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Abstract
Following the Majority Strategy in graphs, other consensus strategies, namely

Plurality Strategy, Hill Climbing and Steepest Ascent Hill Climbing strategies on
graphs are discussed as methods for the computation of median sets of profiles. A
review of algorithms for median computation on median graphs is discussed and
their time complexities are compared. Implementation of the consensus strategies
on median computation in arbitrary graphs is discussed.
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1 Introduction

The Median Problem is a typical problem in location: given a set of clients one wants to
find an optimal location for a facility serving the clients. The criterion for optimality is
minimizing the sum of the distances from the location of the facility to the clients. The
solution of this location problem is generally known as a median. One way to model this
is using a network, where clients are positioned on points and the facility has to be placed
on a point as well, see for instance [22, 9]. Another approach to formulate the median
problem is in terms of achieving consensus amongst the clients (profiles). This approach
has been fruitful in may other applications, e.g. in social choice theory, clustering and
biology, see for instance [6, 14]. From the view point of consensus the result of Goldman
[8] is very interesting: to find the median in a tree just move towards the majority of the
profile. In [18] this majority strategy was formulated for arbitrary graphs. The problem
now is that in general this strategy does not necessarily find a median for every profiles.
It was proved that majority strategy finds the set of medians for arbitrary profiles if and
only if the graph is a so-called median graph. The class of median graphs allows a rich
structure theory and has many and diverse applications, see e.g. [16, 17, 14, 13]. In the
majority strategy we compare the two ends of an edge v and w: if we are at v and at
least half of the elements of profile is strictly nearer to w than to v, then we move to w.
One could relax the requirement for making a move as follows: one may move to w if
there are at least as many elements of the profile is closer to w than to v. Note that in
this case less than half may actually be closer to w because there are many members of
the profile having equal distance to v and w. We call this strategy the Plurality Strategy.
Also two other strategies, which are well-known search strategies in Artificial Intelligence,
namely Hill climbing and Steepest Ascent Hill Climbing were formulated in [5]. The graph
classes where theses three strategies always produce the median of arbitrary profiles were
characterized in [5]. In [4] the conditions for a graph to have connected medians for
arbitrary weight functions were established. The graph classes in both the papers turned
out to be the same. The aim of this paper is to compare the various consensus strategies
for median computation. Also we analyze the computational and implementation aspects
of these strategies on various classes of graphs.

2 Consensus Strategies

All graphs in this paper are finite, connected, undirected, simple graphs without loops.
Let G = (V, E) be a graph with vertex set V and edge set E. Let n = |V | and m = |E|.
The distance function of G is denoted by d, where d(u, v) is the length of a shortest
u, v-path. The interval function I of G defined by

I(u, v) = {z ∈ V |d(u, z) + d(z, v) = d(u, v)}.

So the set I(u, v) consists of the vertices on shortest u, v-paths, see [16], for a systematic
study of the interval function.

A profile π = (x1, x2, . . . , xk) in a graph is a finite sequence of vertices, and |π| = k is
the length of the profile. Note that the definition of a profile allows multiple occurrences
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of a vertex. The distance of a vertex v to π is defined as

D(v, π) =
k∑

i=1

d(xi, v).

A vertex minimizing D(v, π) is a median vertex of the profile. The set of all median
vertices of the profile π is the median set of π and is denoted by M(π). For an edge vw
in G, we denote by πvw, the subprofile of π consisting of the elements of π strictly closer
to v than to w, and by πv=w the subprofile of elements having equal distance to v and w.

There are various strategies to find “optimal” vertices with respect to profile π. Loosely
speaking, in each strategy we start at an arbitrary vertex and then move along edges
depending on which side of the edge the elements of the profile are. We can measure this
in two ways: using the number of vertices closer to one end |πvw|, or using the distance
sums D(v, π). We stop if we are stuck at a vertex or if we were able to visit vertices twice
and cannot get away from such vertices. The output is then the vertex where we get stuck
or the vertices visited at least twice.

