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ABSTRACT 

KEYWORDS: Lightweight Ships, Hat Stiffened Plate, Finite Element Analysis, 

Representative Unit Cell, Orthotropic Plate Model, Superelement. 

Hat Stiffened Plates are used in composite ships and are gaining popularity in metallic ship 

construction due to its high strength-to-weight ratio. Light weight structures will result in greater 

payload, higher speeds, reduced fuel consumption and environmental emissions. Numerical 

Investigations have been carried out using the commercial Finite Element software ANSYS 12 to 

substantiate the high strength-to-weight ratio of Hat Stiffened Plates over other open section 

stiffeners which are commonly used in ship building.  

Analysis of stiffened plate has always been a matter of concern for the structural engineers 

since it has been rather difficult to quantify the actual load sharing between stiffeners and 

plating. Finite Element Method has been accepted as an efficient tool for the analysis of stiffened 

plated structure. Best results using the Finite Element Method for the analysis of thin plated 

structures are obtained when both the stiffeners and the plate are modeled using thin plate 

elements having six degrees of freedom per node. However, one serious problem encountered 

with this design and analysis process is that the generation of the finite element models for a 

complex configuration is time consuming and laborious. In order to overcome these difficulties 

two different methods viz., Orthotropic Plate Model and Superelement for Hat Stiffened Plate 

have been suggested in the present work.  

In the Orthotropic Plate Model geometric orthotropy is converted to material orthotropy 

i.e., the stiffeners are smeared and they vanish from the field of analysis and the structure can be 

analysed using any commercial Finite Element software which has orthotropic elements in its 

element library. The Orthotropic Plate Model developed has predicted deflection, stress and 

linear buckling load with sufficiently good accuracy in the case of all four edges simply 

supported boundary condition. Whereas, in the case of two edges fixed and other two edges 

simply supported boundary condition even though the stress has been predicted with good 

accuracy there has been large variation in the deflection predicted. This variation in the 

deflection predicted is because, for the Orthotropic Plate Model the rigidity is uniform 
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throughout the plate whereas in the actual Hat Stiffened Plate the rigidity along the line of 

attachment of the stiffeners to the plate is large as compared to the unsupported portion of the 

plate. 

The Superelement technique is a method of treating a portion of the structure as if it were a 

single element even though it is made up of many individual elements. The Superelement has 

predicted the deflection and in-plane stress of Hat Stiffened Plate with sufficiently good accuracy 

for different boundary conditions. Formulation of Superelement for composite Hat Stiffened 

Plate has also been presented in the thesis. The capability of Orthotropic Plate Model and 

Superelement to handle typical boundary conditions and characteristic loads in a ship structure 

has been demonstrated through numerical investigations. 
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CHAPTER 1 

INTRODUCTION 

1.1 MOTIVATION 

Ship structure in general can be considered as a three dimensional frame work of 

stiffened plates, constituted by deck, side shells, bottom shell and bulkheads. A stiffened plate 

or panel is an assembly of stiffeners and plate where the stiffeners are welded on to one side 

of the plate in either one or both directions. Open sections like Flat Bar, Angle, Holland 

Profile (bulb-plate) and Tee are commonly used in ship structure. Trapezoidal or Hat shaped 

stiffener is a typical closed section stiffener which is commonly used in the case of composite 

structures but is not very common in metallic structures.  

Construction of lightweight ships has been gaining popularity since it allows a greater 

payload for a given steel weight of the vessel and allows higher speeds to be achieved. In 

addition, lightweight ships result in reduced fuel consumption and environmental emissions 

for a given payload and distance travelled. The weight of a structure can be reduced 

significantly not only by the usage of lighter materials but also by improvements in structural 

configuration. Thus, introduction of Hat Stiffened Plate (HSP) in steel ship construction 

probably must have been an outcome of the attempts by ship designers to construct 

lightweight stiffened panels such as deck structures. The high strength-to-weight ratio of HSP 

has made it a choice for structural engineers in their attempt to design light steel deck 

structures for high speed vessels (Jia and Ulfvarson, 2005).  

HSP has a number of closed profile stiffeners provided along the dominant direction as 

shown in Figure 1.1. In the case of steel structures, hat stiffeners are usually formed sections. 

The stiffeners are either welded or riveted to the plate and if riveted, flanges are provided for 

the stiffener. For composite structures, hat stiffeners are usually made by hand lay-up. The hat 

stiffeners are bonded to the plate through the flanges of the stiffeners.  
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Figure 1.1 Schematics of a typical: (a) Metallic Hat Stiffened Plate (b) Composite Hat 
Stiffened Plate 

The advantages of closed section stiffeners over the open section stiffeners both in the 

strength and economic point of view have been brought out by Dubas (1976). The closed 

section stiffeners have definite advantages over open section stiffeners, especially with regard 

to the torsional rigidity and strength-to-weight ratio. Closed section stiffeners provide a higher 

bending stiffness and thus allow a greater spacing of the stiffeners. The high Saint Venant 

torsional rigidity of closed section stiffeners enhances the ultimate strength of the stiffened 

plate. Moreover the geometrical configuration alone allows a greater spacing between the 

stiffeners due to their own width. The connection with the plate requires only two fillet welds 

which are no more than what is required for a single open section stiffener. The enclosed 

space between the stiffener and the plate in the case of closed section stiffeners can effectively 

be utilized as a duct for the passage of cables. However the cost of labor employed on the 

fabrication of these sections by the process of cold forming necessary for obtaining the 

required shape of section is slightly high when compared to open sections. In addition, closed 

sections provide restricted access to a portion of the plate which can affect the inspection for 

corrosion.  In spite of this, closed sections stiffeners can be successfully employed in certain 

parts of ship structure.  

Traditionally hat stiffeners have been used for stiffening the stool plates which support 

the corrugated bulkheads in bulk carriers. Trough shaped steel sections having the same shape 

as hat stiffeners are used as fenders on small ships (D’Arcangelo, 1969). HSPs are used as 

deck plate and bulkheads in ship structure. In addition, the hat shaped stiffeners are used in 

side panels of transit containers, sheet piles for various applications and structural panels. 
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Analysis of stiffened plate has always been a matter of concern for the structural 

engineers since it has been rather difficult to quantify the interaction between stiffeners and 

plating or rather the actual load sharing between these two.  The interaction of beams and 

plating is an interaction between two modes of loading and response. Strain energy method 

has always remained as a solution strategy but of limited scope for actual stiffened plate 

problems.  Application of matrix method and subsequent developments in the form of Finite 

Element Method (FEM) or Finite Element Analysis (FEA) has solved the complexities of 

analysis of stiffened plated structure.  The single biggest development in ship structural design 

and analysis over the last few decades has been the introduction and acceptance of FEM as the 

structural analysis strategy. This tool offers both faster and more accurate solution to ship 

structural systems with complexities in geometry and boundary condition. 

In ship structural design using FEM, analysis has been carried out at different scale 

levels viz., complete ship, hull module and principal members like stiffened panels, frames, 

girders etc. While using FEM, difficulties have been faced in the selection of elements, the 

choice of nodal positions and the method of connecting the beam and membrane elements. 

Best results using the FEM for the analysis of thin plated structures are obtained when both 

the stiffeners and the plate are modeled using thin plate elements having six degrees of 

freedom (dof) per node. However, one serious problem encountered with this design and 

analysis process is that the generation of the finite element models for a complex 

configuration is time consuming and laborious. Representing each stiffener individually while 

modeling a complete ship or hull module of a ship, is a tedious procedure and it will result in 

excessive amounts of storage. In order to overcome these difficulties two different methods 

viz., Orthotropic Plate Model (OPM) and Superelement for HSP have been suggested for the 

FEA of HSP in the present work. In the first method the HSP made of isotropic material and 

having geometric orthotropy has been replaced with an OPM having the same plan 

dimensions and having material orthotropy. The OPM can readily be modeled and analyzed 

using an orthotropic plate finite element available in the element library of any general finite 

element software. In the second method, the HSPs in the ship structure can be analyzed using 

Superelement developed without making any compromise on the accuracy. In the 

Superelement technique a portion of the structure is treated as a single element even though it 
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is made up of many individual elements. Both these methods will reduce the storage 

requirement and modeling efforts considerably. 

The objectives of the present work have been listed below: 

 To identify a Representative Unit Cell of Hat Stiffened Plate and substantiate the high 

strength-to-weight ratio of Hat Stiffened Plate by conducting numerical investigations 

 To develop an Orthotropic Plate Model based on equal rigidity concept as a 

structural substitute for Hat Stiffened Plate to carry out linear elastic static analysis and 

linear buckling analysis 

 To develop a Superelement for Hat Stiffened Plate for the geometric modeling and 

linear elastic analysis  

1.2 LAYOUT OF THE THESIS 

The geometrical features of a HSP, advantages and limitations of closed section 

stiffeners, applications of HSP and the scope of FEM for the analysis of stiffened plate have 

been explained in Chapter 1. In addition, objectives of the present work have been listed here. 

Chapter 2 gives the review of literature on classical methods for the analysis of HSP, FEA of 

stiffened plates including HSP and plate finite elements. In Chapter 3, numerical 

investigations have been carried out to quantify the structural advantages of HSP over plates 

stiffened with open section stiffeners. In Chapter 4, the development of an OPM for HSP 

based on equal rigidity concept has been explained and numerical investigations have been 

carried out to validate the OPM developed. In Chapter 5, formulation of Superelement for 

HSP has been explained and numerical investigations have been carried out to validate the 

Superelement developed. Chapter 6 contains summary and conclusions of the present work.  

Orthotropic plate theory has been presented in Appendix A and analytical solution for 

the bending of orthotropic plate has been presented in Appendix B. The expressions for the 

stiffness coefficients for plate bending and plane stress elements have been given in Appendix 

C. 
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CHAPTER 2 

LITERATURE REVIEW 

2.1 GENERAL 

A detailed study on various methods for the analysis of stiffened plates has been 

carried out to identify a suitable method for the analysis of HSP. Among all the solution 

strategies available, FEM has been found to be the most effective tool for the analysis of 

stiffened plates. In addition a detailed review of literature available on FEA of metallic as well 

as composite HSPs has been carried out. A detailed review of literature available on plate 

bending elements has been carried out for the selection of a suitable element to use as the 

constituent element for the development of Superelement for HSP.  

A comprehensive review of literature has been presented under the following 

subheadings: 

 Classical Methods for the Analysis of HSP 

 Analysis of Stiffened Plates 

 FEA of HSP 

 Quadrilateral Plate Finite Elements 

In the classical method for the analysis of HSP, a brief review of literature on 

orthotropic plate theory used for the analysis of stiffened plates and analytical solution for 

orthotropic plates has been presented. Analysis of stiffened plates contains review of literature 

on analysis of stiffened plates using energy formulations, analysis of stiffened plates using 

FEM and ultimate strength predictions using FEM. A brief review of literature on metallic 

HSPs and composite HSPs have been presented in the section 2.4.  Review of literature on 

plate bending elements available has been presented in the section 2.5. 
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2.2 CLASSICAL METHODS FOR THE ANALYSIS OF HSP 

The governing differential equation of equilibrium for the bending of anisotropic plates 

subjected to lateral loads and the expression for the determination of rigidities in some 

specific cases has been given by Timoshenko (1959). A complete treatise of the classical 

methods for the analysis of stiffened plates has been given by Troitsky (1976), where 

orthotropic plate theory has been used for the analysis of plates stiffened with various types of 

stiffeners. The expressions for the flexural rigidities of various types of stiffened plate 

including HSP have been presented here. Classical methods can be employed for the analysis 

of such orthotropic plates. Schade (1951, 1953) has brought out the importance of effective 

breadth in the determination of sectional properties for design purposes. Hughes (1988) has 

presented a graph which enables the determination of effective breadth in the calculation of 

effective geometrical properties of the stiffened plate section. Bao et al (1997) have presented 

a critical review of analytical solutions for bending and buckling of flat, rectangular, 

orthotropic plates. Orthotropic Rescaling Technique has been employed to simplify the 

analysis. Systematic comparisons with finite element solutions are made for the critical 

buckling load of a plate under in-plane compression and for deflection and stresses in a plate 

under out-of-plane uniform pressure.  

2 .3  ANALYSIS OF STIFFENED PLATES 

Wang and Rammerstorfer (1996) have proposed finite strip analysis for the 

determination of effective breadth and effective width of stiffened plate by finite strip 

analysis. Stiffened plates under lateral loads have been analyzed by Bediar (1997a) using a 

methodology which takes into account the discrete nature of the structure. In addition Bediar 

(1997b) has investigated the elastic behavior of multi-stiffened plates using an energy 

formulation. 

Applications of matrix method and subsequent developments in the form of FEM have 

empowered the analysts capable of solving much of the complexities of analysis of stiffened 

plates. FEM method has been used in ship structure analysis, since early seventies (Kawai, 

1973) and the extensive application of this method for the overall ship structure (global) 
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analysis as well as for the hull module analysis prevails even nowadays.  Hughes (1988) has 

presented the structural modeling and analysis of hull module of a ship structure using FEM, 

where techniques like lumping the stiffeners; orthotropic plate approach and using separate 

stiffener element have been employed for linear analysis. Satish and Mukopadhyay (2000) 

have carried out the dynamic analysis of ship structures using a new stiffened plate element. 

Prusty and Satsangi (2001) have carried out static analysis of stiffened panels using an eight 

noded isoparametric element for shell and a three noded curved beam element for the 

stiffener.  

It has been proposed to carry out the limit state analysis of HSP in this thesis using ULS 

since it has become a part of the day-by-day design and strength assessment practice.  IMO 

and ISO requirements have recognized the need for limit state approaches for the design and 

strength assessment of ships and ship shaped offshore structures. There are four types of limit 

states that are relevant viz., Serviceability Limit State (SLS), Ultimate Limit State (ULS), 

Fatigue Limit State (FLS) and Accidental Limit State (ALS) for ship structural design (ISO, 

2007). The true margin of structural safety cannot be determined as long as the ultimate limit 

state remains unknown. Hence the limit state approach has been well recognized as a better 

basis for design and strength assessment than the traditional allowable working stress 

approach. It is essential to predict the ultimate strength accurately within the design 

framework since the true strength margin of safety can be determined by comparing the 

ultimate strength and the design working stress. In maritime industry, the ultimate limit state 

has been applied as a basis of structural design and strength assessment (IACS, 2006a. and 

IACS, 2006b).  

Pu et al. (1997) have presented a formulation for predicting the ultimate strength of a 

stiffened plate. Paik et al. (2001) have used large deflection orthotropic plate approach to 

develop the ultimate strength formulations for steel stiffened panels under combined biaxial 

compression/tension and lateral pressure loads, considering the overall buckling collapse 

mode. The first review article on ultimate hull girder strength has been presented by Yao 

(2003). Experimental investigations have been carried out by Paik and Thayamballi (2003) to 

study the effect of loading speed on the ultimate strength of steel plates subjected to dynamic 

axial compressive loads. Sun and Soares (2003) have presented results obtained from 
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experimental investigations carried out for the determination of ultimate torsional strength of a 

ship-type hull girder with a large deck opening. The ultimate load of stiffened plates with 

initial imperfections under axial compression has been determined using FEA and semi-

empirical solutions by Kumar et al (2004) and the analytical results obtained have been 

compared with the experimental data. Paik et al (2008a, 2008b, 2008c) have carried out 

benchmark study on various ULS assessment methods for marine structures including IACS 

common structural rules and using various computer programs like ANSYS nonlinear FEA, 

DNV’s PULS, ALPS/ULSAP, ALPS/HULL.  Unstiffened plates surrounded by longitudinal 

stiffeners and transverse floors subjected to biaxial compression and lateral pressure loads 

have been dealt with in Paik et al (2008 a). Ultimate limit state assessment of stiffened plates 

under combined biaxial compression and lateral pressure loads has been dealt with in Paik et 

al (2008b) and the progressive collapse analysis of the hull structure has been dealt with in 

Paik et al (2008c).  Some useful insights on application of nonlinear FEM for the assessment 

of ultimate limit strength of steel stiffened plated structures subjected to combined biaxial 

compression and lateral pressure actions have been presented by Paik and Seo (2009a, 2009b).  

Plate elements surrounded by stiffeners has been dealt with in Paik and Seo (2009a) and 

stiffened plates surrounded by strong support members such as longitudinal girders and 

transverse frames has been dealt with in Paik et al (2009b). 

