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Abstract

A ship at sea responds to the relative force between the surface forces applied and the
motion of the fluid it is traveling in. The response (seen as vibration) gets converted
to sound if the structure imparts kinetic energy (in the form of pressure waves) to the
surrounding fluid. These propagating pressure waves are audible if their speed is greater
than the speed of sound. A similar analogy exists for a landing / taking off of an airplane
from a floating airport wherein the landing / taking off airplane acts as a moving force.
This mouving force causes the floating airport to respond and produce sound which gets
transmitted to the water below. The present study concentrates largely on sound

radiation from floating structure due to moving load.

Accordingly the study is divided into two parts. One wvalid for a ship (by consider-
ing a classical beam theory) and the other for a floating airport (by considering a
Timoshenko-Mindlin plate theory). First, a generalised expression for the total sound
power due to a moving load on a ship is formulated for various beam types by tak-
ing a Fourier transform of the governing equation and then non-dimensionalising to
get the total sound power. The procedure employed is similar to that demonstrated by
Keltie and Peng (1988) for a Timoshenko beam subjected to a moving harmonic force.
This understanding is then extended to model a floating airport by assuming that the run-
way behaves as a simple, infinitely long beam floating on water and supported by buoyancy.
To make the calculation procedure user friendly, generic and to speed up the user’s work,
a Graphical User Interface has been developed for undertaking the analysis. Herein

the effect of structural damping on sound power is analysed for a ship while the effect of
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mean flow and inplane loading on sound power is considered for a floating airport.

For an elastic structure such as a floating airport subjected to a landing / taking off
load of an airplane dynamic analysis has its importance because a floating runway is
flexible and receives buoyant support from the water. This makes the runway to deflect
due to it’s weight and hence will form a dish-like “dent” around the aircraft when the air-
craft is static. However this dent moves and progresses like a wave down the runway when
the airplane takes off. This moving dent in return causes an increased drag on the air-
craft resulting into increased time, distance of take-off and fuel thus leading to increased
operating cost. The designer is thus required to address the transient dynamics problem
due to the impulsive and moving loads excited by the landing / taking off of an airplane
on these structures which has been additionally studied. In developing an expression for
this study, a Fourier transformation in space for the whole structure in wavenumber do-
main s utilised rather than using the wave propagation method to reduce the analysis to
a substructure. The procedure employed is similar to that demonstrated by Cray (199/)
for stiffened plates and Cheng (1999) and Cheng et al. (2000, 2001) for calculating the
transverse response and acoustic radiation of a periodically supported beam. The advan-
tage of expressing the response in terms of a wavenumber arises from the fact that the
periodic boundary conditions and the phase relation between two adjacent substructures

will not be required to be used.

Other areas where the sound radiation from structure has relevance are that of float-
ing ladder tracks, airplane landing on ice, sound radiation from tyres and transportation

structures to name a few.
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Chapter 1

(zeneral Introduction

1.1 Preamble

Sound is present all around us in different forms. We experience some form of sound right
from the moment we get up to the time we go off to sleep. We continue to experience
sound even when asleep. What is remarkable of this form of energy is that we cannot
protect ourselves from it naturally. If we do not wish to see a thing, we can close our eyes
as we do so while sleeping, but we cannot do the same with sound as we continue to hear
it even without being aware of it. Nature has given our visual capabilities limitations,
wherein we cannot see something behind us but we can surely hear it. Sound happens
because of quickly varying pressure wave within a medium due to a vibrating structure
or an unsteady aerodynamic flow. The sound so produced may or may not be audible.

Noise, on the other hand is the unwanted and undesirable product of this radiated sound.

A ship at sea or an aircraft in flight responds to the surface forces applied by the relative
motion of the fluid they are traveling in. This response is in the form of vibration which
can get converted to sound if the structure can impart kinetic energy to the surrounding
fluid as pressure waves. These propagating pressure waves are audible as sound if their

speed is greater than the speed of sound. Similarly, structures such as a floating airport,
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a bridge, guideway, overhead crane, cableways, rails or roadways; are static while being
subject to a moving load unlike a ship or an aircraft, where the structure is moving and
the surface force is at rest. Advances in speed and weight of vehicles in all branches
of transport in the last few decades have resulted into increased vibrations and hence
increased noise levels. It has thus become essential to study effect of moving load on such
transportation structures modeled as continuously supported beams and plates. May it
be (a) a moving structure in static fluid; (b) a moving force over a static structure; or (c)
both the force and the structure moving; the resultant effect is vibration, hence sound.
Keeping in mind this thought process, the effect of moving load on the sound power is
studied. Some areas where this nature of study has relevance are that of ships moving
in water, floating ladder tracks, floating airports, tyres and transportation structures to

name a few.

1.2 Prelude

The ocean is a noisy place. There are many sources of sound, and sound travels ef-
ficiently in water. Natural ocean sounds are produced by wind, waves, precipitation,
cracking ice, seismic events, and marine organisms. The hearing ability of marine mam-
mals has evolved to deal with these natural sounds of the ocean. Since the advent of
the industrial age, sounds made by human beings have combined with natural ocean
sounds, resulting in elevated noise levels, primarily in the frequency region below 1kH z
and is assumed to affect the ability of marine mammals to communicate and to receive
information about their environment. Such noise may interfere with or mask the sounds
used and produced by these animals and thereby interfere with their natural behavior.
Higher levels of human-made sounds can cause obvious disruptions; they may frighten,
annoy, or distract the animals and lead to physiological and behavioral disturbances.
They can cause reactions that might include disruption of marine mammals’ normal ac-
tivities and, in some cases, short- or long-term displacement from areas important for
feeding or reproduction. They may also disturb the species such as fishes, squids, and

crustaceans upon which the marine mammals prey. At still higher levels, human-made
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Fig. 1.1 Hearing curves for select teleost fishes (Popper (2008))

noise may cause temporary or permanent hearing impairment in marine mammals. Such
impairment would have the potential to diminish the individual’s chances for survival.
At greater range the underwater sound wave may not directly injure animals, but has the
potential to cause behavioural disturbance or even physical or physiological disturbance.
Hearing thresholds have been determined for perhaps 100 of the more than 29,000 living
fish species (Figure 1.1). These studies show that, with few exceptions, fish are sensitive
to low frequency sound below 1kHz, and that marine mammals are very sensitive to

sound of frequencies above 1kH z.

1.3 Motivation

Warships, Figure 1.2, might look like all-powerful vessels but they are also highly vul-
nerable to being spotted by the enemy. The radiated noise signature of a warship is
composed of a variety of noises; those generated by running machinery, sensor systems,
crew activity, by the hull moving through the water (pressure signature) and by the
propeller (such as cavitation and blade rate). The output of these noise sources defines
the global level of the radiated signature and of any discrete components within it. The
level of the radiated acoustic signature is therefore a critical parameter in the operational

success of any warship. It is this signature that will affect the means by which, and the
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Fig. 1.2 Ship at Sea (flickr.com)

range at which, the vessel may be detected, classified, tracked and engaged. Since the
acoustic waves can propagate in the sea 4-5 times faster than in air and without substan-
tial loss, any source of sound from a vessel gets detected in the sea more conveniently.
One component of this noise signature is due to the ship’s movement; the relative motion
of the ship and the sea water being the source. This relative motion between the ship
and the sea water may be conceptualised as a moving load on a static structure.

Very Large Floating Structures (VLFS in short), Figure 1.3, with typical di-

Fig. 1.3 A Very Large Floating Platform (Kobe Airport, Tokyo Bay, Japan)

mensions of 5 km long, 1 km wide, and only a few meters deep can be used to create
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floating airports, bridges, breakwaters, piers and docks, storage facilities, wind and solar
power plants, military stations, industrial space, emergency bases, entertainment facil-
ities, recreation parks, mobile offshore structures and even for habitation and may be
located near the coastline or in the open sea. Because of their relatively simple construc-
tion and ease of maintenance, pontoon-type VLFS (which just floats on the sea surface)
are used as a floating airport or runway. They are constructed particularly in calm wa-
ters, often inside a cove or a lagoon and near the shoreline, to minimize ocean effects on
them, where marine life is abundant in variety and quantity. This marine life is effected
undesirably by noise pollution as confirmed by recent studies. Having a floating airport,
increases the noise pollution in these sheltered areas due to activities such as movement
of equipment, people, cargo (dry and liquid), variable ballast (dry and liquid), aircraft
landing, crane handling, berthing and docking, connection and disconnection, running
machinery onboard etc. Most of these sounds can be reduced or controlled, and have
been studied independent of the VLFS. However, sound radiation due to an airplane
taking off / landing has not been been reported in the literatures available.

A modern ladder rail track design, Figures 1.4 and 1.5, where steel rails are fixed onto

Fig. 1.4 Train on a floating ladder track (Wikipedia)

successive ladder-like sections of two parallel longitudinal reinforced concrete sleepers up

to 15 m long, when mounted upon discrete resilient supports on a concrete bed are called
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Fig. 1.5 Floating ladder track (Railway Technology Avalanche (2004))

as floating ladders. These have significant advantages which include robust structure,
reduced settlement and much less vibration and noise. Floating ladder tracks are in use
in Japan and with trains touching speeds of an upward of 500 km/h, the study of the
effect of moving loads (in the form of fast moving trains) on floating ladders takes im-

portance.

The subject of moving load problem becomes increasingly important owing to its broad
applications in the transportation industry as seen in Figures 1.6 and 1.7. For in-
stance, in recent years high-speed trains and automobiles are actively promoted for future
surface transportation. At low speed, the dynamic effect of moving load to structures
such as railways, highways, and airfields is insignificant. However, when vehicle speed
increases, moving load effect can no longer be ignored and more sophisticated models of
vehicle-structure interaction need to be considered. The study of the beam response to
moving load also provides basis for vehicle detection, classification and weight-in-motion,

structural health monitoring, and non-destructive evaluation.

Apart from these areas as discussed above, the relevance of moving load on structures has

it’s importance in various other fields such as guideway, overhead crane or cableways. In
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Fig. 1.6 The fast moving transportation
(http : //www.123r f.com/photo — 4884460 — transportation — centre — wth — cross — sea — bridge.html)

Fig. 1.7 Modern transports on bridges (flickr.com)

some of these fields; the structure is static while being subject to a moving load; while in
others such as a ship, the structure is moving and the surface force is at rest. May it be
a moving structure in static fluid; a moving force over a static structure or both the force
and the structure moving; the resultant effect is vibrations that result into sound. Such
requirements have resulted in numerous investigations of moving load on continuously

supported beams and plates but limited to vibrations. It is this lack of work in the study
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of sound due to a moving load that the present study is motivated.

1.4 Literature Survey

Governments up until the 1970s viewed noise as a “nuisance” rather than an environ-
mental problem. With an increasing awareness of “noise health effects” the science of
sound (called acoustics) has developed increasingly in importance. Acoustics is an inter-
disciplinary science that deals with the study of all mechanical waves (in gases, liquids
or solids) including vibration, sound, ultrasound and infrasound. The study of acoustics
revolves around the cause, generation, propagation, reception and effect of mechanical
waves and vibrations. These steps are the same for all problems may it be an earthquake,
a rock band or a submarine using a sonar. The cause or the initiating force may be natural
and/or man made while the generation process of acoustic energy, can be of various types.
There is one fundamental equation that describes acoustic wave propagation which trans-
fers energy through the propagating medium and is received by the receiver. The final

effect may be purely physical or it may reach far into the biological or volitional domains.

Traditionally, noise problems have been identified and solved in a trial and error manner.
The numerical analysis has invariably been relegated to a supporting role, and numerical
results have often been greeted with skepticism. For large structures such as a ship or a
floating airport, the trail and error methodology may not be a suitable means of study,
owing to their size. Hence the numerical method for analysing sound from such large
structures is considered as an acceptable norm. Since the sound produced by structures
has been studied from the time of Rayleigh (1896), the available literature is vast and
varied. We shall review in brief the work undertaken for beams and plates causing forced
vibrations, the Very Large Floating structures, acoustics due to moving loads, mean flow,

inplane loading and effect of noise on marine life.
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1.4.1 Structural Geometry

Simple geometrical structures idealized as a membrane, a thin elastic plate or a thick
elastic plate (with Timoshenko-Mindlin equation of motion) which are of infinite extent
and are homogeneous have been studied extensively. This is done not only due to the
frequent occurrences of these structures in several engineering disciplines, but also to
simplify the mathematical structure of the governing equations compared with a full
three-dimensional equation. The structure is assumed to have the same static inviscid
fluid on both sides, or a vacuum on one side. The exciting fields such as a point source, a
concentrated mechanical line force and moment or point-force have been studied. Owing
to the available efficient analytical techniques, the results have been limited to very
distant structural and fluid wave fields which are quantities of physical interest. Results
for a membrane covering various distances from the excitation and frequencies have been

given by Crighton (1983).

1.4.2 Forced Vibration

A “moving load”, which is the cause in the present study, makes structural analysis
very difficult since the interacting force varies in time and space. Not withstanding the
associated difficulties, the study of such moving load on structures has been of interest
to researchers both theoretically and experimentally since the first railway bridge was
built in the early 19" century. The investigations have hence resulted in a large number

of publications. We shall break up our survey so as to limit it to beams and plates.

1.4.2.1 Beam

Theoretically, the problem of moving load was first tackled for a case in which the beam
mass was considered small against the mass of a single, constant load. The original ap-
proximate solution is due to Willis e al. (1851), one of the early experimenters in the
field. Since then these problems has become more dynamic in character mainly due to
the increased vehicle speed and structural flexibility. Fryba (1999), while documenting a

large number of related cases used the Fourier sine (finite) integral transformation and the
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Laplace-Carson integral transformation and obtained the dynamic response in the form
of a series solutions. Ting et al. (1974) solved the problem using static Green function,
distributed inertial effects as applied external forces and numerical integration at each po-
sition of the mass over the length of the beam. Hamada (1981) using the double Laplace
transformation with respect to both time and length transform solved the response for a
simply supported and damped Euler-Bernoulli uniform beam of finite length traversed by
a constant force moving at a uniform speed. Yoshimura et al. (1986) used the Galerkin
method to study the effect of geometric non-linearity while Lee (1996) used the Runge-
Kutta method to study a clamped-clamped beam and Esmailzadeh and Ghorashi (1994)
studied the forced vibration of a Timoshenko beam. Ghadeyan and Oni (1994) gave a
technique based on modified generalized finite integral transforms and the modified Stru-
ble’s method to study finite Rayleigh beams and plates having arbitrary end supports and
under an arbitrary number of moving masses. Foda and Abduljabbar (1994) used a Green
function approach to study an undamped simply supported Euler-Bernoulli beam of finite
length subject to a moving mass traversing its span at constant speed. Henchi and Fafard
(1997) using a variational finite element approach solved a continuous Euler-Bernoulli
beam, with several loads but ignored inertia. Wang (1998) considered random vibrations
of a Timoshenko beam under a random moving load. Zibdeh and Juma (1999) considered
a rotating beam subjected to a random moving load for the Euler-Bernoulli, Rayleigh
and Timoshenko beam models. Visweswara Rao (2000) studied a Euler-Bernoulli beam
under moving loads by mode superposition. [chikawa et al. (2000) gave an analytical
solution based on eigenfunction expansion for a general continuous Euler-Bernoulli beam
subjected to a moving mass. Wu et al. (2001) used a combined finite element and analyti-
cal method for determining the dynamic responses of a clamped-clamped beam subjected
to a single mass moving along the beam. Sun (2001) obtained the Green’s function of the
beam on an elastic foundation by means of Fourier transform. Abu-Hilal (2003) used a
Green’s function method for single and multi-span Euler-Bernoulli beam subjected to dis-
tributed and concentrated loads. Michaltsos (2002) gave analytical solutions for a vehicle
modeled as two moving loads on a bridge approximated as a beam ignoring the dynam-

ics of the vehicle itself while Esmailzadeh and Jalili (2003) accounted for the dynamics
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of the vehicle. Both Kargarnovin and Younesian (2004) and Lee (1998) considered the
Timoshenko beam on an elastic foundation subject to moving loads, by analytical ap-
proaches. [im (2004) studied axially loaded beams on elastic foundations subject to
harmonic moving loads. The linear finite element analysis was applied to analyze a sim-
ply supported Euler-Bernoulli beam under the act of moving loads by Ju ¢/ al. (2006) and
Kidarsa et al. (2008). In Kargarnovin et al. (2005) and Younesian et al. (2006), nonlinear
dynamical behavior of Timoshenko beams with infinite length under the act of traveling
harmonic loads resting on viscoelastic foundations are studied. Dynamic response of an
inclined Euler-Bernoulli beam subjected to a moving mass has been investigated in \Wu
(2005) using the linear finite element method considering transversal and longitudinal
displacements for the beam. In Yanmeni Wayou et al. (2004), the nonlinear vibration of
a horizontal pinned-pinned thin beam under the act of a moving mass considering the
influence of the load inertia and the nonlinearity caused by stretching effect of mid-plane
of the beam due to the immovable supports was studied. Recently, the nonlinear dynamic
analysis of an eccentrically prestressed beam under the act of a concentrated moving har-
monic load including damping effect has been studied in Simsek and Kocaturk (2009).
In that paper, the nonlinear deflections behavior of the beam is approximated by some
polynomial functions and material of the beam was assumed to follow the Kelvin-Voigt
model. Furthermore, the effects of large deflections, the internal damping of the beam,
the velocity of the moving harmonic load, the prestress load, and the excitation frequency
were discussed. Mehri el al. (2009) using a dynamic green function, presented the lin-
ear dynamic response of uniform beams with different boundary conditions excited by a
moving load, based on the Euler-Bernoulli beam theory. An exact and direct modeling
technique is presented with various boundary conditions, subjected to a load moving at
a constant speed. Influence of variation in speed on the dynamic response was studied
and the results given in graphical and tabular form. Dehestani et al. (2009) Presented
an analytical-numerical method which can be used to determine the dynamic response
of beams carrying a moving mass, with various boundary conditions. Results illustrated
that the speed of a moving mass has direct influence on the entire structural dynamic

response, depending on its boundary conditions.
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As can be seen, over the years many investigators have used different methods for solving
the forced vibration problem. The most used method for determining these vibrations
is the eigenfunctions method wherein the applied loads and the dynamic responses are
expanded in terms of the undamped beams. This method gives the solution as an infinite

series, which is truncated after a number of terms and an approximate solution obtained.