In the Majority Strategy we move “towards majority”. In the Condorcet Strategy we
move “away from minority”. In the Plurality Strategy we move “towards more”. Finally,
in the last two strategies we move away from vertices with D(v, π) “too small”.

Majority Strategy
Input: A connected graph G, a profile π on G, and an initial vertex in V .
Output: The unique vertex where we get stuck or the set of vertices visited at least
twice.

1. Start at the initial vertex.

2. [MoveMS] If we are in v and w is a neighbor of v with |πwv| ≥ 1
2
|π|, then we move

to w.

3. We move only to a vertex already visited if there is no alternative.

4. We stop when
(i) we are stuck at a vertex v or
(ii) [TwiceMS] we have visited vertices at least twice, and, for each vertex v visited
at least twice and each neighbor w of v, either |πwv| < 1

2
|π| or w is also visited at

least twice.

In the following strategies we only list the steps in which they differ from the Majority
Strategy.

Condorcet Strategy

2. [MoveCS] If we are in v and w is a neighbor of v with |πvw| ≤ 1
2
|π|, then we move to

w.

4. (ii) [TwiceCS] we have visited vertices at least twice, and, for each vertex v visited
at least twice and each neighbor w of v, either |πvw| > 1

2
|π| or w is also visited at

least twice.
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Plurality Strategy

2. [MovePS] If we are in v and w is a neighbor of v with |πwv| ≥ |πvw|, then we move to
w.

4. (ii) [TwicePS] we have visited vertices at least twice, and, for each vertex v visited
at least twice and each neighbor w of v, either |πwv| < |πvw| or w is also visited at
least twice.

The next two strategies were introduced to find a (local) minimum based on a heuristic
function in a search graph. So the versions as in [?] make a move only to previously
unexplored vertices. Because our purpose in this paper is to find all medians (i.e. the
median set) of a profile, we have adapted the strategies such that we are able to visit
vertices more than once (as in the above description of the Majority Strategy).

Hill Climbing

2. [MoveHC] If we are in v and w is a neighbor of v with D(w, π) ≤ D(v, π), then we
move to w.

4. (ii) [TwiceHC] we have visited vertices at least twice, and, for each vertex v visited
at least twice and each neighbor w of v, either D(w, π) > D(v, π) or w is also visited
at least twice.

Steepest Ascent Hill Climbing

2. [MoveSA] If we are in v and w is a neighbor of v with D(w, π) ≤ D(v, π) and D(w, π)
is minimum among all neighbors of v, then we move to w.

4. (ii) [TwiceSA] = [TwiceHC].

Although the strategies are different in their computations, they may have the same
outcome depending on the graph on which they are applied. Plurality and Hill Climbing
have the same outcome anyway, see the next Lemma.

Lemma 1 Let G be a connected graph and π a profile on G. Plurality Strategy makes a
move from vertex v to vertex w if and only if D(w, π) ≤ D(v, π).

Proof. The assertion follows immediately from the following computation:

D(v, π)−D(w, π) =
∑

x∈πvw

d(v, x) +
∑

x∈πwv

d(v, x)−
∑

x∈πvw

d(w, x)−
∑

x∈πwv

d(w, x) =

=
∑

x∈πvw

d(v, x) +
∑

x∈πwv

d(v, x)−
∑

x∈πvw

(d(v, x) + 1)−
∑

x∈πwv

(d(v, x)− 1) = |πwv| − |πvw|.

¤

For bipartite graphs, πv=w is empty for any profile π, so the following Lemma is
obvious.
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Figure 1: Illustration of consensus strategies differing on a graph

Lemma 2 Majority, Condorcet, and Plurality Strategy coincide on connected bipartite
graphs.

On non-bipartite graphs Plurality Strategy, Condorcet Strategy and Majority Strategy
are pairwise different as the following example show.

Example 1 Consider the profile π = (a, b, c, d) on the graph of Fig. 1.1. Then |πvu| = 0,
|πuv| = 1, |πua| = |πub| = |πuc| = |πud| = 3, |πau| = |πbu| = |πcu| = |πdu| = 1, |πva| =
|πvb| = |πvc| = 2, |πav| = |πbv| = |πcv| = 1.

