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Chapter 1

Introduction

1.1 Background of the problem

There has been a steady increase in the research relating to the study of

graphs as they are the mathematical models of various real-world complex

networks like the world-wide web, social networks, email networks, biologi-

cal networks etc. One of the most important aspects of such networks that

researchers have been trying to study is centrality, which measures the de-

gree of influence or importance of an individual with in the network under

consideration

Centrality is in fact one of the fundamental notions in graph theory

which has established its close connection with various other areas like So-

cial networks, Flow networks, Facility location problems etc. Even though

a plethora of centrality measures have been introduced from time to time,

according to the changing demands, the term is not well defined and we

can only give some common qualities that a centrality measure is expected

to have. Nodes with high centrality scores are often more likely to be very

powerful, indispensable, influential, easy propagators of information, sig-

nificant in maintaining the cohesion of the group and are easily susceptible

to anything that disseminate in the network.

Nodes with low centrality are considered to be peripheral. They have

very little significance in any kind of group activity and thus contributes

very less in maintaining the cohesion of the group. While the above said

are their disadvantages they are not without advantages. They are compar-

atively insulated from the spread of anything undesirable say, contagious

1



2 Chapter 1. Introduction

diseases in the case of human networks, viruses in the case of computer

networks etc and are usually subjected to lesser traffic flow.

Sabidussi [108] gave a set of conditions that a measure should possess

in order to qualify to become a centrality measure. One of these was that

adding an edge to the node should increase its centrality and another was

that adding an edge anywhere in the network should not decrease the cen-

trality of any node. These are not generally acceptable as many of the

centrality measures do not possess these qualities. That is, Sabidussi’s

condition are insufficient to define centrality. Freeman in [43] categorised

the class of all centrality measures in to three-degree, betweenness and

closeness. Degree centrality of a node is the number of nodes to which a

particular node is directly attached and it gives the extend of exposure of

a node to attract anything that is spreading in the network. The closeness

centrality gives an account of how close a node is to all the other nodes in

the network and it measures the cost involved in spreading an information

from a node to other nodes of the network. Betweenness centrality gives

the frequency with which a particular node appears in the shortest path

between other pairs of nodes. It reflects the capability of a node in control-

ling the flow of information between other pair of nodes. For more on the

various centrality measures, see [20].

Facility location problems, where the purpose is to identify the locations

for setting up a facility like hospital, fire station, library, ware house, depot

etc for a given a set of customers, from the time of its inception, has been

heavily relying on the concept of centrality. The locations chosen should

be optimal and the criteria for optimality depends on the nature of the

problem, but it is accepted that it depends on the distances between the

various locations. When we are looking to place an emergency facility

like fire station or hospital, the location is chosen in such a way that the

maximum response time between the site of facility and the emergency

is kept to a minimum. This is called the effectiveness oriented model.
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When the facility is something like a shopping mall, where the objective is

to minimise the total transportation cost from the facility point to all its

customers, the location is chosen in such a way that sum of the distances to

be covered is a minimum. This is usually referred to as efficiency oriented

model. There is a third approach known as equity oriented model where

the location for a facility is to be chosen such that it is more or less equally

fair to all the customers. Issue of equity is relevant in setting public sector

facilities where the distribution of travel distances among the recipients

of the service is also of importance. That is, the inverse of measures of

dispersion like range, mean deviation etc are used as the centrality measure

in such models. In practice, we calculate the inequity measures and the

location having the least inequity measures are considered to be the central

points.

1.2 Preliminaries

This section introduces various graph theoretic terms that are being used in

the coming chapters. The description of certain terms that are frequently

used through out this thesis are given as definitions. A graph G consists

of a finite nonempty set V = V (G) of vertices to together with a set,

E = E(G), of unordered pairs of distinct vertices. A pair e = {u, v} of

vertices u and v of G is called an edge of G having end vertices u and v.

We write e = uv and say that u and v are adjacent vertices; vertex u and

edge e are incident with each other, as are e and v. If two edges e1 and e2

are incident with a common vertex then they are adjacent edges. A graph

H is a subgraph of G, if V (H) ⊆ V (G) and E(H) ⊆ E(G). If G1 is a

subgraph of G then G is a supergraph of G. For any set S of vertices of G,

the induced subgraph 〈S〉 is the maximal subgraph of G with vertex set S.

If v is a vertex of a graph G then G− v is the subgraph of G consisting of

all vertices of G except v and all edges not incident with v. The removal
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of a set of vertices S, which is the removal of single vertices in succession,

results in G−S. If u and v are nonadjacent vertices of G then G+uv is the

graph obtained by addition of the edge uv to G. A walk of a graph is an

alternating sequence of vertices and edges v0e1v1e2 . . . vn−1envn beginning

and ending with vertices, in which each edge is incident with two vertices

immediately preceding and succeeding it. The integer n is the length of the

walk. This walk is referred to as a v0-vn walk. Here v0 and vn are called the

origin and terminus respectively and v1, . . . , vn−1 its internal vertices. If

the origin and terminus are identical the walk is called a closed walk. When

all the edges of a walk are distinct then it is called a trail and further if

all vertices are also distinct then it is called a path. A path on n vertices

shall be denoted by Pn. A closed trail whose origin and internal vertices

are all distinct is called a cycle. A cycle of length n, denoted by Cn, is

called an n-cycle; an n-cycle is odd or even according as n is odd or even.

A graph G is connected if there exists a path between any pair of vertices

of G. An acyclic graph is one that contains no cycle. A tree is a connected

acyclic graph. A graph in which each pair of distinct vertices are adjacent

is called a complete graph and is denoted by Kn if it contain n vertices. A

subset S of V is called a clique if every pair of vertices of S are adjacent.

A graph is bipartite if its vertex set can be partitioned into two subsets

V1 and V2 such that each edge has one end in V1 and the other end in V2.

(V1, V2) is called a bipartition of G. A complete bipartite graph, Km,n, has

a bipartition (V1, V2) where |V1| = m, |V2| = n and each vertex of V1 is

adjacent to every vertex of V2. The complement Gc of a graph G is the

graph with vertex set V , two vertices being adjacent in Gc if and only if

they are not adjacent in G.

Definition 1. For two vertices u and v of G, distance between u and v

denoted by dG(u, v) , is the number of edges in a shortest u-v path.

Definition 2. The eccentricity eG(u) of a vertex u is max
v∈V (G)

dG(u, v).
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When G is obvious, we write d(u, v) and e(u) for dG(u, v) and eG(u)

respectively.

Definition 3. A vertex v is an eccentric vertex of u if e(u) = d(u, v).

A vertex v is an eccentric vertex of G if there exists a vertex u such that

e(u) = d(u, v).

The set of all vertices which are at a distance i from the vertex u is

denoted by Ni(u). The set of all vertices adjacent to x in a graph G,

denoted by N(x), is the neighbourhood of the vertex x. For an S ⊆ V ,

neighborhood of S denoted by N(S) =
⋃

u∈S
N(u).

Definition 4. The diameter of the graph G, diam(G), is max
u∈V (G)

e(u). The

radius of G, denoted by rad(G), is min
u∈V (G)

e(u). Two vertices u and v are

said to be diametrical if d(u, v) = diam(G).

Definition 5. The interval I(u, v) between vertices u and v of G consists

of all vertices which lie in some shortest path between u and v. The number

of intervals of a graph is denoted by in(G).

Definition 6. A vertex u of a graph G is called a universal vertex if u is

adjacent to all other vertices of G.

Definition 7. A vertex v of a graph G is called a cut-vertex if G − v is

no longer connected. Any maximal induced subgraph of G which does not

contain a cut-vertex is called a block of G.

Definition 8. [15] A finite sequence of vertices π = (v1, . . . , vk) ∈ V k

is called a profile. For the profile π = (v1, . . . vk) and x ∈ V (G), the

remoteness DG(x, π) is
∑

16i6n

d(x, vi). When the underlying graph is ob-

vious we use D(x, π) instead of DG(x, π) and further if the vertex is also

obvious we use D(π) instead of D(x, π).

The Hypercube Qn is the graph with vertex set {0, 1}n, two vertices
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being adjacent if they differ exactly in one co-ordinate. A subcube of the

hypercube Qn is an induced subgraph of Qn, isomorphic to Qm for some

m 6 n.

The graph on n vertices formed by joining all the vertices of a (n−1)-cycle

to a vertex is a wheel graph and is denoted by Wn.

A graph G is a block graph if every block of G is complete. A graph G is

chordal if every cycle of length greater than three has a chord; namely an

edge connecting two non consecutive vertices of the cycle. Trees, k-trees,

interval graphs, block graphs are all examples of chordal graphs.

Definition 9. [71] Let G be a graph with vertex set {v1, . . . , vn} and let

{B1, . . . , Br} be the blocks of G. Then the Skeleton SG of G is a graph

with V (SG) = {v1, . . . , vn, B1, . . . , Br} and E(SG) = {(vi, Bj)|vi ∈ V (Bj)}.

Figure 1.1: A block graph and its skeleton graph

Definition 10. A graph is a unique eccentric vertex graph(written UEV

graph) if every vertex has a unique eccentric vertex. The unique eccentric

vertex of the vertex u is denoted by ū.

Definition 11. A graph G is self centered if all the vertices of G have the

same eccentricity.
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Definition 12. [54] A graph G is called even if for each vertex u of G

there is a unique eccentric vertex ū, such that d(u, ū) = diam(G). In other

words even graphs are self centered, UEV graphs.

Definition 13. [54] An even graph G is called balanced if deg(u) = deg(ū)

for each u ∈ V , harmonic if ūv̄ ∈ E whenever uv ∈ E and symmetric if

d(u, v) + d(u, v̄) = diam(G) for all u, v ∈ V .

Gobel and Veldman in [54] proved that every harmonic even graph is

balanced and every symmetric even graph is harmonic. They also gave

examples of harmonic graphs that are not symmetric and balanced graphs

that are not harmonic.

(a) Harmonic but not symmetric even
graph

(b) Balanced but not harmonic
even graph

Figure 1.2

Definition 14. The Cartesian product G✷H of two graphs G and H has

vertex set, V (G) × V (H), two vertices (u, v) and (x, y) being adjacent if

either u = x and vy ∈ E(H) or ux ∈ E(G) and v = y. For more on graph

products see [57].

Given integers i and j, we introduce the following notations

i⊕n j = i+ j if i+ j 6 n.

= i+ j − n if i+ j > n
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i⊖n j = i− j if i− j > 1

= i− j + n if i− j 6 0

1.3 Synopsis

In this thesis graph theoretic studies on various centrality measures are

being conducted. The rest of the thesis is organised as follows.

Chapter 2 is devoted to the literature survey on various centrality mea-

sures.

In Chapter 3 we identify the S-center of different classes of graphs such

as trees, complete graphs, block graphs, wheel graphs, complete bipartite

graphs, odd cycles and symmetric even graphs. We give some results re-

garding centers of dominating boundary sets of symmetric even graphs.

Center Number of a graph is introduced as the number of distinct center

sets of a graph. Center number of the above classes of graphs are found

out. We introduce a new class of graphs called Center Critical Graphs and

characterise them.

Eccentricity measures how far is a vertex from the furthest in the graph. In

some cases it is desirable to reduce the eccentricity of a vertex by introduc-

ing additional edges to the graph. One special case of this problem is when

addition of only a single edge is permissible. In chapter 4 we introduce

the concepts Pacifying Edges and Shrinking Edges in a graph and the same

are identified for paths, odd cycles an symmetric even graphs.

Chapter 5 discusses the median sets of various classes of graphs and enu-

merate them.

Chapter 6 focuses on equity based centrality, introduces the concept of

Partiality, Fair Center and Fair Sets of graphs and fair sets of some specific

classes of graphs are identified.

Chapter 7 is devoted to the study of Antimedian graphs and a generalisa-

tion of it called weakly antimedian graphs. Antimedian block graphs and
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weakly antimedian trees are characterised and new classes of antimedian

and weakly antimedian graphs are introduced.

Finally, chapter 8 concludes the thesis by summarizing the results of the

previous chapters and gives some problems for further study.





Chapter 2

Review of literature

In this chapter we make a detailed survey on the various graph theoretic

centrality measures like center, median, antimedian etc. The survey is

conducted on a structural rather than algorithmic point of view.

2.1 Center

The center of a graph consists of those vertices with minimum eccentricity,

where eccentricity of a vertex is the maximum distance of the vertex among

the set of all vertices. The problem of finding the center of a graph has

been studied by many authors since the nineteenth century beginning with

the classical result due to Jordan [70] that the center of a tree consists of

a single vertex or a pair of adjacent vertices. The graph center problem is

interesting from both a structural and an algorithmic point of view. Harary

and Norman in [59] proved that the center of a connected graph lies with

in a block of the graph. Kopylov and Timofeev in [80] stated without

proof that given a graph G there exists a graph H such that center of H,

C(H) ∼= G.Buckley et al. in [24] demonstrated that for n > 2 and a graph

G there exists a graph H such that vertex and edge connectivity of H

equal to n, chromatic number of G, χ(G) = χ(H) + n and C(G) ∼= C(H).

A planar graph which can be drawn such that all vertices are on the outer

face is called an outerplanar graph. A graph is maximal outerplanar if it is

outerplanar and adding an edge makes it non-outerplanar. A.Proskurowski

[103, 104] showed that only a finite number of graphs can be centers of

maximal outerplanar graphs and generalized this result for the class of 2-

trees which contains maximal outerplanar graphs. A graph is chordal if

every cycle of length greater than 3 contains a chord. Laskar and Shier in

11
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[83] proved that for a connected chordal graph the center always induces

a connected subgraph. Soltan and Chepoi in [112] proved that the center

of a connected chordal graph has diameter at most 3. Truszczyski [116]

proved that the center C(G) of a unicycle graph containing the cycle C is

either K1 or K2 or C(G) ⊆ C.Chepoi in [29] characterised the centers of

chordal graphs. It was shown by Nieminen in [90] that the center vertices

of a chordal graph constitutes a convex vertex set. Chang [28] showed that

the center of a connected chordal graph is distance invariant, biconnected

and of diameter no more than 5. He proved that for any connected chordal

graph with diam(G) = 2 rad(G), center of G, C(G), is a clique and for any

connected chordal graph with diam(G) = 2 rad(G) − 1, diam(C(G)) 6 3.

He also gave a a necessary and sufficient condition for a biconnected chordal

graph of diameter 2 and radius 1 to be the center of some chordal graph

and further conjectured that diam(C(G)) 6 2 for any connected chordal

graph with diam(G) = 2 rad(G) − 2. Vijayakumar et al. in [98] disproved

this conjecture. Chepoi in [30] gave a linear time algorithm for finding the

center of a chordal graph. If G is a nontrivial graph then its line graph

L(G) is the graph whose nodes are the edges of G and two nodes in L(G)

are adjacent if and only if the corresponding edges are adjacent in G. It

was proved by Knor et al. [79] that given a graph G there exists a graph

H such that G is the center of H and the Line graph of G is the center

of Line graph of H. The i-iterated line graph of G, Li(G), is given by

L0(G) = G and Li(G) = L(Li−1(G) for i > 1. For a graph G such that

L2(G) is not empty, Knor et al. [78] constructed a supergraph H such

that C(Li(H)) = Li(G) for all i, 0 6 i 6 2. Buckley et al. [23] defined a

graph G as an L-graph if all its diametrical paths contain a central vertex.

They proved that C(G✷H) = C(G)×C(H), where G✷H is the Cartesian

product of the graphs G and H. They further proved that if either C(G)

is a bridge or C(G) = {x} where x does not lie in a cycle then G is an

L-graph. An L-graph is an L1-graph if all its diametrical paths contain
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all its central vertices, it is called an L3-graph if G is an L-graph and no

diametrical path of G contains all central vertices of G and it is called an

L2 graph if it is neither L1 nor L3. Gliviak and Kys [52] gave upper and

lower bounds for the number of elements in the center of all L-graphs, that

is, L1-graphs, L2-graphs and L3-graphs. Gliviak et al. [51] showed that the

central subgraph of any two-radially maximal graph contains an edge and

that those of them that have a star as the central subgraph are sequential

joins of complete graphs. If G is a simply connected set of lattice points

with graph structure defined by 4-neighbour adjacency, Khuller et al. in

[73] showed that the center of G is either a 2 × 2 square block, a diagonal

staircase, or a (dotted) diagonal line with no gaps. Pramanik [102] proved

that for every non-trivial connected graph H there exists a graph G such

that H is the center of G and the inserted graph of H is the center of the

inserted graph of G.

2.1.1 Self-centered graphs

Buckley in [21] determined the extremal sizes of a connected self-centered

graph having p vertices and radius r. Akiyama and Ando [1] character-

ized graphs G for which both G and Gc are self-centered with diameter

2. Akiyama et al. in [2] characterised self-centered graphs with p vertices,

radius 2 and minimum size. Laskar and Shier [83] showed that a connected

self-centered chordal graph has radius6 3. Nandakumar and Parthasarathy

[97] proved that a unique eccentric vertex graph is self-centered if and only

if each vertex is eccentric. Das and Rao in [39] sowed that there are no self-

centered chordal graphs with radius =3 and characterised all self-centered

chordal graphs. Buckley in [22] showed that a self complementary graph

with diameter d is self-centered if and only if d = 2. Klavzar et al.[75]

introduced Almost Self-Centered graphs as the graphs in which all but two

are central vertices. The block structure of these graphs is described and

constructions for generating such graphs are proposed. They also showed
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that any graph can be embedded into an Almost self-centered graph graph

of prescribed radius. Balakrishnan et al. in [7] characterised almost self

centered median and chordal graphs.

2.1.2 Some generalizations of center

Slater in [109] generalized the concept of center of a graph to center of

an arbitrary subset, say S, of the vertex set of the graph and called it S-

center. He proved that the S-center of a tree consists of a single vertex or

a pair of adjacent vertices. Chang in [120] studied the S-center of distance

hereditary graphs and proved that the S-center of a distance hereditary

graph is either a connected graph of diameter 3 or a cograph. He also

proved that for a bipartite distance hereditary graph the S-center is either

a connected graph of diameter 6 3 or an independent set. The Steiner

distance of a set S of vertices in a connected graph G is the minimum

size among all connected subgraphs of G containing S. For n > 2, the

n-eccentricity en(v) of a vertex v of a graph G is the maximum Steiner

distance among all sets of n vertices of G that contains v. The n-center of

G,Cn(G), is the subgraph induced by those vertices of G having minimum

n-eccentricity. Oellerman [95] showed that every graph is the n-center of

some graph. It was also shown that the n-center of a tree is a tree and

characterized those trees that are n-centers of trees. In [94] he described

an algorithm for finding Cn(T ) of a tree. Another generalisation of the

center problem, called the p-center problem, was studied algorithmically

by many authors [31, 42, 55, 58, 72, 86, 101, 121].

2.2 Median

The Median M(G) of a graph G consists of those vertices that minimises

the sum of the distances to all vertices of the graph. The first known

result is by Jordan [70] who proved that the median of a tree consists of
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a single vertex or a pair of adjacent vertices. If v is a vertex of the tree

T , the maximal number of vertices of a branch of T from v is called the

weight at v. The vertex of T with the minimal weight is called the Centroid

of T . Zelinka [122] proved that the median of a tree coincides with its

centroid. Slater [110] showed that for every graph H there exists a graph

G whose median is H, and that the median of a 2 − tree is isomorphic

to K1,K2 or K3. Hendry [65] proved that for every two graphs G and

H, there exists a connected graph F such that C(F ) ∼= G and M(F ) ∼=

H, where C(F ) and M(F ) are disjoint. Holbert [66] went a step further

proving that for every two graphs G and H and positive integer k, there

exists a connected graph F such that C(F ) ∼= G and M(F ) ∼= H and

d(C(H),M(H)) = k. That is, even though both center and median are

”centers” of a graph they can be arbitrarily far. On the other hand, they

can also be arbitrarily close. Novotny and Tian [93] proved that for any

three graphs G, H and K, where K is isomorphic to an induced subgraph

of both G and H, there exists a connected graph F such that C(F ) ∼= G,

M(F ) ∼= H and C(H) ∩M(H) ∼= K. The periphery P (G) is the subgraph

induced by those vertices of G having maximum eccentricity. Winters in

[118] proved that for any graph G, there exists a connected graph H such

that M(H) ∼= F and dH(u, v) 6 2 for all u, v ∈ V (H). Given graphs G and

H and an integer m, he gave a necessary and sufficient condition for G and

H to be the median and periphery, respectively, of some connected graph

such that the distance between the median and periphery is m. Necessary

and sufficient conditions were also given for two graphs to be the median and

periphery and to intersect in any common induced subgraph. Dankelmann

and Sabidussi in [38] showed that given any connected graph H , there

exists a connected graph G whose median is an isometric subgraph which

is isomorphic to H. Soltan[111] showed that the median of a ptolemaic

graph is connected and Niemenen in [90] established that the median of a

ptolemaic graph is complete.
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2.2.1 p-median

The concept of median has been generalised to p-median, where p is any

positive integer. This is a set of p vertices that minimises the sum of the

distances of each vertex to its nearest vertex in the p-vertex set. The p-

median problem has been mostly approached algorithmically and Hakimi

in [56] gave a method for solving the p-median problem and since then the

problem has been approached algorithmically by many authors [3, 4, 25,

45, 55, 61, 67, 68, 72, 81, 85, 99, 106, 114].

2.2.2 Median of a set

A generalization of the median problem is to find the median of a subset

of the vertex set. In this case a median is a vertex that minimizes the sum

of the distances to all the elements of the subset. If S is any subset of V

then the median of S was called as S-centroid by Slater [109]. He proved

that S-centroid of a tree is a path and that if S contains odd number of

elements then S-centroid contains a unique vertex.

2.2.3 Median of a profile

Another generalization was to find the median set of a profile, a sequence

of vertices. In this case a median is vertex that minimizes the sum of

the distances to all the elements of the profile, taking into consideration

repetition of vertices in the profile, see [55]. The set of all medians of a

profile is called the median set of the profile. If u and v are vertices of a

graph G, then I(u, v) consists of vertices of the shortest paths between u

and v. A graph G is called a Median graph if for every triple of vertices

{u, v, w} of G, I(u, v)∩ I(v,w)∩ I(u,w) contains a unique vertex. Bandelt

and Barthelemy [13] proved that the median set of any profile of odd length

in a median graph consists of a unique vertex and that the median set

of any profile of even length is an interval. Mulder in [89] designed the
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Majority Strategy for finding the median of any profile in a tree. Bandelt

and Chepoi [14] conducted further studies on the median sets of profiles of

a graph and they characterised the class of graphs with connected median

sets. Medians of profiles with bounded diameter has been studied in [9] and

it has been proved that medians of such a profile can be obtained locally,

either in a properly bounded isometric subgraph or in an induced subgraph

that contains the profile. A subgraph H of a (connected) graph G is an

isometric subgraph if dH(u, v) = dG(u, v) holds for any vertices u, v ∈ H .

Let G be an isometric subgraph of some hypercube (such graphs are also

called partial cubes). The smallest integer d such that G is an isometric

subgraph ofQd is called the isometric dimension ofG and denoted idim(G).

Balakrishnan et al. in [6] designed an algorithm that computes the median

of a profile in a median graph in O(n idim(G)) time. Balakrishnan et al.

in [11] considered another method called plurality strategy for finding the

median set of a profile of a graph. They have showed that plurality, Hill

climbing and steepest Ascent Hill Climbing [107] produces the median set of

a profile if and only if the induced subgraph of the median set is connected.

The concept of profiles has been generalised to signed profiles [12] where

each vertex is assigned a positive or negative sign. This has significance in

location theory where a particular facility may be preferred by some of the

clients and may be rejected by some others. It is proved that hypercubes

are the only graphs in which majority Strategy, starting from any initial

vertex, produces the median set for any signed profile on the graph.

2.3 Antimedian and Anticenters

The main objectives in a facility location theory are usually the minimisa-

tion of the sum of the distances, minimisation of the maximum distance etc

and they have been discussed earlier. But when we have to place a facility

that is obnoxious or undesirable such as nuclear reactors or garbage dump
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sites we go for maximisation instead of minimisation. This has recently

gained much importance due to rapid industrialisation and urbanisation.

The graph induced by the set of vertices that maximises the sum of the dis-

tance to all other vertices of the graph is called the antimedian of a graph

and the graph induced by the set of vertices with maximum eccentricity is

called its anticenter.

Church and Garfinkel [32] studied the one-facility maximum median (max-

ian) problem, providing an O(mnlogn) algorithm where m is the number

of edges and n is the number of vertices. Minieka[88] proposed methods

for finding the anticenter and antimedian of a graph. Antimedian and

anticenter problems were later studied algorithmically by many authors

[16, 33, 34, 35, 36, 37, 113, 115].

Bielak and Syslo [19] proved that every graph is the antimedian of some

graph. Vijayakumar and S.B.Rao [105] showed that if G1 and G2 are any

two cographs, then there is a cograph that is both Eulerian and Hamil-

tonian having G1 as its median and G2 as its antimedian. Balakrishnan

et al. [5] proved that for an arbitrary graph G and S ⊆ V (G) it can be

decided in polynomial time whether S is the antimedian set of some profile.

They further proved that if G and H are connected graphs with connected

antimedian sets then G✷H has connected antimedian sets. Balakrishnan

et al. in [8] showed that given graphs G and J and an integer r > 2, there

exists a graph H such that G and J are the median and the antimedian of

H and dH(G, J) = r.

2.4 Distance related extremal graphs

Extremal graph theory focuses on the study of graphs that are extremal

with respect to any particular property under consideration. Graphs hav-

ing extremal properties with respect to distance based graph parameters

like radius and diameter have been extensively studied.
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Graphs having extremal properties with respect to distance parameters like

radius and diameter have been studied extensively. Ore in [96] defined a

graph to be diameter maximal if the addition of any edge to the graph

decreases the diameter of the graph and gave a characterisation of such

graphs. Caccetta and Smyth [27] gave a general form of diameter maximal

graphs with edge connectivity k, diameter d, number of vertices n and hav-

ing the maximum number of edges.

A graph G is diameter minimal if the deletion of any edge increases the

diameter of G. This class of graphs were studied by many authors[26, 41,

47, 53, 62, 63, 64, 100, 119] .

A graph G is called radius minimal if radius of G− e is greater than radius

of G for every edge of G. Gliviak[46] proved that a graph is radius minimal

if and only if it is a tree.

Any graph G such that radius of G + e 6 radius of G for every e ∈ Gc is

called a radially maximal graph . Vizing in [117] found an upper bound

on the number of edges in radially maximal graphs and a lower bound

was found by Nishanov [92]. Nishanov in [91] studied some properties of

radially maximal graphs with radius r > 3 and diameter 2r − 2. Harary

and Thomassen [60] characterized radially maximal graphs with radius two

and showed that there exists infinitely many radially maximal graphs with

radius three. Gliviak [50] proved that any graph can be an induced sub-

graph of a regular radially maximal graph with a prescribed radius r > 3.

A graph G is two-radially maximal if G is noncomplete and for each pair

(u, v) of its nodes such that d(u, v) = 2 we have r(G+uv) < r(G). Gliviak

et al. in [51] proved that the central subgraph of any two-radially maximal

graph contains an edge and showed that those of them that have a star

as the central subgraph are sequential joins of complete graphs. Gliviak

[48] gave an overview of results for radially maximal, minimal, critical and

stable graphs. Knor [76] characterized unicyclic, non-selfcentric, radially-

maximal graphs on the minimum number of vertices. He further proved
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that the number of such graphs is 1
48r

3 +O(r2). In [49] it was conjectured

that if G is a non-selfcentric radially-maximal graph with radius r > 3

on the minimum number of vertices then G is planar, has exactly 3r − 1

vertices, the maximum degree of G is 3 and the minimum degree of G is 1.

Knor [77] with the help of exhaustive computer search proved this result

for r = 4 and 5. Directed radially maximal graphs were studied in [44] and

[49].



Chapter 3

Center Sets and Center

Number

3.1 Introduction

Slater in [109] generalized the concept of center of a graph to center of an

arbitrary subset of the vertex set of the graph. For any subset S of V in the

graph G = (V,E), the S-eccentricity, eG,S(v) (in short eS(v)) of a vertex

v in G is max
x∈S

(d(v, x)). The S-center of G is CS(G) = {v ∈ V |eS(v) 6

eS(x)∀x ∈ V }. For a graph G, an A ⊆ V is defined to be a Center set if

there exists an S ⊆ V such that CS(G) = A. In this chapter we identify the

center sets of some familiar classes of graphs such as block graphs, complete

bipartite graphs, wheel graphs, odd cycles, symmetric even graphs etc and

enumerate the number of distinct center sets of these classes of graphs. But

before that we introduce a class of graphs called center critical graphs and

characterise them.

It shall be interesting to find the a vertex set of minimum cardinality whose

center is the same as the center of the whole graph. Searching on this line

we stumbled up on a class of graphs where the center of none of the proper

subset of the vertex set is the same as the center of the graph and they are

defined as center critical graphs.

3.2 Center Critical graphs

Definition 3.2.1. A graph G is said to be center critical if for all proper

subsets S of V , we have CS(G) 6= C(G).

21
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(a) A center critical graph

b

b

b

b b

v1

v2 v3

v4

v5

(b) C5, not center critical

C{v1,v2,v3,v4}(G) = {v1, v2, v3, v4, v5}
= C(G)

Now, we shall give characterisation of center critical graphs. For that

we require the following theorem from [97]

Theorem 3.2.2. A UEV graph G is self-centered if and only if each

vertex of G is an eccentric vertex.

Theorem 3.2.3. A graph G is center critical if and only if G is both

self-centered and a UEV graph.

Proof. Let G be a center critical graph having vertex set {v1, . . . , vn}. First

we shall prove that for every vi ∈ V there exists a vj ∈ V such that vi is

the unique eccentric vertex of vj . Assume the contrary. Let there exist a

vertex, say vk, such that vk is not an eccentric vertex of any vertex. Let

S = V \ {vk}. Then for every vertex vi of G, eS(vi) = e(vi) since the

eccentric vertices of vi are in S. Since the eccentricities of none of the

vertices change, CS(G) = C(G) contradicting our assumption that G is

center critical. Hence every vertex of G is an eccentric vertex.

Let vk be such that when ever vk is an eccentric vertex of vℓ then there

exists a vertex v′k such that v′k is also an eccentric vertex of vℓ. Again take

S = V \ {vk}. Since every vertex vℓ that has vk as an eccentric vertex
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has another eccentric vertex, we have eS(vk) = e(vk). As above we get

that CS(G) = C(G), a contradiction. That is, we have proved that each

vertex vi, 1 6 i 6 n is a unique eccentric vertex of a vertex, say v′i, where

v′i = vj for some j, 1 6 j 6 n. Since {v′1, . . . , v
′
n} = V and each v′i has

a unique eccentric vertex each vertex of G has a unique eccentric vertex.

Now, it is also obvious that every vertex is an eccentric vertex. Therefore

by Theorem 3.2.2, G is self-centered. Conversely assume that G is both

self-centered and unique eccentric vertex graph, and let rad(G) = r. Then,

again by Theorem 3.2.2, every vertex of G is an eccentric vertex. Therefore

for every x ∈ V there exists a y ∈ V such that x = ȳ. Let S ⊆ V and

x ∈ V \ S. Then e(y) = r and since ȳ = x ∈ V \ S, eS(y) < r. Let

z ∈ S. Then eS(z̄) = r. Hence CS(G) 6= V which shows that G is center

critical.

Remark 3.2.1. C5 is a graph that is self centered but not center critical,

as it is not a UEV graph. In fact all odd cycles are self centered but not

UEV and hence are not center critical.

3.3 Center Sets of Some Graph Classes

Prior to identifying the center sets of various classes of graphs we recall the

following lemma by Harary et al. in [59].

Lemma 3.3.1 (Lemma 1 of [59]). The center of a connected graph G is

contained in a block of G.

We generalize this lemma to any S-center of a graph and the proof is

almost similar to the proof given there.

Theorem 3.3.1. Any S-center of a connected graph G is contained in a

block of G.
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Proof. For an S ⊆ V , assume that CS(G) lies in more than one block of

G. Then G contains a vertex v such that G − v contains at least two

components, say, G1 and G2, each of which contains a vertex belonging to

CS(G). Let u be the vertex of S such that d(u, v) = eS(v) and P be the

shortest u− v path. Then P does not intersect at least one of G1 and G2,

say G1. Let w be the vertex of G1 such that w ∈ CS(G). Then v belong to

the shortest w − u path and hence

eS(w) > d(w, u) = d(w, v) + d(u, v) > 1 + eS(v)

contradicting the fact that w ∈ CS(G). Thus for any S ⊆ V , CS(G) lies in

a single block of G.

3.3.1 Center sets of Block graphs

Proposition 3.3.2. Let G be a block graph with vertex set V and blocks

B1, . . . , Br. For 1 6 i 6 r, let V (Bi) = Vi. The center sets of G are

singleton sets {v}, v ∈ V (G) and Vi for 1 6 i 6 r.

Proof. If S = {v}, then eS(v) = 0 6 eS(x) for all x ∈ V . Therefore

C{v}(G) = {v}. Hence {v}, where v ∈ V are all center sets.

Let S be a proper subset of Vi, 1 6 i 6 r containing at least two

elements. Hence eS(x) = 1 for every x ∈ Vi and eS(x) > 1 for all x ∈ V −Vi.

So CS(G) = Vi. Therefore each Vi, 1 6 i 6 r is a center set.

