k(T )− 1.

Proof. γP,k(T−uv) = γP,k(T )⇐⇒ γP,k(T−u)+1 = γP,k(T )⇐⇒

γP,k(T − u) < γP,k(T ).

In Figure 3.2, for the pendant vertex u1 in T , γP,k(T−u1v) =

2 = γP,k(T ) and γP,k(T − u1) = 1 < γP,k(T ).

We now investigate the k-power bondage number of trees.

For this purpose, we shall need the following terms. If T is a

tree rooted at the vertex x and v is a vertex of T , then the

level number of v, which we denote by ℓ(v), is the length of

the unique x, v-path in T . If a vertex v of T is adjacent to u and

ℓ(u) > ℓ(v), then u is called a child of v and v is the parent

of u. A vertex w is a descendant of v (and v is an ancestor

of w) if the level numbers of the vertices on the v, w-path are

monotonically increasing.
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In [8], Bauer et al. proved that bP,k(T ) ≤ 2 for k = 0. We

generalize this result to any integer k ≥ 1.

Theorem 3.3.4. Let T be a tree. Then bP,k(T ) ≤ 2.

Proof. If ∆(T ) ≤ k + 1, then by Theorem 3.1.1, bP,k(T ) = 1.

Now assume that ∆(T ) ≥ k + 2. If T contains a vertex w

which is adjacent to at least k+2 pendant vertices, w1, . . . , wk+2,

then w is in every γP,k(T )-set (by Observation 1.4.9 (c)). Let

e = w1w. However, both w1 and either w or any of the pendant

vertices w2, . . . , wk+2 will be in every k-PDS of T − e. Hence

γP,k(T − e) > γP,k(T ), which implies that bP,k(T ) = 1.

Now, assume that no vertex of T is adjacent to k+2 or more

pendant vertices. We have the following two cases.

Case 1: T contains a vertex v which is adjacent to k + 1 pen-

dant vertices.

Let u1, . . . , uk+1 be the pendant vertices adjacent to v. For every

γP,k(T )-set, S of T , |S∩{v, u1, . . . , uk+1}| = 1. If γP,k(T−uiv) >

γP,k(T ) for some i, then we are done. Otherwise, for some pen-

dant vertex, say u1, γP,k(T − u1v) = γP,k(T ), by Theorem 3.3.2.

Thus, by Proposition 3.3.3, γP,k(T − u1) = γP,k(T ) − 1. Let

S ′ be a γP,k(T − u1)-set. Then v /∈ S ′. If v ∈ S ′, then S ′
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is a k-PDS of T of cardinality less than γP,k(T ), which is a

contradiction. Clearly, S ′ is a k-PDS of T − u1 − u2. Thus,

γP,k(T − u1 − u2) ≤ γP,k(T − u1). Hence γP,k(T − u1 − u2) =

γP,k(T−u1). Otherwise, γP,k(T−u1−u2) = γP,k(T−u1)−1. But,

then, S ′′ ∪ {v} is a k-PDS of T of cardinality less than γP,k(T ),

where S ′′ is a γP,k(T −u1−u2)-set. Hence γP,k(T −u1v−u2v) =

γP,k(T − u1− u2) + 2 > γP,k(T ), which implies that bP,k(T ) ≤ 2.

Case 2: Every vertex of T is adjacent to at most k pendant

vertices.

We may assume that T is rooted at a vertex x. Let u be a

vertex at the maximum distance from x in T . Clearly, u is a

pendant vertex and let v be the vertex adjacent to u (v is the

parent of u). Then, by definition of u, all descendants of v are

pendant vertices and thus v has at most k descendants. Hence

v has degree at most k + 1 in T . Let S ′ be a k-PDS of T − u

containing only vertices of degree at least k + 2 in T − u (S ′

exists by Theorem 1.4.10). Then S ′ does not contain v or any

of its descendants. Now, since S ′ is a k-PDS, v gets monitored

by its parent, say w, at some propagation step i in T − u. Con-

sequently, v can monitor all its descendants in the next propa-

gation step as it has at most k − 1 unmonitored neighbours in
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T −u after the ith propagation step. Next, when we consider the

monitoring of S ′ in T , v will get monitored by w at step i and

since v has at most k descendants in T , it can again monitor all

its descendants in the (i + 1)th propagation step in T . Thus S ′

is also a k-PDS of T and we get γP,k(T ) ≤ γP,k(T − u). Also,

since u is a pendant vertex of T , γP,k(T − u) ≤ γP,k(T ). Hence

γP,k(T − uv) = γP,k(T − u) + 1 = γP,k(T ) + 1, which implies

bP,k(T ) = 1.

Figure 3.3: The tree T ′.

For the tree T ′ in Figure 3.3, where both vertices u and v

are adjacent to k+1 pendant vertices, we get that bP,k(T
′) = 2.

Corollary 3.3.5. If some vertex of a tree T is adjacent to k+2

or more vertices of degree one, then bP,k(T ) = 1.

We now provide a condition on T for which bP,k(T ) = 1.

A vertex v of a graph G is γP,k-universal if it belongs to

every γP,k(G)-set of G.
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Theorem 3.3.6. Let T be a tree. If T has a γP,k-universal

vertex, then bP,k(T ) = 1.

Proof. Let S be a γP,k(T )-set of T and v be a γP,k-universal

vertex of T . Let N(v) = {v1, . . . , vr} and Ti be the component

of T − v containing vi. Since v is γP,k-universal, we have S =

{v} ∪
(
∪r

i=1 S ∩ V (Ti)
)
.

If S∩V (Ti) is a k-PDS of Ti for all i, then we can extend this

k-PDS of Ti to a k-PDS of T that avoids v and has cardinality

at most γP,k(T ), which is a contradiction. Thus there exists at

least one i such that S ∩ V (Ti) is not a k-PDS of Ti. Hence

assume that S ∩ V (Ti) is not a k-PDS of Ti and let e = vvi for

some i.

Claim: γP,k(T − e) > γP,k(T ).

Assume not. Then, by Theorem 3.3.2, γP,k(T −e) = γP,k(T ).

Let S ′ be a γP,k(T − e)-set of T − e. Then S ′ = S ′
1 ∪ S ′

2, where

S ′
1 is a γP,k(Ti)-set of Ti and S ′

2 is a γP,k(T − Ti)-set of T − Ti.

Clearly, |S ′
1| > |S∩V (Ti)|. Otherwise, if |S ′

1| ≤ |S∩V (Ti)|, then

we can replace S∩V (Ti) by S ′
1. Moreover, |S ′

1| = |S∩V (Ti)|+1.

(Observe that (S ∩ V (Ti)) ∪ {vi} is a k-PDS of Ti.)
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Hence,

γP,k(T − e) = γP,k(T )

⇒ |S ′
1|+ |S ′

2| = 1 +
∑

j 6=i

|S ∩ V (Tj)|+ |S ∩ V (Ti)|

⇒ |S ∩ V (Ti)|+ 1 + |S ′
2| = 1 +

∑

j 6=i

|S ∩ V (Tj)|+ |S ∩ V (Ti)|

⇒ |S ′
2| =

∑

j 6=i

|S ∩ V (Tj)|. (3.3)

Suppose S ′
2 ∩ {v} = ∅. Then, since any k-PDS of T − e is a

k-PDS of T (as seen in the proof of Theorem 3.3.2), S ′
1 ∪ S ′

2

is a k-PDS of T of cardinality γP,k(T ) that does not contain v,

which is a contradiction. Thus the vertex v belongs to S ′
2. Now,

since S ′
2 is a k-PDS of T − Ti and (S ∩ V (Ti)) ∪ {v} is a k-PDS

of Ti ∪ {v}, S ′
2 ∪ (S ∩ V (Ti)) is a k-PDS of T of cardinality

γP,k(T )− 1 (follows from (3.3)), which is again a contradiction.

Hence the claim. Thus bP,k(T ) = 1.

Remark 3.3.1. Theorem 3.3.6 need not hold in general. Let

Gk be the graph constructed from a complete graph Kk+2 such

that Kk+1 is attached to exactly one vertex, say u, of Kk+2.

Then γP,k(Gk) = 1 and u is the unique γP,k-universal vertex of

Gk. But, γP,k(Gk − e) = γP,k(Gk) for any edge e and hence
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bP,k(Gk) 6= 1 (See Figure 3.4).

Figure 3.4: The graph Gk for k = 2.

Remark 3.3.2. The converse of Theorem 3.3.6 is obviously not

true as in the case of paths.



Chapter 4

Power domination in

graph products

Many large networks can be efficiently modelled by graph prod-

ucts. When designing large scale networks, the product graphs

serve a base for easy and economical control of large scale sys-

tems. Any graphical invariant can be studied on product graphs.

Some results of this chapter are included in the following paper.
Seethu Varghese, A. Vijayakumar, On the Power Domination Number of
Graph Products, In: S. Govindarajan, A. Maheshwari (Eds.), CALDAM
2016, Lecture Notes in Comput. Sci, Vol. 9602, pp: 357–367, Springer
(2016).
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A standard question that arise here is the relationship between

the invariant of the product and the invariant of the factors.

In this chapter, we discuss the power domination problem

in Cartesian product, direct product and lexicographic prod-

uct. For Cartesian and direct products, we study γP,k(G✷H)

and γP,k(G × H) for the value k = 1. We determine a general

upper bound for γP,1(G✷H) in terms of γP,1(G) and γP,1(H).

We establish some sharp upper bounds for γP,1(G✷H) and

γP,1(G×H), where the graph H has a universal vertex. Charac-

terization of the graphs G and H of order at least four for which

γP,1(G✷H) = 1 is obtained. We consider the generalized ver-

sion of power domination in lexicographic products and obtain

the k-power domination number of G ◦H.

4.1 The Cartesian Product

We first give a general upper bound for the power domination

number of Cartesian product of two graphs.
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Theorem 4.1.1. For any two nontrivial graphs G and H,

γP(G✷H) ≤ min{γP(G)|V (H)|, γP(H)|V (G)|}.

Proof. Let S be a PDS of the graph G and let S ′ be the set

{(g, h) : g ∈ S, h ∈ V (H)}. Then P0
G✷H,1(S

′) = {V (gH) : g ∈

P0
G,1(S)}. In order to prove that S ′ is a PDS of G✷H, it is

enough to prove that for a vertex g in G, if g ∈ P i
G,1(S), then

V (gH) ∈ P i
G✷H,1(S

′) for all i ≥ 0.

The proof is by induction. The property holds for i = 0 and

so suppose that it is true for some i ≥ 0. Let g be a vertex

in P i+1
G,1 (S). If g ∈ P i

G,1(S), then by the induction hypothesis

V (gH) ∈ P i
G✷H,1(S

′). Otherwise, there exists a neighbour g′ of

g in P i
G,1(S) such that

∣
∣NG[g

′] \ P i
G,1(S)

∣
∣ ≤ 1. By the induction

hypothesis, V (g
′
H) ∈ P i

G✷H,1(S
′) and therefore, for h ∈ V (H),

∣
∣NG✷H [(g

′, h)] \ P i
G✷H,1(S

′)
∣
∣ =

∣
∣{(v, h) : g′v ∈ E(G), (v, h) /∈

P i
G✷H,1(S

′)}
∣
∣ =

∣
∣{v : g′v ∈ E(G), v /∈ P i

G,1(S)}
∣
∣ =

∣
∣NG[g

′] \

P i
G,1(S)

∣
∣ ≤ 1. Therefore, NG✷H [(g

′, h)] ⊆ P i+1
G✷H,1(S

′) which

implies that (g, h) ∈ P i+1
G✷H,1(S

′). Since this is true for any h,

V (gH) ∈ P i+1
G✷H,1(S

′). Therefore S ′ is a PDS of G✷H and hence

γP(G✷H) ≤ |S ′| ≤ γP(G)|V (H)|. Similarly we can prove that

γP(G✷H) ≤ γP(H)|V (G)|.
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A close examination of the power domination definition leads

naturally to the study of zero forcing. The zero forcing number

was introduced in [3] to aid in the study of minimum rank/

maximum nullity problems. The minimum rank problem for a

(simple) graph asks for the determination of the minimum rank

among all real symmetric matrices with the zero-nonzero pattern

of off-diagonal entries described by a given graph (the diagonal

of the matrix is free); the maximum nullity of the graph is the

maximum nullity over the same set of matrices.