We apply all the strategies starting from v. For the Plurality Strategy, we move from v
to u and get stuck there. So the outcome of Plurality Strategy starting from v is {u},
which is the median. Majority Strategy will not make a move from v, so we get {v} as
the outcome. Condorcet Strategy moves from v to u and from u to v, from v also to a,
b, c and back. It cannot go from u to d. So the outcome of the Condorcet Strategy is
{a, b, c, u, v}. Hill Climbing and Steepest Ascent Hill Climbing also produce {u} starting
from v.

Next we present an example that shows that Steepest Ascent Hill Climbing is essen-
tially different from the other strategies. Note that the other strategies might make a
move from v as soon as they find a neighbor w of v that satisfies the condition for a move,
while Steepest Ascent has to check all neighbors of v before it can make a move. Consider
the graph K2,3 with vertices a, b and 1, 2, 3, where two vertices are adjacent if and only if
one is a ‘letter’and the other a ‘numeral’. Now take the profile π = (b, 1, 1, 1, 2, 2, 2, 3, 3, 3).
Then we have D(a, π) = 11, D(b, π) = 9, and D(i, π) = 13, for i = 1, 2, 3. Take 1 as ini-
tial vertex and assume that we check its neighbors in alphabetical order. Then Majority,
Condorcet, Plurality and Hill Climbing move to a and get stuck there, whereas Steepest
Ascent moves to b and thus finds the median vertex of π.

This example also shows that the first four strategies might not even find the median
vertex at all, even if the graph is bipartite. The special thing about this example is that
the profile ρ(1, 2, 3) has median set {a, b}, which is not connected. In [5] it is shown
that Plurality Strategy, and both Hill Climbing and Steepest Ascent, find the median set
from any initial vertex, for all profiles if and only if the median sets of all profiles induce
connected subgraphs.
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3 Median computation in median graphs

The Majority Strategy was first formulated for trees by Goldman [8] to find the median
set of a profile on a tree. In [18], it was shown that the median graphs are precisely the
graphs on which this strategy always finds the median set of any profile. We quote the full
theorem here, because it was the starting point for this paper. We postpone the definition
of median graph until after the theorem.

Theorem 1 (Mulder [18]) The following are equivalent for a connected graph G:

1. G is a median graph.

2. The Majority Strategy produces the median set M(π) from any initial vertex, for
each profile π on G.

3. The Majority Strategy produces the same set from any initial position, for each
profile on G.

It is easy to see that median graphs are bipartite. Hence, in view of Lemma 2, a similar
theorem holds for Plurality Strategy, Condorcet Strategy and Hill Climbing provided we
presuppose the graphs to be bipartite as well. Note that the outcome of the strategies will
not always be the median set of the profile on arbitrary bipartite graphs, as our example
with K2,3 above shows.

The above strategies applied on median graphs give rise to algorithms for the compu-
tation of median sets of profiles π. In addition we present below some other algorithms
for median computation on median graphs, which we develop based on the structural
characterizations of median graphs from the literature.

Median graphs were introduced, independently by Avann [1], Nebeský [20] and Mulder
& Schrijver [19]. For the first systematic study of median graphs, see [16], for recent
surveys on median graphs and their applications, see e.g. [13, 14]. By now applications are
available in such diverse areas as biology, theory of social choice, dissimilarity measures,
voting theory, dynamic search, other mathematical disciplines. An important application
of median graphs is within location theory. The location problem is “where to locate a
service facility to minimize the costs of serving a set of given clients placed on vertices of
a graph”. Then any median vertex is a solution of this location problem.

A connected graph G is a median graph if, for every triple u, v, w of vertices, there
exists a unique vertex x, called the median of u, v, w, such that x lies simultaneously on
shortest joining u and v, v and w, and u and w. Trees are the simplest examples of median
graphs. Another prime example is the n-cube Qn. From the viewpoint of location theory
the importance of median graphs is given by the following characterization: A graph G is
a median graph if and only if each profile of length 3 has a unique median, see [7].