Consider S ⊆ V (G) containing at least 2 elements from 2 different

blocks, and let x be a cut vertex of G with eS(x) = k. Also assume that

d(x, v) = k where v ∈ S. Let P : x = x0x1 . . . xrxr+1 . . . xk = v be the

shortest x − v path. See that eS(x1) = k − 1. Since the eccentricities will

never decrease to zero, we can find two vertices in P (may be identical) say

xr, and xr+1 so that eS(xr) = eS(xr+1) = k − r. Then for every vertex y

in the block containing xr and xr+1, eS(y) = k − r and as we move away
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from this block the S-eccentricity increases. Hence the S-center of G is the

block containing xr and xr+1.

Now let eS(xr) = k−r and eS(xr+1) = k−r+1. Then for every y other

than xr in the block containing xr and xr+1, eS(y) = k − r + 1 and as we

move away from this block the S-eccentricity increases. Therefore S-center

of G is xr. Hence the center sets of block graphs are {v}, v ∈ V (G) and

Vi, 1 6 i 6 r.

As a consequence of Proposition 3.3.2, we have the following corollaries.

Corollary 3.3.4, is a theorem of Slater in [109].

Corollary 3.3.3. The center sets of the complete graph Kn with vertex

set V are {u}, u ∈ V and the whole set V .

Corollary 3.3.4 (Theorem 4 of [109]). The center sets of a tree T = (V,E)

are {u}, u ∈ V , and {u, v}, uv ∈ E.

Corollary 3.3.5. The induced subgraphs of all center sets of a block

graph are connected.

Now we shall find the center sets of some simple classes of graphs such

as complete bipartite graphs, Kn − e, Wheel graphs, etc. First we identify

the center sets of bipartite graphs Km,n, m,n > 1. When m or n is 1, Km,n

is a tree whose center sets have already been identified.

3.3.2 Center Sets of Complete bipartite graphs

Proposition 3.3.6. Let Km,n be a complete bipartite graph with bipar-

tition (X,Y ) where |X| = m > 1 and |Y | = n > 1. Then the center sets of

Km,n are

1. V = X ∪ Y

2. X
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3. Y

4. {v}, v ∈ V

5. {x, y}, x ∈ X, y ∈ Y

Proof. First we shall show that each of the sets described in the theorem

are center sets. Let A ⊆ V (Km,n) and let A1 = A∩X, and let A2 = A∩Y

1. If |A1| > 1 and |A2| > 1, CA(Km,n) = V .

2. If A1 = ∅ with |A2| > 1 then CA(Km,n) = X.

3. If A2 = ∅ with |A1| > 1 then CA(Km,n) = Y .

4. If |A1| = 1 and |A2| > 1 then CA(Km,n) = {x} where A1 = {x}
5. If |A2| = 1 and |A1| > 1 then CA(Km,n) = {x} where A2 = {x}
6. If |A1| = |A2| = 1 then CA(Km,n) = {x, y} where A1 = {x} and

A2 = {y}

Thus CA(Km,n) is one of the sets given in the theorem and the result

follows.

Illustration 3.3.1. Here we give the center sets of K5,4 with vertex set

{v1, v2, v3, v4, u1, u2, u3, u4, u5}. The center sets are

b b b b

bbbbb

v1 v2 v3 v4

u1 u2 u3 u4 u5
Figure 3.1: K5,4

1. {v1, v2, v3, v4, u1, u2, u3, u4, u5}

2. {v1, v2, v3, v4}
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3. {u1, u2, u3, u4, u5}

4. {v1}, {v2}, {v3}, {v4}, {u1}, {u2}, {u3}, {u4}, {u5}

5. {v1, u1}, {v2, u1}, {v3, u1}, {v4, u1}, {u2, v1}, {u2, v2}, {u2, v3}, {u2, v4},

{u3, v1}, {u3, v2}, {u3, v3}, {u3, v4}, {u4, v1}, {u4, v2}, {u4, v3}, {u4, v4},

{u5, v1}, {u5, v2}, {u5, v3}, {u5, v4}

3.3.3 Center sets of Kn − e

Next we shall find the center sets of another class of graphs, Kn− e. When

n = 2, Kn − e is a pair of isolated vertices and when n = 3, Kn − e is path

and center sets of this has been identified in Corollary 3.3.4. The following

theorem identifies the center sets of Kn − e for n > 4

Proposition 3.3.7. For the graph Kn − e(= xy), n > 4, the center sets

are

1. {v}, v ∈ V

2. V \ {x}

3. V \ {y}

4. V \ {x, y}

5. V

Proof. As in Proposition 3.3.6, initially we prove that all the sets described

in the theorem are center sets.

1. For each v ∈ V , C{v}(Kn − e) = {v}.
2. Let A ⊆ V be such that |A| > 1, y ∈ A and x /∈ A, then CA(Kn−e) =

V \ {x}.
3. For A ⊆ V such that |A| > 1, x ∈ A and y /∈ A, CA(Kn−e) = V \{y}.
4. Let A ⊆ V be such that x, y ∈ A. Then CA(Kn − e) = V \ {x, y}.
5. For A ⊆ V be such that |A| > 1, x, y /∈ A CA(Kn − e) = V .

Now we have found the centers of all types of subsets of V and therefore

above mentioned sets are precisely the center sets of Kn − e.
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Illustration 3.3.2. Consider K6 − e with vertex set {v1, v2, v3, v4, v5, v6}

and e = v1v2. Then the center sets are

1. {v1}, {v2}, {v3}, {v4}, {v5}, {v6}

2. {v1, v3, v4, v5, v6}

3. {v2, v3, v4, v5, v6}

4. {v3, v4, v5, v6}

5. {v1, v2, v3, v4, v5, v6}

b

b

b

b b

b

v2

v1

v4 v5

v3 v6

Figure 3.2: K6 − e, e = uv

3.3.4 Center sets of Wheel graph

Now we shall identify the center sets of wheel graphs. The wheel graph

W4 is K4 and their center sets have already been identified. First we prove

the case for n > 6. The center sets of W5, the only remaining case, will be

given in the remark after the Proposition 3.3.8.

Proposition 3.3.8. Let Wn, n > 6, be wheel graph on the vertex set

{v1, . . . , vn} where vn is the universal vertex. Then the center sets of Wn

are

1. {vi}, 1 6 i 6 n

2. {vi, vn}, 1 6 i 6 n− 1

3. {vi, vj , vn}, where vivj ∈ E(Cn−1)



3.3. Center Sets of Some Graph Classes 29

4. {vi, vj , vk, vn} where vivj, vjvk ∈ E(Cn−1)

Proof. First we shall prove that each of the sets described above are center

sets.

1. For 1 6 i 6 n, C{vi}(G) = {vi}.

2. Let S = {vi⊖n−11, vi, vi⊕n−11}. eS(vi) = eS(vn) = 1 and eS(v) = 2 for

all other v ∈ V and therefore CS(G) = {vi, vn}.

3. For S = {vi, vi⊕n−11, vn}, CS(G) = S = {vi, vi⊕n−11, vn}.

4. For S = {vi, vn}, CS(G) = {vi⊖n−11, vi, vi⊕n−11, vn}.

For all S ⊆ V such that S 6= {vn}, eS(vn) = 1 and hence for all S ⊆ V

such that S 6= {vi}, 1 6 i 6 n − 1, vn ∈ CS(G). Now, let A be such that

A contain vi and vj such that dCn−1(vi, vj) > 2. Let S ⊆ V be such that

CS(G) = A then obviously S 6= {vi}, 1 6 i 6 n. We have vn ∈ CS(G) with

eS(vn) = 1 Therefore vi and vj belong to CS(G) implies there exist a vertex

vk in V (Cn−1) such that d(vi, vk) = d(vj , vk) = 1 which is impossible by

the choice of vi and vj . Hence vi and vj of V (Cn−1) belong to a center set

implies dCn−1(vi, vj) 6 2. Also vi, vi⊕n−12 belong to CS(G) implies vi⊕n−11

belong to CS(G). Hence the center sets are precisely those described in the

theorem.

b bb

b

b

b

b

b

b

v1

v3

v5

v7

v2v4

v8v6

v9

Figure 3.3: W9
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Illustration 3.3.3. Consider the wheel W9 with vertex set

{v1, v2, v3, v4, v5, v6, v7, v8, v9} and having v9 as the universal vertex. The

center sets are

1. {v1}, {v2}, {v3}, {v4}, {v5}, {v6}, {v7}, {v8}, {v9}

2. {v1, v9}, {v2, v9}, {v3, v9}, {v4, v9}, {v5, v9}, {v6, v9}, {v7, v9},

{v8, v9}

3. {v1, v2, v9}, {v2, v3, v9}, {v3, v4, v9}, {v4, v5, v9}, {v5, v6, v9},

{v6, v7, v9}, {v7, v8, v9}, {v8, v1, v9}

4. {v1, v2, v3, v9}, {v2, v3, v4, v9}, {v3, v4, v5, v9}, {v4, v5, v6, v9},

{v5, v6, v7, v9}, {v6, v7, v8, v9}, {v7, v8, v1, v9}, {v8, v1, v2, v9}

Remark 3.3.1. Let {v1, v2, v3, v4, v5} be the vertex set of W5 with v5 as

the universal vertex. All sets of the types given in the Proposition 3.3.8

are center sets in the same manner. Since the outer cycle is of length 4,

C{v1,v3}(W5) = {v2, v4, v5} and C{v2,v4}(W5) = {v1, v3, v5}. By the argu-

ments similar to that given in the proof of Proposition 3.3.8, the center sets

of W5 are precisely,

1. {v1}, {v2}, {v3}, {v4}, {v5}

2. {v1, v5}, {v2, v5}, {v3, v5}, {v4, v5}

3. {v1, v2, v5}, {v2, v3, v5}, {v3, v4, v5}, {v4, v1, v5}

4. {v1, v2, v3, v5}, {v2, v3, v4, v5}, {v3, v4, v1, v5}, {v4, v1, v2, v5}

5. {v1, v3, v5}, {v2, v4, v5}

Remark 3.3.2. The subgraph induced by any center set of a wheel graph

is connected. In fact, the subgraphs induced by all center sets of any graph

with a universal vertex are connected.
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b

b b

bb
v1

v2 v3

v4

v5

Figure 3.4: W5

3.3.5 Center sets of Odd cycles

Theorem 3.3.9. Let C2n+1, n > 2 be an odd cycle with vertex set

V = {v1, . . . , v2n+1}. An A ⊆ V is a center set of C2n+1 if and only if

either A = V or A does not contain a pair of alternate vertices.

Proof. If A = V then it is a center set namely, of itself. So assume A 6= V .

Let A ⊂ V be such that it contains three consecutive vertices say, v1, v2, v3.

Assume there exists an S ⊂ V with A = CS(G). Let d be the S-eccentricity

of a vertex of A. Then there exists a vertex vi in S such that d(v1, vi) = d.

d(v2, vi) = d implies v1 and v2 are the eccentric vertices of vi which means

d = n orA = V . Hence d(v2, vi) 6= d. d(v2, vi) = d+1 implies eS(v2) > d+1.

Hence d(v2, vi) = d−1. Then there exists a vertex vj such that d(v2, vj) = d

and d(v1, vj) = d − 1. Then as explained above d(v3, vj) cannot be d and

therefore d(v3, vj) = d + 1. This means that eS(v2) 6= eS(v3). Hence any

three consecutive vertices cannot be in a center set. Now, assume that

A ⊂ V is such that it contains a pair of alternate vertices and does not

contain the middle vertex, say, contains v1 and v3 and does not contain v2.

Assume A = CS(G). Let eS(v1) = eS(v3) = d. Then eS(v2) = d+1. Let vi

be a vertex in S such that d(v2, vi) = d+1. Obviously d(v1, vi) = d(v3, vi) =

d and this implies vi is the eccentric vertex of v2 or d(v2, vi) = n. But since
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C2n+1 is an odd cycle either d(v1, vi) = n or d(v3, vi) = n, a contradiction.

Hence if A is a center set then it cannot contain a pair of alternate vertices.

Conversely assume that A is such that it does not contain any pair of

alternate vertices of the cycle. Now take S to be the set of all vertices

of C2n+1 which are eccentric vertices of vertices of Ac and which are not

eccentric vertices of any of the vertices of A. It is obvious by the choice

of A that such vertices do exist. Since an eccentric vertex of at least one

of the two neighbours of each vertex of A belong to S and none of the

eccentric vertices of any vertex of A belong to S, for each vertex x of A,

eS(x) = n − 1. Since at least one of the eccentric vertices of each vertex

of Ac belong to S, for each vertex y of Ac, eS(y) = n. Thus A = CS(G).

Hence the theorem.

Corollary 3.3.10. For the odd cycle C2n+1, n > 2, if A is a center set

then either |A| 6 n or A = V .

Proof. Let C2n+1 = (v1, v2, . . . , v2n+1, v1).

Case 1-n is odd.

Subcase 1.1: Only one among v1,v2 and v3 is in A.

Let A1 = {v1, v2, v3}, A2 = {v4, v6}, . . ., An−1 = {v2n−2, v2n}, An =

{v2n−1, v2n+1}. A contains at most one vertex from each Ai. Therefore

|A| 6 n.

Subcase- 1.2: Exactly two vertices among v1,v2 and v3 are in A.

With out loss of generality we can assume that they are v1 and v2. Then

v3, v4, v2n and v2n+1 are not in A. Let A1 = {v5, v7}, A2 = {v6, v8},

A3 = {v9, v11}, . . .,An−3 = {v2n−4, v2n−2}, An−2 = {v2n−1}. A contains at

most one vertex from each Ai. Hence |A| 6 n− 2 + 2 = n.

Case 2: n is even.

Subcase 2.1: Only one of v1, v2 and v4 is in A.

Let A1 = {v1, v2, v4}, A2 = {v3, v5}, A3 = {v6, v8},A4 = {v7, v9} . . .,
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An−1 = {v2n−2, v2n}, An = {v2n−1, v2n+1}. A contains at most one vertex

from each Ai. Therefore |A| 6 n.

Subcase 2.2: v1 and v2 are in A.

Then v3, v4, v2n and v2n+1 are not in A. Let A1 = {v5, v7}, A2 = {v6, v8},

A3 = {v9, v11}, . . .,An−3 = {v2n−3, v2n−1}, An−2 = {v2n−2}. A contains at

most one vertex from each Ai. Hence |A| 6 n− 2 + 2 = n.

Subcase 2.3: v1 and v4 are in A. Then v2, v3, v6 and v2n are not in A. Let

A1 = {v5, v7}, A2 = {v8, v10}, A3 = {v9, v11}, . . .,An−3 = {v2n−3, v2n−1},

An−2 = {v2n+1}. A contains at most one vertex from each Ai. Hence

|A| 6 n− 2 + 2 = n.

Thus in all the cases |A| 6 n.

Corollary 3.3.11. For any m 6 n, there exists an S ⊆ V (C2n+1) such

that |CS(C2n+1)| = m.

Proof. Let C2n+1 = (v1, v2, . . . , v2n+1, v1).

Given an m 6 n, we shall prove the existance of a subset of V (C2n+1) of

size m which does not contain any pair of alternate vertices. Take

2n+1−m circularly arranged 0’s. Number these 0’s 1, 2, . . . , 2n+1−m. If

m is even put two 1’s each between the first and the second 0’s, third and

the fourth 0’s etc up to (m− 1)th and the mth 0’s. If m is odd put two 1’s

each between the first and the second 0’s, third and the fourth 0’s etc., up

to (m−2)th and the (m−1)th 0’s and one 1 between mth and (m+1)th 0’s.

In both these cases we get a circular arrangement of 0’s and 1’s that has m

1’s and does not contain a pattern of the type 101 or 111. Starting at an

arbitrary point represent these bits by v1, v2, . . . , v2n+1 and form the vertex

set corresponding to the 1′s. This is a center set have m vertices.
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b b b

b b b

b

v5 v6

v3

v7

v1

v2v4

Figure 3.5: C7

Illustration 3.3.4. Consider the odd cycle C7.

Here A = {v1, v4, v5} is a center set, since it contains no pair of alternate

vertices. Ac = {v2, v3, v6, v7}. The set of eccentric vertices of Ac which are

not eccentric to any of the vertices of A is {v3, v6}.

e{v3,v6}(v1) = 2, e{v3,v6}(v2) = 3, e{v3,v6}(v3) = 3, e{v3,v6}(v4) = 2, e{v3,v6}(v5) =

2, e{v3,v6}(v6) = 3, e{v3,v6}(v7) = 3. Thus

C{v3,v6}(C7) = {v1, v4, v5}. {v1, v4, v5, v6} is not a center set since it con-

tains (v4, v6) and (v1, v6), pairs of alternate vertices.

3.3.6 Center sets of Symmetric Even graphs

The following theorem gives the center sets of some familiar classes of

graphs such as even cycles, hypercubes etc. Here we recall the following

definition.

Definition 15. For an S ⊆ V , a vertex x ∈ S is called an interior vertex

if N(x) ⊆ S. An S ⊆ V is called a boundary set of G if does not contain

any interior vertices.

Theorem 3.3.12. Let G be a symmetric even graph. An A ⊆ V is a
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center set if and only if either A = V or A is a boundary set of G.

Proof. Since symmetric even graphs are self-centered CV (G) = V . So as-

sume A ⊂ V . Let A be such that A = CS(G) for an S ⊂ V and let x ∈ A.

Suppose eS(x) = k with d(x, y) = k where y ∈ S. If k = diam(G) then

A = V . So assume k < diam(G). Then since G is a symmetric even graph

there exists a vertex z adjacent to x such that d(y, z) = k + 1. Therefore

eS(z) > k + 1 or z /∈ CS(G). Hence if A is a center set such that A ⊂ V ,

then there exists an x in A such that {x} ∪N(x) ∩ Sc 6= ∅.

Conversely, suppose that A ⊂ V satisfies the condition given in the

theorem. We need to find out an S ⊆ V such that A = CS(G). Since G

is symmetric even it is self-centered and unique eccentric vertex. Let Ac

denote the set of eccentric vertices of Ac. Let x ∈ A. Then there exists a x′

adjacent to x such that x′ ∈ Ac. Then x′ ∈ Ac. Since d(x′, x′) = diam(G)

and x and x′ are adjacent d(x, x′) = diam(G) − 1. Also since G is unique

eccentric vertex there does not exist an z in Ac such that d(x, z) = diam(G).

Therefore, eAc(x) = diam(G)− 1 and for every y ∈ Ac, eAc(y) = diam(G).

Since G is self-centered for every x ∈ A, eAc(x) = diam(G) − 1 and for

every y ∈ Ac, eAc(x′) = diam(G). Therefore CAc(G) = A. Hence the

theorem.

Corollary 3.3.13. For the even cycle C2n, if A is a center set then either

|A| 6 ⌊4n3 ⌋ or A = V .

Proof. Suppose A is a center set such that |A| < 2n. To prove |A| 6 ⌊4n3 ⌋.

Since A is a center set A cannot contain three consecutive vertices of the

cycle. Let each vertex belonging to A be represented by 1 and each vertex

not belonging to A be represented by 0. Thus we get a circular arrangement

of 0’s and 1’s such that two successive 0’s contains at most two 1’s between

them. From this we can conclude that m 0’s can accommodate at most

2m 1’s between them. If A′ 6= V is a center set of maximum cardinality



36 Chapter 3. Center Sets and Center Number

then the binary representation of A′ will have exactly ⌈2n3 ⌉ zeros and hence

2n−⌈2n3 ⌉ 1’s. In other words |A′| = 2n−⌈2n3 ⌉ = ⌊4n3 ⌋. Since A′ is a center

set of maximum cardinality, we have |A| 6 ⌊4n3 ⌋. Hence the corollary.

Next we have another corollary similar to the Corollary 3.3.11.

Corollary 3.3.14. For any m 6 ⌊4n3 ⌋, there exists an S ⊆ V (C2n) such

that |CS(C2n)| = m.

Proof. Similar to the proof of Corollary 3.3.11

Now, we recall the following definitions.

Definition 16. An S ⊆ V is a dominating set in G if every vertex in

V \ S is adjacent to a vertex in S.

Next, we shall prove a result regarding the centers of dominating sets of

symmetric even graphs. But for that we require the following propositions

from [54].

Proposition 3.3.15. Every harmonic even graph is balanced.

Proposition 3.3.16. Every Symmetric even graph is harmonic.

Combining the above two propositions we get the following proposition.

Proposition 3.3.17. Every Symmetric even graph is balanced.

Theorem 3.3.18. Let G be a symmetric even graph and let S ⊆ V . Then

CS(G) = Sc if and only if S is a dominating set.

Proof. Assume CS(G) = Sc. Suppose S ∪ N(S) 6= V . Then there exists

an x ∈ V such that x /∈ S and x /∈ N(S). That is x and all its neigh-

bours belong to Sc. Let x1, . . . , xk be the neighbours of x. By proposition

3.3.17, deg(u) = deg(ū). Let y1, y2, . . . , yk be the neighbours of x̄. We have

d(xi, x̄) = diam(G) − 1 for 1 6 i 6 k. Since G is symmetric even there
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exists a vertex adjacent to x̄, say yi, such that d(xi, yi) = diam(G) for

1 6 i 6 k. Hence x̄ and all its neighbours belong to Sc. This contradicts

the condition for Sc to be a center set.

Conversely suppose S ∪ N(S) = V . Let x ∈ Sc. Then x̄ ∈ Sc. Since

S ∪ N(S) = V , x̄ ∈ N(S). Therefore there exists an z ∈ S such that z

is adjacent to x̄. Then d(x, z) = diam(G) − 1. d(x, z′) = diam(G) for

some z′ ∈ S implies both y ∈ Sc and z′ ∈ S are the eccentric vertices

of x a contradiction to the fact that the graph is unique eccentric vertex.

Hence eS(x) = diam(G) − 1. Now let x /∈ Sc. Then since every vertex is

an eccentric vertex, x ∈ S and therefore there exists a w in S such that

d(x,w) = diam(G). Thus CS(G) = Sc.

For a graph G, let DB(G) denote the class of dominating boundary

sets, that is, dominating sets which are also boundary sets. We have the

following theorem on the centers of sets which belong to such a class of sets

in a symmetric even graph.

Theorem 3.3.19. Let G be a symmetric even graph. Let S ⊆ V be such

that S ∈ DB(G). Then CS(G) = S′ if and only if CS′(G) = S.

Proof. Suppose CS(G) = S′. Since S ∪ N(S) = V , CS(G) = Sc. That is

S′ = Sc. For every x ∈ Sc, eSc(x) = diam(G). Since G is unique eccentric

vertex graph and S is a boundary set, for every x ∈ S, eSc(x) = diam(G)−

1. Hence CS′(G) = CSc(G) = S. Conversely assume CS′(G) = S. To prove

CS(G) = S′. Since CS(G) = Sc we need only prove that S′ = Sc. Let

x ∈ S′. If x ∈ S then x = ȳ where y ∈ S. Then we have d(x, y) = diam(G).

Since S is the S′-center of G this implies C ′
S(G) = V . But this contradicts

the fact that S is a boundary set. Hence x ∈ Sc or S′ ⊆ Sc. Now to prove

that Sc ⊆ S′. On the contrary assume that there exists an x ∈ Sc such

that x /∈ S′. Let x = y where y ∈ Sc. Since the eccentric vertex of y, x,

does not belong to S′, eS′(y) 6 diamG − 1. If z ∈ S′ then z ∈ Sc. Let
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z = w where w ∈ Sc. Since S ∪ N(S) = V there exists a w′ adjacent to

w such that w′ belong to S. We have eS′(w′) = diamG − 1. This implies

y ∈ S, contradicting the choice of y. Therefore S′ = Sc.

Theorem 3.3.20. Let G be a symmetric even graph. Then

i) S ∈ DB(G) if and only if CS(G) ∈ DB(G).

ii) For S1, S2 ∈ DB(G), CS1(G) = S2 if and only if CS2(G) = S1.

Proof. i) Suppose S ⊆ V is such that S ∈ DB(G) and let S′ = CS(G).

Since S′ is a center set of a symmetric even graph if and only if it

is a boundary set, to prove that S′ ∈ DB(G) we need only prove

that S′ ∪ N(S′) = V . Since S ∪ N(S) = V , S′ = Sc. Let x /∈ S′.

Therefore x ∈ S since the graph is symmetric even. Let x = ȳ where

y ∈ S. Since S is a boundary set there exists a vertex y′ adjacent

to y such that y′ ∈ Sc. We have d(x, y′) = diam(G) − 1. Since G

is symmetric even there exists a vertex x′ adjacent to x such that

d(x′, y′) = diam(G). That is x′ ∈ Sc or x′ ∈ S′. In other words

x ∈ N(S′). Hence S′ ∪N(S′) = V . Conversely suppose S′ ⊆ V is such

that S′ ∈ DB(G) and CS(G) = S′ for an S′ ⊆ V . To prove S ∈ DB(G).

By the previous theorem CS(G) = S′ implies CS′(G) = S. Now S′ ⊆ V

is such that S′ ∈ DB and CS′(G) = S and hence as proved earlier we

can prove that S ∪N(S) = V or S ∈ DB(G).

ii) This part is obvious from Theorem 3.3.19.

Illustration 3.3.5. Let G be the 12-cycle with vertex set {v1, . . . , v12}.
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Figure 3.6: C12, a symmetric even graph

Take the vertex set S = {v1, v3, v5, v8, v11}. This is a dominating bound-

ary set. We have that CS(G) = {v1, v3, v4, v6, v8, v10, v12} = Sc and this is

again a dominating boundary set It can also be verified that CSc(G) = S.

Consider A = {v1, v3, v4, v7}.

Ac = {v2, v5, v6, v8, v9, v10, v11, v12}. Ac = {v8, v11, v12, v2, v3, v4, v5, v6}.

eAc(v1) = 5eAc(v2) = 6, eAc(v3) = 5, eAc(v4) = 5, eAc(v5) = 6,

eAc(v6) = 6, eAc(v7) = 5, eAc(v8) = 6, eAc(v9) = 6, eAc(v10) = 6,

eAc(v11) = 6, eAc(v11) = 6. Hence CAc(C12) = A.

3.4 Enumerating Center Sets

In designing and modelling networks it is important to have more center

sets to locate facilities. Therefore the number of center sets is a good

indication to the structural well-behaviour of the graph. In this section we

enumerate the center sets of various classes of graphs. We first give the

following definition.

Definition 3.4.1. The number of distinct center sets of a graph G is

defined as the Center number of G and is denoted by cn(G).

The following lemma gives the center numbers of some familiar classes

of graphs. The proof of the lemma follows from the Corollary 3.3.3, Theo-
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rem 3.3.6, Corollary 3.3.4, Theorem 3.3.7 and Proposition 3.3.8 respectively,

so we omit the proofs.

Lemma 3.4.1. Let G be a graph on n vertices then,

1. cn(G) = n+ 1 when G = Kn the complete graph on n vertices.

2. cn(G) = n + 3 when G = Kp,q the complete bipartite graph with

p, q > 1.

3. cn(G) = 2n− 1 when G is a tree.

4. cn(G) = n+ 4 when G = Kn − e, e ∈ E, n > 4.

5. If G is the wheel graph Wn then

cn(Wn) = 4n− 3 if n > 6

= 4n− 1 if n = 5

3.4.1 Center number of Even and Odd cycles

We now find the center number of odd and even cycles. For that we in-

troduce the following terms. Suppose we have n linearly arranged objects.

Let L(n, k) denote the number of ways of choosing k objects from these n

objects so that no three consecutive objects are simultaneously chosen. Let

L1(n, k) denote the number ways to choose k objects from these n objects

so that no two objects from alternate positions are simultaneously chosen

and let L2(n, k) denote the number of ways to choose k objects from these

n objects so that no two objects from consecutive positions are simultane-

ously chosen.

Consider n circularly arranged objects where n > 4. Let R(n, k) denote

the number of ways to choose k objects from these n objects so that three
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objects from three consecutive positions are not chosen and R1(n, k) de-

note the number ways to choose k objects from these n objects so that no

two objects from alternate positions are simultaneously chosen. Here we

assume n > 4 since we are interested only in cycles of length greater than

3.

Lemma 3.4.2. L(n, k) =
(
n
k

)(
n−k+1

0

)
−

(
n−3
k−3

)(
n−k+1

1

)
+

(
n−6
k−6

)(
n−k+1

2

)
−

(
n−9
k−9

)(
n−k+1

3

)
+ · · · .

Proof. A particular choice of k objects from n objects can be represented

by a binary string of size n where a 1 at the ith position indicates that the

ith object is chosen and a 0 at the jth position indicates that the jth object

is not chosen. So the number of choices of the required type is actually the

number of binary strings of size n having k 1’s and not containing three

consecutive 1’s. Let x0 denote the number of 1’s before the first 0, for

1 6 i 6 n − k − 1, let xi denote the number of 1’s between the ith 0 and

the (i+ 1)th 0 and let xn−k denote the number of 1’s after the (n− k)th 0.

Therefore the total number of 1’s in a binary string is x0 +x1+ · · ·+xn−k.

For a binary string of our choice, 0 6 xi 6 2. Hence L1(n, k) is the number

of different solutions of the equation

x0 + x1 + · · ·+ xn−k = k, 0 6 xi 6 2 (3.1)

Now consider the product

(1 + t+ t2)× · · · × (1 + t+ t2)
︸ ︷︷ ︸

(n−k+1) times

(3.2)

In the expansion of this product, taking ty0 from the first term, ty1 from

the second term, . . ., tyn−k from the n− k+1th term we get ty0+y1+...+tn−k .
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Therefore any solution of the equation

y0 + y1 + . . .+ yn−k = k, 0 6 yi 6 2 (3.3)

gives us the term yk in the expansion. In other words the number of

solutions of equation 3.3 is the coefficient of tk in expression 3.2. Since the

Equations 3.1 and 3.3 are same, we get that L(n, k) is the coefficient of tk

in (1 + t+ t2)n−k+1.

(1 + t+ t2)n−k+1 =

(
1− t3

1− t

)n−k+1

= (1− t3)n−k+1(1− t)−(n−k+1)

=
(

1−
(
n−k+1

1

)
t3 +

(
n−k+1

2

)
t6 + · · ·

)

×
(

1 +
(
n−k+1

1

)
t+

(
n−k+1

2

)
t2 + · · ·+

(
n
k

)
tk + · · ·

)

Therefore L(n, k)=
(
n
k

)(
n−k+1

0

)
−

(
n−3
k−3

)(
n−k+1

1

)
+

(
n−6
k−6

)(
n−k+1

2

)
−

(
n−9
k−9

)(
n−k+1

3

)
+ · · · .

The series on the right hand side is finite as all the terms after a finite

number of terms shall be zero.

Lemma 3.4.3. R(n, k) = L(n− 1, k) + 2L(n− 4, k− 2) +L(n− 3, k− 1),

n > 4, k > 2.

Proof. Let the n circularly arranged objects be v1, . . . , vn. The set of all

objects such that no 3 objects from 3 consecutive positions are chosen can

be divided in to the following types.

Type 1 The object vn is chosen and the objects vn−1 and v1 are not chosen.

Then the total number of choices is L(n− 3, k − 1). (See Figure 3.7)

Type 2 The objects vn and vn−1 are chosen and v1 is not chosen. vn and

vn−1 are chosen implies vn−2 is not chosen. In this case the number of
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Figure 3.7

choices is L(n− 4, k − 2).

The objects vn and v1 are chosen and vn−1 is not chosen. Again as in the

previous case the total number of choices is L(n− 4, k − 2).

The object vn is not chosen. Here the total number of choices is L(n−1, k).

Therefore R(n, k) = L(n− 1, k) + 2L(n− 4, k − 2) + L(n− 3, k − 1).

It is obvious that

R(n, k) = 1 when k = 0

= n when k = 1

Now we have determined R(n, k) for all n > 4 and k > 0.

Theorem 3.4.2. The center number of the even cycle C2n is

1 +
⌊ 4n

3
⌋

∑

k=1

R(2n, k).

Proof. By the Corollary 3.3.13, the maximum cardinality among the center

sets other than V is ⌊4n3 ⌋ and by the Theorem 3.3.12, R(2n, k) gives the

number of center sets of size k where k 6 ⌊4n3 ⌋. Also V is a center set.
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Hence cn(C2n) = 1 +
⌊ 4n

3
⌋

∑

k=1

R(2n, k).

Illustration 3.4.1. Consider the even cycle C12. Here n = 6. Then

cn(C12) = 1 +
8∑

k=1

R(12, k) (3.4)

It is obvious that

R(12, 1) = 12. (3.5)

R(12, 2) = L(11, 2) + 2L(8, 0) + L(9, 1)

L(11, 2) =
(11
2

)
= 55, L(8, 0) = 1 and L(9, 1) = 9. Hence,

R(12, 2) = 55 + 2 + 9 = 66 (3.6)

R(12, 3) = L(11, 3) + 2L(8, 1) + L(9, 2)

L(11, 3) =
(11
3

)(9
0

)
−

(8
0

)(9
1

)
= 165 − 9 = 156.

