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This paper presents Reinforcement Learning (RL) approaches to Economic Dispatch problem. In this
paper, formulation of Economic Dispatch as a multi stage decision making problem is carried out, then
two variants of RL algorithms are presented. A third algorithm which takes into consideration the trans-
mission losses is also explained. Efficiency and flexibility of the proposed algorithms are demonstrated
through different representative systems: a three generator system with given generation cost table, IEEE
30 bus system with quadratic cost functions, 10 generator system having piecewise quadratic cost func-
tions and a 20 generator system considering transmission losses. A comparison of the computation times
of different algorithms is also carried out.

� 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Reinforcement Learning Problem in general is a problem of learn-
ing from interaction to achieve a specified goal. The learner (decision
maker) continuously interacts with the environment (system). The
interaction is through actions and associated rewards. The agent
performs an action from the permissible set of actions at the partic-
ular state of the environment. The environment gives back a numer-
ical reward which is a measure of the goodness of the performed
action. Such a learning scheme is widely employed in solving several
difficult problems such as control of inverted pendulum, Playing
Backgammon and other computer games, Elevator control [1–5],
etc. There are few applications of Reinforcement Learning in Power
System problems also. It has been applied for Load Frequency Con-
trol of generators [6], Unit Commitment problem [7], Power system
transient stability enhancement [8], Auction Based Pricing [9], Opti-
mal bidding of a Genco [10].

As far as power generation control is considered, it is basically
having three time based control loops: Unit Commitment, Eco-
nomic Dispatch and Load Frequency Control [13]. In Economic Dis-
patch problem, cost of generation of power has been represented
in a variety forms including cost tables, quadratic functions, etc.
For getting more accurate representation, cost functions are also
sometimes expressed as piecewise quadratic functions. For solving
this scheduling problem, so many computational and intelligent
techniques have been developed so far. Some of the strategies
ll rights reserved.
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applied for solution of this problem are explained in [14]. Fast
computation Hopfield neural network along with dynamic pro-
gramming is used for getting the schedule of generation in [15].
The work presented in [16] explains the application of Hopfield
Neural Network for Economic and Emission Load Dispatch. The
work presented in [17] also gives out the idea of using Hopfield
Neural Network as a tool for solving this control problem. [18]
and [19] considers the security constraints of the problem also
and is solved through decomposition and coordination algorithms
and variable scaling hybrid differential programming method
respectively. [20] uses an immune based method known as Clonal
algorithm. Using Radial Basis Function Network to compute opti-
mum value for lambda and then using lambda iteration method
the problem is solved in [21]. Simple Genetic algorithm is used
for finding optimum dispatch [22] and simulated annealing is used
as tool in [23]. Piece wise quadratic functions are considered and
solution is made through an improved genetic algorithm in [24].
Recently a direct search method viewing the non convex nature
of economic dispatch problem is employed in the work presented
in [25] and [26] also gives out a direct search approach. Different
kinds of efficient evolutionary algorithms are developed in [27]
and [28]. Particle swarm optimization is the technique used by
the researchers in [29] and [30] while a new optimization based
algorithm: ‘Taguchi method’ is used in [31].

Reinforcement Learning seems to provide better flexibility and
easiness in accommodating randomness in the cost strategies asso-
ciated with complex systems. Also since this learning strategy re-
lies on an evaluative feedback approach, like other intelligent
techniques, it can work on systems with ill defined models. In
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mailto:eajasmin@gmail.com
http://dx.doi.org/10.1016/j.ijepes.2010.12.008
http://www.sciencedirect.com/science/journal/01420615
http://www.elsevier.com/locate/ijepes


Reward Action

Environment 

Agent 

Fig. 1. A general layout of Reinforcement Learning task.
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Fig. 2. Grid world problem.
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addition, the evaluation of reward corresponding to an action
which is the core part of this strategy need not be based on math-
ematical functions. It just needs a numerical value indicating the
goodness of a particular schedule. In this approach, we treat Eco-
nomic Dispatch as a multi stage decision making problem which
distributes the power demand among the generating units avail-
able on line in such a way as to minimize operating cost. Recently
it was shown that RL algorithms could be applied to solve Eco-
nomic Dispatch problem by considering a simple three generator
system having quadratic cost functions [11,12]. In this paper a
class of RL algorithms are proposed. Performance analysis of the
algorithms are carried out considering different test cases with dif-
ferent types of cost functions.

The organization of the rest of the paper is as follows. In Section
2, Economic Dispatch problem is presented in terms of mathemat-
ical equations. Section 3 gives an explanatory discussion on Rein-
forcement Learning and introduces the terms and notations used
in RL algorithm using the example of shortest path problem. In Sec-
tion 4 Economic Dispatch is formulated as a multi stage decision
making problem. Section 5 explains the Reinforcement Learning
algorithms for solution of this decision making problem. Transmis-
sion losses are also considered and algorithm for solving the same
is presented in Section 6. Performance evaluation of the proposed
solution methods using the different case studies are given in Sec-
tion 7. Conclusion with discussion on future improvements possi-
ble follows.

2. Economic Dispatch

Economic Dispatch is basically to find the relative loadings of
the various generating units online.

The allotment should be in such a way that the cost of genera-
tion should be minimum as far as possible. At the same time gen-
erating unit power constraints should also be met. Therefore the
objective function of Economic Dispatch problem FT is equal to
the total cost for supplying the demanded load PT. The problem
is to minimize FT subject to the constraints that the total generated
power and the demanded load equals and the power constraints on
all units are being met. Mathematically the objective function FT

can be expressed as

FT ¼ F1ðP1Þ þ F2ðP2Þ þ F3ðP3Þ þ . . . FNðPNÞ ¼
XN

i¼1

FiðPiÞ ð1Þ

where Fidenotes the cost function of ith unit and Pi the electrical
power generated by that particular unit and constraints are

PT �
XN

i¼1

Pi ¼ 0 ð2Þ

Pmin i < Pi < Pmax i; for i ¼ 1 to N ð3Þ

where PT, total load power demand; Pmin i, min. power generation of
ith unit; Pmax i, max. power generation of ith unit.

Therefore the problem is to minimize the cost function FT sub-
ject to the constraints given in Eqs. (2) and (3).