1.4.2.2 Plate

The dynamic response of rectangular plates to uniformly moving loads has been subjected
to many investigations. Solutions have been presented by Holl (1950) and Piszczek (1959),
Nowacki (1963) showing that a critical velocity existed for each vibrational mode. Steady
state solutions of an infinite plate carrying a uniformly moving load were given by Livesley
(1953), Reismann (1959) and Morley (1962). Gbadeyan and Oni (1994) and Fryba (1999)
investigated the dynamic behaviour of beams and plates subjected to moving forces and
moving masses. \Manoach (1993) studied elastoplastic thick circular plates subjected to
different types of pulses by using the Mindlin plate theory. Bert e al. (1994) used the dif-
ferential quadrature method. Rossi e al. (2001) studied the forced vibration responses of
a rectangular plate subjected to a stationary distributed harmonic loading. Zhu and Law
(2000) and Marchesiello ef al. (1999) studied the dynamic behaviour of bridges by con-
sidering the structure to be composed of rectangular plates. Shadnam et al. (2001a)
considered a single force (or mass) moving along an arbitrary trajectory; however, they
studied a straight path problem by means of analytical and numerical approach. The
nonlinear plate version of the same problem was considered by Takabatake (1998), us-
ing a Galerkin approach, but with discontinuously changing plate thickness and later
by Shadnam et al. (20010). Wu et al. (2001) used the FEM and the Newmark direct
integration method. Composite plates were considered by Lee and Yhim (2004) using
finite elements and third-order plate theory and later by Au and Wang (2005) computed
sound radiated from a composite plate due to moving loads. Kim et al. (2005) used a
finite element model for a bridge while Li ¢/ al. (2005) extended the work by taking into

account the wind loads on the vehicle. The bridge-vehicle interaction using a Lagrangian
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approach was studied by Yagiz and Sakman (2006). The literature cited above are some
of the main contributors who have undertaken the study of moving loads on plates and

cannot be considered as complete.

1.4.3 Very Large Floating Structure

Many developed countries with long coastlines for want of land space have successfully re-
claimed land from sea. Such activities have a negative ecological impact on the coastline
surrounding the reclamation. In response to this requirement researchers and engineers
proposed the construction of Very Large Floating Structures (VLFS in short) with
typical dimensions of 5 km long, 1 km wide, and only a few meters deep. These structures
can be constructed to create floating airports, bridges, breakwaters, piers and docks, stor-
age facilities, wind and solar power plants, military stations, industrial space, emergency
bases, entertainment facilities, recreation parks, mobile offshore structures and even for
habitation and may be located near the coastline or in the open sea. Because of their
relatively simple construction and ease of maintenance, pontoon-type VLFS (which just
floats on the sea surface) are used for a floating airport or runway. They are constructed
particularly in calm waters, often inside a cove or a lagoon and near the shoreline, to
minimize ocean effects on them, wherein marine life is abundant in variety and quantity.
Recent studies by marine biologists have confirmed undesirable effects of noise pollution
on marine life. Having a floating airport, compounds the noise pollution in these sheltered
areas due to activities such as movement of equipment, people, cargo (dry and liquid),
variable ballast (dry and liquid), aircraft landing, crane handling, berthing and docking,
connection and disconnection, running machinery onboard etc. Most of these sounds
can be reduced or controlled, and have been studied independent of the VLE'S over the
years. However, the sound radiation by the VLFS when subjected to an airplane landing
/ taking off and efforts of reduction to protect the marine life from noise pollution, has
not been studied.

The difficulties in solving this transient dynamic problem has resulted in only a few
simplified studies to have been reported to date. Using a finite element (FE) program,

Watanabe and Utsunomiya (1996) presented the numerical results for elastic responses
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due to prescribed impulsive loading on a circular very large floating structure excited by
impulsive loading. Kim and Webster (1998) and Yeung and Kim (1998) studied tran-
sient phenomena of an infinite elastic runway using a double Fourier transform approach.
The former studied the added drag caused by the flexibility of the runway while the latter
focused on the resonance phenomenon caused by the accumulation of energy near the
moving load. Ohmatsu (1998) developed another kind of time-domain analysis method in
which the structural response is obtained from the convolution integral of the frequency
response function and impulse response function. Endo and Yago (1999) adopted a FE
scheme and Wilson-6 method to investigate the transient behavior of an airplane taking
off from and landing on a VLFS in rough sea conditions using a triangle time impulse
load applied at the nodes of the structure to represent the loads introduced by the
weight of the airplane. Endo (2000) calculated the behaviour of a VLFS and airplane
during takeoff / landing run in wave condition allowing for the effects of hydroelasticity.
Lee and Choi (2003) developed a FE-BE hybrid method to analyze transient hydroelas-
tic response of VLFS. Kashiwagi (2001) presented the transient elastic deformation of
a pontoon-type VLFES caused by the landing and takeoff of an airplane based on the
mode superposition method using realistic numerical data from a Boeing 747-400 jumbo
jet. Fleischer and Park (2004) used the modal analysis with Fourier series to solve the
plane hydroelastics of a beam due to uniformly moving one-axle vehicle. Kvoung et al.
(2006) developed a finite element method for the time-domain analysis of the hydroe-
lastic deformation of a pontoon-type very large floating structure with fully nonlinear
free-surface conditions. Jin and Xing (2007) proposed a mixed mode function-boundary
element method to solve the dynamic responses of a floating beam excited by landing
loads. Liu-chao and Liu (2007) proposed a time-domain finite element procedure to ana-
lyze the transient hydroelastic responses of VLFS subjected to dynamic loads. liu-chao
(2009) proposed a time-domain finite element model to analyze the fluid-structure inter-
active dynamical system. He validated the proposed approach by comparing the existing

experimental and numerical results with the results obtained.

The present study concentrates largely on the sound generated by such floating
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structures. So far no study of this nature has been reported in the literatures available.

1.4.4 Acoustics

The literature on analytical methods in acoustic radiation is vast and chronologically
ranges from the late 19 century with the work of Rayleigh (1896), essentially defining
the science of acoustics. Inherently the problem of acoustic radiation includes the prob-
lem of vibrations of the structures under consideration. The most important theories
and analytical methods can be found in the classical acoustic textbooks Junger and Feit
(1986), Fahy and Gardonio (2007), Pierce (1989), Cremer et al. (1988). Techniques for
dealing with fully coupled motions of elastic plates and shells immersed in air or water
were simply not available in Rayleigh’s time, but have become available in the past three

decades or so.

1.4.4.1 Static load

Early investigations of sound radiation from a force excited, elastic, fluid-loaded plate
by Gutin (1965), Maidanik and Kerwin (1966) and Feit (1967) were primarily concerned
with the far field pressure and power radiated in to the acoustic medium. Ranganath Navak
(1970), using the Fourier integral representation of the solution was able to numerically
evaluate the integral representation for the velocity response to determine the drive line
admittance for a line-driven plate. Crighton in a series of papers Crighton (1972, 1977,
1979, 1983) had analysed both the near-and far field response of locally excited plates.
Crighton’s results although probably the most complete to date in this field, are some-
what difficult to visualize due to the complexity of the problem and that they have not

been displayed in a graphical form.

1.4.4.2 Moving Load

Sound radiation by beams due to moving loads is however a relatively newer area of
interest. [eltie and Peng (1988) investigated the sound radiation from a fluid-loaded

beam subject to a moving harmonic line force. Their study was the first of it’s kind
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and showed some important characteristics of structures subject to a moving load. The
results showed that for beams under light fluid loading, the coincidence sound radiation
peak for a stationary force is split into two coincidence peaks due to the effects of the
Doppler shift, while for beams under heavy fluid loading there are no pronounced sound
radiation peaks. Following the study of eltie and Peng (1988), Cheng (1999) formulated
the vibration response of periodically simply supported beam on the whole structure in
wavenumber domain through Fourier transform. This problem was an advance on tradi-
tional substructure methods. For an air-loaded beam subjected to a stationary line force,
they showed that the radiated sound power exhibited peaks at certain wavenumber ra-
tios. The wavenumber ratios at which radiation peaks occur nearly coincide with the
lower bounding wavenumber ratios of the odd number of propagation zones. However,
Cheng’s formulation did not include the presence of numerous wavenumber components
induced from the elastic supports and is subject to the restriction that the external
force is located on one of the elastic supports. Cheng et al. (2000, 2001) introduced a
“wavenumber harmonic series” to discuss the vibro-acoustic response when a fluid-loaded
beam on periodic elastic supports is subjected to a moving load. Results show that the
response of a beam on an elastic foundation can be approximated using a periodically,
elastically supported beam when the support spacing is small compared with the flex-
ural wavelength. For such beams when the force is stationary a single radiation peak
occurs which splits into two peaks due to Doppler shift when the force becomes traveling.
Au and Wang (2005) studied the vibrations of a rectangular orthotropic thin plate with
general boundary conditions traversed by moving loads. The effects of light and heavy
moving loads were separately studied. Based on the Rayleigh integral and the analytical
dynamic response of the plate, the acoustic pressure distributions around the plate were
obtained in the time domain. It was concluded that the boundary conditions affect the
acoustic pressure generated by moving loads. It was observed that the stiffer the plate,
the higher the structural frequencies, and the larger the sound pressure caused by moving

loads.

To solve the forced response of rectangular plates with elastic support, Yufeng and Qibai

16



1.4 Literature Survey

(2009) adopted approximate solutions in conjunction with numerical methods. They in-
vestigated the effect of the moving force on the radiated sound from the rectangular plate
with elastic support and concluded that the speed of the moving force can change the
sound radiated from the plate with elastic support to become flat in special frequency

range.

1.4.5 Mean Flow

The literature on fluid-structure interaction in the presence of fluid flow is relatively
scarce. This is not because fluid flow is unimportant, but because problems often get
too complicated when relative motion between an elastic structure and a surrounding
fluid medium is involved. This is especially true when the dimension of a structure is
finite, and the compressibility and viscosity of the fluid medium must be considered.
One way of obtaining an understanding of the physics behind this type of fluid-structure
interaction is to examine a simplified version of the problem in which the dimension of
a structure extends to infinity, the fluid moves at a constant (mean) speed, and the ef-
fects of fluid compressibility and viscosity are neglected. Brazier-Smith and Scott (1984)
present a numerical study of such a problem. Specifically, they study the dynamic re-
sponse and instability of an infinite elastic plate in the presence of mean flow based
on a causality analysis. Brazier-Smith and Scott’s numerical analysis is supported by
Crighton and Oswell (1991) analytical work based on an asymptotic expansion analy-
sis. In particular, Crighton and Oswell (1991) shed some light on the mechanism of the
onset of convective instability. The mechanism of the onset of absolute instability was
uncovered by Wu and Maestrello (1995). Further, Wu and Zhu (1995) show that the
amplitude of the plate response is always bounded by the structural nonlinearities and

instabilities depicted by Brazier-Smith and Scott (1984) never really occur.

1.4.6 Inplane loading

The first theoretical examination of plate under uniform compression was by Bryvan

(1891), who obtained a solution to the problem in 1891. Since then numerous researchers
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have investigated local instability in plates under a wide variety of loading and bound-
ary conditions using many different methods of analysis. There has been a number of
excellent textbooks such as Timoshenko and Gere (2010) and Bulson (1970) that have
described the main results of these investigations. An area analogus to floating airports
is the study of ice packs wherein existence of compressive stresses has been long recog-
nized in ship design for the Arctic. A well known example of a research vessel designed
to withstand ice pack compression is the polar research ship Fram that was designed
by Colin Archer for Fritjof Nansen in the 19 century. The effects of mean compres-
sion on wave propagation in the ice pack were recognized by Mollo-Christensen (19830),
Mollo-Christensen (1983a). He found that edge waves can have very low group veloc-
ity, and suggested it as an explanation of ice ride-up on shore. Schulkes et al. (1987)
investigated the flexural gravity wave pattern excited on a floating ice plate by including
the effect of compressive stress in the plane of the plate, uniform flow and stratification
of the underlying water. Their work was followed by Liu and Mollo-Christensen (1988),
who showed that wave energy can be concentrated because of pack compression through
two very different mechanisms, namely a very small group velocity caused by high com-
pressive stress and the increased instability of nonlinear modulations also caused by pack

compression.

1.4.7 Effect of noise on Marine Life

Hearing in fishes was first demonstrated in cyprinids as early as 1903. Quantitative work
on the range of frequencies over which fish hear and on representatives of several different
families was later carried out by von Frisch and his colleagues in 1936. Since then most
investigations on sound detection in fishes, have been performed under quiet laboratory
conditions. Hearing thresholds have been determined for perhaps 100 of the more than
29,0009 living fish species. (see Fay (1988); Popper (2003); Ladich and Popper (2004);
Nedwell et al. (2004) for data on hearing thresholds). These studies show that, with
few exceptions, fish cannot hear sounds above about 3-4 kHz, and that the majority of

species are only able to detect sounds to 1 kHz or even below. The following are the

major effects of increased ambient noise on marine life:
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1.4.7.1 Masking

Increased ambient noise causes masking of biologically significant sounds resulting into
interference with clear reception of signals of interest. This disrupts activities such as

breeding, navigation and communication.

1.4.7.2 Behavioural effect

Increased noise affects the behavior of marine mammals ranging from subtle to severe
such that reactions to noise may range from a shift in orientation toward a sound source,

to an escape or flight response.

1.4.7.3 Physiological effect

Noise can result in a range of physiological effects on marine mammals. Long-term noise
exposure may cause stress responses in a manner similar to humans who live near busy

highways or airports.

1.4.8 Parallel studies

A major motivation for the study of a moving load on a flexible beam or plate has been its
application to transport systems (rail tracks, roads or runways), originally in temperate
lands and subsequently in cold regions, where, in particular, floating ice sheets may be
exploited. Acoustic pressure field radiated from a vibrating structures subjected to a

moving load have been studied in various fields such as:

e Road-bridge noise problems: In recent years high-speed trains and automobiles
are actively promoted for future surface transportation. At low speed, the dynamic
effect of moving load to structures such as railways, highways, and airfields is in-
significant. However, when vehicle speed increases, moving load effect can no longer
be ignored and more sophisticated models of vehicle-structure interaction need to
be considered. Studies devoted to vehicle-structure interaction include those by
Fryba (1999); Sun (1996); Cebon (1999); Sun and Greenberg (2000); Deng and Sun
(2000).
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e Vibration of railway bridges traversed by high speed trains: A modern
ladder rail track design, produces much less vibration and noise if it is mounted upon
discrete resilient supports on a concrete bed, when it is called a floating ladder track.
Several studies have been undertaken to reduce the sound generated by the fast
moving trains on these tracks. (see Wilson (2004); Hosking and Milinazzo (2007);

Yuan et al. (2009); Asanuma and Wakui (2012), Hosking and Milinazzo (2012))

e Floating Ice : Ice sheets are used for ice roads, ice bridges, construction platforms,
airstrips and recreational activities. It hence becomes very important to know when
the ice is safe to use. Several major theoretical and experimental studies have been
undertaken to understand the effect of aircraft and vehicle operation on floating
ice (see Davys et al. (1985); Schulkes and Sneyd (1988); Milinazzo et al. (1995);
Yeung and Kim (2000); Wang et al. (2004); Squire (2007)).

e Sound Radiation from Tyres: In modern times, ride improvement and quietness
of vehicle are demanded due to growing concerns over environment. This has forced
detailed study in tire performance. In this regards experimental work was initiated
in 1966 followed by theoretical work (see Ieltic (1982); Heckl (1985); Kim et al.
(2006); Kropp (2011); Kropp et al. (2012)).

1.4.9 Conclusion

From the literature review undertaken above, one realizes that the structures can be ide-
alized as Membrane, a thin elastic plate, a thick elastic plate or as a cylinder. Similarly
the force can be applied as a point force, line force or a moment. The structure may
have simple inhomogeneities such as ribs, supports or abrupt thickness change. The fluid

present may be the same on both sides or may have vacuum on one side.

Keeping the range of possibilities and those already studied by others, we shall look

at

e An idealized beam or plate as the floating structure.
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e A line or distributed harmonic moving load.
e Consider no inhomogeneities.

e One side fluid (water) and other as vacuum.

1.5 Objectives

The main objectives of the present study are:

e For a ship (modeled as a floating beam) defined by a Timoshenko beam model, a
Rayleigh beam model, a Shear beam model and an Euler-Bernoulli beam model,

develop an analytical formulation for total sound power due to a moving harmonic

load.
e Perform numerical analysis for the ship model for

— Various beam models and compare the total sound power generated.

— Timoshenko beam model to analyze effect of loss factor on total sound power.

e For a floating airport (modeled as a Timoshenko-Mindlin plate) subjected to the

landing / takeoff of an airplane (modeled as a moving harmonic load)

— Develop an analytical formulation for total sound power and structural re-

sponse
— Extend the analytical formulation to include effect of current.

— Extend the analytical formulation to include effect of inplane loading.
e Perform numerical analysis for the floating airport model to

— Study the total sound power generated.

Study effect of current on total sound power.

Study effect of inplane loading on total sound power.

— Study the structural response due to harmonic and point moving load.
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e Develop a Graphical User Interface as a tool for the user to obtain total sound

power for a ship and a floating airport with different combinations of variables.

Sound power level is related to the amount of acoustical energy produced by a sound
source and does not take into account its surroundings (unlike sound power level which
takes into account the surroundings). If an object is rated at some sound power level, it
means that that is the amount of power it is capable of radiating. When attempting to
measure sound power level, an engineer will find that he cannot measure sound power
emitted by the source. Instead, sound power level is calculated from several sound
pressure measurements created by a source in a particular test environment using one
of four common methods: free-field, reverberation room, progressive wave (in-
duct), and sound intensity. Once the sound pressure level is measured, the sound

power level can then be determined mathematically.