One can observe that the colour change rule in zero forcing

and the propagation rule in power domination are closely re-

lated. The monitoring rules in power domination on a graph

G can be described as choosing a set S ⊆ V (G) and applying

the zero forcing process to N [S]. Also, it is easy to observe

that S ⊆ V (G) is a PDS of a graph G if and only if N [S] is a

zero forcing set of G. Therefore, it is interesting to compare the

two parameters, particularly when these parameters have been

studied with different motivations.

Given a zero forcing set, we denote the set of vertices that

get coloured black at each stage of applying the color change
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rule, in the following manner.

Let Z be a zero forcing set of a graph G. The sets
(
Bi
G(Z)

)

i≥0

of vertices that are coloured black by Z at step i are de-

noted as follows:

B0
G(Z) = Z, and

Bi+1
G (Z) =

{
v : vu ∈ E(G), u ∈ Bi

G(Z) such thatNG[u]\Bi
G(Z) =

{v}
}
∪ Bi

G(Z).

The following theorem shows that we can construct a power

dominating set for G✷H from a zero forcing set of one of the

factor graphs when the other factor has a universal vertex, and

thereby obtaining a bound on the power domination number

using the zero forcing number.

Theorem 4.1.2. Let G and H be two nontrivial graphs. If H

has a universal vertex, then γP(G✷H) ≤ Z(G).

Proof. Let Z be a zero forcing set of G and x be a univer-

sal vertex of H. Let Z ′ = Z × {x}. Clearly, P0
G✷H,1(Z

′)

contains all vertices of gH, g ∈ Z. We now prove by induc-

tion that for a vertex g in G, if g ∈ Bi
G(Z), then V (gH) ∈

P i
G✷H,1(Z

′) for all i ≥ 0. Clearly it holds for i = 0. Sup-
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pose that the property holds for some i ≥ 0. Let g be a vertex

in Bi+1
G (Z). If g is not in Bi

G(Z), then there exists a neigh-

bour g′ of g in Bi
G(Z) such that

∣
∣NG[g

′] \ Bi
G(Z)

∣
∣ = 1. By

the induction hypothesis, V (g
′
H) ∈ P i

G✷H,1(Z
′) and therefore,

for h ∈ V (H),
∣
∣NG✷H [(g

′, h)] \ P i
G✷H,1(Z

′)
∣
∣ =

∣
∣{(v, h) : g′v ∈

E(G), (v, h) /∈ P i
G✷H,1(Z

′)}
∣
∣ =

∣
∣{v : g′v ∈ E(G), v /∈ Bi

G(Z)}
∣
∣ =

∣
∣NG[g

′]\Bi
G(Z)

∣
∣ = 1. Hence the vertex (g′, h) has only one neigh-

bour yet to be monitored, which implies that NG✷H [(g
′, h)] ⊆

P i+1
G✷H,1(Z

′). Therefore (g, h) ∈ P i+1
G✷H,1(Z

′). Since h is arbi-

trary, V (gH) ∈ P i+1
G✷H,1(Z

′). Now, since Z is a zero forcing

set of G, there exists some nonnegative integer j such that

Bj
G(Z) = V (G) and hence V (G✷H) = Pj

G✷H,1(Z
′). Therefore

Z ′ is a PDS of G✷H.

The bound in Theorem 4.1.2 is sharp for G = Pm, Cm,Wm

or Fm and H = Kn,m, n ≥ 4 by Theorem 1.4.7 (a)− (d).

Theorem 4.1.3. For any nontrivial graph G and n ≥ 2,

γP(G✷Pn) ≤ γ(G).

Proof. Let D be a dominating set of G. Let x be a pendant

vertex of Pn. Take D′ = D × {x}. Since D is a dominating set



4.1. The Cartesian Product 97

Figure 4.1: Cartesian product of the Petersen graph and P2.

of G, V (Gx) ∈ P0
G✷Pn,1

(D′) and therefore the next propagation

step covers all the vertices of Gy-fiber, where xy ∈ E(Pn). The

propagation continues in a similar fashion till the last G-fiber

and thus D′ is a PDS of G✷Pn.

The bound in Theorem 4.1.3 is sharp for graphs G with

γ(G) = 1. For n = 2, the bound is attained for the Petersen

graph (Figure 4.1). The black coloured vertices in the figure

form a minimum PDS of the graph and we get γP(P ✷P2) =

3 = γ(P ), where P is the Petersen graph.

From Theorems 4.1.2 and 4.1.3, we obtain the following corol-

lary.

Corollary 4.1.4. For any nontrivial graph G,

γP(G✷K2) ≤ min{γ(G), Z(G)}.
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Theorem 4.1.5. For any nontrivial graph G,

γP(G✷K2) ≥ γP(G).

Proof. Let S be a PDS of G✷K2. Define SG = {g : (g, h) ∈ S

for some h ∈ V (K2)}. We prove that SG is PDS of G. For

that, it is enough to prove that if (u, v) ∈ P i
G✷K2,1

(S), then

u ∈ P i
G,1(SG) for all i ≥ 0.

Let (u, v) be a vertex in P0
G✷K2,1

(S). If (u, v) ∈ S, then by

definition of SG, u ∈ SG. Otherwise, (u, v) is adjacent to some

vertex (g, h) in S. Then, either g = u or h = v. If g = u, then

by definition of SG, u ∈ SG. If h = v, then u is adjacent to g

in G. Clearly, g is in SG. Therefore u ∈ P0
G,1(SG). Hence the

property is true for i = 0. Assume that the property holds for

some i = ℓ ≥ 0. Suppose that (u, v) ∈ Pℓ+1
G✷K2,1

(S). If (u, v) ∈

Pℓ
G✷K2,1

(S), then by the induction hypothesis u ∈ Pℓ
G,1(SG).

Otherwise, there exists a vertex (g, h) ∈ Pℓ
G✷K2,1

(S) such that

(u, v) is the only unmonitored neighbour of (g, h) in G✷K2 af-

ter the ℓth propagation step. Since (g, h) ∈ Pℓ
G✷K2,1

(S), by the

induction hypothesis g ∈ Pℓ
G,1(SG). We have the following two

cases.

Case 1: g = u.
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Since g is in Pℓ
G,1(SG), u ∈ Pℓ

G,1(SG) ⊆ Pℓ+1
G,1 (SG).

Case 2: h = v.

This implies that u is a neighbour of g in G. If possible, as-

sume that the vertex g in Pℓ
G,1(SG) has at least two unmon-

itored neighbours, say g1 and g2, in G after the ℓth propaga-

tion step, i.e. g1, g2 /∈ Pℓ
G,1(SG). This implies that the vertices

(g1, h), (g2, h), (g1, h
′), (g2, h

′), where h′ ∈ V (K2), cannot be in

Pℓ
G✷K2,1

(S). (Otherwise, g1 and g2 would be in Pℓ
G,1(SG), by the

induction hypothesis). This means that (g, h) has two unmon-

itored neighbours (g1, h) and (g2, h) in G✷K2 after the step

ℓ, which is a contradiction. Therefore g has at most one un-

monitored neighbour in G after the step ℓ, which implies that

NG[g] ⊆ Pℓ+1
G,1 (SG) and hence u ∈ Pℓ+1

G,1 (SG). Thus SG is PDS of

G and we get γP(G) ≤ |SG| ≤ |S| ≤ γP(G✷K2).

From Theorems 4.1.1 and 4.1.5, we have the following corol-

lary.

Corollary 4.1.6. For any nontrivial graph G,

γP(G) ≤ γP(G✷K2) ≤ 2γP(G).

The above bounds are sharp as depicted in Figure 4.2
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Figure 4.2: γP(G✷K2) = 2 = γP(G) and γP(H ✷K2) = 2 =
2γP(H).

In general, it remains difficult to identify the graphs G for

which γP(G) = 1. Such graphs are identified only in the case of

trees (refer Theorem 1.4.3 (a)). We here characterize the graphs

G and H of order at least four for which γP(G✷H) = 1. This

condition clearly implies that the factor graphs G and H are

connected.

Theorem 4.1.7. Let G and H be two graphs of order at least

four. Then γP(G✷H) = 1 if and only if one of the graphs has

a universal vertex and the other is isomorphic to a path.

Proof. Suppose that γP(G✷H) = 1. Let S = {(g, h)} be a PDS
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of G✷H for some g ∈ V (G) and h ∈ V (H). Then, since G and

H are connected graphs of order greater than two, at least one

of the vertices g or h has degree greater than one. But, if both

g and h have degree at least two, then no more vertices get

monitored after the domination step. Therefore, assume that g

has degree one in G and h has degree at least two in H. Let

dH(h) = r, r ≥ 2 and A = {h′ ∈ NH(h) : NH [h
′] ⊆ NH [h]}.

Claim: |A| = r.

If possible, assume that |A| ≤ r−1. Then the set B = NH(h)\A

is nonempty. Let g′ be the neighbour of g. Since r ≥ 2, the

dominated vertex (g′, h) has at least two neighbours in its H-

fiber and therefore the first propagation step is possible only

from the dominated vertices in the gH-fiber. Since g has de-

gree one, the vertices in the set {(g, h′) : h′ ∈ A} can monitor

their corresponding neighbour in the g′H-fiber. The remaining

dominated vertices in the gH-fiber given by {(g, h′) : h′ ∈ B}

have unmonitored neighbours both in gH- and g′H-fibers. Since

G is a connected graph of order at least four, g′ has degree at

least two in G. But as no more propagation is possible from

any of the dominated vertices in the gH-fiber, the next step

of propagation occurs from the monitored vertices in the g′H-
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fiber, which in turn implies that dG(g
′) = 2. Let C = {h′ ∈

NH(h) : h
′ ∈ A, h′ /∈ NH(v) for every v in B}, i.e. C ⊆ A is the

set of vertices in A that are adjacent to none of the vertices in

B. Assume that C is nonempty. If g′′ is the other neighbour

of g′, then the vertices in the set {(g′, h′) : h′ ∈ C} can hence

monitor their neighbour in the g′′H-fiber. Since |B| ≥ 1, the

vertex (g′, h) and the other monitored vertices g′H-fiber given

by {(g′, h′) : h′ ∈ A \ C} have unmonitored neighbours in their

corresponding G- and H-fibers. Again, since |V (G)| ≥ 4 and

G is connected, g′′ has at least one neighbour other than g′,

which in turn prevents any more propagation from the moni-

tored vertices in the g′′H-fiber as each of the monitored vertex

(g′′, h′), h′ ∈ C in the g′H-fiber has unmonitored neighbours in

their corresponding G- and H-fibers. Hence the claim.

Suppose now that there exists a vertex x in H which is not

adjacent to h. Let P be a path in H connecting h and x. Then

there exist adjacent vertices p, q in P such that p ∈ N(h) and q /∈

N(h), which is a contradiction to the claim proved above. Hence

h is a universal vertex of H. Therefore the propagation occurs

from every vertex in the gH-fiber to their neighbouring H-fiber

after the domination step of S. Further propagation is possible
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only if the neighbour of g in G has degree two. Continuing the

same, we get that every vertex of G has degree at most two.

Thus G is isomorphic to a path of order at least four with g as

one of the pendant vertices.

