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Truncated Random Variables
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Department of Statistics, Cochin University of Science and Technology,
Cochin, India

In this article, we study reliability measures such as geometric vitality function
and conditional Shannon’s measures of uncertainty proposed by Ebrahimi (1996)
and Sankaran and Gupta (1999), respectively, for the doubly (interval) truncated
random variables. In survival analysis and reliability engineering, these measures
play a significant role in studying the various characteristics of a system/component
when it fails between two time points. The interrelationships among these uncertainty
measures for various distributions are derived and proved characterization theorems
arising out of them.

Keywords Generalized failure rate; Geometric vitality function; Shannon’s
measure of uncertainty.

Mathematics Subject Classification 62E10; 62NO0S5.

1. Introduction

The standard practice in modeling statistical data is either to derive the appropriate
model based on the physical properties of the system or to choose a flexible family of
distributions and then find a member of the family that is appropriate to the data. In
both situations it would be helpful if we find characterization theorems that explain
the distribution using important measures of indices. For example, in reliability
theory and survival analysis, identification of probability models is often achieved
through studying the characteristics of measures such as failure rate, mean residual
life, vitality function, coefficient of variation, etc. There are several investigations
concerning these reliability measures to characterize different probability models
(see Gupta and Kirmani, 2000; Kotz and Shanbhag, 1980; Nair and Sankaran,
1991). Similarly, considerable attention has also been paid to the identification
probability models based on conditional expectations of left and right truncated
data (see Navarro and Ruiz, 2004; Navarro et al., 1998a; Zoroa et al., 1990; and
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the references therein). Motivated this, in the present note, an attempt is made to
derive some new characterizations to certain probability distributions and families
of distributions using some important information measures which are useful for
modeling and analysis of lifetime data.

Similar to vitality function, geometric vitality function has also been found a
useful tool in the analysis of lifetime data (see Nair and Rajesh, 2000). For a non
negative random variable (rv) X representing the lifetime of a component with an
absolutely continuous distribution function F(r) and E(log X) < oo, the geometric
vitality function of a left truncated rv is given by

logG(f) = E(log X | X > 1). (1.1)

In reliability theory, (1.1) gives the geometric mean of lifetimes of components which
has survived ¢ units of time. For various properties and applications of (1.1), one
could refer to Nair and Rajesh (2000).

In modeling and analysis of lifetime data, it is also well known that a basic
uncertainty measure of a rv X with probability density function f(¢) is the Shannon
information measure (see Shannon, 1948) given by

H(X) = —E(log f(X)) = — fowf(X) log f(x)dx. (1.2)

Clearly, (1.2) gives the expected uncertainty contained in f(f) about the
predictability of an outcome of X. Motivated by this, Ebrahimi (1996) modified
(1.2) to measure uncertainty in the residual lifetime distribution, referred as the
residual Shannon’s measure of uncertainty as follows. Let X be a non negative rv
representing the lifetime of a unit or a system, then the rv X — 7| X > ¢ represents
the residual life of a unit with age ¢, the residual Shannon’s measure of uncertainty
is defined as

H()=HX —t|X>1) = — ];(8 <%)dx
=1-=5 / f(x) log h(x)dx (1.3)

where h(f) = f(t)/F(t) is the failure rate. It is well known that H(f) has much
relevance in characterizing, ordering, and classifying life distributions according
to the behavior of H(f) (see Asadi and Ebrahimi, 2000; Belzunce et al., 2004;
Ebrahimi and Pellerey, 1995; Nair and Rajesh, 1998). Analogously, Di Crescenzo
and Longobardi (2002) recently introduced a useful measure

H(t) = H(t — X | X < /;(()3 <;((t;> x (1.4)

known as a measure of past entropy, to measure the uncertainty in the inactivity
time (t — X | X < 1).

In continuation of the residual Shannon’s measure of uncertainty proposed
by Ebrahimi (1996), Sankaran and Gupta (1999) introduced another conditional
measure of uncertainty, which is also quite useful in the study of aging pattern of
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the system. For a non negative rv X, the conditional measure of uncertainty due to
Sankaran and Gupta (1999) is given by

M(t) = —E(log f(X) | X > 1) = —% / " ) log f(x)dx. (1.5)

Later, Rajesh and Nair (2000) studied this concept and proved some
characterizations of certain probability distributions.