Since the only accurate sound data an engineer / designer can provide is expressed as
sound power, the same would be calculated in this study (by measuring sound intensity
and then calculating sound power mathematically) to provide a common reference mea-

surement that is independent of distance and acoustical conditions of the environment.

Since this type of study has been undertaken earlier in a limited form, the results ob-
tained based on the application of the derived expression shall be analyzed based on
the studies undertaken by various researchers and logic. The developed model has been
validated with published results and discussed in section 5.2. The numerical results using
the above formulation for different conditions shall be discussed. Application of the de-
veloped expression shall provide a first hand approximation of the sound power expected

from a moving load on a structure floating on water.

1.6 Brief Outline of the Work Pursued in the Thesis

The content of the thesis is divided into siz chapters for ease of explanation and the

problems investigated.
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1.6 Brief Outline of the Work Pursued in the Thesis

Chapter 1, gives a basic introduction and the motivation behind the present study.
The available literature relevant to the present study is reviewed thoroughly followed by
a brief introduction of the research work pursued in this thesis. The basic physical equa-
tions, boundary conditions associated with acoustic problems associated with fluids and

moving loads and the preliminary mathematical tools relevant to the thesis are discussed.

In Chapter 2, the generalized expression for the total sound power due to a moving
load on a ship (modeled as a beam) as given by Keltie and Peng (1988) is formulated
in detail for the various beam types, viz. Rayleigh beam, Shear beam and the FEuler-

Bernoulli beam.

Studies of sound generated from floating airfields due to the traveling load of starting,
landing or taxiing planes is a natural extension of the ship (modeled as a floating beam)
studied in the previous chapter. A dynamic analysis of a three-dimensional runway with
time varying loading during landing / take-off however would be exceeding difficult. In
Chapter 3, this analysis is made simpler by assuming that the runway behaves as a sim-
ple, infinitely long beam floating on water and supported by buoyancy. The model is
assumed to be a one dimensional plate, described by the Timoshenko-Mindlin plate equa-
tion. The understanding of radiated sound power as established in chapter 2 has been
extended to model a floating airport. The sound generated and platform response in
frequency domain by the landing / taking-off of an airplane from such an airport, which
would be akin to a moving load, has been analysed in section 3.2 of the chapter. Acous-
tic analysis in the presence of a mean flow or current complicates the analysis of a
floating airport by modifying the effect of the moving load. The effect of mean flow on
the response of a fluid-loaded structure has been studied in section 3.3. Even though a
VLF'S is structurally very long, the longitudinal strength does not play an important role
in their design. The most severe type of loading for the bottom plate occurs when the
structure is subjected to the combined action of uniformly distributed hydrostatic lateral

loading and compression due to hogging. Similarly for the deck plate, maximum loading
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occurs when the structure is subjected to compression and tension due to sagging and
hogging respectively. The inplane loading plays an important role for such structures
during berthing, plate connections at ends, initial deformation and corrosion to name
a few and hence needs to be accounted for. This effect of inplane loading has been

studied in section 3.4 by extending the formulation developed in section 3.2.

Having developed the general expressions for the ship (in chapter 2) and floating air-
port (in chapter 3), one needs to validate the model. This is done by using the published
results for a Timoshenko beam by Keltie and Peng (1988). Once the model has been
validated, a Graphical User Interface for undertaking numerical calculations using
these mathematical formulations is developed and discussed in Chapter 4. The GUI has
been generated to make the calculation procedure user friendly and speed up the user’s

work especially for non-technical people.

The GUI developed in chapter 4 has been used to undertake numerical analysis to
understand the total sound power radiated due to a moving load on a ship (modeled as a
beam) and a floating airport (modeled as a plate) in Chapter 5. Using the beam model
to represent the ship, we first analyse the total sound power produced by a Timoshenko
beam, a Rayleigh beam, a Shear beam and an Euler-Bernoulli beam. We then compare
them to understand which beam type produces the maximum sound power and the rea-
sons associated with it in section 5.5. This is followed by the calculation and analysis of
the total sound power from a Timoshenko beam due to varying loss factor in section 5.6.
Having analysed the beam model, the plate model is used to undertake the numerical
analysis of the total sound power from a floating airport due to a landing / taking off of
an airplane. The analysis is carried out for aluminium and steel and the effect of the
material on the total sound power is studied in section 5.7. The same plate model is
then extended by modifying the governing equation Equation (3.3) to Equation (3.21) to
incorporate the effect of mean flow and the numerical results of the total sound power
are obtained and analysed in section 5.8. Another extension is obtained by incorporating

the inplane loading to the plate model to get Equation (3.35). This is analysed nu-
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merically next in section 5.9 to understand the effect of compressive and tensile inplane
loads on the floating airport. The numerical analysis terminates with the structural
response of the floating airport due to airplane landing / taking off modeled as a point

and a harmonic moving load in section 5.10.

Finally, Chapter 6, summarizes the work done in the thesis followed by the future
scope of research. Major contributions made in the thesis are also highlighted in this

chapter.

Additional information used and derived is enumerated in the Appendices for clarity
of the methods described in the chapters and as a starting point for future researchers

working in this area.
e Appendix A : Time Averages of Products.

e Appendix B : Detailed derivation for the non-dimensionalized sound power.

1.7 Papers and Publications

The following papers have been written during the preparation of the present thesis and

the details of their publication status are as given below.

1.7.1 Published

1. Agarwala, Nitin. 2009 Study of Acoustic Stealth. Shiptechnic XXV, 169-174.

2. Agarwala, Nitin. 2009 Acoustic Cloaking - The new mantra of acoustic stealth.

Commodore Garg Memorial Lecture, Published by INA, Delhi Chapter, 55-59.

3. Agarwala, Nitin. 2010 On the Structural-Acoustic Solution of a Flat Plate.
Shiptechnic XX VI, 86-98.
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4. Agarwala, Nitin. and Nair, E. M. S. 2012 Acoustic-Structure Interaction for
a Floating Airport subject to a Moving Load. International Journal of Innovative
Research and Development, ISSN 2278-0211 (online), 1(10) (Special Issue),
330-344.

5. Agarwala, Nitin. and Nair, E. M. S. Fluid Loading in Structural-Acoustic
Problems. Communicated and accepted for publication by Commodore Garg Memo-

rial Lecture, Published by INA, Delhi Chapter.

6. Agarwala, Nitin. and Nair, E. M. S. On Horizontal Beams and Sound Ra-
diation due to a Moving Load. The Online Journal of Science and Technology
(TOJSAT), ISSN 2146-7390, 3(3), 120 - 133

7. Agarwala, Nitin. and Nair, E. M. S. Effect of inplane loading on sound
radiation of a floating runway when an airplane is taking off. Journal of Naval Ar-

chitecture and Marine Engineering, ISSN 1813-8535 (Print), 2070-8998 (Online),
10(1), 41- 48

1.7.2 Under review

1. Agarwala, Nitin. and Nair, E. M. S. Sound Radiation from a Floating Runway
due to an Airplane Taking Off Affected by Mean Flow. Submitted to Journal of
Computational and Applied Research in Mechanical Engineering (JCARME) on 01
Nov 15.

2. Agarwala, Nitin. and Nair, E. M. S. Structural Response of a Floating Run-
way excited by the taking off of an Airplane. Submitted to Journal of Mechanical
Engineering and Technology (JMET) (ISSN 2180-1058)on 29 Oct 185.

3. Agarwala, Nitin. and Nair, E. M. S. Sound Radiation of a floating runway
due to Inplane loading when an Airplane is taking off. Submitted to Journal of

Engineering Science and Technology Review (JESTR) on 13 Feb 13.
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1.8 Understanding Sound

Sound dispersion from a point source

Fig. 1.8 Sound dispersion from a point source
(http : /Jwww.epd.gov.hk/epd/noise — education/web/ ENG — EPD — HT M L/ml/intro — 6.html)

1.8 Understanding Sound

1.8.1 Basic Elements

In general, every noise problem involves a system of three basic elements: noise source,

transmission path and a receiver.

1.8.1.1 Noise Source

A source is an excitation that results in noise, either at the point of excitation or else-
where. Most sounds or noises we encountered in our daily life are from sources which

can be characterized as point or line sources.

Point Source In a free field condition, any source with its characteristic dimension
being small compared to the wavelength of the sound generated, is considered as a point
source. Alternatively a source is considered a point source if the receiver is at a large
distance away from the source. If a sound source produces spherical spreading of sound
in all directions, as seen in Figure 1.8, it is a point source. For a point source, the noise

level decreases by 6 dB per doubling of distance from it.
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Sound dispersion from a line source

Fig. 1.9 Sound dispersion from a line source
(http : //www.epd.gov.hk/epd/noise — education/web/ ENG — EPD — HT M L/ml/intro — 6.html)

Line Source A line source is a source of air, noise, water contamination or electro-
magnetic radiation that emanates from a linear (one-dimensional) geometry as seen in
Figure 1.9. If the sound source produces cylindrical spreading, such as stream of motor
vehicles on a busy road at a distance, it may be considered as a line source. For a line

source, the noise level decreases by 3 dB per doubling of distance from it.

1.8.1.2 Transmission Path

The path is the route(s) that energy takes in traveling from a source to the radiator.

1.8.1.3 Receiver

The receiver is a person or an object where the sound is perceived and accessed.

1.8.2 Sound Fields

Sound fields are typically “-near” | “-far”, “-free” and “-reverberant” field.
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1.8.2.1 Near Field

In the near field, close to the sound source, there can be a large amount of pressure
variations, from one position to another position. Sound pressure level measurements in
the near field are therefore forbidden in many applications. In the near field the sound
field is very complex and complicated, and hence the sound pressure distribution and the

sound intensity distribution may look completely different.

1.8.2.2 Far Field

In the far field, there is a more consistency in the sound field and sound pressure levels
will not vary too much when the measurement position is moved slightly. The far field

is also experienced if there is a free field situation.

1.8.2.3 Free Field or Direct Field

When a point source (or any source that radiates equally in all directions) radiates into
free space, the intensity of the sound varies as I/r? where r is the distance from the
source, the intensity is given by I = W/(4wr?) and W is the power of the source.This
may be understood as a given amount of sound power being distributed over the surface
of an expanding sphere with area 47r%. An environment in which there are no reflections

is called as a free field.

1.8.2.4 Reverberant Field or Diffuse Field

If the measurement position is close to some boundary like floors, walls and ceilings, there
might be reflections of sound as well as direct sound. In such a sound field, a change in
position further away or closer to the sound source may not give a significant change in
the sound pressure level, because a lot of the sound pressure is caused by reflection. This

is called a reverberant field or a diffuse sound field.
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1.9 Sound Parameters

The three different quantities describing sound are sound pressure, sound intensity and

sound power.

1.9.1 Sound Pressure

Sound pressure is a scalar, describing the pressure fluctuation at a given position and is
measured in Pascal (Pa). Sound pressure is typically measured at the receiver’s position

for evaluation of the harmfulness and the annoyance of a noise source.

1.9.2 Sound Intensity

Sound intensity is a vector quantity, that describes the amount and the direction of flow
of acoustic energy at a given position. The unit for sound intensity is Watt per square
meter (W/m?). Tt is used for noise source location, rating of noise sources and noise
measurement in the medium at a listener’s location. For plane progressive waves with a
harmonic source, the sound intensity over all time as given in Fahy and Gardonio (2007)
is

|P(R, ¢,0)?

I(R.0.0) = =5

where | P(R, ¢, 0)| is the amplitude of P(R, ¢, 0,t) without the time dependent term e~

1.9.3 Sound Power

Sound power radiation can be defined as the rate of acoustic energy delivered by a source
which can be obtained by integrating the sound intensity over a surface of convenience. It
can only be calculated or determined either based upon sound intensity measurement or
based upon sound pressure measurement. The main use of sound power is for noise rating
so as to compare how noisy sources are. The unit for sound power is Watt (7). Sound
power is an important index in acoustic radiation analysis because it is a single global
quantity which can be used to characterize the strength of the sound generated by a

source. Estimation of sound power is a common practice of identifying dominant sources
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prior to a noise control project. Many standard methods are available for sound power
estimation. They may be based on pressure measurement or intensity measurement.
Some of them require free-field environment while others require diffuse field (where
there is preponderance of reflected or reverberant sound signal in relation to the direct

sound signal) environment.

1.10 Sound Terminologies

1.10.1 Decibel

The scale often used for describing a measurement of sound is the decibel unit (dB). The
decibel is a comparison of intensities or energy densities. It is not an absolute unit, but
a ratio. Without a reference level, it means nothing. The decibel represents a measure
of the sound power relative to a reference sound power, normally 1 pW (picoWatt). By

definition, sound power level (PWL) is expressed as

PWL =10 log W
ref

where W is the radiated sound power in Watts and W,.; is the reference power 102
watts. Since the decibel scale is logarithmic, it is convenient for dealing with large differ-
ences in the measured quantities. Multiplication and division of decibel units becomes

simple because they are reduced to an addition and a subtraction operation respectively.

1.10.2 The sound impedance (7)

Sound impedance is a frequency dependent parameter and is very useful for describing the
behaviour of sound producing object. The acoustic impedance at a particular frequency
indicates how much sound pressure is generated by a given air vibration at that frequency.
It hence varies strongly with the change of frequency. Mathematically, it is the ratio of
the sound pressure P and the product of the particle velocity v and the surface area S,

through which an acoustic wave propagates. Acoustic impedance can be expressed in
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either its constituent units (pressure per velocity per area) or in rayls per square meter.
Hence

A
vS

1.10.3 Subsonic Flows

The defining property of subsonic flow is that the flow speed is lesser than the local speed
of sound. The condition for a flow to be subsonic in terms of the Mach number is M < 1
where M (= CLO) is the Mach number and Cj is the local speed of sound. In subsonic flow
at low Mach number the viscosity and heat conduction are normally important effects as
the timescale is relatively long, M << 1 and density effectively remains constant, this is

not so in supersonic flows.

1.11 Understanding Load

1.11.1 Concentrated Load

Force applied at a single point is called as a concentrated load. Concentrated loads are
useful mathematical idealizations, but do not exist in the real world. A concentrated load
can be applied at more than one location on a structure, and multiple loading points may

exist on the same structure.

1.11.2 Distributed Load

Concentrated / point forces are models. These forces do not exist in the exact sense.
Every external force applied to a body is distributed over a finite contact area. The

following distinctions are made, depending on the dimension of the area of application:

1.11.2.1 Line Load

Load distributed along a line is called as a line load. The intensity of this force is

expressed as force per unit length of line (N/m).
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p

Fig. 1.10 Concentrated Force (Fryba (1999))

1.11.2.2 Surface Load

Load applied over an area. The intensity of these forces (called pressure) is expressed as

force per unit area. The units for the surface force are N/m?

1.11.2.3 Volume Load

Forces distributed over the volume of the body. Also called as body forces. The units
for the intensity of body forces are N/m?

1.12 Understanding Moving Load

1.12.1 Moving Load Types

The moving load itself is modeled in various forms. Of the many the most commonly

used are

1.12.1.1 Concentrated force

For a single point force the Dirac (impulse, also delta) function that expresses the con-

centrated load as p(x,t) = d(z)P, where P is the vehicle weight as seen in Figure 1.10.
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ql’j,!) —=C

ct

Fig. 1.11 Moving Continuous Force (Friba (1999))

1.12.1.2 Moving Harmonic force

The time variable concentrated force is given as p(t) = @ sin wt where @ is the amplitude

and w the circular frequency of the harmonic force.

1.12.1.3 Moving Continuous force

This is frequently used in the calculation of dynamic stresses in pipelines carrying moving
fluids, large-span railway bridges, resulting from the traverse of a train of cars hauled
by a locomotive. The moving continuous force as seen in Figure 1.11 is represented as
p(z,t) =q(&,t) — uq(f)% where £ = 2 — ¢t and by neglecting the second order terms
we get p(z,t) = q[1 — H(z — ct)]

1.12.1.4 Moving force arbitrarily varying in time

Forces in this form are used in calculations of structures exposed to the effects of explo-

sion, pressure waves, impacts of flat wheels on large-span railway bridges etc. as seen in

Figures 1.12 and 1.13.

1.12.1.5 Platoon Load

This is a mix of both the constant load and the harmonic load. Hence the type of moving

dynamic loads considered are moving constant loads and moving harmonic loads.
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Pt t
xs=ct

0 7 ~x

Fig. 1.12 Moving force linearly increasing in time (Fryba (1999))

Fig. 1.13 Moving force linearly decreasing in time (Fryba (1999))

1.12.2 Moving Load Models

Moving loads have a great effect on dynamic stresses in structures, and cause them to
vibrate intensively, resulting into sound, especially at high velocities. Their peculiar
feature is that they are variable in both time and space. If we think of a moving load
as of a mass body moving in a generally curved path over the structure being examined,
we see that according to d’Alembert’s principle its effects are twofold: the weight effects
(or gravitational) of the moving load, and the inertial effects of the load mass on the
deformed structure. If only the weight effect is considered, and the mass of the moving
load neglected against the mass of the structure, the computation of strains in the solid
is not easy. It becomes more complicated when the structure mass is assumed to be
negligible against the load mass. The most difficult of all is the problem involving both

the gravitational and the inertial action of moving loads having masses commensurable
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with the mass of the structure. Mathematically these models are expressed as

1.12.2.1 Moving force model

In the moving force model, the force is assumed to be constant and equal to the vehicle
weight, hence f.(z,t) = P§(x — vt); where P is the vehicle weight. This is the simplest

vehicle model, since we have only two parameters: vehicle weight and speed.

1.12.2.2 Moving mass model

The moving mass model accounts for the inertial effect of the moving load. We apply this

method by modeling the moving mass as an oscillator with large spring stiffness. The

d?w(vt,t)
dt?

force is given by f.(z,t) = [(P —m d(z —vt)]. The difference between solutions of

the moving force and moving mass models grows with increasing speed.