2.4  FINITE ELEMENT ANALYSIS OF HAT STIFFENED PLATE 

Ko and Jackson (1991) have performed buckling analysis of Hat Stiffened Panel 

subjected to uniaxial compression using classical shear buckling theory for flat plate. Both 

local buckling and global buckling analysis have been carried out. The predicted local 

buckling loads have been compared with both experimental data and FEA. Jia and Ulfvarson 

(2005) have presented FEA on static and dynamic behavior of a high tensile steel deck 

designed with trapezoidal stiffeners. Hofmeyer (2005a) has substantiated that the location and 

movement of the first yield line in a total hat section can be investigated by using a 2D strip of 

hat section. The analytical model presented by Hofmeyer (2005b) gives a good insight in the 

complex cross section crushing behavior of hat sections made of steel.  
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Jiang et al. (1997) have carried out the FEA for the bending and buckling of unstiffened, 

sandwich and hat stiffened orthotropic rectangular plates. Two different approaches for 

modeling the HSP have been shown by them. In the former, the middle surface of the stiffener 

flanges is attached to the middle surface of the plate using rigid beams and in the latter the 

flanges and the plate in the joining region are replaced by a single plate section with an 

effective thickness equal to the sum of the thicknesses of the flange and the original plate. 

They have concluded that for the HSP the method of stiffener to plate attachment in the finite 

element model significantly affect the results and the second approach has been found to give 

better results. Roberts et al. (1999) have carried out tests on solid unstiffened, sandwich and 

hat stiffened rectangular orthotropic FRP plates for buckling by in-plane compression and for 

stresses and deflection under uniform out-of-plane pressure. The test results have been 

compared with FEA and analytical solutions. For the HSPs the results have shown good 

agreement in buckling. However under out-of-plane pressure, FEA and experimental results 

for stress and deflection have been in poor agreement. A formulation based on the concept of 

equal displacements at the shell – stiffener interface has been used by Prusty (2003) for the 

linear static analysis of composite hat stiffened laminated shells. Prusty and Ray (2004) have 

performed free vibration analysis of laminated composite shell stiffened with hat stiffeners. A 

unified formulation for the development of rigidity matrix for the laminated hat shaped 

stiffeners has been presented. Chen and Soares (2007) have presented a systematic approach 

to estimate the longitudinal strength of ship hull in composite material stiffened with hat 

stiffeners under buckling, material failure and ultimate collapse of the deck structure. The 

finite element free vibration and buckling analysis of laminated hat stiffened shallow and deep 

shells using arbitrarily oriented stiffener formulation has been presented by Prusty (2008). 

Mittelstedt and Schroder (2010) have presented a closed-form analytical approach for the 

analysis of the local post buckling behavior of hat stiffened flat composite panels under 

transverse compression. The post-buckling behavior of different forms of the composite 

stiffened plates including hat stiffened plates has been studied by Fattaneh and Mohammad 

(2014). 
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2.5  RECTANGULAR FINITE ELEMENTS  

A rectangular shell element formulated by superimposing a plate finite element with a 

plane stress element as proposed by Bathe (2004) has been used for the formulation of 

Superelement of HSP. The major task confronted has been the selection of a suitable plate 

element for the formulation of rectangular shell element. Best results will be obtained if the 

element selected have the five essential qualities viz., correctness, completeness, continuity, 

consistency and convergence. The early plate finite element formulations such as Adini and 

Clough (1960), Melosh (1961), Tocher (1962) and Clough and Tocher (1965) in the early 

1960s were displacement based. By mid 1960s the importance of inter-element compatibility 

has been realized and the variational basis for the FEM had become better understood. Bogner 

et al. (1965) have developed rectangular plate bending element having 16 and 36 dof that 

exhibited inter-element compatibility and good convergence properties. Irons and Draper 

(1965) have substantiated that it is not possible to derive a conforming element using simple 

polynomials and three geometric dof. 

 Conforming plate elements have been difficult to obtain and researchers looked for 

alternative formulations. Researchers made use of the principle of minimum potential energy 

which resulted in equilibrium formulation and has been made use of to develop conforming 

plate elements. Here an interpolation function has been chosen for the stresses or moments 

within the element and this function has to satisfy equilibrium at every point in the structure 

and the stress conditions on the boundaries. Morley (1967, 1968) and Elias (1968) have 

simplified the use of equilibrium formulation and the latter implemented the use of element 

stress functions. Przemieniecki (1968) has presented the stiffness matrices for the rectangular 

plate bending element and the rectangular plane stress element in the closed form. Torbe and 

Church (1975) have formulated the stiffness matrix and consistent nodal load vectors for a 

general quadrilateral plate element for both in-plane and bending analysis. Finite element 

solutions using the principle of minimum complementary energy have been discussed in detail 

by Gallagher (1975) and Zienkiewicz (1977). The 1970s saw a reduction in the rate at which 

new elements were derived and one of the most significant developments which emerged from 

that decade was the use of the displacement formulation based on Mindlin plate theory and 
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reduced integration schemes.  A brief review of developments in the field of plate finite 

elements has been presented by Hrabok and Hrudey (1984).  

Kirchhoff plate bending theory was abandoned in favor of Reissner-Mindlin plate theory 

of moderately thick plates. The continuity requirement for the displacement assumption has 

been lowered to C0 but the transverse shear becomes an integral part of the formulation. 

Successful quadrilateral C0 elements have been developed by Hughes et al. (1977), Pugh et al. 

(1978), MacNeal (1978, 1982), Crisfield (1983), Dvorkin and Bathe (1984), Tessler and 

Hughes (1985), Stanley (1985) and Park and Stanley (1986).  

Wilson (1974) has presented the application of static condensation technique. Cook and 

Shah (1978) have compared the computational cost of two different condensation algorithms. 

The technique of static condensation has been successfully applied to condense stiffener web 

and flange of stiffened shell and a computer program has been developed based on this 

technique for the rapid analysis of stiffened cylindrical hulls by Rajgopalan and Chettiar 

(1984). The communication by Bathe and Dvorkin (1985) discusses a 4-node plate bending 

element for linear elastic analysis which is obtained as a special case, from a general nonlinear 

continuum mechanics based on 4-node shell element formulation. Ibrahimbegovic and Wilson 

(1991) have presented a simple formulation of a flat shell element obtained by superimposing 

discrete Kirchhoff plate bending elements and the membrane elements with drilling dof. 

Griffiths (1994) has expressed the stiffness matrix of a plane four node quadrilateral element 

in the closed form and comparison of the processing speed of the explicit and numerical 

approaches has been made. A four noded quadrilateral discrete Kirchhoff finite element has 

been proposed by Kratzig and  Zhang (1994) for thin plate bending analysis by employing an 

eight noded interpolation scheme. Zhou and Vecchio (2006) have presented closed form finite 

element stiffness formulations for the four noded quadrilateral element with a fully populated 

material stiffness suitable for the nonlinear analysis of reinforced concrete membrane 

structures. 

The rectangular plate bending element and the rectangular plane stress element 

presented by Przemieniecki (1968) has been selected for the formulation of quadrilateral 

element having six dof per node. These rectangular elements have been found to be easy to 
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employ for the shell element formulation as compared to other elements mentioned since the 

stiffness matrices are available in the closed form. 

2.6 COMMENTS 

Knowledge and information base are available in analysis of stiffened plates in the form 

of books and volumes of research publications. However, the source is not exhaustive as far as 

HSPs are concerned since introduction of hat shaped stiffeners in marine structures is a recent 

development. A definite need has been felt to develop a structural substitute or a Superelement 

which reduce the modeling efforts, storage requirement, and computational requirement for 

the FEA of HSP. From the review of literature it has been noted that usage of HSP in ship 

structure is picking up especially in the construction of light weight ships. The expressions for 

the flexural rigidities of HSP and the analytical solution for the bending orthotropic plates 

available in the literature have been made use of for the development of OPM for HSP. A 

detailed review of plate elements have been carried out and a shell element having six dof per 

node has been formulated based on the information gathered from literature. This quadrilateral 

shell element has been used for the formulation Superelement for HSP. 
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CHAPTER 3 

STRUCTURAL PERFORMANCE OF HAT STIFFENED PLATE 

3.1 GENERAL 

The key elements of a ship structure are bottom and side shell plating, deck plating, 

transverse bulkheads, fore end, aft end and super structure as shown in Figure 3.1. Bottom and 

side shell plating serves as a watertight envelop of the ship as well as a principal strength 

member. Deck plating and transverse bulkheads which contribute substantially to the strength 

of the structure may also serve as liquid tight boundaries of internal compartments. Fore end 

accommodate bulbous bow, aft end accommodates the propeller and super structure contain 

accommodation area and navigation bridge. Apart from the fore end, aft end and 

superstructure a ship structure in general is a three dimensional frame work of stiffened plates, 

constituted by deck, side shells, bottom shell and bulkheads. 

 

Figure. 3.1 Key structural elements of a ship 

The stiffeners attached effectively to the plating contribute to the general longitudinal 

strength of the ship and will withstand the cargo and water pressure loads. In order to reduce 

their scantlings they are supported at locations other than bulkheads by deep transverse beams, 
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in the decks and by providing transverse floors in the bottom. The transverse bulkheads 

increase the transverse strength of the ship and have the same effect as the ends of a box. In a 

ship structure most of the lateral load acts initially on the plating. Through the action of plate 

bending, the plating transmits the lateral load to nearby stiffeners. The stiffeners in turn 

transmit the load to transverse beams and longitudinal girders.  

A ship structure at sea is subjected to static and dynamic forces which causes the 

distortion of the structure. The ship structure is subjected to static forces, due to the water 

surrounding the ship, due to the weight of the cargo and due to the weight of the structure 

itself. The effect of these static forces is to cause a transverse distortion. For a ship floating in 

still water, although the total buoyant force is equal to the weight of the ship, due to the 

unalike distribution of the weight and the buoyancy along the length of the ship, it is subjected 

to shear force and bending moment. The bending moment causes the ship to bend in a 

longitudinal vertical plane like a beam. When the ship is moving amongst waves, distribution 

of weight remains unchanged but the distribution of buoyancy along the length is altered. This 

modification in the distribution of buoyancy causes a change in the shearing force and 

bending moment acting upon the ship in still water. The longitudinal bending causes 

compressive loading of stiffened plates. In addition to transverse loading and bending, a ship 

structure is subjected to torsion loads due to uneven distribution of cargo and by the action of 

waves. Torsion due to wave applied to a ship’s structure like quartering sea causes twisting of 

the structure about the longitudinal axis. 

The key interest in ship building is to design a structure having minimum weight and 

maximum strength. Ships which are built too strong are heavy, slow and cost extra money to 

build and operate since they weigh more, whilst ships which are built too weak suffer from 

minor hull damage and in some extreme cases catastrophic failure and sinking. So there has 

always been a constant strive among ship designers to design strong and lighter ships. The 

structural response of plates stiffened with hat stiffeners, flat bar, angle bar and Tee bar, 

subjected to lateral loading, in-plane loading and torsion loading has been investigated in the 

present chapter. ANSYS 12 has been used to carry out numerical investigations on plates 

stiffened with the selected stiffeners to establish the high strength-to-weight ratio of HSPs and 

the results have been presented in tabular form. 
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3.2 DESCRIPTION OF HAT STIFFENED PLATE 

A section of the stiffened plate between two successive transverse deck beams of a 

conceptual lightweight ship deck on a pure car truck carrier vessel proposed by Jia and 

Ulfvarson (2005) having a span of 2.4 m has been selected for the various numerical 

investigation in this thesis.   

3.2.1 Structural Characteristics 

Geometry and dimensions of HSP having two stiffeners and the principal dimensions of 

the hat stiffener have been shown in Figure 3.2. The structure is made with EHS690 steel.  

The Poisson’s ratio of the material is 0.3, the modulus of elasticity is 210 GPa, density is 7800 

kg/m3, and the yield stress is 690 MPa. 

 

 

Figure 3.2 Geometry and dimensions of: (a) Hat Stiffened Plate having two stiffeners (b) Hat 
stiffener  

3.2.2 Convergence Study 

The structure has been modeled and analyzed using the finite element software ANSYS 

12.  Thin shell elements, shell 63 (4 noded) and shell 93 (8 noded) having six dof per node 

have been used to model the stiffener and the plate.  The mesh density has been selected based 
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on convergence study carried out for HSP having two stiffeners as shown in Figure 3.2, using 

shell 63 and shell 93 elements.  In-plane mesh densities 5 x 8, 8 x 16, 28 x 30 and 34 x 40 

have been chosen for the convergence study.  Simply supported boundary condition on all 

four edges and a uniformly distributed lateral pressure of 10 kPa has been applied on the HSP.  

The maximum deflection has been found out for various mesh densities.  Plots of maximum 

deflection for various mesh densities has been made for shell 63 and shell 93 element and are 

shown in Figure 3.3.  Shell 93 element show convergence for a mesh density of 28 x 30 and 

an aspect ratio of 1.8. Shell 93 and a mesh density of 28 x 30 have been adopted while 

modeling the HSP for further investigations in this chapter. 

 

Figure 3.3 Plot of maximum deflection versus mesh density for: (a) For shell 63 
element (b) For shell 93 element 

3.2.3 Selection of Representative Unit Cell for Hat Stiffened Plate 

The deck plate of ship or similar structural components strengthened with hat stiffeners 

may be measuring a few meters as a structural member and may consist of large number of hat 

stiffeners. For the structural analysis of such components, it will be convenient to have a 

Representative Unit Cell (RUC) which is a miniature of the original structure. An RUC of the 

HSP has been selected based on a linear static analysis carried out for HSP panels having two, 

three, four and five stiffeners. Geometry of these RUCs has been given in Figure 3.2 (a) and 

Figure 3.4. These plates have been modeled using shell 93 elements. Simply supported 
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boundary conditions are prescribed on edges perpendicular to the stiffeners and continuous 

boundary conditions have been imposed on edges parallel to the stiffeners. A uniformly 

distributed lateral pressure of 10 kPa has been applied on the HSP. 

 

Figure 3.4  Geometry and dimensions of Hat Stiffened Plates having: (a) three 
stiffeners (b) four stiffeners and (c) five stiffeners. 

Comparison of maximum deflection and maximum in-plane stress at the centre of HSP 

having two, three, four and five stiffeners has been presented in Table 3.1.  Since the 

maximum deflection has been the same and the variation in stress has been less than 4%, HSP 

with two stiffeners as shown in Figure 3.2 has been selected as the RUC of HSP and will be 

used for subsequent investigations reported in this thesis. 
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Table 3.1 Comparison of maximum deflection and maximum in-plane stress at the centre of 
Hat Stiffened Plates having two, three, four and five stiffeners 

No. of Stiffeners: Two 
Stiffeners Three Stiffeners Four  Stiffeners Five Stiffeners 

  
Percentage
Variation  

Percentage 
Variation  

Percentage 
Variation 

Maximum  
Deflection (mm) : 0.7093 0.7093 0 0.7093 0 0.7093 0 

Maximum  
in-plane Stress  
(MPa.) : 

10.09 9.70 3.87 10.09 0 9.70 3.87 

3.3 STRENGTH OF STIFFENERS COMMONLY USED IN SHIPBUILDING 

 

Figure 3.5 Geometry and dimensions of equivalent unit cells of plates stiffened with: (a) flat 
bar (b) angle bar and (c) tee bar 

In order to quantify the strength-to-weight ratio of HSP, its structural response has been 

compared with that of plates stiffened with open section stiffeners commonly used in ship 

building, viz., flat bar, angle bar and tee bar. The equivalent unit cell of open section stiffeners 

has been arrived at based on the equivalent section modulus concept. The scantlings of the 

open section stiffeners are calculated such that HSP and open section stiffened plates have 
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equal section modulus and same plate dimensions. The dimensions of the equivalent RUCs of 

stiffened panels with flat bar, angle bar and tee bar are shown in Figure 3.5. 

3.4 STRUCTURAL RESPONSE 

 

Figure 3.6 Finite element models of Representative Unit Cell of plate stiffened with: (a) 
hat stiffener, (b) flat bar, (c) angle bar and (d) tee bar 

The structural response to lateral loading, in-plane loading and torsion loading of RUC 

of HSP and its equivalent open section stiffened plates have been estimated and compared. 

The analysis has been carried out using ANSYS 12 and finite element models of these 

components have been shown in Figure 3.6. The degree of rotational restraints at the plate 

boundary is neither zero nor infinite, the former being equivalent to simply supported 

condition and the latter corresponding to fixed condition. The restraints at the plate boundary 
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depends on torsional rigidity of support members which is neither zero nor infinity. For 

practical design purpose with the benefit of mathematical simplicity, the simply supported 

boundary condition (i.e., with zero rotational restraints) is often adopted in maritime industry 

when analytical or semi-analytical methods are applied (Paik and Seo, 2009a). In the present 

study simply supported boundary conditions has been applied on all four edges. 