In survival studies and in life testing, often one has information about the
lifetime only between two time points. That is, individuals whose event time lies
within a certain time interval are only observed. Thus, an individual whose event
time is not in this interval is not observed and therefore information on the subjects
outside this interval is not available to the investigator. Accordingly, Kotlarski
(1972) studied the conditional expectation for the doubly (interval) truncated
random variables. Later, Navarro and Ruiz (1996) generalized the failure rate and
the conditional expectation to the doubly truncated random variables. It is shown
that generalized failure rate (GFR) and the conditional expectation for doubly
truncated random variables determine the distribution uniquely. For the various
relationships between GFR and conditional expectation, characterizations and their
applications we may refer to Ruiz and Navarro (1996), Betensky and Martin
(2003), Navarro and Ruiz (2004), Sankaran and Sunoj (2004), and Bairamov and
Gebizlioglu (2005).

The aim of the present article is to further investigate these reliability measures
to the doubly truncated rv’s. In Sec. 2, we define geometric vitality function and two
measures of uncertainty for the doubly truncated rv’s and examine its properties
and different relationships. Finally in Sec. 3, some of the existing characterizations
by relationships between these measures of uncertainty and GFR functions are
extended to model various probability distributions and families of distributions.

2. Definitions and Properties

2.1. Geometric Vitality Function
If X is a non negative rv the geometric vitality function for doubly truncated rv
(X|1, <X <t,), where (¢;,1,) € D = {(u,v) € W"; F(u) < F(v)} is defined as

G(t), 1) = E(logX|t, <X <t), (2.1

which gives the geometric mean life of a rv truncated at two points #; and f,.
It is clear that when 7, — oo (2.1) reduces to (1.1). The following properties are
immediate from the definition (2.1),

limo G(t,t,) = E(logX), and (2.2)
thl::oo
m(t,, t,) > G(t,, t,) forall (¢,,t,) € D, (2.3)

where m(t,,t,) = E(X|t, < X < t,). Denoting the GFR functions as h,(t,,1,) =

S(t) — _ [ ; ;
VAT and h,(t),t,) = AT of Navarro and Ruiz (1996), (2.1) is related to
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h;=hi(t,t,);i=1,2 as

0G(11,1)

hi(t;,t,) = S S 2.4
and
0G(11,1)
hy(1), 1) = — (2.5)

logt, — G(t).1,)°

for all (¢,,1,) € D. Table 1 provides the relationship between geometric vitality
function and GFR functions for various lifetime models.

Theorem 2.1. The geometric vitality function determines distribution uniquely.

Proof. The proof follows Theorem 2.6 in Navarro et al. (1998b) since G(¢,,t,) =
my,, x(logt;, logty) where my(t,,t,) = E(Z |1, < Z <t,).

Remark 2.1. In the absolutely continuous case it can also be proved by using (2.4)
and (2.5).

2.2. Measure of Uncertainty

Defining a rv (X |#; < X < t,) which represents the lifetime of a unit which fails
between f, and f, where (#,,1,) € D, a measure of uncertainty for the doubly

Table 1
Relationships between geometric vitality function and GFR functions
Distribution F(x) G(t, 1)
Exponential exp(—4ix); x > 0, %[hl(tl, t)) logt;—h,(t,, ) logt, +R(¢,, 1,)]
A>0
Finite range (1 — ax)?; L[(1 = at))h(1,, 1,) log
0<x<1 —(1 — aty)hy(t,, t,) log t,+R(t,, t,) — a]
b>0,a>0
Pareto 11 (14 px)~1; plq[(l + pt))h (1, 1,) logt,
x>0, —(1+ pty)hy(1,, ) logt, + R(1,, 1,) + p]
p>0,g>0
Power 1 — (x/a); gl (1), ) logty — 1,k (11, 1) log 1, — 1]
0<x<uo,
«a>0,>0
Pareto 1 (a/x)b; x > a, e by (1, ) log 1, — tyhy (1), 1) log 1, — 1]
a>0,b>0

where R(t),1,) = E[5 | t; < X < 1,].
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truncated rvs is given by