L(8, 1) = 8 and L(9, 2) =
(
9
2

)
= 36. Hence,

R(12, 3) = 156 + 16 + 36 = 208 (3.7)

R(12, 4) = L(11, 4) + 2L(8, 2) + L(9, 3)

L(11, 3) =
(11
4

)(8
0

)
−

(8
1

)(8
1

)
= 330 − 64 = 266

L(8, 2) =
(
8
2

)
= 28

L(9, 3) =
(9
3

)(7
0

)
−

(6
0

)(7
1

)
= 84− 7 = 77. Hence,

R(12, 4) = 266 + 56 + 77 = 399 (3.8)

R(12, 5) = L(11, 5) + 2L(8, 3) + L(9, 4)

L(11, 5) =
(11
5

)(7
0

)
−

(8
2

)(7
1

)
= 462 − 196 = 266

L(8, 3) =
(8
3

)(6
0

)
−

(5
0

)(6
1

)
= 56− 6 = 50
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L(9, 4) =
(9
4

)(6
0

)
−

(6
1

)(6
1

)
= 126 − 36 = 90. Hence,

R(12, 5) = 266 + 100 + 90 = 456 (3.9)

R(12, 6) = L(11, 6) + 2L(8, 4) + L(9, 5)

L(11, 6) =
(
11
6

)(
6
0

)
−

(
8
3

)(
6
1

)
+

(
5
0

)(
6
2

)
= 462 − 336 + 15 = 141

L(8, 4) =
(8
4

)(5
0

)
−

(5
1

)(5
1

)
= 70− 25 = 45

L(9, 5) =
(
9
5

)(
5
0

)
−

(
6
2

)(
5
1

)
= 126 − 75 = 51. Hence,

R(12, 6) = 141 + 90 + 51 = 282 (3.10)

R(12, 7) = L(11, 7) + 2L(8, 5) + L(9, 6)

L(11, 7) =
(11
7

)(5
0

)
−

(8
4

)(5
1

)
+

(5
1

)(5
2

)
= 330 − 350 + 50 = 30

L(8, 5) =
(
8
5

)(
4
0

)
−

(
5
2

)(
4
1

)
= 56− 40 = 16

L(9, 6) =
(9
6

)(4
0

)
−

(6
3

)(4
1

)
+

(3
0

)(4
2

)
= 84− 80 + 6 = 10. Hence,

R(12, 7) = 30 + 32 + 10 = 72 (3.11)

R(12, 8) = L(11, 8) + 2L(8, 6) + L(9, 7)

L(11, 8) =
(11
8

)(4
0

)
−

(8
5

)(4
1

)
+

(5
2

)(4
2

)
= 165 − 224 + 60 = 1

L(8, 6) =
(8
6

)(3
0

)
−

(5
3

)(3
1

)
+

(2
0

)(3
2

)
= 28− 30 + 3 = 1

L(9, 7) =
(9
7

)(3
0

)
−

(6
4

)(3
1

)
+

(3
1

)(3
2

)
= 36− 45 + 9 = 0. Hence,

R(12, 8) = 1 + 2 + 0 = 3 (3.12)

Using equations 3.5 to 3.12 in 3.4 we get

cn(C12) = 1 + 12 + 66 + 208 + 399 + 456 + 282 + 72 + 3 = 1499

Before proving the center number of odd cycles, we prove the following

lemmata. We first find L2(n, k) for given values of n and k.

Lemma 3.4.4. L2(n, k) =
(
n−k+1

k

)
.
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Proof. As in Lemma 3.4.2, we give a binary representation for a particular

choice of k objects that conforms to the conditions specified in the definition

of L2(n, k). For each 1 in this binary representation we count the total

number of 0’s preceding this 1. So if we have k 1’s then we get k numbers

from {0, 1, . . . , n − k} and all these are distinct since there should be at

least one 0 between any two successive 1’s. Thus corresponding to each

choice of k objects of the desired type we get a unique set of k distinct

numbers from {0, 1, . . . , n−k}. Conversely each choice of k distinct numbers

from {0, 1, . . . , n− k} gives us a unique choice of k objects from n linearly

arranged objects satisfying the specified condition. Thus we get a one-to-

one correspondence between the k-element subsets of {0, 1, . . . , n− k} and

the choices of k objects as specified in the definition of L2(n, k). Hence

L2(n, k) =
(
n−k+1

k

)
.

Lemma 3.4.5. L1(n, k) =
k∑

ℓ=0

L2(⌊
n
2 ⌋, ℓ)L2(⌈

n
2 ⌉, k − ℓ).

Proof. Consider n linearly arranged objects. Choosing k objects from these

n objects such that no two objects are from alternate positions can be done

as follows. First choose ℓ objects from ⌈n2 ⌉ objects in the odd positions such

that no two objects are consecutive among these ⌈n2 ⌉ objects. This can be

done in L2(⌈
n
2 ⌉, ℓ) ways. Now choose k − ℓ objects from the remaining

⌊n2 ⌋ objects in the even positions, such that no two objects are consecutive

among these ⌊n2 ⌋ objects. This can be done L2(⌊
n
2 ⌋, k − ℓ) ways. Hence

L1(n, k) =
k∑

ℓ=0

L2(⌈
n
2 ⌉, ℓ)L2(⌊

n
2 ⌋, k − ℓ).

Lemma 3.4.6. L1(n, k) =
k∑

ℓ=0

(⌊n
2
⌋−ℓ+1
ℓ

)(⌈n
2
⌉−(k−ℓ)+1

k−ℓ

)
.

Proof. The proof follows from Lemma 3.4.5 and Lemma 3.4.4.
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Lemma 3.4.7. R1(n, k) = L1(n−2, k)+2L1(n−5, k−1)+3L1(n−6, k−2),

n > 6, k > 2.

Proof. Let the n circularly arranged objects be v1, . . . , vn. The set of all

choices of k objects such that no two objects occupy alternate positions can

be divided in to various types.

Type I: Both vn and vn−1 are not chosen. In this case the total number

of choices is L1(n− 2, k) (See Figure 3.8).

b

bcb
b

b

bcbvn
b v1b vn−1

b v2vn−2

bb
L1(n− 2, k)

Figure 3.8

Type II: vn is selected and vn−1 is not selected. vn is selected implies

vn−2 and v2 are not selected. The number of choices where v1

is selected is L1(n − 6, k − 2) and the number of choices where

v1 is not selected is L1(n− 5, k− 1). Hence the total number of

such choices is L1(n− 6, k − 2) + L1(n− 5, k − 1).

Type III: vn is not selected and vn−1 is selected. As in the previous case

the total number of such choices is

L1(n− 6, k − 2) + L1(n− 5, k − 1).

Type IV: Both vn and vn−1are selected. vn and vn−1 are selected implies

v1, v2, vn−2 and vn−3 are not selected. Therefore the number of

choices of this type is L1(n − 6, k − 2).
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Hence, R1(n, k) = L1(n−2, k)+2L1(n−5, k−1)+3L1(n−6, k−2). (3.13)

Now it is easy to see that

R1(n, k) = 1, when k = 0

= n, when k = 1 or k = 2 and n = 4 or 5

= 0, when k > 3, n = 4 or 5

Thus we have determined R1(n, k) for all n > 4 and k > 0.

Now with the help of Theorem 3.3.9 and Corollary 3.3.10, we have the

center number of the odd cycle C2n+1, n > 2.

Theorem 3.4.3. The center number of the odd cycle C2n+1, n > 2, is

1 +
n∑

k=1

R1(2n + 1, k).

Illustration 3.4.2. We shall find out the center number of the odd cycle

C11. We have that

cn(C11) = 1 +

5∑

k=1

R1(11, k) (3.14)

It is obvious that

R1(11, 1) = 11 (3.15)

From equation 3.13 we have that

R1(11, 2) = L1(9, 2) + 2L1(6, 1) + 3L1(5, 0)

L1(9, 2) =

2∑

ℓ=0

(
4−ℓ+1

ℓ

)(5−(2−ℓ)+1
2−ℓ

)

=
(5
0

)(4
2

)
+
(4
1

)(5
1

)
+

(3
2

)(5
0

)
= 6 + 20 + 3 = 29
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L1(6, 1) = 6 and L1(5, 0) = 1. Therefore,

R1(11, 2) = 29 + 12 + 3 = 44 (3.16)

R1(11, 3) = L1(9, 3) + 2L1(6, 2) + 3L1(5, 1)

L1(9, 3) =
(
5
0

)(
3
3

)
+

(
4
1

)(
4
2

)
+

(
3
2

)(
5
1

)
= 1 + 24 + 15 = 40

L1(6, 2) =
(4
0

)(2
2

)
+

(3
1

)(3
1

)
+

(2
2

)(4
0

)
= 1 + 9 + 1 = 11

L1(5, 1) = 5. Therefore,

R1(11, 3) = 40 + 2× 11 + 3× 5 = 77 (3.17)

R1(11, 4) = L1(9, 4) + 2L1(6, 3) + 3L1(5, 2)

L1(9, 4) =
(4
1

)(3
3

)
+

(3
2

)(4
2

)
= 4 + 18 = 22

L1(6, 3) =
(
3
1

)(
2
2

)
+

(
2
2

)(
3
1

)
= 3 + 3 = 6

L1(5, 2) =
(3
0

)(2
2

)
+

(2
1

)(3
1

)
= 1 + 6 = 7. Therefore,

R1(11, 4) = 22 + 2× 6 + 3× 7 = 55 (3.18)

R1(11, 5) = L1(9, 5) + 2L1(6, 4) + 3L1(5, 3)

L1(9, 5) =
(3
2

)(3
3

)
= 3

L1(6, 4) =
(2
2

)(2
2

)
= 1

L1(5, 3) =
(2
1

)(2
2

)
= 2. Therefore,

R1(11, 5) = 3 + 2× 1 + 3× 2 = 11 (3.19)

Using equations 3.15 to 3.19 in 3.14 we get

cn(C11) = 1 + 11 + 44 + 77 + 55 + 11 = 199
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3.5 Conclusion

In this chapter the generalisation of the center of a graph to the center

of arbitrary vertex sets have been explored particularly with reference to

some special classes of graphs like Kn, Km,n, Kn − e, odd cycles and a

more general class of graphs called symmetric even graphs. In the process

of identification of center sets of odd cycles and symmetric even graphs

we have devised methods for finding a set whose center is a prescribed

set. The duality property of dominating boundary sets of symmetric even

graphs with respect to the center function has been also brought to light.

For any graph there may exist subsets of the vertex set whose center is the

same as the center of the graph and therefore we can look for such sets

with minimum cardinality. Searching on this line we came across a class of

graphs where none of the proper subsets of the vertex sets has center equal

to the center of the graph. We called them the center critical graphs and

characterised them as self centred, unique eccentric vertex graphs. Finally

we have enumerated the number of distinct center sets of some of the graphs

mentioned above.



Chapter 4

Pacifying and Shrinking edges

4.1 Introduction

Extremal graph theory mostly deals with studying the classes of graphs

that are minimal or maximal with respect to certain conditions. Most of

the literature on distance related extremal graph theory is concerned with

identifying the class of graphs that are radially maximal, radially minimal,

diameter minimal, diameter maximal etc[see section 2.4]. The eccentricity

of a vertex can be decreased by adding edges and it shall be interesting to

identify such edges particularly in networking problems where, by adding

a minimum number of edges we may be able to reduce the distances of an

actor from other actors in the network remarkably and thus can increase

its significance in the network. This is useful for the actor as well as the

whole network as it increases the cohesion of the network at a minimal cost.

In this chapter we take a particular case of this problem where we add a

single edge. Given that we are allowed to add a single edge, we identify the

edge(s) that when added to a graph reduces the eccentricity of a vertex the

most. We also identify the edge(s) that reduces the radius of the graph the

most. Such edges are being introduced as pacifying and shrinking edges

respectively.

Definition 4.1.1. For a vertex w ∈ G, an edge uv /∈ E(G) is defined to

be a pacifying edge of w if eG+uv(w) 6 eG+xy(w) for all xy ∈ E(Gc).

It is not necessary that every vertex of a graph has pacifying edges. One

trivial example is the complete graph where every vertex has eccentricity

one. There are other non trivial examples. Take the complete bipartite

graph Km,n where m,n > 2. Each vertex of this graph has eccentricity

51
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two. Since m,n > 2 by adding an edge between any single pair of non-

adjacent vertices the eccentricity of none of the vertices reduces. In other

words no vertex of Km,n has a pacifying edge. C5 is another example of a

graph in which no vertex has a pacifying edge.

The following is an example of a graph in which some vertices have pacifying

edges while some others do not have any pacifying edge.

b

b

b

b

b b
v y w

x z

u

Figure 4.1: Graph having vertices with and without pacifying edges

Here, xw, uy and zv are the pacifying edges of x,y and z respectively as

they reduce the eccentricity of these vertices from 2 to 1. But, the vertices

u,v and w do not have any pacifying edge.

Observations

The following are some simple observations that can be made on the paci-

fying edges of the vertices of a graph with more than two vertices.

1. Every vertex having a unique eccentric vertex has a pacifying edge.

2. Every vertex whose eccentricity is greater than 2 and whose eccentric

vertices are all mutually adjacent has a pacifying edge.

3. A vertex of a graph of diameter 2 has a pacifying edge if and only if

its degree is |V | − 2.
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4. C5 is a graph in which no vertex has a pacifying edge. In fact, it is

later shown later that in all other cycles every vertex has at least one

pacifying edge.

4.2 Pacifying edges of some classes of graphs

4.2.1 Pacifying edges of a path

In the following theorem we identify the pacifying edges of the vertices of

a path.

Theorem 4.2.1. Consider the path Pn with end vertices a and b and let

w ∈ V (Pn). Assume that d(w, a) 6 d(w, b).

1. If d(w, a) = d(w, b) then w has no pacifying edges.

2. Let d(w, b) < 2d(w, a) with d(w, b) = d(w, a) + t, 0 < t < d(w, a).

Then the pacifying edges of w are given by the following

i. Edges w1w2’s such that w1 ∈ w-b path, w2 ∈ w1-b path, d(w1, w) =

m where 0 6 m 6 d(w, a) − t+1
2 and

t+ 1 6 d(w1, w2) 6 d(w1, b) when 0 6 m < d(w, a) − t,

t+ 1 6 d(w1, w2) < 2(d(w, a) −m) when

d(w, a) − t 6 m 6 d(w, a) − t+1
2

ii. Edges w1w2’s such that w1 ∈ w-a path, w2 ∈ w1-b path, d(w1, w) =

m where

0 6 m 6 d(w, a) − t+1
2 and t + 2m + 1 6 d(w1, w2) 6 d(w1, b)

when 0 6 m < d(w, a) − t,

t+ 2m+ 1 6 d(w1, w2) 6 2d(w, a) when

d(w, a) − t 6 m 6 d(w, a) − t+1
2 .

3. When 2d(w, a) 6 d(w, b) < 3d(w, a) with d(w, b) = d(w, a) + t,

d(w, a) 6 t < 2d(w, a), the pacifying edges of w are given by the

following
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i. Edges w1w2’s such that w1 ∈ w-b path, w2 ∈ w1-b path, d(w1, w) =

m where 0 6 m 6 d(w, a) − t+1
2 and

t+ 1 6 d(w1, w2) 6 2(d(w, a) −m)
ii. Edges w1w2 such that w1 ∈ w-a path, w2 ∈ w1-b path, d(w1, w) =

m where 0 6 m 6 d(w, a) − t+1
2 and

t+ 2m+ 1 6 d(w1, w2) 6 2d(w, a)

4. When d(w, b) > 3d(w, a),

i. If d(w, b) = 3n for some integer n, then the pacifying edges are

a. w1w2 where w1 = w and 2n 6 d(w1, w2) 6 2n + 2.

b. w1w2 where w1 is the vertex adjacent to w on w-b path and

d(w1, w2) = 2n

c. w1w2 where w1 is the vertex adjacent to w on w-a path and

d(w1, w2) = 2n+ 2

ii. If d(w, b) = 3n + 1 for some integer n then the pacifying edges

are w1w2 where w1 = w, w2 ∈ w-b path and

2n+ 1 6 d(w1, w2) 6 2n + 2.
iii. If d(w, b) = 3n+2 for some integer n then the only pacifying edge

is w1w2 where w1 = w, w2 ∈ w-b path and d(w1, w2) = 2n+ 2

Proof. In a path with end vertices a and b every vertex has either a or b as

its eccentric vertex. By adding a single edge we can reduce the distance of a

vertex to at most one of a and b. That is by adding a single edge eccentricity

of a vertex can be at most reduced to the smaller of its distances to a and

b. Let d(w, a) = y.

Case 1: d(w, a) = d(w, b).

By the above statements w has no pacifying edges.

Case 2:d(w, b) < 2d(w, a).

That is d(w, b) = y + t where 0 < t < y. Consider the graph G + (w, b).

Let w′ be the eccentric vertex of w in the unique cycle of the graph
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G+(w, b). dG+(w,b)(w, a) = y and dG+(w,b)(w,w
′) < y and dG+(w,b)(w, b) =

1. Therefore eG+(w,b)(w) = y. Hence by the observations that we made at

the beginning of the proof (w, b) is a pacifying edge of the vertex w.

i. Now take a vertex w1 in the w-b path at a distance m(> 0) from w.

Join it to vertex w2 at a distance ℓ from w1 in the w1-b path. Let w′
1

be the eccentric vertex of w1 in the unique cycle of G+w1w2. Assume

ℓ < t+1. Then t+1− ℓ > 0 or y+ t+1− ℓ−m+m− y > 0. That is

(y+ t+ℓ−m)+m+1> y. But (y+ t+ℓ−m)+m+1 is dG+w1w2(w, b).

Therefore the eG+w1w2(w) > y. In other words, w1w2 is not a pacifying

edge. That is if w1w2 is a pacifying edge of w, d(w1, w2) = ℓ > t+ 1.

If ℓ > 2(y − m) then d(w1, w
′
1) > y − m and therefore d(w,w′

1) > y.

Hence ℓ 6 2(y −m). That is t+ 1 6 ℓ 6 2(y −m).

Also m > y − t+1
2 ⇔ 2(y −m) < t+ 1. Therefore 0 6 m 6 y − t+1

2 .

Now m 6 y − t if and only if 2(y −m) > y + t−m. That is m 6 y − t

if and only if 2(y −m) > d(w1, b). In this case t+ 1 6 ℓ 6 d(w1, b).

When m > y − t, t+ 1 6 ℓ 6 2(y −m).

d(w1, b) < t+ 1 ⇐⇒ y + t−m < t+ 1 ⇐⇒ m > y − 1.

Therefore when m < y − t, d(w1, b) > t+ 1.

Conversely, let w1 and w2 be such that d(w1, w) = m < y−t and t+1 6

d(w1, w2) 6 d(w1, b). Since d(w1, w2) > t+ 1, t− d(w1, w2) + 1 6 0 or

y+ t−d(w1, w2)+1 6 y. That is y+ t−d(w1, w2)−m+m+1 6 y. In

other words dG+w1w2(w, b) 6 y. Since m 6 y − t, d(w1, b) 6 2(y −m)

and therefore d(w1, w2) 6 2(y −m). Hence d(w,w′
1) 6 y where w′

1 is

the eccentric vertex of w1 in the unique cycle of G + w1w2. That is

eG+w1w2 = y. That is, the edge w1w2 is a pacifying edge of w.

Now assume that y − t+1
2 > d(w1, w) = m > y − t and

t+1 6 d(w1, w2) 6 2(y−m). Since y− t+1
2 > d(w1, w) = m we have that

t+1 6 2(y−m). We have already proved that when d(w1, w2) > t+1,

d(w, b) 6 y. Since d(w1, w2) 6 2(y − m), d(w,w′
1) 6 y. That is
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eG+w1w2(w) = y. Hence w1w2 is a pacifying edge of w.

ii. Take w1 at a distance m from w in the w-a path and let w2 be at

a distance ℓ from w1 in the w1-b path. Let ℓ < t + 2m + 1 . Then

t− ℓ+2m+1 > 0 or y+ t− ℓ+m+m+1 > y. This gives, y+ t− (ℓ−

m) + m + 1 > y. That is dG+w1w2(w, b) > y. Therefore w1w2 is not

a pacifying edge of w. In other words for a pacifying edge w1w2 of w,

d(w1, w2) = ℓ > t+ 2m+ 1. ℓ > 2y =⇒ d(w,w′) > y where w′ is the

eccentric vertex of w in the unique cycle of G + w1w2. Hence ℓ 6 2y.

Therefore t+ 2m+ 1 6 ℓ 6 2y.

2y < t + 2m + 1 ⇔ m > y − t+1
2 . Hence m 6 y − t+1

2 . When

m 6 y − t, m + y + t 6 2y. That is d(w1, b) 6 2y. Therefore when

0 < m 6 y− t, t+2m+1 6 ℓ 6 d(w1, b) and when y− t+1
2 > m > y− t,

t + 2m + 1 6 ℓ 6 2y. Here d(w1, b) < t + 2m + 1 =⇒ m + y +

t < t + 2m + 1 =⇒ y < m + 1 or m > y − 1. Therefore when

m 6 y − t, d(w1, b) > t+ 2m+ 1.

Now we shall prove that if w1 and w2 are such that w1 ∈ w-a path,

d(w1, w) = m, 0 < m 6 y − t and t + 2m + 1 6 d(w1, w2) 6 d(w1, b)

then w1w2 is pacifying edge of w. d(w1, w2) > t+ 2m+ 1 then y + t−

d(w1, w2) +m+m+ 1 6 y or dG+w1w2(w, b) 6 y. Also

d(w1, w2) 6 d(w1, b) 6 2y =⇒ dG+w1w2(w,w
′) 6 y where w′ is

the eccentric vertex of w in the unique cycle of G + w1w2. Hence

eG+w1w2(w) = y. or w1w2 is a pacifying edge of w. Let w1 and w2

be such that w1 ∈ w-a path, d(w1, w) = m, y − t+1
2 > m > y − t

and t + 2m + 1 6 d(w1, w2) 6 2y. It can be easily seen that w1w2 is

pacifying edge of w.

Thus for w ∈ V (Pn) such that d(w, b) < 2d(w, a) the pacifying edges are

precisely those given above.

Case 3: 2d(w, a) 6 d(w, b) < 3d(w, a).

i. Let w1 be a vertex in the w-b path at a distance m(> 0) from w and
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w2 be at a distance ℓ from w1 in the w1-b path. It can be seen as

above that if d(w1, w2) < t + 1 or > 2(y − m) then w1w2 cannot be

a pacifying edge of w. That is for an edge w1w2 to be pacifying edge

t + 1 6 d(w1, w2) 6 2y. As in previous case, when m > y − t+1
2 ,

2(y − m) < t + 1. Hence m should be such that 0 6 m 6 y − t+1
2 .

Conversely if w1 and w2 are such that w1 is in the w-b path, d(w,w1) =

m, 0 6 m 6 y − t+1
2 and t+ 1 6 d(w1, w2) 6 2(y −m) then it can be

shown as in the previous case that w1w2 is a pacifying edge.

ii. w1 is in the a-w path w2 is in the w1-b path, d(w1, w2) = ℓ and

d(w1, w) = m. It can be easily proved that w1w2 is a pacifying edge if

and only if 0 < m 6 y − t+1
2 and t+ 2m+ 1 6 ℓ 6 2y.

The above two cases precisely give the pacifying edges of w when

2d(w, a) 6 d(w, b) < 3d(w, a).

Case 4: d(w, b) > 3d(w, a).

We have the following subcases.

Subcase 4.1: d(w, b) = 3n.

By adding an edge between a pair of vertices at a distance less than 2n the

eccentricity of w can be reduced at most to n + 2. Now, if we join a pair

of vertices at a distance greater than 2n + 2, since the resulting cycle has

radius at least n+ 2, the eccentricity of w is at least n+ 2. Also if we join

w to v where d(w, v) = 2n then dG+(w,v)(w,w
′) = n, dG+(w,v)(w, b) = n+1

and dG+(w,v)(w, a) 6 n. Hence eG+(v,w)(w) = n + 1. If we join a pair of

vertices at a distance 2n+1 or 2n+2 the resulting cycle has radius n+1 and

therefore eccentricity of w is at least n+1. Let w1(6= w) and w2 be pair of

vertices at a distance 2n such that w1 belong to w-b path and w2 belong to

w1-b path. Then dG+w1w2(w1, w
′
1) = n where w′

1 is the eccentric vertex of

w1 in the unique cycle of G+w1w2 and therefore dG+w1w2(w,w
′
1) > n+1.

Hence eG+w1w2(w) > n+ 1.



58 Chapter 4. Pacifying and Shrinking edges

Let w1(6= w) and w2 be pair of vertices at a distance 2n such that w1 belong

to w-a path and w2 belong to w1-b path. Then dG+w1w2(w, b) > n+ 3 and

therefore eG+w1w2(w) > n + 3. From these observations we can conclude

that by adding a single edge the eccentricity of w can be reduced at most

to n+ 1.

Let w1 and w2 be pair of vertices such that w1 belongs to w-b path, w2

belongs to w1-b path and d(w1, w) = m. Join w1 and w2. dG+w1w2(w, b) =

3n− (d(w1, w2)− 1) = 3n+1− d(w1, w2). If w1w2 has to be pacifying edge

of w then dG+w1w2 6 n+ 1. That is, 3n+ 1− d(w1, w2) 6 n+ 1 or

d(w1, w2) > 2n. d(w1, w2) > 2((n + 1) − m) =⇒ d(w,w′
1) > n + 1.

Therefore, if (w1, w
′
1) is to be a pacifying edge of w then

d(w1, w2) 6 2((n+1)−m). Hence we have, 2n 6 d(w1, w2) 6 2((n+1)−m).

This is possible only when m = 0 or 1.

When m = 0, 2n 6 d(w1, w2) 6 2n + 2 and when m = 1,

2n 6 d(w1, w2) 6 2n. In fact it is easy to verify that when m = 0 and

2n 6 d(w1, w2) 6 2n + 2 or m = 1 and d(w1, w2) = 2n, eG+w1w2(w) is

n+ 1.

Let w1 and w2 be such that w1 belongs to w-a path, w2 belongs to w1-

b path and d(w1, w) = m(> 0). d(w1, w2) > 2(n + 1) implies that the

cycle formed by joining w1 and w2 has radius greater than n+ 1. That is,

dG+w1w2(w,w
′) > n+1 where w′ is the eccentric vertex of w in the unique

cycle of G+w1w2. In other words eG+w1w2(w) > n+1. Hence if w1w2 has

to be pacifying edge of w then d(w1, w2) 6 2(n + 1).

2n + 2m > d(w1, w2) =⇒ 3n− (d(w1, w2)−m) + 1 +m > n+ 1.

That is, dG+w1w2(w, b) > n+ 1 or eG+w1w2(w) > n+ 1. Hence

d(w1, w2) > 2n + 2m. Thus we get 2n+ 2m 6 d(w1, w2) 6 2n + 2. This is

possible only whenm = 1 and we get d(w1, w2) = 2n+2. When d(w1, w2) =

2n+2 andm = 1, we have dG+w1w2(w, b) = n+1 and dG+w1w2(w,w
′) = n+1

where w′ is the eccentric vertex of w in the unique cycle of G+w1w2. That
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is, eG+w1w2(w) = n+ 1 or w1w2 is a pacifying edge of w.

Thus the pacifying edges of w are precisely the following.

a. w1w2 where w1 = w,w2 belong to w-b path and d(w2, w) = 2n.

b. w1w2 where w1 = w,w2 belong to w-b path and d(w2, w) = 2n + 1.

c. w1w2 where w1 = w,w2 belong to w-b path and d(w2, w) = 2n + 2.

d. w1w2 where w1 belong to w-b path, w2 belong to w1-b path, d(w1, w) = 1

and d(w2, w) = 2n+ 1.

e. w1w2 where w1 belong to w-a path, w2 belong to w-b path, d(w1, w) = 1

and d(w2, w) = 2n+ 1.

Subcase 4.2: d(w, b) = 3n+ 1.

Since d(w, b) > 3d(w, a) we have n > d(w, a). Joining w to a vertex v

in the w-b path such that d(w, v) = 2n + 1 reduces the eccentricity of w

to n + 1. If we join two vertices at a distance less than 2n + 1 then the

eccentricity of w reduces at most to n + 2. If we join two vertices at a

distance greater than 2n + 2 then the resulting cycle has radius at least

n+ 2 and therefore there exists at least one vertex whose distance from w

is at least n+2. Therefore a pacifying edge should be between two vertices

at distance 2n+1 or 2n+2. In both these cases we get cycles having radii

n+1 and therefore eccentricity of w in the resulting graph is at least n+1.

Thus, the pacifying edges of w are precisely those edges that reduces its

eccentricity to n+ 1.

Let w1 and w2 be such that d(w1, w) = m(> 0), w1 belongs to the w-b

path and w2 belongs to the w1-b path. For w1w2 to be a pacifying edge

of w, dG+w1w2(w,w
′
1, ) 6 n + 1 where w′

1 is the eccentric vertex of w1 in

the unique cycle of G + w1w2. That is, the radius of the cycle should

be less than or equal to n + 1 − m. Hence d(w1w2) 6 2(n + 1 − m).

Similarly, dG+w1w2(w, b) should be less than or equal to n + 1. Hence

3n+1−d(w1, w2)−m+m+1 6 n+1 or d(w1, w2) > 2n+1. Thus, we get

2n + 1 6 d(w1, w2) 6 2(n + 1−m). But this is possible only when m = 0
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and in this case 2n+ 1 6 d(w1, w2) 6 2n+ 2. It can be easily verified that

when m = 0 and d(w1, w2) = 2n+ 1 or 2n+ 2, eG+w1w2(w) = n+ 1.

Let w1 and w2 be such that d(w1, w) = m(> 0), w1 belongs to the w-a

path and w2 belongs to the w1-b path. For w1w2 to be pacifying edge of w,

dG+w1w2(w,w
′) should be less than or equal to n+1 where w′ is the eccentric

vertex of w in the unique cycle of G+w1w2. That is, d(w1, w2) 6 2(n+1).

Also, dG+w1w2(w, b) 6 n+1 gives 3n+1− (d(w1, w2)−m)+1+m 6 n+1

or d(w1, w2) > 2n+2m+1. Thus we get 2n+2m+1 6 d(w1, w2) 6 2n+2.

This is not possible for any positive values of m. Hence the pacifying edges

of w are w1w2 where w1 = w and d(w1, w2) = 2n+ 1 or 2n+ 2.

Subcase 4.3: d(w, b) = 3n+ 2.

Joining w to a vertex v in the w-b path such that d(w, v) = 2n+2 reduces

the eccentricity of w to n + 1. If we join two vertices at a distance less

than 2n+ 2 then the eccentricity of w reduces at most to n+ 2. If we join

two vertices at a distance greater than 2n + 2 then the resulting cycle has

radius at least n + 2 and therefore there exists at least one vertex whose

distance from w is at least n+2. Hence a pacifying edge should be between

two vertices at distance 2n + 2. In this case we get a cycle having radius

n+1 and therefore eccentricity of w in the resulting graph is at least n+1.

Thus, the pacifying edges of w are precisely those edges that reduces its

eccentricity to n+ 1.

Let w1 and w2 be such that d(w1, w) = m(> 0), w1 belongs to the w-b

path and w2 belongs to the w1-b path. For w1w2 to be a pacifying edge

of w, dG+w1w2(w,w
′
1, ) 6 n + 1 where w′

1 is the eccentric vertex of w1

in the unique cycle of G + w1w2. That is the radius of the cycle should

be less than or equal to n + 1 − m. Hence d(w1, w2) 6 2(n + 1 − m).

Similarly, dG+w1w2(w, b) should be less than or equal to n + 1. That is

3n+2− d(w1, w2)−m+m+1 6 n+1 or d(w1, w2) > 2n+2. Thus we get

2n + 2 6 d(w1, w2) 6 2(n + 1−m). But this is possible only when m = 0
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and in this case d(w1, w2) = 2n + 2. It can be easily verified that when

m = 0 and d(w1, w2) = 2n+ 2 , eG+w1w2(w) = n+ 1.

Let w1 and w2 be such that d(w1, w) = m(> 0), w1 belongs to the w-a

path and w2 belongs to the w1-b path. For w1w2 to be pacifying edge of w,

dG+w1w2(w,w
′) should be less than or equal to n+1 where w′ is the eccentric

vertex of w in the unique cycle of G+w1w2. That is, d(w1, w2) 6 2(n+1).

Also, dG+w1w2(w, b) 6 n+1 gives 3n+2− (d(w1, w2)−m)+1+m 6 n+1

or d(w1, w2) > 2n+2m+2. Thus we get 2n+2m+2 6 d(w1, w2) 6 2n+2.

This is not possible for any positive values of m. Hence the pacifying edge

of w is w1w2 where w1 = w and d(w1, w2) = 2n + 2. Thus we have listed

the pacifying edges of all the different types of vertices of a path.

As an illustration of the above theorem 4.2.1, consider the following

example.

