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In the present paper, we introduce a quantile based Rényi’s entropy function and its resid-
ual version. We study certain properties and applications of the measure. Unlike the resid-
ual Rényi’s entropy function, the quantile version uniquely determines the distribution.
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1. Introduction

The notion of entropy, later extended to information theory and statistical mechanics, was originally developed by
physicists in the context of equilibrium thermodynamics. In 1865, Rudolf Julius Emanuel Clausius, one of the founders of
thermodynamics coined the term entropy derived from the Greek word en-trepein which means energy turned to waste,
although the concept was introduced by him in the year 1850 in the context of classical thermodynamics. Later, a statistical
basis to entropy was given by Ludwig Boltzmann, Willard Gibbs and James Clerk Maxwell (see, Nanda and Das (2006)). A
general concept of entropy to quantify the statistical nature of lost information in phone-line signals mathematically was
developed by Shannon (1948), an electrical engineer from Bell Telephone Laboratory. In the last few years, the literature
on information theory has grown quite voluminous. Apart from communication theory, information theory has found lot of
applications in many social, physical and biological sciences, viz., economics, statistics, accounting, language, psychology,
ecology, pattern recognition, computer sciences, fuzzy sets etc. (see, Taneja (2001)).

Let X be an absolutely continuous nonnegative random variable (rv) representing the lifetime of a component with
cumulative distribution function (CDF) F(t) = P(X ≤ t) and survival function (SF) F̄(t) = P(X > t) = 1 − F(t). The
measure of uncertainty (Shannon, 1948) is defined by

H(X) = H(f ) = −


∞

0
(ln f (x)) f (x)dx = −E(ln f (X)), (1.1)
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where f (t) is the probability density function (PDF) of X . Eq. (1.1) gives the expected uncertainty contained in f (t) about
the predictability of an outcome of X , which is known as Shannon information measure. Since the measure (1.1) may not be
appropriate for used items, Ebrahimi (1996) modified (1.1) using the residual rv, given by

H(X; t) = H(f ; t) = −


∞

t


f (x)
F̄(t)


ln


f (x)
F̄(t)


dx. (1.2)

H(X; t) is known as the Shannon residual entropy function. Note that H(X; t) = H(Xt), where Xt = (X − t|X > t) is the
residual time associated to X . For more properties of (1.1) and (1.2), we refer to Ebrahimi and Pellery (1995), Asadi and
Ebrahimi (2000) and Borzadaran et al. (2007).

There are several generalizations of (1.1) available in the literature. One generalization is due to Rényi (1961). For a
nonnegative rv X the Rényi’s entropy is defined as

Hβ(X) =
1

1 − β
ln


∞

0
(f (x))β dx, β > 0, β ≠ 1, (1.3)

which, as β → 0, reduces to Shannon’s entropy. For used items, a residual version of Rényi’s entropy is due to Abraham and
Sankaran (2005), given by

Hβ(X; t) =
1

1 − β
ln


∞

t


f (x)
F̄(t)

β

dx, β > 0, β ≠ 1. (1.4)

When the system has the age t , Hβ(X; t) provides the spectrum of Rényi’s information on the remaining life of the system
for different values of β . Obviously, Hβ(X; 0) = Hβ(X). For more properties and applications of (1.3) and (1.4), one could
refer to Song (2001), Asadi et al. (2005, 2006), Baratpour et al. (2008), Zarezadeh and Asadi (2010), Li and Zhang (2011),
Fashandi and Ahmadi (2012) and the references therein.