1.12.2.3 Moving oscillator model

In the moving oscillator model, the mass mg is attached to the continuum through a
spring and dashpot, f.(z,t) = [P+ k(2(t) —w(vt, t)) + c(2(t) — w(vt, t))]0(x — vt) where
k and ¢ are spring and dashpot coefficients and z(¢) is the vertical displacement of the
mass. In this case, we have an additional degree of freedom and, thus, need an additional

equation of motion, mz = —k[z(t) — w(vt, t)) — c(2(t) — w(vt, t)]

1.12.2.4 Moving Multiple Degrees of Freedom model

The moving MDOF model accounts for the facts that (i) the vehicle is not a lumped
mass but rather consists of several elastically interacting components and (ii) it interacts

with the structure carrying it at several contact points.
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1.13 Understanding Material

1.13.1 Beams

A beam is a rod-like structural member that can resist transverse loading applied between
its supports. By “rod-like” it is meant that one of the dimensions is considerably larger
than the other two. This dimension is called the longitudinal dimension and defines the
longitudinal direction or axial direction. Directions normal to the longitudinal directions
are called transverse. The longitudinal axis of a beam is directed along the longitudinal
direction and passes through the centroid of the cross sections. A beam is straight if
the longitudinal direction is a straight line. A beam is prismatic if the cross section is

uniform.

1.13.2 Plates

Plates are defined as plane structural elements with a small thickness compared to the
planar dimensions. The typical thickness to width ratio of a plate structure is less than
0.1. A plate theory takes advantage of this disparity in length scale to reduce the full
three-dimensional solid mechanics problem to a two-dimensional problem. The aim of
plate theory is to calculate the deformation and stresses in a plate subjected to loads.
Of the numerous plate theories that have been developed since the late 19 century, two

are widely accepted and used in engineering. These are
e The Kirchhoff-Love theory of plates (classical plate theory)

e The Mindlin-Reissner theory of plates (first-order shear plate theory)

1.13.2.1 Kirchhoff-Love theory

Kirchhoft-Love theory is an extension of Euler-Bernoulli beam theory to thin plates. The
theory was developed in 1888 by Love. using assumptions proposed by Kirchhoff. It is
assumed that a mid-surface plane can be used to represent the three-dimensional plate

in two dimensional form. The following kinematic assumptions are made in this theory:
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e straight lines normal to the mid-surface remain straight after deformation

e straight lines normal to the mid-surface remain normal to the mid-surface after

deformation

e the thickness of the plate does not change during a deformation.

1.13.2.2 Mindlin-Reissner Plate Theory

Mindlin’s theory assumes that there is a linear variation of displacement across the plate
thickness but that the plate thickness does not change during deformation. This implies
that the normal stress through the thickness is ignored; an assumption which is also
called the “plane stress” condition. On the other hand, Reissner’s theory assumes that
the bending stress is linear while the shear stress is quadratic through the thickness of
the plate. This leads to a situation where the displacement through-the-thickness is not
necessarily linear and where the plate thickness may change during deformation. There-

fore, Reissner’s theory does not invoke the plane stress condition.

The Mindlin-Reissner theory is often called the first-order shear deformation theory of
plates. Since a first-order shear deformation theory implies a linear displacement varia-

tion through the thickness, it is incompatible with Reissner’s plate theory.

The vibration equation for the elastic plate, including rotational inertia and transverse

shear effects, as given by the Mindlin plate equation is

N YAy o
(V RQGatQ)(DSV 12 o) TP e

Ds ,Oth 82
(1 " k2Gh ’ 12/‘#@%) [f(x’ t) —p($, y =0, t)] (1.1)
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1.13.3 Need for inclusion of Rotational inertia and Transverse

shear effect

For short, sturdy beams the shear effect cannot be neglected as in conventional analysis
using the Bernoulli-Euler’s beam theory. The situation occurs when the cross section of
the beam is relatively large in comparison with the beam span. Although the correction
for the shear effect may yield results only a few percent more accurate in frequency pre-
diction than those from classical beam theory for a moderately thick beam, the accuracy
improvement may be quite profound when performing dynamic response analysis. It is

with this reasoning that a Timoshenko-Mindlin plate is utilized for the present study.

1.13.4 Finite Vs Infinite beams
1.13.4.1 Finite beam

For finite beams the problem is one-dimensional wherein the beam boundaries generate
standing waves. Because of this, sound can be radiated at frequencies both below and
above the critical frequency. However the radiation ratio () of finite beam is not zero

below the critical frequency. These plates demonstrate boundary effect.

1.13.4.2 Infinite beam

A beam is considered infinite if the excitation occurs far enough from the ends such that
the reflected energy is negligible. Derivation of the input impedance for such cases is
simpler than that for semi-infinite / finite beams. At the point of application of the

force, the beam moves straight up and down without rotation.

At low frequencies, the input impedance is four times as large as that for a semi-infinite
beam. As frequency increases, the reactive term increases more rapidly than the resistive
term. The magnitude of the impedance therefore continues to increase with frequency
rather than approaching a constant value, as does that for a semi-infinite beam. In an

infinite beam sound radiation only occurs above the critical frequency. At frequencies
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above the critical frequency finite beams behave in a similar manner to infinite beams,
but this is not the case at lower frequencies. Above the critical frequency, the radiation

ratio (7), is the same in both cases.

1.14 Basic Mathematical Tools Relevant to the Thesis

1.14.1 Analysis Methods

The problem at hand of a structure subjected to a load (moving or static) is to determine
the deflections and stress resultants of the structure under the action of load. In order
to solve such problems the analysis may be undertaken in either of the two domains,

namely the time domain or the frequency domain.

1.14.1.1 Frequency Domain Analysis

When the motion of a structure and the surrounding water are time harmonic, they
can be analyzed in the frequency domain. The relevant analysis methods are known as
frequency domain methods. In this case it is the amplitudes of the motions that are to be
determined. The commonly-used approaches for the analysis of VLFS in the frequency

domain are the modal expansion method and the direct method.

Modal Expansion method This method consists of separating the hydrodynamic
analysis and the dynamic response analysis of the structure. The deflection of the struc-
ture with free edges is decomposed into vibration modes that can be arbitrarily chosen.
These modes may be that of the dry type or the wet type. Most analysts use the dry-mode
approach because of its simplicity and numerical efficiency. Next, the hydrodynamic ra-
diation forces are evaluated for unit amplitude motions of each mode. The Galerkin’s
method, by which the governing equation of the structure is approximately satisfied, is
then used to calculate the modal amplitudes, and the modal responses are summed up

to obtain the total response.

40



1.14 Basic Mathematical Tools Relevant to the Thesis

Direct method This method is straightforward, but must solve a large scale matrix
equation and this means that a large amount of memory space and CPU time is required.
In this method, the deflection of the structure is determined by directly solving the motion
of equation without any help of eigenmodes. In this solution procedure, the potentials
of diffraction and radiation problems are established, and the deflection of structure is

determined by solving the combined hydroelastic equation via the finite difference scheme.

In sum, the principal difference between the modal superposition method and the di-
rect method lies in the treatment of the radiation motion for determining the radiation

pressure.

1.14.1.2 Time Domain Analysis

When the motion of a structure and the surrounding fluid are time dependent or transient,
they must be analyzed in the time domain. The corresponding methods are known as
time domain methods. In this case it is the time histories of the structural motions that
are determined. The commonly-used approaches for the time-domain analysis are the
direct time integration method and the Fourier transform method. Time-domain analysis
for hydroelasticity of VLFS is necessary for design purposes since some of the design
cases, such as the airplane landing and take-off, is a transient phenomenon and can not
be solved in the frequency-domain. Only a few studies of transient problems have been
reported to date, and most of them are still too computationally intensive for practical

use in VLFS design.

Direct Time integration method In the direct time integration method, the equa-

tions of motion are discretized for both the structure and the fluid domain.

Fourier transform method In the Fourier transform method, we first obtain the fre-
quency domain solutions for the fluid domain and then Fourier transform the results for
substitution into the differential equations for elastic motions. The equations are then

solved directly in the time domain analysis by using the finite element method or other
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suitable computational methods.

As seen above, the analysis may be carried out in the frequency domain or in the time
domain. However most hydroelastic analysis are carried out in the frequency-domain, be-
ing the simpler of the two. For transient responses and for nonlinear equations of motion
(due to effects of a mooring system or nonlinear wave as in a severe wave condition), it
is necessary to perform the analysis in the time-domain. It is well-known that the time-
domain and frequency domain analysis are reversible through Fourier transformation.
Although the solutions in the time and frequency domains can be conveniently linked
through the Fourier and inverse Fourier transforms, it is time consuming and difficult to
perform these transforms in some cases. One of the difficulties in undertaking an inverse
Fourier transform from the frequency domain to time domain is the evaluation of the
integrals over an infinite frequency range. Thus it is necessary to truncate the integral

at a finite frequency and to assess the accuracy of the truncated interval.

1.14.2 Solution Methodologies

Differential equation solution for beams and plates is a vast topic with many variations.
These can be broken down into two solution groups the first being exact (i.e analytical)
solutions and the second being approximate (i.e numerical) solutions. The advantages
of analytical methods are that they can predict results without many computations, in a
shorter time and usually without frequency limitations. They can shed light on physical
mechanisms involved in certain phenomena and can be used to quickly compare different
design alternatives without the need for considerable analysis effort, by roughly seeing
how different parameters influence quantities such as radiated sound pressure or sound
power. This can be very useful in the conceptual stage. The main disadvantage of analyt-
ical methods is that they can be used only for simple problems (e.g. simple structures).
On the other hand numerical methods are very powerful in accurately modeling real life
situations including complex structures. The most widely used numerical methods are
the Finite Element Method (FEM) and the Boundary Element Method (BEM). Both

of them can be used for structural and acoustic analysis but due to certain advantages
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and disadvantages FEM is mainly used for structural problems whereas BEM is used for
acoustical problems. In contrast with analytical methods, numerical methods require a
great number of computations and usually take a long time to be performed. Moreover,
they need considerable manual effort to design detailed models. They are also only appli-
cable for low-frequency analysis. Numerical methods are used extensively in the detailed
design stage. For the purpose of minimisation of sound radiation by structures, numer-
ical methods have been used in conjunction with numerical optimisation algorithms to

achieve optimum designs.

1.14.3 Approaches available

Three approaches are used to obtain the total acoustic power radiated from planar

sources;

e Far-field approach

e Surface integration approach

e Fourier transform approach

1.14.3.1 Far-field Approach

This approach was developed by Rayleigh for a plate vibrating in an infinite baffle. It uses
the Rayleigh surface integral to calculate the acoustic pressure, acoustic intensity and
hence the acoustic power radiation. Each elemental area on the plate surface is assumed
to be a point source of sound wave and their individual contributions are summed to
yield the total acoustic power radiation. The radial component of the acoustic intensity
is integrated over an imaginary far-field hemisphere enclosing the source (Junger and Feit
(1986)), and this explains the use of spherical coordinates for writing the far-field pressure

expressions.
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1.14.3.2 Surface Integration Approach

This approach is suitable for baffled and unbaffled plates. The real acoustic intensity is
integrated over the surface of the vibrating structure. The acoustic pressure is determined

in terms of surface velocity, using the Rayleigh integral.

1.14.3.3 Fourier Transform Approach

In this approach, the velocity and its complex conjugate are employed for approximating

the sound power radiated from the vibrating surface. Thus

IT= %Re(/psv*dS)

where p, is the surface pressure, v* is the complex conjugate of surface velocity and S'is

the area of the radiating surface.

1.14.4 Fourier Transformation

Time is fundamental in our everyday life in the 4-dimensional world. We see things move
as a function of time. On the other hand, although sound waves are composed of moving
atoms, their movement is too small and the frequency of the vibration is too fast for us to
observe directly. It is thus easier to describe sounds in frequency space rather than time
space. We can transform sound, or other things in physics for that matter, from time
space to frequency space by the technique of Fourier transform. The Fourier transform
(FT) is one type of mathematical transformation which changes one axis variable to

another variable. The exponential Fourier transforms, are defined as

w(§) = [T w(x)e “rdu
(1.2)
wla) = = [, B(g)eeds
The spatial transform variable, &, has physical significance as the wave number, and

the wave number response or spectrum, w(§), is simply the structure’s response in the
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wave number domain. When using Fourier transforms, it is assumed that both trans-
forms exist over their entire domain of definition, where the ~ denotes the transformed

expressions.
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Chapter 2

Beam Model

2.1 General Introduction

In chapter 1 we discussed the need for studying the effect of a moving load on total
sound radiation and the tools required to make the handling of such problems simpler.
Using these tools, [eltie and Peng (1988) gave the basic formulation for a Timoshenko
beam subjected to moving load. Using the general equation of the beam, as given in
Junger and Feit (1986), the generalised expression for the sound power as obtained by
Keltie and Peng (1988) is derived in explicit form. Taking Fourier transform of the
governing equation and then non-dimensionalising, the total sound radiation is obtained.
The formulation takes into account the complex shear and complex elastic modulus;
thus accounting for structural damping. The derived formulation is then extended to
the Rayleigh beam, Shear beam and Fuler- Bernoulli beam. The variation of total sound
power due to the moving load on various beam types is analyzed to understand the

contributions of loss factor, rotatory inertia and shear effect on sound radiation.
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i Fluid
ufxt) —l

Vaccum

Fig. 2.1 Schematic representation of a beam subject to a moving load

2.2 Formulation

2.2.1 Structure Definition

The motion of an infinite beam excited by a force of length 2L moving at a subsonic
speed V' is formulated. The problem is considered in two-dimensional Cartesian co-
ordinate system with x-axis being in the horizontal direction and y-axis in the vertically
upward positive direction, as seen in Figure 2.1. The beam occupies the plane y = 0.
The space y > 0 is filled with an acoustic medium (water, air etc). The moving force
may be assumed to be:

A uniform distributed line force given by

flz,t) = E[H(x—Vt—i—L) — H(x —Vt— L) (2.1a)

and a point force given by
fz,t) = foel'6(x — V1) (2.1b)

where fy is the strength of external force per unit width, H(z) is the Heavyside step

function and 6(z — Vt) is a Delta function.

2.2.2 Governing Equation

The vibration equation for the elastic beam, including rotational inertia and transverse

shear effects, as given by Junger and Feit (1986) is given as:
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E184u(x, t) N Uh82u(x, t) 1 (1 N E_) Otu(x,t) o P Otu(x,t)
Ozt ot? k2G ) 0x%0t? k2G Ot
B 2 2 92
— (1 - anéh aiQ + 122%%) [f(z,t) — pla,y = 0,1)] (2.2a)
where
u(z,t) is the transverse displacement of the beam
E=E(1+mnj) is the complex elastic modulus
E is the elastic modulus
n is the loss factor
G = E/2(1+v) is the complex shear modulus
I=h%/12 is the cross sectional moment of inertia per unit width
h is height of the beam
v the Poisson’s ratio
P is the mass density of the material
k* = 7?12 is the cross sectional shape factor or the shear correction factor
p(z,y =0,t) is the acoustic pressure acting on the beam’s surface

From this equation follow three special cases:
(a) Rayleigh beam: If the effect of rotary inertia is considered and the effect of shear is
neglected, the Rayleigh beam model results which partially corrects the overestimation

of natural frequencies in the Euler-Bernoulli model. Thus Equation (2.2a) reduces to

4 2 4
Ela u(z,t) N ha u(z,t) *u(z,t)

(b) Shear Beam: If the effect of rotatory inertia is neglected and effect of shear on the

dynamic deflection of beam is considered, Equation (2.2a) reduces to

S Ou(et) o Pule,t)  Elp, 0'u(x,t) EI &
El——— Uh : - e ’ =(1- ~ ) t)— ) = U, t
Ozt e ot? K2G  020t? ( 2Ch axz)[f (z,t) —p(z,y = 0,1)]

(2.2¢)
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(c)Euler-Bernoulli beam: If we neglect the effect of both shear and rotatory inertia we

obtain the classical Euler-Bernoulli beam model.

4 2
Ela u(z,t) ha u(z,t)

o1t + Py o2 - [f(xv t) —p(x,y =0, t)] (2.2d)

2.2.3 Boundary Conditions

The pressure distribution induced by the vibrating beam in the acoustic medium is

denoted by p(x,y,t) and satisfies the wave equation in two-dimensional space, given by

0? o 1 0

= 4+ 2 - 7 t) = 2.

where Cj is the sound speed in the acoustic medium.
If py is the mass density of the acoustic medium, the boundary condition at y = 0 is

given by

0*u Op
PO@ = _8_y - (2.4)

2.2.4 Transformation

By applying the spatial Fourier transformation as discussed in Equation (1.2)

FT()= /_00 ()e“dx

o0
with £ as the wave number variable, the force function in wave number domain may be

written as

f(et) = fo%eﬂ‘”*fv)t = F(&)eZ@+V)t for harmonic line force
(2.5a)

F(E,1) = foed WHEVE = F(€)edwteVt for a point force

20



2.2 Formulation

while the transformed displacement is written as

Us(€.t) = Us(€)e e (2.5b)
and the transformed pressure as

P(&,y,t) = P(&y)e/ e (2.5¢)

Taking Fourier transformation of Equation(2.3) and using Equation (2.5¢) we get

0? 2(w+EV)? (e
(s~ € - HEEE D pe e —
2 2
(s~ €+ |5 Pt —o (26)

Defining M (= V/Cj) as the Mach number and Ky(= w/Cy) as the acoustic wave number,

Equation (2.6) can be rewritten as

0? ,
(7 L& Ko T EMPYP(Ey)e’ " = 0

Ky

where K, is defined as

—jVE — (Ko + ME?  for & > (Ko+ ME)?
K, = (2.7)

V(Ey+ME? - for & < (Ko+ M¢E)?