3. Reinforcement Learning

Reinforcement Learning is one effective method in the solution
of multi stage decision making problems. For a comprehensive
study of the subject, refer [1,2,32,33]. To make the paper self con-
tained, a brief introduction is given here.

A general layout of Reinforcement Learning task is given in
Fig. 1.

The agent interacts with the environment through actions and
associated rewards. It uses training information that evaluates ac-
tions (in terms of reward received from the environment on per-
forming an action) taken by the agent. The effect of action at any
instant depends on nature of the problem environment.

In order to make the concepts clear and to explain the steps fol-
lowed in the learning task let us consider the example of a simple
shortest path problem. Consider a grid world problem shown in
Fig. 2.

The grid considered is having 36 cells arranged in 6 rows and 6
columns. A robot can be at any one of the possible cells at any in-
stant. We can refer the cell number as state of the robot. ‘G’ denotes
the goal state to which the robot aim to reach and the crossed cells
denote cells with some sort of obstacles. There is cost associated
with each cell transition while the cost of passing through a cell
with obstacle is much higher compared to other cells. Starting from
any initial position in the grid, robot can reach the goal cell by fol-
lowing different paths and correspondingly cost incurred will also
vary. The problem is to find an optimum path to reach the goal
state (cell) starting from any one of the initial state. We can denote
the state of the robot at instant k as xk. At any instant k, the robot
can take any of the action (movement) ak, from the set of permis-
sible actions in the action set Axk

which also depend on the current
state xk. For example if xk = 7, Axk

¼ fright;up;downg and if xk = 1,
Axk
¼ fright;downg. The state occupied by the robot in k + 1, xk+1

depends on xk and ak. That is,

xkþ1 ¼ f ðxk; akÞ ð4Þ

For example, if xk = 7 and ak = Down then xk+1 = 13 while when ak =
Up, xk+1 = 1. The state xk+1 can be found from the simulation model
of the grid or studying the environment in which robot moves.

Therefore the shortest path problem can be stated as finding the
sequence of actions a0,a1, . . .,aT�1 starting from any initial state
such that the total cost for reaching goal state G is minimum.
The numerical cost when the agent (robot) performs an action ak

at state xk making transition to xk+1 is denoted as rk, known as
immediate reward or reinforcement. This reward rk in general
can depend on current state, action and the next state. That is,

rk ¼ gðxk; ak; xkþ1Þ ð5Þ
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In this simple grid world we assume a cost of 1 unit for transition to
an ordinary cell while 10 units for a cell having some obstacles.

gðxk; ak; xkþ1Þ ¼ 1; if xkþ1 is a normal cell

¼ 10; if xkþ1 is a cell with obstacles

To find the total cost, the cost on each transition can be cumulated.
Now the total cost for reaching the goal state can be taken asPT�1

k¼0 gðxk; ak; xkþ1Þ; x0 being the initial state and T being the no. of
transitions to reach the goal state. The action selection can be con-
sidered as following a policy p. i.e., p(x) denotes the action taken on
reaching the state x. The Reinforcement Learning task now reduces
to finding an optimum policy p⁄ which gives out the optimum ac-
tion at each state (cell) in order to get minimum total cost. For this
problem, the aim is to minimize the total cost which is equal toPT�1

k¼0 gðxk; ak; xkþ1Þ.
In general, this need not be the case. Here we are assuming cost

incurred at all stages have equal importance. However in some
cases a cost of 100$ incurred at a later stage may not have the same
effect as a cost of 100$ at the current stage. Hence future cost may
be discounted by a factor. In such situations, total cost is defined as,

cost ¼
XT�1

k¼0

ckgðxk; ak; xkþ1Þ

In a more general setting, cost incurred may be a random variable.

In such a problem the objective function is E
PT�1

k¼0ckgðxk; ak; xkþ1Þ
n o

which is the expected cost.
Now we introduce Q value. Q value of a multi stage problem is

defined as:

Qpðx; aÞ ¼ Ep
X1

k¼0

ckrk;

Qp(x,a) is the expected long term reinforcement when we start in
state (cell) x, take action a in the starting state and thereafter follow
the policy p and c is the discount factor. For example Q(2, D) denote
the Q value associated with the cell 2 and starting with action Down.
Similarly each of the different cells and possible actions will be asso-
ciated with a particular Q value. Now define Qp(xk,ak) as the expected
value of the total cost incurred in taking an action ak from the state xk

and thereafter taking actions based on policy p. One can call Q⁄(xk,ak)
as an optimal Q function if Q⁄(xk,ak) = minpQp(xk,ak). Therefore, now
the optimal policy can be stated as: p�ðxkÞ ¼ arg minak2Axk

fQ �ðxk;

akÞg; ak 2 Axk being the action to be taken at state xk in order to get
minimum cost.

Therefore if one can find Q⁄(xk,ak) for all state–action pairs, then
the path for reaching the goal state can be traced out from any ini-
tial state at minimum cost. In Q learning algorithm, first all Q val-
ues are initialized with some initial value, Q0(xk,ak). At each
iteration n, on reaching xk, an action ak is taken based on the cur-
rent estimate of Q⁄(xk,ak) i.e., Qn(xk,ak). Once action is taken at state
xk, it makes transition to xk+1 and the reward g(xk,ak,xk+1) can be
found from simulation. The Q value is updated using the equation,

Q nþ1ðxk; akÞ ¼ Q nðxk; akÞ þ a½gðxk; ak; xkþ1Þ
þ c arg min

a02Axkþ1

ðQ nðxkþ1; a0ÞÞ � Q nðxk; akÞ�;

0 < a < 1 is a constant and is called step size of learning:

One issue to be settled is how to choose action in each step. At the
nth iteration, Q⁄ is unknown but Qn (estimate of Q⁄) is known to the
learning agent. If Qn is same as Q⁄, the best action is, ag =
argmina2Ak

{Qn(xk,a)}. This way of choosing action is called greedy
algorithm and ag is called greedy action. If one chooses
greedy action initially, it may be wrong if Qn is not equal to Q⁄.