All these theoretical results and applications thereof are based on the distribution function. A probability distribution can
also be specified in terms of the quantile functions (QFs). Recently, it has been showed by many authors that the QF defined
by

Q (u) = F−1(u) = inf{t|F(t) ≥ u}, 0 ≤ u ≤ 1 (1.5)

is an efficient and equivalent alternative to the distribution function inmodelling and analysis of statistical data (seeGilchrist
(2000), Nair and Sankaran (2009)). In many cases, QF is more convenient as it is less influenced by extreme observations,
and thus provides a straightforward analysis with a limited amount of information. For detailed and recent studies on QF,
its properties and usefulness in the identification of models we refer to Nair et al. (2008, 2011), Nair and Sankaran (2009),
Sankaran and Nair (2009), Sankaran et al. (2010) and the references therein.

The quantile functions used in applied work like various forms of lambda distributions (Ramberg and Schmeiser, 1974;
Freimer et al., 1988; van Staden and Loots, 2009; Gilchrist, 2000), the power-Pareto distribution (Gilchrist, 2000; Hankin
and Lee, 2006), Govindarajulu distribution (Nair et al., 2011) etc. do not have tractable distribution functions. Thismakes the
analytical study of the properties of these distributions by means of (1.1) or (1.2) difficult. Accordingly, Sunoj and Sankaran
(2012) introduced quantile versions of the Shannon entropy (1.1) and its residual form (1.2). The quantile based residual
entropy is defined by

ξ(u) = ξ(X;Q (u)) = ln(1 − u) + (1 − u)−1
 1

u
ln q(p)dp. (1.6)

They have shown that unlike the measure (1.2), the quantile based residual entropy function determines the QF uniquely.
The definition and properties of the quantile based entropy function of past lifetime are available in Sunoj et al. (2013).

In the present paper, we introduce a quantile based Rényi’s residual entropy function and study its important properties.
The proposed measure has several advantages. First, unlike (1.4), the proposed measure uniquely determines the quantile
distribution function. Second, we derive entropy functions for certain quantile functions which do not have an explicit form
for distribution functions. Finally we provide new characterizations for some families of distributions that are useful in
lifetime data analysis.

The rest of the article is organized as follows. In Section 2, we give Rényi’s entropy in terms of the quantile function. It is
shown that the proposed measure determines the distribution uniquely. Various properties of the measure are discussed.
We present certain characterization of distributions. In Section 3, we present ageing and ordering properties of residual
Rényi’s entropy function.

2. Quantile based Rényi’s residual entropy

Suppose that X is a non-negative rv as described in Section 1. When the distribution function F is continuous, we have
from (1.5), FQ (u) = u, where FQ (u) represents the composite function F(Q (u)). Denote the density quantile function by
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Table 1
Quantile functions and quantile based Rényi’s entropy.

Distribution Quantile functions Hβ (X;Q (u))

Exponential −
1
λ
ln(1 − u) −

lnβ

(1−β)
− ln λ

Uniform a + (b − a)u ln [(b − a)(1 − u)]

Pareto II α

(1 − u)−

1
c − 1


ln


α
c


+

1
(1−β)

ln


c
β(c+1)−1


−

1
c ln(1 − u)

Rescaled beta α

1 − (1 − u)

1
c


ln


α
c


+

1
(1−β)

ln


c
β(c−1)+1


+

1
c ln(1 − u)

Pareto I α(1 − u)−
1
c ln


α
c


+

1
(1−β)

ln


c
β(c+1)−1


−

1
c ln(1 − u)

Power αu
1
c ln


α
c


+

1
(1−β)

ln


c
β(c−1)+1


function +

1
(1−β)

ln(1 − u)
β(c−1)+1

c −
β

(1−β)
ln(1 − u)

Generalized Pareto b
a


(1 − u)−

a
(a+1) − 1


log

 b
a+1


+

1
(1−β)

log


a+1
β(2a+1)−a


−

a
(a+1) log(1 − u)

fQ (u) = f (Q (u)) (see, Parzen (1979)) and the quantile density function by q(u) = Q ′(u), where the prime denotes the
differentiation. Using (1.5), differentiation of F(Q (u)) = u provides

q(u)fQ (u) = 1. (2.1)