To prove the sufficiency part, assume that G is a path and h

is a universal vertex ofH. Then it is easy to observe that {(g, h)}

is a PDS of G✷H, where g is a pendant vertex of G.

In the previous theorem, we considered any general graphs

of order at least four. We now consider the Cartesian products

whose one of the factor graphs is a tree T and the other is K2.

We characterize graphs for which γP(T ✷K2) = 1.

Lemma 4.1.8. If a tree T is a tailed star, then γP(T ✷K2) = 1.

Proof. Let V (K2) = {h1, h2}. If T is a star, then its univer-

sal vertex, say u, is the dominating set of T . Then, from the

proof of Theorem 4.1.3, we get the set {(u, h1)} is a PDS of

T ✷K2. Suppose now that T is not a star. Then, either T is

a path of order at least four or T has a unique vertex having

degree at least three. In the former case, by Theorem 4.1.3,

γP(T ✷K2) = 1 and in the latter case, let v be the unique
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vertex of T of degree three or more. Let v1, . . . , vm be the

neighbours of v. Then exactly one neighbour, say v1, has de-

gree two and all the other neighbours of v have degree one

in T . Take S = {(v, h1)}. Then P0
T ✷K2,1

(S) contains the set

of vertices {(v, h1), (v, h2)} ∪ {(vi, h1) : 1 ≤ i ≤ m}. For all

i, i 6= 1, since vi is a pendant vertex, the vertex (vi, h1) can

monitor their only unmonitored neighbour (vi, h2) in the Kvi
2 -

fiber by propagation. Consequently, the vertex (v, h2) has ex-

actly one unmonitored neighbour (v1, h2) which gets monitored

in the second propagation step. Let u be the other neighbour

of v1. Since dT (v1) = 2, the vertices (v1, h1) and (v1, h2) can

now monitor their only unmonitored neighbour in their corre-

sponding T -fiber, namely (u, h1) and (u, h2), respectively. By

definition of a tailed star, the subtree induced by the vertex set

{t ∈ V (T ) : dT (t, v1) < dT (t, v)} is a path. Hence, in a similar

fashion, the propagation continues through the path in T -fibers

and thus the set S monitors the entire graph.

In Figure 4.3, the monitored vertices at each step of propa-

gation are drawn as black vertices. Starting with the initial set

S = {(v, h1)}, we can observe that all the vertices of the graph



4.1. The Cartesian Product 105

(a) S = {(v, h1)} (b) P0
1 (S)

(c) P1
1 (S) (d) P2

1 (S)

(e) P3
1 (S) (f) P4

1 (S)

Figure 4.3: Monitoring of vertices in the graph T ✷K2.

T ✷K2 get monitored by step 4 and hence the lemma holds.

Theorem 4.1.9. For any tree T of order at least two,

γP(T ✷K2) = 1 if and only if T is a tailed star.

Proof. Let V (K2) = {h1, h2}. Suppose that γP(T ✷K2) = 1.

Let S = {(v, h1)} be a PDS of T ✷K2 for some v ∈ V (T ).
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If |V ((T )| ≤ 3, then clearly the result holds. Therefore, let

|V ((T )| ≥ 4.

Assume first that dT (v) = 1. Let v1 be the neighbour of v.

Then the vertices dominated by S are (v, h1), (v, h2) and (v1, h1).

Since dT (v) = 1, (v, h2) monitors (v1, h2) in the first propaga-

tion step. If dT (v1) ≥ 3, then the vertices (v1, h1) and (v1, h2)

have at least two unmonitored neighbours in their correspond-

ing T -fiber, which prevents the further monitoring of vertices.

Therefore dT (v1) = 2. Let v2 be the other neighbour of v1. Ar-

guing the same as in the case of v1, we can prove that dT (v2) = 2.

Proceeding with the same argument, we finally get that every

vertex of T has degree at most two. This implies that T is a

path, which is a tailed star.

Assume now that dT (v) > 1. Let v1, . . . , vm be the neigh-

bours of v,m ≥ 2. If all the neighbours of v are pendant vertices,

then we get that T is isomorphic to a star with the universal

vertex v and clearly the result holds. Therefore we can assume

that v has at least one neighbour which is not a pendant vertex.

Let r be the number of neighbours of v that are not pendant

vertices. If possible, assume that r ≥ 2. Let vj1 , . . . , vjr be
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such neighbours of v. We have P0
T ✷K2,1

(S) = {(v, h1), (v, h2)}∪

{(vi, h1) : 1 ≤ i ≤ m}. Each vertex u ∈ NT (v)\{vj1 , . . . , vjr},

has degree one in T and therefore the (u, h1) can monitor its

single unmonitored neighbour (u, h2) in the first propagation

step. For each i, 1 ≤ i ≤ r, we have dT (vji) ≥ 2 and there-

fore the dominated vertex (vji , h1) has at least one unmonitored

neighbour in its T -fiber and an unmonitored neighbour (vji , h2)

in its K2-fiber. This prevents the monitoring of vertices from

any such dominated vertices. This implies that the dominated

vertex (v, h2) has the set of vertices {(vji , h2) : 1 ≤ i ≤ r} as its

unmonitored neighbours in its T -fiber. Since r ≥ 2, (v, h2) has

at least two unmonitored neighbours in its T -fiber and there-

fore no possible propagation from any of the monitored vertices.

This is a contradiction, since S is a PDS of T ✷K2. Hence

r = 1, which means that v has exactly one neighbour, say v1,

which is not a pendant vertex of T . Let us assume that v1 has

at least two neighbours, w1 and w2, other than v in T . For

each i 6= 1,1 ≤ i ≤ m, since the vertex vi is pendant, the ver-

tex (vi, h1) can monitor (vi, h2) by propagation. Consequently,

the vertex (v, h2) can monitor (v1, h2) in the second propagation

step. But, again the vertex (v1, h2) has (w1, h2) and (w2, h2) as



108 Chapter 4. Power domination in graph products

unmonitored neighbours. Similarly, the case with (v1, h1). This

blocks the further propagation and therefore v1 has exactly one

neighbour, w1, other than v. By arguing the same as above for

the vertex w1, we get that degree of w1 is at most two. Continu-

ing with this argument if needed, we can conclude that the sub-

graph induced by the vertices {t ∈ V (T ) : dT (t, v1) < dT (t, v)}

is a path with v1 as one of its pendant vertices. Thus we proved

that T is indeed a tailed star. The sufficiency part follows from

Lemma 4.1.8.

From Theorems 1.4.3 (a) and 4.1.9, we get the following

corollary.

Corollary 4.1.10. For any spider T , γP(T ✷K2) = γP(T ) if

and only if T is a tailed star.

4.2 The Direct Product

Upper bounds for the domination number of the direct products

are studied in [16]. We obtain some sharp upper bounds for the

power domination number of direct products under the condition
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that one of the factor graphs has a universal vertex.

Let D be a total dominating set of a graph G. As any total

dominating set is a PDS, let γPD
(G) denote the least cardinality

of a subset S of D such that S is a PDS of G. Note that

γPD
(G) ≤ |D| and hence γPD

(G) is well-defined.

Theorem 4.2.1. Let G be a graph without isolated vertices and

H be a nontrivial graph with a universal vertex h. Then

γP(G×H) ≤ min{|D|+ γPD
(G)}, where the minimum is taken

over all total dominating sets D of G. If G has a γt(G)-set D′

which is also its zero forcing set, then D′ × {h} is a PDS of

G×H and γP(G×H) ≤ γt(G).

Proof. Let S be a PDS of G with cardinality γPD
(G) such that

S ⊆ D. We prove that the set S ′ given by S ′ = (D×{h})∪ (S×

{h′}), for some h′ ∈ V (H), h′ 6= h, is a PDS of G×H. Since h is

a universal vertex of H and D is a total dominating set of graph

G with no isolated vertices, P0
G×H,1(S

′) contains all the vertices

of V (Gv), v 6= h. Therefore, only those vertices in the Gh-fiber

that are not in (D × {h}) ∪NG×H(S
′) are yet to be monitored.

We now prove that for a vertex g in G, if g ∈ P i
G,1(S), then
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(g, h) ∈ P i
G×H,1(S

′) for all i ≥ 0. The proof is by induction.

Let g be a vertex in P0
G,1(S). If g ∈ S, then, since S ⊆ D,

(g, h) ∈ S ′. Otherwise, g is adjacent to some g′ in S. Then,

by definition of S ′, the vertex (g′, h′) in S ′ dominates the vertex

(g, h) and therefore (g, h) ∈ P0
G×H,1(S

′). The property holds for

i = 0. Suppose that it is true for some i ≥ 0. Let g be a vertex

in P i+1
G,1 (S). If g ∈ P i

G,1(S), then by the induction hypothesis,

(g, h) ∈ P i
G×H,1(S

′). Otherwise, there exists a neighbour g′ of g

in P i
G,1(S) such that |NG[g

′] \ P i
G,1(S)| ≤ 1. For any h′′ 6= h, we

have (g′, h′′) ∈ P0
G×H,1(S

′). Therefore,

|NG×H [(g
′, h′′)] \ P i

G×H,1(S
′)|

= |{(u, v) : u ∈ NG(g
′), v ∈ NH(h

′′), (u, v) /∈ P i
G×H,1(S

′)}|

= |{(u, h) : u ∈ NG(g
′), (u, h) /∈ P i

G×H,1(S
′)}|

= |{u : u ∈ NG(g
′), u /∈ P i

G,1(S)}|(by the induction hypothesis)

= |NG[g
′] \ P i

G,1(S)|

≤ 1.

Hence NG×H [(g
′, h′′)] ⊆ P i+1

G×H,1(S
′) and (g, h) ∈ P i+1

G×H,1(S
′).

Then, since S is a PDS of G, we get that S ′ is a PDS of G×H.

If G has a γt(G)-set D′ which is also its zero forcing set,

then take S ′ = D′ × {h}. Then the dominated set, P0
G×H,1(S

′)

in G×H is given by V (G×H)\{(g, h) : g /∈ D′}. Therefore, only
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Figure 4.4: The graph G.

those vertices in the Gh-fiber that are not in S ′ are yet to be

monitored. For a vertex g in G, if g ∈ B0
G(D

′), then (g, h) ∈ S ′.

Let g be a vertex in B1
G(D). If g /∈ D′, then, since D′ is a

zero forcing set of G, there exists a neighbour g′ of g in D′ such

that all the neighbours of g′ except g are in D′. Therefore for

any h′ 6= h in H, the vertex (g′, h′) in P0
G×H,1(S

′) has (g, h)

as the single unmonitored neighbour and hence (g, h) belongs to

P1
G×H,1(S

′). Now one can prove by induction that if g ∈ Bi
G(D

′),

then (g, h) ∈ P i
G×H,1(S

′) for all i ≥ 0. Since D′ is a zero forcing

set of G, this property implies that S ′ is a PDS of G × H and

γP(G×H) ≤ |S ′| = γt(G).

We now give examples of graphs G for which the bounds in

Theorem 4.2.1 is sharp. For the graph G in Figure 4.4, γt(G) =

3, γPD
(G) = 2 for the total dominating set D = {u, v, w} and

for H = K1,4, we get that γP(G×H) = 5 = γt(G) + γPD
(G).
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Figure 4.5: The graph G′.