One choice is to go for e – greedy algorithm. Here Greedy action
ag will be chosen with a probability of (1 � e) and one among all
other permissible actions is chosen with a probability of e. e can
be taken as fixed value throughout the learning. But a small fixed
value may slow down the learning process, while a large fixed va-
lue may make the learning process not to converge. To overcome
these problems, an adaptive method is used for fixing of explora-
tion rate. In this approach e is fixed arbitrarily at some sufficiently
large value and then progressively reduced to make a smooth and
fast convergence possible.

The e – greedy method discussed above provides a good method
of action selection, for providing better exploration in the initial
phases of learning while exploiting the goodness of greedy action
during the later phases. However e – greedy requires a gradual
reduction of e. That is, a proper cooling schedule is to be designed
which gradually updates the value of e as the learning proceeds so
that proper convergence and correctness of the result are assured.
The length of learning phase mainly depends on this cooling sche-
dule and therefore it is one significant part of e – greedy method. It
is a difficult task to develop a good cooling schedule so as to ensure
minimum time for convergence.

Another stochastic policy followed for selection of action in the
Reinforcement Learning task is Pursuit algorithm. In this method
along with maintaining estimates of Q values as measure of good-
ness of actions, some preference is also associated with actions.
Each action ak at any state xk is having a probability pxk

ðakÞ of being
chosen. These probability values will be same for all actions and all
states initially assuring sufficient exploration of the action space.
Then on performing an action ak at any state xk during learning,
the numerical reward is used to update the estimate of Q value
associated with the state–action pair. Along with that, based on
the current estimates of Q values, probability values associated
with actions are also modified as.

pnþ1
xk
ðakÞ ¼ pn

xk
ðakÞ þ b½1� pn

xk
ðakÞ�; when ak ¼ ag

pnþ1
xk
ðakÞ ¼ pn

xk
ðakÞ � bpn

xkðakÞ; when ak – ag

where 0 < b < 1 is a constant. Thus at each iteration n of the learning
phase, algorithm will slightly increase the probability of choosing
the greedy action ag in state xk and proportionally decrease the
probability associated with all other possible actions. Initially since
all probabilities are made equal, sufficient exploration of action
space is assured. When the algorithm proceeds a number of itera-
tions, with high probability Qn(x,a) will approach to Q⁄(x,a) corre-
sponding to all states. This is because, when the parameter b is
properly chosen, after sufficient number of iterations, the greedy ac-
tion in state x, with respect to Qn would be the same as greedy ac-
tion in state x with respect Q⁄ which gives the optimal action. In
other words, through the iterative updating of probabilities, proba-
bility of optimal action increases successively. This in turn indicates
an increase in probability of selecting the optimum action in the
succeeding steps. If a and b are sufficiently small, pn

xðp�ðxÞÞ would
converge with high probability to unity.

In both these methods of solution, the problem is made to start
from any of the initial states at random at each of the iteration of
learning so that it goes through different transition paths updating
the corresponding Q values [1]. In the next sections, solution to
Economic Dispatch is obtained using the above two methods for
exploration of action space.
4. Economic Dispatch as multi stage decision problem

To view Economic Dispatch as a multi stage decision making
problem, the various stages of the problem are to be identified.
Consider a system with N generating units committed for dispatch.
Then Economic Dispatch problem involves deciding the amount of
power to be dispatched by G0,G1,G2, . . . . . . . . . . . . . . .GN�1.
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In this formulation the amount of power to be dispatched by Gk

is denoted as action ak. Action ak in Reinforcement Learning termi-
nology, corresponds to a power allocation PkMW to generating unit
Gk. Pk is numerically same as ak. Therefore, the action set Ak con-
sists of the different values of power dispatch possible to Gk. That
is, Ak = {Mink, . . ., . . ., . . .,Maxk}, Mink being the minimum value of
power that can be allotted to Gk and Maxk being the maximum
power that can be allotted to Gk..Values of Mink and Maxk depend
on the minimum and maximum values of power generation possi-
ble with the kth unit and also maximum and minimum power that
can be allotted among the remaining N–k units available. There-
fore, action set Ak is a dynamically varying one depending on the
power already allotted to the previously considered units.

The quantization step (in MW power) is chosen based on the
accuracy needed. A very small value is not necessitated due to
the setting of the reference point setting in a plant. An optimum
value is chosen based on the accuracy needed and the setting of
the units. Also as number of generating units and hence the range
of possible demand increases, the number of states in the state
space increases. State space is also discretized to have definite
number of states. For defining the same, an optimum value of step
size is to be chosen so as to get the required accuracy keeping the
number of states manageable.

Now the problem can be stated as follows: Initially there are N
units and PD MW of power to be dispatched. The initial stage is
denoted as stage0. In stage0, a decision is made on how much power
is to be dispatched by G0. This action is denoted as a0 and corre-
sponds to P0MW allocation to G0.

On making this decision, stage1 is reached. Also (PD � a0) MW of
power remains to be allocated to the remaining N-1 units
(G1,G2, . . .,GN�1). In stage1, a decision a1 is made on how much
power is to be dispatched to G1. Similarly at stage k, a decision is
made on how much power is to be dispatched by Gk. Thus, the stage
N � 1 is reached where the amount of power to be dispatched by
G0,G1, . . . . . . . . .GN�2 are already decided as (a0,a1, . . . . . .aN�2) which
give directly the power allocations (P1,P2, . . . . . . . . . . . .,PN�2).

From the power balance constraint (with PL = 0), it follows that,
P0 + P1 + P2+� � �� � �� � �PN�1 = PD which directly implies that

PN�1 ¼ PD � ðP0 þ P1 þ P2 þ � � � � � � � � � � � � PN�2Þ

Therefore, in stageN�1, there is no choice but to allocate power PN�1.
Each state at any stagek (k varies from 0 to N � 1) can be defined

as a tuple (k, Dk) where k is the number indicating the stage num-
ber and Dk, the power to be distributed among the remaining N–k
units.

That is, with k = 0, the state information is denoted as (0, D0)
where D0 is the load demand PD for Economic Dispatch among
the N generating units. The RL algorithm selects one among the
permissible set of actions (between max. and min. power limits
corresponding to one of the unit) and allocates to the particular
machine considered so that it reaches the next stage (k = 1) with
the remaining power after allocation, and N � 1 units for genera-
tion. Transition from (0, D0) on performing an action a0 2 A0 results
in the next state reached as (1, D1).