3.4.1 Lateral Loading 

In a ship structure the stiffened plates are mainly subjected to lateral or transverse loads 

i.e., loads normal to the plane of the plate. Hydrostatic pressure acting on the bottom and side 

shells of the plate, cargo distributed on the deck etc. are examples for lateral loads acting on 

stiffened plates in the case of a ship structure. A lateral pressure of 10 kPa has been applied in 

each of the four cases.  Linear static FEA has been carried out using ANSYS 12 and a 

comparison of maximum deflection and maximum principal stress have been made and 

presented in Table 3.2.  

Table 3.2 Comparison of maximum deflection and maximum principal stress for the plates 
stiffened with four different types of stiffeners and subjected to lateral load 

Sl 
No. 

Stiffener  
shape 

Weight  
Ratio 

Section 
Modulus 

Max  
Deflection Max. 

Deflection
Ratio 

Max. 
Principal  

Stress Max. Principal 
Stress Ratio 

cm3 mm MPa 

1 Hat 1.00 365.78 0.7207 1.00 26.50 1.00 

2 Flat Bar 1.36 380.3 0.6348 0.88 25.37 0.96 

3 Angle 1.01 382.2 1.3864 1.92 89.07 3.36 

4 Tee 1.02 369.3 0.7061 0.98 27.60 1.04 

From the table it has been seen that for same section modulus the plate stiffened with 

flat stiffener is 36% heavier as compared to HSP. The maximum deflection and the maximum 

principal stress for plate stiffened with angle stiffener have been very high as compared to 

HSP. The variation in maximum deflection and maximum principal stress for tee stiffener has 
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been found to be less than 4% as compared to that of HSP. Plate stiffened with tee bars 

exhibits comparable strength-to-weight ratio with that of HSP for lateral loading. 

3.4.2 In-plane Compressive Loading 

The top deck of ship’s hull is subjected to bending compressive stress due to sagging 

bending moments and it is prone to buckling failure.  The buckling mode for a stiffened plate 

depends on the relative geometric proportions of the plate and stiffener elements (Bediar, 

1997a). For light stiffening, the plate buckles together with the stiffener giving rise to failure 

in overall buckling mode.  If the stiffener is rigid in flexure and weak in torsion, buckling 

occurs in a local mode. The stiffeners in this case divide the plate into several sub-panels with 

longitudinal edges almost rotate freely.  If the stiffener is both flexurally and rotationally stiff, 

another local mode results and the longitudinal edge of each panel in this case is fixed against 

rotation giving rise to a higher buckling load for each sub panel.  Most ship panels must carry 

substantial lateral loads and this requirement usually produces stiffeners that are already larger 

and more rigid than the minimum sizes required by consideration of overall elastic buckling. 

In-plane compressive load has been applied on the finite element models of stiffened 

plates shown in Figure 3.6 and linear buckling analysis has been carried out. The first 

buckling mode for all the four stiffened plates simply supported on all four edges and 

subjected to an axial compressive load has been shown in Figure 3.7. 

The critical load for all the four stiffened plates has been presented in Table 3.3. From 

the table it can be seen that the plate stiffened with flat bar has got very low value for critical 

load. For plates stiffened with angle bar stiffeners and tee bar stiffeners the value of critical 

load is comparable with that of HSP. 
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Figure 3.7 First buckling mode for plate stiffened with: (a) hat stiffener, (b) flat bar, (c) angle 
bar and (d) tee bar 

Table 3.3 Comparison of critical load for the plates stiffened with four different types of 
stiffeners 

Sl No. Stiffener  
shape Weight Ratio Critical load 

MPa 

1 Hat 1.00 287.35 

2 Flat Bar 1.36 100.8 

3 Angle  1.01 265.01 

4 Tee 1.02 277.32 
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3.4.3 Torsion Loading 

To compare the structural response to torsion loading, the finite element models shown 

in Figure 3.6 has been used. All dof on either ends of the stiffened panel have been arrested 

and a torsion load of 1 kN-m has been applied at mid-span. Warping stress, σx generated due 

to torsion and the significant shear stresses τxy and τxz obtained for all the four types of 

stiffeners have been compared and presented in Table 3.4. It has been seen that warping 

stresses in the case of plates stiffened with angle stiffener and tee stiffeners are extremely high 

as compared to that for HSP. Thus it has been seen that HSP exhibits extremely superior 

strength-to-weight ratio when the structural response to torsional load has been compared. 

Table 3.4 Comparison of warping stress and shear stress for the plates stiffened with four 
different types of stiffeners and subjected to torsion load 

Sl 
No. 

Stiffener  
shape 

Weight 
Ratio 

Warping Stress Shear Stress in the cross 
sectional plane. 

Σx Ratio τxy τxz 
MPa MPa MPa 

1 Hat 1.00 24.95 1.00 9.43 1.73 

2 Bar 1.36 25.75 1.03 9.61 3.78 

3 Angle 1.01 51.69 2.07 19.55 3.67 

4 Tee 1.02 120.58 4.83 29.92 9.05 

3.5 RESULTS AND DISCUSSION  

Table 3.5 Performance of plates stiffened with various types of stiffeners subjected to lateral 
load, in-plane load and torsion load 

Sl No. 
    

Response to 
lateral load 

Response to  
in-plane load 

Response to 
torsion load 

Stiffener  
shape 

Weight 
Ratio 

Max. 
PrincipalStress Critical Load Warping Stress

    MPa MPa MPa 
1 Hat 1 26.5 287.35 24.95 
2 Flat Bar 1.36 25.37 100.8 25.75 
3 Angle 1.01 89.07 265.01 51.69 
4 Tee 1.02 27.6 277.32 120.58 
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The stiffened plates in a ship structure are subjected to lateral, in-plane and torsion 

loading. The responses of RUC of HSP and commonly used open section stiffeners to these 

types loading have been investigated. The performance HSP and plates stiffened with open 

section stiffeners having the same section modulus subjected to various types of loading have 

been presented in Table 3.5.   For lateral loading the strength-to-weight ratio of plates 

stiffened with HSP is high as compared to flat bar and angle bar. In buckling, the performance 

of HSP has been found much superior to plate stiffened with flat bar whereas plates stiffened 

with angle bar and Tee bar performs equally well as HSP. However, in torsion, the warping 

stress developed for plates stiffened with Tee bar is very high as compared to HSP. Hence it 

has been seen that the strength-to-weight ratio of HSP is much better as compared to that of 

commonly used open section stiffeners. 
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CHAPTER 4 

ORTHOTROPIC PLATE MODEL FOR HAT STIFFENED PLATES 

4.1 GENERAL 

Orthotropic Plate Model (OPM) of the HSP has been proposed as an efficient structural 

substitute. In the OPM approach, the stiffened plate made of isotropic material and having 

geometric anisotropy due to stiffeners has been replaced by an unstiffened plate of the same 

plan dimensions and having material orthotropy. An OPM has been formulated as a structural 

substitute for HSP, which will make the structural analysis of HSP possible with the 

orthotropic plate elements available in the element library of any general purpose structural 

analysis software. This will significantly reduce the modeling efforts and storage requirement 

in the analysis of a complete ship or hull module using any commercial finite element 

software. 

4.2 FORMULATION OF EQUIVALENT ORTHOTROPIC PLATE MODEL 

The HSP made up of an isotropic material has been substituted by an elastically 

equivalent OPM. Geometric parameters of HSP and its equivalent OPM are shown in Figure 

4.1.  The flexural rigidities of HSP are available as given by eqn. 4.1 and eqn. 4.2.   

Dx= ૛܊૚ା܊ܚ۳۷ 													Dy=	 EtP312൫1-ν2൯ 					− − − − −− −−		(૝. ૚), (૝. ૛)  
Ir is the moment of inertia of the stiffener and the effective breadth used for calculating 

this  generally depends on various parameters like the ratio a0/ (b1+b2), boundary conditions, 

cross sectional dimensions of the stiffeners and Poisson’s ratio (where a0 is the length between 

zero bending moment).  Effective breadth ratio as proposed by Hughes (1988) has been taken 

for the calculation of moment of inertia of the stiffener.  Dimensions a, b, b1, b2, tr and tp have 

been shown in Figure 4.1. 
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Figure 4.1 Geometrical parameters of Hat Stiffened Plate and its equivalent Orthotropic Plate 
Model 

The orthotropic plate theory and the analytical solution for bending of orthotropic plate 

have been made use of for determining the material properties and thickness of the equivalent 

OPM for HSP and have been explained in Appendices A and B respectively. The length a, 

breadth b and the values of rigidities, Dx and Dy for the elastically equivalent OPM have been 

made the same as that of the parent HSP. The effective torsional rigidity, H has been found 

out using eqn. A5.  Poisson’s ratio νx for the equivalent OPM has been assumed to be same as 

that of the parent HSP.  Substituting for Dx, Dy and νx in eqn. A6, νy has been found out and 

assuming Dz equal to Dy, νz is also calculated using eqn. A7.  The characteristic non 

dimensional parameters, η, λ and the modified aspect ratio R for the OPM have been 

calculated using eqns. B1 and B2. 

The thickness top for the equivalent OPM has been determined using the analytical 

expression for stress in an orthotropic plate by Bao et al. (1997) as given in eqns. B5, B7, B10 

and B12. The first two eqns. are for all four edges simply supported boundary condition and 

the other two eqns. are for two edges fixed and two edges simply supported. These 

expressions involve the value of in-plane stress σx at the centre of an orthotropic plate due to a 

lateral pressure load and its thickness. The value of in-plane stress, σx necessary to substitute 

in eqn. B5 or B7 or B10 or B12 has to be realized from a linear elastic analysis of the RUC of 

parent HSP. Ex and Ey have been found out using eqn. A2 and Ez is assumed to be the same as 

Ey.  Gxy has been calculated using eqn. A5 and Gyz = Gxz = Gxy. Poisson’s ratio νxy, νyz and νxz 

have been found out using eqn. A8.  Thus all the geometrical and material properties of an 

equivalent OPM have been found out and these can be modeled and analyzed using thin 

orthotropic plate elements. 
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A computer code in C language has been written based on eqn. B7 for all four edges 

simply supported and based on eqn. B12 for two edges fixed and other two edges simply 

supported condition of the plate. The program reads the values of q, a, b, Dx, H, Dy, νx and σx 

as the input and top for the equivalent OPM has been obtained as the output. Once the top is 

calculated, the material model for the orthotropic plate is complete with Ex, Ey, Ez, Gxy, Gyz, 

Gxz, νxy, νyz, νxz being known. This information can readily be used along with top for the 

analysis of OPM of the HSP using any general purpose finite element software. 

4.3 NUMERICAL INVESTIGATIONS 

The RUC of HSP identified in section 3.2.1 has been selected for the numerical 

investigations. The material properties of RUC of HSP are given in section 3.2.2. The RUC of 

HSP with two stiffeners and the elastically equivalent OPM has been shown in Figure 4.2.  

 

 

Figure 4.2 (a) Representative Unit Cell of Hat Stiffened Plate with two stiffeners. (b) 
Principal dimensions of hat stiffener, (c) Elastically equivalent Orthotropic Plate Model 

For the two boundary conditions, Dx, Dy and H calculated for RUC of HSP has been 

given in Table 4.1. Linear static FEA of the RUC of HSP has been carried out using ANSYS 

12. The structure has been modeled using isotropic thin shell elements and pressure load 10 kPa 

has been applied. For all edges simply supported boundary condition the maximum in-plane 

stress, σx has been obtained as 26.5 MPa and for two edges simply supported and the other two 
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edges fixed boundary condition, the maximum in-plane stress, σx has been obtained as 27.94 

MPa.  For the RUC of HSP, the input and output for the computer code for generating the top of 

equivalent OPM have been given in Table 4.2 for the two boundary conditions. Subsequently 

the material and geometric properties of equivalent OPM for the two specified boundary 

conditions are given in Table 4.3. 

Table 4.1 Value of rigidity for Representative Unit Cell of Hat Stiffened Plate 

RIGIDITIES SS FS 

Dx  (N-mm) 5.8648 x 109 4.866  x 109 

Dy (N-mm) 4.1538 x 106 4. 1538 x 106 

H (N-mm) 1.5608 x 108 1.4218x 108 

SS: All four edges simply supported. 
FS: Two edges fixed and other two edges simply supported.

Table 4.2 Input and output of the computer code for finding the thickness of equivalent 
Orthotropic Plate Model for the Representative Unit Cell of Hat Stiffened Plate   

Boundary Condition: SS FS 

Input 

q (MPa) 0.01 0.01 

a (mm) 2400 2400 

b (mm) 1400 1400 

Dx (N-mm) 5.8648 x 109 4.866  x 109 

H (N-mm) 1.5608 x 108 1.4218x 108 

Dy (N-mm) 4.1538 x 106 4. 1538 x 106 

νx 0.3 0.3 

σx (MPa) 26.5 13.97 

Output top (mm) 39.8 32.14 
SS: All four edges simply supported.
FS: Two edges fixed and other two edges simply supported.
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Table 4.3 Geometric and material properties of equivalent Orthotropic Plate Model for the 
Representative Unit Cell of Hat Stiffened Plate   

Boundary Condition: SS FS 

Geometric  
Properties 

a (mm) 2400 2400 

b (mm) 1400 1400 

top (mm) 39.8 32.14 

Material 
Properties 

Ex (MPa) 1.1162 x 106 1.7589 x 106 

Ey=Ez (MPa) 790.6 1501 

Gxy = Gxz          
=  Gyz (MPa) 790.6 25470 

νxy = νxz 7.98 x 10-3 8.76 x 10-3 

νyz 2.1 x 10-4 2.6 x 10-4 

SS: All four edges simply supported. 
FS: Two edges fixed and other two edges simply supported.

4.3.1 Validation of Equivalent Orthotropic Plate Model with Bao’s solution 

The equivalent OPM has been modeled in ANSYS 12 using 8 noded orthotropic thin 

shell elements.  An in-plane mesh density of 14 x 24 as shown in Figure 4.3(b) has been used 

and a uniform pressure load of 10 kPa has been applied.  The material and geometric 

properties of the OPM given in Table 4.3 for the two boundary conditions has been used as 

the input.  The deflection and the maximum stress at the centre for the equivalent OPM using 

the FEA have been compared with analytical solutions given by eqns. B3, B7, B11 and B12.  

The maximum deflection and stress at the centre are shown in Table 4.4. The comparison 

shows that the maximum variation in deflection is less than 6.5% and the maximum variation 

in in-plane stress, σx is less than 1%. Hence the procedure adopted for finding the thickness, 

modulus of elasticity, modulus of rigidity and Poisson’s ratio for an orthotropic plate from the 

given values of plate rigidities has been found satisfactory. The structural response of the 

equivalent OPM of the HSP predicted using an orthotropic plate finite element has been 

validated herein with classical solution given by Bao et al. (1997). 



30 
 

Table 4.4 Comparison of deflection and maximum in-plane stress at the centre for the 
Orthotropic Plate Model found out using Finite Element Analysis and analytical solution 

Response Boundary  
Conditions 

Analytical  
Solution 

Finite Element  
Solution 

Percentage  
Variation 

 
Deflection 
(mm) 

SS 0.7161 0.7339 2.49 

FS 0.1779 0.1890 6.24 

Maximum  
in-plane  
stress 
(MPa) 

SS 26.50 26.67 0.64 

FS 13.97 14.02 0.36 

SS: All four edges simply supported. 
FS: Two edges fixed and other two edges simply supported. 

4.3.2 Validation of Orthotropic Plate Model as the structural substitute for Hat 
Stiffened Plate 

The OPM of the HSP has been established as its structural substitute through FEA of 

RUC of HSP and its equivalent OPM. The finite element models of the RUC of the HSP and 

the equivalent OPM generated for this purpose modeled using ANSYS 12 have been shown in 

Figure 4.3. Eight noded isotropic thin shell elements (shell 93) has been used for modeling 

RUC of HSP and eight noded orthotropic thin shell element for the OPM. Both the models are 

analyzed for uniformly distributed pressure load of 10 kPa for the two boundary conditions 

mentioned in section 4.2. 

 

Figure 4.3 Finite element model of: (a) Representative Unit Cell of Hat Stiffened 
Plate (b) Equivalent Orthotropic Plate Model 
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(a) All four edges simply supported boundary condition. 

 
(b) Two edges fixed and two edges simply supported boundary condition. 

Figure 4.4 Deflection-profile across width at mid-span for Hat Stiffened Plate and Orthotropic 
Plate Model 
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The deflection-profile across the width at mid-span has been plotted for the HSP and its 

equivalent OPM. Figure 4.4 (a) shows the deflection-profiles of HSP and its equivalent OPM 

with all four edges simply supported boundary condition and Figure 4.4 (b) shows the same 

for the two edges fixed and two edges simply supported boundary condition.  Comparison of 

deflections at points A, B, C and D has been presented in Table 4.5. 