Example 4.2.1. Consider the path P17 = v1v2 . . . v17.

b

v1

b
v2

b

v3

b
v4

b

v5

b
v6

b

v7

b
v8

b

v9

b
v10

b

v11

b
v12

b

v13

b
v14

b

v15

b
v16

b

v17

Figure 4.2: Path P17

The following tables give the pacifying edges and the reduced eccentric-

ities of certain vertices of this path.
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Table 4.1: Pacifying edges of vertices where d(w, b) < 3d(w, a)

Vertex
(w)

d(w, a) d(w, b) t m d(w1, w2) pacifying edges eP17
eP17+w1w2

w1 ∈ w − b path

v
7

d
(w

,
b)

<
2
d
(w

,
a
)

6 10 4 0 5 6 d(w1, w2) 6 10 v7v17, v7v16, v7v15,
v7v14, v7v13, v7v12

10 6

1 5 6 d(w1, w2) 6 9 v8v13, v8v14, v8v15,
v8v16, v8v17

2 5 6 d(w1, w2) 6 8 v9v14, v9v15,
v9v16, v9v17

3 5 6 d(w1, w2) 6 7 v10v15, v10v16,
v10v17

w1 ∈ w − a path
1 7 6 d(w1, w2) 6 11 v6v13, v6v14, v6v15,

v6v16, v6v17
2 9 6 d(w1, w2) 6 12 v5v14, v5v15,

v5v16, v5v17
3 11 6 d(w1, w2) 6 13 v4v15, v4v16, v4v17

v
6
,

2
d
(w

,
a
)
6

d
(w

,
b
)

<
3
d
(w

,
a
)

5 11 6

w1 ∈ w − b path
0 7 6 d(w1, w2) 6 10 v6v13, v6v14,

v6v15, v6v16

11 5

1 7 6 d(w1, w2) 6 8 v7v14, v7v15
w1 ∈ w − a path

1 9 6 d(w1, w2) 6 10 v5v14, v5v15

Table 4.2: Pacifying edges of vertices where d(w, b) > 3d(w, a)

V
er
te
x
(w

)

d
(w

,
a
)

d
(w

,
b)

n m d(w1, w2) pacifying
edges

eP17
eP17+w1w2

w1 ∈ w − b path
v5 4 12 4 0 8 6 d(w1, w2) 6 10 v5v13, v5v14,

v5v15

12 5

1 d(w1, w2) = 8 v6v14

w1 ∈ w − a path
1 d(w1, w2) = 10 v4v14

v4 3 13 4 0 9 6 d(w1, w2) 6 10 v4v13, v4v14 13 5

v3 2 14 4 0 d(w1, w2) = 10 v3v13 14 5
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4.2.2 Pacifying edges of Odd Cycles

Theorem 4.2.2. Let G be the odd cycle C2n+1(n > 2) with vertex set

{v1, . . . , v2n+1}.

1. If n is even the pacifying edges of a vertex vi are

(a) vivi⊕2n+1n

(b) vivi⊕2n+1(n+1)

(c) vivi⊕2n+1(n+2)

(d) vivi⊕2n+1(n−1)

(e) vi⊕2n+11vi⊕2n+1(n+1)

(f) vi⊖2n+11vi⊕2n+1n

(g) vi⊕2n+11vi⊕2n+1n

(h) vi⊖2n+11vi⊕2n+1(n+1)

2. If n is odd the pacifying edges vi are vivi⊕2n+1n and vivi⊕2n+1(n+1).

Proof. 1. Suppose n is even. Add the edge vivi⊕2n+1n. Then we get two

cycles, say C ′
1 and C ′

2, both containing vi and having n+2 and n+1

edges respectively. n + 2 is even and vi has eccentricity n
2 + 1 in C ′

1

and consequently eG+vivi⊕2n+1n
= n

2 +1. Similarly by adding the edge

vivi⊕2n+1(n+1) the eccentricity of vi reduces to
n
2 +1. Adding the edge

vivi⊕2n+1(n+2) we get cycles C ′
1 and C ′

2 where C ′
1 has n+ 3 edges, C ′

2

has n edges and both contain the vertex vi. C
′
1 has radius n

2 + 1 and

C ′
2 has radius

n
2 . Therefore vi has eccentricity

n
2 +1 in the new graph.

Similarly adding the edge vivi⊕2n+1(n−1) reduces the eccentricity of vi

to n
2 +1. Adding an edge between vi and a vertex other than vi⊕2n+1n,

vi⊕2n+1(n+1), vi⊕2n+1(n+2), vi⊕2n+1(n−1) we get two cycles C ′
1 and C ′

2,

both containing vi, and one of them having radius greater than n
2 +1.

Therefore eccentricity of vi in such a graph is greater than n
2 +1. Now

we add an edge between vj and vk such that j, k 6= i. Let C ′
1 and C ′

2

be the resulting two cycles. Take two cases.
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b

b

b b b

bb

vi

vi⊖2n+11

vi⊕2n+11 vi⊕2n+1(n−1)

vi⊕2n+1n

vi⊕2n+1(n+1)

vi⊕2n+1(n+2)

Figure 4.3: Odd Cycle C2n+1

Case 1: vi ∈ C ′
1 where |E(C ′

1)| < |E(C ′
2)|. That is, C ′

2 has at

least n+2 edges or radius of C ′
2 is at least n

2 +1. Assume d(vi, vj) 6

d(vi, vk). Let v̄j be the eccentric vertex of vj in C ′
2. That is d(vj , v̄j) >

n
2 + 1. Therefore d(vk, v̄j) >

n
2 . Since n > 2, n

2 > 1.

d(vi, v̄j) = min{d(vi, vj) + d(vj , v̄j), d(vi, vk) + d(vk, v̄j)}

> min{d(vi, vj) +
n

2
+ 1, d(vi, vk) +

n

2
}

d(vi, v̄j) =
n
2 + 1 only when d(vi, vk) = d(vi, vj) = 1 and this implies

n = 2. Since n > 2 we have d(vi, v̄j) > n
2 + 1. Hence vjvk is not a

pacifying edge of vi.

Case 2: vi ∈ V (C ′
2) where E(C ′

2) > E(C ′
1). Here we shall consider

two sub cases.

Subcase 2.1: |E(C ′
2)| = n+ 2 and |E(C ′

1)| = n+ 1.

Assume d(vi, vj) 6 d(vi, vk). Let v̄j be the vertex that is eccentric to

both vj and vk in C ′
1. Then d(vi, v̄j) = d(vi, vj) +

n
2 . But d(vi, v̄j) =

n
2 + 1 when vi is adjacent to vj. In this case we have that the eccen-

tricity of vi is
n
2 + 1. In other words, for the vertex vi, the edge vjvk

such that vj is adjacent to vi and dC2n+1(vj , vk) = dC2n+1(vi, vk) = n

is a pacifying edge of vi. Consequently, the edges vi⊕2n+11vi⊕2n+1(n+1)

and vi⊖2n+11vi⊕2n+1n are pacifying edges of the vertex vi.
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Subcase 2.2: |E(C ′
2)| = n+ 3 and |E(C ′

1)| = n.

Let v̄j be the vertex eccentric to vj in C ′
1. Then

d(vi, v̄j) =






d(vi, vj) +
n
2 if d(vi, vj) < d(vi, vk)

d(vi, vk) + d(vj , v̄j)− 1 = d(vi, vj) +
n
2 − 1 if d(vi, vj) = d(vi, vk)

d(vi, vj) = d(vi, vk) = 2 implies n = 2. But we have n > 2. Hence

d(vi, vj) = d(vi, vk) implies both are greater than 2 or

d(vi, v̄j) >
n
2 + 2. This gives, vjvk is not a pacifying edge. Hence we

assume that d(vi, vj) < d(vi, vk). Then d(vi, v̄j) = d(vi, vj) +
n
2 .

Thus d(vi, v̄j) =
n
2 + 1 if and if only if vi is adjacent to vj . In other

words, for the vertex vi, the edge vjvk such that vj is adjacent to vi,

dC2n+1(vj , vk) = n− 1 and d(vi, vk) = n is a pacifying edge of vi.

Consequently, the edges vi⊕2n+11vi⊕2n+1n and vi⊖2n+11vi⊕2n+1(n+1)

are pacifying edges of the vertex vi.

Subcase 2.3: |E(C ′
2)| > n+ 3.

In this case eC′
2
(vi) >

n
2 + 2 or eC2n+1(vi) >

n
2 + 2.

Thus we get that the pacifying edges of vi are precisely

(a) vivi⊕2n+1n

(b) vivi⊕2n+1(n+1)

(c) vivi⊕2n+1(n+2)

(d) vivi⊕2n+1(n−1)

(e) vi⊕2n+11vi⊕2n+1(n+1)

(f) vi⊖2n+11vi⊕2n+1n

(g) vi⊕2n+11vi⊕2n+1n

(h) vi⊖2n+11vi⊕2n+1(n+1)

Assume n is odd. Joining vi to vi⊕2n+1n we get two cycles C ′
1 and C ′

2

having n+ 1 and n+ 2 edges respectively. Then C ′
1 and C ′

2 have

radii n+1
2 . Therefore the eccentricity of vi in both C ′

1 and C ′
2 is n+1

2
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or eccentricity of vi in the G+ vivi⊕2n+1n is n+1
2 . Similarly by

adding the edge vivi⊕2n+1(n+1) the eccentricity of vi reduces to
n+1
2 .

Now, let vi be joined to any vertex other than vi⊕2n+1n and

vi⊕2n+1(n+1). Then one of the cycles formed contains at least n+ 3

edges. That is, the radius of that cycle is n+3
2 or eccentricity of vi in

the new graph is at least n+3
2 . Hence any such edge cannot be a

pacifying edge of vi. Suppose we join vj and vk where j, k 6= i. Let

C ′
1 and C ′

2 be the two cycles formed where |E(C ′
1)| 6 |E(C ′

2)|. Here

we shall consider two cases.

Case 1: Suppose vi ∈ V (C ′
1). Take the following subcases.

Subcase 1.1: |E(C ′
1)| = n+ 1 and |E(C ′

2)| = n+ 2.

Then C ′
1 is an even cycle. Let d(vi, vj) < d(vi, vk). Let v̄j be the

eccentric vertex of vj in C ′
2.

d(vi, v̄j) = d(vi, vj) + d(vj , v̄j) = d(vi, vj) +
n+1
2 > n+1

2 . Hence

eG+vjvk < n+1
2 . That is, vjvk is not a pacifying edge.

Subcase 1.2: If |E(C ′
2)| > n+ 3 then the radius of C ′

2 >
n+1
2 + 1.

Then d(vi, v̄j) >
n+1
2 + 1 where v̄j is the eccentric vertex of vj in C ′

2.

That is, the eccentricity of vi in G+ vjvk is at least n+1
2 + 1 or vjvk

is not a pacifying edge.

Case 2: Suppose vi ∈ V (C ′
2). We have that |E(C ′

2)| > n+ 2. Again

we consider two sub cases.

Subcase 2.1: |E(C ′
2)| = n+ 2. Let v̄j be the eccentric vertex of vj

in C ′
1.

d(vi, v̄j) =







d(vi, vj) + d(vj , v̄j) if d(vi, vk) > d(vi, vj)

d(vi, vj) + d(vj , v̄j)− 1 if d(vi, vk) = d(vi, vj)

d(vi, vk) = d(vi, vj) =⇒ d(vi, v̄j) = d(vi, vj) +
n+1
2 − 1.

d(vi, vk) = d(vi, vj) = 1 =⇒ our cycle is C3 which is not the case.
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Hence d(vi, vj) > 1 or d(vi, v̄j) <
n+1
2 . So vjvk cannot be a pacifying

edge of vi.

If d(vi, vk) > d(vi, vj) then

d(vi, v̄j) = d(vi, vj) + d(vj , v̄j)

= d(vi, vj) +
n+ 1

2

>
n+ 1

2

Hence eG+vjvk(vi) >
n+1
2 . That is, vjvk is not a pacifying edge.

Subcase 2.2: |E(C ′
2)| > n+ 3. This implies d(vi, v̄i) >

n+3
2 where

v̄i is the eccentric vertex of vi in C ′
2.

In other words vivi⊕2n+1n and vivi⊕2n+1(n+1) are the only pacifying

edges of vi.

4.2.3 Pacifying edges of Symmetric Even graphs

Next we shall identify the pacifying edges of vertices of a symmetric even

graph. Let G be a symmetric even graph. From the definition it is clear that

if diameter of G is d, then for every u,w ∈ G, d(u, ū) = d(u,w)+ d(w, ū) =

d. That is d(u,w) = m implies d(ū, w) = d−m. Since d(w, w̄) = d we have

d(ū, w̄) = d− (d−m) = m.

Now we shall find the pacifying edges of vertices of a symmetric even graph.

Theorem 4.2.3. Let G be a Symmetric Even graph having diameter d.

Then

1. If d is even then the only pacifying edge of a vertex v is vv̄.

2. If d is odd the pacifying edges of v are
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(a) All edges vy such that y is either v̄ or a vertex adjacent to v̄.
(b) All edges xv̄ such that x is either v or a vertex adjacent to v.

Proof. Let v1 and v2 be vertices such that d(v1, v) = r1, d(v2, v̄) = r2 and

d(v1, v) 6 d(v2, v). Now consider the graph G+ v1v2. If d(v1, v) = d(v2, v),

then dG+v1v2(v, v̄) = d and hence the eccentricity of v does not decrease.

So we can assume that d(v1, v) < d(v2, v). Let u be a vertex belonging

to a shortest v-v2 path. If d(u, v) = m, then, since G is symmetric even,

d(ū, v̄) = m. Therefore d(v2, ū) 6 r2 + m. d(v2, ū) = r2 + m − ℓ implies

d(u, ū) = d− r2 −m+ r2 +m− ℓ = d− ℓ, a contradiction to fact that G is

self-centered. Hence d(v2, ū) = r2 +m. That is, the length of the shortest

path from v to ū in G+v1v2 passing through the edge v1v2 is r1+1+r2+m.

Thus dG+v1v2(v, ū) = min{d−m, r1 + 1 + r2 +m}.

Let w be a vertex in the shortest v-v2 path such that d(w, v) = k(ie

d(w̄, v̄) = k) and r1 + 1 + r2 + k = d − k or d − k − 1 according to the

parity of r1 + r2 + 1 and d. For any vertex x such that d(v̄, x) < k, we

have that dG+v1v2(v, x) < r1 + r2 + 1 + k and for any vertex x such that

d(v̄, x) > k we have dG+v1v2(v, x) < d− k. That is w̄ is an eccentric vertex

of v in G+ v1v2. Hence the eccentricity of v is dG+v1v2(w̄, v). Now we shall

consider two cases.

1. Assume d is even. When r1 + r2 is odd r1 + r2 + 1 is even and

hence r1 + r2 + 1 + k = d − k or k = d
2 − r1+r2+1

2 and therefore

eG+v1v2(v) = r1 + r2 + 1 + k = d
2 + r1+r2+1

2 .

When r1+r2 is even r1+r2+1 is odd and hence r1+r2+1+k = d−k−1

or k = d
2 − r1+r2+2

2 and therefore eG+v1v2(v) = r1 + r2 + 1 + d =

r1 + r2 + 1 + d
2 − r1+r2+2

2 = d
2 +

r1+r2
2 .

Thus eG+vjvk(v) =
d
2 +⌈ r1+r2

2 ⌉. This is a minimum when r1 = r2 = 0.

That is, the only pacifying edge is vv̄.

2. Assume d is odd. When r1 + r2 is odd, r1 + r2 + 1 is even and hence
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r1 + r2 + 1 + k = n − k − 1 or x = d−1
2 − r1+r2+1

2 and therefore

eG+v1v2(vi) = r1 + r2 + 1 + d = d−1
2 + r1+r2+1

2 . When r1 + r2 is even

r1+ r2+1 is odd and hence r1+ r2+1+k = n−k or x = d−1
2 − r1+r2

2

and therefore eG+v1v2(v) = r1 + r2 + 1 + k = d−1
2 + r1+r2+2

2 .

Thus eG+v1v2(v) = d−1
2 + ⌊ r1+r2+2

2 ⌋. This is a minimum when r1 =

r2 = 0 or r1 = 1, r2 = 0 or r1 = 0, r2 = 1 . Consequently, the

pacifying edges are

(a) All edges vy such that y is either v̄ or a vertex adjacent to v̄.

(b) All edges xv̄ such that x is either v or a vertex adjacent to v.

.
Remark 4.2.1. The theorems 4.2.2 and 4.2.3 prove that every vertex of

a cycle Cn(n > 5) has at least one pacifying edge.

4.3 Shrinking Edges

In this section we consider the problem of identifying the edge(s) when

added to a graph decreases its radius the most. This helps in having centers

which are more effective than the previous centers. We call such edges the

shrinking edges and shrinking edges of paths, odd cycles and symmetric

even graphs are identified.

Definition 4.3.1. For a graph G, an edge uv ∈ E(Gc) is called a Shrinking

Edge if rad(G+ uv) 6 rad(G+ xy) for every xy ∈ E(Gc).

We shall identify the shrinking edges of certain classes of graphs.

Corollary 4.3.2. (to Theorem 4.2.1) Let Pm be a path vertex set {v1, . . . , vm}.

Then

1. ifm = 4n+1 for some integer n then the shrinking edges of Pm are the

pacifying edges of vn−1, vn, vn+1, vn+2, v3n, v3n+1, v3n+2 and v3n+3.
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2. if m = 4n + 2, the shrinking edges of Pm are the pacifying edges of

vn, vn+1, vn+2, v3n+1, v3n+2 and v3n+3.

3. if m = 4n + 3, the shrinking edges of Pm are the pacifying edges of

vn+1, vn+2, v3n+2 and v3n+3.

4. if m = 4n + 4, the shrinking edges of Pm are the pacifying edges of

vn+2 and v3n+3.

Proof. Let m = 4n+1. Consider an edge uv in P c
m. If uv is a pacifying edge

of any of the vertices mentioned in the theorem, then by the theorem 4.2.1

the eccentricity of this vertex in Pm+uv is n+1 and the eccentricity of all

other vertices is > n+1. Therefore rad(Pm+uv) = n+1. Also if uv is not

a pacifying edge of any vertices of Pm then the eccentricity of all vertices of

Pm+uv > n+1. Therefore rad(Pm+uv) > n+1. Therefore, shrinking edges

are precisely the pacifying edges of vn−1, vn, vn+1, vn+2, v3n, v3n+1, v3n+2

and v3n+3. All other cases can be proved in exactly the same way.

The table 4.3 gives the shrinking edges of Pm when m = 4n + 1, 4n +

2, 4n+3 and 4n+4. In each of theses cases the radius is reduced to n+1.

The following corollary identify the shrinking edges of an odd cycle.

Corollary 4.3.3. (to Theorem 4.2.2) Consider the cycle C2n+1 having

vertex set {v1, . . . , v2n+1}. An edge vivj in Cc
2n+1 is a shrinking edge if and

only if it is the pacifying edge of some vertex vi.

Proof. Let n be even. If vivj , an edge of Cc
2n+1, is a pacifying edge of

a vertex vk then eG+vivj (vk) = n
2 + 1 and also for all vℓ 6= vk, we have

eG+vivj (vℓ) >
n
2 + 1. Therefore rad(G+ vivj) =

n
2 + 1. By adding a single

edge(any of the pacifying edges) the eccentricity of every vertex can be

reduced exactly to n
2 +1. Therefore an edge is a shrinking edge if and only

if it is a pacifying edge of some vertex. Similarly the case when n is odd.

Here instead of n
2 + 1 we have n+1

2 .
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Table 4.3: Shrinking edges of path Pm

m shrinking Edges C(Pm + uv)

vn−2v3n v3n

vn−1v3n−1 v3n
vn−1v3n v3n

vn−1v3n+1 vn−1, v3n, v3n+1

vnv3n−1 v3n
vnv3n v3n, v3n+1

4n+ 1 vnv3n+1 vn, v3n, v3n+1

vnv3n+2 vn, vn+1, v3n+1, v3n+2

vn+1v3n v3n
vn+1v3n+1 vn+1, v3n+1

vn+1v3n+2 vn+1, vn+2, v3n+2

vn+1v3n+3 vn+1, vn+2, v3n+3

vn+2v3n+1 vn+2

vn+2v3n+2 vn+1, vn+2

vn+2v3n+3 vn+2

vn+2v3n+4 vn+2

vn+3v3n+2 vn+2

vn+3v3n+3 vn+2

vn−1v3n+1 v3n+1

vnv3n v3n+1

vnv3n+1 v3n+1

vnv3n+2 vn, v3n+1, v3n+2

vn+1v3n+1 v3n+1

4n+ 2 vn+1v3n+2 vn+1, v3n+2

vn+1v3n+3 vn+1, vn+2, v3n+3

vn+2v3n+2 vn+2

vn+2v3n+3 vn+2

vn+2v3n+4 vn+2

vn+3v3n+3 vn+2

vnv3n+2 v3n+2

vn+1v3n+2 v3n+2

4n+ 3 vn+1v3n+3 vn+1, v3n+3

vn+2v3n+3 vn+2

vn+2v3n+4 vn+2

vn+1v3n+3 v3n+3

4n+ 4 vn+2v3n+4 vn+2

Finally, we give the shrinking edges of symmetric even graphs
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Corollary 4.3.4. (to Theorem 4.2.3) Consider the symmetric even graph

G. An edge uv in Gc is a shrinking edge if and only if it is the pacifying

edge of some vertex v.

4.4 Conclusion

In this chapter we introduced the concept of pacifying edges and shrinking

edges of the vertices of a graph and the same has been identified for paths,

odd cycles and symmetric even graphs. It is established that the pacifying

edges of the vertices of a path depends on the ratio of the distance of the

vertex to the end vertices. A far as the odd cycles and symmetric even

graphs are considered, the pacifying edges of any vertex depends on the

parity of the radius of the graph. Shrinking edges of the path depends on

the remainder that we get on dividing the length of the path by four. Any

edge that is a pacifying edge of some vertex of the odd cycle or symmetric

even graph is shown to be a shrinking edge of the graph.



Chapter 5

Median Sets and Median Num-

ber

5.1 Introduction

In this chapter we study another centrality measure called median. In fact,

the generalisation of the median of a graph to median of arbitrary profiles

of a graph is being considered. Given a graph it is possible to have infinitely

many profiles, but the number of distinct medians of these profiles is finite

and in many cases it much less than the maximum possible number of

2n − 1. We make an enumeration of the number of distinct medians of all

profiles of a graph.

For the profile π = (v1, . . . , vk) and x ∈ V , the set of all vertices x for which

D(x, π) is minimum is the Median of π in G and is denoted by MG(π).

When the underlying graph is obvious we write M(π) instead of MG(π).

A set S such that S = M(π) for some profile π is called a Median set of

G.The number of distinct Median sets in G is called Median number of

graph G and is denoted by mn(G). Here we identify and enumerate the

median sets of various classes of graphs. But before that we have a small

result connecting the median number and the interval number of a graph.

Proposition 5.1.1. For any graph G = (V,E) on n vertices, in(G) 6

mn(G) 6 2n − 1.

Proof. The upper bound is obvious as it is the number of nonempty subsets

of the vertex set. For every v ∈ V , v is a median set of the profile (v).

73



74 Chapter 5. Median Sets and Median Number

For every u, v ∈ V the set I(u, v) is the median set of the profile (u, v).

Therefore in(G) 6 mn(G) 6 2n − 1.

5.2 Median number of some classes of graphs

5.2.1 Median number of Complete graphs

Proposition 5.2.1. mn(Kn) = 2n − 1, where Kn is the complete graph

on n vertices.

Proof. In Kn, each nonempty subset of the vertex set is a median set,

namely, of the profile formed by taking all the elements of the set exactly

once. Therefore the number of distinct median sets is the number of non-

empty subsets of V which is 2n − 1.

5.2.2 Median number of Kn − e

Proposition 5.2.2. If e = uv is an edge of Kn, n > 3, then the class of

median sets of Kn − e consists of V together with all subsets of V which

do not simultaneously contain u and v.

Proof. Let e = (u, v) ∈ E. For every vertex set S such that {u, v} * S,

there exist a profile which has S as its Median set, namely the profile

formed by taking the vertices of S exactly once. Let π be a profile which

does not simultaneously contain u and v. Then M(π) is a subset of the

set of vertices corresponding to the profile π and hence does not contain

u and v. Now, let π be a profile which contain both u and v. Then if u

or v is repeated more than the other in the profile then D(u, π) 6= D(v, π)

and so they cannot appear together in the M(π). Assume that π contain

both u and v where both are repeated the same number of times. Let

the profile be (x1, . . . , xk, u, . . . , u
︸ ︷︷ ︸

m times

, v, . . . , v
︸ ︷︷ ︸

m times

), m > 1. For xi, 1 6 i 6 k,
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D(xi, π) 6 k − 1 + 2m. Also, D(u, π) = k + 2m and D(v, π) = k + 2m.

Therefore M(π) does not contain both u and v. Now the profile (u, v) has

V as its Median set. Hence V is the only Median set which contain both

u and v. Therefore the class of all Median sets of the graph consists of V

and all subsets of V which do not simultaneously contain u and v.

Corollary 5.2.3. mn(Kn − e) = 3× 2n−2 .

Proof. If e = uv, by the above proposition, the median number of Kn − e

is one more than the number subsets of V which do not simultaneously

contain u and v.

mn(Kn − e) =
(
n
1

)
+

(
n
2

)
−

(
n−2
0

)
+

(
n
3

)
−

(
n−2
1

)
+ . . .+

(
n

n−1

)
−

(
n−2
n−3

)
+

(
n
n

)

= 2n − 1− (2n−2 − 1)

= 2n − 2n−2

= 3× 2n−2

Illustration 5.2.1. Consider the graph K6 − e given in figure 3.2. Here

e = v1v2. All the subsets of V except the following are center sets.

1. {v1, v2}

2. {v1, v2, v3}, {v1, v2, v4}, {v1, v2, v5}, {v1, v2, v6}

3. {v1, v2, v3, v4}, {v1, v2, v3, v5}, {v1, v2, v3, v6}, {v1, v2, v4, v5},

{v1, v2, v4, v6}, {v1, v2, v5, v6}

4. {v1, v2, v3, v4, v5}, {v1, v2, v3, v4, v6}, {v1, v2, v3, v5, v6},

{v1, v2, v4, v5, v6}

Proposition 5.2.4. [13] Let G = (V,E) be a Median graph. For any

profile π in G the Median Set is an interval I(u, v) in G.
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5.2.3 Median number of Block graphs

First, we shall evaluate the median number of trees.

Proposition 5.2.5. The Median number of a tree T on n vertices is

n+
(
n
2

)
.

Proof. Since T is a median graph, by the above proposition all Median sets

are intervals. As observed in the proof of proposition 5.1.1 all intervals are

Median sets. Therefore, class of Median sets of T is precisely the class of

intervals of T which is the class of all paths inT . Hence the Median number

is the number of distinct paths in T which is n+
(
n
2

)
.

Now we shall identify the median sets of block graphs which are in fact

generalisations of both complete graphs and trees.

Lemma 5.2.1. The median sets of a block graph are either intervals or

cliques.

Proof. Let G = (V,E) be a block graph and let SG denote its skeleton

graph which is a tree. Let π = (v1, . . . vk) be a profile in G. Consider the

same profile π in SG and let MSG
(π) be the median of π in SG.

First assume that there exists a vertex v of G in SG such that v ∈ MSG
(π).

Then DSG
(v, π) 6 DSG

(x, π) for every x ∈ V (SG). For each u ∈ V ,

dSG
(u, vi) = 2dG(u, vi) and therefore DSG

(u, π) = 2DG(u, π). Hence

DG(v, π) 6 DG(u, π) for every u ∈ V (G). Hence,

v ∈ MSG
(π) =⇒ v ∈ MG(π) (5.1)

Conversely if v ∈ MG(π) then

DG(v, π) 6 DG(x, π) (5.2)

for every x ∈ V (G).
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Consider π as a profile in the tree SG. Since SG is a tree, MSG
(π)

is a path. If u1, . . . uk are the vertices of G in this path in the order of

occurrence, then by 5.1 and 5.2, u1, . . . , uk form the median of π in G.

There exists a block containing u1 and u2, say S1, a block containing u2

and u3, S2, . . ., a block containing uk−1 and uk, Sk−1. Hence u1 . . . uk is

an interval in G.

Now assume that π is a profile of G such that, MSG
(π) does not contain any

vertex of G. Then MSG
(π) = {S} where S corresponds to a block of G. Let

u1, u2 . . . ur be the vertices adjacent to S in SG. That is, u1, u2 . . . ur are

the vertices belonging to a block(corresponding to S) in G. Since S is the

only median of π, DSG
(ui, π) > DSG

(x, π) for 1 6 i 6 r. This implies that

as we move from S to any of its adjacent vertices in SG, DSG
(π) increases

and hence as we move further DSG
(π) further increases. In other words

minimum of DG(π) is a subset of {u1, . . . , ur}. or the median of π in G

is a clique. Hence the median sets of a block graph are either intervals or

cliques.

Theorem 5.2.6. The median number of a block graph is the number of

intervals + number of cliques of size greater than 2.

Proof. Let G be a block graph. If G is complete then, since singleton sets

and pairs of adjacent vertices are the intervals the theorem is obvious. So

assume G is not complete. Consider the interval I(u, v) where u and v

are non adjacent. Then if π = {u, v}, M(π) = I(u, v). Also any clique

is a median set, namely, of itself. Hence the sets of intervals(this includes

cliques of size 1 and 2) together with cliques of size greater than 2 forms

the set of median sets of a block graph. In other words

mn(G)=number of intervals + number of cliques of size greater than 2.
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5.2.4 Median number of Hypercubes

Initially, we quote the following theorem.

Proposition 5.2.7. (Imrich et al.,[69]) Let Qr be a hypercube. Then, for

any pair of vertices u, v ∈ Qr the subgraph induced by the interval I(u, v)

is a hypercube of dimension d(u, v).

Theorem 5.2.8. For the Hypercube Qr, mn(Qr) = 3r

Proof. Since Qr is a Median graph, by Propositions 5.2.4 and 5.2.7 every

Median set of Qr is a subcube. Also in any graph G, I(u, v) is the median

set of the profile (u, v), where u, v ∈ V (G). Thus in a hypercube every

subcube is a Median set. Therefore, the Median sets of Qr are precisely the

induced subcubes. So the Median number of Qr is the number of subcubes

of Qr. Every vertex of Qr contain r co-ordinates where each co-ordinate is

either 0 or 1. Keeping k co-ordinates fixed and varying 0 and 1 over the

other r − k positions we get a subcube of dimension r − k. By varying 0’s

and 1’s over these k positions we get 2k such subcubes. The k positions to

be fixed can be chosen in
(
r
k

)
ways. So, the total number of subcubes of

dimension r − k is 2k ×
(
r
k

)
. Therefore the total number of subcubes of Qr

is
∑

06k6r

(
r
k

)
× 2k = 3r.

5.2.5 Median number of Wheel graphs

Theorem 5.2.9. Let Wn, n > 7 be the wheel graph with vertex set

{v1, v2, . . . , vn−1, vn} and having vn as the universal vertex. The median

sets of Wn are

(1) {vi}, 1 6 i 6 n

(2) {vi, vi⊕(n−1)1}, 1 6 i 6 n− 1

(3) {vi, vn}, 1 6 i 6 n− 1
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(4) {vi, vn, vi⊕(n−1)1}, 1 6 i 6 n− 1

(5) {vi, vj , vn}1 6 i, j 6 n− 1, dCn−1(vi, vj) > 3

(6){vi, vi⊕(n−1)1, vi⊕(n−1)2, vn}, 1 6 i 6 n− 1.

Proof. Let Cn−1 be the cycle v1, v2, . . . , vn−1, v1. Each singleton set {vi},

1 6 i 6 n−1, is a Median set. The sets {vi, vj}, where vi and vj are adjacent

are also Median sets. The profile (vi, vi⊕(n−1)1, vn), 1 6 i 6 n − 1,has

{vi, vi⊕(n−1)1, vn} as Median set. The set {vi, vi⊕(n−1)1, vi⊕n−12, vn} is the

Median set of the profile (vi, vi⊕(n−1)2). Let π = (x1, x2, . . . , xk) be a profile

of Wn which contain the universal vertex vn. Then since π contain the

vertex vn, D(vn, π) 6 k − 1. If some vi, 1 6 i 6 n − 1, belong to M(π)

then D(vi, π) 6 k−1 and this implies xj = vi at least for some j. Also, the

number of xj ’s with d(vi, xj) = 2 is less than the number of repetitions of

vi in π. Let vk be such that d(vk, vi) = 2 . Then vk belong to M(π) implies

number of repetitions of vk is greater than the number of repetitions of vi

in the profile π. But these two statements are contradictory. Thus for a

profile which contain the universal vertex the Median set cannot contain

two vertices which are at distance 2. Hence the only possible Median sets

for such a profile are

i) sets of type {vi, vi⊕(n−1)1}

ii) sets of type {vi, vn}

iii) sets of type {vi, vi⊕(n−1)1, vn}.

Now, let π = (x1, . . . , xk) be a profile which does not contain vn. Then

D(vn, π) = k. If some vi, 1 6 i 6 n− 1 belong to M(π), then D(vi, π) 6 k.

Let vj be such that vj ∈ M(π) and d(vi, vj) = 2. Then D(vj , π) 6 k. since

D(vi, π) 6 k,

number of zeroes in {d(vi, x1), . . . , d(vi, xk)} > number of twos in {d(vi, x1),

. . . , d(vi, xk} . Similarly, number of zeroes in {d(vj , x1), . . . , d(vj , xk} >
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number of twos in {d(vj , x1), . . . , d(vj , xk}.

Thus, number of repetitions of vi in π = number of repetitions of vj in π.