For cycles, Cn, any γt(Cn)-set is its zero forcing set. It is

obtained in Theorem 1.4.7 (e) that γP(Km × Cn) = γt(Cn) for

m ≥ 3, n ≥ 4. Thus the bound is sharp. The graph G′ given

in Figure 4.5 has a γt(G
′)-set D = {u, v, w, x} which is also its

zero forcing set. Also, one can observe that if we colour the

vertices of D black and the remaining vertices of G′ white, then

by applying the colour-change rule, the vertices that are marked

i will receive the colour black in the ith step for all i, 1 ≤ i ≤ 7

and if H is a graph of order at least three and with a universal

vertex h, then the H-fiber iH is monitored by the set D × {h}

in the ith propagation step in G′×H. As D is a zero forcing set

of G′, we get that D × {h} is a PDS of G′ × H (as explained

in the proof of Theorem 4.2.1). (The arrow mark in Figure 4.5

indicates the direction in which the propagation occurs.)

In Theorem 4.2.1, we have assumed that G has no isolated

vertices. If G contains p isolated vertices, then let G′ be the
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subgraph of G induced by the nonisolated vertices. Then G =

G′∪pK1 and G×H is the disjoint union of G′×H and p.|V (H)|

isolated vertices. Consequently, γP(G × H) = γP(G
′ × H) +

p |V (H)|.

We now give an upper bound for γP(G × K2) in terms of

γP(G).

Theorem 4.2.2. Let G be a nontrivial graph. Then

γP(G × K2) ≤ 2γP(G). The equality holds if G is a bipartite

graph.

Proof. Let S be a PDS of G. Let S ′ = (S × {h1})∪ (S × {h2}),

where h1, h2 ∈ V (K2). We prove that S ′ is a PDS of G × K2.

For that we prove that for all i ≥ 0 and a vertex g in G, if

g ∈ P i
G,1(S), then both (g, h1) and (g, h2) belong to P i

G×K2,1
(S ′).

If g ∈ S, then clearly (g, h1), (g, h2) ∈ S ′. If g is adjacent to some

g′ in S, then the vertices (g′, h1) and (g′, h2) dominate (g, h2) and

(g, h1), respectively. Assume now that the property holds for

some i ≥ 0. Let g be a vertex in P i+1
G,1 (S). If g is not in P i

G,1(S),

then there exists a neighbour g′ of g in P i
G,1(S) such that |NG[g

′]\

P i
G,1(S)| ≤ 1. Hence (g′, h1) and (g′, h2) are in P i

G×K2,1
(S ′) and

|NG×H [(g
′, h1)] \ P i

G×K2,1
(S ′)| = |{(u, h2) : u ∈ NG(g

′), (u, h2) /∈
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P i
G×K2,1

(S ′)}| = |NG[g
′] \ P i

G,1(S)| ≤ 1. Therefore, (g, h2) ∈

P i+1
G×K2,1

(S ′). Similarly, we get that (g, h1) ∈ P i+1
G×K2,1

(S ′).

If G is a bipartite graph, then G×K2 consists of two copies

of G, hence the equality clearly holds.

4.3 The Lexicographic Product

The power domination number of the lexicographic product is

determined in [26]. In this section, we compute the k-power

domination number of the lexicographic product.

For each positive integer ℓ, let Aℓ be the family of all nontriv-

ial graphs F such that γP,ℓ(F ) = 1. And, let Bℓ be the family of

all disconnected graphs F such that F = F1 ∪ . . . ∪ Fr, 2 ≤ r ≤

ℓ + 1, where each Fi is a component of F , having the property

that F1 is a connected nontrivial graph with γP,ℓ(F1) = 1 and

sum of the order of the remaining components of F is at most

ℓ, i.e. 1 ≤ |V (F2)|+ . . .+ |V (Fr)| ≤ ℓ. Denote Fℓ by Aℓ ∪ Bℓ.

Theorem 4.3.1. Let G be a nontrivial graph without isolated

vertices. For any nontrivial graph H and 1 ≤ k ≤ |V (H)| − 1,
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γP,k(G ◦H) =







γ(G), H ∈ Fk;

γt(G), H /∈ Fk.

Proof. We first consider the case when H is in Fk. Suppose

that H ∈ Ak. Then, by definition of Ak, γP,k(H) = 1. Let

{h} be a k-PDS of H and D be a dominating set of G. Then

we prove that D × {h} is a k-PDS of G ◦ H. For a vertex g

of G, if g /∈ D, then any vertex of gH is in the neighbourhood

of (g′, h), for some g′ ∈ D with gg′ ∈ E(G). If g ∈ D, then

any neighbour of a vertex of gH not in gH is dominated and

also the set {(g, h′) : h′ ∈ NH [h]} is dominated. Therefore, since

{h} is a k-PDS of H, the fiber gH is monitored. Suppose now

that H ∈ Bk. Then, H = H1 ∪ . . . ∪ Hr, 2 ≤ r ≤ k + 1,

H1, . . . , Hr being the components of H such that γP,k(H1) = 1

and 1 ≤ |V (H2∪. . .∪Hr)| ≤ k. By Theorem 1.4.1, there exists a

γ(G)-set D of G such that every vertex u ∈ D has a neighbour

v ∈ V (G) \ D such that N [v] ∩ D = {u}. We can call v as

the private neighbour of u with respect to D. We prove that

D × {h} is a k-PDS of G ◦ H, for a k-PDS {h} of H1. For a

vertex g of G, the fiber gH is dominated if g /∈ D. Assume that

g ∈ D. Clearly, every neighbouring H-fibers of gH is dominated.
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Therefore, since {h} is a k-PDS of H1, the vertices in the set

{g}× V (H1) is monitored. Let g′ be a private neighbour of g in

G with respect to D. Then for any u ∈ NG[g
′], u 6= g, we get u

is not in D and hence the fiber uH is dominated. Therefore the

set of unmonitored neighbours of any vertex of g′H is given by

{(g, h′) : h′ ∈ V (H2 ∪ . . . ∪Hr)}. Since |V (H2 ∪ . . . ∪Hr)| ≤ k,

the fiber gH is monitored. Hence γP,k(G ◦H) ≤ γ(G).

Assume that G ◦ H has a k-PDS S with |S| < γ(G). Then

there exists an H-fiber gH that contains no vertex of N [S].

Therefore the vertices of gH are monitored by propagation. But

every vertex in V (G ◦H) \ V (gH) has either 0 or |V (H)| neigh-

bours in gH-fiber and therefore, since |V (H)| ≥ 2 and 1 ≤

k ≤ |V (H)| − 1, there can be no propagation in gH. Hence

γP,k(G ◦H) ≥ γ(G).

Suppose now that H is not in Fk. Let D be total dominating

set of G. Then for any h of H, D × {h} is a dominating set of

G ◦H and hence a k-PDS of G ◦H. Thus γP,k(G ◦H) ≤ γt(G).

Let S be a γP,k(G ◦H)-set of G ◦H. Suppose that there is

an H-fiber gH that contains at least two vertices of S. Let S ′

be obtained by removing from S all vertices of gH but one and
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adding an arbitrary vertex of a neighbouring H-fiber (if there

is none yet). Then N [S] ⊆ N [S ′] and hence S ′ is a k-PDS of

G ◦ H with |S ′| ≤ |S|. Repeating this process if necessary, we

may now assume that every H-fiber of G ◦H contains at most

one vertex in S.

Suppose that there exists an H-fiber gH such that for any

neighbour g′ of g in G, V (g
′
H) ∩ S is empty. We know that

each vertex in g′H is adjacent to all the vertices of gH. But,

since 1 ≤ k ≤ |V (H)| − 1, at least |V (H)| − k vertices of gH

have to be monitored by the vertices in V (gH) ∩ S so that the

remaining at most k(≤ |V (H)| − 1) unmonitored vertices of gH

can be monitored by propagation from any monitored vertex of

its neighbouring H-fiber. Also, gH contains at most one vertex

in S. Therefore, S contains a vertex (g, h) in gH such that (g, h)

monitors at least |V (H)| − k vertices of gH. If H is connected,

then this implies that {h} is a k-PDS of H and hence H ∈ Ak.

This is a contradiction since H /∈ Fk. Therefore assume that H

is not connected. Let H1, . . . , Hr, r ≥ 2 be the components of H.

Let H1 be the component that contains the vertex h. Therefore

we get that (g, h) monitors at least |V (H)| − k vertices of the

fiber gH1 and |V (H1)| ≥ |V (H)|−k. SinceH is disconnected, we
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have |V (H1)| ≤ |V (H)|−1. Therefore the fiber gH1 has at most

k − 1 more unmonitored neighbours, which will eventually get

monitored as H1 is connected. This implies that every vertex of

H1 is monitored by the vertex h and thus γP,k(H1) = 1. Also, we

get 1 ≤ |V (H2∪. . .∪Hr)| ≤ k. HenceH is in Bk, which is again a

contradiction. Therefore the set {g′ ∈ V (G) : V (g
′
H)∩S 6= ∅} is

a total dominating set of G and we conclude that γP,k(G ◦H) =

|S| ≥ γt(G).

Theorem 4.3.2. Let G be a nontrivial graph without isolated

vertices and H be a connected nontrivial graph. If k ≥ |V (H)|,

then γP,k(G ◦H) = γP,⌊ k
|V(H)|⌋(G).

Proof. Let ℓ =
⌊

k
|V (H)|

⌋

. We first prove that γP,k(G ◦ H) ≤

γP,ℓ(G). Let S be a minimum ℓ-PDS of G. Take S ′ = S × {h}

for some h ∈ V (H). Let u be a vertex in S. Then any neighbour

of a vertex of uH not in uH is dominated and also the vertex

(u, h) dominates all its neighbours in its H-fiber. Since H is

connected and k ≥ |V (H)|, {h} is a k-PDS of H and therefore

once all the neighbouring H-fibers of uH are dominated, the

fiber uH is monitored by propagation. For a vertex u in S, let

j be the smallest integer such that V (uH) ∈ Pj
G◦H,k(S

′).



4.3. The Lexicographic Product 119

We now prove that if g is a vertex in P i
G,ℓ(S), then V (gH) ∈

Pj+i
G◦H,k(S

′) for all i ≥ 0. Let g be a vertex in P0
G,ℓ(S). If g is in

S, then by definition of j, V (gH) is contained in Pj
G◦H,k(S

′). If

g is not in S, then the vertices of the fiber gH are in the neigh-

bourhood of (g′, h) for some vertex g′ in S with gg′ ∈ E(G) and

any vertex of gH is dominated. Hence the property is true for

i = 0. Let g be a vertex in P1
G,ℓ(S). If g is not in P0

G,ℓ(S),

then there exists some neighbour g′ of g in P0
G,ℓ(S) such that

|NG[g
′] \ P0

G,ℓ(S)| ≤ ℓ. Since the property is true for i = 0, we

get that V (g
′
H) ∈ Pj

G◦H,k(S
′). Then for any h′ ∈ V (H), the

vertex (g′, h′) is in Pj
G◦H,k(S

′) and it has at most |V (H)|.ℓ (≤ k)

unmonitored neighbours in G ◦ H after the step j. Therefore

all the neighbouring H-fibers of (g′, h′) are monitored by prop-

agation in the (j + 1)th step and NG◦H [(g
′, h′)] ⊆ Pj+1

G◦H,k(S
′).

Hence V (gH) ∈ Pj+1
G◦H,k(S

′). Therefore the property holds for

i = 1. Similarly the property can be proved for i ≥ 2. Thus the

propagation in G ◦H continues in a similar manner and since S

is a ℓ-PDS of G, S ′ is a k-PDS of G ◦H.

To prove the lower bound, let S ′ be a k-PDS of G ◦ H.