For our algorithms below we need some basic (but non-trivial) facts on median graphs.
A proper cover of a graph G consists of two convex subgraphs G1 and G2 of G such that
the union of G1 and G2 is G and the intersection of G1 and G2 is nonempty. Note that
this intersection must be a convex subgraph as well (being the intersection of two convex
subgraphs). Let G′ = (V ′, E ′) be properly covered by the subgraphs G′

1 = (V ′
1 , E

′
1) and

G′
2 = (V ′

2 , E
′
2) and set G′

0 = G′
1 ∩G′

2. Let G1 and G2 be isomorphic copies of G′
1 and G′

2
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respectively, and let λi be an isomorphism from G′
i to Gi, for i = 1, 2. Set G0i = λi[G

′
0]

and λi(u
′) = ui, for u′ in G′

0 and i = 1, 2. The expansion of G′ with respect to the proper
cover G′

1, G
′
2 is the graph obtained from the disjoint union of G1 and G2 by inserting

an edge between u1 in G01 and u2 in G02 for each u′ in G′
0. We call the mappings λi

the lift maps of the expansion. One of the main theorems in median graph theory (which
basically started this area in graph theory) is the so-called Expansion Theorem: A graph is
a median graph if and only if it can be obtained from the one-vertex graph K1 by successive
expansions, see [15, 16].

The “converse” of expansion is contraction. For an arbitrary edge ab of a connected
graph G, we write

Wab = {u ∈ V | d(a, u) < d(b, u)}.
The subgraph induced by Wab is denoted by Gab. Note that, if G is bipartite, then Wab

and Wba partition V . In that case we call Gab, Gba a split of G. An essential step in
the proof of the Expansion Theorem is to establish the following property of a median
graph G: if Gab, Gba is a split of G, then any edge uv between Gab, Gba, with say u in
Gab, defines the same split, that is, Gab = Guv, whence Gba = Gvu. So we may write a
split as G1, G2. Let F12 be the set of edges between the two parts of the split, so that
any edge u1u2 in F12 with ui in Gi defines the same split. Let G0i be the subgraph of Gi

induced by the ends ui of the edges in F12 lying in Gi, for i = 1, 2. Then it can be proved
that the subgraphs G0i are convex and that F12 induces an isomorphism “along its edges”
between G01 and G02, where u1 is mapped onto u2. Thus we can contract the edges of
F12 obtaining the contraction G′ of G with respect to the split G1, G2. This is the reverse
of the above expansion. The contraction map κ of G onto G′ is defined by κ(ui) = u,
for the edges u1u2 in F12 and i = 1, 2, and κ(v) = v for all other vertices. It turns out
that κ|Gi

= λ−1
i , where λi are the lift maps of the expansion of G′ with respect to the

proper cover κ(G1), κ(G2) of G′. In the case of trees, the expansion works as follows: we
cover a tree with two subtrees sharing a vertex. In the expansion we obtain a tree with
one vertex and one edge more. In the case of hypercubes the expansion works as follows:
we cover an k-dimensional cube with two subgraphs both consisting of the whole n-cube.
In the expansion we obtain an (k + 1)-dimensional cube. Another more intuitive way to
describe median graphs is that a median graph, loosely speaking, is a tree-like structure
consisting of hypercubes glued together along subcubes, just as a tree consists of edges
(1-dimensional cubes) glued together along vertices (0-dimensional subcubes).

Let G be a median graph and G1, G2 a split. If π is a profile on G ,then let πi denote
the subprofile of π consisting of all elements of π lying in Gi, for i = 1, 2. If H is any
subgraph of G let π(H) be the subprofile of π comprising of vertices in H. We now have
π′i = κ(πi) and πi = λi(π

′
i), where κ and λ are applied component-wise.

The algorithms below are based on the following two theorems.