D1 ¼ D0 � a0

Or in general, in stage k, from state xk on performing an action ak

reaches state xk+1. i.e., state transition is from (k, Dk) to (k+1,
Dk+1), where

Dkþ1 ¼ Dk � ak ð6Þ

This proceeds until the last stage. Therefore, state transition can be
denoted as,

xkþ1 ¼ f ðxk; akÞ

‘f’ being the function of state transition defined by Eq. (6).
Thus, Economic Dispatch algorithm can be treated as one of
finding an optimum mapping from the state space v to action
space A. The associative nature of the problem arises from the fact
that each action denotes distribution of power to one unit so that
the power to be distributed among the remaining units reduces
by that much amount. Design of Economic Dispatch algorithm is
finding or learning a good or optimal policy (allocation schedule)
which is the optimum allocation at each stage. Such allocation
can be treated as elements of an optimum policy p⁄.

5. RL algorithms for Economic Dispatch

In the previous section, Economic Dispatch is formulated as a
multi stage decision making problem. To find the best action corre-
sponding to each state, Reinforcement Learning based solutions are
explored. Solutions consist of two phases: learning phase and pol-
icy retrieval phase.

One major issue in the learning phase is how to develop an ac-
tion selection strategy which can balance exploitation of available
information and exploration of action space to learn new possibil-
ities. There are various algorithms in RL literature [1,2,32,33]
which balances exploration and exploitation. Here we develop RL
algorithms for economic dispatch using two action selection
strategies.

In algorithm I, a conceptually simple e – greedy algorithm is
used for action selection. In algorithm II Pursuit algorithm is used.
In the next two section these learning algorithms are presented.

5.1. Algorithm I

For solving this multi stage problem using Reinforcement
Learning, first step is fixing of state space v, action space A and
the immediate reinforcement function g (xk,ak,xk+1) precisely. The
different units can be considered arbitrarily as corresponding to
the different stages.

Fixing of state space v primarily depends on number of gener-
ating units available on line and the possible values of power de-
mand (which in turn directly depends on min. and max. values
of power generation possible with each unit). Since there are N
stages for solution of the problem, the state space is also divided
into N subspaces. Thus, if there are N units to be dispatched,

v ¼ v0Uv1U . . . . . . . . . :vN�1:

The dispatch problem should go through N (no: of generating units)
stages for making allocation to each of the N generating units. At
any stage (stagek), the part of state space to be considered (vk) con-
sists of the different tuples having the stage number as k and power
values varying from Dmin(k) to Dmax(k), Dmin(k) being the minimum
power possible to be met with N–k units and Dmax(k) the maximum
power possible with N–k units.

That is, vk = {(k,Dmin(k)), . . .. . .. . .(k, Dmax(k))}, where
Dmin(k) = minimum power possible with N–k units

¼
Xi¼N�1

i¼k

PminðiÞ

DmaxðkÞ ¼maximum power possible with N—k units

¼
Xi¼N�1

i¼k

PmaxðiÞ

At each step, the Economic Dispatch algorithm will select an action
from the permissible set of discretised values and forward the sys-
tem to one among the next permissible states.

The action set Ak consists of different values of MW power that
can be allotted to kth unit. The action set Ak depends on the demand
value Dk at the current state xk and also on the minimum and



Table 1
Algorithm for Economic Dispatch using e greedy.

Get Unit parameters
Initialize the learning parameters
For all the stages Identify possible state vectors, vk

Evaluate minimum and maximum demands permissible at each stage
Initialize Q0(x, a) to zero
Initialize e = 0.5
For (n = 0 to max_iteration)

Begin
PD=rand (Dmin0, Dmax0), D0 = PD

For k = 0 to N � 2
Do

State tuple xk = (k, Dk)
Identify the action space Akusing Eq. (7)
Select an action akfrom action set Ak

using e – greedy method.
Apply action akand obtain the next state, Dk+1 = Dk � ak

Calculate the reward function using Eq. (8)
Update Qnto Qn+1using Eq. (9)

End do
aN�1 = DN�1

Calculate the reward using Eq. (8)
Update Qnto Qn+1using Eq. (10)
Update learning parametere.

End.
Save Q values.
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maximum power generation possible with remaining N–k units.
Therefore action set Ak is dynamic in nature in the sense that it
depends on the power already allotted up to that stage and also
the minimum and maximum generation possible with the remain-
ing N–k units. If Dk is the power to be allotted, minimum value and
maximum value of action ak are defined as

Mink ¼ max½ðDk � DmaxðkÞÞ; PminðkÞ�
Maxk ¼ min½ðDk � DminðkÞÞ; PmaxðkÞ� ð7Þ

The number of elements in these sets v and A depends on the min-
imum and maximum limits and also the sampling step.

In Economic Dispatch problem, the reward function (g) can be
chosen as the cost function itself. That is, reward received or cost
incurred on taking an action ak or allocating a power Pk at kth stage
is the cost of generation of the power Pk. In the Reinforcement
Learning terminology, the immediate reward,

rk ¼ gðxk; ak; xkþ1Þ ¼ CkðPkÞ ð8Þ

Initially Q values of all state–action pairs are set to zero. In each iter-
ation greedy action (ag = arg mina2Ak{Qn(xk, a)}) is found. Then gree-
dy action ag will be chosen with a probability of (1 � e) and one
among all other permissible actions is chosen with a probability
of e. As explained earlier based on the action selected system moves
to the next state. Since the aim is to minimize the cost of generation
estimated Q values of state–action pair are modified at each step of
learning as,

Q nþ1ðxk; akÞ ¼ Q nðxk; akÞ þ a½gðxk; ak; xkþ1Þ þ c min
a2Akþ1

Q nðxkþ1; aÞ

� Q nðxk; akÞ� ð9Þ

Here, a is the step size of the learning algorithm and c is the dis-
count factor.