Similarly taking Fourier transformation of Equation (2.4) and using Equation (2.5b) and

Equation (2.5¢) we get

—PO(W + fv)ZUs(f)ej(erfV)t _ _P({i;y) 6j(w+§V)t (28)

y=0
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For sound pressure on the surface (y = 0) from Equation (2.4) we get
P(&y) = P&,y = 0)e 7"
Hence Equation (2.8) gets modified as

—polw + EV)PU ()" = — My ZO)GjKyy EASAel
Y

y=0

=—-P(y= 0)(—jKy)eijyyej(w+§V)t

y=0

= —P(&y = 0) (=K, el et

Simplifying
P&,y =0) = —po W jév) Us(€)
2
= im ) (2.9)

2.2.5 Combined Governing Equation

Taking a Fourier transformation of the relevant beam equation, say Equation (2.2a), we

get

EIUL(€)e " = poh(w + €V)* Uy ()" — pvf( %)f (T w vy’

+pul pZ:U () (w + £V’
poh?

pu— ]_ —
( i /&th 12 G

(@ €0 PO = P,y = 0]

{Elf‘* — ol EV)E = pl (1 + %)é%wsvf WL (w0 + V)| UL(6)
Kk2G K2G
_ EI poh? B
B (1 - ,QQGhéQ o 12,{2@@) + SV)Z) [F(f) - P(€>y = O)] (2.10)
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Finally using the transformed and combined acoustic boundary condition as defined by

Equation (2.9) in the transformed equation, Equation (2.10) reduces the equation as

[5154 = o+ €V pvf(l ; i)s%w Fe) Lo ev) U

e K2

~
Plate Impedance Operator = Z,,

Bl o pl? (Wt Ev)?
=(1 2 v VY2 ) [F(€)— U, 2.11
(1+ s~ gt @R )IFO- i €] 211
N Vv v
A Acoustic Impedance Operator = Z,

On rearranging the terms we get

Us(6) = o0

= 2.12
Zm+ZFZa ( )

e The Acoustic Impedance Operator (Z,) for the Timoshenko beam, Rayleigh
beam, Shear beam and Euler-Bernoulli beam is given by

_ jpo(w+EV)?
N K

Y

Zy (2.13)

e The Plate Impedance Operator (Z7,,) as

E
K2G

T = EIE" — p,h(w +EV)? = Ep, 1 (1+ )(w+£V)2+pUI o (w+EV)*

x2G
Timoshenkobeam (2.14a)
T = EIE* — pyh(w +EV)? — Ep I (w + EV)? ... Rayleigh beam (2.14b)

Elp,
K2G

T = EIE* — pyh(w 4 EV)? — €2 (w+EV)? ... Shear beam (2.14c)
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T = EIE* — pyh(w +£V)? ... Euler — Bernoulli beam (2.14d)

e The (ZF) by

B EI .,  p,h? 5 .
Zp=1+ /@2C_¥h§ - 12526_7’(w +&V) ... Timoshenko beam (2.15a)
Zp=1 ... Rayleigh beam (2.15b)
EI
Zp =1+ /<;2C_;h§ ... Shearbeam (2.15¢)
Zrp =1 ... Euler — Bernoulli beam (2.15d)

Equation (2.12) is the expression that gives the structural response in the frequency
domain. With the structural response known the acoustic power can be calculated. We

shall now discuss the methodology of finding the total acoustic power.

2.2.6 Total Acoustic Power

The time averaged sound intensity is given by Morse and Ingard (1968) as
g /TP—th = Lrelpor
= — or I ==Re
T, 2 .

where

I is the time averaged sound intensity
P is the sound pressure on the beam surface

Ur(€,t) is the beam surface velocity of conjugation
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U,(¢) = = Jj(w+EV)UL(§) (2.16)

In order to find the total acoustic power (II), the surface acoustic intensity distribution

needs to be integrated over the infinite length of the beam as

= [ SRelP(ey = 002 g

—00

Upon substituting the sound pressure Equation (2.9) and calculating the surface velocity
using Equation (2.16), the sound power radiated per unit width of the beam can be

simplified as discussed in Appendix - A to yield

 Ar K

Y

H—&&Uf@ﬁ@%mW@ (2.17)

Limiting the study to subsonic motion of the moving load, the limits within which K, is

real is given by

—K Ky
= <E<LE =

TrM St SeT Ty

&1

This allows us to rewrite the expression for the sound power as Equation (A.16) (see

Appendix - A for detailed derivation) reproduced below as

&2 V3
n:gﬁ{l RN GRS (2.18)

1 Yy

This completes the formulation of an expression for the total acoustic power for various

beam types subjected to a moving load.

2.2.7 Nondimensionalization

To be able to solve Equation (2.18) numerically, the concept of non-dimensional parame-

ters as discussed in Appendix - B is used. Using Equation (2.12) in Equation (2.18) and
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using the non-dimensional parameters we get Equation (B.20) as

C2
W = a’B
G

2
ZpF(€)| |D|7%d¢

Using the requisite non-dimensional force (in the present case a moving harmonic force)

acting on the beam the above expression simplifies to

2

¢ sin(CKoL)
W = B Zp———"%| |D|%d 2.19
e L (2.19)
where
—1 1
= < (< (=
C=TrTm SCSeT oy
a=1+M¢

b= V=
D = B(Dy — Dy + Ds) + j D,

The expression for Dy, Dy, D3, Dy and Zp vary based on the type of the beam as under

(a) Timoshenko beam:

2(1 +v)yt [ Cy 2 ) 1 Co\? )
Zo=14 ATV (Co _ o
r=lt T o) |S T Tral\e )@

K2 Cr
20+v) 4(00)4
Dy = — =0
w214 n7) )
2
Dy = Zp %
7y
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(b) Rayleigh beam:

Zp =1
Dy =~*¢H(1+nj)

C 2
D — 2 1 4 2 _0
et ()

D3:0
2
Dy ="Zp

2

(c) Shear beam:

Zp =1+ .
K

2(1+V)’y4(00)2<2

Dy =~'C* (1 +nj)
2
b o B0 ()]

K

D3:0

Oé()Oé2

Dy = Zp—2
g

(d) Euler-Bernoulli beam:

Zp =1
Dy = y*¢H (1 +nj)
Dy = o

Dy =0

D, — ZFa0a2

,72

Equation (2.19) is used for undertaking a numerical analysis for the beam model. This

numerical analysis is discussed in chapter 5 sections 5.5 and 5.6.
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Chapter 3

Floating Airport

3.1 General Introduction

In Chapter 2 we formulated an expression for calculating the sound power radiated from
a ship modeled as a beam subjected to a moving load. A natural extention to a beam
problem is a plate problem and hence this chapter looks at the formulation of an expres-
sion of sound power from a floating airport modeled as a plate. Sound radiation caused
by taking off of an airplane from a floating airport is an unexplored area which has a

serious but unstudied impact on marine life.

In this chapter, we develop an expression for sound radiation using a Timoshenko-Mindlin
plate model in section 3.2. Presence of mean flow and inplane loading on total sound

power generated are further formulated in section 3.3 and section 3.4 respectively.

3.2 Floating Airport

3.2.1 Introduction

Because of their relatively simple construction and ease of maintenance, pontoon-type

Very Large Floating Structures (VLFS) are considered to be one of the most promis-
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ing designs for a floating airport or runway, particularly in sheltered areas. The typical
dimensions are 5 km long, 1 km wide, and only a few meters deep. Due to their di-
mensions, even when no incoming waves exist, the structure still responds flexurally to
moving loads like those from an airplane during landing or take-off. Thus the study of
transient responses of a VLFS to impulsive and moving loads are a must. Only a few

studies of transient problems for VLFS have been reported to date.

Like flexural deflections, the sound generated by moving loads on such structures is
another important area of concern as it causes acoustic pollution for the marine life
and has not been addressed to date. To study acoustic effects, a dynamic analysis of a
three-dimensional runway with time varying loading during take-off would be exceeding
difficult. This analysis can be made simpler by assuming that the runway behaves as a
simple, infinitely long beam floating in water and supported by buoyancy. The model can
be assumed to be a simple beam, described by a one dimensional Timoshenko-Mindlin

plate equation.

To the best of the knowledge, no study of acoustic radiation from a floating airport
(VLFS) due to moving loads has been reported in the literature. The aim of this study
is to propose a simple methodology for calculating the sound radiation from such struc-
tures due to moving loads such as airplanes. An expression for the sound radiation for a
floating platform is hence developed for a wavenumber ratio of 0.1 to 2.2. In developing
the expression, Fourier transform methodology for a Timoshenko-Mindlin plate is utilised
as suggested in Keltie and Peng (1988). Structural damping is ignored since there is no

apparent resonant mechanism for such problems.

3.2.2 Formulation
3.2.2.1 Structure Definition

To eliminate the boundary effect of the finite length of the plate, they are assumed to

extend to infinity. We assume that the runway behaves as a simple, infinitely long beam
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3.2 Floating Airport

floating in water and supported by buoyancy. The geometry and material properties
are assumed to be linearly elastic. The structural damping is ignored since there is no
apparent resonant mechanism in this problem. The water is assumed to be inviscid, and
the flow resulting from the airplane take-off is irrotational. The x-axis is aligned with the
length of the runway and the y-axis is directed vertically upwards, as seen in Figure 3.1.
Because the floating runway is very narrow compared with its length, as a simplification,

we assume:

e The deformation and loading do not vary across the runway.

e The structure behaves like a beam, described by the Timoshenko-Midlin plate equa-

tion.

e An excitation force of length 2L moving at a subsonic speed V' is acting on the

runway.

e The space y > 0 is filled with an acoustic medium such as water. The other side of

the plate is assumed to be vacuum.

The moving force considered is given as a uniform distributed line force, given by

_Jo

flz,t) = 2L[H(x—Vt+L)—H(x—Vt—L)]ej“’t (3.1a)

or a point force given by
f(z,t) = foel'6(x — V1) (3.1b)

where fy is the strength of external force per unit width, H(x) is the Heavyside step

function, and d(z — Vt) is a Delta function.
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i Fluid
ufxt) —l

Vaccum

Fig. 3.1 Schematic representation of a floating airport problem

3.2.2.2 Governing Equation

The vibration equation for the elastic plate, including rotational inertia and transverse

shear effects, is given by the Mindlin plate equation as

T Y S o
(V /€2G8t2)(DSV 12 ot? u+p”hat2

D puh? O?
=(1—-—2-V? T t) — =0,t 2
( v L N 1) — by = 0,0)] (3.2)
For a one dimensional plate, V = a%’ and the Timoshenko-Mindlin plate equation is

obtained as

Mu(z,t) 0*u(z, 1) D, \ &*u(x,t) Py Mu(z,t)
pD. 7 h—" T 5 ’ ez A
T P T o p”( N mQG) oo Pea o

2 2 92
(1= sgipe * T ) V@0 ~pley=0.0) (33)

where

u(x,t) is the transverse displacement of the plate

D, = % is the flexural rigidity of the plate

E the elastic modulus

G = 2(1—]‘2”) is the shear modulus

I = 111_; is the cross sectional moment of inertia per unit width

h is height of the plate

v the Poisson’s ratio

Pu is the mass density of the material
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3.2 Floating Airport

ke =1 is the cross sectional shape factor or the shear correction factor

p(z,y =0,t) is the acoustic pressure acting on the plate’s surface.

3.2.2.3 Boundary Conditions

The pressure distribution induced by the vibrating beam in the acoustic medium is
denoted by p(z,y,t) and satisfies the wave equation in two-dimensional space, given by

0 0 1 0

—_— B el —— pu— -4
(o2 T 52 ~ P =0 (3.4)

where Cj is the sound speed in the acoustic medium.
If py is the mass density of the acoustic medium, the boundary condition at y = 0 is

given by

d%u dp

PO —
ot? dy y=0
3.2.2.4 Transforming Applicable Equations

The transformation of the response equation and the pressure equation has been discussed
in section 2.2.4, however for completeness, the relevant expressions are reproduced. Ap-

plying the spatial Fourier transformation using Equation (1.2)

FT() = /_(:()ei&xdx

with £ as the wave number variable, the force function in wave number domain may be

written as

f(et) = foweﬂ”*fv)t = F(&)eZ@+V) for harmonic line force

(3.6a)

f(E 1) = foed@HEVIt = P(€)el(WHeV)t for a point force
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the transformed displacement may be written as

Uy(&,1) = Uy(€)ed eVt (3.6b)
and the transformed pressure may be written as

P(&,y,1) = P(&, )/ (3.60)

Taking Fourier transformation of Equation (3.4) and using Equation (3.6¢) we get

o jAHw 4 EV)?

g2 P Jw+EV)t _

[ e <o (3.7

Defining M (= V/C}) as the Mach number and Ky(= w/C)) as the acoustic wave number,

Equation (3.7) can be rewritten as

0? .
(g2~ L& = Ko + EMPYPE, )" =0

Ky

where K, is defined as

—jVE — (Ko + ME?  for & > (Ko+ ME)?
K, = (3.8)

V(Ey+ME? - for &< (Ko+ M¢E)?

Similarly taking Fourier transformation of Equation (3.5) and using Equation (3.6b) and

Equation (3.6¢) we get

_pO(W + fV)ZUs(f)ej(”+5v)t _ _P(((i;y) ej(w+§V)t (39)

y=0
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3.2 Floating Airport

For sound pressure on the surface (y = 0), from Equation (3.5) we get

P(&,y) = P(&y = 0)e 7"
Hence Equation (3.9) gets modified as

—po(w + EV)2U(€)ed@HEVt = Py = 0)e el (WHeV)t

ay y=0
= —P(&,y = 0)(—j, e Fwvelren
y=0
= —P(&.y = 0)(—jK,)e <"
Thus
Vv 2
Pler=0) = -m LU0
V4 2
R s LERIATS (310)

3.2.2.5 Combined Governing Equation

Taking Fourier transformation of the plate equation, Equation (3.3), we get

DEUS(€)e/ " = puhlw + EV)Uy(€)e/ " — p, (I + ,55)5% + €V (el e

+ o LLUL(€)T T (1 V)

K2G °
Dy .,  p,h? 2 eVt J(wteV)E
= 1+ =558 — [oagW+ V)" [F(©)e — P(§,y=0)e ]

DS v
{Ds& — poh(w + EV)? — p, (I + KQG)§2(W + V)2 + vaH‘;G(w + EV)H UL(€)

— (14 o — o+ €V IF©) - Pley =) 3.11)
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Finally using the transformed and combined acoustic boundary condition as defined by

Equation (3.10) in the transformed equation, Equation (3.11) reduces to

lpsg‘* — poh(w + EV)? — p, (I + 5&) Ew+eV)2+ pvJIfQ”G (w+ V) U(€)

~~
Plate Impedance Operator = Z,,

D puh?  (wHEV)?
=11 S e 2VE(€) - - 12
(1+ o~ g+ P )IFO- iR 0.©)] (312
\ ~ —_———
A Acoustic Impedance Operator = Z,

On rearranging terms we get

ZrF(¢)
(6 = EN) 1
where
e The Acoustic Impedance Operator (Z,) is given by
. (wHEV)?
Zy = JPO& (3.14)

K

Y

e The Plate Impedance Operator (Z7,,) as

DS v
Zm = D& = puh(w+EV)* —E%p, (I + KQG) (WHEV)? +puI K‘;@(wvf (3.15)

e The (ZF) by

D
Zp=1 °_¢?
r=1t et

puh®
12Kk2G

(w+EV)? (3.16)

Equation (3.13) gives the structural response in the frequency domain. From this the
acoustic power can be calculated. We shall now discuss the methodology of finding the

total acoustic power.
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3.2.2.6 Total Acoustic Power

The time averaged sound intensity is given by Morse and Ingard (1968) as

S B 1 .
I = —/ PVdt or I=—-Re[PU(,1)]
T, 2

where
I is the time averaged sound intensity
P is the sound pressure on the plate surface
Ur(€,t) s the plate surface velocity of conjugation
and
. dU (& ,
00 = 28 o evyune) (3.17)

In order to find the total acoustic power (II), the surface acoustic intensity distribution

needs to be integrated over the infinite length of the plate as

= / Re[P(E.y = 0,003 (€, ]de

—00

Upon substituting the sound pressure using Equation (3.10) and calculating the surface
velocity using Equation (3.17), the sound power radiated per unit width of the plate can
be simplified as discussed in Appendix - A to yield

__Po * (W+§V)3 2
- ERe[ [ e AGIRE (3.18)

Y

Limiting the study to subsonic motion of the moving load, the limits within which K is

real is given by

&1 = << G =

1—|—M_ M

This allows us to rewrite the expression for the sound power as Equation (A.16) (see
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Appendix - A for detailed derivation) reproduced below as

_ Po # (w+ev)?
I = ERel/& T’Us(fwdf (3.19)

This completes the formulation of an expression for the total acoustic power for a floating

airport subjected to the landing / taking off of an airplane.

3.2.2.7 Nondimensionalization

In order to present the numerical results, the concept of non-dimensional parameters as
discussed in Appendix - B is used. Assuming that the moving load applied is a uniformly

distributed line force, defined by Equation (3.1) we get the non-dimensional sound power

as:
W—/CQ a*BlZ sin{¢ KoL) Q\D\—ng (3.20)
e "KL '
where
~1 1
e Y,
a=1+M¢

f=er-¢
D = B(Dy — Dy + Ds) + j D,

where the expression for Dy, Dy, D3, Dy and Zp for a Timoshenko-Mindlin plate are as

under
7 1 2(]‘ + V)ry4 @ ? 2 OO ’ 2
B l€2 OL OL @
D :744_4
2(1+v) Co\?
Dy = o? {1 +[1+ 2 ]V4C2 (C_L) ]
20+1v) 4, 4/ Co\*
Da — ~0
3 K2 CL
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[67)8%

Dy =Zp

Solving Equation (3.20) numerically, the total sound power radiated by a floating airport
subjected to a moving uniformly distributed line force can be obtained. The numerical

analysis for this formulation is discussed in section 5.7.
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3.3 Floating Airport subjected to a Mean Flow

3.3.1 General Introduction

The literature on fluid-structure interaction in the presence of fluid flow is relatively
scarce. This is not because fluid flow is unimportant, but because problems often get too
complicated when relative motion between an elastic structure and a surrounding fluid
medium is involved. This is especially true when the dimension of a structure is finite,
and the compressibility and viscosity of the fluid medium must be considered. One way of
obtaining an understanding of the physics behind this type of fluid-structure interaction
is to examine a simplified version of the problem in which the dimension of a structure
extends to infinity, the fluid moves at a constant (mean) speed, and the effects of fluid

compressibility and viscosity are neglected.