Theorem 2 (McMorris, Mulder and Roberts [14]) Let π be a profile in a median
graph G with split G1, G2, where Gi = (Vi, Ei), i = 1, 2. Let G′ be the contraction of G
based on the split and let G′

1, G
′
2 be the convex cover of G′ which when expanded results

in G. Let π1 = π ∩ V1 and π2 = π ∩ V2. If |π1| ≥ |π2|, then M(π)λ1(M(π′)), where π′ is
obtained by contracting π to G′. If |π1| = |π2|, then M(π)λ1(M(π′) ∪ λ2(M(π′)), where
λi, i = 1, 2 is an isomorphism of G′

i onto Gi.
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The next theorem is an easy consequence of the previous one.

Theorem 3 (Bandelt[2]) Let G =(V,E) be a median graph, and let π be a profile on G
then M(π) = ∩{G1|G1, G2 is a split with |π1| ≥ |π2|}.

For the complexities of the algorithms we need the following facts: the distance matrix
of a median graph can be computed in O(n2) time [10]. Moreover, a median graph has
O(nlogn) edges [11].

First we give an algorithm to compute |πuv| for two adjacent vertices u and v in
a bipartite graph. This algorithm uses a bi-directional BFS. Bi-directional search is a
method used in artificial intelligence for example see [?, 23]. In classical bi-directional
BFS, we start at the goal vertex and the initial vertex and expand from both directions.
In our approach we start at the two adjacent vertices u and v and expand in different
directions each time finding vertices closer to u and v, respectively. We assume that
we have stored the frequency of occurrence of each vertex in a profile in an array called
FREQ. This can be done in O(k) time where k is the length of the profile.

Algorithm 1
Input: a bipartite graph G, a profile π, and two adjacent vertices u, v.
Output: the values of |πuv| and |πvu|.
1. Set Wuv to {u}, Wvu to {v}.
2. Perform a Restricted BFS to the next level from u through the vertices of Wuv. Add
all unclassified vertices to Wuv, add their profile values to |πuv|. If no vertices were added
in this step go to step 5.

3. Perform a Restricted BFS to the next level from u through the vertices of Wvu. Add
all unclassified vertices to Wvu and add their profile values to |πvu|. If no vertices were
added in this step go to step 7.

4. If all the vertices in the profile have been classified go to step 7.

5. Add the remaining unclassified vertices to Wvu and set |πvu| to |π| − |πuv|. Go to step
7.

6. Add the remaining unclassified vertices to Wuv and set |πuv| to |π| − |πvu|.
7. Return the values |πuv| and |πvu|.

Note that for Majority Strategy we need not have the exact values of |πuv| or |πvu|. We
only need to know whether |πvu| ≥ 1

2
|π| or not. So the algorithm may be modified

accordingly.

Theorem 4 Given two adjacent vertices u and v in a bipartite graph G, Algorithm 1
correctly computes |πuv| and |πvu|.

Proof. First note that since G is bipartite, no vertex can be at equal distance from u
and v. Also a vertex at level l in the BFS from u is closer to u than v (i.e. belongs to
Wuv) if and only if it is at level l + 1 in the BFS from v. So the algorithm will find it in
the lth iteration from u. Similarly a vertex closer to v at a distance l will be discovered
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Figure 2: Majority strategy by bidirectional BFS

in the lth iteration from v. Also note that when no vertex is closer to u than to v at level
l, this means that every vertex at a distance l from u is at a distance l − 1 from v, so
every vertex at a distance l + 1 from u will be at a distance l from v and so on. So all the
remaining vertices will be closer to v. Hence the algorithm correctly computes |πuv| and
|πvu|.

Time complexity of Algorithm 1
Since we are visiting each vertex in a BFS manner from u and v, the algorithm has the
same time complexity as BFS, that is O(m + n) in a general bipartite graph, which is
O(nlogn) in a median graph.

Example 2 Consider the median graph in the Figure 2. Let the profile be a, b, c, d. If
we start the Majority from the vertex a, Majority Strategy makes a move from a to x after
just two levels of BFS. Also the movement from y to b is achieved after a single level BFS.