When the system comes to the last stage of decision making,
there is no need of accounting the future effects and then the esti-
mate of Q value is updated using the equation,

Q nþ1ðxk; akÞ ¼ Q nðxk; akÞ þ a½cgðxk; ak; xkþ1Þ � Q nðxk; akÞ ð10Þ

As the learning steps are carried out sufficient number of times,
estimated Q values of state–action pairs will approach to optimum
so that we can easily retrieve the optimum policy (allocation) p⁄(x)
corresponding to any state x.

The learning procedure can now be summarized. At each itera-
tion of learning phase the algorithm will take the system initial
condition (i.e., for k= 0) which is the power demand, as one random
value within permissible limits. Then an action is performed which
will allocate power to one of the units and then pass to the next
stage (k = 1) with the remaining power. This proceeds until all
the N � 1 units are allotted power. At each state transition step,
the estimated Q value of the state–action pair is updated using
Eq. (9).

As the learning reaches the last stage, since there is no choice of
action, the remaining power to be allotted will be the power corre-
sponding to the action (aN�1 = DN�1). Then the Q value is updated
using Eq. (10). The transition process is repeated a number of times
(iterations) with random values of initial demand and each time
the dispatch process goes through all the N � 1 stages. Value of e
is taken closer to 0.5 in the initial phases of learning and is reduced
in every max_iteration/10 iterations by 0.04.

The entire algorithm of learning using e greedy is given in
Table 1:

5.2. Algorithm II

In this algorithm, we use pursuit for action selection in each
step. In case of Pursuit algorithm, for any given state xk, an action
is selected based on the probability distribution function pxk
ðÞ. In

the case of Economic Dispatch, initially the probability associated
with each action ak in the action set Akcorresponding to xk are ini-
tialized with equal values as

pxk
ðakÞ ¼

1
nk

where nk is total number of permissible actions at stage k. As in the
previous algorithm, initialize the Q values of all state–action pairs to
zero.

Then at each iteration step, an action ak is selected based on the
probability distribution. On performing action ak, it reaches the
next stage with Dk+1 = Dk � ak. The cost incurred in each step of
learning is calculated as the sum of cost of producing power Pk

with the kth generating unit. Q values are then updated using Eq.
(9). At each of the iteration of learning, we find the greedy action
as ag ¼ arg mina2Ak

ðQðxk;; aÞÞ. Then accordingly the probabilities
of actions in the action set are also updated as,

pnþ1
xk
ðakÞ ¼ pn

xk
ðakÞ þ b½1� pn

xk
ðakÞ�; when ak ¼ ag

pnþ1
xk
ðakÞ ¼ pn

xk
ðakÞ � b½pn

xk
ðakÞ�; when ak – ag ð11Þ

The algorithm proceeds through several iterations when ultimately
the probability of best action in each hour is increased sufficiently
which indicate convergence of the algorithm. The entire algorithm
is given in Table 2.

5.3. Policy retrieval algorithm

As the learning proceeds and updating of Q values of state–ac-
tion pairs are done sufficiently large number of times, Qn will be al-
most equal to Q⁄. Then the learned Q values are used to obtain the
optimum dispatch. For any value of power demand PD, initialize
D0 = PD. Then the state of the system is (0, D0). Find the greedy ac-
tion at this stage as ag which is the best allocation for 0th generat-
ing unit (P0). The learning system reaches the next state as (1,D1)
where D1 = D0 � a0, find the greedy action corresponding to stage1

as a1. This proceeds up to (N � 1)th stage. Then a set of actions
(allocations) a0, a1, a2, . . . . . . . . .aN�1 is obtained which is the opti-
mum schedule P0,P1, . . . . . . . . .PN�1 of generation corresponding to
power PD. The algorithm for getting the schedule from the learnt
system follows:



Table 2
Algorithm for Economic Dispatch using Pursuit method.

Get Unit parameters
Initialize learning parameters
For all the stages Identify possible state vectors, vk

Evaluate minimum and maximum demands permissible
Initialize Q0(xk, ak) = 0
Initialize pxk

ðakÞ ¼ 1=nk , nkmaximum number of actions possible in Ak

For (n = 0 to max_iteration)
Begin

PD=rand (Dmin0, Dmax0), D0 = PD

For k = 0 to N � 2
Do

State tuple xk = (k, Dk)
Identify the action space Ak using Eq. (7)
Select an action a k using pxk

ðÞ
Apply action akand find the next state, Dk+1 = Dk � ak

Calculate the reward function gðxk; ak; xkþ1Þ using Eq. (8)
Update Qn to Qn+1 using Eq. (9)
Update probability pn

xk
ðakÞ to pnþ1

xk
ðakÞ using Eq. (11)

End do
aN�1 = DN�1

Calculate the reward using Eq. (8)
Update Q nto Qn+1using Eq. (10)
Update probability pn

xk
ðakÞ to pnþ1

xk
ðakÞ using Eq. (11)

End.
Save Q values.

Table 3
Algorithm for Economic Dispatch considering transmission losses.

Get unit parameters including B-coefficient matrix of the system
Learn the Q values using Pursuit method (Table 2)
Calculate the range of load values possible Dmin(0) to D max(0)

Initial load PD = Dmin(0)

Do
Initialize Ploss and Prev_loss to zero
Initialize final loss tolerance to a small value l
Initialize change in loss (D) to zero
Do

Prev_loss=Ploss

Find the allocation corresponding to PD using the policy retrieval
Find the loss using B coefficients as Ploss

Update PD = PD + Ploss

Compute change in loss D = Ploss � prev_loss
while (D > l)
Increment the load PD with suitable discrete step value.

While (PD < =Dmax(0))
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Policy retrieval algorithm:

Read the Q values saved in the learning phase
Initialize PD = Total power to be dispatched
D0 = PD

For (k = 0 to N � 1)
Do

State tuple xk = (k, Dk)
Find greedy action ag = argmina(Q(xk,a))
Scheduled Power Pk = ag

Dk+1 = Dk � Pk

End do

Thus, on executing the learning algorithm and then retrieving

the schedule by finding the greedy action corresponding to the in-
put power to each stage of the multi stage decision making task,
optimum schedule is obtained for any value of load demand.

Till now, the transmission losses in the system are neglected.
Now the Reinforcement Learning approach is extended in order
to accommodate the transmission losses occurring in the system.