3.3.2 Introduction

Acoustic analysis in the presence of a mean flow or current complicates the problem
further by modifying the effect of the moving load. The available literature on study of
acoustics in mean flow is however very small. The main reason for this is that the mean
flow speed is often too low to have any real impact on acoustics that are of practical
engineering relevance. Another reason is that the fluid-structure interaction problem
usually becomes too complicated to be solved analytically when mean flow is considered.
Consequently problems are often treated in the same way as those in a stationary fluid
medium. The effect of mean flow on the response of a fluid-loaded structure thus remains
mostly unexplored. In this section, we shall formulate an expression to obtain the total
sound power radiated by a floating airport subject to a moving load in the presence of a

mean flow.
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3.3 Floating Airport subjected to a Mean Flow

Vacuum

Fig. 3.2 Floating airport subjected to a moving load and mean flow

3.3.3 Formulation
3.3.3.1 Structure Definition

The structural definition of the floating airport as discussed in section 3.2.2.1 is utilised.
To model a mean flow, a subsonic mean flow of speed U, moving in the positive x direction

is considered to be present in the water as seen in Figure 3.2.

3.3.3.2 Governing Equation

Since the structural definition of the problem has not been altered from that defined in

section 3.2.2.1 the general equation used herein is the same as Equation (3.3) i.e

Mu(z,t) OPu(z,t) D, \ *u(x,t) Py Otu(z,t)
De—g TP 5 _p“(Hn?G) oo hec o

2 2 42
— (1- o + g g ) U (art) — by =0,0) (321

where

u(z,t) is the transverse displacement of the plate

D, = %ﬁ;) is the flexural rigidity of the plate

E the elastic modulus

G= 2(1—'1}) is the shear modulus

1= % is the cross sectional moment of inertia per unit width

h is height of the plate

v is the Poisson’s ratio

P is the mass density of the material
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k* =1 is the cross sectional shape factor or the shear correction factor

p(z,y =0,t) is the acoustic pressure acting on the plate’s surface.

3.3.3.3 Boundary Condition

To account for the presence of current the operator % is replaced by the operator % —l—Ua%
in the expressions of pressure distribution and the boundary condition at y = 0. The
pressure distribution induced by the vibrating plate in the acoustic medium denoted by

p(z,y,t) thus satisfies the wave equation in two-dimensional space, given by

#?  *P  1(0 0\
— 4+ - _ (T iyu= t)y=0 3.22

o " oy cg(aﬁ 895) ]p(‘”’y’ ) (3:22)
where Cj is the speed of sound in the acoustic medium and U is the speed of mean flow
of the fluid. If py is the mass density of the acoustic medium, the boundary condition at
y = 0 is modified as

) 0\? )
po(——l—U—)u: b

5 U 3y (3.23)

y=0
3.3.3.4 Transformation and Combined Governing Equation
By applying the spatial Fourier transformation FT() = [ ()e**dx, with £ as the wave

number variable and proceeding in the same manner as explained in sections 3.2.2.4 and

3.2.2.5 we get the combined governing equation as

Us(§) = #&, (3.24)
and
P(e,y=0) = TV O 6 (3.25)
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where the acoustic impedance operator (Z,) is given by

(w+ ¢V - U)?
K,

Y

(3.26)

Za - ]Po

the plate impedance operator (Z,,) as

Zn = Di€' = poh(w+€[V =U))*~€%p, (I +£§;) (W €[V =0+ p I Loz (o €lV - U]

(3.27)

the ZF by

D,
k2Gh

puh®

12%2G(w + £V - U))? (3.28)

Zp =1+ £ —

and K, is given by

i€ — (Ko + ME?  for € > (Ko+ ey
K, = (3.29)

VEo+ M2~ for € < (Ko + M)

where M (= V/Cj) is the Mach number, M (= [V — U]/Cy) the modified Mach number
and Ko(= w/C)) the acoustic wave number.

We shall now discuss the methodology of finding the total acoustic power.

3.3.3.5 Total Acoustic Power

The time averaged sound intensity is given by Morse and Ingard (1968) as

I T | .
I = —/ PVdt or I=—-Re[PU(,1)] (3.30)
T J, 2
where
I is the time averaged sound intensity
P is the sound pressure on the plate surface
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Ur(&,t) is the plate surface velocity of conjugation

0,(6) = 8 — s v v —vuge) 331

In order to find the total acoustic power (II), the surface acoustic intensity distribution

may be integrated over the infinite length of the plate as

= [ SRelP(ey = 0003 Dl

[e.o]

Upon substituting the sound pressure given by Equation (3.25) and the surface velocity
of the plate given by Equation (3.31), the sound power radiated per unit width of the

plate can be simplified as

- j—;Re[ [ = g pag (3.32)

—00 Yy

Limiting the study to subsonic motion of the moving load, the limits within which K, is

real is given by

o g M0

51:1+M 1— M

This allows us to rewrite the expression for the sound power as

&2 w o 3
H:j—;Re[ /5 ( *5% U 0 (e) 2 (3.33)

This completes the formulation of an expression for the total acoustic power for a
Timoshenko-Mindlin plate subjected to a moving load in the presence of a mean flow

in the fluid.

3.3.3.6 Nondimensionalization

In order to present the numerical results, the concept of non-dimensional parameters as

discussed in Appendix - B is used to get the dimensionless radiated sound power per
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unit width. Assuming that the moving load applied is a uniformly distributed line force,

defined by Equation (3.1) we get the non-dimensional sound power as:

¢ sin(CKoL) |?
W = 38| Zp——2-—""2| |D|%d 3.34
[t e 11 ac (3.34)
where
—1 1
= — < (< = —
CETTm St eTih
a=1+M¢

b= V=@

D = B(Dy — Dy + Ds) + jD,4

oo Y o ()0

Numerical solution to Equation (3.34) provides the total sound power generated from a

floating airport subjected to a moving load in the presence of a mean flow. The numerical

analysis using this formulation has been discussed in section 5.8.
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3.4 Floating Airport subjected to Inplane Loading

3.4.1 General Introduction

In section 3.2 we developed the generalised equation for calculating the total sound power
for a floating airport subjected to the landing / taking off of an airplane. This expression
was then extended in section 3.3 with the floating airport being subjected to a mean
flow. In the present section we shall look at the same floating airport as discussed in
section 3.2 but subjected to an inplane loading in place of a mean flow. The physical
presence of such loads is seen when the structure is subjected to loads such as berthing,

plate connections, dynamic loading and initial structural imperfections.

3.4.2 Introduction

Berthing, plate connections, initial plate deformation, corrosion, hogging, sagging are
some forms of inducing additional loads in the form of compression / tension to the
plating of a VLF'S. The effect of such loads cannot be neglected. Sound radiation caused
by taking off of an airplane from a floating VLF'S is a design use of such structures which is
bound to get effected by these added loads. Even though a VLF'S is structurally very long,
the longitudinal strength does not play an important role in their design. However the
most severe type of loading for the bottom plate occurs when the structure is subjected to
the combined action of uniformly distributed hydrostatic lateral loading and compression
due to hogging. Similarly for the deck plate, maximum loading occurs when the structure
is subjected to compression / tension due to sagging / hogging respectively. The inplane
loading plays an important role for such structures during berthing, plate connections at
ends, initial deformation and corrosion to name a few and hence needs to be accounted for
in the studies. A compressive inplane load of magnitude () per unit width is considered

to be present. If the load is tensile then it attains a magnitude —@).
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Fig. 3.3 Floating airport subjected to a moving load and inplane load

3.4.3 Formulation
3.4.3.1 Structural Definition

The structural definition of the floating airport as discussed in section 3.2.2.1 is utilised in
this section too. To model the inplane loading a compressive inplane load of magnitude
() per unit width is considered to be present as seen in Figure 3.3. If the load is tensile

then it attains a magnitude —@).

3.4.3.2 Governing Equation

The vibration equation for a dimensional elastic plate, including rotational inertia, trans-

verse shear effects and inplane loading, is given by the Timoshenko-Mindlin plate equation

as
Mu(z,t) OPu(x,t) Ou(x,t) D, \ O*u(x,t) Py Ou(z,t)
DS ) 9 Uh/ 9 . v ] S Y v[ v 9
ot o TP e T\ ag ) o T e o
D, ©? puh?  0?
=(1- — t) — =0,t 3.35
(1= e * oo ) @)~ bty = 0.0) (3.39)
where
u(z,t) is the transverse displacement of the plate
D, = %ﬁ;) is the flexural rigidity of the plate
E the elastic modulus
G = 2(1—'1}) is the shear modulus
1= % is the cross sectional moment of inertia per unit width
h is height of the plate
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v the Poisson’s ratio
Pu is the mass density of the material
K2 = ’f—; is the cross sectional shape factor or the shear correction factor

p(z,y =0,t) is the acoustic pressure acting on the plate’s surface.

Q Compressive inplane load

3.4.3.3 Boundary Conditions

The boundary conditions valid for this formulations are the same as discussed in section
3.2.2.3. However for continuity, we repeat them, wherein the pressure distribution in-
duced by the vibrating plate in the acoustic medium is denoted by p(z,y,t) and satisfies
the wave equation in two-dimensional space, given by

o 0* 1 0

(@ + a2 0—3@)]3(% y,t) =0 (3.36)

where Cj is the sound speed in the acoustic medium.
If py is the mass density of the acoustic medium, the boundary condition at y = 0 is

given by

0%u dp

POy = (3.37)
ot? Y |,—o

3.4.3.4 Transforming Applicable Equations

The transformation of the response equation and the pressure equation has been discussed
in section 2.2.4, however for completeness, the relevant expression are reproduced here.

Applying the spatial Fourier transformation using Equation (1.2)

FT( = [ e

o0
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with £ as the wave number variable, the force function in wave number domain may be

written as

F(E, 1) = foimlEh) piwteV)t — p(£)ed@HEV)E for harmonic line force

eL
(3.38a)
f(f> t) = foed WVt = F(&)eiwteVt for a point force
the transformed displacement as
U(&,t) = U(&)e et (3.38h)
and the transformed pressure as
P(&,y,t) = P(&, y)ed @ (3.38¢)

Taking Fourier transformation of Equation (3.36) and using Equation (3.38c) we get

_ PwHEV)?

gz PEyIT =0

] )P(&,y)e @t =0 (3.39)

Defining M (= V/Cj) as the Mach number and Ky(= w/C)) as the acoustic wave number,
Equation (3.39) can be rewritten as

82

(g5 L& Ko T EMPYP(Ey)e’ e = 0

g
KI/

where K, is defined as

—jVE — (Ko + ME?  for & > (Ko + ME)?
K - (3.40)

V(Ey+ME2 &2 for € < (K,+ M¢)?
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Similarly taking Fourier transformation of Equation (3.37) and using Equation (3.38b)
and Equation (3.38¢c) we get

—po(w + EV)2U, (€)@ TVt = (gyy) JlwHEV)E (3.41)

y=0

For sound pressure on the surface (y = 0), from Equation (3.37) we get

P(§7 y) - .P(f7 Y= O)G_jKyy

Hence Equation (3.41) gets modified as

— ) »—iKy
ol + EV)0, (O = TEYZ 0T e
Y

y=0
= —P(&,y = 0)(—j[, e 7 el e
y=0
= —P(&y = 0)(—jK, )@V
Thus
.
Plew—0) =m0
V 2
=Jpo b J;f ) Us(€) (3.42)

3.4.3.5 Combined Governing Equation

Taking Fourier transformation of the plate equation, Equation (3.35), we get

DU (€)1 — QEUL(€)e" V)" — puh(w + EV)?U,(€)e7 V"

- pv( > G)f (w+EVPULE) ) + p,1 ””G (w+ V), (e

D, wh? w w
= (1%2@;;52 o 2G<w+fV>)[ (§)e/ V" — P(&,y = 0)el eV
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{Dg*—Qﬁ—pm@HfVV—m(I+é%)§w+fVV+mJ£g@wfoLM@

— (14 7€ ~ 1o+ €V IF(©) - Pley=0) (3.43

Finally using the transformed and combined acoustic boundary condition as defined by

Equation (3.42) in the transformed equation, Equation (3.43) reduces to

-DS v
{Dsf“ — Q& — pyh(w +EV)? — p, (I + G)§2(w + V)2 + pvlﬁg G(w + EV)H| U()

~
Plate Impedance Operator = Z,,

D, wh? . V)2
- (1 + /QQthQ - 12%;26?(0”) + fv)Z) [F'(€) — JPO% Us(§)] (3.44)
Zr

Acoustic Impedance Operator = Z,

On rearranging terms we get

where

e The Acoustic Impedance Operator (Z,) is given by

(w+EV)?
K

Y

Zo = jpo (3.46)

e The Plate Impedance Operator (Z7,,) as

Dy v
L = Ds§4 - Q§2 —pvh(w—i—SV)Q _§2pv (I+ IQQG) (w+§V)2 +pv]l€p2G(w+§V)4

(3.47)

D puh?
ont " izwa @t (348)
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Equation (3.45) is the expression that gives the structural response in the frequency
domain. With the structural response known the acoustic power can be calculated. We

shall now discuss the methodology of finding the total acoustic power.

3.4.3.6 Total Acoustic Power

The time averaged sound intensity is given by Morse and Ingard (1968) as
I _ 1 -
I==[ PVdt or I=-Re[PU*E&,1)]
T ), 2

where

I is the time averaged sound intensity
P is the sound pressure on the plate surface

Ur(&,t) is the plate surface velocity of conjugation

0= 0 _ it evyune (3.49)

In order to find the total acoustic power (II), the surface acoustic intensity distribution

needs to be integrated over the infinite length of the plate as

o 1 -
= [ SRelP(e.y = 0.003(6 0)dg

oo

Upon substituting the sound pressure Equation (3.42) and calculating the surface velocity
using Equation (3.49), the sound power radiated per unit width of the plate can be
simplified as discussed in Appendix - A to yield

[e’) 3
M- j—;Re[ | e pae (3.50)

Limiting the study to subsonic motion of the moving load, the limits within which K is
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real is given by
Ko
1-M

— K,
1+ M

§1= <E< &=

This allows us to rewrite the expression for the sound power as Equation (A.16) (see

Appendix - A for detailed derivation) reproduced below as

&2 3
1= %ReM %\U(Q\ng (3.51)

This completes the formulation of an expression for the total acoustic power for a floating
airport subjected to the landing / taking off of an airplane in the presence of inplane

loading.

3.4.3.7 Nondimensionalization

In order to present the numerical results, the concept of non-dimensional parameters as
discussed in Appendix - B is used. Assuming that the moving load applied is a uniformly

distributed line force, defined by Equation (3.1) we get the non-dimensional sound power

as.
w- | * 1| 2, KD 2y (3.52)
G "KL
where
—1 1
e Y
a=1+4+ M

f=var-¢
D = B(Dy — Dy + D3 — Ds) + jDy

83



Chapter 3 Floating Airport

and the expression for Dy, Dy, D3, Dy, D5 and Zp for a Timoshenko-Mindlin plate are

K OL OL
D _744_4
— 2 204v) | 4 Co ’ 2
Dg—a{l—i-[l—i-HQ(l_VZ)hC c, (1—v7%)
20+v) 4, 4/ Co\* )
Do — >0 _
3 2 y . (1—v7)
2
Dy = Zp 2%
8
Q ¢
D- — S
areated

Numerical solution to Equation (3.52) provides the total sound power from a floating
airport subjected to a combination of inplane and moving load. The numerical results

are discussed in section 5.9.
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3.5 Structural Response of a Floating Airport

3.5.1 General Introduction

Many developed countries with long coastlines for want of space have successfully re-
claimed land from sea, however due to negative ecological effects, researchers and engi-
neers proposed the construction of Very Large Floating Structures (VLES). The relatively
simple construction and ease of maintenance of a VLFS thus makes it a promising design
candidate for floating airports or runways. Unlike conventional floating structures, the
VLF'S is flexible because of its huge horizontal dimensions compared to its height. This
implies that when the VLFS is subjected to a landing / take off load of an airplane it is
likely to exhibit larger elastic deformation. It hence becomes essential that the dynamic

analysis of a VLE'S when subjected to such transient loads is done carefully.

Dynamic analysis of elastic structures has attracted much attention from researchers
for many years. The problem arose from the observation that a structure subjected
to moving loads can exhibit higher deflections and stresses than those for static loads.
Today, the analysis of moving load problem is applicable for various engineering appli-
cations such as high speed drilling, turning, workpiece transportation, fluid flow induced
vibrations to name a few. For an elastic structure such as a VLFS subjected to a land-
ing / taking off load of an airplane this analysis has its importance because a floating
runway is flexible and receives buoyant support from the water. This makes the runway
to deflect due to it’s weight and hence will form a dish-like “dent” around the aircraft
when the aircraft is static. However this dent moves and progresses like a wave down the
runway when the airplane takes off. This moving dent in return causes an increased drag
on the aircraft resulting into increased time, distance of take-off and fuel thus leading to
increased operating cost. The designer is thus required to address the transient dynamics
problem due to the impulsive and moving loads excited by the landing / taking off of an
airplane on these structures. An expression for the structural response of such a floating

platform subjected to a moving load is studied in this section.
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Vaccum

Fig. 3.4 Schematic representation of a floating airport

3.5.2 Introduction

The structural response of a floating airport subject to an airplane taking off / landing
is considered essential towards the safety of the aircraft. In the present section, an
expression for the structural response of a floating airport due to an airplane landing /
taking off modeled as a moving load is proposed. In developing this expression, a Fourier
transformation in space for the whole structure in wavenumber domain is utilised rather
than using the wave propagation method to reduce the analysis to a substructure. The
procedure employed is similar to that demonstrated by Cray (1994) for stiffened plates
and Cheng (1999) and Cheng et al. (2000, 2001) for calculating the transverse response
and acoustic radiation of a periodically supported beam. The advantage of expressing
the response in terms of a wavenumber arises from the fact that the periodic boundary
conditions and the phase relation between two adjacent substructures will not be required
to be used. Accordingly the expression for the structural response as obtained in Equation
(3.13) is used to analyse the structural response of a floating airport subject to a moving

load.