Time Complexity of Majority Strategy
Time for computing |πvw| for an adjacent pair of vertices is O(n log n), by Algorithm 1.
Since there are O(nlogn) edges the total time complexity is O((n log n)2) and this can
be stored in O(n2) space. Also an array of length n can be used to store the number
each time a vertex is visited. When a vertex is visited twice the adjacent vertices can be
checked to see if they satisfy the stopping condition. This can be done in O(n) time. So
the total time complexity is O((nlogn)2). Plurality strategy has the same complexity.

Time complexity of Steepest Ascent Hill Climbing
Evaluation of D(x, π) takes O(m + n) time on a general graph which is O(nlogn) on a
median graph.

BFS. Also the maximum number of computations of D(x, π) is n.This is because we
can store a computed values and lookup them . Also there is no move from a local median
to a non local median median node,and no two time visits possible to a non local median
graph. So when we start visiting a node,second time,we can include it in the median and
after that only m visits will be taking place.

So the time complexity of the algorithm is O(n2logn + m) which is O(n2logn).

Comparison of various consensus strategies
Even though Majority Strategy and Steepest Ascent Hill Climbing both produce the
median set M(π), the paths taken by both may differ considerably. For example in the
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Figure 3: Comparison of Majority and Steepest Ascent Hill Climbing strategies in
a median graph

median graph shown in Figure 3. consider the profile (5, 6). If we start from vertex 1, the
Majority Strategy may follow the path 1, 2, 4, 3, 5, 6, 5, 6 and recognize {5, 6} as the median
of the profile. But Steepest Ascent Hill Climbing moves along the path 1, 3, 5, 6, 5, 6 and
recognizes {5, 6} as the median. So Steepest Ascent Hill Climbing converges to a solution
faster than the Majority Strategy. Also if one is interested in computing a single median
vertex, but not the whole median M(π), then Majority Strategy might use a longer route
than Steepest Ascent Hill Climbing. But Steepest Ascent Hill Climbing has to perform a
lot more comparisons before making a move.

Now we develop algorithms based on the structural properties of median graphs. In
[11], Hagauer, Imrich and Klavžar have given an algorithm which recognizes median
graphs by finding a split. The algorithm assumes that the graph has been preprocessed
and a full BFS conducted. This requires O(n log n) time for finding a split, see [12].
Here we present an algorithm which finds a split in a median graph in O(n log n) without
necessarily processing the entire graph. This algorithm is also based on bi-directional
search.

Algorithm 2
Input: a median graph G, and two adjacent vertices u, v.
Output: a split G1, G2 of G.

1. Set Wuv to {u}, Wvu to {v}.
2. Perform a Restricted BFS to the next level from u through the vertices of Wuv. Add all
unclassified vertices discovered to Wuv. If no vertices were added in this step go to step 5.

3. Perform a Restricted BFS to the next level from u through the vertices of Wvu. Add all
unclassified vertices discovered to Wvu. If no vertices were added in this step go to step 6.

4. If all the vertices in the graph have been classified go to step 7.

5. Add the remaining unclassified vertices to Wvu. Go to step 7.

6. Add the remaining unclassified vertices to Wuv.

7. Return Wuv and Wvu.

Theorem 5 Given a median graph G and two adjacent vertices u and v, Algorithm 2
correctly computes the split Guv, Gvu of G.
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Figure 4: Using bidirectional BFS search to find a split in a median graph

Proof. Follows by an argument similar to that in the Proof of Theorem 4.

Algorithm 2 has also time complexity O(n log n), since it is a BFS conducted from two
vertices. Note that the algorithm need not always process the entire graph before finding
a split.

In the graph shown in Figure 4, for finding the split corresponding to the edge ab, the
algorithm searches only three levels in BFS and does not search the entire graph. The
time complexity of finding a split is O(n log n), since it is essentially a BFS and there are
O(n log n) edges in a median graph. Also we note that in many cases it is faster because
it will not have to process the entire graph.