From (1.4) and (2.1), Rényi’s residual entropy denoted by Hβ(X;Q (u)) is defined as

(1 − β)Hβ(X;Q (u)) = ln


∞

Q (u)

f β(x)
(1 − u)β

dx

= ln
 1

u

(fQ (p))β

(1 − u)β
q(p)dp

= ln
 1

u


1

(1 − u)q(p)

β

q(p)dp

= ln
 1

u

1
(1 − u)β

(q(p))1−βdp. (2.2)

The above expression may be referred as Rényi’s residual quantile entropy. For different values of β , Hβ(X;Q (u)) in (2.2)
provides the spectrum of Rényi’s information contained in the conditional density about the predictability of an outcome
of X until 100(1 − u)% point of distribution. As u → 0, the expression (2.2) gives the Rényi’s quantile entropy, which is the
quantile version of (1.3). Eq. (2.2) can also be written as

(1 − β)Hβ(X;Q (u)) = ln
 1

u
(q(p))1−β dp − β ln(1 − u)

or  1

u
(q(p))1−β dp = (1 − u)β exp


(1 − β)Hβ(X;Q (u))


. (2.3)

Differentiating (2.3) with respect to u, we get

(q(u))1−β
= (1 − u)β−1 exp


(1 − β)Hβ(X;Q (u))

 
β − (1 − β)(1 − u)H ′

β(X;Q (u))

,

which leads to

q(u) =
exp


Hβ(X;Q (u))


(1 − u)


β − (1 − β)(1 − u)H ′

β(X;Q (u))
 1

(1−β) . (2.4)

The residual Rényi’s entropy Hβ(X; t) given in (1.4) in general does not provide an explicit relationship between Hβ(X; t)
and f (t). Asadi et al. (2005) have proved that Hβ(X; t) uniquely determines the distribution when the density function is
monotone. However, Eq. (2.4) provides a direct relationship between q(u) and Hβ(X;Q (u)) which shows that Hβ(X;Q (u))
uniquely determines the underlying distribution. For example, when Hβ(X;Q (u)) = a + bu, a linear function in u, then

from (2.4) the quantile density function q(u) is of the form q(u) =
exp(a+bu)

(1−u) [β − (1 − β)b(1 − u)]
1

1−β . On the other hand,
for the residual entropy function Hβ(X; t) given in (1.4), no direct relationship exists analogous to (2.4) that determines the
distribution uniquely. Table 1 provides some important quantile lifetime models and its Hβ(X;Q (u)).
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Unlike the models in Table 1, there are some models that do not have any closed form expressions for CDF or PDF, but
have simple QF’s or quantile density functions. For instance, consider the quantile density function (see Nair et al. (2011))
given by

q(u) = cuα(1 − u)
1

1−β . (2.5)

From (2.5), we get Hβ(X;Q (u)) as

Hβ(X;Q (u)) = ln c −
1

(1 − β)
ln [α(1 − β) + 1] [α(1 − β) + 2] −

β

(1 − β)(1 − u)

+
1

(1 − β)
ln


(α(1 − β) + 2) (1 − uα(1−β)+1) − (α(1 − β) + 2) (1 − uα(1−β)+1)


.

When the quantile density function is of the form

q(u) = (1 − u)−A(− ln(1 − u))−M ,

then Hβ(X;Q (u)) becomes

Hβ(X;Q (u)) =
1 − M(1 − β)

(1 − β)
ln (− ln(1 − u)) −

1
(1 − β)

ln (M(1 − β) − 1) −
β

(1 − β)
ln(1 − u). (2.6)

To study ageing behaviour of Hβ(X;Q (u)), we differentiate (2.2) with respect to u, which gives

(1 − β)
d
du

Hβ(X;Q (u)) =
d
du


ln

 1

u
(q(p))1−βdp − β ln(1 − u)


=

(q(u))1−β 1
u (q(p))1−βdp

+
β

1 − u

=
β

 1
u (q(p))1−βdp − (1 − u)(q(u))1−β

(1 − u)
 1
u (q(p))1−βdp

.

