Webhosting and Networking

G. Santhosh Kumar, Dept. of Computer Science Cochin University of Science and Technology

Agenda

- What is a Network?
- Elements of a Network
 - Hardware
 - Software
- Ethernet Technology
- World Wide Web
- Setting up a Network
- Conclusion

What is a Network?

- An interconnected system of things or people
- Purpose of a Network?
 - Resource Sharing
 - Communication
- LANs have become the most popular form of Computer Networks

Principle of Locality of Reference

If a pair of computers communicates once, the pair is likely to communicate again in the near future and periodically

Physical Locality of Reference
 A computer tends to communicate most often with other computers that are nearby

Elements of a Network (cont.)

- Computers (Clients & Server(s))
- NICs
- Cables & Connectors
- Hub/Switchs
- Router

Elements of a Network (cont.)

NIC

Switch

Router

Elements of a Network (cont.)

A rack of Network switches and routers

Software Components

- Protocol StackTCP/IP
- Application Software

Client

Browser, E-mail Client, Chat Client

Server

Web Server, Mail Server, File Server

What is a Protocol?

- Set of Rules
- Described by international standard bodies
- TCP Transmission Control Protocol
- IP Internet Protocol
- HTTP, FTP, SMTP, POP, SNMP and a lot..

Ethernet

- Local Area Network Standard
- CSMA/CD

Ethernet

Ethernet (CSMA/CD)

Internetworking

- Connecting two LANs
- Network of Networks – Internet
- Grows @ of 50%per year

Internet – What is important?

- Routing
- IP addressing
- Data Rate
- Bandwidth support for Next Gen applications
- Seamless integration of existing technologies
- Semantic Web

Routing

Routing is the process of moving packets through an internetwork

 Routers R1 and R2 uses Routing Tables to route the packets

Addressing

- IP V4 addressing 32 bit
- IP V6 addressing 128 bit

IP Address = Network part + Host part

192.168.72.22

Different Classes of IP address

Addressing

- IP Address is hard to remember
- Human readable URLs
- http://www.google.com
- Mapping is done by DNS

How to connect to Internet

- Dial-Up (28 56 Kbps)
- DSL (90 Kbps)
- ISDN(64-128 Kbps)
- Leased Line (T1 line 1.5 Mbps)
 (T3 line 44 Mbps)
- Satellite (500 Mbps)
- Wireless (128 Kbps)

ADSL (512 – 8 Mbps)

- ADSL Speed 512Kbps
- Typical Download 460 Kbps
- Typical Upload 200-240 Kbps

CUSAT network

- 14 Mbps leased line
- Mail Server
- Web Server
- E-learning
- Streaming
- Edusat
- VPN
- Anti-virus

Network Utilities

- Ping
- Traceroute
- ftp
- telnet
- ssh

How Big is Internet?

Internet Usage as of now

Internet Users in the World by Geographic Regions

Source: Internet World Stats - www.internetworldstats.com/stats.htm Estimated Internet users are 1,596,270,108 for March 31, 2009 Copyright © 2009, Miniwatts Marketing Group

India?

- 1,147,995,898 population Area: 3,166,944 sq km
- 81,000,000 Internet users as of March/09, 7.1% penetration
- 2,520,000 broadband Internet connections as of June/07
- USE GROWTH 1,520.0 % (2000-2009)

Dawn of the Net

Web Services

Consumer-Oriented Web Services

- Stock Quotes
- JIT Calendar

Device-Oriented Web Services Business-Oriented Web Services

- Credit Authorization
- JIT Productivity Apps

How to setup a Network?

Private IP

- Address range Subnet mask Provides Addresses per LAN
- 10.0.0.0 10.255.255.255
 255.0.0.0 1 class A
 LAN 16,777,216
- 172.16.0.0 172.31.255.255 255.255.0.0 16 class B LANs 65,536
- 192.168.0.0 192.168.255.255
 256 class C LANs
 256

Mobile and wireless services – Always Best Connected

Mobile devices

Pager

- receive only
- tiny displays
- simple text messages

PDA

- simpler graphical displays
- character recognition
- simplified WWW

Laptop

- fully functional
- standard applications

Sensors, embedded controllers

Mobile phones

- voice, data
- simple graphical displays

Palmtop

- tiny keyboard
- simple versions
 of standard applications

Overlay Networks - the global goal

integration of heterogeneous fixed and mobile networks with varying

in-house

Frequencies for communication

- VLF = Very Low Frequency Frequency
- LF = Low Frequency
- MF = Medium Frequency Frequency
- HF = High Frequency
- VHF = Very High Frequency

- SHF = Super High Frequency EHF = Extra High
- UV = Ultraviolet Light

- Frequency and wave length:
- wave length λ , speed of light $c \cong 3x108m/s$, frequency f

Frequencies and regulations

 ITU-R holds auctions for new frequencies, manages frequency bands worldwide (WRC, World Radio Conferences)

	Europe	USA	Japan
Cellular Phones	GSM 450-457, 479-486/460-467,489 -496, 890-915/935-960, 1710-1785/1805-188 0 UMTS (FDD) 1920-1980, 2110-2190 UMTS (TDD) 1900-1920, 2020-2025	AMPS, TDMA, CDMA 824-849, 869-894 TDMA, CDMA, GSM 1850-1910, 1930-1990	PDC 810-826, 940-956, 1429-1465, 1477-1513
Cordless Phones	CT1+885-887, 930-932 CT2 864-868 DECT 1880-1900	PACS 1850-1910, 1930-1990 PACS-UB 1910-1930	PHS 1895-1918 JCT 254-380
Wireless LANs	IEEE 802.11 2400-2483 HIPERLAN 2	902-928 IEEE 802.11 2400-2483	IEEE 802.11 2471-2497 5150-5250

Multiplexing

- Multiplexing in 4 dimensions
 - space (si)
 - time (t)
 - frequency (f)
 - code (c)

Goal: multiple use of a shared medium

Important: guard spaces needed!