Table 4.5 Comparison of deflections (in mm) at various locations across the width at mid-
span for Hat Stiffened Plate and Orthotropic Plate Model 

Boundary 
Condition Location HSP OPM Percentage 

Variation 

SS 

A 0.4791 0.4495 -6.2 

B 0.7207 0.6510 -9.7 

C 0.5747 0.7180 +2.5 

D 0.6391 0.7339 +14.8 

FS 

A 0.1586 0.1533 -3.3 

B 0.3230 0.1872 -42 

C 0.1989 0.1889 -5.0 

D 0.2768 0.1885 -32.0 

SS: All four edges simply supported.    
FS: Two edges fixed and other two edges simply supported.

It is evident from the Figure 4.4 as well as Table 4.5 that the deflection across the width 

of the plate considered at mid-span of the HSP shows oscillations. The maximum deflections 

occur at the quarter point (point B). These oscillations smoothened using a quadratic 

polynomial and is also shown in the same figure.  The deflection at quarter point (B) is 12.7% 

and 16.7 % more than the mid-span (point D) deflection for the two boundary conditions. The 

maximum deflections predicted by the OPM differ by 7.5% and 31.7% when compared with 

smoothened value of HSP for the two boundary conditions. 

The percentage variations in maximum in-plane stress and maximum von Mises stress 

for RUC of HSP and its equivalent OPM have been given in Table 4.6. The variation in 

maximum in-plane stress values which are generally of greater interest has been found to be 
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less than 1% in both the boundary conditions whereas, the maximum variation in von Mises 

stress is less than 3.5%. 

Table 4.6 Comparison of maximum in-plane stress and maximum von Mises stress obtained 
for the Representative Unit Cell of Hat Stiffened Plate and its equivalent Orthotropic Plate 
Model 

Response Boundary  
Conditions 

Hat Stiffened  
Plate 

Orthotropic Plate  
Model 

Percentage  
Variation 

Maximum  
in-plane  
stress (MPa) 

SS 26.50 26.67 0.64 

FS 27.94 28.05 0.39 

von Mises 
stress (MPa) 

SS 25.76 26.66 3.50 

FS 27.21 28.06 3.12 
SS: All four edges simply supported. 
FS: Two edges fixed and other two edges simply supported. 

The location of maximum stress depends on the plate aspect ratio and material 

orthotropy for two edges fixed and two edges simply supported condition (Bao et al., 1997). 

Besides Bao et al. (1997) have commented on the limitations of scope of application of the 

orthotropy rescaling technique to plates with fixed edges. This feature has been reflected in 

the present study as well. OPM with two edges fixed and two edges simply supported 

condition has shown 42 % variation in deflection. Hence the OPM developed in the present 

study using orthotropy rescaling technique has been recommended for the predication of 

Critical Buckling Load and Ultimate Strength of HSP with all edges simply supported 

boundary condition. 

4.4 PREDICTION OF CRITICAL BUCKLING LOAD 

The stiffened plate and its equivalent OPM have been subjected to axial compressive 

load and simply supported condition has been applied on all four edges. Linear buckling 

analysis of RUC of HSP and its equivalent OPM has been carried out using ANSYS 12. The 

critical stress for HSP has been obtained as 287.35 MPa and the same obtained for equivalent 

OPM has been 287.26 MPa. The variation in critical stress has been found to be 0.03%. The 
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first buckling mode of HSP and its equivalent OPM have been shown in Figure 4.5 (a) and (b) 

respectively. 

 

Figure 4.5 First Buckling mode of: (a) Hat Stiffened Plate and (b) Equivalent 
Orthotropic Plate Model 

4.5 PREDICTION OF ULTIMATE STRENGTH 

The ANSYS nonlinear FEA  gives accurate solutions as long as the modeling technique 

applied is adequate enough in terms of representing actual structural behavior associated with 

geometrical nonlinearity, material nonlinearity, boundary condition, loading condition, mesh 

size and so on (Paik et al., 2008a).  Failure of steel structures in conjunction with ULS is 

typically related to either one or both of the following nonlinear types of behavior viz., 

geometric nonlinearities associated with buckling or large deflection and material 

nonlinearities due to yielding or plastic deformation.  Thus both geometric and material 

nonlinearities must always be taken into account in ULS assessment. 

For ULS computations, it is essential to establish the material model in terms of stress-

strain relationship.  The present study adopts the elastic–perfectly plastic material model 

neglecting strain hardening effects for the purpose.  In maritime industry this model has been 

well adopted for design and strength assessment of steel structures (Paik and Seo, 2009a). The 

material model for the present study has been shown in Figure 4.6. 
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. 

Figure 4.6 Elastic-perfectly plastic material model of EHS 690 steel used for 
ANSYS 12 non-linear FEA 

The finite element models of HSP and its equivalent OPM as shown in Figure 4.3 have 

been used for the ultimate strength prediction. All four edges have been simply supported and 

in-plane compressive load has been applied incrementally. Combined non-linear FEA of the 

HSP and its equivalent OPM has been carried out using ANSYS 12. The ultimate strength 

behavior of RUC of HSP and its equivalent OPM has been determined from the load-

deflection curve shown in Figure 4.7. The ultimate strength of RUC of HSP and its equivalent 

OPM has been found to be 340 MPa and 403 MPa respectively. The variation in ultimate 

strength has been found to be 18.5%. 

The ultimate strength behavior of HSP shown in Figure 4.7 (a) is a typical stiffened 

plate behavior where the buckling of a local plate panel between stiffeners initially takes place 

and is followed by overall collapse due to excessive yielding or stiffener failure.  The ultimate 

strength behavior of OPM shown in Figure 4.7 (b) is a typical plate behavior where buckling 

takes place at a critical value beyond which rigidity against applied load increases. 
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Figure 4.7 Ultimate strength behavior of: (a) Hat Stiffened Plate (b) Equivalent Orthotropic 
Plate Model 

4.6 RESULTS AND DISCUSSION 

A comparison of results obtained for RUC of HSP modeled using isotropic thin shell 

element and its equivalent OPM modeled using orthotropic thin shell element has been 

presented in Table 4.7 and Table 4.8. For simply supported boundary condition the OPM 

could predict the maximum deflection and maximum in-plane stress with good accuracy. For 

two edges fixed and other two edges simply supported boundary condition even-though the 

maximum in-plane stress could be predicted with sufficiently good accuracy the maximum 

deflection has shown a variation of 41.4%. In the Orthotropic Plate Model the rigidity is 

uniform throughout the plate whereas in the actual Hat Stiffened Plate the rigidity along the 

line of attachment of the stiffeners to the plate is large as compared to the unsupported portion 

of the plate. Therefore, the unsupported portion of the plate between the stiffeners shows large 

localized deflection. This behavior is highly pronounced in the case of two edges fixed and 

other two edges simply supported boundary condition. The deflection in the portion of the 

plate between the lines of attachment of stiffeners can be reduced if the width enclosed by the 

stiffener and the width between two adjacent stiffeners are reduced. 
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Table 4.7 Performance of Orthotropic Plate Model of Representative Unit Cell of Hat 
Stiffened Plate in the linear static analysis. 

Boundary 
Condition 

Max Deflection (mm) In-plane Stress (MPa) 

HSP OPM Percentage 
Variation HSP OPM Percentage 

Variation 

SS 0.7207 0.6977 3.2 26.50 26.67 0.64 

FS 0.3230 0.1890 41.4 27.94 28.05 0.39 

SS: All four edges simply supported. 
FS: Two edges fixed and other two edges simply supported.

Table 4.8 Performance of Orthotropic Plate Model of Representative Unit Cell of Hat 
Stiffened Plate in linear buckling and ultimate strength analysis 

Boundary 
Condition 

Buckling Load (MPa) Ultimate Strength (MPa) 

HSP OPM Percentage 
Variation HSP OPM Percentage 

Variation 

SS 287.35 287.26 0.03 340 403 18.5 

SS: All four edges simply supported. 

The OPM could predict the linear buckling load with good accuracy and the ultimate 

strength of HSP could be predicted with an accuracy of 18.5% only. 
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CHAPTER 5 

SUPERELEMENT FOR HAT STIFFENED PLATE 

5.1  GENERAL 

The Superelement technique is a method for treating a portion of the structure as if it 

were a single element even though it is made up of many individual elements. Ideally a 

structure should be analyzed and designed as a single unit to account for all of structure’s 

interaction. Complexities in modeling the complete structure and limitations in computational 

means are the two main difficulties while analyzing a large structure as a single unit. In large 

structures, portion of structure containing several elements occurs repeatedly in various 

locations. This repetition provides an opportunity for introducing Superelement technique, 

leading to reduction in modeling efforts, storage requirement and computation requirement. 

The substructure of the large structure which repeats itself is considered as a single element 

called Superelement. The element stiffness matrices of individual elements constituting the 

substructure have been assembled in the same way as done for the complete structure to obtain 

the stiffness matrix for the Superelement. While generating the finite element model of the 

complete structure, the assembly of the substructure needs to be performed only once and the 

Superelement generated can be used at locations where the substructure appears. This will 

result in substantial reduction in time and computation required for the assembly of elements 

when the Superelement occurs repeatedly. The Superelement technique is of primary 

importance in the analysis of a large complex three dimensional structure and becomes even 

more important when the analysis forms a part of a rationally-based structural design process 

(Hughes, 1988). In this chapter the formulation and implementation of a Superelement which 

can model a HSP has been described. The Superelement has been formulated with the 

advantage of modeling HSP as a quadrilateral which will result in the reduction of man-hour 

required for modeling a large structure having HSPs. Superelement for HSP will reduce the 

man-hour and computation-time required in the modeling and analysis of a complete ship 

having HSPs without any compromise in accuracy. 
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5.2  DESCRIPTION OF SUPERELEMENT FOR HAT STIFFENED PLATE 

 

Figure 5.1 (a) Substructure of Hat Stiffened Plate (b) Six constituent elements of 

substructure. (c) Superelement of Hat Stiffened Plate 

The RUC of HSP described in section 3.2.1 is a repetition of the substructure shown in 

Figure 5.1 (a). The geometric parameters of the substructure a1, a2, a3, b and h have been 

shown in Figure 5.1 (a). The substructure of HSP is an assembly of six conventional four 

noded rectangular shell element as shown in Figure 5.1 (b). The stiffness matrices of the six 

conventional shell elements are added according to the nodal connectivity to obtain the 

stiffness matrix of the substructure. The geometry of the substructure and the locations of the 

nodes in the substructure have been made use of to represent the substructure by a 

Superelement as shown in Figure 5.1 (c). The Superelement for HSP is a single element with 

twelve nodes on its boundary. Node numbers one to eight are on the plate and node numbers 

nine to twelve corresponding to stiffener. Generally for a HSP loads are applied only on the 

plates. In the case of Superelement for HSP all the twelve nodes are on the boundary and 

serve as connection points between the Superelement and the rest of the structure. Since all 

the twelve nodes in Superelement for HSP are boundary nodes static condensation is not 

possible for reducing the size of the Superelement. This turns out to be advantageous as 

compared to a statically condensed Superelement since the tedious calculations like finding 

condensed stiffness matrix, condensed load vector and recovery of internal dof can be 

avoided. Thus usage of the Superelement described here is simple to use.  
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Figure 5.2 Finite Element model of Hat Stiffened Plate modeled using: (a) Shell elements 

(b) Superelement 

The finite element model for RUC of HSP modeled using four noded shell element and 

the same modeled using Superelement are shown in Figure 5.2 (a) and (b) respectively. In the 

finite element model using shell elements the number of areas to be generated is seven and the 

number of elements is one hundred and twenty. Whereas, in the finite element model using 

Superelement the number of areas to be generated is one and the number of elements is 

twenty. In the case of RUC of HSP modeled using Superelement only twenty elements have 

been assembled whereas in the case of shell elements, one hundred and twenty elements have 

been assembled. Thus there is a significant reduction in modeling-efforts and computation 

requirement while using Superelement for HSP. 

5.3  DESCRIPTION OF SUPERELEMENT FOR COMPOSITE HAT STIFFENED 

PLATE 

HSP has got wide application in ships made of composite materials. The procedure for 

the formulation of Superelement has been extended for composite HSP. Figure 1.1 (b) shows 

a HSP made of composite material. The hat stiffeners for composite structures are bonded to 

the plate through the flanges of the stiffeners.  While modeling, the flanges and the plate in the 

joining region are replaced by a single plate section with an effective thickness equal to the 

sum of the thicknesses of the flange and the plate. 
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Figure 5.3 Composite Hat Stiffened Plate: (a) Eight constituent composite shell 

elements of substructure (b) Superelement 

The substructure of composite HSP is a combination of eight conventional four noded 

rectangular composite shell elements as shown Figure 5.3 (a). The thickness of element 

numbers two and four is equal to the sum of the thicknesses of plate and stiffener flange. The 

stiffness matrices of the eight composite shell elements are added according to the nodal 

connectivity to obtain the stiffness matrix of the substructure. The Superelement for a 

composite HSP is a single element with sixteen nodes on its boundary as shown in Figure 5.3 

(b). Node numbers one to twelve are on the plate and node numbers thirteen to sixteen 

corresponding to stiffener. All the sixteen nodes of Superelement for composite HSP are on 

the boundary and serve as connection points between the Superelement and the rest of the 

structure. 

5.4  FORMULATION AND VALIDATION OF SHELL ELEMENTS 

A flat rectangular shell element having six dof per node as shown in Figure 5.4 has been 

taken as the constituent element for the assembly of substructure of HSP. The rectangular flat 

shell element formulated herein can be effectively used for the analysis of HSP since the 

structure contains only flat plates. The three translational dof, u, v, w and three rotational dof, 

θx, θy, θz have been shown in Figure 5.4 (a). The nodal loads are three forces Fx, Fy, Fz, and 

three moments Mx, My, Mz. The nodal loads have been shown in Figure 5.4 (b). The element 

stiffness relation has been given by eqn. 5.1. 
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ሾܓሿሼ܌ሽ = 	−ሼܚሽ 						− − − − −− − −− −−		(૞. ૚)					  
where, [k] is the elemental stiffness matrix, {d} is the elemental dof and {r} is the elemental 

load vector applied by an element to structure nodes. 

 

 

Figure 5.4 Shell Element: (a) Nodal degrees of freedom (b) Nodal loads 

5.4.1 Generation of Stiffness Matrix 

The flat rectangular shell element having six dof has been formulated as proposed by 

Bathe (2004), by superimposing plate bending element having three dof and a plane stress 

element having two in-plane dof. A four noded rectangular plate bending element and a plane 

stress element whose stiffness matrices have been given in the closed form by Przemieniecki 

(1968) have been used for the formulation of rectangular shell element. The rectangular plate 

bending element has one out-of-plane translation and two out-of-plane rotational dof per node 

viz., w, θx and θy. The positive directions of these dof have been indicated in the Figure 5.5 

(a).  The displacement function used to calculate stiffness properties of the rectangular plate 

bending element ensures that the deflection on the boundary of adjacent plate elements are 

compatible. However, rotations of the element edges on a common boundary are not 
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compatible and hence discontinuities in slopes exist across boundaries. The plane stress 

element selected has two in-plane translational dof per node viz., u and v whose positive 

directions are the same as the positive directions of the x and y axes as indicated in the Figure 

5.5 (b). Stiffness properties of the plane stress element have been calculated using 

displacement functions which satisfy the assumption of linearly varying boundary 

displacements thereby the compatibility of displacements on the boundaries of adjacent 

elements has been satisfied.  The expressions for the stiffness coefficients of plate bending 

elements and plane stress element have been given in Appendix C.  

 

Figure 5.5 (a) Plate Bending Element with Three degrees of freedom (b) Plane Stress 

Element with Two degrees of freedom  

The stiffness matrix k* of the rectangular shell element having five dof has been 

obtained by superimposing the plate bending element and the plane stress element using eqn. 

5.2. 

൤ ൨(૛૙	ܠ	૛૙)∗ܓ 	= 		 ێێێۏ
ۍ (૚૛	ܠ	૚૛)࡮࢑ ૙

૙ ۑۑۑے(ૡ	ܠ	ૡ)ࡹ࢑
ې 					− − − − − − −			 (૞. ૛) 

where, kB and kM are the stiffness matrices of plate bending element and the plane stress 

element respectively. Coefficients of kB and kM have been given in appendix C.  The 

rectangular flat shell element obtained has five dof per node viz., w, θx, θy, u and v. The in-
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plane rotation, θZ is not included in the dof. The stiffness coefficients corresponding to the 

local rotation about z axis at the nodes, θZ has been added to k* and the stiffness matrix of the 

rectangular shell element having six dof per node has been obtained. A small stiffness 

coefficient corresponding to the θZ rotation has been added to [k*]. The stiffness coefficient 

corresponding to θZ has been taken as one thousandth of the smallest diagonal element of kB 

and kM. Thus the element rotation θZ at a node has not been measured and hence its 

contribution to the strain energy stored in the element is negligibly small. The stiffness matrix 

for the rectangular shell element having six dof per node viz., w, θX, θY, u, v and θZ has been 

obtained using eqn. 5.3. 