6. RL algorithm for Economic Dispatch considering
transmission losses

The loss in a transmission network can be estimated by execut-
ing power flow algorithm or can be approximated using B-matrix
loss formula. In order to find the schedule accounting the transmis-
sion losses, one of the previous algorithms can be used to carry out
the learning steps. Being more efficient and faster, pursuit learning
strategy is employed for learning the system, generating random
values of initial demand. Once the learning phase is completed,
the policy retrieval steps provide us with the optimum schedule
for any load value. In order to incorporate the transmission losses,
the learning is carried out first and policy retrieval is done succes-
sively for different values of load values, accounting the losses.

First learn the Q value for the different state–action pairs. Sche-
dule for the required load demand is retrieved by policy retrieval
phase. For the schedule obtained, transmission losses are calcu-
lated by either finding the power flows or using B-matrix loss for-
mula. The input demand is then modified by adding the calculated
loss MW. The learning algorithm proceeds to find the dispatch for
the new demand value, giving out the new schedule of generation.
This new power allocation will certainly give a new value of trans-
mission loss, which is again used for updating the demand.

The iterative procedure is continued until the loss calculation
converges (indicated by the change in loss in two successive itera-
tions coming within tolerable limits). By following these steps iter-
atively for different load values ranging from Dmin(0) to Dmax(0),
economic allocation schedule for the entire range of possible de-
mand (with the given generating units) is obtained. Algorithm
incorporating transmission loss to find the schedule for all the pos-
sible values of load demand is presented in Table 3.

The discrete step for load MW is taken as 10 MW so as to man-
age the number of states at each stage of the problem. Value of l is
taken as 1 MW so that transmission loss, less than 1 MW can be
neglected compared to the load power. Once the learning phase
is completed, the economic allocation for all the possible load val-
ues can be obtained instantaneously. The main attraction of these
algorithms comes from the fact that the learning is carried out only
once and need not be repeated for each load demand as in other
stochastic methods.
7. Performance of algorithms

The proposed Economic Dispatch algorithms are assessed using
different standard test cases. RL based Economic Dispatch can be
applied for finding the schedule for generating units when the cost
of generation is provided in any of the different forms like variable
cost table, cost coefficient, piecewise cost functions and actual cost
data from a plant. This becomes useful when the cost of power var-
ies in every block of time since the availability of power is practi-
cally a dynamic one.

Algorithms are coded in C language and compiled and executed
in GNU Linux environment. Performance evaluation is done with
Pentium IV, 2.9 GHz, 512MB RAM personal computer.

In order to validate the proposed algorithms and make a com-
parison among them, first a three generator system with cost data
given in a tabular form is considered [13]. The first two algorithms
are executed to find the dispatch without transmission losses and a
comparison of execution time is made.

Then IEEE 30 bus system with six generating units having qua-
dratic cost functions [34] is taken in order to prove the efficacy of
the proposed approaches. The suitability of the proposed algo-
rithms for a system having generating units with piecewise cost
functions is also studied by considering a 10 generator system.
The last algorithm is validated and the flexibility of the Reinforce-
ment Learning solution is investigated for system with 20 generat-
ing units having given cost functions.



Table 6
Allocation schedule for three generator system.

D (MW) P1 (MW) P2 (MW) P3 (MW) Cost (Rs)

250 50 50 150 3558
275 50 150 75 3868.5
300 50 100 150 4168
325 50 125 150 4463
350 50 150 150 4758
375 100 125 150 5113
400 100 150 150 5408
425 125 150 150 5720.5
450 150 150 150 6033
475 175 150 150 6375.5
500 200 150 150 6708

Table 7
Comparison execution time for e greedy and pursuit solutions.

e greedy Pursuit

No: of iterations 100,000 50,000
Computation time (s) 2.567 1.754
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In order to apply Reinforcement Learning algorithms, first the
learning parameters are to be fixed based on the problem environ-
ment. The learning parameter e accounts for rate of exploration
and exploitation needed. Since it indicates a probability, it can take
any positive value less than 1. A small fixed value may result in
premature convergence of the learning algorithm while a large
fixed value may make the system oscillatory. Therefore in these
RL based algorithms, a value of 0.5 is assumed initially providing
sufficient exploration of the search space and is decreased by a
small factor successively.

Discount parameter c accounts for the discount to be made in
the present state for accounting of future reinforcements and since
in the case of Economic Dispatch problem, the cost of future stages
has the same implication as the cost of the current stage, value of c
is taken as 1.

The step size of learning is given by the parameter a and it af-
fects the rate of modification of the estimate of Q value at each iter-
ation step. By trial and error a is taken as 0.1 for achieving
sufficiently good convergence of the learning system. The RL
parameters used in the dispatch problem are tabulated in Table 4

Case I – three generator system
First a simple example with three generating units [13] is
considered for validating and explaining the RL approach of
solution. The transmission losses are neglected in this case. The
cost details are given in tabular form, which can be obtained from
experience in case of a practical system. The unit characteristics
are given in Table 5, where Ci stands for the cost of generating
P MW by ith unit.

The three generating units are having the minimum and maxi-
mum power generation possible as (50, 200), (50, 150) and (50,
175). The discretization step for state space and action space, Ss

and Sa are taken as 25 MW.
Therefore,

Dminð0Þ ¼ 150; Dmaxð0Þ ¼ 525
Dminð1Þ ¼ 100; Dmaxð1Þ ¼ 325
and Dminð2Þ ¼ 50; Dmaxð2Þ ¼ 175

In order to understand the performance of RL algorithms, the differ-
ent components of the multi stage decision process are to be iden-
tified. The state tuples is of the form (k, Dk), Dk being the power to
be dispatched at kth stage.
Table 4
RL parameters.

e 0.5
a 0.1
c 1

Table 5
Cost table for three generator system.