Let S ′
G = {g : (g, v) ∈ S ′ for some v ∈ V (H)}. For any ver-

tex (g, h) in P0
G◦H,k(S

′), clearly g ∈ P0
G,ℓ(S

′
G). Let (g, h) be
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a vertex in P1
G◦H,k(S

′). If (g, h) /∈ P0
G◦H,k(S

′), then there ex-

ists some neighbour (g′, h′) of (g, h) in P0
G◦H,k(S

′) such that

|NG◦H [(g
′, h′)] \ P0

G◦H,k(S
′)| ≤ k. We know that for any vertex

(u, v) in G◦H, if uu′ ∈ E(G), then (u, v) has |V (H)| neighbours

in u′
H. Let r be the number of neighbours (u, v) of (g′, h′) with

V (uH) ∩ P0
G◦H,k(S

′) = ∅ and that get monitored by (g′, h′) at

the first propagation step of S ′. Then r = m.|V (H)| for some

nonnegative integer m. Indeed, m is the number of unmoni-

tored neighbours of g′ after the domination step of S ′
G in G.

Also r ≤ k and thus m ≤ ℓ. Therefore the vertex g′ in P0
G,ℓ(S

′
G)

monitors its m unmonitored neighbours at the first propagation

step of S ′
G and hence NG[g

′] ⊆ P1
G,ℓ(S

′
G) and g ∈ P1

G,ℓ(S
′
G). In a

similar fashion, the propagation occurs in G and we get that if

(g, h) ∈ P i
G◦H,k(S

′), then g ∈ P i
G,ℓ(S

′
G) for all i ≥ 0. Hence S ′

G

is a ℓ−PDS of G.

Remark 4.3.1. If G contains p isolated vertices, then G ◦H is

the disjoint union of G′ ◦H and p copies of H, where G′ is the

subgraph of G induced by the nonisolated vertices of G. Hence,

γP,k(G◦H) = γP,k(G
′◦H)+p γP,k(H). Also, from the definitions

of strong and lexicographic products, it follows that G⊠Km
∼=

G ◦Km and therefore γP,k(G⊠Km) = γP,k(G ◦Km),m ≥ 1.



Chapter 5

Power domination in some

classes of graphs

The power domination number of various classes of graphs has

been determined using a two-step process: Finding an upper

bound and a lower bound. The upper bound is usually obtained

by providing a pattern to construct a set, together with a proof

Some results of this chapter are included in the following papers.
1. Seethu Varghese, Andreas M. Hinz, A. Vijayakumar, Power domination
in Knödel graphs and Hanoi graphs, Discuss. Math. Graph Theory (to
appear).
2. Seethu Varghese, A. Vijayakumar, Generalized power domination in
WK-Pyramid Networks, Bull. Inst. Combin. Appl. (to appear).

121



122 Chapter 5. Power domination in some classes of graphs

that constructed set is a PDS. The lower bound is usually found

by exploiting the structural properties of the particular class of

graphs. Not many exact values of γP,k for special graph classes

are known. In this chapter, we determine the power domination

number of 3-regular Knödel graphs and provide an upper bound

for γP(Wr+1,2r+1), r ≥ 3. We compute γP,k and radP,k of H2
p . We

also study γP,k of WKP(C,L) and this is the first network class

with the pyramid structure for which the k-power domination

number is studied.

5.1 Knödel graphs

In this section, we study the power domination number of Knödel

graphs.

It is clear from Definition 1.2.20 thatW∆,2ν is bipartite. Also,

W∆,2ν is connected if and only if ∆ ≥ 2, since in that case it

suffices to alternate edges in dimension 0 and 1 to get a Hamil-

tonian cycle.

From Observation 1.4.9 (b), we get that γP,k(W∆,2ν) = 1 for
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∆ ≥ 2 and k ≥ ∆ − 1. Therefore it is interesting to study

k-power domination number of W∆,2ν for k ≤ ∆− 2.

For ∆ = 1,W1,2ν consists of ν disjoint copies of K2 and

therefore γP(W1,2ν) = ν. For ν ∈ N2 and ∆ = 2,W2,2ν is a cycle

on 2ν vertices and clearly γP(W2,2ν) = 1. We have the following

theorem for the case ∆ = 3, if ν ∈ N4.

Theorem 5.1.1. For ν ∈ N4, γP(W3,2ν) = 2.

Proof. We prove that the set S = {(1, 0), (2, 2)} is a PDS of

W3,2ν . Then the set of dominated vertices is given by P0
1 (S) =

{(i, j) : i ∈ [2], j ∈ [3]0} ∪ {(1, ν − 1), (2, 3)}. For ν = 4, S is a

dominating set of W3,8 and for ν = 5, 6, we can easily observe

that all vertices ofW3,2ν get monitored after the first propagation

step and therefore S is a PDS. Let ν ∈ N7. Depending on

whether ν is odd or even, we write ν = 2m − 1 or ν = 2m,

m ∈ N4, respectively. Then for i ∈ [m− 3],

P i
1(S) =

(
{(1, j) : j ∈ [i+ 3]0} ∪ {(1, ν − j) : j ∈ [i+ 2]}

)

∪
(
{(2, j) : j ∈ [i+ 5]0} ∪ {(2, ν − j) : j ∈ [i]}

)
.

We get that Pm−3
1 (S) = V (W3,2ν), if ν is odd, and Pm−2

1 (S) =
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Pm−3
1 (S) ∪ {(1,m), (2,m+ 2)} = V (W3,2ν), if ν is even. Hence,

in both cases we see that every vertex of W3,2ν gets monitored

after step
⌊
ν
2

⌋
− 2 and therefore S is a PDS of W3,2ν .

To prove that γP(W3,2ν) ≥ 2, let us assume that {v} is a

PDS of W3,2ν . Then, since W3,2ν is bipartite, after the domina-

tion step, each of the neighbours of v has exactly two unmoni-

tored neighbours which prevents the further propagation. Hence

γP(W3,2ν) = 2.

We now focus on the family of Knödel graphs Wr+1,2r+1 . In

the next theorem, we prove that the power domination num-

ber of Wr+1,2r+1 is at most 2r−2. For that, we construct a

PDS of cardinality 2r−2 in Wr+1,2r+1 . One can easily check that

S ′ = {(1, 1), (2, 6)} is a PDS of W4,16. It is proved in [30] that

Wr+1,2r+1 can be constructed by taking two copies of Wr,2r and

linking the vertices of each copy by a certain perfect match-

ing. Therefore, in order to construct a PDS for W5,32, we take

two copies of the set S ′, each from a copy of W4,16 that lies in

W5,32 and then prove that the new set is a PDS of W5,32. We

now extend the same idea to construct a PDS of Wr+1,2r+1 for

larger values of r. In the proof of the following theorem, we first
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produce a set S and then give the set of vertices that are dom-

inated given by P0
1 (S). After that we give the elements in the

set P1
1 (S)and P2

1 (S), the sets of vertices that get monitored at

the first and second propagation step, respectively. We obtain

that the entire graph get monitored in two propagation steps

and thus S is a PDS of Wr+1,2r+1 .

Theorem 5.1.2. For r ∈ N3, γP(Wr+1,2r+1) ≤ 2r−2.

Proof. Let ν = 2r and S = {(1, 2r−3 + j), (2, 7 · 2r−3 − 1 + j) :

j ∈ [2r−3]0}. Then

P0
1 (S) = S ∪ {(1, 7 · 2r−3 + j − 2ℓ (mod ν)),

(2, 2r−3 + j + 2ℓ − 1 (mod ν)) :

j ∈ [2r−3]0, ℓ = r − 3, r − 2, r − 1, r}.

For r = 3, the vertex (1, 2j + 1) monitors (2, 2j + 1) for every

j ∈ [3] and the vertex (2, 2j) monitors (1, 2j) for every j ∈ [3]0.

Thus we get P1
1 (S) = V (W4,16). Assume now that r ∈ N4. Then,

for each j and ℓ, where j ∈ [2r−4]0, ℓ = r−2, r−1, r, the vertices

in the set {(1, 7 · 2r−3 + j − 2ℓ (mod ν))} monitor the vertices in

the set {(2, 8 · 2r−3 + j − 2ℓ− 1 (mod ν))} by propagation. Also,
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for each j and ℓ, where 2r−4 ≤ j ≤ 2r−3 − 1, ℓ = r − 2, r − 1, r,

the vertices in the set {(2, 2r−3 + j + 2ℓ − 1 (mod ν))} monitor

the vertices in the set {(1, j + 2ℓ (mod ν))} by propagation.

Hence the set of vertices monitored at step 1 is given by

P1
1 (S) ={(1, j + 2ℓ (mod ν)) : 2r−4 ≤ j ≤ 2r−3 − 1, ℓ = r − 2, r − 1, r}

∪ {(2, 8 · 2r−3 + j − 2ℓ − 1 (mod ν)) :

j ∈ [2r−4]0, ℓ = r − 2, r − 1, r}

∪ P0
1 (S).

Again following the propagation rule, for each j and ℓ, where

2r−4 ≤ j ≤ 2r−3 − 1, ℓ = r − 2, r − 1, r, the vertices in the

set {(1, 7 · 2r−3 + j − 2ℓ (mod ν))} monitor the vertices in the

set {(2, 8 · 2r−3 + j − 2ℓ − 1 (mod ν))}. And, for each j and ℓ,

where j ∈ [2r−4]0, ℓ = r − 2, r − 1, r, the vertices in the set

{(2, 2r−3 + j + 2ℓ − 1 (mod ν))} monitor the vertices in the set

{(1, j + 2ℓ (mod ν))} by propagation. Hence the set of vertices
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monitored at step 2 is given by

P2
1 (S) ={(1, j + 2ℓ (mod ν)) : j ∈ [2r−4]0, ℓ = r − 2, r − 1, r}

∪ {(2, 8 · 2r−3 + j − 2ℓ − 1 (mod ν)) :

2r−4 ≤ j ≤ 2r−3 − 1, ℓ = r − 2, r − 1, r}

∪ P1
1 (S)

=V (Wr+1,2r+1).

Therefore every vertex of Wr+1,2r+1 gets monitored after step 2

and hence S is a PDS of Wr+1,2r+1 and γP(Wr+1,2r+1) ≤ |S| =

2r−2.

For r = 3, any singleton set {v}, v ∈ W4,16 cannot itself

power dominate the entire graph, as each of the neighbours of v

will have exactly three unmonitored neighbours after the dom-

ination step. Hence the bound in Theorem 5.1.2 is sharp for

r = 3. We further illustrate Theorem 5.1.2 for the graph W5,32.

The vertices of the set S as defined in the theorem are coloured

black in Figure 5.1. In Figure 5.2, P0
1 (S), the set of dominated

vertices, are coloured black and the remaining vertices white.

The black vertices in Figure 5.3 and Figure 5.4 represent the
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Figure 5.1: A power dominating set in the graph W5,32.

Figure 5.2: Neighbourhood is monitored.

vertices in the set P1
1 (S) and P2

1 (S), respectively. The directed

edges in the figures indicate the direction in which the prop-

agation occurs at each step. For instance, the directed edge

[(2, 2), (1, 1)] in Figure 5.3 indicates that (2, 2) monitors (1, 1)

in the first propagation step. We observe that all the vertices

get monitored by step 2 and therefore S is a PDS of W5,32.

Figure 5.3: Propagation occurs.
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Figure 5.4: End of propagation.

5.2 Hanoi graphs

We get from Definition 1.2.21 that Hn
1 is the graph K1 for any

n ∈ N0. For n ∈ N1, H
n
2 is the disjoint union of 2n−1 copies of

K2, i.e. H
n
2
∼= W1,2n .

In this section, we study the behaviour of power domination

inH2
p . The cases p ∈ [2] are trivial with γP,k(H

2
1 ) = γP,k(K1) = 1

and γP,k(H
2
2 ) = 2 = γP,k(W1,4), respectively, for all k.

Recall that for p ∈ N3 and n = 2,

V (H2
p ) = {s2s1 : s1, s2 ∈ [p]0} and

E(H2
p ) =

{
{ri, rj}, {iℓ, jℓ} : r, i, j ∈ [p]0, i 6= j, ℓ ∈ [p]0\{i, j}

}
.