൤ ൨(૛૝	ܠ	૛૝)ܓ 	= 		 ێێێۏ
ۍ (૛૙	ܠ	૛૙)∗ܓ ૙

૙ ઽ. ሾ۷ሿ(૝	ܠ	૝)	ۑۑۑے
ې 						− −	− − − −						(૞. ૜) 

where, ε is one thousandth of the smallest diagonal element of kB and kM and [I] is the unit 

matrix. The stiffness matrix for the flat shell element obtained has been a 24 x 24 symmetric 

matrix. 

5.4.2 Transformation Matrix 

Consider an arbitrarily oriented flat shell element which is lying in the x'y' plane of a 

local coordinate system x'y'z' which is arbitrarily oriented in a global coordinate system xyz as 

shown in Figure 5.6.  w', θx', θy', u', v' and θz' are the dof in local coordinate system and w, θx, 

θy, u, v and θz are the dof in the global coordinates. The element stiffness relation in local 

coordinates has been given by the eqn. 5.4.  ሾܓᇱሿሼ܌ᇱሽ = 	−ሼܚᇱሽ 		− − − − −− − −−− −−		(૞. ૝)  
 



45 
 

 

Figure 5.6 Global and Local Coordinate System for the Flat Shell Element. 

The relation between local and global dof, nodal loads and stiffness matrices has been 

given by eqns. 5.5, 5.6 and 5.7 respectively.  ሼ܌ᇱሽ = 	 ሾ܂ሿሼ܌ሽ 	− − − −−− − −− − −− −				 (૞. ૞)  ሼܚሽ = 	 ሾ܂ሿ܂ሼܚᇱሽ 		− − − − − −−− −− − −−		(૞. ૟)  ሾ࢑ሿ = 	 ሾࢀሿࢀሾ࢑ᇱሿሾࢀሿ 	− − − −	− − − − −−− − −−		(૞. ૠ)  
If l1 m1 n1, l2 m2 n2 and l3 m3  n3 are the direction cosines of the local x', y' and z' axes with 

respect to the global coordinate system xyz, the expression for transformation matrix [T] has 

been given by eqn. 5.8. 

ሾࢀሿ = ێێۏ
ࢫ	ۍێ ૙ ૙ ૙૙ ࢫ ૙ ૙૙ ૙ ࢫ ૙૙ ૙ ૙ ۑۑےࢫ

ېۑ 		− − − − −− − −− − −− − (૞. ૡ)        
where, 
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ሾࢫሿ =
ێێۏ
ێێێ
ۍێێ
૜࢔ ૙ ૙ ૜࢒ ૜࢓ ૙૙ ૚࢒ ૚࢓ ૙ ૙ ૚૙࢔ ૛࢒ ૛࢓ ૙ ૙ ૚࢔૚࢓ ૙ ૙ ૚࢒ ૚࢓ ૙࢔૛ ૙ ૙ ૛࢒ ૛࢓ ૙૙ ૜࢒ ૜࢓ ૙ ૙ ૜࢔ ۑۑے

ۑۑۑ
 			ېۑۑ

5.4.3 Finite Element Analysis Using Shell Element 

The rectangular shell element formulated has been used for the analysis of plated 

structures. The structure to be analyzed has been discretised using the shell element and the 

stiffness matrices for the elements have been calculated in local coordinates. External loads 

have been applied on the structure nodes. The element stiffness matrices have been 

transformed from local coordinates to global coordinates using the transformation eqn. 5.7. 

The element stiffness matrices in the global coordinates have been assembled according to the 

nodal connectivity and boundary conditions have been applied. This will give a set of 

equations that describes the structure and has been given as eqn. 5.10.  ሾ۹ሿሼ۲ሽ = 	 ሼ܀ሽ		− − − − −− − −−− −− − −− −				(૞. ૚૙)  
where, [K] is the assembled stiffness matrix for the structure, {D} is the structural dof and 

{R} is external structural loads.  

The structural equations are solved using Gauss elimination method to obtain the global 

dof. The elemental dof in global coordinates for each element can be extracted from the global 

dof of the structure. These elemental dof in the global coordinates are transformed to local 

coordinates using eqn. 5.5 and the elemental load vector has been obtained using eqn. 5.4. The 

normal stresses along the x and y directions in the top and bottom layer at each node of the 

element have been calculated using eqns. 5.11 and 5.12. 

ોܠ = 	±૚૛ܜ܊ܡۻ૛ ± ૛۴ܜ܊ܠ 								− − − − −− − −− − −− −			 (૞. ૚૚) 
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ોܡ = 	±૚૛ܜ܉ܠۻ૛ ± ૛۴ܜ܉ܡ 					− − − − − −− − −−−	− −				 (૞. ૚૛) 
5.4.4 Description of Computer Code 

A computer program for the linear elastic FEA of a structure using rectangular flat shell 

element developed herein has been coded in C programming language. The program can run 

in a personal computer with Linux operating system. The schematic flow diagram of the 

software has been shown in Figure 5.7. The computer program consists of a main and nine 

functions. The program reads the input data from the data file INFILE and the output of the 

program has been written in the data file OUTFILE.  

The input data file INFILE contains the detailed description of the problem viz., the 

number of nodes, number of elements, number of nodes per element, dof per node, material 

properties – Young’s modulus and Poisson’s ratio, nodal coordinates, element connectivity, 

boundary condition, structural nodal loads and element number whose nodal stress values 

have to be calculated. Detailed problem description i.e., echo of the input, nodal values of 

displacements at each structural nodes in global coordinates, force resultants on the nodes of 

element specified in the local coordinates and stress values in the top and bottom layer at the 

four nodes of element specified have been written in the file OUTFILE.  

The main program calls the functions in the order indata ( ), numbdof( ), ldvect ( ), 

asmbly ( ), gauss ( ) and stressrec ( ). The description of the problem has been read from the 

data file INFILE. Unconstrained dof of the structure have been numbered. Load vector for the 

structure has been generated corresponding to the unconstrained dof. The stiffness matrix for 

each element in the structure has been generated in local coordinate system. The stiffness 

matrix in local coordinate system has been transformed to global coordinate system. The 

elemental stiffness matrices in global coordinates have been assembled according to nodal 

connectivity to obtain the structural stiffness matrix. The structural equations have been 

solved to obtain the nodal values of dof in global coordinates. The stress values at the top and 

bottom layer have been computed at nodal points of the element specified in the input file. 

Working of the nine functions has been described subsequently. 
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Figure 5.7 Schematic flow diagram of the computer program for the linear elastic Finite 
Element Analysis using rectangular shell element. 

 
1. indata ( ): The detailed description of the problem has been read from the data file 

INFILE. The problem description contains the following data 

INFILE 
Number of nodes, number of elements, number of nodes per element, 
dof per node, material properties, nodal coordinates, element 
connectivity, boundary conditions, structural nodal loads, element 
number for stress calculation. 

main ( ) 
 

indat ( ) 
 
numbdof ( ) 
 
ldvect ( ) 
 
asmbly ( ) 
 
gauss ( ) 

 
stressrec ( ) 

 

numbdof ( ) 

indat ( ) 

ldvect ( ) 

abbol ( ) 

asmbly ( ) 

elstif ( ) 

OUTFILE 
Echo of the input, Node number and displacement values at nodes, 
Load vector for the element specified, Stress values at the four nodes 
of element specified 

gauss ( ) 

stressrec ( ) 

transform ( ) 
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 Number of nodes 

 Number of elements 

 Number of nodes per element 

 dof per node 

 Material properties – Young’s modulus and Poison’s ratio 

 Nodal coordinates 

 Element connectivity and thickness 

 Boundary conditions 

 Nodal loads of the structure 

 Element number for which stresses to be calculated  

The echo of the input has been written in the output data file OUTFILE. 

2. numbdof( ): Boundary conditions has been used by the function to sequentially number 

the unconstrained structural dof. This global numbering of structural dof has been stored 

in the one dimensional array nbdf [ ]. Zeros have been put at places corresponding to 

arrested dof. The size of nbdf [ ]  is equal to the total number of structural dof and the 

number of non-zero elements in the array is equal to the number of unconstrained dof. 

3. ldvect ( ): The nodal load data and the global numbering of structural dof have been used 

by the function to generate the load vector. The load vector has been stored in the one 

dimensional array ldv[ ]. The size of this one dimensional array is equal to number of 

unconstrained dof.  

4. asmbly ( ): The assembled stiffness matrix for the entire structure has been generated by 

the function. Functions elstif ( ), transform ( )  and abbol ( ) have been called to obtain the 

elemental stiffness matrix in global coordinates and Boolean matrix. The element 

connectivity, elemental stiffness matrix and Boolean matrix have been used to assemble 

elemental stiffness matrices and obtain the structural stiffness matrix. The structural 

stiffness matrix has been stored in the two dimensional array astif [ ][ ] . The number of 

rows and columns in astif [ ][ ] is equal to the number of unconstrained dof in the 

structure. 
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5. gauss ( ): The assembled stiffness matrix astif [ ][ ]  and load vector ldv[ ] have been used 

by the function to determine the displacement vector. The structural eqn. 5.10 has been 

solved by the function using Gauss elimination method and the displacement vector has 

been stored in the one dimensional array def[ ] . The displacement arrays w [ ], theetax [ ], 

theetay [ ], u [ ], v [ ] and theetaz [ ]  which contains the nodal values of dof w, θX, θY, U, 

V and  θZ have been extracted from the array def [ ]. The structural node numbers and the 

corresponding displacement values have been written in the data file OUTFILE. 

6. stressrec ( ): The force vector and the stresses at the four nodes of the specified element 

have been calculated by the function.  The function elstif ( )  has been called and the 

element stiffness matrix in local coordinates has been obtained using nodal connectivity, 

thickness and nodal coordinates of the element specified. The dof at the four nodes of the 

element specified has been extracted from the displacement arrays w [ ], theetax [ ], 

theetay [ ], u [ ], v [ ] and theetaz [ ]. Using the nodal coordinates of the element specified, 

the direction cosines of its local coordinates have been found out. The dof at the four 

nodes of the element specified in local coordinate system have been transformed to global 

coordinate system using eqn. 5.5. The elemental load vector for the element specified has 

been obtained using eqn. 5.4. The elemental load vector at the four nodes of the element 

specified has been written in the data file OUTFILE. The stress values in the top and 

bottom layers at the four nodes of the element specified have been calculated using eqns. 

5.11 and 5.12 and these values have been written in the data file OUTFILE. 

7. abbol ( ) : The Boolean matrix for each element of the structure has been determined 

using element nodal connectivity and the global numbering of structural dof. The Boolean 

matrix of an element contains global numbering of dof at the four nodes of the element. 

The size of the Boolean matrix of an element is twenty four. 

8. elstif ( ) : The stiffness matrix of an element in local coordinates has been determined by 

the function. The length along local x and y axis of an element has been calculated by the 

function using the elemental connectivity and nodal coordinates. The function also uses 

thickness of the element and the stiffness matrix for the element has been calculated using 

expressions for stiffness coefficients given in Appendix C and eqns. 5.2 and 5.3.  
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9. transform ( ) : The function determines the direction cosines of the local coordinates of 

the element using elemental connectivity and nodal coordinates. The elemental stiffness 

matrix in local coordinates has been transformed to global coordinates using the eqn. 5.7. 

5.4.5 Numerical Validation 

 

Figure 5.8 Finite element mesh of thin flat plate with uniformly distributed load. 

A thin flat rectangular plate has been analyzed using the computer program developed. 

Analysis has been carried out for two separate boundary conditions viz., all four edges simply 

supported and all four edges fixed. The flat plate with length, breadth and thickness, 2400 

mm, 1400 mm and 6 mm respectively has been discretized with flat rectangular shell element 

as shown in Figure 5.8. The plate is made with EHS 690 steel. Poisson’s ratio of the material 

is 0.3, the modulus of elasticity is 210 GPa, the density is 7800 kg/m3 and the yield stress is 

690 MPa. A uniform pressure load of 10 kPa is applied on the surface of the plate.  

A section of the HSP explained in section 3.2.1 whose geometry given in Figure 3.1 has 

been analysed using the computer code developed. The material properties of the RUC of HSP 

have been given in section 3.2.2. A uniform pressure load of 10 kPa is applied on the surface 
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of the plate and analysis has been carried out for two separate boundary conditions viz., all 

four edges simply supported and all four edges fixed. 

5.4.6 Results and Discussion 

The results obtained using the computer code developed has been compared with the 

same obtained using ANSYS 12. The deflection at the centre of the plate, stresses along the x 

and y direction at the centre of the plate in the top and bottom layer have been compared. For 

the thin rectangular plate the results have been tabulated and presented in Tables 5.1 and 5.2. 

It has been seen that the maximum percentage variation in deflection is 0.39 and the 

maximum percentage variation in stress is 6.10.  For the RUC of HSP the results have been 

tabulated and presented in Tables 5.3 and 5.4. The maximum percentage variation in 

deflection is 9.61 and the maximum percentage variation in elemental load is 9.11. 

Table 5.1 Displacement and stresses at the centre of the plate for all four edges simply 
supported boundary condition, analysed using shell element formulated and ANSYS 12 

Response  Solution Using  
Computer Code 

Solution Using  
ANSYS 12 

Percentage 
Variation 

Deflection (mm) -81.8 -81.48 0.39 

Stress in the x Direction  
at the Top Layer (MPa) -298.8 -300.54 0.58 

Stress in the x Direction  
at the Bottom Layer (MPa) 298.8 300.54 0.58 

Stress in the y Direction  
at the Top Layer (MPa) -156.58 -161.23 2.88 

Stress in the y Direction  
at the Bottom Layer (MPa) 156.58 161.23 2.88 
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Table 5.2 Displacement and stresses at the centre of the Plate for all four edges fixed 
boundary condition, analysed using shell element formulated and ANSYS 12 

Response  Solution Using  
Computer Code 

Solution Using  
ANSYS 12 

Percentage 
Variation 

Deflection (mm) -22.44 -22.47 0.16 

Stress in the x Direction  
at the Top Layer (MPa) -133.58 -133.2 0.29 

Stress in the x Direction  
at the Bottom Layer (MPa) 133.58 133.2 0.29 

Stress in the y Direction  
at the Top Layer (MPa) -58.2 -61.98 6.10 

Stress in the y Direction  
at the Bottom Layer (MPa) 58.2 61.98 6.10 

Table 5.3 Displacement and elemental loads at the centre of the Hat Stiffened Plate  for 
all edges simply supported boundary condition, analysed using shell element formulated 
and ANSYS12 

Response  Solution Using  
Computer Code 

Solution Using  
ANSYS 12 

Percentage 
Variation 

Deflection  
at the centre (mm) -0.6754 -0.7179 5.92 

Force in the x Direction  
at the centre (N) 455.95 453.95 0.44 

Force in the y Direction  
at the centre (N) 1279 1286.1 0.55 

Moment about the x axis  
at the centre (N-mm) 1367 1255.7 8.86 

Moment about the y axis  
at the centre (N-mm) 11085 11175 0.81 
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Table 5.4 Displacement and elemental loads at the centre of the Hat Stiffened Plate for all 
four edges fixed boundary condition, analysed using shell element formulated and 
ANSYS12 

Response  Solution Using  
Computer Code 

Solution Using  
ANSYS 12 

Percentage  
Variation 

Deflection  
at the centre (mm) -0.3487 -0.3822 9.61 

Force in the x Direction  
at the centre (N) 453.7 449.81 0.86 

Force in the y Direction  
at the centre (N) 1317.7 1326 0.63 

Moment about the x axis  
at the centre (N-mm) 1321.6 1201.2 9.11 

Moment about the y axis  
at the centre (N-mm) 11505 11575 0.60 

5.5  FORMULATION OF SUPERELEMENT 

The six constituent elements of the Superelement for HSP have been shown in Figure 

5.9 (a). Circled numbers indicate element numbers, numbers one to four on the four corners of 

each element indicate the node numbers of each element and the numbers within square 

brackets indicate the dof at each node. Superelement of HSP and super dof are shown in 