Now, let dCn−1(vi, vj) = 2. Without loss of generality, we may assume that

j = i⊕(n−1) 2. If some vertex other than vi, vi⊕(n−1)1, vi⊕(n−1)2 belong to π

thenD(vi, π) = D(vj , π) > D(vn, π). If vi⊕(n−1)1 ∈ π thenD(vi⊕(n−1)1, π) <

D(vi, π). Therefore π can only be (vi, . . . , vi, vj , . . . , vj) where vi and vj

are repeated the same number of times. Since j = i ⊕(n−1) 2, we have

D(vi, π) = D(vj , π) = D(vn, π) = D(vi⊕(n−1)1, π) and for all other x ∈ V ,

D(x, π) > k. Hence

M(π) = {vi, vi⊕(n−1)1, vi⊕(n−1)2, vn}. If dCn−1(vi, vj) 6= 2 then some vertex

other than vi and vj belong to π will contradict the fact that vi and vj

belong to M(π). Therefore, in this case also π = (vi, . . . , vi, vj , . . . , vj)

where vi and vj are repeated the same number of times. Here D(vi, π) = k,

D(vj , π) = k, D(vn, π) = k and for all other x ∈ V , D(x, π) > k. In other

words M(π) = {vi, vj , vn}.

Hence the only Median sets are

(1) {vi}, 1 6 i 6 n

(2) {vi, vi⊕(n−1)1}, 1 6 i 6 n− 1

(3) {vi, vn}, 1 6 i 6 n− 1

(4) {vi, vn, vi⊕(n−1)1}, 1 6 i 6 n− 1

(5) {vi, vj , vn}1 6 i, j 6 n− 1, dCn−1(vi, vj) > 3

(6){vi, vi⊕(n−1)1, vi⊕(n−1)2, vn}, 1 6 i 6 n− 1.

Remark 5.2.1. When n = 6 all the above mentioned sets except in item

5 are median sets. The sets mentioned in item 5 are not present in W6

Corollary 5.2.10. For the wheel graph Wn, n > 6, mn(Wn) =
n2+3n−2

2

Proof. By Theorem 5.2.9, for n > 6,
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mn(Wn) = n+ n− 1 + n− 1 + n− 1 + (n−1)(n−6)
2 + n− 1 = n2+3n−2

2 .

When n = 6, (n−1)(n−6)
2 = 0. Thus by Remark 5.2.1 we have mn(Wn) =

n2+3n−2
2 for n > 6.

Illustration 5.2.2. We shall list the median sets and thus find the median

number of W9(See figure 3.3).

1. {v1}, {v2}, {v3}, {v4}, {v5}, {v6}, {v1}, {v2}, {v3}

2. {v1, v2}, {v2, v3}, {v3, v4}, {v4, v5}, {v5, v6}{v6, v7}, {v7, v8},

{v8, v1}

3. {v1, v9}, {v2, v9}, {v3, v9}, {v4, v9}, {v5, v9}{v6, v9}, {v7, v9},

{v8, v9}

4. {v1, v2, v9}, {v2, v3, v9}, {v3, v4, v9}, {v4, v5, v9},

{v5, v6, v9}{v6, v7, v9}, {v7, v8, v9}, {v8, v1, v9}

5. {v1, v4, v9}, {v1, v5, v9}, {v1, v6, v9}, {v2, v5, v9}, {v2, v6, v9},

{v2, v7, v9}, {v3, v6, v9}, {v3, v7, v9}, {v3, v8, v9}, {v4, v7, v9},

{v4, v8, v9},{v5, v8, v9}

6. {v1, v2, v3, v9}, {v2, v3, v4, v9}, {v3, v4, v5, v9}, {v4, v5, v6, v9},

{v5, v6, v7, v9}{v6, v7, v8, v9}, {v7, v8, v1, v9}, {v8, v1, v2, v9}

Thus the median number ofW9 is 9+8+8+8+12+8 = 53. From the formu-

lae for median number of wheel graphs we have mn(Wn) =
9×9+3×9−2

2 = 53

Now we shall identify the median sets and hence compute the median

number of W5 having vertex set {v1, v2, v3, v4, v5} where v5 is the universal

vertex. Each singleton set, pair of adjacent vertices and triple of vertices

that induces a clique are median sets, namely of itself. As we proved in

the theorem it can be shown that a profile containing the vertex v5 cannot

contain two vertices at distance 2.

Now assume that π is profile that does not contain v5 and M(π) contains v1

and v3. Then assume that vi is repeated ni times in the profile for 1 6 i 6 4.
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Then D(v1, π) = n2 + 2n3 + n4,D(v2, π) = n1 + n3 + 2n4,D(v3, π) =

2n1 + n2 + n4 and D(v4, π) = n1 + 2n2 + n3. Since v1 and v3 belong to

M(π) we have that n1 = n3 and n2 = n4. This gives D(vi, π) = 2n1 + 2n2

for i 6 i 6 5. Hence M(π) = {v1, v2, v3, v4, v5}. That is, this is the only

median set that contain two vertices at distance 2. Thus the only median

sets of W5 are

1. {vi}, 1 6 i 6 5

2. {vi, vj} where vi and vj are adjacent.

3. {vi, vj , vk} where vi, vj and vk induces a clique.

4. {v1, v2, v3, v4, v5}

Hence the median number of W5 is 18.(See figure 3.4)

5.2.6 Median number of Complete Bipartite graphs

Theorem 5.2.11. For the complete bipartite graph Km,n, m 6 n, m > 2,

all nonempty subsets of V (Km,n) are median sets.

Proof. Let (X,Y ) be a bipartition of Km,n with |X| = m and |Y | = n.

Let X = {x1, . . . , xm} and Y = {y1, . . . , yn}. Let A be a k-element sub-

set of X with k 6 m. Without loss of generality we may assume that

A = {x1, . . . , xk}.

If k < n, take π = (x1, . . . , xk, y1, . . . , yn). For each xi, 1 6 i 6 k,

D(xi, π) = 2(k−1)+n. For each xi, k+1 6 i 6 m, D(xi, π) = 2k+n. For

each yi, 1 6 i 6 n, D(yi, π) = 2(n− 1) + k. Therefore, A = {x1, . . . , xk} =

M(π).

If k = n, then π = (y1, . . . , yn) has Median set A = {x1, . . . , xk}. Therefore,

every subset of X is a Median set.

Now, let B ⊆ Y with B = {y1, . . . , yk}.
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If k < n then as in the previous case π = (x1, . . . , xm, y1, . . . , yk) has Me-

dian set B.

Now, let k > m and let π be the profile (x1, . . . x1, . . . , xm, . . . , xm, y1, . . . , yk),

where each xi is repeated the same number of times,(say) r.

For each yi, 1 6 i 6 k, D(yi, π) = 2(k− 1) +mr, for each yi, k+1 6 i 6 q,

D(yi, π) = 2k +mr, and for each xi, 1 6 i 6 n, D(xi, π) = 2r(m− 1) + k.

Moreover, 2(k − 1) +mr < 2r(m− 1) + k ⇔ k − 2 < (m− 2)r ⇔ r > k−2
m−2

(m > 2). That is, if each xi is repeated r times where r > k−2
m−2 then

M(π)=B.

Now, let C = {x1, . . . , xk, y1, . . . , yr}, 1 6 k 6 m, 1 6 r 6 n.

Take π = (x1, . . . , x1, . . . , xk, . . . , xk, y1, . . . , y1, . . . , yr, . . . , yr) where each

xi is repeated sx times and yi is repeated sy times.

For each xi, 1 6 i 6 k, D(xi, π) = 2(k − 1)sx + rsy, for each yi, 1 6 i 6 r,

D(yi, π) = 2(r−1)sy+ksx, for each xi, k+1 6 i 6 p, D(xi, π) = 2ksx+rsy

and for each yi, r+1 6 i 6 q, D(yi, π) = 2rsy + ksx. Any xi, k+1 6 i 6 p

or yi, r + 1 6 i 6 q cannot be in M(π).

Now, 2(k − 1)sx + rsy = 2(r − 1)sy + ksx ⇔ (k − 2)sx = (r − 2)sy.

Hence for any sx and sy such that (k − 2)sx = (r − 2)sy, the profile

(x1, . . . x1, . . . , xk, . . . , xk, y1, . . . , y1, . . . , yr, . . . , yr), where each xi is repeated

sx times and yi is repeated sy times, has C as its Median. Therefore, every

nonempty subset of X ∪ Y is a Median set.

The following corollary is an immediate conclusion of the theorem.

Corollary 5.2.12.

mn(Km,n) =







2m+n − 1 when m 6 n,m > 2

9 when m = n = 2

n2+7n+8
2 when m = 2, n > 2
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Proof. When m < 2 and m 6 n from the theorem we have that all

nonempty subsets are median sets. That is, mn(Km,n) = 2m+n − 1 If

m = n = 2 then we get C4, a median graph and the median sets of such

graphs have been identified as intervals and therefore its median number is

9..

So we assume that m = 2 and m < n. Let ({x1, x2}, {y1, y2, . . . , yn}) be

the bipartition. It is clear that {x1} and {x2} are median sets. The profile

(y1, y2, . . . , yn) has {x1, x2} as the median set. Thus all subsets of {x1, x2}

are median sets. Let π be a profile and let k1 be the number of repetitions

of y1 in π, k2 be the number of repetitions of y2 in π, . . ., kn be the number

of repetitions of yn in π, ℓ1 be the number of repetitions of x1 in π and ℓ2

be the number of repetitions of x2 in π

D(y1, π) = ℓ1 + ℓ2 + 2(k2 + k3 + · · ·+ kn)

D(x1, π) = 2ℓ2 + (k1 + · · · + kn) and D(x2, π) = 2ℓ1 + (k1 + · · · + kn) Let

y1 ∈ M(π). Then,

ℓ1+ℓ2+2(k2+k3+· · ·+kn) 6 min{2ℓ2+(k1+· · ·+kn), 2ℓ1+(k1+· · ·+kn)}.

Here shall take some cases

Case-1: ℓ1 < ℓ2. Then we have ℓ1+ ℓ2+2(k2+k3+ · · ·+kn) 6 2ℓ1+(k1+

· · ·+ kn) and ℓ1 + ℓ2 > 2ℓ1. Therefore, 2(k2 + k3 + · · ·+ kn) < k1 + · · ·+ kn

or k1 > k2+k3+ · · ·+kn. Hence k1+k3+ · · ·+kn > k2+k3 · · ·+kn. Hence

y2 /∈ M(π). Thus, in this case no other yi is in M(π). If k2 + · · ·+ kn = ℓ1

and k1 = ℓ2 then we get that M(π) = {x2, y1}. This in facts gives that

{xi, yj}i = 1, 2, 1 6 j 6 nare all median sets.

Case-2: Assume ℓ1 = ℓ2 = ℓ. D(x1, π) = 2ℓ + (k1 + · · · + kn) and

D(x2, π) = 2ℓ + (k1 + · · · + kn) and D(y1, π) = 2ℓ + 2(k2 + k3 + · · · + kn)

and therefore

2ℓ+ 2(k2 + k3 + · · · + kn) 6 2ℓ+ (k1 + · · ·+ kn). That is,

k2 + k3 + · · ·+ kn 6 k1.

Subcase 2.1: k2 + k3 + · · · + kn = k1. Further let ki = k1 for some i say
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2. Then M(π) = {x1, x2, y1, y2}. That is, {x1, x2, yi, yj}1 6 i, j,6 n are

all median sets. If ki 6= k1 for any i then M(π) = {x1, x2, y1}. That is,

{x1, x2, y2} is a median set. Hence {x1, x2, yi}, 1 6 i, j,6 n are all median

sets.

Subcase 2.2: k2+k3+ · · ·+kn < k1. In this case M(π) = {y1}. Therefore

{yi}, 1 6 i 6 n are all median sets.

Thus the median sets of Km,n, m = 2, n > 2 are

1. {xi}, i = 1, 2

2. {x1, x2}

3. {xi, yj} i = 1, 2, 1 6 j 6 n

4. {yi}, 1 6 i 6 n

5. {x1, x2, yi}, 1 6 i, j,6 n

6. {x1, x2, yi, yj}, 1 6 i, j,6 n

7. {x1, x2, y1, y2, . . . , yn}

Hence the median number of K2,n where n > 3 is given by 2+1+2n+n+

n+ n(n−1)
2 + 1 = n2+7n+8

2

b b

bbbbb

x1 x2

y1 y2 y3 y4 y5
Figure 5.1: K2,5

Illustration 5.2.3. Here we shall list the median sets of different types

in K2,5.
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1. M(x1) = {x1}

2. M((y1, y2, y3, y4, y5)) = {x1, x2}

3. Let π = (x1, x1, x2, y1, y2, y2). Then D(x1, π) = 5,D(x2, π) = 7,

D(y1, π) = 7, D(y2, π) = 5, D(y3, π) = 9, D(y4, π) = 9,

D(y5, π) = 9. Hence M(π) = {x1, y2}.

4. M((y1)) = {y1}

5. Let π = (x1, x2, y1, y1, y2, y3), D(x1, π) = 6, D(x2, π) = 6

D(y1, π) = 6D(y2, π) = 8, D(y3, π) = 8, D(y4, π) = 10,

D(y5, π) = 10. Hence M((x1, x2, y1, y1, y2, y3)) = {x1, x2, y1}.

6. π = {x1, x2, y1, y1, y2, y2} D(x1, π) = 6, D(x2, π) = 6,

D(y1, π) = 6, D(y2, π) = 6, D(y3, π) = 10, D(y4, π) = 10,

D(y5, π) = 10. Hence M((x1, x2, y1, y1, y2, y3)) = {x1, x2, y1, y2}

5.2.7 Median number of Cartesian Products

Definition 5.2.13. Let π1 and π2 be profiles in graphs G1 and G2 respec-

tively with π1 = (u1, . . . , um) and π2 = (v1, . . . , vn) then we define π1 × π2

by π1 × π2 = ((ui, vj)|1 6 i 6 m, 1 6 j 6 n).

π1 × π2 is in fact a profile of G1✷G2.

If V (G1) = {u1, . . . , um}, V (G2) = {v1, . . . , vn}, π1 = (u1, u1, u2) and

π2 = (v1, v2, v2) then π1 × π2 is

((u1, v1), (u1, v2), (u1, v2), (u1, v1), (u1, v2), (u1, v2), (u2, v1), (u2, v2), (u2, v2))

Lemma 5.2.2. Let π1 and π2 be profiles in the graphs G1 and G2 re-

spectively. If MG1(π1) = M1 and MG2(π2) = M2, then MG1✷G2(π1 ×π2) =

M1 ×M2.

Proof. Let π1 = (u1, u2, . . . , um), π2 = (v1, v2, . . . , vn) andM = M(π1×π2).

π1 × π2 = ((u1, v1), . . . , (u1, vn), . . . , (um, v1), . . . , (um, vn)). If

(x1, y1), (x2, y2) ∈ V (G1✷G2), then

dG1✷G2((x1, y1), (x2, y2)) = dG1(x1, y1) + dG2(x2, y2), see[9].
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For an (x, y) ∈ V (G1✷G2),

D((x, y), π1 × π2)= n
∑

16i6m

d(x, ui) +m
∑

16i6n

d(y, vi).

Let (a, b) ∈ M1 ×M2 ie a ∈ M1 and b ∈ M2. Then,

∑

16i6m

d(a, ui) 6
∑

16i6m

d(x, ui),∀x ∈ V (G1)

∑

16i6n

d(b, vi) 6
∑

16i6n

d(y, vi),∀y ∈ V (G2)

Therefore,

n
∑

16i6m

d(a, ui) +m
∑

216i6n

d(b, vi) 6 n
∑

16i6m

d(x, ui) +m
∑

16i6n

d(y, vi),

∀(x, y) ∈ V (G1✷G2)

Hence, D((a, b), π1 × π2) 6 D((x, y), π1 × π2), ∀(x, y) ∈ V (G1✷G2)

Thus, (a, b) ∈ M1 ×M2 ⇒ (a, b) ∈ M or M1 ×M2 ⊆ M

Now, let (a, b) ∈ M

D((a, b), π1 × π2) = n
∑

16i6m

d(a, ui) +m
∑

16i6n

d(b, vi)

6 n
∑

16i6m

d(x, ui) +m
∑

16i6n

d(y, vi),

∀(x, y) ∈ V (G1 ×G2)
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If for some x′ ∈ V (G1),
∑

16i6m

d(x′, ui) <
∑

16i6m

d(a, ui), then

n
∑

16i6m

d(x′, ui) +m
∑

16i6n

d(b, vi) < n
∑

16i6m

d(a, ui) +m
∑

16i6n

d(b, vi)

This contradicts (a, b) ∈ M = M(π1 × π2).

Therefore ∑

16i6m

d(a, ui) 6
∑

16i6m

d(x, ui),∀x ∈ V (G1) and

∑

16i6m

d(b, vi) 6
∑

16i6m

d(y, ui),∀y ∈ V (G2)

Hence, a ∈ M1 and b ∈ M2 or (a, b) ∈ M1 ×M2. That is,

M = M1 ×M2.

Theorem 5.2.14. Consider the graphs G1 = (V1, E1) and G2 = (V2, E2).

An M ⊆ V (G1✷G2) is a median set if and only if M = M1×M2 where M1

and M2 are median sets of G1 and G2 respectively.

Proof. By the above lemma the product of Median sets of G1 and G2 is

again a Median set of G1✷G2. Now, let M be a median set of G1✷G2,

with M = M(π) where π = ((u1, v1), . . . , (uk, vk)). Let π1 = (u1, . . . , uk),

π2 = (v1, . . . , vk), M1 = M(π1) and M2 = M(π2). Let (a, b) ∈ M .

We have

∑

16i6k

d(a, ui) +
∑

16i6k

d(b, vi) 6
∑

16i6k

d(x, ui) +
∑

16i6k

d(y, vi),∀x ∈ V (G1),

∀y ∈ V (G2).
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∴ k
∑

16i6k

d(a, ui) + k
∑

16i6m

d(b, vi) 6 k
∑

16i6k

d(x, ui) + k
∑

16i6m

d(y, vi),

∀(x, y) ∈ V (G1✷G2)

In other words, D((a, b), π1×π2) 6 D((x, y), π1×π2), ∀(x, y) ∈ V (G1✷G2).

∴ (a, b) ∈ M(π1 × π2) or M ⊆ M(π1 × π2).

Let (a, b) ∈ M(π1 × π2). Then D((a, b), π1 × π2) 6 D((x, y), π1 × π2),

∀x ∈ V (G1),∀y ∈ V (G2). That is

k
∑

16i6k

d(a, ui) + k
∑

16i6k

d(b, vi) 6 k
∑

16i6k

d(x, ui) + k
∑

16i6k

d(y, vi),

∀x ∈ V (G1),∀y ∈ V (G2).

∑

16i6k

d(a, ui) +
∑

16i6k

d(b, vi) 6
∑

16i6k

d(x, ui) +
∑

16i6k

d(y, vi),

∀x ∈ V (G1),∀y ∈ V (G2).

∴
∑

16i6k

d((a, b), (ui, vi)) 6
∑

16i6k

d((x, y), (ui, vi)),∀(x, y) ∈ V (G1✷G2).

Therefore, (a, b) ∈ M which implies M(π1×π2) ⊆ M or M = M(π1×π2) =

M(π1) ×M(π2). Thus, the class of all median sets of G1✷G2 is the same

as the class of all Cartesian products of median sets of G1 and G2.

Corollary 5.2.15. mn(G1✷G2) = mn(G1)×mn(G2)

We can generalise the above result to the product of any (finite)number

of graphs.
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Corollary 5.2.16. If G1, . . . , GK are k graphs, then

mn(G1✷ . . .✷Gk) = mn(G1)× . . .×mn(Gk)

The above corollary can be used to find the Median number of various

classes of graphs.

Corollary 5.2.17. For the hypercube Qr, mn(Qr) = 3r.

Proof. Since Qr = K2✷ . . .✷K2
︸ ︷︷ ︸

r times

,

mn(Qr) = mn(K2)× . . .×mn(K2)
︸ ︷︷ ︸

r times

= 3× . . .× 3
︸ ︷︷ ︸

r times

= 3r

Corollary 5.2.18. If G is the Grid graph Pr✷Ps, mn(G) = (
(
r
2

)
+ r)×

(
(
s
2

)
+ s).

Corollary 5.2.19. If G is the Hamming graph Kp1✷Kp2✷ . . .✷Kpr ,

mn(G) = (2p1 − 1)× (2p2 − 1)× . . . × (2pr − 1).

5.2.8 Median sets of Symmetric Even Graphs

Lemma 5.2.3. The only median sets of a symmetric even graph G which

contains a vertex and its eccentric vertex is V (G).

Proof. Let a and b be two eccentric vertices of the cycle G which belong

to M(π) where π = (x1, . . . , xk) is profile in G. Let D(a, π) = D(b, π) = s.
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Then

D(a, π) +D(b, π) = d(a, x1) + . . . + d(a, xk) + d(b, x1) + . . .+ d(b, xk)

= d(a, x1) + d(b, x1) + . . . + d(a, xk) + d(b, xk)

= d(a, b) + . . .+ d(a, b)
︸ ︷︷ ︸

k times
= kr

Hence 2s = kr Now, suppose M(π) 6= V . Then there exists an x ∈ V such

that D(x, π) > s. That is, d(x, v1)+. . .+d(x, vk) > s. Let y be the eccentric

vertex of x. d(y, v1)+ . . .+d(y, vk) > s. Therefore, d(x, v1)+ . . .+d(x, vk)+

d(y, v1) + . . . + d(y, vk) > 2s. That is, d(x, y) + . . . + d(x, y)(k times)> 2s

or kr > 2s, a contradiction. Therefore,any set distinct from V which is

a Median set cannot contain two eccentric vertices. Also, M((a, b)) = V ,

since a and b are diametrical and I(a, b) = V . Hence the only median set

of G which contain a vertex and and its eccentric vertex is, V .

Corollary 5.2.20. For a symmetric even graph G with |V (G)| = 2r,

mn(G) 6 3r.

Proof. Let V be the vertex set of G with V = {v1, . . . , v2r}. Let A=

{S : S ⊆ V and S does not contain any pair of eccentric vertices}. By

the above lemma the set of all Median sets is a subset of A ∪ {V }. Hence

mn(C2r) 6 |A| + 1. Let Bi = {vi, vi+r}, 1 6 i 6 r. Now A consists of all

subsets of V which does not simultaneously contain both the elements from

the same Bi, 1 6 i 6 r. The number ways of choosing a k-element subset of

V so that it belongs to A is the product of the number of ways of choosing

k Bi’s from the r Bi’s and the number of ways of choosing one element from

each of these chosen Bi’s. That is,
(
r
k

)
×2k. Therefore |A| =

∑r
k=1

(
r
k

)
×2k.

Hence mn(G) 6 (
∑

16k6r

(
r
k

)
× 2k) + 1 =

∑

06k6r

(
r
k

)
× 2k = 3r.
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5.3 Conclusion

We have identified and enumerated the median sets of different classes of

graphs. In the course of proving theorem 5.2.14 it was shown that median

set of any profile in a Cartesian product graph is the product of the median

sets of its projections. For symmetric even graphs, we proved that any

S ⊆ V such that S does not contain a pair of eccentric vertices is a median

set. As far as the hypercubes are concerned all such sets are not median

sets. In fact the median sets are precisely the subcubes. For the hypercube

Qr the median number is 3r and this is much less than the bound, 32
r−1

,

provided by the above corollary. In the case of even cycles, another class

of symmetric even graphs, all the sets mentioned above were seen to be

median sets with the help of computer programs. That is the median

number of even cycles are seen to achieve this bound. We could not find a

mathematical proof of this and hence we propose the following conjecture.

Conjecture 1. Given the cycle C2r having 2r vertices, an S ⊆ V (C2r) is

a median set if and only if either S = V (C2r) or S does not contain a pair

of eccentric vertices and therefore mn(C2r) = 3r.



Chapter 6

Fair Sets

6.1 Introduction

The measures of centrality that we have discussed, center and median corre-

spond to the effectiveness oriented model and the efficiency oriented model

of the facility location problems. A third approach is the equity oriented

model where equitable locations are chosen, that is locations which are more

or less equally fair to all the customers. Issue of equity is relevant in locating

public sector facilities where distribution of travel distances among the re-

cipients of the service is also of importance. Most of the equity based study

of location theory concentrate either on comparisons of different measures

of equity [84] or on giving algorithms for finding the equitable locations

[17, 18, 74, 82, 87]. Also in many optimization problems, we have a set

of optimal vertices. If we want to choose among these, one of the impor-

tant criteria can be equity or fairness. In this chapter we define a measure

called partiality and various classes of graphs are studied in respect of this

measure of centrality.

Definition 6.1.1. For an x ∈ V and S ⊆ V , min(x, S) denotes the mini-

mum of the distances between x and vertices of S and max(x, S) denotes

the maximum of the distances between x and vertices of S. The partiality

of x with respect to set S in G, denoted by f(x, S) = max(x, S)−min(x, S).

For a given vertex set S, the set {v ∈ V : f(v, s) 6 f(x, S) ∀x ∈ V } is de-

fined as the fair center of S and is denoted by FC(S). Any S′ ⊆ V such

that S′ = FC(S) for some S ⊆ V , |S| > 1, is called a fair set of G.

93
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Example 6.1.1. Consider the following graph and the vertex set S =

{v1, v3, v5, v6}.

b b b b

b

b

v1 v2 v3
v6

v4

v5

Figure 6.1

The table below shows the distances of all the vertices of the graph to

vertices v1, v3, v5 and v6 and the last row shows the difference between

the maximum and the minimum of each column.

Table 6.1

v1 v2 v3 v4 v5 v6
v1 0 1 2 3 3 3

v3 2 1 0 1 1 1

v5 3 2 1 2 1 2

v6 3 2 1 2 2 0

f(v, S) 3 1 2 2 2 3

Here f(v, S) is minimum for v2 and hence FC(S) = {v2}

6.2 Graphs with connected fair sets

In this section we characterize those chordal graphs for which the subgraph

induced by fair sets are connected.
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Theorem 6.2.1. For any tree T , the subgraph induced by any fair set is

connected.

Proof. Let A be a fair set with A = FC(S) where S = {v1, . . . , vk}. Let

u, v ∈ A. Assume that v1, . . . , vk are such that d(u, v1) 6 · · · 6 d(u, vk). Let

P be the path uu1 . . . umv. At each stage as we move from u to v through

the path P , let d1, . . . , dk denote the distance between the corresponding

vertex of the path and v1, . . . , vk respectively. At u, f(u, S) = dk − d1.

Since in any tree, the distances of two adjacent vertices from a given vertex

differ by one, we have f(u1, S) is either f(u, S) or f(u, S)+1 or f(u, S)+2.

To prove f(u1, S) = f(u, S), we consider the following cases.

Case 1: f(u1, S) = f(u, S) + 2.

We first consider f(u1, S) = f(u, S) + 2. This is possible only when dk in-

creases by one and d1 decreases by one as we move from u to u1. Therefore,

as we traverse from u to v through P , and the graph is a tree, dk always in-

crease by 1, so that the partiality cannot decrease. Hence f(v, S) > f(u, S)

which is a contradiction to the assumption that u, v ∈ A.

Case 2: f(u1, S) = f(u, S) + 1.

Subcase 2.1: As we move from u to u1, dk increases by one and the

role of v1 is taken by some other vertex say v2. Then similar to the Case

1, we can see that f(v, S) > f(u, S), and a contradiction is obtained.

Subcase 2.2: The role of vk is taken by another vertex, (say) vk−1,

so that the maximum distance remains the same(here dk−1) and d1 de-

creases by one. Now as we move from u1 to u2, since there was an in-

crease in d(u1, vk−1) as compared to d(u, vk−1) the maximum distance keeps

on increasing so that the partiality becomes non decreasing. Hence the

f(v, S) > f(u, S), a contradiction to our assumption that u, v ∈ A.

From the contradictions of Cases 1 and 2, we obtain f(u, S) = f(u1, S).

So that u1 ∈ A and in a similar fashion we can show that V (P ) ⊆ A. Since

u and v are arbitrary vertices of A, we can see that A is connected. Hence,
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we have the theorem.

Next we prove that the above result can be extended to block graphs.

Corollary 6.2.2. In a block graph, the subgraph induced by any fair set

is connected.

Proof. Let G = (V,E) be a block graph. Let v1, v2, . . . , vn be the vertices

of G. Let B1, B2, . . . , Br be the blocks of G. For any block graph G, its

skeleton SG is a tree [71]. (See figure 1.1). Also if dG(vi, vj) = d then

dSG
(vi, vj) = 2d. If S = {v1, . . . , vk} is a subset of V (G), then for any

vertex vi, partiality fG(vi, S) = 1
2fSG

(vi, S). Hence if vl ∈ FC(S) with

fG(vl, S) = p, then fSG
(vl, S) = 2p. Also for every vi 6= vl, fSG

(vi, S) >

2p. Now, let vm be another vertex in G such that fG(vm, S) = p. Then

fSG
(vl, S) = 2p, fG(vm, S) = 2p and fSG

(vi, S) > 2p for every i = 1, . . . , n.

Since SG is connected there exists one path connecting vl and vm in SG, say

vlBlvl+1Bl+1 . . . Bm−1vm. Since we know that in a tree as we move along

a path once partiality increases it cannot decrease fSG
(vi, S) 6 2p, i =

l + 1, . . . ,m − 1. But since partiality always greater than or equal to 2p,

fSG
(vi, S) = 2p, i = l, l + 1, . . . ,m − 1,m. Therefore fG(vi, S) = p, i =

l, l + 1, . . . ,m − 1,m. Since vl and vl+1 are adjacent to Bl they belong to

same block in G. Therefore vl and vl+1 are adjacent in G. Similarly vl+1

and vl+2 are adjacent in G. Hence we get a path vl, vl+1, . . . , vm−1vm in G

connecting vl and vm all of whose partiality is p, the minimum. Therefore

induced subgraph of any fair set is connected.

The following theorem gives us an insight in to the structure of a chordal

graph and this is being used to characterise chordal graphs with connected

fair sets.

Theorem 6.2.3. [40] A graph G is chordal if and only if it can be

constructed recursively by pasting along complete subgraphs, starting from
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complete graphs.

Theorem 6.2.4. Let G be a chordal graph. Then G is a block graph if

and only if the induced subgraph of any fair set of G is connected.

Proof. Suppose G is a block graph. Then by Corollary 6.2.2, for any S ⊆ V

the induced subgraph of FC(S) is connected. Conversely assume that the

subgraphs induced by all fair sets of G are connected and assume that G

is not a block graph. Since G is chordal, there exist two chordal graphs G1

and G2 such that G can be got by pasting G1 and G2 along a complete

subgraph say, H, where |V (H)| > 1. Then there exists two vertices u and

v such that u ∈ V (G1)\V (H), v ∈ V (G2)\V (H) and u and v are adjacent

to all vertices of H. Consider the vertex set V (H). Since u and v are

adjacent to all vertices of H, f(u, V (H)) = f(v, V (H)) = 1 − 1 = 0. For

all x ∈ V (H), f(x, V (H)) = 1. Hence FC(V (H)) contains the vertices u

and v and any path from u to v pass through the vertices of H which have

partiality one. In other words the subgraph induced by the fair center of

V (H) is not connected, a contradiction. Therefore the subgraphs induced

by all fair sets of G are connected implies G is a block graph.

As an illustration of Theorem 6.2.4, we have the following example.

b b

b

b

b

b v1

v3v5

v2v4

v6

Figure 6.2: A Chordal graph with disconnected fair sets

For V (H) = {v3, v4, v5}, we have A = FC(V (H)) = {v2, v6}, the in-

duced subgraph of A is not connected.
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6.3 Fair sets of some classes of graphs

In this section, we find the fair sets of some class of graphs, namely Com-

plete graphs, Kn−e, Km,n, the wheel graphsWn, odd cycles and, symmetric

even graphs. Before that we have the following lemma.

Lemma 6.3.1. For any graph G = (V,E) all the fair sets A of G are of

cardinality either |V | or less than |V | − 1.

Proof. Let A be fair set of G and assume that A 6= |V |. To prove |A| <

|V | − 1. If possible let |A| = |V | − 1. Let A = FC(S) where S ⊆ V . Let y

be the vertex which is not in A. For each x ∈ A let f(x, S) = k. Also we

have f(y, S) > k.

If y ∈ S then we have min(y, S) = 0. So we must have max(y, S) > k.

Therefore there exists an z in S such that d(y, z) > k and this implies that

z /∈ A, a contradiction to the fact that |A| = |V | − 1. Hence for each x in

S, f(x, S) = k.

Next let y /∈ S. Let min(y, S) = r and max(y, S) = k + r + s where

r, s > 0. Since min(y, S) = r there exists a vertex w adjacent to y such

that min(w,S) = r − 1. Since f(w,S) = k we have max(w,S) = k +

r − 1 = k + r + s − (s + 1) = max(y, S) − (s + 1). Since s > 1, we have

|max(y, S) −max(w,S)| > 2, a contradiction.

6.3.1 Fair sets of Complete graphs

Now we identify the fair sets of complete graphs.

Proposition 6.3.1. For the complete graph on n vertices Kn, any A ⊆ V

such that |A| 6= n− 1, is a fair set.

Proof. Let S ⊆ V with |S| > 1. Then for every x ∈ S, f(x, S) = 1− 0 = 1

and for every y /∈ S, f(y, S) = 1 − 1 = 0. Therefore FC(S) = Sc. Also if
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|S| = 1 then FC(S) = V . Hence all A ⊆ V such that |A| 6= n− 1 is a fair

set.

6.3.2 Fair sets of Kn − e

The following proposition gives the fair sets of Kn − e

Proposition 6.3.2. Let G be the graph Kn−e with V (G) = {v1, . . . , vn}

and let e be the edge v1v2. Then A ⊆ V is a fair set if and only if |A| 6= n−1

and either {v1, v2} ⊆ A or {v1, v2} ⊆ Ac.