P (MW) C1 C2 C3

0 100,000 100,000 100,000
25 100,000 100,000 100,000
50 810 750 806
75 1355 1155 1108.5

100 1460 1360 1411
125 1772.5 1655 11704.5
150 2085 1950 1998
175 2427.5 100,000 2358
200 2760 100,000 100,000
225 100,000 100,000 100,000
Then, state space v = v0Uv1Uv2 where

v0 ¼ fð0;150Þ; ð0;175Þ; ð0;200Þ; . . . . . . . . . . . . ; ð0:525Þg
v1 ¼ fð1;100Þ; ð1;125Þ; ð1;150Þ; . . . . . . . . . . . . ; ð1;325Þg
and v2 ¼ fð2;50Þ; ð2;75Þ; ð2;100Þ; . . . . . . . . . . . . ; ð2;175Þg

Now identify the action space, which is a dynamic one since it de-
pends on the value of power Dk to be dispatched. The minimum and
maximum values of actions are found out as

Min0 ¼ ðD0 � Dmaxð1ÞÞ or Pminð0Þ whichever is greater
Max0 ¼ ðD0 � Dminð1ÞÞ or Pmaxð0Þ whichever is smaller
Min1 ¼ ðD1 � Dmaxð1ÞÞ or Pminð1Þ whichever is greater
Max2 ¼ ðD1 � Dminð1ÞÞ or Pmaxð1Þ whichever is smaller
Min2 ¼ Pminð2Þ; Max2 ¼ Pmaxð2Þ

For the purpose of explaining the algorithm, let the random value
generated for the demand be 300 MW. Then the action space at
stage0 is

A0 ¼ f50;75; . . . . . . . . . ;200g

One of these actions is selected and it passes to the next stage k = 1.
Then the action space A1 is identified and action selection is
continued.

The two algorithms, based on e greedy and pursuit are executed.
Both the algorithm gave same results. The allocation schedule for a
load demand of 300 is obtained as (50,100,150) and the cost of
generation is Rs. 4168/-. Using policy retrieval phase, power sche-
dule for any value of possible input demand values can be re-
trieved. The two algorithms are run for various values of power
demand Dmin(0) < = PD < = Dmax(0), i.e., 150 < = PD < = 525. Part of
the simulation result is tabulated in Table 6 which is consistent
with results given in [13].

For comparing the efficacy of the two algorithms, Simulation
time for the two algorithms are compared in Table 7

On comparing the computation time and performance of the
algorithms, Algorithm II seems to be better.

Case II – IEEE 30 bus system
To prove the flexibility , the proposed algorithms are now tested
for IEEE 30 bus system consisting of six generators [34], without
considering the transmission losses. The system cost data is given
in quadratic cost coefficient form as given in Table 8. i.e., for any



Table 9
Allocation schedule for IEEE 30 bus system.

D
(MW)

P1

(MW)
P2

(MW)
P3

(MW)
P4

(MW)
P5

(MW)
P6

(MW)
Cost (Rs)

600 150 100 50 160 40 100 5951.611
700 150 100 50 260 40 100 6591.591
800 150 100 50 360 40 100 7285.371
900 150 100 50 460 40 100 8032.951

1000 160 150 50 500 40 100 8847.839
1100 210 190 60 500 40 100 9698.202
1200 260 220 80 500 40 100 10563.33
1300 310 260 90 500 40 100 11443.07
1400 350 300 110 500 40 100 12337.4
1500 400 340 120 500 40 100 13246.5
1600 440 380 140 500 40 100 14170.28
1700 500 400 160 500 40 100 15109.32
1800 580 400 180 500 40 100 16070.22
1900 600 400 200 500 100 100 17070.12
2000 600 400 200 500 180 120 18108.22
2100 600 400 200 500 270 130 19175.55
2200 600 400 200 500 350 150 20,272
2300 600 400 200 500 350 250 21483.2

Table 10
Generator data for 10 generator system.

Gen. Pmin (MW) Pmax (MW) a b c

1 100 196 26.97 �0.3975 0.002176
1 196 250 21.13 �0.3059 0.001861
2 50 114 1.865 �0.03988 0.001138
2 114 157 13.65 �0.198 0.00162
2 157 230 118.4 �1.269 0.004194
3 200 332 39.79 �0.3116 0.001457
3 332 388 �2.876 0.03389 0.000804
3 388 500 �59.14 0.4864 1.18E�05
4 99 138 1.983 �0.03114 0.001049
4 138 200 52.85 �0.6348 0.002758
4 200 265 266.8 �2.338 0.005935
5 190 338 13.92 �0.08733 0.001066
5 338 407 99.76 �0.5206 0.001597
5 407 490 53.99 0.4462 0.00015
6 85 138 1.983 �0.03114 0.001049
6 138 200 52.85 �0.6348 0.002758
6 200 265 266.8 �2.338 0.005935
7 200 331 18.93 �0.1325 0.001107
7 331 391 43.77 �0.2267 0.001165
7 391 500 43.35 0.3559 0.000245
8 99 138 1.983 �0.03114 0.001049
8 138 200 52.85 �0.6348 0.002758
8 200 265 266.8 �2.338 0.005935
9 130 213 14.23 �0.01817 0.000612
9 213 370 88.53 �0.5675 0.001554

10 362 407 46.71 �0.2024 0.001137
10 407 490 61.13 0.5084 4.16E�05
10 407 490 61.13 0.5084 4.16E�05

Table 8
Cost coefficients for IEEE 30 bus system.

Ca Cb Cc Pmin (MW) Pmax (MW)

561 7.92 0.001562 150 600
310 7.85 0.00194 100 400

78 7.978 0.00482 50 200
102 5.27 0.00269 100 500

51 9.9 0.00172 40 350
178 8.26 0.00963 100 280
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power P, cost of generation is given out by the equation C(P) =
Ca + Cb⁄P + Cc⁄P2, where Ca, Cb and Cc are the cost coefficients.

Also the maximum and minimum generations possible for each
of the six generators are specified.

The maximum generation possible with these six generators
turns out to be 2330 MW while minimum generation is 540 MW.
The RL algorithms are now applied to get the economic allocation
for the six units.

The discretization step for action and state space are taken as
10 MW as balance between the accuracy and size of the state
and action spaces. At each step of iteration, action is selected
according to the exploration method. The Q values of state–action
pairs are updated for which cost of generation is calculated by
evaluating the quadratic equation.