B Cx - _ 2} f(x) f(x)
H(t, 1) = HX |1, < X 6*—.ﬁimo—ﬁmf%<me4ﬂ@)m

—1- m / f(x)(log A(x))dx

[F(1,)(log F(1,)) — F(1,)(log F(1,))] + log(F(1,) — F(1,))

(2.6)

T Fn) —F)

which can also be written as

H(t, 1) = m/ f(x)(log h(x))dx

1

- W[F(tz)(log F(1y)) — F(t,)(log F(1,))] + log(F(t,) — F(1,))

2.7)

where h(x) = £ EX)) the reversed failure rate function (see Block et al., 1998). By using
(1.3), (1.4), and (2.6), Shannon’s measure (1.2) can be decomposed as

H = F(t,)H(t)) + (F(1,) — F(t,))H(1,, ty) + F(t,) H(1,)
— [F(t,) log F(t)) + (F(1;) — F(t,)) log(F(1,) — F(1,)) + F(1,) log F(1,)]. (2.8)

The identity (2.8), which is similar to the one given in Di Crescenzo and Longobardi
(2002), can be interpreted in the following way. The uncertainty about the failure
of an item can be decomposed into four parts: (i) the uncertainty about the failure
time in (0, 7,) given that the item has failed before #,; (ii) the uncertainty about the
failure time in the interval (¢, #,) given that the item has failed after 7, but before 7,;
(iii) the uncertainty about the failure time in (¢,, +00) given that it has failed after
t,; and (iv) the uncertainty of the rv which determines if the item has failed before
t, or in between ¢, and ¢, or after t,.
On differentiating H(z,, t,) with respect to 7, and t,, we get

H
a ((;tl %) iy, ) oy (1, 1) + ity 1)~ ) (2.9)
1
and
6H(5t1, h) _ hy(ty, 1) (1 — log hy(ty, 1,) — H(1,, 1,)). (2.10)
2

When H(t,, t,) is increasing in ¢, and in t,, then, (2.9) and (2.10) together imply

1 —logh(t,t,) < H(t;, t,) <1 —logh,(t,1,). (2.11)
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Thus, when the uncertainty measure is increasing, then it lies between
(1 —1logh,(t,,t,)) and (1 — log h,(¢, t,)). We can also write the bounds in (2.11) as

hy(1), 1) < exp(l — H(t), 1)) < hy(t), 15).

Table 2 provides the relationships between H(t,t,), the conditional expectation
m(t,, t,) = E(X|t; < X <t,) and GFR functions h;(¢,,t,); i=1,2 for various
distributions.

2.3. Conditional Measure of Uncertainty

As an extension of (1.5), we define the conditional measure of uncertainty for the
doubly truncated rv as
M(t,, 1,) = —E[log f(X) | t; < X < 1]
-1

= T [ s tog sy, (2.12)

where (¢, t,) € D. Using (2.12), M(#,, t,) can be easily related to H(t,, t,) through
the relation

M(t,, 1) = H(t,, 1) — log(F(1,) — F(1,)). (2.13)

Differentiating (2.13) with respect to ¢, and t,, respectively, provide the relationships
with GFR functions, which are given by
OM(t,,1,)  0H(1,, 1))
o, o1

+ hy(t), 1)

Table 2
Relationships between H(z,, t,), the conditional expectation, and GFR functions
for various distributions

Distribution F(x) H(t,, 1,)
Exponential exp(—4x); x > 0, Am(ty, ty) — Aty — log h, (2, 1,)
A>0 or
Am(ty, ) — Aty —log hy(ty, 1)
Finite range (1 —ax)’; 0 <x <1, —(b—1)E[log(l —ax)|t; <X < 1,]
ab
b>0,a>0 —log e e
Pareto 11 (I1+px) % x>0, (g+ DE[log(1+px)|t; < X < 1,]
—log —pa
p>0.q>0 log -
Power 1—(x/a)f;0<x<a  1+logG(ty,t,) +t h (1), t,) log(t,; /o)
%>0,f>0 —tyhy(1y, 1) log(ty/%) =108 it
Pareto 1 (a/x)*; x > a, 1 +1log G(t,, t,) + t,h,(2;, t,) log(a/t,)

a>0,b>0 —llhl(tl,tz)log(a/tl)—logm
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and

OM(t,,t,)  0H(t,, 1,)
o, 0t

— hy(ty, 1).