Algorithm 3
Input: A median graph G and a profile π.
Output: The median M(π).

1. Find a split G1, G2 of G.

2. Find π′ and M(π′).

3. If |π1| ≥ 1
2
|π|, go to step 4, else if |π1| ≤ 1

2
|π|, go to step5, else go to step 6.

4. M(π) = λ1(M(π′)), go to step 7.

5. M(π) = λ2(M(π′)), go to step 7.

6. M(π) = λ1(M(π′)) ∪ λ2(M(π′)).

7. Return M(π).

Time complexity analysis of Algorithm 3
Finding a split requires O(n log n) time by BFS. Finding π′ can be done in O(kn log n)
time. λ1 can be computed in O(k) time. Also at each step the sub graphs Gi together
has at least one vertex less than their convex expansion. So if f(n) is the time complexity
of the algorithm, it is given by the recurrence formula f(n) = O(kn log n) + f(n− 1). So
we have f(n) = O(k{n log n + . . . + n log 1}) = O(kn2 log n).

Algorithm 4
Input: A median graph G and a profile π.
Output: The median M(π).

1. M = V .

2. For each edge e in E do steps 3 to 6.

3. Find the split corresponding to e = G1, G2 with vertex sets V1 and V2.
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4. Let π1 and π2 be sub profiles of π in G1 and G2 respectively.

5. If |π1| ≥ 1
2
|π|, then M = M ∩ V1.

6. If |π2| ≥ 1
2
|π|, then M = M ∩ V2.

7. Return M .

Time complexity analysis of Algorithm 4
Finding a split requires O(n log n) time and evaluating the size of the sub profiles does
not take any additional time. Also since we need only consider O(n log n) edges, the
complexity is O((n log n)2).

We have the following observations. The direct method is having the minimum time
complexity O(n2), but in order to find the median it has to process the entire graph.
Majority strategy can be advantageous in case the profile has very small diameter when
compared to the graph. In this case we can stop by performing Algorithm 1 and finding
which vertex has the majority of members near to it. So if we start with a vertex near to
the profile we will not have to process the entire graph. Majority Strategy can converge
very fast if we choose edges such that the number of vertices reduced in each iteration is
also maximum. Also as we have seen that finding a split may be faster by Algorithm 2 if
one vertex has a minority of vertices near to it. Algorithm 4 requires finding of all splits
and hence it will take more time than other algorithms. Steepest Ascent Hill Climbing
also need not process the entire graph and may converge faster in the case where the
profile has less diameter compared to the graph.

4 Computer implementation of consensus strategies

In this section, we examine the computational results obtained by implementing the con-
sensus strategies. We implemented the Majority, Plurality, and Condorcet Strategy, and
Steepest Ascent Hill Climbing algorithms and tested them on randomly generated con-
nected graphs and median graphs. We generated median graphs by implementing the
convex expansion procedure described in [16, 17].

We tested the performance of the Majority Strategy and Steepest Ascent Hill Climb-
ing on median graphs of sizes between 10 and 100. The relative number of moves for
reaching the median set starting from a random vertex for 100 randomly chosen profiles
was assessed.

We tested only these two algorithms, because all other strategies are the same as
Majority Strategy on a median graph. We also compared the performance of the Majority,
Plurality, Condorcet and Steepest Ascent Hill Climbing on the class of randomly generated
graphs. We computed the number of graphs for which all the strategies computed the
median set starting from an arbitrary vertex for 100 randomly generated profiles. Also,
the same was done for the graphs, for which at least one median vertex was reached, for
which a superset of the median was generated, and for which the strategies got stuck at a
non-median vertex. We have not tested the statistical significance of the results, because
it needs to take a sample of varying data sets of profiles, vertices and graphs. This is a
problem which is to be pursued.
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Weakly median graphs are a nice non-bipartite generalization of median graphs. An
important property of these graphs is that median sets of profiles are always connected.
In [5] it was shown that Plurality Strategy always produces the median set of a profile
if and only if the graph is connected and has connected median sets for all profiles. In
particular, Plurality Strategy always finds the median set on weakly median graphs.