Proof. Let {v1, v2} ⊆ A with |A| < n− 1. Then |Ac| > 2. For each x ∈ A,

f(x,Ac) = 1 − 1 = 0. For each x ∈ Ac, f(x,Ac) = 1 − 0 = 1. Therefore

FC(Ac) = A. Now, let {v1, v2} ⊆ Ac. For each x ∈ A, f(x,Ac) = 1−1 = 0.

f(v1, A
c) = 2 − 0 = 2, f(v2, A

c) = 2 − 0 = 2 and for every other x in Ac,

f(x,Ac) = 1− 0 = 1. Hence FC(Ac) = A.

Conversely, Let A be a fair set. We first prove that |A| 6= n − 1. If

|A| = n − 1 then |Ac| = 1 so we have FC(Ac) = V . If B is any set such

that FC(B) = A then |B| > 1. If {v1, v2} ⊆ B, then FC(B) = Bc 6= A.

If v1 ∈ B ∩ A and v2 /∈ B then FC(B) = Bc \ {v2} 6= A. If {v1, v2} ⊆ Bc,

then again FC(B) = Bc 6= A. Hence |A| 6= n− 1.

Now let us assume that there is a set B with FC(B) = A. Suppose neither

{v1, v2} ⊆ A nor {v1, v2} ⊆ Ac. Without loss of generality, we assume

v1 ∈ A and v2 /∈ A. If {v1, v2} ⊆ B, then FC(B) = Bc 6= A. If v1 ∈

B ∩ A and v2 /∈ B then FC(B) = Bc \ {v2} 6= A. If {v1, v2} ⊆ Bc, then

again FC(B) = Bc 6= A. From these we arrive at a contradiction to our

assumption that FC(B) = A. Hence either {v1, v2} ⊆ A or {v1, v2} ⊆

Ac.

Illustration 6.3.1. Consider K6 − e given in figure 3.2. The fair sets of

this graph are given bellow. First five are the fair sets that contain {v1, v2}

and the next four are the fair sets that exclude v1 and v2.
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1. {v1, v2}

2. {v1, v2, v3}, {v1, v2, v4}, {v1, v2, v5}, {v1, v2, v6}

3. {v1, v2, v3, v4}, {v1, v2, v3, v5}, {v1, v2, v3, v6}, {v1, v2, v4, v5},

{v1, v2, v4, v6}, {v1, v2, v5, v6}

4. {v1, v2, v3, v4, v5}, {v1, v2, v3, v4, v6}, {v1, v2, v3, v5, v6},

{v1, v2, v4, v5, v6}

5. {v1, v2, v3, v4, v5, v6}

6. {v3}, {v4, }, {v5}, {v6}

7. {v3, v4}, {v3, v5}, {v3, v6}, {v4, v5}, {v4, v6}, {v5, v6}

8. {v3, v4, v5}, {v3, v4, v6}, {v4, v5, v6}, {v3, v5, v6}

9. {v3, v4, v5, v6}

6.3.3 Fair sets of Complete Bipartite graphs

The following proposition identifies the fair sets of complete bipartite graph

G = Km,n.

Proposition 6.3.3. Let G be a complete bipartite graph Km,n with

bipartition (X,Y ) where |X| = m and |Y | = n. Let A = A1 ∪ A2 where

A1 ⊆ X and A2 ⊆ Y . Then A is a fair set if and only if |A1| 6= m− 1 and

|A2| 6= n− 1.

Proof. We prove the proposition case by case.

Case 1: |A1| < m− 1 and |A2| < n− 1.

Then Ac = (X − A1) ∪ (Y − A2). For, each x ∈ Ac, f(x,Ac) = 2 − 0 = 2

and for each x ∈ A f(x,Ac) = 2− 1 = 1. So, FC(Ac) = A.

Case 2: A = X ∪ Y .

We can see that FC(A) = A.

Case 3: |A1| = m and |A2| < n− 1.

Then as in the Case 1, we have FC(Ac) = A.

Case 4: |A1| = m− 1 and |A2| = n− 1.

Here |Ac| = 2 let it be {xm, yn} where xm ∈ X and yn ∈ Y . For each
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x ∈ A1, f(x,A
c) = 2 − 1 = 1, for each x ∈ A2, f(x,A

c) = 2 − 1 = 1.

f(xm, Ac) = f(yn, A
c) = 1− 0 = 1. So FC(Ac) = X ∪ Y .

Case 5: |A1| = m− 1 and |A2| < n− 1.

Let A1 = X \{x1}. For each x ∈ A1, f(x,A
c) = 2−1 = 1, for each x ∈ A2,

f(x,Ac) = 2 − 1 = 1. f(x1, A
c) = 1 − 0 = 1 and for each x ∈ Y \ A2,

f(x,Ac) = 2− 0 = 2. So FC(Ac) = A1 ∪A2 ∪ {x1} = X ∪A2.

Case 6: |A1| = m− 1 and |A2| = n.

Then, we FC(Ac) = X ∪ Y .

We can easily see that the cases 1 to 6, determine the fair centers of all

types of subsets of V . Hence the proposition.

As a simple illustration of Proposition 6.3.3, we have an example which

discuss the Case 1 of the proposition.

Illustration 6.3.2. Consider the graph K5,4 in figure 3.1 , with par-

titions X = {u1, u2, u3, u4, u5} and Y = {v1, v2, v3, v4}. By choosing

A1 = {u1, u2, u3}, A2 = {v1, v2}, Ac = {u4, u5, v3, v4}, we can see that

FC(Ac) = A.

6.3.4 Fair sets of wheel graphs

Now we consider the case when the graph is a wheel Wn. We first prove

the case when n > 6.

Theorem 6.3.4. Let Wn, (n > 6) be the wheel graph with vertex set

{v1, . . . , vn−1, vn}, where vn is the universal vertex. Let Cn−1 be the cycle

induced by {v1, . . . , vn−1}. Then the fair sets of Wn are

1. {vi}, 1 6 i 6 n,

2. {vi, vj} such that vi, vj ∈ V (Cn−1), dCn−1(vi, vj) = 2,
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3. V (Wn),

4. All sets of the form A1 ∪ {vn} where A1 ⊂ V (Cn−1) and G[A1] is not

an induced path of length greater than n− 6.

Proof. We prove the theorem first for n > 6.We use the notation vi+k(or

vi−k) for vi+k−(n−1)(or vi−k+(n−1)) when i+ k > n− 1(or i− k < 1). First,

we prove that the four types of sets described in the theorem are indeed

fair sets.

1. Let S = {vi⊖n−11, vn, vi⊕n−11}, 1 6 i 6 n − 1. f(vi, S) = 0 and for all u

other than vi we have f(u, S) > 0 so that FC(S) = {vi}. For S = V ,

f(vn, S) = 1 and for all u other than vn we have f(u, S) = 2, so in this

case we can see that FC(S) = {vn}. Hence {vi}, 1 6 i 6 n are all fair

sets.

2. Let S = {vn, vi}, 1 6 i 6 n − 1. f(vi⊖n−11, S) = f(vi⊕n−11, S) = 0 and

for all other u, f(u, S) > 0. Hence FC(S) = {vi⊖n−11, vi⊕n−11}. In other

words any {vi, vj} such that vi, vj ∈ V (Cn−1), dCn−1(vi, vj) = 2 is a fair

set.

3. Let S = {vi, vi⊕n−11, vn}. f(vi, S) = f(vi⊕n−11, S) = f(vn, S) = 1 − 0 =

1. For all other u, f(u, S) = 2− 1 = 1. Hence FC(S) = V .

4. Now let S ⊆ V be such that vn ∈ S and S contains at least one pair

of vertices vi and vj such that dCn−1(vi, vj) > 2. Then for every u ∈ S

such that u 6= vn, f(u, S) = 2 − 0 = 2, f(vn, S) = 1 − 0 = 1 and for

every v /∈ S, f(v, S) = 2− 1 = 1. Hence FC(S) = Sc ∪ {vn}. This gives

us that for any A ⊆ V such that vn ∈ A and V (Cn−1) \A is none of the

following subsets of V (Cn−1) is a fair set.

(a) {vi}, 1 6 i 6 n− 1.
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(b) {vi, vi⊕n−11}, 1 6 i 6 n− 1.

(c) {vi, vi⊕n−12}, 1 6 i 6 n− 1.

(d) {vi, vi⊕n−11, vi⊕n−12}, 1 6 i 6 n− 1

The set A1 ∪ {vn} where A1 is the complement in V (Cn−1) of a set

mentioned in 4c above, is the fair center of {vi, vi+1, vi+2, vn}.

Therefore the only sets containing {vn} which have not been identified as

fair sets are sets of the type A1 ∪{vn} where A1 is a path of length greater

than n − 6. Now let A = A1 ∪ {vn} where A1 ⊆ V (Cn−1) forms a path

of length greater than n − 6. Assume there exists an S ⊆ V such that

FC(S) = A. If S ⊆ V (Cn−1) then f(vn, S) = 0 and it is impossible to

have f(u, S) = 0 for every u ∈ A1. Hence S cannot be a subset of V (Cn−1)

or vn ∈ S. If S contains a vi and vj of Cn−1 so that dCn−1(vi, vj) > 2

then FC(S) = V (Cn−1) \ S ∪ {vn}. So FC(S) = A implies V (Cn−1) \ S =

A1. We have that vi and vj , two vertices such that dCn−1(vi, vj) > 2,

does not belong to V (Cn−1) \ S. By the choice of A1 such two vertices

cannot be simultaneously absent from A1. Hence V (Cn−1) \ S 6= A1, a

contradiction. So assume S does not contain two vertices vi and vj such

that dCn−1(vi, vj) > 2. Hence S should be any one of the following:

a) {vi, vn}, 1 6 i 6 n− 1.

b) {vi, vi⊕n−11, vn}, 1 6 i 6 n− 1.

c) {vi, vi⊕n−12, vn}, 1 6 i 6 n− 1.

d) {vi, vi⊕n−11, vi⊕n−12, vn}, 1 6 i 6 n− 1

But we have already found out the fair centers of all these sets and none of

them have A as its fair center. Hence an A = A1∪{vn} whereA1 ⊆ V (Cn−1)
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forms a path of length greater than n − 6 is not a fair set. Now we have

the following observations

A. For an S ⊂ V (Cn−1), vn ∈ FC(S)

B. If S contains vi and vj of Cn−1 where dCn−1(vi, vj) > 2 then vn ∈ FC(S)

C. Any A = A1 ∪ {vn} is fair set if and only if A1 is not a path of length

greater than n− 6 in V (Cn−1).

D. For any S ⊆ V such that vn ∈ S and vi, vj ∈ S =⇒ dCn−1(vi, vj) 6 2,

fair centers are sets of any of the following forms.

i) {vi}

ii) {vi, vi⊕n−12}

iii) V (Wn)

iv) {v1, . . . vi, vi⊕n−12, . . . , vn−1, vn}, a set of type described in C.

Hence the only fair sets of Wn are those described in C and D above.

When n=6 all sets described in item 4 of the theorem are same as those

described in item 1. The rest of the proof is same as above. Hence the

theorem.

Illustration 6.3.3. Consider W9 given in Figure 3.3. Here

{v1, v2, v3, v4, v5, v9} is not a fair set as the graph induced by

{v1, v2, v3, v4, v5} is a path of length 4 and n− 6 = 3. Similarly

{v1, v2, v3, v4, v5, v6, v9}, {v1, v2, v3, v4, v5, v6, v7, v9} etc are also not fair sets.

We are not listing the whole fair sets as the list is too long.

When n = 4, we can see that W4 = K4, so we prove the case when

the graph is a wheel Wn for n = 5, where we get a proposition, which is

entirely different from Theorem 6.3.4.
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Proposition 6.3.5. If G is W5 with V = {v1, v2, v3, v4, v5}, where v5 is

adjacent to all other vertices and v1v2v3v4v1 is the outer cycle, then the

only fair sets of G are {v5}, {v1, v3}, {v2, v4}, {v1, v3, v5}, {v2, v4, v5} and V .

Proof. Given a non empty vertex set S, let d1, d2, . . . dk be the distances

of the vertex v1 from the vertices of S where d1 6 d2 6 . . . 6 dk. Then

the distances of v3 from vertices of S are 2− dk, 2− dk−1, . . . , 2− d1 where

2− dk 6 2− dk−1 6, . . . ,6 2− d1.

Hence f(v3, S) = dk − d1 = 2− d1 − (2− dk) = f(v1, S). Hence if A is any

fair set, v1 ∈ A implies v3 ∈ A. Similarly v2 ∈ A implies v4 ∈ A.

Now f(vi, V ) = 2 for 1 6 i 6 4 and f(v5, V ) = 1. Hence FC(V ) = {v5}.

Similarly we can observe that FC({v5, v4}) = {v1, v3},

FC({v5, v3}) = {v2, v4}, FC({v1, v3}) = {v2, v4, v5},

FC({v2, v4}) = {v1, v3, v5} and FC({v1, v2, v5}) = V . Hence the fair sets

of W5 are precisely those described in the theorem.

6.3.5 Fair sets of Paths

Lemma 6.3.2. Let Pn be path v1v2 . . . vn. Let S = {vi1 , vi2 , . . . , vik},

where 1 6 i1 < i2 < . . . < ik 6 n. Then FC(S) ⊂ FC(S′) where

S′ =







{vi1 , v i1+ik
2

, vik} if i1+ik
2 is an integer.

{vi1 , v⌊ i1+ik
2

⌋
, v

⌈
i1+ik

2
⌉
, vik} if i1+ik

2 is not an integer.

Proof. From theorem 6.2.1 the induced subgraph of any fair set in a path

is connected and is therefore an interval. Suppose i1+ik
2 is not an integer.

Let d(v
⌊
i1+ik

2
⌋
, vik) = d(v

⌈
i1+ik

2
⌉
, vi1) = d. Then f(v

⌊
i1+ik

2
⌋
, S′) = d. As

we move towards v1 partiality remains to be d up to v
⌈
i1+⌊

i1+ik
2 ⌋

2
⌉
. After

this partiality increases. Similarly f(v
⌈
i1+ik

2
⌉
, S′) = d. As we move towards
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vn partiality remains to be d up to v
⌊
ik+⌈

i1+ik
2 ⌉

2
⌋
and after wards partiality

increases. Therefore

FC(S′) = {v
⌈
i1+⌊

i1+ik
2 ⌋

2
⌉
, . . . , v

⌊
ik+⌈

i1+ik
2 ⌉

2
⌋
} (6.1)

max(x, S) is minimum for x = v
⌊
i1+ik

2
⌋
and v

⌈
i1+ik

2
⌉
andmax(x, S) increases

by one as we move from these two vertices towards v1 and vn respectively.

Also difference between min(x, S) of two consecutive vertices can be at

most one. Therefore at least one of v
⌊
i1+ik

2
⌋
and v

⌈
i1+ik

2
⌉
belong to FC(S′).

Let ⌊ ik−i1
2 ⌋ = a. Hence max(v

⌊
i1+ik

2
⌋
, S) = max(v

⌈
i1+ik

2
⌉
, S) = a. Now we

shall take three cases.

Case 1:Both v
⌊
i1+ik

2
⌋
and v

⌈
i1+ik

2
⌉
belong to S. Let im be the largest

integer such that i1 6 im 6 ⌈ i1+ik
2 ⌉, vim ∈ S and let il be the smallest

integer such that ⌈ i1+ik
2 ⌉ 6 il 6 ik, vil ∈ S. Then in this case

FC(S) = {v
⌈
im+⌊

ii+ik
2 ⌋

2
⌉
, . . . , v

⌊
il+⌈

i1+ik
2 ⌉

2
⌋
} ⊂ FC(S′).

Case 2: One of v
⌊
i1+ik

2
⌋
and v

⌈
i1+ik

2
⌉
is present in S and the other is ab-

sent. Without loss of generality we may assume that v
⌊
i1+ik

2
⌋
∈ S and

v
⌈
i1+ik

2
⌉
/∈ S.

f(v
⌊
i1+ik

2
⌋
, S) = a and f(v

⌈
i1+ik

2
⌉
, S′) = a − 1. As we move away from

v
⌈
i1+ik

2
⌉
towards vn partiality remains the same up to v

⌊
il+⌊

i1+ik
2 ⌋

2
⌋
and from

there onwards partiality increases. Therefore

FC(S) = {v
⌈
i1+ik

2
⌉
, . . . , v

⌊
il+⌊

i1+ik
2 ⌋

2
⌋
} ⊂ FC(S′).

Case 3:Both v
⌊
i1+ik

2
⌋
and v

⌈
i1+ik

2
⌉
does not belong to S.

Assume ⌊ i1+ik
2 ⌋−im 6 il−⌈ i1+ik

2 ⌉. Let ⌊ i1+ik
2 ⌋−im = b and il−⌈ i1+ik

2 ⌉ = c.

Then f(v
⌊
i1+ik

2
⌋
, S) = a − b. f(v

⌈
i1+ik

2
⌉
, S) = a − (b + 1) if b < c and

f(v
⌈
i1+ik

2
⌉
, S) = a− b if b = c. That is,

f(v
⌈
i1+ik

2
⌉
, S) 6 f(v

⌊
i1+ik

2
⌋
, S).If f(v

⌈
i1+ik

2
⌉
, S) = a − (b + 1) as we move
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from v
⌈
i1+ik

2
⌉
towards vn partiality remains to be a− (b+1) up to v

⌊
im+il

2
⌋
.

If b = c f(v
⌊
i1+ik

2
⌋
, S) = f(v

⌈
i1+ik

2
⌉
, S) = a − b. Hence in both the cases

FC(S) = {v
⌈
i1+ik

2
⌉
, . . . , v

⌊
il+im

2
⌋
}. In other words FC(S) ⊂ FC(S′). When

i1+ik
2 is an integer ⌊ i1+ik

2 ⌋ = ⌈ i1+ik
2 ⌉ and the proof is similar.

Corollary 6.3.6. Let S′ be as in the Lemma 6.3.2 and t be an integer.

Length of FC(S′) =

{

2t if d(vi1 , vik) = 4t or 4t+ 2

2t+ 1 if d(vi1 , vik) = 4t+ 1 or 4t+ 3

Proof. We shall assume that vi1 = v1.

Case 1: d(vi1 , vik) = 4t. So ik = 4t+ 1 and

FC(S′) = {v
⌈
1+⌊ 1+4t+1

2 ⌋

2
⌉
, . . . , v

⌊
4t+1+⌈ 1+4t+1

2 ⌉

2
⌋
} = {vt+1, . . . , v3t+1}, a path

of length 2t.

Case 2: d(vi1 , vik) = 4t+ 1. Then ik = 4t+ 2 and hence,

FC(S′) = {v
⌈
1+⌊ 1+4t+2

2 ⌋

2
⌉
, . . . , v

⌊
4t+2+⌈ 1+4t+2

2 ⌉

2
⌋
} = {vt+1, . . . , v3t+2}, a path

of length 2t+ 1.

Case 3: d(vi1 , vik) = 4t+ 2 ⇒ ik = 4t+ 3 so that

FC(S′) = {v
⌈
1+⌊ 1+4t+3

2 ⌋

2
⌉
, . . . , v

⌊
4t+3+⌈ 1+4t+3

2 ⌉

2
⌋
} = {vt+2, . . . , v3t+2}, a path

of length 2t.

Case 4: d(vi1 , vik) = 4t+ 3. Then ik = 4t+ 4 and thus

FC(S′) = {v
⌈
1+⌊ 1+4t+4

2 ⌋

2
⌉
, . . . , v

⌊
4t+4+⌈ 1+4t+4

2 ⌉

2
⌋
} = {vt+2, . . . , v3t+3}, a path

of length 2t+ 1.

Corollary 6.3.7. Let S′ be as defined in the Lemma 6.3.2 with length of

FC(S′) equal to d. If S′′ ⊆ V with diam(S′′) 6 diam(S′) then the length

of FC(S′′) is atmost d+ 1.

Theorem 6.3.8. Let P be the path v1v2 . . . vn . A = {vi, vi+1, . . . , vj} is

a fair set if and only if either
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(i) i = 1 and j = n or

(ii) ⌊ j−i
2 ⌋ 6 min{i− 1, n− j}

Proof. If A = {v1, . . . , vn} then it is a fair set because FC({v1, v2}) = A.

Now assume that A 6= {v1, . . . , vn}. Suppose j − i is odd and let j − i =

2a+ 1.

b b b b b b b b
v1 vi

v⌊ j+i
2

⌋ v⌈ j+i
2

⌉ vj vn

⌊ j−i
2 ⌋ ⌊ j−i

2 ⌋i− 1 n− j

j − i is odd

b b b b b b b
v1 vi

v j+i
2

vj vn

j−i
2

j−i
2i− 1 n− j

j − i is even

Figure 6.3

Without loss of generality we may assume that i − 1 6 n − j. Sup-

pose i − 1 > a. Let S be the set {vi−a, vi+a, vi+a+1, vi+3a+1}. Since

a 6 i − 1 6 n − j, vi−a, vi+3a+1 ∈ V (P ). As in the proof of lemma 6.3.2

we get that FC(S) = {v
⌈
i−a+⌊ i−a+i+3a+1

2 ⌋

2
⌉
, . . . , v

⌊
i+3a+1+⌈ i−a+i+3a+1

2 ⌉

2
⌋
} =

{vi, . . . , vi+2a+1} = {vi, . . . , vj}. Hence A is a fair set. Now Suppose
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i− 1 < a. Let S = {v1, vi+a, vi+a+1, v2i+2a}. Then,

FC(S) = {v
⌈
1+⌊ 2i+2a+1

2 ⌋

2
⌉
, . . . , v

⌊
2i+2a+⌈ 2i+2a+1

2 ⌉

2
⌋
} = {v⌈ i+a+1

2
⌉, . . . , v⌊ 3i+3a+1

2
⌋}.

Since i− 1 < a, v⌈ i+a+1
2

⌉ lies towards the right of vi and v⌊ 3i+3a+1
2

⌋ towards

left of vi+2a+1. Hence FC(S) ⊆ A and length of FC(S) 6 length of A− 2.

By lemma 6.3.2 any set with end vertices v1 and v2i+2a cannot have A as

the fair center. From Corollary 6.3.7 it follows that any set with diameter

less than that of S cannot have A as its fair center. If S is any set with end

vertices vp and vq from equation 1 it is clear that if p = 1 and q > 2i+2a or

p > 1 and q > 2i+2a then FC(S) 6= A. In other words A is not a fair set.

Similarly we can prove the case when j− i is even. Hence the theorem.

Illustration 6.3.4. Consider the path P8 with vertex set

{v1, v2, v3, v4, v5, v6, v7, v8}.

b b b b b b b b
v1 v2 v3 v4 v5 v6 v7 v8

Figure 6.4: P8

Here {v2, v3}, {v2, v3, v4}, {v2, v3, v4, v5} are all fair sets, but {v2, v3, v4, v5, v6}

is not a fair set since i − 1 = 1, and ⌊ j−i
2 ⌋ = 6−2

2 = 2 > 1. Similarly

{v3, v4, v5, v6, v7} is also not a fair set.

6.3.6 Fair sets of Odd cycles

In the next theorem we find out the fair sets of odd cycles

Theorem 6.3.9. Let the graph G = C2n+1 be an odd cycle with vertex

set V = {v1, . . . , v2n+1}. A ⊆ V is a fair set if and only if for every pair
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of consecutive vertices in A, the vertex which is eccentric to both theses

vertices is also in A.

b

v1
b

v2n+1

b

vn+3

b vn+2

b
vn+1

b
v3

b
v2

Figure 6.5: Odd cycle C2n+1

Proof. Let v1 and v2 be a pair of adjacent vertices and let vn+2 be the vertex

which is eccentric to both v1 and v2. Let v1, v2 ∈ A ⊆ V where A = FC(S)

for some S ⊆ V . Let min(v1, S) = dmin and max(v1, S) = dmax. Since

v1, v2 ∈ A, f(v1, S) = f(v2, S). We shall consider here two different cases.

Case 1: min(v2, S) = dmin + 1 and max(v2, S) = dmax + 1. Then there

exists a vertex v ∈ S such that d(v1, v) = dmax and d(v2, v) = dmax + 1.

Then d(vm+2, v) = m − dmax. If there exists a vertex v′ ∈ S such that

d(vm+2, v
′) < m − dmax then d(v′, v1) > dmax, a contradiction. Hence

min(vn+2, S) = d(vn+2, v). Similarly there exists a vertex u such that

d(u, v1) = dmin and d(u, v2) = dmin + 1. max(vn+2, S) = d(vn+2, u) =

m− dmin. Therefore f(vn+2, S) = m− dmin − (m− dmax) = dmax− dmin =

f(v1, S) = f(v2, S). That is vn+2 ∈ A.

Case 2: min(v2, S) = dmin and max(v2, S) = dmax. Let u and u′ be such

that min(v1, S) = d(v1, u) and min(v2, S) = d(v2, u
′). max(vn+2, S) =

m − d(v1, u) = m − min(v1, S) = m − dmin. Let v and v′ be such that

max(v1, S) = d(v1, v) and max(v2, S) = d(v2, v
′). If v = v′ then v =

vn+2. In this case min(vn+2, S) = 0. Therefore f(vn+2, S) = n − dmin =
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max(v1, S) − min(v1, S) = f(v1, S). If v 6= v′, d(v2, v) = d(v1, v
′) =

dmax−1. Hencemin(vn+2, S) = d(vn+2, v) = d(vn+2, v
′) = m−(dmax−1) =

n − dmax + 1. Therefore f(vn+2, S) = n − dmin − (n − dmax + 1) =

dmax − dmin − 1 < f(v1, S) = f(v2, S). This contradicts the fact that

v1, v2 ∈ FC(S) and so we rule out this possibility. Hence in all the possible

cases v1, v2 ∈ A ⇒ vn+2 ∈ A.

Conversely, assume that A ⊆ V is such that for every pair of consecutive

vertices vi, vi+1 in A, vn+i+1 belong to A. Let v1, . . . vk, k > 1, be con-

secutive vertices belonging to A. Then vn+2, vn+3, . . . , vn+k belong to A.

Without loss of generality we may assume that

i) A does not contain any consecutive set of vertices other than the above

two.

ii) vn+1 does not belong to A.

Now, construct the set S as follows

step I) If k = 3r or 3r + 1 for some integer r then set

S = {v2, v5, . . . , v3r−1}. If k = 3r + 2 then then set S =

{v3, v6, . . . , v3r}.

step II) Add to S the vertices vi, n + 2 6 i 6 n + k of A, which are not

an eccentric vertex of any of the vertices in S.

step III) Add Ac to S.

Let x ∈ V \A. Then x ∈ S and therefore min(x, S) = 0. Let y and z be the

eccentric vertices of x in G. Take note that yz is an edge. If {y, z} ⊆ Sc,

then we have {y, z} ⊆ A. Since x is an eccentric vertex of y and z, we have

x ∈ A, which is not true. Hence either y or z belongs to S, and we have

max(x, S) = n, so that f(x, S) = n.

Let x ∈ A be such that both the neighbours of x do not belong to

A. Then x /∈ S and neighbours of x belong to S and min(x, S) = 1.
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Let x1 and x2 be the eccentric vertices of x. Then x1, x2 /∈ S implies

either x1, x2 ∈ {v1, . . . , vk} or x1, x2 ∈ {vn+2, . . . , vn+k}. In the former

case x ∈ {vn+1, . . . , vn+k} and in the latter case x ∈ {v1, . . . , vk} and this

is not possible by the choice of x. Hence either x1 or x2 belong to S.

Hence max(x, S) = n. Therefore f(x, S) = n − 1. By the way of choice

of vertices vi, 1 6 i 6 k, in S either min(vi, S) = 1 and max(vi, S) = n or

min(vi, S) = 0 andmax(vi, S) = n−1. Hence f(vi, S) = n−1 for 1 6 i 6 k.

For n+2 6 i 6 n+ k, vi /∈ S implies eccentric of vi belong to S. Therefore

in this case min(vi, S) = 1 and max(vi, S) = n or f(vi, S) = n − 1. Now,

for n + 2 6 i 6 n + k, vi ∈ S implies min(vi, S) = 0. Now an eccentric

vertex of vi, m + 2 6 i 6 n + k, belong to S implies vi /∈ S. Hence for

vi ∈ S eccentric vertices of vi /∈ S. Also there are no three consecutive

vertices among vi’s, 1 6 i 6 k, absent from S. Hence max(vi, S) = n − 1

for n+2 6 i 6 n+k. Also the two eccentric vertices of vn+k+1, vk and vk+1

does not belong to S. Hence if vn+k+1 ∈ S, f(vn+k+1, S) = n−1. Therefore

for each vi ∈ A, f(vi, S) = n− 1 and for each vi /∈ A, f(vi, S) = n. Hence

FC(S) = A or A is a fair set.

We have an immediate corollary for Theorem 6.3.9 and the proof follows

from the proof of Theorem 6.3.9.

Corollary 6.3.10. If A ⊂ V (C2n+1) contains no two adjacent vertices

then A is a fair set of C2n+1.

Corollary 6.3.11. The only connected fair sets of an odd cycle C2n+1

are singleton (vertex) sets and the whole vertex set V .

Proof. By the Theorem 6.3.9, {vi}, 1 6 i 6 2n + 1 and V are fair sets.

Now let A ⊆ V be a connected fair set of C2n+1 which contains more than

one element. Let vi, vj ∈ A. Then there exists a path connecting vi and

vj in A without loss of generality we may assume that it is vi, vi+1, . . . vj .
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vi, vi+1 ∈ A implies vn+i+1 ∈ A. Therefore a path connecting vi and

vn+i+1 lies in A. Since this path contains n+2 consecutive vertices by the

theorem we can conclude that A should also contain the other n−1 vertices

or A = V .

Illustration 6.3.5. Consider the odd cycle C15 = v1v2, . . . v15v1. Let A =

{v1, v2, v3, v5, v6, v9, v10, v13}. v1 and v2 are a pair of consecutive vertices

and the vertex eccentric to both v1 and v2, v9, also belong to A. Similarly,

(v2, v3) and (v5, v6) are pairs of adjacent vertices and the vertices eccentric

to these pairs namely, v10 and v13 also belong to A. Hence as per the

theorem,A is a fair set. According to the construction given in the theorem

we have

S = {v2, v4, v7, v8, v11, v12, v13, v14, v15}. eS(v1) = 6, eS(v2) = 6,

eS(v3) = 6, eS(v4) = 7, eS(v5) = 6, eS(v6) = 6, eS(v7) = 7, eS(v8) = 7,

eS(v9) = 6, eS(v10) = 6, eS(v11) = 7, eS(v12) = 7, eS(v13) = 6, eS(v14) = 7,

eS(v15) = 7. Therefore CS(C15) = A.

6.3.7 Fair sets of Symmetric Even graphs

Proposition 6.3.12 (Proposition 4 of [54]). Let u and v be vertices of a

symmetric even graph G of diameter d. If v ∈ Ni(u) and v̄ ∈ Nj(u), then

i+ j = d.

The following theorem characterises the fair sets of symmetric even

graphs.

Theorem 6.3.13. Let G be a symmetric even graph. An A ⊆ V is a fair

set if and only if for every vertex x ∈ A, x̄ ∈ A.

Proof. Let diam(G) = d. Assume A ⊆ V is a fair set with FC(S) = A

where S = {v1, . . . , vk} and and let x ∈ A. Let d(x, vi) = di, 1 6 i 6 k.

Without loss of generality we may assume that d1 6 d2 6 . . . 6 dk. Then
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f(x, S) = dk − d1. By proposition 6.3.12, d(x, vi) = di ⇒ d(x̄, vi) = d− di.

Therefore f(x̄, S) = d− d1 − (d− dk) = dk − d1. Hence x ∈ A ⇒ x̄ ∈ A.

Conversely, assume that A ⊆ V is such that x ∈ A ⇒ x̄ ∈ A. To prove

A = FC(S) for some S ⊆ V . Let A = {x1, . . . , xm, x̄1, . . . , x̄m}. Let

S = V \ {x1, . . . , xm}. Suppose for every xi, 1 6 i 6 m some neighbour

of xi is in S. Then f(xi, S) = d(xi, x̄i) − 1 = d − 1(Here the minimum

distance is 1 since xi /∈ S and some neighbour of xi is in S). For each

x̄i, 1 6 i 6 m, f(x̄i, S) = d − 1 − 0 = d − 1(Here the maximum distance

is d − 1 since xi /∈ S and some neighbour of xi is in S. The minimum

distance is 0, since x̄i ∈ S). Now, for a y different from xi, x̄i, 1 6 i 6 m,

min(y, S) = 0 since y ∈ S and max(y, S) = d since ȳ ∈ S. Therefore

f(y, S) = d − 0 = d. In other words FC(S) = A. Now, assume that

there exists an xj , say x1, such that neither x1 nor any of the vertices

adjacent to x1 are in S. That is the vertices adjacent to x1 are among

x2, x3, . . . , xm. Let xi be a vertex adjacent to x1. Then min(x1, S) > 1 and

max(x1, S) = d. Therefore f(x1, S) = max(x1, S) − min(x1, S) 6 d − 2.

Let xk be a vertex such that a neighbour of xk is in S. Thenmin(xk, S) = 1

and max(xk, S) = d and therefore f(xk, S) = d−1. Therefore FC(S) 6= A.