Case I: Let 0 < β < 1. If Hβ(X;Q (u)) is increasing in u, then we have

β

 1

u
(q(p))1−βdp > (1 − u)(q(u))1−β ,

which leads to

e(1−β)Hβ (X;Q (u)) >
1
β

[q(u)(1 − u)]1−β

=
(H(u))β−1

β
,

where H(u) is the hazard quantile function defined by

H(u) = [(1 − u)q(u)]−1.

H(u) explains the conditional probability of failure in the next small interval of time given survival until 100(1 − u)% point
of distribution (see Nair and Sankaran (2009)). The above inequality can be rewritten as

Hβ(X;Q (u)) > − lnH(u) −
lnβ

1 − β
. (2.7)

It is to be noted that, as β → 1−, the right hand side of (2.7) tends to 1 − lnH(u).
Case II: Let β > 1. If Hβ(X;Q (u)) is increasing in u, then we have

β

 1

u
(q(p))1−βdp 6 (1 − u)(q(u))1−β ,

which can equivalently be written as

e(1−β)Hβ (X;Q (u)) 6
1
β

[q(u)(1 − u)]1−β

=
(H(u))β−1

β
,
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or

Hβ(X;Q (u)) > − lnH(u) −
lnβ

1 − β
. (2.8)

As β → 1+, the right hand side of (2.8) tends to 1− lnH(u). Thus, we see that, as β → 1, we get the bounds for the residual
quantile entropy function given in Sunoj and Sankaran (2012), as expected. We prove later that equality in (2.8) holds if and
only if the underlying distribution is exponential.

When Hβ(X;Q (u)) is decreasing in u, the derivation is similar. Now, combining the above two cases, we get the bounds
for Hβ(X;Q (u)) as given below. It is to be noted that the bounds do not depend on whether β is greater than or less than
unity.

Theorem 2.1. If Hβ(X;Q (u)) is increasing (decreasing) in u, then

Hβ(X;Q (u)) > (6)
lnβ

β − 1
− lnH(u)

→ 1 − lnH(u), as β → 1.

Next we prove a characterization theorem for exponential, Pareto II and rescaled beta models using Hβ(X;Q (u)).

Theorem 2.2. The relationship

Hβ(X;Q (u)) = A + B ln(1 − u) (2.9)

where A > 0 holds for u > 0, if and only if X follows exponential when B = 0, Pareto II when B < 0 and rescaled beta when
B > 0.

Proof. The necessary part follows from Table 1 and the converse part follows from (2.4).

Remark 2.1. When A = 0 and B > 0, Eq. (2.9) is a characterization of Uniform distribution.

3. Ageing and ordering properties

We now study the ageing and ordering properties of Hβ(X;Q (u)).

Definition 3.1. X is said to have increasing (decreasing) Rényi’s quantile entropy (IRRQE) (DRRQE) if Hβ(X;Q (u)) is
nondecreasing (nonincreasing) in u.

For exponential distributionHβ(X;Q (u)) is constant so that it is the boundary class of the above two nonparametric classes.
For the exponential distribution, the hazard quantile function H(u) is also constant. When X follows U(0, 1), Q (u) = u,
but Hβ(X;Q (u)) = ln(1 − u). Therefore Hβ(X;Q (u)) is nonincreasing in u, while its hazard quantile H(u) =

1
1−u is

nondecreasing. On the other hand, when X follows Pareto II, Hβ(X;Q (u)) is nondecreasing in u, while H(u) is nonincreasing
in u. Also from (2.6), we have H ′

β(X;Q (u)) =
1−M(1−β)

(1−β)(− ln(1−u))(1−u) +
β

(1−β)(1−u) which is positive for 0 < M < 1, 0 < β < 1,
and negative forM < 0, β > 1. These observations establish the fact that there is no direct relationship between increasing
(decreasing) hazard rate (IHR) (DHR) class and IRRQE (DRRQE) class.