The relationships between the conditional measure of uncertainty for doubly
truncated random variables and GFR functions for some useful probability models
are given in Table 3.

3. Characterizations

In this section, we prove certain characterization theorems for some important life
distributions and for certain family of distributions using GFR functions, geometric
vitality function (2.1), and conditional Shannon’s measure of uncertainties (2.6) and
(2.12).

Theorem 3.1. Let X be a rv with support (0, 00) admitting an absolutely continuous
distribution function F(x). Then a relationship of the form

1
G(t, ) = E[(l + Ct))hy(t), ) logt; — (1 + Cty) hy(2, 1) log t, + R(t, 1,) + C],
3.1

where R(t,,t,) = E()l—( |t < X <t,) and k, C are constants holds for all (t,,t,) € D
if and only if X follows exponential with F(x) = exp(—ix); x > 0,4 > 0 for C =0,

Table 3
Relationships between M(t,, t,) and GFR functions for various distributions

Distribution F(x) M(t,, t,)

Exponential exp(—Ax); Am(t, ty) — log A
x>0, 1>0
Finite range (1 — ax)?; —logab — (b + 1)E[log(1 —aX) |t; < X < 1,]
0<x< %,
b>0,a>0
Pareto II (1+ px)~9; (g+ DE[log(1 + pX) |t; < X < t,] — log pq
x>0,
p>0,g>0
Power 1 — (x/a)P; (%)[1+t1h1 logt, —t,h,logt,+log f—flog o]
0<x<aua,
a>0,>0
Pareto 1 (a/x); (2)[1+1,h, logt, —t,hylog t,—log b — blogal]
x> a,
a>0,b>0
Weibull exp(—x7); —logp—(p—1DlogG(t,,1,) + E[X?|t; < X < 1]
x>0,p>0
Rayleigh exp(—=x?); x>0 —log2—logG(t), t,) + E[X*|t; < X < t,]
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Pareto distribution with_F(x) ={04+px)™% x>0,p>0,g>0 for C>0 and finite
range distribution with F(x) = (1 —ax)’; 0 < x < %, b >0 for C <.

Proof. Assume that the relation (3.1) holds. Then from the definitions of R(#,, t,),
h;(t,, t,), and G(¢,, t,), we can write (3.1) as

fttz f(x)logxdx = %[(1 + Ct))f(t) logt, — (1 + Ct,) f(¢,) logt,
n] _ —
n / ~f(x)dx+ C(F (1) - F(tz))j|. (3.2)

Differentiating (3.2) with respect to 7;, i = 1, 2 and simplifying we get

@) (k+0)
fi) — A+cr)

for (¢,,1,) € D

or

(k + C)
(1+Co)’

log f(1) = - (3.3)

From (3.3) we get that X follows exponential, Pareto IT and finite range distributions
according as C =0, C > 0, and C < 0. The converse part is obtained from Table 1.

Theorem 3.2. Let X be a rv with support (0, 00) admitting an absolutely continuous
distribution function F(x), a relationship of the form

M(t,, t,) — Am(t;, t,) =k, (3.4)

where />0 and k is a constant, holds for all (t,,1,) € D if, and only if, X follows
exponential distribution with F(x) = exp(—4x); x > 0.

Proof. Assume (3.4) holds. From the definition (2.12) of M(z,, t,), we can write
5] 5] _ _
= [ ) og fx))dx — i [ xfe)dx = k(F (1) = F(1). (3.5)
1 1
Differentiating (3.5) with respect to 7, i = 1, 2 gives
log f(t,) =—-k—1J¢t;, i=1,2,
or f(t) = Aexp(—Ar), which provides the result. For converse part, see Table 3.

Theorem 3.3. Let X be a rv with support (0, 00) admitting an absolutely continuous
distribution function F(x), a relationship of the form

M(t,, t,) — (c+ 1D)G(t,, 1,) =k, (3.6)

where k and ¢ are constants and ¢ > 0, holds for a < t; < t, with F(t,) < F(t,) if and
only if X follows a Pareto type I with F(x) = (£)°; x > a,a > 0.
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Proof. Assume (3.6) holds, from the definition of M(z,, t,)
— [7 e tog fandx = (e + 1) [ fa)log vdx = k(F ) - F(r). ()

Differentiating (3.7) with respect to f, i =1,2 and simplifying we get f(x) =
kx=©*D_ which implies X follows a Pareto Type I. The converse part is obtained
from Tables 1 and 3.