Figure 5.9 (b). The numbers one to twelve indicate the node numbers and the numbers within 

the square brackets indicates the super dof at each node. The stiffness matrices of the six 

constituent elements of the substructure of HSP have been added according to the nodal 

connectivity to obtain the stiffness matrix of the Superelement for HSP. The stiffness matrices 

of elements four and six have been transformed from local coordinates to global coordinates 

using eqn. 5.7 before assembly. The composition of super dof of the Superelement for HSP 

has been explained subsequently.  
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Figure 5.9 Degrees of freedom: (a) Constituent finite elements (b) Superelement 

The dof [1 to 6] at node 1 and dof [7 to 12] at node 2 of element one will turn into super 

dof [1 to 6] at node 1 and super dof [7 to 12] at node 2 of Superelement respectively. The dof 

[13 to 18] at node 3 of element three and [19 to 24] at node 4 of element three will turn into 

super dof [13 to 18] at node 3 and super dof [19 to 24] at node 4 of the Superelement 

respectively. The dof, [19 to 24] at node 4 of element one, dof [1 to 6] at node 1 of element 

two and transformed dof [1 to 6] at node 1 of element four, will comprise super dof [25 to 30] 

at node 5 of the Superelement. The dof, [13 to 18] at node 3 of element one, [7 to 12] at node 

2 of element two and transformed dof [7 to 12] at node 2 of element four, will comprise super 

dof [31 to 36] at node 6 of the Superelement. The dof, [13 to 18] at node 3 of element two, dof 

[7 to 12] at node 2 of element three and transformed dof [7 to 12] at node 2 of element six will 

comprise super dof [37 to 42] at node 7 of the Superelement. The dof, [19 to 24] at node 4 of 

element two, dof [1 to 6] at node 1 of element three and transformed dof [1 to 6] at node 1 of 

element six will comprise super dof [43 to 48] at node 8 of the Superelement. The transformed 

dof [19 to 24] at node 4 of element four, and dof [1 to 6] at node 1 of element five will 

comprise super dof [49 to 54] at node 9 of the Superelement. The transformed dof [13 to 18] 

at node 3 of element four, and dof [7 to 12] at node 2 of element 5 will comprise super dof [55 

to 60] at node 10 of the Superelement. The dof [13 to 18] at node 3 of element five, and 

transformed dof [13 to 18] of element six will comprise super dof [61 to 66] at node 11 of the 

Superelement. The dof [19 to 24] at node 4 of element five, and transformed dof [19 to 24] at 

node 4 of element six will comprise super dof [67 to 72] at node 12 of the Superelement. 
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5.6  FINITE ELEMENT ANALYSIS USING SUPERELEMENTS 

The analysis of a HSP shown in Figure 5.2 (a) has been carried out using the 

Superelement developed. The geometrical parameters of the substructure of HSP shown in 

Figure 5.1 (a) have been found out from the geometry of HSP. The stiffness matrices of the 

constituent elements of the Superelement have been calculated and assembled according to the 

procedure mentioned in section 5.5. The HSP to be analyzed is discretized using the 

Superelement shown in Figure 5.9 (b). The stiffness matrices of the Superelements have been 

assembled according to nodal connectivity to obtain the structural stiffness matrix. The loads 

and boundary conditions are applied at the nodes of the structure discretized using 

Superelements. While applying the load it may be noted that the node numbers 1 to 8 of the 

Superelement shown in Figure 5.9 (b) are on the plate and node number 9 to 12 of the 

Superelement are on the stiffener. A finite element model of the HSP meshed using 

Superelements is shown in Figure 5.2 (b). The structural equations have been solved using 

Gauss elimination method to obtain the super dof at each node of the Superelement. For each 

Superelement the super dof will give the dof at the nodes of the constituent finite elements in 

global co ordinates. These elemental dof are transformed to local dof using eqn. 5.5. The 

nodal loads Fz, Mx, My, Fx, Fy, Mz and for the element are obtained using eqn. 5.4 and the 

stresses σx and σy at the nodal point have been calculated using eqn. 5.11 and 5.12.  

5.7  DESCRIPTION OF THE COMPUTER CODE 

A computer program for the linear elastic FEA of a HSP using Superelement developed 

herein has been coded in C programming language. The program can run in a personal 

computer with Linux operating system. The schematic flow diagram of the software has been 

shown in Figure 5.10. The computer program consists of a main and ten functions. The 

program reads the input data from the data file INFILE and the output has been written in the 

data file OUTFILE. 

The input data file INFILE contains the detailed problem description viz., the geometric 

details of substructure shown in Figure 5.1 (a), discretization of HSP using Superelements, 

loads, boundary conditions  and element number whose nodal stress values have to be 
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calculated. The echo of the input, nodal values of displacements at each structural nodes in 

global coordinates, force resultants on the twelve nodes of Superelement specified in the local 

coordinates and stress values in the top and bottom layer at the twelve nodes of the element 

specified in the local coordinates have been written in the file OUTFILE.   

Working of the ten functions has been explained subsequently. 

1. indat ( ) : The detailed description of the problem has been read from the data file 

INFILE. The problem description contains the following data: 

 Material Properties - Young’s modulus and Poisson’s ratio 
 Geometry of the substructure -  a1, a2, a3, h and b as shown in Figure 5.1 (a) 

 Thickness of the six constituent elements of the substructure 
 Number of nodes in the structure 
 Number of elements in the strucuture 
 Number of nodes per Superelement 
 dof per node 
 Element connectivity 
 Boundary condition 
 Structural nodal loads 
 Element number for stress calculation 

The echo of the input has been written in the data file OUTFILE. 

2. superel ( ) : The stiffness matrix for the Superelement has been calculated by the function 

using the material properties and geometrical parameters of the substructure of HSP. The 

procedure explained in section 5.5 has been followed for calculating the stiffness matrix 

of the Superelement. The four noded shell element having six dof per node formulated in 

section 5.4 has been used as the constituent elements for the substructure of HSP. The 

nodal coordinates of the substructure shown in Figure 5.1 (b) has been calculated using 

the geometrical parameters of the substructure. The function genstiff() has been called 

for calculating the stiffness matrix for each of the six constituent element of the 

substructure in local coordinates. The function transform() has been called to transform 

the element stiffness matrix in local coordinates to global coordinates. The stiffness 

matrices of the six conventional elements have been added according to nodal 

connectivity to obtain the stiffness matrix of the substructure or the Superelement. The 

stiffness matrix of the Superelement has been written in a data file CK. 
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Figure 5.10   Schematic Flow Diagram of the Software for the Finite Element Analysis using 
the Superelement  
 

 

INFILE 
Material Properties, geometry of the substructure, thickness of the six 
constituent elements of the substructure, Number of nodes, number of 
elements, number of nodes per Superelement, dof per node, element 
connectivity, boundary conditions, structural nodal loads, element 
number for stress calculation. 

 

main ( ) 
 

indat ( ) 
 
superel ( ) 
 
numbdof() 
 
ldvect ( ) 
 
asmbly ( ) 
 
gauss ( ) 
 
stressrec ( ) 

superel ( ) 

indat ( ) 

numbdof ( ) 

ldvect ( ) 

asmbly ( ) 

genstiff ( ) 

OUTFILE 
Echo of the input, Node number and displacement values at all 
structural nodes, Load vector for the Superelement specified, Stress 
values at the four nodes of Superelement specified 

gauss ( ) 

stressrec ( ) 

CK 

transform ( )

abbol ( ) 



59 
 

3. numbdof( ): The function sequentially numbers the unconstrained structural dof 

considering the boundary conditions. This global numbering of structural dof has been 

stored in the one dimensional array nbdf[]. Zeros have been put at places corresponding 

to arrested dof. The size of nbdf[] is equal to the total number of structural dof and the 

number of non-zero elements in the array is equal to the number of unconstrained dof. 

4. ldvect ( ): The nodal load data and the global numbering of structural dof have been used 

by the function to generate the load vector. The load vector has been stored in the one 

dimensional array ldv[ ]. The size of this one dimensional array is equal to number of 

unconstrained dof. 

5. asmbly ( ): The assembled stiffness matrix for the entire structure has been generated by 

the function. Function abbol ( ) have been called to obtain the Boolean matrix for each 

Superelement. The stiffness matrix for each Superelement is read from the data file CK. 

The element connectivity, elemental stiffness matrix and Boolean matrix have been used 

to assemble elemental stiffness matrices of Superelements and obtain the structural 

stiffness matrix. The structural stiffness matrix has been stored in the two dimensional 

array sastif [ ][ ] . The number of rows and columns in sastif [ ][ ] is equal to the number 

of unconstrained dof in the structure. 

6. gauss ( ): The assembled stiffness matrix sastif[][ ] and load vector ldv[]  have been used 

by the function to determine the displacement vector. The structural eqn. has been solved 

by the function using Gauss elimination method and the displacement vector has been 

stored in the one dimensional array def[ ]. The displacement arrays w [ ], theetax [ ], 

theetay [ ], u [ ], v [ ] and theetaz [ ]  which contains the nodal values of dof w, θX, θY, U, 

V and  θZ have been extracted from the array def [ ]. The structural node numbers and the 

corresponding displacement values have been written in the data file OUTFILE. 

7. stressrec ( ): The function calculates the force vector and the stresses at all the twelve 

nodes of the Superelement specified. As shown in Figure 5.1, the Superelement has been 

constituted by 6 conventional shell elements. The stress at the twelve nodes of the 

Superelement can be obtained by evaluating the stress values at four nodes of constituent 

elements 1, 3 and 5. The function genstiff( ) has been called and the element stiffness 

matrix for the element 1 of the constituent element of the Superelement has been 

obtained. The nodal values of displacements in global coordinates for this element have 
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been extracted from the displacement arrays w [ ], theetax [ ], theetay [ ], u [ ], v [ ] and 

theetaz [ ]. Using the nodal coordinates of the element one, the direction cosines of its 

local coordinate system have been found out. The displacement values in global 

coordinates have been transformed to local coordinates using eqn. 5.5. The force vector 

for the element specified is obtained using eqn. 5.4. These force vectors for the four nodes 

of the element one are stored in the force arrays fz [ ], mx [ ], my [ ], fx [ ],fy [ ] and mz [ ] 

and these are also written in the data file OUTFILE. From the force vector, stresses at the 

four nodes of the element specified are calculated using the eqns. 5.11 and 5.12. The 

stress values in the top and bottom layers at the four nodes of the element specified have 

been calculated using eqns. 5.11 and 5.12 and these values have been written in the data 

file OUTFILE. The procedure is repeated for elements three and element five of the 

Superelement. 

8. abbol ( ) : The Boolean matrix for each Superelement of the structure has been 

determined using element nodal connectivity and the global numbering of structural dof. 

The Boolean matrix of an element contains global numbering of dof at the twelve nodes 

of the element. The size of the Boolean matrix of a Superelement is seventy two. 

9. genstiff ( ) : The stiffness matrix of an element in local coordinates has been determined 

by the function. The length along local x and y axis of an element has been calculated 

using the nodal coordinates of the element. The function also uses thickness of the 

element and the stiffness matrix for the element has been calculated using expressions 

given in Appendix C and eqns. 5.2 and 5.3. 

10. transform ( ) : The function determines the direction cosines of the local coordinates of 

the element using nodal coordinates. The elemental stiffness matrix in local coordinates 

has been transformed to global coordinates using the eqn. 5.7. 

5.8 MODIFICATION IN COMPUTER CODE FOR COMPOSITE 

SUPERELEMENT 

The computer code developed for the analysis of isotropic HSP using Superelement can 

be employed for the analysis of HSP made of composite materials by  modifying the function 

genstiff( ) to generate the stiffness matrix for composite shell element. This element stiffness 

matrix can be selected based on the requirement of the structural component and material 
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(fibre and matrix). This actually is a benefit that the best available or generated composite 

finite element can be used as the constituent element. Material properties as required by the 

element stiffness matrix for the composite material have to be given in the input file. As 

described in section 5.3, the Superelement for composite HSP is a combination of eight 

conventional four noded rectangular composite shell elements. The thicknesses of these eight 

conventional composite shell elements have to given in the input file. The stiffness matrix for 

the composite shell element can be generated using the closed form formulae or using 

numerical integration. In the function stressrec( ) , appropriate eqns. for the recovery of stress 

for composite shell element have to be used instead of eqns. 5.11 and 5.12.  

5.9 NUMERICAL INVESTIGATIONS 

 

 

Figure 5.11 Finite element model of Representative Unit Cell of Hat Stiffened Plate 
modeled using: (a) Conventional rectangular shell element (b) Superelement 

A RUC of the HSP with two stiffeners whose geometry and dimensions as shown in 

Figure 3.2 has been analysed using the software developed. The material properties are given 

in section 3.2.1.  The values of the geometrical parameter a1, a2, a3, h and b have been 175 

mm, 350 mm, 210 mm, 150 mm and 240 mm respectively. The thicknesses of the six 
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conventional elements which constitute the Superelement have been 6 mm, 6 mm, 6 mm, 4 

mm, 4 mm and 4 mm.  Finite element model of the RUC of HSP modeled using conventional 

rectangular shell element has been shown in Figure 5.11 (a) and the same modeled using 

Superelement has been shown in Figure 5.11 (b). The structure has been analysed for two 

separate boundary conditions viz., all four edges simply supported and all four edges fixed. A 

uniform pressure load of 10 kPa is applied on the surface of the plate. 

5.10 RESULTS AND DISCUSSION 
A Superelement for the analysis of HSP that reduces the modeling efforts and storage 

requirements for the analysis of ship structures made of HSP has been developed. RUC of 

HSP has been analysed using the computer code which uses the Superelement for the HSP. 

The results obtained using the Superelement has been compared with that obtained using 

conventional elements and have been presented in a tabular form in Tables 5.5 and 5.6. It has 

been seen that the maximum percentage variation in deflection is 0.68% and the maximum 

variation in stress is 6.6%. The Superelement developed for HSP predicted the deflection and 

stress for a RUC of HSP with sufficiently good accuracy. 

Table 5.5 Displacement and stresses at the centre of the Hat Stiffened Plate for all four 
edges simply supported boundary condition, analysed using Superelement and 
conventional finite element 

Response  Solution Using 
Superelement 

Solution Using  
Conventional 

Element 

Percentage 
Variation 

Deflection (mm) -0.6791 -0.6745 0.68 

Stress in the x Direction  
at the Top Layer (MPa) -16.03 -16.03 0 

Stress in the x Direction  
at the Bottom Layer (MPa) 14.75 14.76 0.06 

Stress in the y Direction  
at the Top Layer (MPa) -5.06 -5.04 0.4 

Stress in the y Direction  
at the Bottom Layer (MPa) 0.15 0.16 6.6 
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Table 5.6 Displacement and stresses at the centre of the Hat Stiffened Plate all four 
edges fixed boundary condition, analysed using Superelement and conventional finite 
element 

Response  Solution Using  
Superelement 

Solution Using  
Conventional 

Element 

Percentage 
Variation 

Deflection (mm) -0.3451 -0.3446 0.14 

Stress in the x Direction  
at the Top Layer (MPa) -16.44 -16.44 0.00 

Stress in the x Direction  
at the Bottom Layer (MPa) 15.23 15.23 0.00 

Stress in the y Direction  
at the Top Layer (MPa) -4.93 -4.93 0.00 

Stress in the y Direction  
at the Bottom Layer (MPa) 0 0 0.00 
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CHAPTER 6 

SUMMARY AND CONCLUSIONS 

6.1 SUMMARY 

Trapezoidal or Hat shaped stiffeners are commonly used in composite ship constructions 

and are getting popular in the construction of metallic ships because of the efforts for 

designing light weight ships. Orthotropic plate theory has been identified as a classical method 

for the analysis of Hat stiffened plate. The expression for the flexural rigidities of Hat 

Stiffened Plate and analytical solution for bending and buckling of rectangular orthotropic 

plates have been identified and presented in this thesis. The structural advantages of a Hat 

Stiffened Plate over other commonly used open section stiffeners have been substantiated in 

the thesis through numerical investigations. Structural response of Representative Unit Cells 

of Hat Stiffened Plate and plates stiffened with commonly used open section stiffeners viz., 

flat bar, angle bar and tee bar has been predicted using ANSYS 12. Investigations have been 

carried out for simply supported boundary condition and three general types of loading viz., 

out-of-plane loading, in-plane loading and torsion loading. Comparison of weight, deflection, 

stress and buckling load has been presented in table form. The comparison shows that HSP 

exhibit better strength-to-weight ratio as compared to plates stiffened with commonly used 

open section stiffeners.  