Let S1 = {x1} ∪ S \ {x̄1}. Now, min(x1, S1) = 0 since x1 ∈ S1 and

max(x1, S1) = d − 1 since x̄i is adjacent to x̄1 and barxi ∈ S1. Hence

f(x1, S1) = d− 1. Also, min(x̄1, S1) = 1 since x̄i ∈ S1 and max(x̄1, S1) = d

since x1 ∈ S1. Hence f(x̄1, S1) = d − 1. For a y ∈ V such that y 6= xj, x̄j ,

1 6 j 6 m we have that min(y, S1) = 0 and max(y, S1) = d(y, ȳ) = d and

therefore f(y, S1) = d. If for every y ∈ V either y ∈ S1 or some neighbour

of v is in S1 then as above it can be shown that FC(S1) = A. Otherwise,

let x2 be a vertex such that neither x2 nor any of the vertices adjacent to

x2 are in S1. It is clear that x2 6= xi, x̄1. Let S2 = {x2} ∪ S1 \ {x̄2}. Then

min(x1, S2) = 0, max(x1, S2) = d(x1, x̄i) = d− 1 and therefore f(x1, S1) =

d − 1. min(x̄1, S2) = d(x̄1, x̄i) = 1, max(x̄1, S2) = d(x1, x̄1) = d and
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therefore f(x̄1, S2) = d−1. we have min(x2, S2) = 0. The vertices adjacent

to x2 are among x̄1, x3, . . . , xm and their eccentric vertices x1, x̄3, . . . , x̄m are

in S2. Hence max(x2, S2) = d− 1. Thus f(x2, S2) = d− 1. min(x̄2, S2) = 1

since x̄2 is adjacent to the vertices that are eccentric to the vertices adjacent

to x2 and max(x̄2, S2) = d(x̄2, x2) = d. Hence f(x̄2, S2) = d − 1. If S2 is

such that for every y ∈ V either y ∈ S1 or some neighbour of v is in S1

then FC(S2) = A. Else, we continue the above process and it should be

noted that the partiality of the vertices that are added and deleted at each

stage is adjusted to d − 1, the partiality of all the vertices that have been

added and deleted in the previous stages are maintained to be d − 1 and

the partiality of all vertices different from xj and x̄j are equal to d . At

most in m stages, we shall get an S′ such that f(xj, S
′) = f(x̄j, S

′) = d− 1

for 1 6 j 6 m and f(y, S′) = d for y 6= xj, x̄j . That is, FC(S′) = A and

that proves the theorem.

Corollary 6.3.14. The only connected fair set of an even cycle C2n is

the whole vertex set V .

Proof. Let A be a connected fair set of C2n. Let u ∈ A. Then by the above

theorem ū ∈ A. Since A is connected at least one of the paths connecting

u and ū should be in A. Again by the theorem the eccentric vertices of the

vertices of this path should also be in A. Hence A = V .

Illustration 6.3.6. Consider the even cycle C16 = v1v2 . . . v15v1 a sym-

metric even graph. We shall a find a vertex set whose center is

A = {v1, v2, v3, v4, v5, v9, v10, v11, v12, v13}.

Let S = {v6, v7, v8, v9, v10, v11 , v12, v13, v14, v15, v16}. Since neither v2 nor

any of the vertices adjacent to v2 belong to S set S1 = {v2} ∪ S \ v10.

Again, neither v4 nor any of the vertices adjacent to v4 are in S1. Set,

S2 = {v4} ∪ S1 \ v12. Now for every v ∈ V either v or a neighbour of v is

in S2. we have FC(S2) = A.
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6.4 Fair sets and Cartesian product of graphs

Next we have an expression for the fair center of product sets in the Carte-

sian product of two graphs

Theorem 6.4.1. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs.

Let S1 ⊆ V1 and S2 ⊆ V2. Then FC(S1 × S2) = FC(S1) × FC(S2) where

FC(S1 × S2) is the fair center of S1 × S2 in the graph G1✷G2, FC(S1) is

the fair center of S1 in the graph G1 and FC(S2) is the fair center of S2 in

the graph G2.

Proof. Let (x, y) ∈ V1 × V2, S1 = {u11, u12, . . . , u1l} and

S2 = {u21, . . . , u2m} where u11 is the vertex nearest to x and u1l is the

vertex farthest from x and u21 is the vertex nearest to y and u2m is the

vertex farthest from y. For (u1i, u2j) ∈ S1 × S2

d((x, y), (u11, u21)) = d(x, u11) + d(y, u21)

6 d(x, u1i) + d(y, u2j)(= d((x, y), (u1i, u2j)))

6 d(x, u1l) + d(y, u2m)

= d((x, y), (u1l , u2m))

That is, if u11 is the vertex nearest to x in S1 ⊆ V1 , u21 is the vertex

nearest to y in S2 ⊆ V2, u1l is the vertex farthest from x in S1 ⊆ V1 and

u2m is the vertex farthest from y in S2 ⊆ V2 then (u11, u21) is the vertex

nearest to (x, y) in S1×S2 and (u1,l, u2,m) is the vertex farthest from (x, y)

in S1 × S2

fG1✷G2((x, y), S1 × S2) = d((x, y), (u1l , u2m))− d((x, y), (u11, u21))

= d(x, u1l) + d(y, u2m)− d(x, u11)− d(y, u21)
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= d(x, u1l)− d(x, u11 + d(y, u2m − d(y, u21)

= fG1(x, S1) + fG2(x, S2)

Now, let u1 ∈ FC(S1) where S1 ⊆ V1 and let u2 ∈ FC(S2) where S2 ⊆ V2.

That is fG1(u1, S1) 6 fG1(x, S1), ∀x ∈ V1 and fG2(u2, S2) 6 fG2(y, S2),

∀y ∈ V2. Therefore fG1(u1, S1) + fG2(u2, S2) 6 fG2(x, S1)+ fG2(y, S2). So,

fG1✷G2((u1, u2), S1×S2) 6 fG1✷G2((x, y), S1×S2), ∀(x, y) ∈ V1×V2. Hence

(u1, u2) ∈ FC(S1 × S2) in G1✷G2.

Conversely, assume that (u1, u2) ∈ FC(S1 × S2) in G1✷G2 where S1 ⊆ V1

and S2 ⊆ V2. That is, fG1✷G2((u1, u2), S1 × S2) 6 fG1✷G2((x, y), S1 × S2),

where S1 ⊆ V1 and S2 ⊆ V2, ∀x ∈ V1, y ∈ V2. Therefore, fG1(u1, S1) +

fG2(u2, S2) 6 fG1(x, S1) + fG2(y, S2), ∀x ∈ V1 and y ∈ V2 or fG1(u1, S1) +

fG2(u2, S2) 6 fG1(x, S1) + fG2(u2, S2), ∀x ∈ V1. That is, fG1(u1, S1) 6

fG1(x, S1), ∀x ∈ V1. Hence, u1 ∈ FC(S1) in G1. Similarly u2 ∈ FC(S2) in

G2. Thus, FC(S1 × S2) = FC(S1)× FC(S2).

Corollary 6.4.2. Let G1 = (V1, E1) and G2 = (V2, E2) be two graphs.

Then the subgraph induced by FC(S1 × S2), where S1 ⊆ V1 and S2 ⊆ V2

is connected in G1✷G2 if and only if the subgraph induced by FC(S1) is

connected in G1 and the subgraph induced by FC(S2)is connected in G2.

6.5 Conclusion

In this chapter we have initiated a structure based graph theoretical study

on equity oriented centers which has been called fair centers. The difference

between the maximum and minimum of distances from a given vertex to

set of vertices has been chosen as the criteria for its fairness with respect

to that set and hence repetition of vertices does not make any difference.

Thus the concept of profile of vertices does not have any significance in this

criteria of fairness. But we can consider a lot of other criteria for fairness
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like the sum of the deviations or mean deviation and in this case sets can be

generalised to profiles. Fair centers of various classes of graphs have been

determined. While identifying the fair sets of odd cycles and symmetric

even graphs, methods for finding the set which has a given set as the fair

set have been devised. It has been proved that all fair sets of a tree are

connected and the result has been generalised for block graphs. Moreover

block graphs have been characterised as the class of chordal graphs with

connected fair sets. In the thousands of graphs that have been examined

using computer programs, block graphs were the only graphs where the

subgraphs induced by all fair sets were connected. So we put forward the

following conjecture.

Conjecture 2. A graph G is a block graph if and only if the induced

subgraph of all of its fair sets are connected.



Chapter 7

Antimedian and weakly An-

timedian graphs

7.1 Introduction

The graphs in which every three vertex profile have a unique median is

called a median graph. This has significance in minimisation problems.

Maximisation problems have also gained importance owing to the growing

need for locating undesirable facilities and the maximisation analogue of

median graphs has been defined by Kannan et al. in [10]. Antimedian

graphs were introduced by them as the graphs in which for every triple

of vertices there exists a unique vertex x that maximizes the sum of the

distances from x to the vertices of the triple.

For the profile π = (v1, . . . vk) and x ∈ V , the set of all vertices x for

which D(x, π) is maximum is the Antimedian of π in G and is denoted by

AM(π). A graph G is called an Antimedian Graph if every triple of G has

a unique antimedian. Let v1, v2, · · · vn be the vertex set of the path on n

vertices P = Pn and let Gi, 2 6 i 6 n−1 be the rooted graphs with roots yi

respectively. Let G be the graph obtained from the disjoint union of P and

the graphs Gi, such that for i = 2, · · · , n− 1, yi is identified with vi. Then

G is a belt, with support P and ears Gis. A belt is even, if the support is

an even path. If, in addition, the depth of Gi is at most ⌊ i−2
3 ⌋ for i 6 n

2

and at most ⌊n−i−1
3 ⌋ for i > n

2 , then it is called a thin even belt.

119
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Figure 7.1: A Thin Even Belt

In a graphG, let (u1, v1) and (u2, v2) be two edges. Then d((u1, v1), (u2, v2))

is defined to be min{d(u1, u2), d(u1, v2), d(v1, u2), d(v1, v2)}.

Here we identify antimedian block graphs, define weakly antimedian graphs,

identify weakly antimedian trees and construct a new class of antimedian

and weakly antimedian graphs.

7.2 Some Antimedian graphs

Lemma 7.2.1. Let G be an antimedian block graph. Then G contains

exactly two diametrical vertices a and b. If P is the shortest (a, b) path

then G is a belt with P as support, d(a, b) is odd and for any triple of

vertices either a or b is its antimedian.

Proof. Let a and b be a pair of diametrical vertices. Suppose d(a, b) is

even. Let y be the middle vertex of P . Since no vertex can be farther away

from y than a and b, a and b are the antimedians of the profile (y, y, y),

contradicting the fact that G is antimedian. Therefore d(a, b) is odd.

Now assume that G is not a belt with P as support. Then there exist a

vertex x in G such that the shortest (x-P ) paths meet P at two adjacent

vertices z and z′. Suppose it meet P at a pair of non adjacent vertices. Then

we shall get a cycle involving vertices of more than one block a contradiction
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to the fact that G is a block graph. Hence all the vertices at which the

shortest x-P paths meet P are mutually adjacent or belong to a single

block. Also, since P is a shortest a-b path it cannot contain more than two

vertices from a single block. Hence the shortest x-P path meets P at at

most 2 vertices and if it meets at two points they should be adjacent.

b

a
b

w
b

w1

b

u
b

v
b

z
b

z′
b

b

bz′′

b
x

Figure 7.2: x-P path meeting P at a pair of adjacent vertices.

Let uv be the edge of P such that d(a, u) = d(b, v). Assume that

d(zz′, uv) 6 d(ww′, uv) for every edge ww′ such that d(x′, P ) = d(x′, w) =

d(x′, w′) for some vertex x′ in G. Also assume that d(z, a) > d(z′, b). Let

w1 be such that d(w1, u) = d(z, v).

Now, consider the three vertex profile (w1, u, z). IfD(a, (w1, u, z)) = k then

D(b, (w1, u, z)) = k + 1,D(a, (w1, u, z
′)) = k + 1 and D(b, (w1, u, z

′)) = k.

If z′′ lies on x-z and x-z′ paths such that z′′ is adjacent to both z and z′

then D(b, (w1, u, z
′′)) = k + 1 and D(a, (w1, u, z

′′)) = k + 1.

Now we shall prove that for (w1, u, z) and (w1, u, z
′) either a or b is its

antimedian. Assume that c ∈ V (G) is the antimedian of (w1, u, z). Let the

shortest (c-P ) path meet P at c′. Then c′ cannot be on the a-w1 part or

b-z part of P since b is the only vertex diametrical to a and vice versa.

Let c′ lie on (z, u) part of P . Vertex c is an antimedian of (w1, u, z) implies

c is an antimedian of (a, u, b). Let π be the profile (a, u, b). Assume that

d(c, a) is odd and d(c, b) is even.
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d(c, π) − d(b, π) = d(c, a) + d(c, u) + d(c, b) − (d(b, a) + d(b, u) + d(b, b))

= d(c, a) − d(b, a) + d(c, u) − d(b, u) + d(c, b)

This being the sum of three even numbers is even. Let w′
1 be the ver-

tex adjacent to b on P and π′ be the profile got by replacing b in π by

w′
1. Then D(c, π′) − D(b, π′) = D(c, π) − D(b, π) − 2. Repeat this pro-

cess and if the profile at the ith stage is π(i) then D(c, π(i)) −D(b, π(i)) =

D(c, π(i−1)) − D(b, π(i−1)) − 2. In this process no other pendant vertex y

can be the antimedian of any π(i) since the sum of the distances to y will

start to increase only when all vertices of the profile falls in the a-y path

and in this case D(b, π(i)) > D(y, π(i−1)) since b is the eccentric vertex of

a. Finally we get a profile π(k)in which D(c, π(k)) = D(b, π(k)), that is π(k)

has two antimedians c and b, a contradiction

Now, let c′ lie on the (u,w1) part of P . As in the previous case we

can take the profile π = (a, u, b) and continue the same process. Let

a, u1, u2, . . . uj, u be the a-u part of P . If the profile π(k) = (a, u, u) is

such that D(c, π(k) > D(b, π(k)) then take π(k+1) = (a, ui, u), π(k+2) =

(a, uj , uj), π(k+3) = (a, uj+1, uj) etc. Here also D(c, π(i)) − D(b, π(i)) =

D(c, π(i−1)) − D(b, π(i−1)) − 2 and no other pendant vertex y can be the

antimedian of any π(i). As in the previous case we get a profile π(k) such

that D(c, π(k)) = D(b, π(k)), that is π(k) has two antimedians c and b, a

contradiction Therefore (w1, u, z) has either a or b as its antimedian.

By a similar argument we can prove that (w1, u, z
′) has antimedian a or b.

Therefore (w1, u, z
′′)) has also antimedian a or b. But sinceD(a, (w1, u, z)) =

k and D(b, (w1, u, z
′)) = k we have D(a, (w1, u, z

′′)) = k + 1 and

D(b, (w1, u, z
′′)) = k + 1. That is, (w1, u, z

′′)) has two antimedians a and
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b, a contradiction. Hence z = z′. In other words G is a belt with P as its

support.

Let x be an arbitrary vertex different from a and b. Let x′ be a vertex

such that x′ ∈ P and d(x, P ) = d(x, x′). Let d(x′a) < d(x′b). Suppose

d(x, x′) > d(a, x′). Then d(x, b) > d(a, b) which implies a and b are not

diametrical. If d(x, x′) = d(a, x′) then (b, b, b) has two antimedians. Hence

d(x, x′) < d(a, x′). Now it is clear that for every x, y ∈ V such that at least

one of x and y is different from a and b, d(x, y) < d(a, b). That is a and b

are the only diametrical vertices. Now, let π = (u, v, w) be a triple of G.

Suppose z 6= a, b is the antimedian of π. Now clearly z should belong to an

end block of G. If z belong to the block B and B 6= K2 then there exists a

non cut vertex z′ in B. Let VB denote the set of all non cut vertices of B.

Hence z, z′ ∈ VB . Now we shall consider different cases .

Case 1: Let all of u, v and w /∈ VB. Then D(z, π) = D(z′, π) contradicting

G is antimedian.

Case 2: u, v /∈ VB, w ∈ VB . D(z, π) = d(z, u) + d(z, v) + d(z, w) =

d(z, u) + d(z, v) + 1. Replace w by w′ where w′ is the cutvertex belonging

to B. D(z, π′) = d(z, u) + d(z, v) + 1. D(w, π′) = d(w, u) + d(w, v) + 1 =

d(z, u) + d(z, v) + 1. For every x in V \ VB, D(x, π′) < d(z, u) + d(z, v) + 1.

Then, π′ has two antimedians z and w, a contradiction.

Case 3: u /∈ VB, v,w ∈ VB .

Subcase 3.1: v = w = z. D(z, π) = 0+0+ d(z, u). D(z′, π) = d(z, u) + 2.

This contradicts the fact that z is antimedian.

Subcase 3.2: v = z, w 6= z. D(z, π) = d(z, u) + 1,D(w, π) = 1 + d(z, u)

contradicting G is antimedian.

Subcase 3.3: v,w 6= z

D(z, π) = d(z, u) + 2,D(w, π) = d(z, u) + 1. For any other vertex x,

d(x, π) < d(z, u) + 2. Replace w by w′ where w′ is the cutvertex be-
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longing to B. D(z, π′) = d(z, u) + 2, d(w, π′) = d(z, u) + 2 and for all x,

d(x, π) 6 d(z, u) + 2. Therefore π′ has two antimedians a contradiction.

Case 4: u, v, w ∈ VB . Let w′ be the cutvertex of B. Then D(w′, π) >

D(z, π) contradicting that z is the unique antimedian of π. Hence B = K2

and z should be a leaf.

Now in the way we proved that (w1, u, z) has a as its antmedian we prove

that for any three vertex profile π either a or b is its antimedian.

Now we shall give the necessary and sufficient condition for a block

graph to be antimedian. Before that we quote two theorems from [10].

Theorem 7.2.1. Let G be a thin even belt. Then G is antimedian.

Theorem 7.2.2. Let T be a tree. Then T is an antimedian graph if and

only if it is an thin even belt.

Theorem 7.2.3. Let G be a block graph. Then G is an antimedian graph

if and only if it is a thin even belt .

Proof. By Theorem 7.2.1 we know that thin even belts are antimedian. It

remains to prove that among block graphs thin even belts are the only

antimedian graphs. Let G be an arbitrary antimedian block graph. By

Lemma 7.2.1, G has exactly two diametrical vertices u and v and let P :

u = v1v2 . . . vr = v be the u-v path in G. Let Gi , 1 6 i 6 r, be the

maximal subgraph of G that contains vi and no other vertex of P . We

have that G is an even belt with P as support Gi’s as the ears. Let di be

the depth of Gi , 1 6 i 6 r. Suppose that for some i 6 n
2 the condition

di 6
(i−2)

3 is not fulfilled. Hence 3di > i− 2 and let w be a vertex from Ti

with 3d(w, vi) > i− 2 or 3d(w, vi) > i− 1. Consider the triple π = (u, v, v).

Clearly D(v, π) < D(u, π) = 2(r − 1). However D(w, π) = 3di + i − 1 +

2(r − i) > 2r − 2. We have a contradiction with Lemma 7.2.2 since w is
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also an antimedian vertex. By symmetry we have an analogue proof for

i > r
2 .

Theorem 7.2.4. Let H be a symmetric even graph of diameter ℓ and let

u and v be a pair of diametric vertices of H. Let G be the graph obtained

by adjoining to H paths of length m and n at u and v respectively. Then

G is Antimedian if and only if

1. diameter of G is odd

2. m+ n > ℓ

3. m
3 + 3n > ℓ and n

3 + 3m > ℓ

b b
a

b b b

b b

b b

b b b
bu v

Proof. First we shall assume that diam(G) is odd,m+n > ℓ, m
3 +3n > ℓ and

n
3 + 3m > ℓ. Let a and b be the diametrical vertices of G with d(a, u) = m

and d(b, v) = n. Let π be the profile (u1, u2, u3). We shall prove that G is

antimedian by showing that π has a unique antimedian. Here we shall take

different cases.

Case 1: Each of u1, u2 and u3 either belong to a-u path or b-v path. Then

since d(a, b) is odd and a path of odd length is antimedian π has a unique

antimedian.

Case 2: u1, u2 belong to a-u path and u3 belong to H. Let x be vertex in
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H at distance k from v. Then d(x, u1) = d(v, u1)− k, d(x, u2) = d(v, u2)−

k and d(x, u3) 6 d(v, u3) + k. Hence D(x, π) < D(v, π) for every x 6= v in

H. As we move from v to b, D(π) increases by three at each step. As we

move from u to u2, D(π) decreases by one at each step and as we move from

from u2 to u1, D(π) increases by one at each step and as we mover further

D(π) increases by three at each step. Therefore we can conclude that D(π)

attains the maximum at a or b. But since d(a, b) is odd, D(a, π) 6= D(b, π).

Hence π has a unique antimedian.

Case 3: u1 belong to a-u path, u2 belong to H and u3 belong to b-v

path. We shall first prove that the antimedian of π is either a or b. If

at all a vertex other than a and b is the antimedian of π, then it should

be a vertex belonging to H. If that particular vertex is the antimedian

of π then it should be the antimedian of (a, u2, b). Hence without loss of

generality we may assume that π = (a, u2, b). Let u
′
2 be the eccentric vertex

of u2 in H. Let d(u, u′2) = d so that d(v, u′2) = ℓ − d. Then D(u′2, π) =

ℓ+d+m+ ℓ−d+n= 2ℓ+m+n. Let w be a vertex different from u′2 in H.

Then D(w, π) = d(w, u)+m+d(w, u′2)+d(w, v)+n < 2ℓ+m+n, D(a, π) =

0+m+ℓ−d+m+ℓ+n = 2m+2ℓ−d+n, and D(b, π) = 0+n+d+m+ℓ+n =

m+ 2n + ℓ+ d. D(a, π) 6 D(u′2, π) and D(b, π) 6 D(u′2, π) implies

2m+ 2ℓ− d+ n 6 2ℓ+m+ n (7.1)

m+ 2n+ ℓ+ d 6 2ℓ+m+ n (7.2)

Adding inequalities 7.1 and 7.2 we get 3m+3n+3ℓ 6 4ℓ+2m+2n orm+n 6

ℓ, a contradiction. Hence antimedian of π is either a or b. But since d(a, b)

is odd antimedian of π is unique.

Case 4: u1 belong to a-u path, u2, u3 ∈ H. Assume that a vertex different

from a and b is the antimedian of π. So it should be a vertex of H. Hence

in π we may replace u1 by a. Consider the profile π′ = (u, u2, u3). If w

is the median of π′ and if the w′ is the eccentric vertex of w in H then,
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antimedian of π′ in H is w′. Therefore among the vertices of H, D(π) is

maximum for w′ or Antimedian of π is w′. Since w′ is the eccentric vertex

of w, replacing u2 and u3 by w in π increases D(w′, π) by d(u2, w)+d(u3, w)

and therefore antimedian of (a,w,w) is also w′. Therefore without loss of

generality we may assume that π = (a,w,w). Let d(u,w) = d.

D(u, π) = m + 2d, D(a, π) = m + d + m + d = 2m + 2d, D(w′, π) =

ℓ + ℓ + ℓ − d + m = 3ℓ − d + m = m + 2d + 3(ℓ − d) and D(b, π) =

ℓ−d+n+ℓ−d+n+n+ℓ+m= m+2d+3n+3(ℓ−d)−d. D(a, π) 6 D(w, π)

and D(b, π) 6 D(w, π) give

m 6 3(ℓ− d) or
m

3
6 ℓ− d (7.3)

3n+ 3(ℓ− d)− d 6 3ℓ− 3d or 3n 6 d (7.4)

Adding these two inequalities we get m
3 + 3n 6 ℓ, a contradiction. Hence

π = (u1, u2, u3) has antimedian a or b.

D(a, π) = d(a, u1) + d(a, u2) + d(a, u3)

D(b, π) = d(b, u1) + d(b, u2) + d(b, u3)

= 3(m+ n+ ℓ)− (d(a, u1) + d(a, u2) + d(a, u3))

D(a, π) = D(b, π) =⇒ 2(d(a, u1) + d(a, u2) + d(a, u3)) = 3(m+ n+ ℓ)

.

Therefore 3(m+ n + ℓ) is even or m+ n+ ℓ is even contradicting the fact

that d(a, b) is odd. In other words π has a unique antimedian.

Case 5: u1, u2 and u3 belong to H. As in the previous cases initially we

prove that a or b is the antimedian of π. Assume the contrary. Then the

antimedian should be the antimedian vertex of π in H. Antimedian of π

in H is the eccentric vertex of median of π in H. Let w be the median of

π and let w′ be the eccentric vertex of w in H. Therefore antimedian of π
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is w′.

Let d(u1, w) = d1, d(u2, w) = d2 and d(u3, w) = d3.

Then d(u1, w
′) = ℓ− d1, d(u2, w

′) = ℓ− d2 and d(u3, w
′) = ℓ− d3.

Therefore D(w′, π) = 3ℓ− (d1 + d2 + d3).

Let d(u, u1) = e1, d(u, u2) = e2 and d(u, u3) = e3

Then d(v, u1) = ℓ− e1, d(v, u2) = ℓ− e2 and d(v, u3) = ℓ− e3.

Therefore d(a, u1) = m+e1, d(a, u2) = m+e2, d(a, u3) = m+e3, d(b, u1) =

n+ ℓ− e1, d(b, u2) = ℓ− e2 and d(b, u3) = ℓ− e3 + n.

Hence D(a, π) = 3m+ (e1 + e2 + e3) and D(b, π) = 3n+3ℓ− (e1 + e2 + e3)

D(w′, π) > D(a, π) and D(w′, π) > D(b, π) gives

3ℓ− (d1 + d2 + d3) > 3m+ (e1 + e2 + e3) (7.5)

3ℓ− (d1 + d2 + d3) > 3n+ 3l − (e1 + e2 + e3) (7.6)

Adding these inequalities we get

6ℓ− 2(d1 + d2 + d3) > 3(m+ n) + 3ℓ

Therefore 3ℓ > 3(m+ n) + 2(d1 + d2 + d3) or ℓ−
2
3(d1 + d2 + d3) > m+ n,

a contradiction to the fact that m + n > ℓ. Therefore antimedian of π is

either a or b. Now, assume that D(a, π) = D(b, π). Then

3m+ e1 + e2 + e3 = 3n+ ℓ− e1 + ℓ− e2 + ℓ− e3.

That is, 2(e1 + e2 + e3) = 3n+ 3ℓ− 3m

Therefore 3(n+ ℓ−m) is even or n+ ℓ−m is even. This implies n+ ℓ+m

is even contradicting the fact that d(a, b) is odd. Hence π has a unique

antimedian.

Thus we have proved that for every three vertex profile π, antimedian of π

is unique. In other words, G is an antimedian graph.
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Conversely, assume that G is an antimedian graph. We shall prove the

following

1. Diameter of G is odd

Let diameter of G be even and let x be the vertex of G such that

d(x, a) = d(x, b). Then the profile (x, x, x) has two antimedians

namely, a and b, a contradiction. Hence diameter of G is odd.

2. m+ n > ℓ

On the contrary, assume that m + n = ℓ − p where p > 0. Let u′

be a vertex of H such that d(u′, u) = n + p. Since m + n + p = ℓ,

n + p 6 ℓ and hence such a u′ exists in H. Let v′ be the eccentric

vertex of u′ in H. For each x ∈ V (H), d(x, a) + d(x, b) = d(a, b)

and d(x, u′) < d(v′, u′) for every x 6= v′ in H. Therefore D(x, π) <

D(v′, π) for every x 6= v′ in V (H). Also for every vertex y which is

either in a-u path or b-v path, D(y, π) < max(D(a, π),D(b, π)). Now,

D(a, π) = d(a, b)+m+n+p, D(b, π) = d(a, b)+n+ℓ−n−p = d(a, b)+

ℓ−p = d(a, b)+m+n and D(v′, π) = d(a, b)+ ℓ = d(a, b)+m+n+p.

Hence π has two antimedians a and v′, a contradiction. Therefore

m+ n > ℓ.

3. m
3 + 3n > ℓ and n

3 + 3m > ℓ

Assume that m
3 + 3n 6 ℓ. Let u′ ∈ V (H) be such that d(u′, u) = r

and d(u′, v) = s where r = 3n. m
3 + 3n 6 ℓ = r + s = 3n + s.

Therefore m
3 6 s. Now consider the profile π = (a, u′, u′). Let v′ be

the eccentric vertex of u′ in H. Then D(v′, π) = ℓ+ ℓ+ s+m. Now,

let x ∈ V (H) be such that d(x, v′) = k. Then d(x, u′) = ℓ − k and

d(x, a) 6 d(v′, a) + k. Therefore D(x, π) < D(v′, π) for all x 6= v′ in

H. Also it is obvious that for any vertex y in the a-u path or b-v

path, D(y, π) < max(D(a, π),D(b, π)).

D(a, π) = 0 +m+ r +m+ r = 2m+ 2r, D(b, π) = m+ n + ℓ+ n+
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s + n + s = m + 3n + 2s + ℓ = m + r + s + s + ℓ = m + 2ℓ + s and

D(v′, π) = 2ℓ+ s+m. Since m 6 3s, 2m+2r 6 2ℓ+ s+m. Hence π

has two antimedians, v′ and b, a contradiction. Therefore m
3 +3n > ℓ

and similarly we can prove that n
3 + 3m > ℓ.

None of the conditions in the above theorem is redundant.

Consider the following graphs.

b b
a

b

b b b b

b b b b

b b b
bu v

Figure 7.3: H1

H1 hasm = 2, n = 2 and ℓ = 5. Diameter is odd(9), m
3 +3n = n

3 +3m =

6.66 > ℓ = 5 but m+ n = 4 < 5 = ℓ and hence is not antimedian.

b b
a

b b b b

b

b b b b

b b b b b
bu v

Figure 7.4: H2
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H2 hasm = 1, n = 5 and ℓ = 5. Diameter is odd(11), m+n = 6 > 5 = ℓ,
m
3 + 3n = 15.33 > ℓ but n

3 + 3m = 4.66 < ℓ and hence is not antimedian.

b b
a

b b

b b b

b

bb b

b b b b
bu v

Figure 7.5: H3

H3 has m = 3, n = 3 and ℓ = 4. m+n > ℓ, m
3 +3n > ℓ and n

3 +3m > ℓ,

but diameter is even(10) and hence is not antimedian.

Theorem 7.2.5. Let H be a symmetric even graph of diameter ℓ and let

G be a graph obtained by joining a path P of length m to H. Then G is

antimedian if and only if

(1) diameter of G is odd

(2) m > 3ℓ or m = 3ℓ− 1

b
a

b b

b b b b b b b b b b b

b b

bu

Proof. Let the path P be joined to H at the vertex u and let b be eccentric

vertex of u in H. Let a be the unique pendant vertex of G. That is, a
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and b are the diametrical vertices of G. If d(a,b) is even then let u’ be the

vertex of G such that d(u’,a)=d(u’,b). Then π = (a, u′, b) has antimedians

a and b. Therefore we assume that d(a, b) is odd.

Case 1: m < ℓ.

Let u1 be a vertex at a distance m from b in H and let u′1 be the eccentric

vertex of u1 in H. Consider the profile π = (a, u1, b).

D(a, π) = 0 + d(a, u1) + d(a, b)

= m+ ℓ−m+ ℓ+m

= 2ℓ+m.

D(u′1, π) = d(u′1, a) + d(u′1, u1) + d(u′1, b)

= d(a, b) + d(u′1, u1)

= ℓ+m+ ℓ

= 2ℓ+m

Let x ∈ V (H). Then

D(x, π) = d(x, a) + d(x, b) + d(x, u1)

= d(a, b) + d(x, u1)

= ℓ+m+ dx where dx 6 ℓ and dx = ℓ only when x = u′1.

Therefore D(x, π) 6 D(u′1, π) for all x ∈ V (H). Also, it is obvious that

for any vertex x in the path P, D(x, π) 6 max(D(a, π),D(b, π). Thus for

any x ∈ V (G), D(x, π) 6 D(a, π) = D(u′1, π) or π has two antimedians,

namely, a and u′1. Hence m < ℓ is not true.

Case 2: ℓ 6 m 6 2ℓ.

Let m = ℓ+ t. Here we consider two subcases.

Subcase 2.1: t is even.

Let u1 be a vertex such that d(u1, b) =
t
2 and let u′1 be the eccentric vertex

of u1 in H. Let π = (a, u1, u).
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D(a, π) = 0 +m+m+ ℓ− t
2 = 2m+ ℓ− t

2

D(b, π) = ℓ+m+ ℓ+ t
2 = m− t+m+ ℓ+ t

2 = 2m+ ℓ− t
2

For any x ∈ H such that d(x, b) = k, d(x, u) = d(b, u)− k,

d(x, a) = d(b, a) − k and d(x, u1) 6 d(b, u1)− k. Hence D(x, π) 6 D(b, π).

Therefore π has two antimedians a and b.

Subcase 2.2: t is odd.

Let u1 and u2 be vertices of H such that d(u1, b) = t+1
2 u2 belong to u-

u1 path and is adjacent to u. Let π = (a, u1, u2). d(b, a) = d(u′2, a) + 1,

d(b, u2) = d(u′2, u2) − 1 and d(b, u1) = d(u′2, u1) − 1. Hence D(b, π) =

D(u′2, π) − 1. Therefore D(x, π) 6 D(u′2, π) for every x ∈ V (H). In other

words D(x, π) 6 D(u′2, π) for every x ∈ V (G).