On comparison of the strategies on 3000 median graphs, the average ratio of (total
moves Majority)/(total moves in Hill Climbing) is 1.027266. This indicates that on median
graphs the Steepest Ascent Hill Climbing and Majority Strategy are almost equivalent.

On comparison of strategies on 965 weakly median graphs it was found that steepest
Ascent Hill Climbing and plurality have almost the same number of moves, the average
ratio of (total moves plurality)/(total moves in hill climbing) is 0.984466. This indicates
that in weakly median graphs Steepest Ascent Hill Climbing and Plurality Strategy are
almost equivalent.
Effects of the strategies with 5000 arbitrary graphs of size between 10 and 20
with 100 profiles starting from the same random vertex

STRATEGY
USED

Majority Plurality Condorcet Steepest
Ascent
Hill climb-
ing

Median Cor-
rectly com-
puted

247 2872 153 3386

Computed set
is not Median
but contains a
median vertex

0 0 2373 0

Computed Set
Is a superset of
M(π)

0 0 2360 0

Get stuck at
a non median
vertex.

53 0 0 0

Comparison of moves of Majority Strategy and Steepest Ascent Hill Climbing
on arbitrary graphs

From the results, it can be seen that for arbitrary graphs, Majority Strategy computes
median correctly in 5%, Plurality Strategy in 57%, Condorcet Strategy in 3% and Steepest
Ascent Hill Climbing in 68% cases. This shows that the performance of Steepest Ascent
Hill Climbing is slightly better than the Plurality Strategy. Also it is surprising that,only
Condorcet Strategy produces at least one median vertex of all the 100 profiles(48%).
Again same 48% of the cases are supersets of median for the Condorcet Strategy.

Effects of the strategies with 5000 arbitrary graphs of size between 10 and 20
with 100 profiles starting from the same random vertex
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STRATEGY
USED

Plurality Steepest
Ascent Hill
Climbing

Median Cor-
rectly com-
puted

2872 3386

Computed set
is not Median
but contains a
median vertex

0 0

Effect of strategies on 3000 non-weakly median graphs of size between 10 and
20 with 100 profiles starting from the same random vertex

STRATEGY
USED

Plurality Steepest
Ascent Hill
Climbing

Median Cor-
rectly com-
puted

129 173

Computed set
is not Median
but contains a
median vertex

0 0

Comparison of moves between Steepest Ascent Hill Climbing and plurality
strategies
From the results, it can be seen that for arbitrary graphs, Plurality Strategy computes
median correctly in 57% and Steepest Ascent Hill Climbing in 68% cases which shows
that the performance of Steepest Ascent Hill Climbing is slightly better than the Plurality
Strategy. For non-weakly median graphs, Plurality Strategy computes median correctly
in 4% and Steepest Ascent in 6% cases.
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[13] S. Klavžar and H.M. Mulder: Median graphs: characterizations, location theory and
related structures, J. Combin. Math. Combin. Comput 30(1999) pp 103 – 127

[14] F.R. McMorris, H.M. Mulder and F.S. Roberts: The Median Procedure on Median
Graphs, Discr. Appl. Math. 84(1998) 165 – 181.

[15] H.M. Mulder: The structure of median graphs, Discr. Math. 24(1978) 197 – 204.

[16] H.M. Mulder: The Interval Function of a Graph, Mathematical Centre Tracts 132,
Mathematisch Centrum, Amsterdam, 1980.

[17] H.M. Mulder: The expansion procedure for graphs, in: R. Bodendiek ed., Contempo-
rary Methods in Graph Theory, B.I.- Wissenschaftsverlag , Mannheim/Wien/Zurich,
1990, 459 – 477.

[18] H.M. Mulder: The Majority Strategy on Graphs, Discr. Appl. Math. 80(1997) 97 –
105.

[19] H.M. Mulder and A. Schrijver: Median graphs and Helly hypergraphs, Discr. Math.
25 (1979) 41 – 50.
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