3.5.3 Formulation

3.5.3.1 Structural Definition

The structural definition of the floating airport as discussed in section 3.2.2.1 is utilised.

The schematic representation of problem the geometry is as seen in Figure 3.4.
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3.5.3.2 Governing Equation

As discussed in section 3.2.2.5 the expression for structural response is given by Equation

(3.13) which is expressed as

Us(§) = % (3.53)

e The Acoustic Impedance Operator (Z,) is given by

~ Jpo(w +EV)?
N K

Y

Za

e The Plate Impedance Operator (Z7,,) as

Pv
Vs

2
L (w+EV)

Ds v
T = D& — pyh(w +EV)? — §2pv[(1 + KQ?; ) (wHEV)? +pod

e The (ZF) by

D e puh?
k2Gh 122G

ZF:1—|— (w+§V)2

3.5.3.3 Nondimensionalization

In order to present the numerical results, the concept of non-dimensional parameters is

used. Using Equation (3.53) and non-dimensionalising we get an expression for

Displacement of plate [Us(C)] = %U(g)
0
Strength of external force [F(()] = @
0

K 2 12 271/2
Koh _ o vaO
Kp E
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Hence
_ B E ZpF(¢)
Us(€) mUs(ﬁ)— o e 207
_ FQAQ)
~ B(Q)+ A(OC(C) (3.54)
where

(C) f sin(Ko¢L) foszn[(Koh C(L/h)]

Koll Koh)e (L) for harmonic line force

F(¢) = fo for a point force

4@ =1+ (S onrer - (S (&) o)

G2 62 CL
BO = 35
1 N L (Kb 20+ )\
= o5 (Foh)'¢* = (C)(C—L) (Koh) {1+ 12 (1+ 2 )C}
CO =55

_ i HO (G
H(¢) = (CM +1)°

The non dimensional Equation (3.54) gives the structural response of a fluid loaded

Timoshenko-Mindlin plate subjected to a moving force which is numerically analysed in
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section 5.10.
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Chapter 4

Graphical User Interface

4.1 General Introduction

The mathematical formulation for the beam model and the plate model floating in wa-
ter in the presence of a harmonic moving load have been discussed in chapters 2 and 3
respectively. In this chapter, we shall discuss the Graphical User Interface (GUI) for un-
dertaking numerical calculations using these mathematical formulations. The GUI allows
the user to vary the input parameters and hence obtain results for different combinations

of parameters. All calculations have been undertaken using MATLAB.

4.2 Introduction

A graphical user interface (GUI) is a human-computer interface (i.e., a way for humans
to interact with computers) that uses windows, icons and menus and which can be ma-
nipulated by a mouse (and often to a limited extent by a keyboard as well). A major
advantage of GUIs is that they make computer operation more intuitive, and thus easier
to learn and use. it can be user-friendly and speed up the user’s work. A GUI can be
more attractive for non-technical people. In general, it looks more professional, however

this does not mean it is always the best solution.
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When it is not properly built, it can be very difficult to work with. It generally requires
more memory resources than a non-graphical one and might require the installation of
additional software, e.g., the “runtime environment”. Depending on the programmer, it

might require more time to be implemented.

Not withstanding the above, the GUI has became much more than a mere convenience.
It has also become the standard in human-computer interaction, and it has influenced

the work of a generation of computer users.

4.3 Front page

The front page of the GUI is the start page that allows the user to select and vary the
input parameters. The front page of the GUI opens up as is shown in Figure 4.1. Once
the user clicks the Process» button, the programme checks for missing parameters based
on the type of the analysis as selected by the user. Missing / incorrect data is prompted
to the user to make the necessary corrections. The results of the analysis are plotted in

the graph block on the front page itself.
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Fig. 4.1 Front page of the GUI
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4.4 Entering parameters

The entry of the parameters is governed by the “pushbuttons” on the GUI. Using a
pushbutton activates a pop-up window wherein the values relevant to the pushbutton
can be entered. Once the values are entered and the Save Settings! button is activated,
the pop-up window closes while updating the relevant values in the front page. We shall

now discuss the available range of values for every pushbutton.

4.4.1 Analysis Type

The “analysis type” pushbutton allows the selection of the type of model as seen in Figure
4.2. The analysis included are a Ship modeled as a Beam and a Floating Airport
modeled as a 1D plate.

Beams that can be analysed are

e A Timoshenko beam.

A Rayleigh beam.

A Shear beam.

A Euler-Bernoulli beam.

A Comparative analysis of 4 beam types

Beams with varying loss factor
1D plates that can be analysed are
e A Timoshenko plate.
e A Timoshenko plate with Mean flow.
e A Timoshenko plate with Inplane Load.

This definition of the analysis type is essential to define the equation to be used for
undertaking the numerical evaluation of the sound power generated by a moving load on

such floating structures.
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} Analysis_gui = = B

Analysis Type

Anahysis Options

{* Beam Analysis (Includes comparitive analysis of 4 beam types)

' Timoshenko beam

" Rayleigh Beam

" Shear Eeam

" Euller-Bernouli Beam

" Beam with varying Loss Factor

" 1D Mindlin-Timashenko Plate

1D Mindlin-Timoshenko Plate with Mean Flow

= 1D Mindlin-Timashnenko Plate with Inplane Loading

Fig. 4.2 Analysis Type
4.4.2 Material Properties
The properties that need to be entered in this are
e Young’s Modulus
e Material density
e Material Thickness

The input pop-up menu is as seen in Figure 4.3. It may be noted that the unit of the
values to be entered is explicitly mentioned in the pop-up menu. Values that may be

used are given in Table 4.1

Table 4.1: Material Properties

Parameter Steel Aluminium Unit
E (Young's Modulus) 200 71 M Pa
pv (Material Density) 7800 2700 kg/m?
h (Material Thickness) 25.4 25.4 mm
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) sub_gui =] 3
Material Properties

Woung's Modulus (WMPa)
{200 for Steel; 71 for Al)

Density (kg £ m*3)
(7800 for Steel; 2700 for Al)

Thickness {mm) |

Fig. 4.3 Material Properties

Material Constants

Kappa Soguare
{Rec. 0.85)

Poiz=ion's Ratio
{Rec. 0.3)

Fig. 4.4 Material Constant Properties

4.4.3 Material Constant Properties
The properties that need to be entered in this are
e Poission’s Ratio (v)
e Cross sectional shape factor(x?)

The input pop-up menu is as seen in Figure 4.4. It may be noted that the unit of the
values to be entered is explicitly mentioned in the pop-up menu. Values that may be

used are as given in Table 4.2
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Table 4.2: Material Constants

Parameter Value

v 0.3
K2 0.85

4.4.4 Fluid Properties

Sound waves can travel through any substance, including gases (such as air), liquids (such
as water), and solids (such as the seafloor). Even though sound waves in water and sound
waves in air are basically similar, the way that sound levels in water and sound levels in
air are reported is very different, and comparing sound levels in water and air must be
done carefully. The properties hence need to be specified to specify the medium. Hence

we need to specify
e Speed of Sound (Cj)
e Density of Medium (p,,)

The input pop-up menu is as seen in Figure 4.5. It may be noted that the unit of the
values to be entered is explicitly mentioned in the pop-up menu. Values that may be

used are as given in Table 4.3

Table 4.3: Fluid Properties

Parameter Water Air Unit
Co(Speed of Sound) 1000 341 m/s
pm(Density of Medium) 7800 1.24  kg/m?
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) Auid_gui | _[O]x]

Fluid Properties
Speed of Sound (m =)
{1500 for water; 341 for air)

Density (kg Fm*3)
{1000 for water; 1.24 for air)

Fig. 4.5 Fluid Properties

4.4.5 Damping Factor Properties

Damping is the ability of a material to dissipate vibration energy into heat. Usually,
damping is characterised by the loss factor, often denoted by 7, and which is defined as
the ratio of lost energy to the vibratory reversible energy during one cycle of vibration.
Due to its importance in noise and vibration control, and in the prevention of fatigue in
structural elements, the study of damping in materials has been given some attention. We
use a “constant loss factor” model for the damping mechanism. The need to analyse the
effect of loss factor separately arises because increased vibrational levels due to reduced
damping (hence reduced loss factor) lead directly to increased sound radiation. Although
the contribution of the damping factors may yield results only a few percentage more
accurate and their effect is quite profound when dynamic response analysis is undertaken,
it may be an overestimate for slender bodies. The value of 1 is taken as 0.01 where
required as found in Ungar (1988). The range for the damping factor that may be

entered is between 0 and 1. The input pop-up menu is as seen in Figure 4.6.

4.4.6 Acoustic Length Properties

The product of the acoustic wave number (Kj) and the half length of the moving force
acting on the structure is defined as the acoustic length. A small value of acoustic length

(KoL << 1) is indicative of a point force. The values for the acoustic length is usually
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} DR._gui == B

Damping Factor

hfinimum
Value >= 0.0

Maximuim
Value < 1.0

Fig. 4.6 Damping Factor Properties

| . AL_gui I sl 3

Acoustic Length

Acoustic Length |

(Value ~ 0.1, pii2, 2pi, ...}

Fig. 4.7 Acoustic Length Properties

either a small value as 0.1 or a multiple of 7. The input pop-up menu is as seen in Figure

4.7.

4.4.7 Speed

In the present formulation the moving load is considered to be moving with a speed which
needs to be defined. This speed may be considered as fixed or be in a range. The speed
is defined by Mach number (M = V/Cy) where, V' is the speed of the moving load in
m/s and Cj is the speed of sound in the medium under consideration in m/s. Since the
calculations have been defined for subsonic speeds, i.e speeds below the speed of sound,

the range of the speed for these calculations is limited within 0 and 1. It is noted that the
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) Speed_gui = B3

Speed Range (Mach)

Minimum
Value »= 0.0

Mt
Value < 1.0

Fig. 4.8 Speed Properties

) WR_gui [_ O]

Wave Number Range

hdinirLam

MlaximLm
(Value < 2.2}

—
—

Fig. 4.9 Wavenumber ratio Properties

values to be entered are non dimensional. The input pop-up menu is as seen in Figure

4.8.

4.4.8 Wavenumber ratio ()

The non dimensional ratio of the acoustic wavenumber (K,) and the free bending wave
number (Kp), given by v (= Ky/Kg) (or non dimensional frequency), is called as the
wavenumber ratio. The input pop-up menu is as seen in Figure 4.9. The range for which

these calculations are valid are 0 < v < 2.2
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<) graph_gui [T

Graph Range

H axis - Minimum
K axis - Maximum
Y axis - Minimum

Y axiE - Maximum

ITTTT

Fig. 4.10 Graph Range Properties

} MF_gui I ]

Mean Flow Range

Minimuim

]

Pz

Fig. 4.11 Mean Flow Properties

4.4.9 Graph

To be able to plot the graphs, the range for the X axis and Y axis needs to be defined.

The input pop-up menu is as seen in Figure 4.10.

4.4.10 Mean Flow

To model a current or mean flow, a subsonic mean flow of speed U, moving in the
positive x direction is considered to be present in the water. In actual the maximum
surface current in the ocean is that of Gulf stream at 2.5 m/s followed by the Agulhas
current at 2 m/s. This mean flow velocity is taken to be varying. The input pop-up

menu is as seen in Figure 4.11.
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<} Axial_gui W= E3

Axial Load Range

Minimm |
e

hlgximum

Fig. 4.12 Inplane load Properties

4.4.11 Inplane Load

Berthing, plate connections, initial plate deformation, corrosion, hogging, sagging are
some forms of inducing additional loads in the form of inplane loads to the plating of a

structure. The input pop-up menu is as seen in Figure 4.12.

4.4.12 Incremental Steps

The incremental steps are the computational step that need to be defined by the user.
The value of these steps defines the accuracy of the result and are required for completion

of the calculation. The input pop-up menu is as seen in Figure 4.13.

4.5 Calculating

Once all the values, as required, for undertaking the calculations have been entered by
the user, the calculating process can commence. As a start point, the validity of the
entered values is checked before actual calculations commence. Incase of a missing /
incorrect value, an error message is flashed for the user to allow him to make corrections.

One such error message is shown in Figure 4.14.
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| ) step_gui
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Wavenumber (Gamma)
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Zeta
(Rec. 0.003)
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Azl Load
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Fig. 4.13 Incremental Step Properties
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Fig. 4.14 Error Message
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Fig. 4.15 Output Page

4.6 Graphical Output

The calculated result is plotted in the graph on the GUI on completion of the calculations.

The resulting screen shot of the GUI on completion is as seen in Figure 4.15.
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4.7 Save Graph

The graph that has been generated can be saved by using the save graph button. Prior
to saving the graph, the file name and required extension for the graph needs to be

provided. The path wherein the graph is assumed to be saved is the current directory.

4.8 Close

The Close button allows the user to exit the GUI while closing any linked window.

4.9 Conclusion

GUTI as a tool has been generated for undertaking the calculations based on the formula-
tion discussed in chapter 2 and 3. With this tool the user can study the sound radiation

from floating structures under the influence of moving loads.
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Chapter d

Numerical Analysis

5.1 General Introduction

The mathematical formulation for the beam model and the plate model floating in water
in the presence of a harmonic moving load have been discussed in chapters 2 and 3 re-
spectively. However before the mathematical formulation can be fruitfully used, it needs
to be validated. For any mathematical model to be validated, either experimental results
or published results are required. In the present case, since experimental validation is
difficult owing to the complexity of the structure and the speeds associated, previously
published results are used to validate the formulation. This process of validation has
been discussed in section 5.2. Once the existing model was validated, the formulation
extended to the areas of this study. With the necessary formulations in place, a GUI
was created which has been discussed in chapter 4. In the present chapter, we discuss
the results obtained from the numerical analysis using the formulations obtained in the
previous chapters and by using the GUI. All calculations have been undertaken using
MATLAB. The flow chart used for the numerical analysis has been discussed in section

5.3.

Using a beam model we first analyse the total sound power produced by a Timo-
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shenko beam, a Rayleigh beam, a Shear beam and an Euler-Bernoulli beam. We then
compare them to understand which beam type produces the maximum sound power and
the reasons for the increased sound power in section 5.5. This is followed by the calcula-
tion and analysis of the total sound power from a Timoshenko beam due to varying loss

factor in section 5.6.

Using a plate model, numerical analysis of the total sound power from a floating airport
due to a landing / taking off of an airplane is undertaken. The analysis is carried out for
steel and aluminium and the effect of the material on the total sound power is studied
in section 5.7. The same plate model is then extended by modifying the governing equa-
tion from Equation (3.3) to Equation (3.21) to incorporate the effect of mean flow and
the numerical results of the total sound power are obtained and analysed in section 5.8.
Another extension is obtained by incorporating the inplane loading to the plate model to
get Equation (3.35). The effect of compressive and tensile inplane loads on the floating

airport is hence studied in section 5.9.

Finally the structural response of the plate model to point and harmonic moving

load is analysed in section 5.10.

5.2 Validation

No numerical model can be considered to be acceptable till the model is validated by
either earlier published or experimental results. In the problem at hand, experimental
validation is difficult since the speeds one is looking at varies from 0 to 0.9 Mach. Similarly
since the structure under consideration is a VLFS, experimental (laboratory) modeling is
considered difficult but not impossible. For such studies mathematical, numerical mod-
eling and field testing are considered as an acceptable methodology for obtaining the

desired results.

In order to validate this numerical model, the results as published by Keltie and Peng
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(1988) in “Sound radiation from beams under the action of moving line forces”,
ASME Transactions Series E Journal of Applied Mechanics, 1988, 55, pp 849-
854, have been used. In this section we reproduce the parameters and results as pub-
lished in this paper along with the results obtained by the present mathematical model
and compare them. However the comparison of the results is limited to the case of heavy

fluids (water) which is the medium for this study.

5.2.1 Study by Keltie and Peng (1988)

The problem of sound radiation from a harmonic line force moving along an infinite beam
at a constant subsonic speed has been investigated by Keltie and Peng (1988). By inte-
grating the surface acoustic intensity over the entire beam, the non-dimensional sound
power is formulated and then examined as a function of Mach number, acoustic length of
the line force and the wave number ratio. The entire analysis has been undertaken for a
Timoshenko beam filled with an acoustic medium (water, air etc) in the space y>0, such
that the formulation is valid for beams under heavy fluid loading at high frequencies or

for thick beams. Discussions however are largely for light fluid loading (air).

Before moving ahead, it is essential to mention a word on fluid loading. Fluid load-
ing effects have been categorized as light, significant or heavy by Crighton and Innes
(1984). They found that under light loading conditions the fluid plays no appreciable
role; under heavy loading conditions simple asymptotic forms of the structural and fluid
response may be obtained; but for significant loading conditions no simple solution is
possible. They have further concluded that, for heavy fluid loading, the structure may
safely be considered infinite if it is large compared to K, ' at the frequency of interest.
The flexural wave number K is never less than the in vacuo plate bending wave number
Kp . Usually air is considered as a light loading condition while water is considered

as a heavy loading condition.

The analysis undertaken by Keltie and Peng (1988) is limited to an elastic beam, in-

cluding rotational inertia and transverse shear effects given by the Timoshenko beam
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equation. Figures 5.1 and 5.3 are results obtained by Keltie and Peng (1988) for a range

of M values for KoL = 0.1 and 27 respectively.

5.2.2 Study by the present model

The present study may be considered as an extension of the work of IKeltie and Peng
(1988). The study is commenced by remodeling the Timoshenko beam as modeled by
[Keltie and Peng (1988) for validation of the model (which can be considered as the only

similarity between the two studies).