Belowwe see how themonotonicity of Hβ(X;Q (u)) is affected by increasing transformation. The following lemma helps
us to prove the results on monotonicity of Hβ(X;Q (u)).

Lemma 3.1. Let f (u, x) : R2
+

→ R+ and g : R+ → R+ be any two functions. If


∞

u f (u, x)dx is increasing and g(u) is
increasing (decreasing) in u, then


∞

u f (u, x)g(x)dx is increasing (decreasing) in u, provided the integrals exist.

Proof. Given that


∞

u f (u, x)dx is increasing in u. This means that
∞

u

∂

∂u
(f (u, x)g(u))dx > (6)f (u, u)g(u). (3.1)

We have to show that


∞

u f (u, x)g(x)dx is increasing (decreasing) in u, which means
∞

u

∂

∂u
f (u, x)g(x)dx > (6)f (u, u)g(u). (3.2)

From (3.1) and (3.2), it is sufficient to show that
∞

u

∂

∂u
f (u, x)g(x)dx > (6)


∞

u

∂

∂u
(f (u, x)g(u))dx.
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Or, equivalently,
∞

u

∂

∂u
(f (u, x) (g(x) − g(u))) dx > (6)0.

This holds if g(·) is increasing (decreasing).

In the following theorem, we write Hβ(z) to mean that it is the Hβ function, as defined earlier, for the random variable Z .

Theorem 3.1. For a nonnegative random variable X, define Y = φ(X), where φ(·) is a nonnegative, real-valued, increasing and
convex (concave) function. Denote QX (u) and QX (u) as QF’s of rv’s X and Y respectively.

(i) For 0 < β < 1, HY
β (QY (u)) is increasing (decreasing) in u whenever HX

β (QX (u)) is increasing (decreasing) in u.
(ii) For β > 1, HY

β (QY (u)) is decreasing (increasing) in u whenever HX
β (QX (u)) is increasing (decreasing) in u.

Proof. (i) Denote qX (.) as the quantile density function of X . From the given condition, we have

1
1 − β

ln
 1

u

(qX (p))1−β

(1 − u)β
dp is increasing (decreasing) in u,

which gives that

ln
 1

u

(qX (p))1−β

(1 − u)β
dp is increasing (decreasing) in u.

Now, from the definition of Hβ , we have

(1 − β)HY
β (QY (u)) = ln

 1

u

(qY (p))1−β

(1 − u)β
dp

= ln
 1

u


qX (p)φ′(QX (p))

1−β

(1 − u)β
dp.

This can equivalently be written as

HY
β (QY (u)) =

1
1 − β

ln
 1

u


(qX (p))1−β

(1 − u)β

 
φ′(QX (p))

1−β dp. (3.3)

Since 0 < β < 1 and φ is nonnegative, increasing and convex (concave), we have

φ′(Q (p))

1−β is increasing (decreasing)
and is nonnegative. Hence, by Lemma 3.1, (3.3) is increasing (decreasing). This proves (i). When β > 1, [φ′(Q (p))]1−β

=
1

[φ′(Q (p))]β−1 is decreasing (increasing) in p, since φ is increasing and convex (concave). Hence, we have

1
1 − β

ln
 1

u


(qX (p))1−β

(1 − u)β

 
φ′(QX (p))

1−β dp

is decreasing (increasing) u.

The following example illustrates the utility of Theorem 3.1.

Example 3.1. Let X have the exponential distribution with failure rate λ and let Y = X1/α, α > 0. Then Y has Weibull
distribution with Q (u) = λ−1/α(− ln(1 − u))1/α . The function φ(x) = x1/α, x > 0, α > 0 is convex (concave) if
0 < α < 1(α > 1) and is nonnegative. Thus due to Theorem 3.1, for 0 < β < 1 and 0 < α < 1 the Weibull distribution is
IRRQE. For β > 1 and α > 1, Weibull distribution is DRRQE.