Vertices of the form ss are called the extreme vertices of

H2
p . Note that the extreme vertices are of degree p − 1 and all

the other vertices are of degree 2p−3 in H2
p . It is easy to observe

that γ(H2
p ) = p. Indeed, any set containing a vertex from each
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of the p cliques in H2
p forms a dominating set of H2

p . Since each

of the p cliques contains an extreme vertex, any dominating set

of H2
p must contain at least p vertices and hence γ(H2

p ) = p.

For p = 3, Hn
3 is isomorphic to the Sierpiński graph, Sn

3 , see

[43, p.143 ff]. It is proved (refer Theorem 1.4.12) that

γP,k(S
n
3 ) =







1, n = 1 or k ∈ N2;

2, n = 2 and k = 1;

3n−2, n ∈ N3 and k = 1.

Therefore γP,1(H
2
3 ) = 2 and γP,k(H

2
3 ) = 1 for k ∈ N2.

There are perfect codes for all Hanoi graphs isomorphic to

Sierpiński graphs and also for H2
p [43]. But, for p ∈ N4, the

Hanoi graphs do not contain perfect codes for n ∈ N3, as found

out by Q. Stierstorfer [67]. The domination number of these

graphs is not known. Therefore we concentrate on n = 2. (For

n = 1, H1
p
∼= Kp

∼= S1
p .)

Theorem 5.2.1. Let p ∈ N4. Then

γP,k(H
2
p ) =







1, k ∈ Np−2;

p− k − 1, k ∈ [p− 3].
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Figure 5.5: The graph H2
4 .

Proof. Case 1: k ∈ Np−2.

Let v be an arbitrary vertex in H2
p . Let K

i
p denote the subgraph

induced by the vertices {ij : j ∈ [p]0}. Assume that v ∈ Ki
p for

some i. Let S = {v}. Then V (Ki
p) ⊆ P0

k(S). Since each vertex

in Ki
p other than the vertex ii has p− 2 neighbours outside Ki

p,

for any j 6= i, V (Kj
p)\{jj, ji} ⊆ P1

k(S). Hence any vertex jℓ in

Kj
p , ℓ 6= i, j, will have two unmonitored neighbours, namely jj

and ji. Since k ≥ p − 2 ≥ 2, these vertices will get monitored

by propagation, i.e. V (Kj
p) ⊆ P2

k(S). Since this is true for any

j 6= i, S is a k-PDS of H2
p .

Case 2: k ∈ [p− 3].
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We first prove that γP,k(H
2
p ) ≤ p − k − 1. Let S be the set of

vertices {i(i−1) : i ∈ [p−k−2]}∪{0(p−k−2)} (For k = 1 and

p = 4, the vertices of S are coloured black in Figure 5.5.) Then

P0
k(S) = {V (Ki

p) : i ∈ [p−k−1]0}∪{ij : p−k−1 ≤ i ≤ p−1, j ∈

[p−k−2]0}∪{i(p−k−2) : p−k−1 ≤ i ≤ p−1}. Let Y be the set

of vertices {ij : i ∈ [p−k−1]0, p−k−1 ≤ j ≤ p−1}. Then any

vertex v = i′j′ in Y has exactly k unmonitored neighbours given

by {ℓj′ : p− k− 1 ≤ ℓ ≤ p− 1, ℓ 6= j′} which will get monitored

by propagation. Therefore, the remaining set of unmonitored

vertices is given by {jj : V (Kj
p) ∩ S = ∅}, which will then get

monitored by propagation by its neighbours in Kj
p . Thus S is a

k-PDS of H2
p , which implies γP,k(H

2
p ) ≤ p− k − 1.

We next prove that γP,k(H
2
p ) ≥ p− k− 1. Let S be a k-PDS

of H2
p . Suppose on the contrary that γP,k(H

2
p ) ≤ p − k − 2.

Assume first that S has exactly one vertex in p-cliques Ki
p for

i ∈ {i1, . . . , ip−k−2}. Let {i1j1, . . . , ip−k−2jp−k−2} be the set of

p − k − 2 vertices in S. Then S ∩ V (Ki′

p ) = ∅ for any i′ ∈

I ′ = [p]0\{i1, . . . , ip−k−2}. Let X = {i′j1, . . . , i′jp−k−2}. Then

P0
k(S) ∩ V (Ki′

p ) ⊆ X. This holds for any i′ ∈ I ′. Let J ′ =

[p]0\{j1, . . . , jp−k−2}. Then the set of vertices {i′j′ : i′ ∈ I ′, j′ ∈

J ′} has an empty intersection with P0
k(S). Since every vertex
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in H2
p has either no or more than k neighbours in this set, no

vertex from this set can get monitored later on, a contradiction.

Assume next that |S| < p−k−2 or that S intersects some Ki
p in

more than one vertex. Then we can conclude analogously that

not all vertices of Ki′

p will be monitored and hence γP,k(H
2
p ) ≥

p− k − 1.

It is obtained in Theorem 1.4.12 that for p ∈ N4,

γP,k(S
2
p) =







1, k ∈ Np−1;

p− k, k ∈ [p− 2].

We can observe that for p ∈ N4, γP,k(S
2
p) − γP,k(H

2
p ) = 1 if

and only if k ∈ [p−2] and for k ∈ Np−1, the two values coincide.

We now compute the k-propagation radius of H2
p . For p = 3,

it is proved that radP,1(H
2
3 ) = 2 and radP,k(H

2
3 ) = 3 for k ∈ N2

(refer Theorem 1.4.14). The following theorem indicates that

the graph H2
p can be monitored in 3 steps.

Theorem 5.2.2. For p ∈ N4, radP,k(H
2
p ) = 3.

Proof. For k ∈ Np−2, γP,k(H
2
p ) = 1 and let S = {ij} be a k-PDS

of H2
p . If i 6= j, we prove that the the vertices ji and jj do
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not belong to P1
k(S). Clearly, ji, jj /∈ P0

k(S). Also none of the

neighbours of ji and jj belongs to P0
k(S). Therefore, ji and jj

cannot be monitored in step 1. For i = j, we can similarly prove

that the vertices ℓi and ℓℓ, for ℓ 6= i, do not belong to P1
k(S)

and hence radP,k(H
2
p ) ≥ 3. To prove the upper bound, consider

the set S = {ii}. Then,

P0
k(S) =V (Ki

p) ,

P1
k(S) =P0

k(S) ∪
⋃{

V (Kℓ
p)\{ℓi, ℓℓ} : ℓ ∈ [p]0 \ {i}

}
,

P2
k(S) =P1

k(S) ∪ {ℓi, ℓℓ : ℓ ∈ [p]0 \ {i}} = V (H2
p ).

Hence radP,k(H
2
p ) ≤ radP,k(G,S) = 3.

Suppose that k ∈ [p− 3] and let S be a minimum k-PDS of

H2
p . Then γP,k(H

2
p ) = p−k−1 and thus there exist at least k+1

p-cliques Ki
p not containing any vertex of S. Let Ki′

p be an arbi-

trary such clique. We prove that the vertex i′i′ is not in P1
k(S).

Clearly, the vertex i′i′ does not belong to P0
k(S). Moreover,

|V (Ki′

p ) ∩ P0
k(S)| ≤ p − k − 1 and therefore |V (Ki′

p )\P0
k(S)| ≥

k+1. Hence any neighbour of i′i′ has more than k unmonitored

vertices preventing any propagation to this vertex on that step.
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Thus i′i′ is not in P1
k(S). To prove the upper bound, consider

the set S = {i(i− 1) : i ∈ [p− k − 2]} ∪ {0(p− k − 2)}. Then,

P0
k(S) = {V (Ki

p) : i ∈ [p− k − 1]0}

∪ {ij : p− k − 1 ≤ i ≤ p− 1, j ∈ [p− k − 1]0} ,

P1
k(S) =P0

k(S) ∪ {ij : p− k − 1 ≤ i, j ≤ p− 1, i 6= j} ,

P2
k(S) =P1

k(S) ∪ {ii : p− k − 1 ≤ i ≤ p− 1} = V (H2
p ).

5.3 WK-Pyramid networks

In this section, we determine the k-power domination num-

ber of WKP(C,L). We also obtain the k-propagation radius of

WKP(C,L) in some cases.

Observe from Definition 1.2.22 that WK-Recursive mesh,

WK(C,L), has CL vertices and C
2
(CL − 1) edges. Vertices in

WK(C,L) which are of the form (
L times
︷ ︸︸ ︷
a . . . a) are called extreme ver-

tices of WK(C,L). Clearly, WK(C,L) contains C extreme vertices

of degree C − 1 and all the other vertices are of degree C. We
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have WK(1,L)
∼= K1 (L ≥ 1), WK(2,L)

∼= P2L (L ≥ 1) and

WK(C,1)
∼= KC (C ≥ 1).

A vertex of WKP(C,L) with the addressing scheme

(r, (arar−1 . . . a1)) is called a vertex at level r. The part

(arar−1 . . . a1) of the address determines the address of a vertex

within the WK-recursive mesh at level r. All vertices in level

r > 0 ofWKP(C,L) induce a WK-recursive meshWK(C,r). Hence

|V (WKP(C,L))| =
∑L

i=0 C
i = CL+1−1

C−1
. Note that WKP(C,1)

∼=

KC+1 (C ≥ 1), WKP(1,L)
∼= PL+1 (L ≥ 1). Vertices of the form

(r, (
r times
︷ ︸︸ ︷
a . . . a)) are called the extreme vertices of WKP(C,L). The

vertex (0, (1)) has degree C and at any level except the Lth level,

the extreme vertices are of degree 2C and the other vertices are

of degree 2C + 1. In the Lth level, the extreme vertices have

degree C and the other vertices have degree C + 1.

We shall use the following notations in the rest of the chapter.

Let V 1 and V 2 denote the set of vertices of WKP(C,2) in

levels 1 and 2, respectively. Let Qi denote a C-clique induced

by the set of vertices {(2, (ij)) : j ∈ [C]0} for some i.

For C,L ∈ N3, let w ∈ [C]L−2
0 . Denote V C,L

w = {(L, (wij)) ∈
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WKP(C,L) : i, j ∈ [C]0} and GC,L
w = < V C,L

w >, i.e. GC,L
w is

the induced subgraph in level L of WKP(C,L). In fact, GC,L
w

is isomorphic to WK(C,2) for any w ∈ [C]L−2
0 and any L ∈ N3

(Figure 5.6). We first consider the easier case as stated in the

Figure 5.6: The induced subgraph G5,L
w of WKP(5,L).

following theorem.

Theorem 5.3.1. Let C,L ∈ N1. If C = 1 or L = 1 or k ≥ C,

then γP,k(WKP(C,L)) = 1 .

Proof. Recall thatWKP(C,1)
∼= KC+1 (C ≥ 1) and thatWKP(1,L)

∼= PL+1 (L ≥ 1). Hence γP,k(G) = 1 for these graphs G.

If k ≥ C, then take S = {(0, (1))}. It monitors the vertices in

level 1. Since each vertex in level r has exactly C neighbours in

its successive level r+1, once the level r is monitored, the vertices

in level r + 1 get monitored by propagation. This propagation

goes on till level L and hence S is a k-PDS of WKP(C,L).
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We have determined the value of γP,k(WKP(C,L)) when k ≥

C. Now, we consider the remaining case k ≤ C − 1. We begin

with the computation of γP,k for L = 2 and will prove in Theo-

rem 5.3.4 that γP,k(WKP(C,2)) = C − k for C ≥ 2, k ≤ C − 1.

We first obtain the following upper bound. For that, we

produce a set S of cardinality C − k and prove that S monitors

the whole graph in two propagation steps.

Lemma 5.3.2. For C ∈ N3 and k ∈ [C − 1],

γP,k(WKP(C,2)) ≤ C − k.