Theorem 3.4. Let X be a rv with support (0, c0) admitting an absolutely continuous
distribution function F(x), a relationship of the form

M(t,, 1)+ (f—1)G(t,, 1,) =k, a constant (3.8)

holds for 0 < t; < t, < o with F(t;) < F(t,) and > 1 if and only if X follows Power
distribution with F(x) =1 — (i)ﬂ; 0<x=<o,a>0,>0.

The proof is similar to that of Theorem 3.3.
Now we prove a characterization theorem using M(t,, t,) for one-parameter log
exponential family defined by

0
0 = S

x€(0,00), 6>0 (3.9)

where C(x) is non negative function of x and A(f) is non negative function of 6
satisfying A(0) = [, x"C(x)dx.

Theorem 3.5. Let X be a rv with support (0, 00) admitting an absolutely continuous
distribution function F(x), then the distribution of X belongs to one-parameter log
exponential family if and only if

M(t,, 1;) =log A(0) — 0G (1), 1) — mc(1y, 1), (3.10)
where mq(t,,t,) = E[logC(X) |t, < X < t,], (¢, t,) € D.

Proof. Assume (3.10) holds. From the definition (2.12), we get
— [ ) tog fx)dx = (F(1) — Fia) log A©) =0 [ ) log xda
+ [ ® f(¥)(log C(x))dx. G.11)

Differentiating (3.11) with respect to f,, i = 1,2 and simplifying, we get (3.9).
The proof of the second part of the theorem is direct.

In the following, we present a characterization theorem using M(z,, t,) for the
one-parameter exponential family defined by

a(x)0*
b(0) ’

fx) = x € (0,00), 6>0, (3.12)
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where a(x) is a non negative function of x and b(6) is a non negative function of 0
satisfying b(0) = [;° a(x)0*dx.

Theorem 3.6. Let X be a rv with support (0, 00) admitting an absolutely continuous
distribution function F(x), the relationship

M(t,, t,) = log b(0) — m(t,, t,) log 0 — m,(t,. 1,) (3.13)

where m,(t,,t,) = E[loga(X)|t, < X < t,], (t;,t,) € D, holds if and only if the
distribution of X belongs to one-parameter exponential family (3.12).

Proof. The proof is similar to that of the Theorem 3.5.

Length-biased sampling is frequently a convenient technique for the collection
of positive-valued or lifetime data. Such problems may occur in clinical trials,
reliability theory, survival analysis, and population studies, where a proper sampling
frame is absent (see Navarro et al.,, 2001; Rao, 1965; Sunoj, 2004; Sunoj and
Maya, 2006 and the references therein). Let X be a non negative rv denoting the
life length of a component with probability density function (pdf) f(z). Then a rv
Y with density f'(z) = l_tl f(1), where u = E(X) < oo, is said to have length-biased
distribution corresponding to X. Then the geometric vitality function of the length-
biased model is given by

G'(t;,1,) = E[logY |t, <Y <1t,], (t;,1,) €D
1 1
= G ) ) o o (€D
1 _ _
= i () — F ) [P toar, — P ot

+/ 27(x)dx+/ zf(x)logxdxi|, (t,1,) € D

1

In the following theorem, we characterize the exponential distribution using the
functional relationship between geometric vitality functions of the length-biased and
original rv’s and GFR functions.

Theorem 3.7. For a non negative rv X, the relationship
m(t;, )G (1, 1,) — G(t, t) = 1+t logt,h (1), t,) — , log t,h, (2, 1,)  (3.14)
holds for (t,,t,) € D if and only if X follows an exponential distribution.

Proof. Suppose that the relationship (3.14) holds. Then by definition,
A

m f(x) lOg xdx

5] 1 n
‘/t‘l xf(x)logxdx— m[l

_ f(1) . )
= togh ZQF(H) — F(1,)

lf(tl) —F) logt,. (3.15)
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Multiply both sides of (3.15) by (F(t,) — F(t,)) and on differentiation with respect
to t,, i = 1, 2, yields the required result. The converse part is straightforward.
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