D(a, π) = 0 +m+ 1 +m+ ℓ−
t+ 1

2

= 2m+ 1 + ℓ−
t+ 1

2

= 2m+ ℓ+
1− t

2

D(u′2, π) = ℓ− 1 +m+
t+ 1

2
+ 1 + ℓ

= ℓ+m+
t+ 1

2
+m− t

= 2m+ ℓ+
1− t

2

Therefore π has two antimedians, a and u′2, a contradiction. That is,

ℓ 6 m 6 2ℓ is not true.

Case 3: 2ℓ 6 m 6 3ℓ, m 6= 3ℓ− 1

Let m = 3ℓ− t, t > 1. Take two subcases

Subcase 3.1: t is even.

Let u1 be such that d(u1, b) = ℓ − t
2 . Let π = (a, u1, u). Let u1 be such
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that d(u1, b) = ℓ− t
2 . Consider the profile π = (a, u1, u).

D(a, π) = 0 +m+
t

2
+m = 2m+

t

2

D(b, π) = m+ ℓ+ ℓ+ ℓ−
t

2

= m+ 3ℓ−
t

2

= m+m+ t−
t

2

= 2m+
t

2

Therefore D(a, π) = D(b, π) As in case 2 D(x, π) 6 D(a, π) = D(b, π) for

every x ∈ V (G). Hence π has two antimedians a and b, a contradiction.

Subcase 3.2: t is odd.

Let u1 be such that d(u1, b) = ℓ− t−1
2 and let u2 be such that u2 is adjacent

to u and u2 lies on the shortest u-u1 path. Let π = (a, u1, u2). Then

D(a, π) = 0 +m+
t− 1

2
+m+ 1

= 2m+ 1 +
t− 1

2

= 2m+
t+ 1

2

D(u′2, π) = ℓ− 1 +m+ ℓ+ ℓ−
t− 1

2
+ 1

= 3ℓ+m−
t− 1

2

= m+ t+m−
t− 1

2

= 2m+
t+ 1

2
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Also it can be seen that D(x, π) 6 D(u′2, π) for every x ∈ V (G). Hence π

has two antimedians a and u′2, a contradiction.

Case 4: m = 3ℓ− 1 or m > 3ℓ

Let π = (u1, u2, u3). Here we shall consider some subcases.

Subcase 4.1: u1, u2 and u3 belong to a-u path.

Since d(a, b) is odd, π has a unique antimedian.

Subcase 4.2: u1, u2 ∈ a-u path and u3 ∈ H.

Let x ∈ H be such that x 6= b and d(x, b) = k. Then d(x, u1) = d(b, u1)−k,

d(x, u2) = d(b, u2) − k and d(x, u3) < d(b, u3) + k. Therefore D(x, π) <

D(b, π). Similarly for every y ∈ (a, u) path such that y 6= a, D(y, π) <

D(a, π). Hence antimedian of π is a or b. Since d(a, b) is even D(a, π) 6=

D(b, π). Therefore π has a unique antimedian.

Subcase 4.3: u1 ∈ a-u path and u2, u3 ∈ H.

First we shall prove that antimedian of π is a or b. If there exists a vertex

different from a and b which is an antimedian of π then it should be a

vertex of H. Hence we can assume that π = (a, u2, u3). Consider the

profile (u, u2, u3). Then its antimedian in H is the eccentric vertex of its

median in H. Let x be the median and let y be the antimedian. Therefore

Antimedian of π in G is also y. This implies the antimedian of (a, x, x) is

also y. Hence without loss of generality we may assume that π = (a, x, x).

Let d(u, x) = d.

D(y, π) = ℓ+ ℓ+ ℓ− d+m = 3ℓ− d+m

D(a, π) = m+ d+m+ d+ 0 = 2m+ 2d

D(a, π) 6 D(y, π) =⇒ m 6 3ℓ − 3d. If d > 1 we get m 6 3ℓ − 3, a

contradiction. So the only possibility is d = 0 and this implies y = b. We

shall prove that D(a, π) 6= D(b, π). On the contrary assume that D(a, π) =

D(b, π).

Let d(u, u2) = d2 and d(u, u3) = d3 so that d(b, u2) = ℓ− d2 and d(b, u3) =
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ℓ− d3. Therefore,

D(a, π) = d(a, a) + d(a, u2) + d(a, u3)

= 0 +m+ d2 +m+ d3

= 2m+ d2 + d3

D(b, π) = d(b, a) + d(b, u2) + d(b, u3)

= m+ ℓ+ ℓ− d2 + ℓ− d3

= m+ 3ℓ− d2 − d3

Therefore D(a, π) = D(b, π) implies 2m + d2 + d3 = m + 3ℓ − d2 − d3 or

2(d2 + d3) = 3ℓ − m. In other words 3ℓ −m is even. This means that 3ℓ

and m are of the same parity or ℓ and m are of the same parity. Hence we

get that ℓ+m is even, a contradiction to the fact d(a, b) is odd. That is π

has either a or b as its antimedian and D(a, π) 6= D(b, π).

Subcase 4.4: u1, u2 and u3 belong to H.

Here also we first prove that antimedian of π is either a or b. If a vertex

other than a or b is an antimedian of π, then it should be a vertex of

H, infact, the eccentric vertex of a median of (u1, u2, u3). Let x be the

median of (u1, u2, u3) and y be its antimedian. Let d(u, u1) = d1, d(u, u2) =

d2, d(u, u3) = d3, d(x, u1) = e1, d(x, u2) = e2 and d(x, u3) = e3. Then

d(y, u1) = ℓ − e1, d(y, u2) = ℓ − e2 and d(y, u3) = ℓ − e3 and therefore

D(y, π) = 3ℓ− (e1 + e2 + e3). Also,we have d(a, u1) = m + d1, d(a, u2) =

m + d2 and d(a, u3) = m + d3. Hence D(a, π) = 3m + d1 + d2 + d3.

D(a, π) 6 D(y, π)

=⇒ 3m+ d1 + d2 + d3 6 3ℓ− (e1 + e2 + e3)

=⇒ 3m 6 3ℓ− (e1 + e2 + e3 + d1 + d2 + d3)

=⇒ m 6 ℓ− 1
3(e1 + e2+ e3+ d1 + d2+ d3), a contradiction to the fact that
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m = 3ℓ− 1 or m > 3ℓ. Hence D(a, π) > D(y, π) or a is the antimedian of

π.

From these different cases we can conclude that G is antimedian if and only

if d(a, b) is even and either m = 3ℓ− 1 or m > 3ℓ.

7.3 Weakly Antimedian Graphs

Balakrishnan et al. concluded [10] by suggesting a study on the class of

graphs in which any triple of distinct vertices has a unique antimedian. It

is this class of graphs that we consider in this section.

Definition 7.3.1. A Graph G is said to be Weakly Antimedian if any

triple of distinct vertices has a unique antimedian.

An immediate conclusion is that every antimedian graph is weakly anti-

median. The following is an example of a graph that is weakly antimedian,

but not antimedian.

b b

b

b

u

wx

v
Figure 7.6: Weakly Antimedian graph that is not antimedian

Here each of the distinct triple has a unique antimedian and therefore

is weakly antimedian. But consider the profile (w,w,w) .u, v, x are all its

antimedian vertices. Hence it is not an antimedian graph.

Proposition 7.3.2. The path Pn is weakly antimedian if and only if n is

even.
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Proof. Since P2n is antimedian, it is weakly antimedian. Also P2n+1 is not

weakly antimedian. For, let P2n = {x1, x2, · · · xn−1, xn, xn+1, · · · x2n−1}.

Consider the triple π = (xn−1, xn, xn+1). d(x1, xn−1) = n − 2, d(x1, xn) =

n − 1, d(x1, xn+1) = n, d(x2n−1, xn−1) = n, d(x2n−1, xn) = n − 1 and

d(x2n−1, xn+1) = n− 2. Therefore D(x1, π) = D(x2n−1, π) = 3n− 3

Also for all xi, i 6= 1, 2n+1, D(xi, π) < 3n− 3. Hence, the triple π has two

antimedians or P2n+1 is not weakly antimedian.

Proposition 7.3.3. Cn is weakly antimedian if and only if n = 4

Proof. C4 is weakly antimedian since it is antimedian, see [10]. Let Cn be

an odd cycle with vertex set {x1, x2, · · · , x2r−1}. Now consider the triple

of vertices π = (x1, x2, x2r−1). d(x1, xr) = r − 1, d(x2, xr) = r − 2 and

d(x2r−1, xr) = r−1. Therefore D(xr, π) = 3r−4. Similarly D(xr −1, π) =

3r−4. It is obvious that for all other vertices the sum of the distances is less

than 3r− 4. Now let Cn be an even cycle with vertex set {x1, x2, · · · , x2r},

r > 2. Let π = (x1, x3, xr+2). d(x1, xr+1) = r, d(x3, xr+1) = r − 2 and

d(xr+2, xr+1) = 1. Therefore D(xr+1, π) = 2r − 1. Similarly D(xr+3, π) =

2r − 1. Also, for all other vertices sum of the distances is less than 2r − 1.

Hence D(x, π) is maximum for xr+1 and xr+3. Therefore Cn is not weakly

antimedian when n 6= 4.

Proposition 7.3.4. If the Cartesian product of two graphs G and H is

weakly antimedian, then both G and H are weakly antimedian.

Proof. Suppose G✷H is weakly antimedian and G is not weakly antime-

dian. Then there exists a triple of distinct vertices, say (g1, g2, g3) which

has two antimedians. Let a1and a2 be the antimedians of the triple. Con-

sider the vertex h of H. Let (h, h, h) have b as an antimedian. Then

the triple ((g1, h), (g2, h), (g3, h)) of three distinct vertices of G✷H has two

antimedians (a1, b) and (a2, b), a contradiction.
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The converse of the above theorem is not true. Figure 7.7 gives two

graphs G and H and the corresponding G✷H.

b b

b

b

u

wx

v

b b b
a b

b
c d

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

b

(u, a)

(v, a)

(w, a)

(x, a)

(u, b)

(v, b)

(w, b)

(x, b)

(u, c)

(v, c)

(w, c)

(x, c)

(u, d)

(v, d)

(w, d)

(x, d)

Figure 7.7: G,H and G✷H

Consider the triple π = ((w, a), (w, b), (w, c)), D((u, d), π) = 9,

D((v, d), π) = 9, andD((x, d), π) = 9. For all other vertices it is less than 9.

Therefore, the above product graph is not Weakly antimedian even though

both G and H are Weakly Antimedian.

Note: Let G be a graph and u ∈ V (G). Then the multiplication of G with

respect to u is the graph obtained from G by replacing u by two adjacent

vertices u′ and u” and joining them by an edge with all the neighbors of u.

Contrary to the case of Antimedian graphs, multiplication of a Weakly an-

timedian graph with respect to a non antimedian vertex need not give a

Weakly antimedian graph. The following serves as an example
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b b

b

b

u

wx

v

b

b

b

b

b

x

w′

w′′

u

v

Figure 7.8: G and G.w

Here a is a non antimedian vertex. The multiplication of G with respect

to a is

The triple (a′, a′′, d) does not have a unique antimedian.

Lemma 7.3.1. Let T be a weakly antimedian tree. Then T contains

exactly 2 diametrical vertices a and b. Moreover d(a, b) is odd and any

triple of vertices have either a or b as its antimedian.

Proof. Let a and b be arbitrary diametrical vertices in T and let P be an a-b

path in T . Suppose that d(a, b) is even. Then, let y be the middle vertex of

P . Let x be the vertex adjacent to y in the a-y path and let z be the vertex

adjacent to y in the b-y path. Let d(a, b) = 2k, d(a, y) = k and d(b, y) = k.

Consider the profile π = (x, y, z). Then D(a, π) = k + 1 + k + k − 1 = 3k

and D(b, π) = 3k. Let u be a vertex such that u 6= b and z ∈ (u, y) path.

Let d(u, y) = l. Then d(u, z) = l − 1 and d(u, x) = l + 1 and therefore

D(u, π) = 3l. D(u, π) > D(b, π) implies 3l > 3k which implies k > l. We

have d(a, y) = k and d(y, u) = l. Therefore d(a, u) = k + l > 2k which

contradicts that a and b are diametrical vertices. Therefore if u is a vertex

such that z 6= b and z ∈ (u, y) path then u cannot be the antimedian of

π = (x, y, z). Similarly if u is a vertex such that u 6= a and x ∈ (u, y)

path, then u cannot be the antimedian of π = (x, y, z). Now let u be a
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vertex such that neither x nor z belong to (u, y) path. Let d(u, y) = r

then d(u, x) = r + 1 and d(u, z) = r + 1 and hence D(u, π) = 3r + 2.

Hence 3r + 2 > 3k or 3r > 3k − 2 or r > k − 2
3 or r > k. r > k implies

d(a, u) > 2k, a contradiction to the fact that b is a diametric vertex of a.

Assume r = k. Then consider the profile (a, a1, a2) where a1 and a2 are the

vertices immediately succeeding a in the path P . Now let a vertex v be such

that neither a nor a2 belong to (v, a1) path. Then since a is a diametrical

vertex of b, v should be adjacent to a1. Then D(v, (a, a1, a2)) = 5 and if v

has to be an antimedian of (a, a1, a2), T should be a star graph where a,

a2 and v are pendant vertices and a1 is not a pendant vertex. If T does

not contain any vertex different from these four then the profile (a, v, a2)

has three antimedians, a, v and a2. This contradicts the fact that T is

weakly antimedian. If T has a vertex different from v, say v′, then the

profile (a, a1, a2) has more than one antimedians say v and v′. Hence we

can conclude that if v is the antimedian of (a, a1, a2) then v should be such

that a1 and a2 lies in the a-v path. But for every such v, D(v, (a, a1, a2)) 6

D(b, (a, a1, a2)). Now, D(b, (a, a1, a2)) = k + k − 1 + k − 2 = 3k − 3 and

since r = k, D(u, (a, a1, a2)) = 3k − 3. That is, the profile (a, a1, a2) has

more than one antimedian, u and b, a contradiction. Therefore r < k or

D(u, π) 6 k−1+k+k = 3k−1. In other words u cannot be the antimedian

of π = (x, y, z). Hence π has two antimedians a and b, a contradiction.

Therefore d(a, b) is odd.

Let x be an arbitrary vertex different from a and b. Let x′ be a vertex

such that x′ ∈ P and d(x, P ) = d(x, x′). Let d(x′a) < d(x′b). Suppose

d(x, x′) > d(a, x′). Then d(x, b) > d(a, b), which implies a and b are not

diametrical. If d(x, x′) = d(a, x′) then (b, b1, b2), where b1 and b2 are the

vertices immediately preceding b in the path, has two antimedians. Hence

d(x, x′) < d(a, x′). Now it is clear that for every x, y ∈ V such that at least

one of x and y is different from a and b, d(x, y) < d(a, b). That is a and b
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are the only diametrical vertices.

Now to prove that for any profile of distinct vertices either a or b is its

antimedian. On the contrary assume that z /∈ {a, b} is the antimedian of

π = (u, v, w). Then z should be a leaf. If degz > 2 then z has a neighbour

x such that d(x, π) > d(z, π) which is not possible. so z is a leaf of T . Let

z′ be the first vertex of the z-a path that is on P .

Suppose u /∈ P and let u′ be the first vertex on the u-a path that is

on P . Since D(a, π) < D(z, π) and since D(a, π) is reduced at least as

much as D(z, π) when we change u to u′ we find that D(a, (u′, v, w)) <

D(z, (u′, v, w)). So a is also not the antimedian of (u′, v, w). Analogously b

is also not the antimedian of (u′, v, w). Therefore if u′, v′, w′ are the vertices

on the u-a, v-a, w-a paths then if neither a nor b is the antimedian of

(u, v, w) then neither a nor b is the antimedian of (u′, v′, w′). Equivalently

if for a given profile π = (u, v, w), the profile π′ = (u′, v′, w′) has either a or b

as its antimedian then π = (u, v, w) also has either a or b as its antimedian.

So without loss of generality we may assume that π = (u, v, w) where u, v,

w belong to the path P .

Now, assume that the antimedian of π is z, a vertex different from a and

b and let z meet the path P at the vertex at z′. If u, v and w belong to

a-z′(b-z′) path then D(z′, π) 6 D(b, π) (D(z′, π) 6 D(a, π)) and therefore

z′ cannot be the antimedian of π. So assume that u belong to z′-a path and

w belong to z′-b path. If z′ is the antimedian of π then it is the antimedian

of (a, u, b). Therefore we assume that π = (a, u, b). Now we shall take two

different cases.

Case 1: v belong to a-z′ path. As in Lemma 7.2.1 we can see thatD(z′, π)−

D(b, π) is even and we follow the same procedure followed in Lemma 7.2.1.

That is, Let w1 be the vertex adjacent to b on P and π′ be the profile got

by replacing b in π by w1. Then D(z, π′)−D(b, π′) = D(z, π)−D(b, π)−2.

Repeat this process and if the profile at the ith stage is π(i) then D(z, π(i))−
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D(b, π(i)) = D(z, π(i−1)) − D(b, π(i−1)) − 2. As explained there, in this

process no other pendant vertex y can be the antimedian of any π(i). Finally

we get a profile of distinct vertices, π(k), in which D(z, π(k)) = D(b, π(k)).

That is π(k) has two antimedians z and b, a contradiction.

Case 2: v belong to b-z′ path. Here also we follow the same procedure to

get π(i)’s as described in the Case 2 of Lemma 7.2.1. If π(k) = (a,wℓ, wk)

is such that wk 6= wℓ and D(b, π(k)) = D(z, π(k)) then we have a profile

of distinct vertices having more than one antimedian. Next, assume that

D(z, π(k)) = D(b, π(k)) where π(k) = (a,wk, wk). Then consider the profile

π(k+1) = (a,wk−1, wk+1) where wk−1 and wk+1 are the vertices adjacent

to wk in the path P . Then D(z, π(k+1)) = D(z, π(k)) and D(b, π(k)) =

D(b, π(k+1)). If at all a vertex different from z and b has to become the

antimedian for π(k+1) it should be a vertex z1 such that wk lies both in

z1- wk−1 path and z1- wk+1 path. Let D(b, π(k)) = D(z, π(k)) = d. Since

d(z1, a) < d(b, a) and d(z1, wk) < d(b, wk) we get that D(z1, π
(k)) 6 d −

3. Therefore D(z1, π
(k+1)) 6 d − 1. But D(b, π(k+1)) = D(z, π(k+1)) =

d. Therefore we get a profile of distinct vertices namely π(k+1) with two

antimedians. Thus for any profile of vertices of P has either a or b as its

antimedian. In other words, any profile of distinct vertices of T has either

a or b as its antimedian.

Theorem 7.3.5. Let T be a tree.Then T is weakly antimedian if and

only if it is a thin even belt.

Proof. Thin even belts being antimedian are weakly antimedian Now to

prove the converse. Let T be an arbitrary weakly antimedian tree. By the

above lemma T has exactly two diametrical vertices, say a and b, and let

P : a = v1v2, . . . vr = b be the u-v path in T . Let Ti, 1 6 i 6 r be the

maximal subtree of T that contains vi and no other vertex of P . We can

consider Ti as a rooted tree with root vi. Moreover we can consider T as a
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belt where P is its support and Ti are its ears. We know that T is an even

belt. Let di be the depth of Ti, 1 6 i 6 r. Suppose that for some i 6 n/2

the condition di 6 ⌊(i − 2)/3⌋ is not fulfilled. That is, di > ⌊(i − 2)/3⌋.

Therefore 3di > i−2. Let w be a vertex from Ti with 3d(w, vi) > i−1. Now

consider the triple π = (v1, vr−1, vr). Then D(v1, π) = 2r − 3, D(vr, π) = r

and D(w, π) > 3⌊(i − 2)/3⌋ + i− 1 + r − i+ r − 1− i.

Therefore

When i = 3k for some integer k, D(w, π) > 3k + 2r − i− 2 = 2r − 2

When i = 3k + 1, D(w, π) > 3k + i− 1 + r − i+ r − 1− i = 2r − 3

When i = 3k + 2, D(w, π) > 3(k + 1) + i− 1 + r − i+ r − 1− i = 2r − 1

That is,

D(w, π) > 2r − 2 when i ≡ 0(mod3)

D(w, π) > 2r − 3 when i ≡ 1(mod3)

D(w, π) > 2r − 1 when i ≡ 2(mod3)

This is a contradiction to the above lemma that for any triple of vertices in a

weakly antimedian tree v1 or vr is their antimedian. Hence the theorem.

Theorem 7.3.6. Let G be as given in Theorem 7.2.4. Then G is weakly

antimedian if and only if

1. diameter of G is odd

2. m+ n > ℓ

3. m
3 + 3n > ℓ− 2

3 and n
3 + 3m > ℓ− 2

3

Proof. Assume that diam(G) is odd, m + n > ℓ, m
3 + 3n > ℓ − 2

3 and
n
3+3m > ℓ− 2

3 . Let a and b be the diametrical vertices ofG with d(a, u) = m

and d(a, v) = n. Let π be the profile (u1, u2, u3) where u1, u2 and u3 are
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all distinct. We shall prove that G is weakly antimedian by showing that

π has a unique antimedian. Here we shall take different cases.

Case 1: Each of u1, u2 and u3 either belong to a-u path or b-v path. Then

since d(a, b) is odd and a path of odd length is weakly antimedian π has a

unique antimedian.

Case 2: u1, u2 belong to a-u path and u3 belong to H.

As proved in Case 1 of Theorem 7.2.4 we can show that π has a unique

antimedian which is either a or b.

Case 3: u1 belong to a-u path, u2 belong to H and u3 belong to b-v path.

The proof is the same as the proof of Case 3 of Theorem 7.2.4.

Case 4: u1 ∈ a-u path and u2, u3 ∈ H.

Initially we prove that the antimedian of π is either a or b. So we assume

that a vertex different from a and b is the antimedian of π. Hence we can

replace u1 by a in π. That is π = (a, u2, u3) and the antimedian of π is the

eccentric vertex of the median of π in H. Let x be the median of π in H

and let y be the eccentric vertex of x in H. That is, antimedian of π is y.

By arguments similar to what we used in case 4 of Theorem 7.2.4 we can

assume that π = (a, x, x′) where x′ is the vertex adjacent to x in the u3-x

path. Let d(u, x) = d and d(u, x′) = d′.

D(a, π) = 0 + d(a, x) + d(a, x′)

= m+ d+m+ d′

= (m+ d+ d′) +m
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D(b, π) = d(b, a) + d(b, x) + d(b, x′)

= m+ n+ ℓ+ n+ ℓ− d+ n+ ℓ− d′

= m+ 3n+ 3ℓ− (d+ d′)

= (m+ d+ d′) + 3ℓ− 2(d+ d′) + 3n

D(y, π) = d(y, a) + d(y, x) + d(y, x′)

= d(y, u) + d(u, a) + d(y, x) + d(y, x′)

= d(y, x)− d(x, u) + d(a, u) + d(y, x) + d(y, x′)

= ℓ− d+m+ ℓ+ ℓ− 1

= (m+ d+ d′) + 3ℓ− 2d− d′ − 1

D(a, π) 6 D(y, π) =⇒ m 6 3ℓ− 2d− d′ − 1 or m
3 6 ℓ− 2d+d′+1

3

D(b, π) 6 D(y, π) =⇒ 3ℓ− 2(d+ d′)+ 3n 6 3ℓ− 2d− d′− 1 or 3n 6 d′− 1

Adding these inequalities we get m
3 + 3n 6 ℓ+ 2d′−2d−4

3 . Since d′ 6 d+ 1,

we get , m
3 + 3n 6 ℓ − 2

3 , contradiction. Hence π has antimedian a or b.

As in case 4 of Theorem 7.2.4 we can show that D(a, π) = D(b, π) implies

d(a, b) is even. Hence π has a unique antimedian.

Case 5: u1, u2 and u3 belong to H

As proved in case 5 of Theorem 7.2.4 we can prove that π has a unique

antimedian which is either a or b. Now we shall prove the converse. That

is, assuming that G is weakly antimedian, we shall prove that diameter of

G is odd, m+ n > ℓ, m
3 + 3n > ℓ− 2

3 and n
3 + 3m > ℓ− 2

3 .

Let diameter of G be even. If a and b are the pendant vertices of G, let u′

be the vertex such that d(u′a) = d(u′, b). Consider the profile π = (a, u′, b).

π has two antimedians a and b, a contradiction.

it is proved that m+ n > ℓ as in Theorem7.2.4.

Now to prove that m
3 +3n > ℓ− 2

3 . On the contrary assume that m
3 +3n 6

ℓ− 2
3 . Let u1 and u2 be vertices such that u1 lies on the shortest u-u2 path,

d(u1, u) = r1, d(u2, u) = r1+1, d(u1, v) = k1 and d(u2, v) = k1−1. Assume
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r1 = 3n.

m

3
+ 3n 6 ℓ−

2

3
=⇒

m

3
+ 3n 6 r1 + k1 −

2

3

. =⇒
m

3
6 k1 −

2

3

=⇒ m 6 3k1 − 2

D(a, π) = m+ r1 +m+ r1 + 1 = 2m+ r1 + r1 + 1 = 2m+ 2r1 + 1

= m+ 2r1 +m+ 1

D(b, π) = m+ n+ ℓ+ n+ k1 + n+ k1 − 1 = m+ 3n + r1 + k1 + 2k1 − 1

= m+ 2r1 + 3k1 − 1

D(u′1, π) = 2ℓ+ k1 − 1 +m = m+ 2r1 + 2k1 + k1 − 1 = m+ 2r1 + 3k1 − 1

Therefore D(b, π) = D(u′1, π). Since u1 is a median of (u, u1, u2), u′1 is

an antimedian of (u, u1, u2) in H and hence D(z, π) 6 D(u′1, π) for every

z ∈ V (H). Since m 6 3k1 − 2, we have m + 1 6 3k1 − 1. Therefore

D(a, π) 6 D(b, π) = D(u′1, π). Thus π has two antimedians u′1 and π,

a contradiction. Hence m
3 + 3n > ℓ − 2

3 . Similarly we can prove that
n
3 + 3m > ℓ− 2

3 .

As in Theorem 7.2.4 none of the three conditions are redundant.

H1 is a graph where m
3 +3n = n

3 +3m > ℓ− 2
3 but m+ n < ℓ and hence is

not weakly antimedian.

H3 has m+n > ℓ m
3 +3n > ℓ− 2

3 ,
n
3 +3m > ℓ− 2

3 , but diameter is even(10)

and hence is not weakly antimedian.

Now consider the following graph
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b b
a

b b b b b

b

b b b b b

b b b b b b
bu v

Figure 7.9: H4

Here m = 1, ℓ = 6 and n = 6. m + n > ℓ, diameter is odd and
m
3 + 3n > ℓ− 2

3 , but,
n
3 + 3m = 2 + 3 = 5 < ℓ− 2

3 = 5.33. Hence H4 is not

weakly antimedian.

Theorem 7.3.7. Let G be as defined in Theorem 7.2.5. Then G is weakly

antimedian if and only if

(1) diameter of G is odd.

(2) m > 3ℓ or m = 3ℓ− 1 or m = 3ℓ− 3.

Proof. Let the path P be joined to H at the vertex u and let b be eccentric

vertex of u in H. Let a be the unique pendant vertex of G. That is, a

and b are the diametrical vertices of G. If d(a, b) is even, then the graph

is obviously not weakly antimedian. Hence we assume that d(a, b) is odd.

We shall prove the theorem in various cases.

Case 1: m < 3ℓ− 3

The profiles given in Case 1, Case 2 and Case 3 of Theorem 3 are profiles of

distinct vertices which has more than one antimedians. Thus in this case

G is not weakly antimedian.

Case 2: m = 3ℓ− 3

Let π = (u1, u2, u3). When u1, u2 and u3 are such that u1, u2, u3 ∈ (a, u)
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path or u1, u2 ∈ a-u path and u3 ∈ V (H) or u1, u2, u3 ∈ V (H), we can

prove that π has a unique antimedian in exactly the same way as we proved

Subcases 4.1, 4.2 and 4.4 of Theorem 7.2.5. So we shall assume that u1 ∈

(a, u) path and u2, u3 ∈ V (H). First we shall prove that π has antimedian a

or b. If a vertex different from a and b is the antimedian of π then it should

be a vertex of H, in fact, the eccentric vertex of median of (u1, u2, u3) in

H. Let x be the antimedian of (u1, u2, u3) and let y be the eccentric vertex

of x. That is, y is an antimedian of π.

Let d(x, u) = d, d(x, u1) = d1, d(x, u2) = d2, d(u, u2) = e2 and

d(u, u3) = e3. Then,

D(a, π) = 0 +m+ e2 +m+ e3 = 2m+ e2 + e3

D(b, π) = ℓ− e2 + ℓ− e3 + ℓ+m = 3ℓ+m− (e2 + e3)

D(y, π) = ℓ− d2 + ℓ− d3 ++ℓ− d+m = 3ℓ+m− (d2 + d3 + d)

D(a, π) 6 D(y, π) =⇒ 2m+ e2 + e3 6 3ℓ+m− (d2 + d3 + d) (7.7)

D(b, π) 6 D(y, π) =⇒ 3ℓ+m− (e2 + e3) 6 3ℓ+m− (d2 + d3 + d)

(7.8)

Adding inequalities 7.7 and 7.8 we get

m 6 3ℓ− 2(d2 + d3 + d)

d2 = d3 = d = 0 implies u2 = u3 = u and this is not possible since we

are considering profiles of distinct vertices. Hence at least one of d2 and

d3 should be non zero. Let it be d2. Now d 6= 0 implies m 6 3ℓ − 4, a

contradiction. Hence d = 0 and this means y = b. Hence antimedian of π

is either a or b. D(a, π) = D(b, π) implies d(a, b) is even. Hence π has a

unique antimedian.
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Case 3: m = 3ℓ− 2.

In this case d(a, b) = ℓ+ 3ℓ− 2 = 4ℓ− 2, an even number. Therefore G is

not weakly antimedian.

Case 4: m = 3ℓ

In this case d(a, b) = ℓ + 3ℓ = 4ℓ again an even number. Hence G is not

weakly antimedian.

Case 5: m > 3ℓ or m = 3ℓ− 1.

When m > 3ℓ or m = 3ℓ−1, G is antimedian and hence weakly antimedian.

Hence the theorem.

Remark 7.3.1. Theorems 7.2.4, 7.2.5, 7.3.6 and 7.3.7 give us examples

of graphs that are weakly antimedianbut not antimedian.

1. Let G be a graph described in theorem 7.2.4 and 7.3.6 with n = 1, ℓ >

5 and m = 3ℓ−10. Then m
3 +3n = ℓ− 1

3 . That is ℓ−
2
3 < m

3 +3n < ℓ.

Hence G is weakly antimedian but not antimedian.

2. Let G be a graph described in theorem 7.2.5 and 7.3.7. If m = 3ℓ− 3

then G is weakly antimedian but not antimedian.

7.4 Conclusion

Balakrishnan et.al in [10] characterised thin even belts as the antimedian

trees. In this paper we have extended this result to block graphs. We

have proved that a block graph is antimedian if and only if it is a thin

even belt. We have given a generalisation of antimedian graphs called

weakly antimedian graphs and proved that as far as cycles and trees are

considered both are the same. We constructed a new class of graphs by

attaching paths to a pair of eccentric vertices of a symmetric even graph and

found necessary and sufficient conditions for such graphs to be antimedian

and weakly antimedian. This also gave us examples of weakly antimedian

graphs that are not antimedian.



Chapter 8

Conclusion and future works

This thesis has been devoted to the study of three different measures of

centrality-center, median and fair center- and a class of graphs called anti-

median graphs. We have found out these three centers of profiles of various

classes of graphs like Kn, Km,n, Kn − e, trees, cycles and a more general

class of graphs called symmetric even graphs that includes hypercubes, even

cycles, cocktail party graphs, crown graphs etc. While finding the center

and fair center of a profile the repetition of vertices in the profile does not

make any impact and so in these two cases we have taken sets of vertices

instead of profiles. Two new graph parameters called the center number

and median number, the number of distinct center sets and median sets

of a graph, have been introduced and they have been evaluated for some

of the above mentioned graphs. Two new concepts called pacifying edges

and shrinking edges have been introduced and they have been identified

for paths and symmetric even graphs. These concepts have very high sig-

nificance in social networking where we can identify the persons to which

a particular person should make a link so that his significance in the net-

work increases to a maximum. We have put forward two conjectures, one

in chapter 5 regarding the median number of even cycles and the other in

chapter 6 pertaining to the characterisation of graphs with connected fair

sets. In chapter 3 we proved that for a symmetric even graph the whole

vertex set is the only median set which contains a vertex and its eccentric

vertex while in chapter 7 it was proved that a vertex and its eccentric vertex

appear together in a fair set. We have restricted our study to some particu-

lar graph classes and one can look for studying these centrality measures for

more classes of graphs. It shall also be interesting to study the relationship

among these centrality measures at least for some specific graph classes.

151
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Another area of prospective study is related to multi criteria optimisation,

that is, identifying the median which is most central, center of the graph

which is most fair and so on.
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hamathi, and S. Klavžar, Simultaneous embeddings of graphs as me-

dian and antimedian subgraphs, Networks 56 (2010), no. 2, 90–94.

153



154 Bibliography

[9] K Balakrishnan, M. Changat, and S. Klavžar, The median function
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