Proof. Let S = {(1, (i)) : k ≤ i ≤ C−1}. (For k = 1 and C = 5,

the vertices in S are coloured black in Figure 5.7.)

Then P0
k(S) = {(1, (j)) : j ∈ [C]0}∪{(2, (ij)) : k ≤ i ≤ C−1, j ∈

[C]0} ∪ {(0, (1))},

P1
k(S) = P0

k(S) ∪ {(2, (ij)) : i ∈ [k]0, k ≤ j ≤ C − 1} and

P2
k(S) = P1(S) ∪ {(2, (ij)) : i, j ∈ [k]0} = V (WKP(C,2)).

Hence S is a k-PDS, which implies γP,k(WKP(C,2)) ≤ |S| =

C − k.

Lemma 5.3.3. For C ∈ N3 and k ∈ [C − 2],

γP,k(WKP(C,2)) ≥ C − k.
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Figure 5.7: The graph WKP(5,2).

Proof. Let S be a minimum k-PDS of WKP(C,2). We may as-

sume that S ⊆ V 1 ∪ V 2.

Claim: |S ∩ (V 1 ∪ V 2)| ≥ C − k.

Suppose on the contrary that |S ∩ (V 1 ∪ V 2)| ≤ C − k − 1.

We consider the case when S contains vertices from both V 1

and V 2. Assume first that |S ∩ (V 1 ∪ V 2)| = C− k− 1 and that

S contains a vertex (1, (i′)) ∈ V 1 and the remaining C − k − 2
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vertices from the C-cliques Qi1 , . . . , QiC−k−2
, where i′ 6= iℓ, ℓ ∈

[C − k − 2] such that each of these C-cliques contains exactly

one vertex in S. Let Qℓ be an arbitrary clique that does not

contain any vertex of S, where ℓ 6= i′. Let X = {(2, (ℓi′))} ∪

{(2, (ℓi1)), . . . , (2, (ℓiC−k−2))}. Then P1
k(S) ∩ V (Qℓ) = X. This

holds for every l ∈ I = [C]0 \{i′, i1, . . . , iC−k−2}. Thus the set of

vertices J = {(2, (ℓℓ′)) : ℓ ∈ I, ℓ′ ∈ I} has an empty intersection

with P1
k(S). Since every vertex in WKP(C,L) − J has either 0

or k + 1 neighbours in J , no vertex from this set J may get

monitored later on, which is a contradiction. Assume next that

|S ∩ (V 1 ∪ V 2)| < C − k − 1 or that S intersects some C-clique

Qi in more than one vertex. Then we can analogously conclude

that not all vertices of Qℓ will be monitored. Now, the case when

S ∩ V 1 = ∅ or S ∩ V 2 = ∅ can be proved in a similar manner.

Hence the claim.

Therefore γP,k(WKP(C,2)) = |S| = |S ∩ (V 1 ∪ V 2)| ≥ C −

k.

From Lemmas 5.3.2 and 5.3.3, we can easily deduce the fol-

lowing theorem.

Theorem 5.3.4. For C ∈ N2 and k ∈ [C − 1],
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γP,k(WKP(C,2)) = C − k.

Proof. Clearly, γP,1(WKP(2,2)) = 1. Let C ≥ 3. For k = C − 1,

any vertex in level 1 forms a k-PDS ofWKP(C,2). For k ∈ [C−2],

the result follows from Lemmas 5.3.2 and 5.3.3.

Thus we compute γP,k(WKP(C,2)) for all values of k and C.

We now consider the case C ∈ N3, L ∈ N3 and k ∈ [C − 2] and

prove an upper bound in the following lemma. We construct a

set S ⊆ V (WKP(C,L)) that monitors the whole graph. The idea

is to construct S in such a way that it initially monitors all the

vertices of level L and L− 1. For that, we use the hamiltonian

property of its subgraphs. Since the graph possesses a pyramid

structure, each vertex in a level has exactly one neighbour in its

preceding level. Therefore once the levels L and L− 1 get mon-

itored, the preceding levels can be monitored by propagation.

Lemma 5.3.5. For C ∈ N3, L ∈ N3 and k ∈ [C − 2],

γP,k(WKP(C,L)) ≤ (C − k − 1)CL−2.

Proof. InWKP(C,L), the vertices in the Lth level induceWK(C,L)

which is hamiltonian [45, 51]. Also, by contracting each of the
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subgraphs GC,L
w into a single vertex, the graph induced by the

vertices in level L is isomorphic to WK(C,L−2). Hence, in level

L of WKP(C,L), we can arrange the subgraphs of the form GC,L
w

into a cycle such that there exists exactly one edge between the

consecutive subgraphs. We now construct a set S in such a way

that corresponding to each subgraph GC,L
w in level L, the set S

contains one vertex from the neighbour set of GC,L
w in level L−1

(which induces a clique) and C − k− 2 additional vertices from

GC,L
w .

Let w′, w′′ ∈ [C]L−2
0 . Let GC,L

w , GC,L
w′ and GC,L

w′′ be consecutive

subgraphs in the selected hamiltonian order. Let xx′ be the edge

between GC,L
w and GC,L

w′ , where x ∈ GC,L
w , x′ ∈ GC,L

w′ and let y′y′′

be the edge between GC,L
w′ and GC,L

w′′ , where y′ ∈ GC,L
w′ , y′′ ∈ GC,L

w′′ .

LetH andQ be the C-cliques in GC,L
w′ that contain the vertices x′

and y′, respectively. Denote x = (L, (wii)) and y′ = (L, (w′jj))

for some i and j, i 6= j. We now construct a set S as explained

above. We first choose the elements of S corresponding to the

subgraph GC,L
w′ . Let S contain the vertex (L − 1, (w′j)), which

is the neighbour of y′ in the (L − 1)th level. Then C − k − 2

additional vertices from GC,L
w′ are added to S in such a way

that no two vertices lying in the same C-clique in GC,L
w′ and no
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one lying in the C-cliques, H and Q (i.e. S ∩ V (H) = ∅ and

S∩V (Q) = ∅). Now, do this in parallel for all the corresponding

subgraphs. In particular, the vertex (L − 1, (wi)) in the (L −

1)th level corresponding to the vertex x is put into S, when

considering GC,L
w . Thus C − k vertices of H lie in P1

k(S): one

of these vertices is x′, the other C − k − 1 are those vertices of

H that have a neighbour in the C-cliques in GC,L
w′ that contain

C − k − 2 vertices of S and that have a neighbour in the C-

clique Q in GC,L
w′ . Also, the neighbour of H in the (L−1)th level

belongs to P0
k(S), since (L− 1, (wi)) ∈ S. Hence the remaining

k vertices of H lie in P2
k(S) and it is straightforward to check

that all the vertices of GC,L
w′ lie in P∞

k (S). In a similar way,

every vertex in the Lth level is monitored. We know that, for

any w, the neighbours of GC,L
w in the (L− 1)th level induce a C-

clique. By the construction of S, each C-clique in the (L− 1)th

level contains a vertex in S. Thus we get that all the vertices in

levels L− 1 and L− 2 belong to P0
k(S). Now, since each vertex

in level L − 2 has exactly one neighbour in its preceding level,

vertices in the (L − 3)rd level are monitored by propagation.

This propagation continues to the preceding levels and hence

the whole graph gets monitored. Thus we conclude that S is a
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k-PDS. Since each subgraph GC,L
w contains C − k− 1 vertices of

S, |S| ≤ (C − k − 1)CL−2.

An illustration of Lemma 5.3.5 is included in the last section

of this chapter.

Lemma 5.3.6. For C ∈ N3, L ∈ N3 and k ∈ [C − 2],

γP,k(WKP(C,L)) ≥ (C − k − 1)CL−2.

Proof. Let S be a minimum k-PDS ofWKP(C,L) and w ∈ [C]L−2
0 .

Denote V C,L−1
w = {(L− 1, (wi)) ∈ WKP(C,L) : i ∈ [C]0}.

Claim:
∣
∣S ∩ (V C,L

w ∪ V C,L−1
w )

∣
∣ ≥ C − k − 1.

Suppose on the contrary that
∣
∣S ∩ (V C,L

w ∪ V C,L−1
w )

∣
∣ ≤ C −

k−2. Consider the case when S∩V C,L−1
w = ∅. Then |S∩V C,L

w | ≤

C − k − 2. Assume first that
∣
∣S ∩ V C,L

w

∣
∣ = C − k − 2. Let Hi

be a C-clique in GC,L
w , i.e. Hi is induced by the set of vertices

{(L, (wij)) ∈ WKP(C,L) : j ∈ [C]0} for some i. Assume that S

has exactly one vertex in C-cliques Hi for i ∈ {i1, . . . , iC−k−2}.

Then S ∩ V (Hi′) = ∅ holds for other k + 2 coordinates i′. Let

Hℓ be an arbitrary such clique in GC,L
w that does not contain

any vertex of S. Let X = {(L, (wℓi1)), . . . , (L, (wℓiC−k−2))} ∪
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{(L, (wℓℓ))}. Then P1
k(S) ∩ V (Hℓ) ⊆ X. This holds for ev-

ery ℓ ∈ I = [C]0 \ {i1, . . . , iC−k−2}. Thus the set of vertices

{(L, (wℓℓ′)) : ℓ ∈ I, ℓ′ ∈ I, ℓ 6= ℓ′} has an empty intersection with

P1
k(S). Since every vertex in WKP(C,L) has either 0 or k + 1

neighbours in this set, no vertex from this set may get moni-

tored later on, a contradiction. Assume next that
∣
∣S ∩ V C,L

w

∣
∣ <

C−k−2 or that S intersects some C-clique Hi in more than one

vertex. Then we can analogously conclude that not all vertices

of Hℓ will be monitored. Thus the case that S ∩ V C,L−1
w = ∅ is

not possible.

Now suppose that S ∩ V C,L−1
w 6= ∅. Assume first that

∣
∣S ∩ (V C,L

w ∪ V C,L−1
w )

∣
∣ = C − k− 2 and that S contains a vertex

(L−1, (wi′)) ∈ V C,L−1
w and the remaining C−k−3 vertices from

the C-cliques Hi1 , . . . , HiC−k−3
, where i′ 6= iℓ, ℓ ∈ [C−k−3] such

that each of these C-cliques contains exactly one vertex in S.

Let Hℓ be an arbitrary clique in GC,L
w that does not contain any

vertex of S, where ℓ 6= i′. Let X = {(L, (wℓi′))}∪{(L, (wℓℓ))}∪

{(L, (wℓi1)), . . . , (L, (wℓiC−k−3))}. Then P1
k(S) ∩ V (Hℓ) ⊆ X.

This holds for every l ∈ I ′ = [C]0 \ {i′, i1, . . . , iC−k−3}. Thus

the set of vertices {(L, (wℓℓ′)) : ℓ ∈ I ′, ℓ′ ∈ I ′, ℓ 6= ℓ′} has an

empty intersection with P1
k(S). Since every vertex in WKP(C,L)
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has either 0 or k + 1 neighbours in this set, no vertex from

this set may get monitored later on, which is a contradiction.

Assume next that
∣
∣S ∩ (V C,L

w ∪ V C,L−1
w )

∣
∣ < C − k − 2 or that

S intersects some C-clique Hi in more than one vertex. Then

we can analogously conclude that not all vertices of Hℓ will be

monitored. Hence the claim
∣
∣S ∩ (V C,L

w ∪ V C,L−1
w )

∣
∣ ≥ C−k−1 is

proved. Therefore,
∣
∣S ∩

(
V (GC,L

w ) ∪NL−1(G
C,L
w )

)∣
∣ ≥ C − k − 1,

whereNL−1(G
C,L
w ) is the set of neighbours of GC,L

w in the (L−1)th

level. Hence corresponding to each GC,L
w in the Lth level, we get

at least C − k − 1 vertices in S.