Frequency multiplex

- Separation of the whole spectrum into smaller frequency bands
- A channel gets a certain band of the spectrum for the whole time
- Advantages:
- no dynamic coordination necessary
- works also for analog signals
- Disadvantages:
- waste of bandwidth if the traffic is distributed unevenly
- inflexible
- guard spaces

Time multiplex

 A channel gets the whole spectrum for a certain amount of time

- Advantages:
- only one carrier in the medium at any time
- throughput high even for many users
- Disadvantages:
- precise synchronization necessary

Time and frequency multiplex

- Combination of both methods
- A channel gets a certain frequency band for a certain amount of time
- Example: GSM
- Advantages:
 - better protection against tapping
 - protection against frequency selective interference
 - higher data rates composed code multiplex
- but: precise coordination required

Code multiplex

Each channel has a unique code

 k_1 k_2 k_3 k_4 k_5 k_6

All channels use the same spectrum at the same time

- Advantages:
 - bandwidth efficient
 - no coordination and synchronization necessary
 - good protection against interference and tapping
- Disadvantages:
 - lower user data rates
 - more complex signal regeneration
- Implemented using spread spectrum technology

GSM & CDMA

- Global System for Mobile Communications (GSM)
- Code Division Multiple Access (CDMA)
- GSM requires frequency planning
- CDMA uses spread spectrum technique

Wireless and Mobile Networks

- Wireless Networking
 - Infrastructure based
 - Ad-hoc (peer-to-peer)

Comparison: infrastructure vs. ad-hoc networks

AP: Access Point

wired network

ad-hoc network

802.11 - Architecture of an infrastructure network

- Station (STA)
 - terminal with access mechanisms to the wireless medium and radio contact to the access point
- Basic Service Set (BSS)
 - group of stations using the same radio frequency
- Access Point
 - station integrated into the wireless LAN and the distribution system
- Portal
 - bridge to other (wired) networks
- Distribution System
 - interconnection network to form one logical network (EES: Extended Service Set) based

802.11 - Architecture of an ad-hoc network

- Direct communication within a limited range
 - Station (STA): terminal with access mechanisms to the wireless medium
 - Independent Basic Service Set (IBSS): group of stations using the same radio frequency

Bluetooth

- Idea
 - Universal radio interface for ad-hoc wireless connectivity
 - Interconnecting computer and peripherals, handheld devices, PDAs, cell phones – replacement of IrDA
 - Embedded in other devices, goal: 5€/device (2002: 50€/ USB bluetooth)
 - Short range (10 m), low power consumption, licensefree 2.45 GHz ISM
 - Voice and data transmission, approx. 1 Mbit/s gross data rate

WPAN

 IEEE 802.15 standard equivalent to Bluetooth

Wireless Sensor Networks

- recently emerging technology
- composed of a large no. of very small sensors

WSN Projects

CitySense Project April 2007

- Harvard University, BBN Technologies, and the City of Cambridge have begun a four-year project to install 100 wireless sensors atop streetlights in Cambridge, Mass., creating the world's first city-wide network of wireless sensors.
- will measure temperature, wind speed, rainfall, barometric pressure, and air quality, but the possibilities are endless

SUN initiative

• A world full of sensors is a world in which, for instance, building climates are microcontrolled, rooms come alive with lights and music when people enter them, and the health of elderly family members is monitored from a distance

Sensor Nodes?

large nodes >0.1m

'envinode ≈0.1m

'smart dust' <0.001m

What we can sense?

- Oceanographic & Meteorological data
- Snow thickness
- UV
- Weather, pH, conductivity
- River flow, quality, precipitation
- Temperature, light, humidity
- Light levels, air temperature and humidity, soil temperature and soil moisture
- And a Lot...

More Examples

- Global Seismographic Network http://www.iris.edu
- Deep Ocean Assessment and reporting of Tsunamis
- http://www.ndbc.noaa.gov/dart.shtml
- Tropical Atmosphere Ocean Project http://www.pmel.noaa.gov/tao/index.shtml
- King County Lake Data
- http://dnr.metrokc.gov/wlr/waterres/lakedata/index.htm

- Orion Project
 http://orion.lookingtosea.ucsd.edu/
- Seismic Projecthttp://www.cens.ucla.edu
- Habitat Monitoring http://www.greatduckisland.net/

BAN

Body Area Network

The basic concept of BAN is the fusion of both ideas: a set of mobile, compact units which enable transfer of vital parameters between the patient's location and the clinic or the doctor in charge.

Wi-Fi & Wi-Max

- Wi-Fi broad name for WLAN technology
- Wi-Max Wireless MAN standard will be used for Mobile Internet

4G Networks

- Mobility is great challenge
- Speed is 100 Mbps 1 Gbps
- Multimedia Messaging Services, Video Chat, MobileTV, High Definition TV

Thank You