In case of e greedy method, after 5 � 105 iterations the Q values
approach optimum while pursuit solution converged in 2 � 105

iterations. The optimum dispatch is found out by tracing out the
greedy action which give out minimum Q value corresponding to
a particular state Dk as k vary from 0 to N � 1. The optimum sche-
dule for the different values of power demand is obtained using the
policy retrieval phase. Schedule for the entire load values ranging
from 540 MW to 2330 MW is obtained. The entire schedule is ob-
tained in 23.87 s and 15.63 s respectively for the two algorithms
which proves the suitability of the algorithms

The algorithms are executed in several trials and the cost and
allocation schedule obtained are almost the same with negligible
error in the different trials of the solutions.

A part of the allocation schedule corresponding to various val-
ues of power demand in steps of 100MW is tabulated in Table 9.

Case III – 10 Generator system with piece wise quadratic cost
functions
To verify the algorithms for non convex cost functions and com-
pare with one of the recent techniques, 10 generator system having
piecewise quadratic cost functions [24] is considered. The different
generators are having two or three different operating regions. If
the Cost function is Ci and the space interval is divided into three
divisions, then it is represented as follows:

CiðPÞ ¼ aið1Þ þ bið1ÞPi þ cið1ÞP
2
i ðPminðiÞ 6 Pi P Pið1ÞÞ

¼ aið2Þ þ bið2ÞPi þ cið2ÞP
2
i ðPið1Þ 6 Pi P Pið2ÞÞ

¼ aið3Þ þ bið3ÞPi þ cið3ÞP
2
i ðPið2Þ 6 Pi P PmaxðiÞÞ

The data (ai,bi,ci,Pmin,Pmax) of generators are given in Table 10
The system is made to learn using the two algorithms given in

Tables 1 and 2 and the Q values approach optimum in 5 � 106 and
1.5 � 107 iterations respectively. The same values of learning
parameters are taken as in previous cases. The discretization step
for state and action spaces is taken as 10 MW.

Part of the allocation schedule corresponding to values of power
demand ranging from 1400 MW to 3000 MW obtained are given in
Table 11. The times of execution are 38.69 s and 34.95 s respec-
tively. The cost and allocation schedule obtained are comparable
with that of improved genetic algorithm [24].

The simulation results proved the suitability and efficiency of
the proposed algorithms for scheduling of generators with differ-
ent categories of cost functions. Now incorporating the transmis-
sion losses, schedule for 20 generating unit system is obtained.

Case IV – 20 Generator system

For validating the Reinforcement Learning algorithm account-
ing the transmission losses occurring in the system and to prove
the scalability of Reinforcement Learning based algorithms, next
a 20 generator system is considered. The cost function is given in
quadratic form. The unit details are given in Table 12.

The transmission loss is calculated using B coefficient matrix.
Algorithm given in Table 3 is executed to give the schedule for
the range of load from 1000 MW to 3000 MW. The execution time
taken is 37.97 s Part of the schedule and the loss are tabulated in
Table 13.



Table 11
Part of schedule – 10 generator system.

Demand (MW) P1 P2 P3 P4 P5 P6 P7 P8 P9 P10 Cost (Rs)

1400 100 170 200 190 190 150 50 200 50 100 903.30
1800 100 220 200 260 270 150 250 200 50 100 1101.472
2200 120 220 210 430 450 150 250 220 50 100 1411.387
2700 210 220 350 500 500 150 250 350 50 120 1960.531
3000 250 220 440 500 500 170 250 440 80 150 2399.784

Table 12
Generator details of 20 generator system.

Unit Ca Cb Cc Pmin (MW) Pmax (MW)

1 1000 18.19 0.00068 150 600
2 970 19.26 0.00071 50 200
3 600 19.8 0.0065 50 200
4 700 19.1 0.005 50 200
5 420 18.1 0.00738 50 160
6 360 19.26 0.00612 20 100
7 490 17.14 0.0079 25 125
8 660 18.92 0.00813 50 150
9 765 18.97 0.00522 50 200

10 770 18.92 0.00573 30 150
11 800 16.69 0.0048 100 300
12 970 16.76 0.0031 150 500
13 900 17.36 0.0085 40 160
14 700 18.7 0.00511 20 130
15 450 18.7 0.00398 25 185
16 370 14.26 0.0712 20 80
17 480 19.14 0.0089 30 85
18 680 18.92 0.00713 30 120
19 700 18.47 0.00622 40 120
20 850 19.79 0.00773 30 100

Table 13
Schedule for 20 generator system.

D (MW) 2000 2500 3000

P1 421 498 530
P2 140 159 167
P3 105 120 140
P4 94 118 135
P5 81 92 97
P6 51 74 87
P7 89 115 141
P8 81 106 162
P9 84 103 155
P10 70 98 108
P11 236 290 358
P12 89 120 136
P13 82 119 124
P14 90 115 147
P15 23 30 70
P17 64 87 111
P19 72 100 106
P20 45 54 75
Loss 39 64 81

Table 14
Comparison of computation times of different RL algorithms (time in seconds).

e greedy Pursuit Pursuit with
transmission
losses

Three gen system with given cost table,
neglecting transmission loss

2.567 1.754

IEEE 30 bus system with 6 generators,
neglecting transmission losses

23.87 15.63

10 generator system with piecewise
quadratic cost coefficients

42.87 38.69

20 Gen. system considering
transmission losses

37.97
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The different Reinforcement Learning algorithms have been
tested for their efficacy and performance. The computation time
of the different RL algorithms for the different test cases are tabu-
lated for comparison in Table 14.
8. Conclusion

In this paper, two RL based algorithms to solve Economic Dis-
patch problem was presented. The algorithms were validated using
different test cases found in literature, and the performance were
found to be promising. In the proposed solution strategy, with a
single learning task the schedule for any load demand can be easily
retrieved. This makes the algorithm efficient compared to other
soft computing techniques. Also in the reinforcement Learning
solution, the reward function which in this case is the cost of gen-
eration need not be a mathematically defined function. It can take
stochastic cost data from a real time environment. In other words
the algorithm is suitable to accommodate any cost characteristics.

RL approach to Economic Dispatch is a promising area of re-
search work. With further work , RL based algorithms can be used
to learn optimum schedule from real time data. Reinforcement
Learning approach is a powerful tool for solving optimisation prob-
lem. Developments in RL could be exploited to develop better algo-
rithms for various optimization problems in power systems.
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