Hence |S| ≥∑

w∈[C]L−2
0

(C − k − 1) = (C − k − 1)CL−2.

The following theorem gives the exact value of γP,k(WKP(C,L))

for C ∈ N3, L ∈ N3 and k ∈ [C − 2].

Theorem 5.3.7. For C ∈ N3, L ∈ N3 and k ∈ [C − 2],

γP,k(WKP(C,L)) = (C − k − 1)CL−2.

Proof. Follows from Lemmas 5.3.5 and 5.3.6.

Thus we have the following consolidated result:
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Let C,L ∈ N1. Then

γP,k(WKP(C,L)) =







1, C = 1 or L = 1 or k ∈ NC ;

C − k, L = 2, C ∈ N2, k ∈ [C − 1];

(C − k − 1)CL−2, C, L ∈ N3, k ∈ [C − 2].

For k = C − 1, C ∈ N2 and L ∈ N3, we prove the following

upper bound.

Theorem 5.3.8. For C ∈ N2 and L ∈ N3,

γP,C−1(WKP(C,L)) ≤
⌈
L+1
3

⌉
.

Proof. We consider three cases.

Case 1: L = 3m, m ∈ N1.

S = { ⋃m
i=1(3i− 1, (0)3i−1)} ∪ {(0, (1))}.

Here, |S| = m+ 1. Also,
⌈
L+1
3

⌉
=

⌈
(3m)+1

3

⌉

= m+ 1.

Case 2: L = 3m+ 1, m ∈ N1.

S = { ⋃m
i=1(3i, (0)

3i)} ∪ {(1, (0))}.

Here, |S| = m+ 1. Also,
⌈
L+1
3

⌉
=

⌈
(3m+1)+1

3

⌉

= m+ 1.
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Case 3: L = 3m+ 2, m ∈ N1.

S = { ⋃m+1
i=1 (3i− 2, (0)3i−2)}.

Here, |S| = m+ 1. Also,
⌈
L+1
3

⌉
=

⌈
(3m+2)+1

3

⌉

= m+ 1.

In each case, P∞
C−1(S) = V (WKP(C,L)) and thus S is a k-

PDS of order
⌈
L+1
3

⌉
. Hence γP,C−1(WKP(C,L)) ≤

⌈
L+1
3

⌉
.

We now determine the k-propagation radius of WKP(C,L) for

C ∈ N1 and L = 1, 2. If L = 1, the graph is a complete graph

and its k-propagation radius is 1. If C = 1, radP,k(WKP(1,L)) =

radP,k(PL+1) =
⌊
L+1
2

⌋
.

Lemma 5.3.9. Let C ∈ N3, k ∈ [C − 1] and S be a minimum

k-PDS of WKP(C,2). Then S ∩ V 1 6= ∅.

Proof. Suppose that S ∩ V 1 = ∅. Consider the case when

(0, (1)) /∈ S. Then by Theorem 5.3.4, |S ∩ V 2| = C − k.

Assume first that S has exactly one vertex in C-cliques, Qi,

for i ∈ {i1, . . . , iC−k}. Then S ∩ V (Qi′) = ∅ for k coordi-

nates i′. Let Qℓ be an arbitrary such subgraph. Let X =

{(2, (ℓi1)), . . . , (2, (ℓiC−k))}. Then P1
k(S) ∩ V (Qℓ) = X and

P1
k(S) ∩ V 1 = {(1, i1), . . . , (1, iC−k)}. This holds for any ℓ ∈
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J = [C]0 \ {i1, . . . , iC−k}. Therefore the set of vertices K =

{(2, (ij)) : i, j ∈ J} ∪ {(1, (i)) : i ∈ J} ∪ {(0, (1))} has an empty

intersection with P1
k(S). Since every vertex ofWKP(C,2)−K has

either 0 or k+1 neighbours inK, no vertex from this set may get

monitored later on, a contradiction. The case when (0, (1)) ∈ S

or that S intersects some Qi in more than one vertex can be

proved analogously.

We can now determine the k-propagation radius ofWKP(C,2)

using the previous lemma.

Theorem 5.3.10. Let C ∈ N2. Then

radP,k(WKP(C,2)) =







2, k ≥ C;

3, k ∈ [C − 1].

Proof. For k ≥ C, γP,k(WKP(C,2)) = 1, by Theorem 5.3.1 and

observe that γ(WKP(C,2)) > 1. Therefore, radP,k(WKP(C,2)) ≥

2 (by Proposition 1.4.13). And, for the set S = {(0, (1))}, we

get that P0
k(S) = S ∪ V 1 and P1

k(S) = V (WKP(C,2)). Now

let k ∈ [C − 1]. For C = 2, the result easily follows. Let

C ≥ 3. By Theorem 5.3.4, γP,k(WKP(C,2)) = C−k and therefore

by Lemma 5.3.9, |S ∩ V 2| ≤ C − k − 1 for every minimum
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k-PDS S. Then there exist at least k + 1 C-cliques, Qi, not

containing any vertex of S. Let Qi′ be an arbitrary clique such

that S ∩ V (Qi′) = ∅ and (1, (i′)) /∈ S. We prove that the vertex

(2, (i′i′)) is not in P1
k(S). Clearly, (2, (i

′i′)) /∈ P0
k(S). Moreover,

|V (Qi′) ∩ P0
k(S)| ≤ C − k − 1 and |V (Qi′) \ P0

k(S)| ≥ k +

1. Therefore any neighbour of (2, (i′i′)) in Qi′ is adjacent to

more than k unmonitored vertices preventing any propagation

to this vertex at this step. Also, since (1, (i′)) has more than

k unmonitored vertices as its neighbours, (2, (i′i′)) cannot be

monitored by (1, (i′)) at this step. Hence radP,k(WKP(C,2)) ≥ 3.

Also, by Lemma 5.3.2, radP,k(WKP(C,2)) ≤ 3.

Remark 5.3.1. For C,L ∈ N3, by observing the propaga-

tion behaviour described in the proof of Theorem 5.3.1 and

Lemma 5.3.5, one can obtain that radP,k(WKP(C,L)) ≤ L if

k ≥ C and radP,k(WKP(C,L)) ≤ max{5, L− 1} if k ∈ [C − 2].

Illustration of Lemma 5.3.5

We illustrate Lemma 5.3.5 for the case k = 1, C = 5 and L = 3.

Figure 5.8 depicts the graph WKP(5,3). We know the vertices in
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the third level of WKP(5,3)induce the subgraph WK(5,3) which

is hamiltonian. And, the cycle in the subgraph WK(5,3), as de-

fined in Lemma 5.3.5, are drawn as bold edges in the figure. The

consecutive subgraphs G5,3
w , G5,3

w′ and G5,3
w′′ in the hamiltonian cy-

cle of WK(5,3) and the vertices x, x′, y′ and y′′ as chosen in the

lemma are also marked in the figure. The vertices of the set S

as constructed in the lemma are coloured black in Figure 5.8.

In Figure 5.9, the vertices in the set P0
1 (S), are coloured black

and the remaining vertices white. The black vertices in Fig-

ure 5.10 and Figure 5.11 represent the vertices in the set P1
1 (S)

and P2
1 (S), respectively. The directed edges in the figures indi-

cate the direction in which the propagation occurs at each step.

We can observe that all vertices of WKP(5,3) get monitored by

step 2 and P2
1 (S) = V (WKP(5,3)). Therefore, S is a 1-PDS of

WKP(5,3) and |S| = 15 = (5− 1− 1) · 53−2.
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Figure 5.8: The graph WKP(5,3).

Figure 5.9: P0
1 (S).
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Figure 5.10: P1
1 (S).

Figure 5.11: P2
1 (S).
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Concluding Remarks

We list below some problems which we found are interesting.

• For each e ∈ E(G), characterize the graphs G for which

(i) γP,k(G− e) = γP,k(G).

(ii) γP,k(G− e) = γP,k(G)− 1.

(iii) γP,k(G/e) = γP,k(G).

(iv) γP,k(G/e) = γP,k(G)− 1.

(v) γP,k(G/e) = γP,k(G) + 1.

• Estimate some sharp upper and lower bounds for bP,k(G)

in terms of other graph parameters.

• Characterize the trees T for which bP,k(T ) = 1 or

bP,k(T ) = 2.
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• For some product ∗ ∈ {✷ ,×,⊠}, can we relate γP,k(G),

γP,ℓ(H) and some γP,f(k,ℓ)(G ∗H)?

• Explore more on the relationship between Z(G) and γP(G)

to get new results in power domination.

• Find radP,k of any product G ∗ H for which γP,k(G ∗ H)

is known. For example, the power domination number

of Pn ✷Pm is known [28]. So, it would be interesting to

determine radP,k(Pn ✷Pm).

As power domination is recently introduced, many interest-

ing questions can be posed on this topic. Characterizing graphs

G for which γP,k(G) = γP,k+1(G) for some k is particularly inter-

esting. One can attempt to study the power domination number

of line graphs and some other graph operators. Finding lower

bounds for γP,k seems to be a difficult task. By introducing the

k-propagation radius, one can bring some good lower bounds for

γP,k and thereby determine the k-power domination number of

some families of graphs.

We conclude the thesis with an optimistic note that some of

the problems mentioned above will be solved soon.



List of symbols

b(G) - the bondage number of G

bP,k(G) - the k-power bondage number of G

Bi
G(Z) - the set of vertices of G that are

coloured black by Z at step i

Cn - the cycle on n vertices

dG(v) or d(v) - the degree of v in G

dG(u, v) or d(u, v) - the distance between u and v in G

Fn - the fan on n vertices

E(G) - the edge set of G

G ∼= H - G is isomorphic to H

G✷H - Cartesian product of G and H

G×H - Direct product of G and H

G⊠H - Strong product of G and H
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158 List of symbols

G ◦H - Lexicographic product of G and H

G ∪H - Union of G and H

G ∨H - Join of G and H

G− v - the subgraph of G obtained by deleting

the vertex v

G− e - the subgraph of G obtained by deleting

the edge e

G− A - the subgraph of G obtained by the

deletion of the vertices in A

G− B - the subgraph of G obtained by the

deletion of the edges in B

G/e - the graph obtained from G

by contracting the edge e

Hn
p - Hanoi graph for base p and exponent n

Kn - the complete graph on n vertices

K1,n - the star of size n

Km,n - the complete bipartite graph where m and

n are the cardinalities of the partitions

M(S) - the set monitored by S

NG(v) or N(v) - the open neighbourhood of v in G

NG[v] or N [v] - the closed neighbourhood of v in G
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NG(S) or N(S) - the open neighbourhood

of a subset S of V (G)

NG[S] or N [S] - the closed neighbourhood

of a subset S of V (G)

P i
G,k(S) - the set monitored by S at step i

in k-power domination

Pn - the path on n vertices

r(G) - the radius of G

Sn
p - Sierpiński graph on pn vertices

V (G) - the vertex set of G

Wn - the wheel on n vertices

W∆,2ν - Knödel graph of order 2ν

and degree ∆

WK(C,L) - WK-Recursive mesh on CL vertices

WKP(C,L) - WK-Pyramid network on

CL+1−1
C−1

vertices

Z(G) - the zero forcing number of G

⌈x⌉ - Smallest integer ≥ x

⌊x⌋ - Greatest integer ≤ x

< X > - the subgraph induced by

a subset X of V (G)



160 List of symbols

λ(G) - the edge connectivity of G

∆(G) - the maximum degree of G

δ(G) - the minimum degree of G

γ(G) - the domination number of G

γt(G) - the total domination number of G

γP(G) - the power domination number of G

γP,k(G) - the k-power domination number of G
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strong product, 16, 120
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