An Orthotropic Plate Model has been developed as an efficient structural substitute for 

Hat Stiffened Plate based on the equal rigidity concept, which makes use of Orthotropic 

Rescaling Technique. The Orthotropic Plate Model developed for a Representative Unit Cell 

of Hat Stiffened Plate has been validated with the analytical solution available for orthotropic 

plate. The stress and deflection of Representative Unit Cell of Hat Stiffened Plate modeled 

using isotropic thin shell element and its equivalent Orthotropic Plate Model using orthotropic 

thin shell element have been predicted using ANSYS 12. Analysis has been carried out for a 

uniform pressure load and the two boundary conditions viz., all four edges simply supported 

as well as two edges fixed and two edges simply supported. A comparison of results obtained 
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for Hat stiffened Plate and its equivalent Orthotropic Plate Model has been presented in the 

table form. For simply supported boundary condition the Orthotropic Plate Model could 

predict the maximum deflection and stress with sufficiently good accuracy. Linear buckling 

analysis and ultimate strength analysis of Hat Stiffened Plate and its equivalent Orthotropic 

Plate Model has been carried out for all four edges simply supported boundary condition and 

the results have been compared. The Orthotropic Plate Model could predict the linear buckling 

load with good accuracy and ultimate strength with an accuracy of 18.5% only. 

A Superelement for the Finite Element Analysis of Hat Stiffened Plate has been 

formulated in the thesis. A general shell element having six degrees of freedom per node has 

been generated using the standard procedure available and validated. The Superelement of Hat 

Stiffened Plate has been modeled using the general shell element and the stiffness matrices of 

the shell element constituting the Superelement for the Hat Stiffened Plate have been 

assembled to obtain the stiffness matrix of the Superelement for Hat Stiffened Plate. The 

Superelement generated has been used to carry out a linear static analysis of a Representative 

Unit Cell of Hat Stiffened Plate between two bulkheads. The results obtained using 

Superelements for Hat Stiffened Plate have been compared with the same obtained using 

conventional shell elements. The Superelement could predict the deflection and in-plane stress 

of Hat Stiffened Plate with sufficiently good accuracy for different boundary conditions.  

Hat Stiffeners are used in composite stiffened plates. Formulation of Superelement for 

composite Hat Stiffened Plate has been presented. The computer code developed for the Finite 

Element Analysis using Superelement for isotropic Hat Stiffened Plate can be modified and 

used for the analysis using Superelement for composite Hat Stiffened Plate. The modifications 

in the computer code have also been presented in the thesis. 

6.2 CONCLUSIONS AND RECOMMENDATIONS  

The conclusions drawn from this research work are listed below. 

1. Usage of Hat Stiffened Plate for ship structure can effectively reduce the weight as 

compared to commonly used open section stiffeners. Light weight structure will result in 

faster, more economical and environment friendly ships. 
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2. The Orthotropic Plate Model developed can predict deflection, stress and linear buckling 

load with sufficiently good accuracy in the case of all four edges simply supported 

boundary condition.  

3. The Finite Element Analysis using the Superelement developed for the Hat Stiffened 

Plate accurately predicts the stresses and deflection. The usage of Superelement is 

relatively simple as it does not involve any condensation. Usage of Superelements will 

reduce the storage requirement and man hour required in the Finite Element Analysis of 

structures made of Hat Stiffened Plate. The formulation of Superelement has also been 

applied for Hat Stiffened Plates made of composite materials. 

6.3 SIGNIFICANT CONTRIBUTIONS 

Orthotropic Plate Model concept is more generic that, any scheme to solve the 

orthotropic plate equations can be used as a solution strategy for Hat Stiffened Plate. Hat 

Stiffened Plates are usually employed for ship structural components such as decks and 

bulkheads. In the Orthotropic Plate Model geometric orthotropy is converted to material 

orthotropy i.e., the stiffeners are smeared and they vanish from the field of analysis and the 

structure can be analysed using any conventional Finite Element software which has 

orthotropic elements in its element library. Therefore, it can be stated that the geometric 

complexity of ship structure having Hat Stiffened Plates has been reduced largely by this 

contribution. Hence Orthotropic Plate Model is a novel and efficient structural substitute for 

such stiffened plates. The Orthotropic Plate Model developed as the structural substitute for 

Hat Stiffened Plate has the following advantages: 

 Reduces the modeling efforts 

 Reduces the storage requirement 

 Analysis for lateral loads and in-plane loads can be carried out 

Superelement developed herein for the analysis of Hat Stiffened Plate is an efficient tool 

to reduce the modeling efforts in Finite Element Analysis of ship structure made of Hat 

Stiffened Plate. The option for selecting appropriate finite elements such as confirming, robust 

etc. as well as isotropic, composite etc. exists which makes this contribution very general. 

Formulation of Superelement for composite Hat Stiffened Plate has also been demonstrated. 
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Using Superelement for the Finite Element Analaysis of Representative Unit Cell of Hat 

Stiffened Plate the number of areas to be generated reduces from seven to one and the number 

of elements reduces from one hundred twenty to twenty without any compromise in the 

accuracy. The Superelement developed for the Hat Stiffened Plate has the following 

advantages: 

 Reduces the modeling effort 

 Reduce the storage requirement 

 Save computation 

 Preserve the functional or behavioral identity of the structure 

 The procedure used for the Superelement can adopted for the analysis of Hat 

Stiffened Plate made of any type of material 

The capability of both these contributions to handle the typical boundary conditions and 

characteristic loads in a ship structure has been demonstrated through numerical 

investigations. 
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APPENDIX – A 

ORTHOTROPIC PLATE THEORY 

The orthotropic plate approach has two simplifying assumptions viz., the stiffeners are 

uniformly spaced over the plate and the normal stresses in the stiffened plate are some average 

of plate stress and stiffener stress (Timoshenko, 1959).  A thin orthotropic plate subjected to 

uniform lateral load is shown in Figure A1.  The plate is perfectly elastic, continuous, 

homogeneous, obeys Hooke’s law and its elastic properties in orthogonal directions x and y, 

differ. 

 

Figure  A1. Orthotropic rectangular plate under uniform lateral load. 

Based on the usual assumptions in the theory of bending of thin plates, the governing 

equation for displacement w of the plate in the z direction is available (Troitsky, 1976) as 

follows. D୶ பర୵ப୶ర + 2H பర୵ப୶మ ப୷మ + D୷ பర୵ப୷ర = q(x, y) (A1) 

where, 
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D୶ = 	 ୉౮୲౥౦యଵଶ൫ଵି஝౮஝౯൯ (A2 a) 

D୷ = 	 ୉౯୲౥౦యଵଶ൫ଵି஝౮஝౯൯ (A2 b) 

The effective torsional rigidity is given by equation A3 as,  2H = D୶ν୷ + D୷ν୶ + 4D୶୷ (A3) 

where, 

D୶୷ = 	 ୋ౮౯୲౥౦యଵଶ  (A4) 

For the equivalent OPM, H and Gxy are given by the following expressions, H = ඥD୶D୷			and		G୶୷ = 	 ඥ୉౮୉౯ଶ(ଵା஝౮౯) (A5) 

Following Betti’s reciprocal theorem,  

 Dx.νy = Dy.νx (A6) 

 Dx.νz = Dz.νx (A7) 

Besides,  ν୶୷ = 	ඥν୶ν୷	  ν୶୸ = 	√ν୶ν୸	  (A8) ν୷୸ = 	ඥν୷ν୸	  
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APPENDIX – B 

ANALYTICAL SOLUTION FOR BENDING OF ORTHOTROPIC PLATE 

Bao et al. (1997) has presented an analytical solution for bending of flat, 

rectangular, orthotropic thin plate shown in Figure A1. The material orthotropy has been 

characterized by two non-dimensional parameters, defined as λ = ୈ౯ୈ౮ 						and					η = ୌඥୈ౮ୈ౯ (B1) 

and the modified aspect ratio for the orthotropic plate as R=λ1 4⁄ a b⁄  (B2) 

The exact solution for the maximum deflection of the plate with all edges simply 

supported under uniform lateral load has been given by 

Δ
Δ0 =		 16.R4π6 ෍ ෍ (-1)(m+n+2)/2Dmn∞

n=1,3,….
∞

m=1,3,….. . 
 (B3) 

where, 

Δ0 is a reference deflection,  Δ0= qb4D౯ 	. (B4) 

Dmn=	m4+2η(mnR)2+	(nR)4 

The maximum in-plane stress σx occurs at the centre of the plate. For a plate with -1< 

η < 1, the maximum in-plane stress σx has been given by σ୶t୭୮ଶqbଶ = 	3ν୶4 + 24πଷλλଵλଶ ෍ (−1)ౣషభమmଷϕ୫ 	x		ஶ
୫ୀଵ,ଷ,……  

ቂ൫√λ −	ν୷η൯sinh୫஠஛భୖଶ sin୫஠஛మୖଶ 		− 	2ν୷λଵλଶcosh୫஠஛భୖଶ cos୫஠஛మୖଶ ቃ (B5) 

where, 
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Φm=coshmπλ1R	+	cosmπλ2R  

λ1=	ට1+η2 andλ2=	ට1-η2  (B6) 

and for plate with η >1, the maximum in-plane stress σx has been given by 

σx௧౥౦2qb2 =	 3νx4 +	 24π3λ൫λ12	–	λ22൯ ∑ ൫-1൯m-12m3∞m=1,3,.. x	 ቈλ22		(	νy		–		λ1	2 √λ)cosh	mπλ1R2 -	 λ12	(	ν౯		–			λ22√λ)cosh	mπλ2R2 ቉	 (B7)	
where,	

λ1=	ඨη+	ටη2-1								and					λଶ=	ඨη-	ටη2-1 (B8) 

For a plate fixed along edges parallel to the y axis and simply supported along the 

other two edges, with -1< η < 1, the maximum deflection and the in-plane stress σx at 

the centre have been given by  

Δ
Δ0 =	 5384 -	 8π5 ෍ (-1)(೘షభ)మm5Ψm 					x	∞

m=1,3…  

ቂλ1coshmπλ1R2 sin mπλ2R2 +	λ2sinh 	mπλ2R2 cos mπλ2R2 ቃ (B9) 

σ୶t୭୮ଶqbଶ = 	3ν୶4 −	 48πଷλ ෍ (−1)(ౣషభ)మmଷΨ୫ஶ
୫ୀଵ,ଷ.. 					x	 

ቂ(ν୷ −	√λ)λଵcosh	 ୫஠஛భୖଶ sin୫஠஛మୖଶ +	(ν୷ +	√λ)λଶsinh	 ୫஠஛భୖଶ 	cos୫஠஛మୖଶ ቃ (B10) 

where, Ψm=	λ2sinh	mπλ1R+	λ1sinh	mπλ2R 

λ1 and λ2 have been given by Eq. (B6) and Δ0 has been given by Eq. (B4).  

For a plate with 1< η < ∞, the maximum deflection and the maximum in-plane stress 

σx at the centre of the orthotropic plate has been given by  
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Δ

Δబ = 	 ହଷ଼ସ −	 ସ஠ఱ ∑ (ିଵ)(ౣషభ)/మ୫ఱ஖ౣஶ୫ୀଵ,ଷ… ቂλଵsinh	 ୫஠஛భୖଶ − λଶsinh	 ୫஠஛మୖଶ ቃ (B11)

  

σxݐ୭୮2qb2 =3νx4 + 24π3λ ෍ (-1)m-12m3ζm 				x	∞
m=1,3..  

ቂ(νy-	λ12√λ)λ2sinhmπλ2R2 -	(νy-	λ22√λ)λ1sinhmπλ1R2 ቃ (B12) 

where, ߞ௠ = 	λ1sinhmπλ1R2 cosh mπλ2R2 	–	λ2coshmπλ1R2 sinhmπλ2R2    

λ1 and λ2 have been given by Eq. (B8) and Δ0has been given by Eq. (B4). 
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APPENDIX – C  

EXPRESSIONS FOR STIFFNESS COEFFICIENTS 

 
Figure C1 Geometry of rectangular plate bending element. 

For a rectangular plate bending element shown in Figure C1, the expressions for the 

Stiffness Coefficients have been given below: 

β = 	 ୠୟ  
kଵଵ = ቂ4(βଶ + βିଶ) + ଵହ (14 − 4ν)ቃ 	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

kଶଵ = ቂ2βିଶ + ଵହ (1 + 4ν)ቃ b	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

kଶଶ = ቂସଷ βିଶ + ଵହ (1 − ν)ቃ bିଶ	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

kଷଵ = − ቂ2βିଶ + ଵହ (1 + 4ν)ቃ a	x ୉୲యଵଶ(ଵି஝మ)ୟୠ		  kଷଶ = 	x	ܾܽߥ−	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

kଷଷ = ቂସଷ βଶ + ସଵହ (1 − ν)aଶቃ x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ	  
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kସଵ = ቂ2(βଶ − 2βିଶ) − ଵହ (14 − 4ν)ቃ x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

kସଶ = 	− ቂ2βିଶ + ଵହ (1 − ν)ቃ b	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

݇ସଷ = ቂ−ߚଶ + ଵହ (1 + ቃ(ߥ4 ܽ	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

kସସ = ቂ4(βଶ + βିଶ) + ଵହ (14 − 4ν)ቃ x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

kହଵ = ቂ2βିଶ + ଵହ (1 − ν)ቃ bx	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

kହଶ = ቂଶଷ βିଶ − ଵଵହ (1 − ν)ቃ bିଶ	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  kହଷ = 0  kହସ = − ቂ2ିߚଶ + ଵହ (1 + ቃ(ߥ4 ܾ		x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

kହହ = ቂସଷ βିଶ + ସଵହ (1 − ν)bଶቃ x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

k଺ଵ = ቂ−βଶ + ଵହ (1 + 4ν)ቃ a	x ୉୲యଵଶ(ଵି஝మ)ୟୠ  k଺ଶ = 0  k଺ଷ = ቂଶଷ βଶ − ସଵହ (1 − ν)ቃ aଶ	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

k଺ସ = − ቂ2βଶ + ଵହ (1 + 4ν)ቃ a		x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

k଺ହ = 	x	ܾܽߥ	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

k଺଺ = ቂସଷ βଶ + ସଵହ (1 − ν)aଶቃ x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

k଻ଵ = ቂ−2(βଶ − 2βିଶ) + ଵହ (14 − 4ν)ቃ x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

k଻ଶ = ቂ−βିଶ + ଵହ (1 − ν)ቃ bx	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

k଻ଷ = ቂβଶ − ଵହ (1 − ν)ቃ a	x ୉୲యଵଶ(ଵି஝మ)ୟୠ  

k଻ସ = ቂ2(2βଶ − βିଶ) − ଵହ (14 − 4ν)ቃ x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  
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k଻ହ = ቂ−βଶ + ଵହ (1 + 4ν)ቃ b		x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

k଻଺ = ቂ2βଶ + ଵହ (1 − ν)ቃ a	x ୉୲యଵଶ(ଵି஝మ)ୟୠ  
k଻଻ = ቂ4(βଶ + βିଶ) + ଵହ (14 − 4ν)ቃ x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

k଼ଵ = ቂβିଶ − ଵହ (1 − ν)ቃ bx	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

k଼ଶ = ቂଵଷ βିଶ + ଵଵହ (1 − ν)ቃ bଶ	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ   

k଼ଷ = 0  

k଼ସ = ቂ−βଶ + ଵହ (1 + 4ν)ቃ b		x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

k଼ହ = ቂଶଷ βିଶ − ସଵହ (1 − ν)ቃ bଶ	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  
k଼଺ = 0  

k଼଻ = − ቂ2βିଶ + ଵହ (1 + 4ν)ቃ b		x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

k଼଼ = ቂସଷ βିଶ + ସଵହ (1 − ν)ቃ bଶ	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  
kଽଵ = 	 ቂ−βଶ + ଵହ (1 − ν)ቃ a		x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ   
kଽଶ = 0  

kଽଷ	 = ቂଵଷ βିଶ + ଵଵହ (1 − ν)ቃ aଶ	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  
kଽସ = 	− ቂ2βଶ + ଵହ (1 − ν)ቃ a	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ   

kଽ	ହ = 0  

kଽ	଺ = ቂଶଷ βଶ − ଵଵହ (1 − ν)ቃ aଶ	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ	  
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kଽ	଻	 = ቂ2βଶ + ଵହ (1 + 4ν)ቃ a		x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ	  
kଽ	଼	 = 	x	ܾܽߥ−	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  
kଽ	ଽ	 = 	 ቂସଷ βଶ + ସଵହ (1 − ν)ቃ aଶ	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  
kଵ଴	ଵ = ቂ−2(2βଶ − βିଶ) − ଵହ (14 − 4ν)ቃ x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ 
kଵ଴	ଶ = ቂβିଶ − ଵହ (1 + 4ν)ቃ b		x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  
kଵ଴	ଷ = ቂ2βଶ + ଵହ (1 − ν)ቃ a	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  
kଵ଴	ସ = ቂ2(βଶ + βିଶ) + ଵହ (14 − 4ν)ቃ x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  
kଵ଴	ହ = ቂβଶ − ଵହ (1 − ν)ቃ b	x ୉୲యଵଶ(ଵି஝మ)ୟୠ  