Below we define a stochastic order based on the comparison of Hβ functions corresponding to two nonnegative random
variables X and Y .

Definition 3.2. X is said to be smaller than Y in the Rényi quantile entropy order (written as X 6RQE Y ), if HX
β (QX (u)) 6

HY
β (QY (u)) for all u ∈ [0, 1].

Example 3.2. Suppose Xi follows an exponential distribution with parameter λi, i = 1, 2, we can easily see that λ1 ≥ λ2
implies that X1 6RQE X2. Suppose that Xi follows Pareto I distribution with parameters αi = 1 and bi =

1
ci
, i = 1, 2. If b1 < b2

and 0 < β < 1(β > 1), then X1 6RQE(≥)X2.

Below we see that the RQE order defined above is a partial order.

Theorem 3.2. The RQE order defined above is reflexive, associative and anti-symmetric.
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Proof. From the definition of the RQE order the reflexive and associative properties are easy to verify. To prove the
antisymmetric property, we note that X ≤RQE Y and Y ≤RQE X together give qX (u) = qY (u) for all u ∈ [0, 1]. This gives
QX (u) = QY (u) for all u ∈ [0, 1].

We now show that the RQE order is closed under increasing convex transformation. We state below a lemma, which is
used to prove the theorem.

Lemma 3.2. Let f (u, x) : [0, 1] × R+ → R+ be such that
 1
u f (u, x)dx > 0 for all u ∈ [0, 1], and g(x) be any nonnegative

increasing function in x. Then
 1
u f (u, x)g(x)dx > 0.

Theorem 3.3. Let X and Y be two random variables such that X 6RQE Y . Then, for any nonnegative increasing convex function φ,
we have φ(X) 6RQE φ(Y ).

Proof. We first consider the case when 0 < β < 1. To show φ(X) 6RQE φ(Y ), it is enough to show that, for all u ∈ [0, 1],

1
1 − β

ln
 1

u


(qY (p))1−β

(1 − u)β


φ′(QY (p))1−βdp >

1
1 − β

ln
 1

u


(qX (p))1−β

(1 − u)β


φ′(QX (p))1−βdp. (3.4)

Since X ≤RQR Y , we have, for all u ∈ [0, 1]

1
1 − β

ln
 1

u

(qY (p))1−β

(1 − u)1−β
dp ≥

1
1 − β

ln
 1

u

(qX (p))1−β

(1 − u)1−β
dp, (3.5)

which gives, for all u ∈ [0, 1] 1

u
(qY (p))1−β dp ≥

 1

u
(qX (p))1−β dp. (3.6)

Thus from (3.6), it follows that for u ∈ [0, 1], qY (u) ≤ qX (u), and so QY (u) ≥ QX (u). Since φ(.) is convex, φ′(.) is increasing
in u so that φ′(QY (u)) ≥ φ′(QX (u)). Thus from (3.5) and Lemma 2.2, it follows that the inequality (3.4) holds. When β > 1,
(3.5) leads to 1

u
(qY (p))1−β dp ≤

 1

u
(qX (p))1−β dp. (3.7)

From (3.7), it again follows that QY (u) ≥ QX (u) and (QY (u))1−β
≤ (QX (u))1−β . Thus from Lemma 2.2, we obtain 1

u
(qY (p))1−β φ′(QY (p)1−β)dp ≤

 1

u
(qX (p))1−β φ′(QX (p)1−β)dp,

which leads to (3.4). The proof is complete.

Definition 3.3. X is said to be smaller than Y in quantile failure rate ordering (X ≤QFR Y ) if HX (u) ≥ HY (u) for all u ≥ 0.

Theorem 3.4. If X ≤QFR Y , then X ≤RQE Y .

Proof. The proof follows from (2.2).
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