kଵ଴	଺ = ቂβଶ − ଵହ (1 − ν)ቃ a	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  
kଵ଴	଻ = ቂ2(βଶ − 2βିଶ) − ଵହ (14 − 4ν)ቃ x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ   
kଵ଴	଼ = ቂ2βିଶ + ଵହ (1 − ν)ቃ b	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  
kଵ଴	ଽ = ቂβଶ − ଵହ (1 − ν)ቃ a	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  
kଵ଴	ଵ଴ = ቂ4(βଶ + βିଶ) + ଵହ (14 − 4ν)ቃ x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  
kଵଵ	ଵ = ቂβିଶ − ଵହ (1 + 4ν)ቃ b		x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  
kଵଵ	ଶ = ቂଶଷ βିଶ − ସଵହ (1 − ν)ቃ bଶ	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

kଵଵ	ଷ = 0  
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kଵଵ	ସ = ቂ−βଶ − ଵହ (1 − ν)ቃ a	x ୉୲యଵଶ(ଵି஝మ)ୟୠ  

kଵଵ	ହ	 = ቂଵଷ βିଶ + ଵଵହ (1 − ν)ቃ bଶ	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

kଵଵ	଺ = 0  

kଵଵ	଻ = − ቂ2βିଶ + ଵହ (1 − ν)ቃ b	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

kଵଵ	଼ = ቂଶଷ βିଶ − ଵଵହ (1 − ν)ቃ bଶ	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  kଵଵ	ଽ = 0  

kଵଵ	ଵ଴ = ቂ2βିଶ + ଵହ (1 + 4ν)ቃ b		x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  
 kଵଵ	ଵଵ = ቂସଷ βିଶ + ସଵହ (1 − ν)ቃ bଶ	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

kଵଶ	ଵ = − ቂ2βଶ + ଵହ (1 − ν)ቃ a	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  kଵଶ	ଶ = 0  

kଵଶ	ଷ	 = ቂଶଷ βଶ − ଵଵହ (1 − ν)ቃ aଶ	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  
kଵଶ	ସ = ቂ−βଶ + ଵହ (1 − ν)ቃ a	x ୉୲యଵଶ(ଵି஝మ)ୟୠ  

kଵଶ	ହ = 0  

kଵଶ	଺ = ቂଵଷ βଶ + ଵଵହ (1 − ν)ቃ aଶ	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ	  
kଵଶ	଻ = ቂβଶ − ଵହ (1 + 4ν)ቃ a		x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  
kଵଶ	଼ = 0  

kଵଶ	ଽ	 = ቂଶଷ βଶ − ସଵହ (1 − ν)ቃ aଶ	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  
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kଵଶ	ଵ଴ = ቂ2βିଶ + ଵହ (1 + 4ν)ቃ a		x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

kଵଶ	ଵଵ	 = 	x	ܾܽߥ	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  
kଵଶ	ଵଶ = ቂସଷ βଶ + ସଵହ (1 − ν)ቃ aଶ	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

 
Figure C2 Geometry of rectangular plane stress element. 

For a rectangular plane stress element shown in Figure C2, the expressions for the 

Stiffness Coefficient have been given below: 

β = 	 ୠୟ  
kଵଵ = ቂ(4 − νଶ)β + ଷଶ (1 − ν)ቃ 	x	 ୉୲ଵଶ(ଵି஝మ)  kଶଵ = ቂଷଶ (1 + ν)ቃ 	x	 ୉୲ଵଶ(ଵି஝మ)  kଶଶ = ቂ(4 − νଶ)βିଵ + ଷଶ (1 − ν)βቃ 	x	 ୉୲ଵଶ(ଵି஝మ)  kଷଵ = ቂ(2 + νଶ)β − ଷଶ (1 − ν)βିଵቃ 	x	 ୉୲ଵଶ(ଵି஝మ)		  kଷଶ = 	 ቂ− ଷଶ (1 − 3ν)ቃ 	x	 ୉୲యଵଶ(ଵି஝మ)ୟୠ  

kଷଷ = ቂ(4 − νଶ)β + ଷଶ (1 − ν)βିଵቃ x	 ୉୲ଵଶ(ଵି஝మ)	  
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kସଵ = ቂଷଶ (1 − 3ν)ቃ x ୉୲ଵଶ(ଵି஝మ)  kସଶ = 	 ቂ−(4 − νଶ)βିଵ + ଷଶ (1 − ν)βቃ 	x	 ୉୲ଵଶ(ଵି஝మ)  kସଷ = ቂ− ଷଶ (1 + ν)ቃ x	 ୉୲ଵଶ(ଵି஝మ)  kସସ = ቂ(4 − νଶ)βିଵ + ଷଶ (1 − ν)βቃ x	 ୉୲ଵଶ(ଵି஝మ)  kହଵ = ቂ−(2 + νଶ)β − ଷଶ (1 − ν)βିଵቃ x	 ୉୲ଵଶ(ଵି஝మ)  kହଶ = ቂ− ଷଶ (1 + ν)ቃ x	 ୉୲ଵଶ(ଵି஝మ)  kହଷ = ቂ−(4 − νଶ)β + ଷଶ (1 − ν)βିଵቃ x	 ୉୲ଵଶ(ଵି஝మ) kହସ = ቂ− ଷଶ (1 − 3ν)ቃ x	 ୉୲ଵଶ(ଵି஝మ)  kହହ = ቂ(4 − νଶ)β + ଷଶ (1 − ν)βିଵቃ x	 ୉୲ଵଶ(ଵି஝మ)  k଺ଵ = ቂ− ଷଶ (1 + ν)ቃ x	 ୉୲ଵଶ(ଵି஝మ)  k଺ଶ = ቂ−(2 + νଶ)βିଵ − ଷଶ (1 − ν)βቃ x	 ୉୲ଵଶ(ଵି஝మ) k଺ଷ = ቂଷଶ (1 − 3ν)ቃ x	 ୉୲ଵଶ(ଵି஝మ)  k଺ସ = ቂ(2 + νଶ)βିଵ − ଷଶ (1 − ν)βቃ x	 ୉୲ଵଶ(ଵି஝మ)  k଺ହ = 	 ቂଷଶ (1 + ν)ቃ 	x	 ୉୲ଵଶ(ଵି஝మ)  k଺଺ = ቂ(4 − νଶ)βିଵ + ଷଶ (1 − ν)βቃ x	 ୉୲ଵଶ(ଵି஝మ)  k଻ଵ = ቂ−(4 − νଶ)β + ଷଶ (1 − ν)βିଵቃ x	 ୉୲ଵଶ(ଵି஝మ)  k଻ଶ = ቂଷଶ (1 − 3ν)ቃ x	 ୉୲ଵଶ(ଵି஝మ)  
k଻ଷ = ቂ−(2 + νଶ)β − ଷଶ (1 − ν)βିଵቃ x	 ୉୲ଵଶ(ଵି஝మ)  
k଻ସ = ቂଷଶ (1 + ν)ቃ x	 ୉୲ଵଶ(ଵି஝మ)  
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k଻ହ = 	 ቂ(2 + νଶ)β − ଷଶ (1 − ν)βିଵቃ x	 ୉୲ଵଶ(ଵି஝మ)  
k଻଺ = 	 ቂ− ଷଶ (1 − 3ν)ቃ x	 ୉୲ଵଶ(ଵି஝మ)  
k଻଻ = ቂ(4 − νଶ)β + ଷଶ (1 − ν)βିଵቃ x	 ୉୲ଵଶ(ଵି஝మ)  
k଼ଵ = ቂ− ଷଶ (1 − 3ν)ቃ 	x	 ୉୲ଵଶ(ଵି஝మ)  
k଼ଶ = 	 ቂ(2 + νଶ)βିଵ − ଷଶ (1 − ν)βቃ x	 ୉୲ଵଶ(ଵି஝మ)   
k଼ଷ = ቂଷଶ (1 + ν)ቃ x	 ୉୲ଵଶ(ଵି஝మ)  
k଼ସ = 	 ቂ−(2 + νଶ)βିଵ − ଷଶ (1 − ν)βቃ x	 ୉୲ଵଶ(ଵି஝మ)  
k଼ହ = 	 ቂଷଶ (1 − 3ν)ቃ x	 ୉୲ଵଶ(ଵି஝మ)  
k଼଺ = ቂ−(4 − νଶ)βିଵ + ଷଶ (1 − ν)βቃ x	 ୉୲ଵଶ(ଵି஝మ)  
k଼଻ = 	 ቂ− ଷଶ (1 + ν)ቃ 	x	 ୉୲ଵଶ(ଵି஝మ)  
k଼଼ = ቂ(4 − νଶ)βିଵ + ଷଶ (1 − ν)βቃ x	 ୉୲ଵଶ(ଵି஝మ)  
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APPENDIX – D 

CALCULATION OF WEIGHT RATIO AND SECTION MODULUS 

Section Modulus of HSP:  

 

Figure D1 Geometry of one hat stiffener and attached plate. Two such units constitute RUC 
of HSP 

 

 

Area 
No: Area

Distance to 
centroid from 
xx First Moment Height

M.I. about 
local centroid

Distance to
 local centroid
 from NA

M.I. about 
NA

d1 q = A x d1 h IC = Ax h2/2 d2 I = Ic+Axd22

cm2 cm cm3 cm cm4 cm cm4

1 42 0.3 12.6 0.6 1.26 3.61 548.61

2 6.6 8.1 53.46 15 123.75 4.20 240.17

3 6.6 8.1 53.46 15 123.75 4.20 240.17

4 8.4 15.4 129.36 0.4 0.112 11.49 1109.08
Area 63.6 First Moment 248.88 2138.03

3.91 cm
11.69 cm
182.89 cm3

365.78 cm3

63.6 cm2

127.2 cm2

Distance to NA from xx
Total Moment of Inertia

Total Cross sectional Area of HSP 

Section modulus of one stiffener and attached plate
Section modulus of complete RUC of hat stiffend plate
Area of one stiffener and attached plate

Farthest distance from Neutral Axis
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Section Modulus plate stiffened with bar stiffener:  

 

Figure D2 Geometry of one bar stiffener and attached plate. Four such units constitute RUC 
of plate stiffened with bar stiffener 

 
  

Area 
No: Area

Distance to 
centroid from 
xx First Moment Height

M.I. about 
local centroid

Distance to
 local centroid
 from NA

M.I. about 
NA

d1 q = A x d1 h IC = Ax h2/2 d2 I = Ic+Axd22

cm2 cm cm3 cm cm4 cm cm4

1 21 0.3 6.3 0.6 0.63 4.01 338.31
2 22.2 8.1 179.82 15 416.25 3.79 735.13

Area 43.2 First Moment 186.12 1073.44
4.31 cm

11.29 cm
95.07 cm3

380.28 cm3

43.2 cm2

Total Cross sectional Area of plate stiffened with bar 172.8 cm2

Total Moment of Inertia
Distance to NA from xx
Farthest distance from Neutral Axis
Section modulus of one stiffener and attached plate
Section modulus of complete RUC of plate stiffened with bar
Area of one stiffener and attached plate
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Section Modulus plate stiffened with angle stiffener:  

 

Figure D3 Geometry of one angle stiffener and attached plate. Four such units constitute RUC 
of plate stiffened with angle stiffener 

 

 

  

Area 
No: Area

Distance to 
centroid from 
xx First Moment Height

M.I. about 
local centroid

Distance to
 local centroid
 from NA

M.I. about 
NA

d1 q = A x d1 h IC = Ax h2/2 d2 I = Ic+Axd22

cm2 cm cm3 cm cm4 cm cm4

1 21 0.3 6.3 0.6 0.63 3.72 291.24
2 6.49 7.877 51.129 14.55 114.57 3.86 211.13
3 4.68 15.377 72.01 0.446 0.0776 11.360 604.09

Area 32.17 First Moment 129.44 1106.46
4.02 cm

11.58 cm
95.54 cm3

382.2 cm3

32.17 cm2

Total Cross sectional Area of plate stiffened with angle 128.68 cm2

Total Moment of Inertia
Distance to NA from xx
Farthest distance from Neutral Axis
Section modulus of one stiffener and attached plate
Section modulus of complete RUC of plate stiffened with angle
Area of one stiffener and attached plate



92 
 

Section Modulus plate stiffened with Tee stiffener:  

 

Figure D4 Geometry of one Tee stiffener and attached plate. Four such units constitute RUC 
of plate stiffened with Tee stiffener 

 

  

Area 
No: Area

Distance to 
centroid from 
xx First Moment Height

M.I. about 
local centroid

Distance to
 local centroid
 from NA

M.I. about 
NA

d1 q = A x d1 h IC = Ax h2/2 d2 I = Ic+Axd22

cm2 cm cm3 cm cm4 cm cm4

1 21 0.3 6.3 0.6 0.63 3.66 281.94
2 7.3 7.9 57.67 14.6 129.67 3.94 242.99
3 4.2 15.4 64.68 0.4 0.056 11.44 549.725

Area 32.5 First Moment 128.65 1074.65
3.96

11.64 cm
92.32 cm3

369.28 cm3

32.5 cm2

Total Cross sectional Area of plate stiffened with Tee 130 cm2

Section modulus of complete RUC of plate stiffened with Tee
Area of one stiffener and attached plate

Total Moment of Inertia
Distance to NA from xx
Farthest distance from Neutral Axis
Section modulus of one stiffener and attached plate
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Weight Ratio Calculation: Weight	Ratio = 	୛ୣ୧୥୦୲	୭୤	ୗ୲୧୤୤ୣ୬ୣୢ	୔୪ୟ୲ୣ୛ୣ୧୥୦୲	୭୤	ୌୗ୔   

Weight of stiffened plate = Cross sectional area of stiffened plate x length x material density 

Length and Material Density is the same for all four types of stiffened plates Weight	ratio = 	 େ୰୭ୱୱ	ୱୣୡ୲୧୭୬ୟ୪	ୟ୰ୣୟ	୭୤	ୱ୲୧୤୤ୣ୬ୣୢ	୮୪ୟ୲ୣ	େ୰୭ୱୱ	ୱୣୡ୲୧୭୬ୟ୪	ୟ୰ୣୟ	୭୤	ୌୗ୔   

 

Sl No 
Type of 

Stiffener

Total Cross 
sectional 

Area
Weight 
Ratio

   A (cm2) A/AHSP
1 HSP 127.2 1
2 Flat Bar 172.8 1.36
3 Angle Bar 128.68 1.01
4 Tee Bar 130 1.02
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APPENDIX – E 

CALCULATION OF STRESS FROM THE LOAD VECTOR 

 

Figure E1 Rectangular Element with load vectors 

Total moment on face AB = 2Mx 

Section Modulus of face AB = ୟ୲మ଺  

On face AB, stress in the y direction on top layer due to BM = σ୷ = 	 ଶ୑౮	౗౪మల   = +	ଵଶ୑౮ୟ୲మ  

On face AB, stress in y direction on the bottom layer due to BM σ୷ =	 −	ଵଶ୑౮ୟ୲మ  

On face AB total force in y direction = 2Fy 

Stress in y direction on face AB due to force in y direction σ୷ = 	− ଶ୊౯ୟ୲  

Total stress in the y direction on face AB, top layer σ୷ = 	+	ଵଶ୑౮ୟ୲మ −	ଶ୊౯ୟ୲  
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Total stress in the y direction on face AB, bottom layer σ୷ = 	−	ଵଶ୑౮ୟ୲మ −	ଶ୊౯ୟ୲  

Similarly on face CD 

Total stress in the y direction on face AB, top layer σ୷ = 	−	ଵଶ୑౮ୟ୲మ +	ଶ୊౯ୟ୲  

Total stress in the y direction on face AB, bottom layer σ୷ = 		 ଵଶ୑౮ୟ୲మ +	ଶ୊౯ୟ୲  

Similarly on face AD 

Total stress in the y direction on face AD, top layer σ୶ = 	−	ଵଶ୑౯ୠ୲మ − 	ଶ୊౮ୠ୲  

Total stress in the y direction on face AD, bottom layer σ୶ = 	+	ଵଶ୑౯ୠ୲మ −	ଶ୊౮ୠ୲  

Similarly on face BC  

Total stress in the y direction on face BC, top layer σ୶ = 		 ଵଶ୑౯ୠ୲మ +	ଶ୊౮ୠ୲  

Total stress in the y direction on face BC, bottom layer σ୶ = 	− ଵଶ୑౯ୠ୲మ +	ଶ୊౮ୠ୲  
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