The study is then extended by remodeling for the Euler-Bernoulli, Rayleigh and Shear
beams and comparing the results obtained to discuss the performance of the beam model
in section 5.5. The effect of the varying loss factor (structural damping) on sound radi-

ation by floating beams has then been evaluated in section 5.6.

This model has then been extended to a floating airport modeled as a one dimensional
plate described by the Timoshenko-Mindlin plate in section 5.7. The effect of presence
of current and inplane loading on the one dimensional plate model has then been studied

in sections 5.8 and 5.9 respectively.

Further structural deflections of the floating airport have been analyzed in section 5.10.

A GUI for undertaking the above studies for both a ship (beam model) and a float-
ing airport (plate model) has then been developed for making the calculation procedure

more user friendly and speed up the user’s work in Chapter /.

To validate the present formulation, the calculations for a Timoshenko beam condition
have been undertaken for KoL = 0.1 and 27 for a range of M. The relative sound power
obtained by using the present model are presented in Figures 5.2 and 5.4 respectively. It
is necessary that when reporting the relative intensity of a sound, one says not only “dB”,

which is a relative unit of measure and not an absolute one as is watts per square meter,
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but to also add the reference level. This is often written as “dB re 1 pPa” for sounds
in water that are measured relative (re) to 1 puPa and “dB re 20 uPa” for sounds in air
that are measured relative (re) to 20 pPa. The present study being limited to sounds in

water, the results have been presented as “dB re 1 uPa”.

5.2.3 Comparison of the two results

By comparing results as published by Keltie and Peng (1988) as seen in Figure 5.1 for
KoL = 0.1, with those obtained by the present model in Figure 5.2, one notices that the
trend and the magnitudes of the curves obtained are similar. Similarly by comparing
Figures 5.3 and 5.4 (results by Keltie and Peng (1988) and present model respectively)

for KoL = 2w, one notices that the trend of the curves obtained are similar.

For better comparison, the results obtained by Keltie and Peng (1988) and the present
model are plotted together in Figures 5.5 and 5.6 for KoL = 0.1 and 27 and a range of
M respectively.

It is observed that comparison of published results and those obtained from the present
model are negligible over the major range of the wave number ratio and for the entire
range of the Mach number. The minor variation observed is attributed to the computa-

tion methodology available in 1988 (I<{eltie and Peng (1988)) and 2010-11 (present study).

Hence we can conclude that the developed numerical model is acceptable and can be

considered as validated.
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Fig. 5.1 Relative sound power v/s wavenumber ratio for a range of M values; KoL = 0.1, in water
(from Keltie and Peng (1988))
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Fig. 5.2 Relative sound power v/s wavenumber ratio for varying M; KoL = 0.1, (present model)
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Fig. 5.3 Relative sound power v/s wavenumber ratio for a range of M values; KoL = 27, in water
(from Keltie and Peng (1988))
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Result Comparison — Water Loaded Plate — KOL =0.1
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Fig. 5.5 Comparison of published and obtained results for a range of M values; KoL = 2, in water.
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Fig. 5.6 Comparison of published and obtained results for a range of M values; KoL = 27, in water.
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5.3 Flowchart

5.3 Flowchart

The flow chart for the numerical calculation of sound power generated by a moving load
on a beam or a plate as discussed in chapters 2 and 3 is as shown in Figure 5.7. The

broad steps that need to be followed to undertake the calculations are:

—_

. Input the values of the variable constants.
2. For a fixed value of KoL, calculate the values of the variables, F/, D and I.

3. Calculate the total sound power for a range of 0 < v < 2.2 by integrating it over

the range of (; to (s.
4. Plot graphs for the results obtained.

5. Iterate the steps 3 and 4 above over a range of Mach number (0 < M < 0.9).

5.4 Parameters used

In sections 5.5 and 5.6, the numerical analysis of the beam models using a Timoshenko
beam, a Rayleigh beam, a Shear beam and an Euler-Bernoulli beam is undertaken. Equa-
tion (2.19) obtained in chapter 2 is numerically evaluated to calculate the sound power
generated by a moving load on these beams. The material of the beams is considered to
be steel. The beam is assumed to float on water. The basic geometrical and material

parameters used in sections 5.5 and 5.6 are given in Table 5.1.

Table 5.1: Material Parameters - Beam

E=20x10°  N/m?

Py = 7800 kg/m?
h=254%x10"2 m
v=20.3

k? = 0.85

For water
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Chapter 5 Numerical Analysis

Cy = 1481 m/s
po = 1000 kg/m?

5.5 Various Beam Type

5.5.1 Introduction

The investigation of the problem is undertaken to study of the effect of shear effect and
rotatory inertia on the total radiated sound power by different beam types. The external
force strength (fy) is assumed to be of unit magnitude. By varying the values of param-
eters M and KL, the total sound power is computed and then plotted against the wave
number ratio (7) or non-dimensional frequency in the frequency range of 0.01 to 2.2. The

value of 7 is taken as 0.01 as found in Ungar (1988).

Figures 5.8 to 5.13 show the effect of various beam types. Since the difference in the
total sound power by various beam types is not of a very high magnitude, the Euler-
Bernoulli is considered as the reference and difference of total sound power with respect
to the Euler-Bernoulli beam is calculated and plotted. The percentage difference in the

total sound power is shown in Figures 5.14 to 5.25.

5.5.2 Discussion

In Figures 5.8 to 5.13, one can see four distinct frequency ranges: the very low frequency
region (v < 0.1); the low frequency region (0.1 < v < 1.0); the frequency region near
coincidence (v ~ 1.0); and the frequency region above coincidence (v > 1.0). In the very
low frequency region and in the region above coincidence frequency, the sound powers
radiated show no discernible difference. It is hence the low frequency region and the
region near coincidence which is of concern to us and needs to be discussed. It may

be observed that there are no peaks in the sound power curves as obtained in light fluids.
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Fig. 5.7 Flow chart for Numerical analysis in MATLAB

115



Chapter 5 Numerical Analysis

Relative Power(dB) Vs Wavenumber ratio — Water Loaded Beam — ISL =01M=0
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Fig. 5.8 Relative sound power v/s wavenumber ratio for various beam types; M = 0; KoL = 0.1
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Fig. 5.9 Relative sound power v/s wavenumber ratio for various beam types; M = 0.5; KoL = 0.1

The essential lack of peaks for a dense medium like water is due to the proportion of the
structural energy converted to acoustic energy. This is larger for dense media, leading
to the draining of the radiation energy faster from the structure thus disallowing peak
formation. This results in larger effective damping. Figures 5.8 and 5.9 are for acoustic

length 0.1 and Figures 5.10 and 5.11 are for an acoustic length of 2.
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Relative Power(dB) Vs Wavenumber ratio — Water Loaded Beam — ISL =6.2832M=0
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Fig. 5.10 Relative sound power v/s wavenumber ratio for various beam types; M = 0; KoL = 27

Relative Power(dB) Vs Wavenumber ratio — Water Loaded Beam — ISL =6.2832M=0.5
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Fig. 5.11 Relative sound power v/s wavenumber ratio for various beam types; M = 0.5; KoL = 27

5.5.2.1 Static Load

Figures 5.8 and 5.10 are for Mach number, M = 0, which indicates a condition of static
load. As expected, the sound radiation from the Timoshenko beam is the least while
that of the Euler-Bernoulli beam is a maximum. The effect of Shear beam is greater
than Rayleigh beam though within the bounds of Timoshenko beam and Euler-Bernoulli

beam. This effect is as expected due to terms of contribution involved in the beams.
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Relative Power(dB) Vs Wavenumber ratio — Water Loaded Beam - ISL =0.1M=0.38
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Fig. 5.12 Relative sound power v/s wavenumber ratio for various beam types; M = 0.8; KoL = 0.1
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Fig. 5.13 Relative sound power v/s wavenumber ratio for various beam types; M = 0.8; KoL = 27

One notices that for the shear beam, the contributing element over the Euler-Bernoulli

beam is —g’é” % which is added on the LHS and —%BB—; on the RHS. With the

values of % limited to 0.85 for beams, the contribution of the term shall be greater than
1 thus reducing the net magnitude of the beam impedance Z,,, while increasing Zp. This
results in a reduced sound output when compared with the sound produced by a Euler-

Bernoulli beam. On the other hand, for the Rayleigh beam, the contribution is by the
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5.5 Various Beam Type

term —p, [ 884;‘2(522) which reduces the structural impedance Z,,. The Rayleigh beam has

no effect on the Zr but since the magnitude of the lowering term on 7, is large, the
net acoustic output is lesser than both the Euler-Bernoulli and the Shear beam. This
effect is reversed for frequency regime above coincidence. If we see Equation (2.19), W
is proportional to %—2, while D o< —Ds. For higher values of ~, for the shear beam, Zp
increases, while D reduces because of increase in Ds, thus reducing W. Similarly for the
Rayleigh beam Zp remains unchanged while D reduces due to increase of Dy. However
Dosp > Dsogp and Zpgp > Zpgrp thus the sound power from Shear beam is greater
than that obtained from a Rayleigh beam. For Euler-Bernoulli beam Dgp > Dgg since

Dopr < Dopp and Zpprp = Zrpgrp = 1 resulting into increased power from Euler-Bernoulli

beam as compared to Rayleigh beam.

5.5.2.2 Moving Load

With the load moving, i.e M > 0, and the acoustic length being the same, an overall
increase in the sound power is observed as seen in Figures 5.8, 5.9 and 5.12 for
KoL = 0.1 and Figures 5.10, 5.11 and 5.13 for KoL = 27w. Mathematically, as M
increases « increases, thus increasing Dy which leads to reduced D and hence increased
sound power. Physically this is as expected, since with increased speed, the resulting
sound is known to increase. However this trend is seen to be reversed for increased
frequency the logic being the same as discussed for M = 0. It is clear that the increased
acoustic length (KoL) reduces the sound power level over the entire frequency range.

This can be attributed to the fact that the total applied force strength is kept constant.

5.5.2.3 Analysis as percentage difference

In order to analyse the nature of the change in power of various beam types, we reorgan-
ise the results as a percentage difference. Since the Euler-Bernoulli beam gives maximum
power, we use it as a base value and differences with respect to the values of sound power
for Euler-Bernoulli beam are plotted for various beam types. It may be noticed that we

have two varying parameters namely M and KyL. We shall try and understand the
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Fig. 5.14 % Difference in Relative sound power (Rayleigh beam); KoL = nm; M =
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Fig. 5.15 % Difference in Relative sound power (Shear beam); KoL = nm; M = 0

contribution of each while varying the other variable.

Variation of KyL: It is interesting to note that if incase KyL is an integer multiple
of 7, then the trend of the difference of the total sound power is different than that
observed for KL being otherwise. The variations observed for the beam types is shown

in Figures 5.14, 5.15, 5.16, for the Rayleigh beam, Shear beam and Timoshenko beam
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% Difference in Relative Power(dB) —~Water Loaded Timoshenko Beam M =0
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Fig. 5.16 % Difference in Relative sound power (Timoshenko beam); KoL = nm; M =0
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Fig. 5.17 % Difference in Relative sound power (Rayleigh beam); KoL = (2n —1)%; M =0

for KoL = nm respectively while Figures 5.17, 5.18, 5.19 respectively, are for KoL =

(2n —1)7. It is observed that the difference of sound power commences after coincidence

if KoL is an integral multiple of m and at half of coincidence when it is otherwise. The

variation of the percentage difference is however consistence in its trend. For KL being

an integral multiple of 7, (n — 1) half modes are visible, where n is the integral multiple

of m. However n number of half modes are seen when KyL is a non integral multiple
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% Difference in Relative Power(dB) —~Water Loaded Shear Beam M =0
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Fig. 5.18 % Difference in Relative sound power (Shear beam); KoL = (2n —1)5; M =0
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Fig. 5.19 % Difference in Relative sound power (Timoshenko beam); KoL = (2n —1)5; M =0

of m. The reasoning for this is that the beam responds preferentially at ( = Kp, the

free bending wavenumber, which is the spatial scale of the propagating or the energy

bearing portion of the beam’s

by the damping present in the structure. Physically, the amount of power radiated is
determined by how much energy is available in the force spectrum at the structural

/ acoustic response wavenumber. When this wave number corresponds to an integral

0.5 1 15 2
Wavenumber Ratio (y)

25

response at frequency w. Height of the peak is controlled
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% Difference in Relative Power(dB) —~Water Loaded Rayleigh Beam I%L =3.1416
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Fig. 5.20 % Difference in Relative sound power (Rayleigh beam); KoL = nr; varying M

multiple of “, there is no energy available in the free spectrum for the conversion to
acoustic radiation. These wavenumbers of vanishing energy may be related to wavelength
as

2t nmw 2L

e R W
¢ A L:> n

Variation of M: The effect of varying M displays the Doppler shift of the difference
curves as the speed increases. The overall pattern that emerges when KyL is an integral
multiple of 7 and when the value of KyL is not an integral multiple of 7 is worth noticing
as seen in Figures 5.20, 5.21 and 5.22 for integral multiples of 7 and Figures 5.23,
5.24 and 5.25 for non-integral multiples of 7. Special attention may be given to the
packing of the values at the critical frequency and the convergence of the data at high

wave number ratios.

5.5.3 Conclusion

Effect of shear effect and rotatory inertia on radiated sound power from beams subjected
to moving loads has been analysed. It is concluded that a Timoshenko beam gives the
least sound radiation power when compared to the other beam types. The correction for

shear effect and rotatory inertia yield results within 4-5 % more accurate than classical
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Fig. 5.21 % Difference in Relative sound power (Shear beam); KoL = nn; varying M
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Fig. 5.22 % Difference in Relative sound power (Timoshenko beam); KoL = nr; varying M

beam theory. The nature of the curves with varying KoL is dependent on KyL being
an integral multiple of m or otherwise. For varying M, the Doppler shift of the curves
is observed for increasing M. The overall pattern that emerges when Kyl is an integral
multiple of 7 and when the value of KyL is not an integral multiple of 7 is worth noticing.
Special attention may be given to the packing of the values at the critical frequency and

the convergence of the data at high wave number ratios.
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% Difference in Relative Power(dB) —~Water Loaded Rayleigh Beam I%L =1.5708
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Fig. 5.23 % Difference in Relative sound power (Rayleigh beam); KoL = (2n — 1)%; varying M
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Fig. 5.24 % Difference in Relative sound power (Shear beam); KoL = (2n — 1)%; varying M
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Fig. 5.25 % Difference in Relative sound power (Timoshenko beam); KoL = (2n — 1)5; varying M
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5.6 Effect of Loss Factor

5.6.1 Introduction

It is well known that all solid materials are characterised by both elastic and damping
properties. The elasticity of a material is exhibited by the fact that the action of a stress
is accompanied by a strain while damping is the ability of a material to dissipate vibra-
tion energy into heat. Usually, damping is characterised by the loss factor, often denoted
by n, and which is defined as the ratio of lost energy to the vibratory reversible energy
during one cycle of vibration. Due to its importance in noise, and in the prevention of
fatigue in structural elements, the study of damping in materials has been given some

attention. We use a “constant loss factor” model for the damping mechanism.

The need to analyse the effect of loss factor arises because increased vibrational levels due
to reduced damping (hence reduced loss factor) lead directly to increased sound radiation.
In this section, a Timoshenko beam defined by Equation (2.19) is numerically evaluated
for the case of a steel beam immersed in water for n varying as 0.9,0.1,0.01,0.001,0. The

results so obtained are shown in Figures 5.26 to 5.29.

5.6.2 Discussion

As explained in section 5.5.2, one can see four distinct frequency ranges: the very low
frequency region (v < 0.1); the low frequency region (0.1 < v < 1.0); the frequency
region near coincidence (y ~ 1.0); and the frequency region above coincidence (y > 1.0).
Since the sound powers radiated show no discernible difference in the very low frequency
region and in the region above coincidence frequency, we need to pay attention to the low
frequency region and the region near coincidence.  The effect of reduced loss factor as
increased sound radiation is seen in the Figures 5.26 to 5.29. In this analysis one observes
that the curves have the same basic shape as was seen for the case without damping. As
the structural damping decreases, the amount of steady-state vibrational energy in the

beam increases. This results into the shifting up of the curves by an amount which is
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Relative Power(dB) Vs Wavenumber ratio — Water Loaded Beam — I6L =01M=0
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Fig. 5.26 Relative sound power v/s wavenumber ratio for varying 7; KoL = 0.1
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Fig. 5.27 Relative sound power v/s wavenumber ratio for varying 7n; KoL = 0.1

directly proportional to the change in the loss factor.

Near the coincidence frequency, if the structural loss is large enough (n ~ 0.1), the
damping provided by the material exceeds the damping provided by the fluid loading

and there is significant difference between the two power curves as seen in Figures 5.26
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Relative Power(dB) Vs Wavenumber ratio — Water Loaded Beam — ISL =6.2832M=0
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Fig. 5.28 Relative sound power v/s wavenumber ratio for varying n; KoL = 27
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Fig. 5.29 Relative sound power v/s wavenumber ratio for varying n; KoL = 27

to 5.29. If the loss factor is small, then the damping effects reduce and the sound power
level significantly increases. This shows that the damping effect cannot be neglected

while looking at the sound power generated by a beam.
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5.6.3 Conclusion

Effect of loss factor on radiated sound power from beams subjected to moving loads
has been analysed. It is observed that as the structural damping decreases, vibrational
levels increase thus causing an increase in the sound power. The shift of the curves with

increasing loss factor is however found to be proportional to the change in the loss factor.

130



5.7 Floating Airport

5.7 Floating Airport

5.7.1 Introduction

In this section we investigate and evaluate the total radiated sound power from a floating
airport due to the landing / taking off of an airplane. The floating airport is modeled
as a Timoshenko-Mindlin plate and the landing/ taking off of an airplane modeled as
a moving uniformly distributed line force. The numerical analysis has been undertaken
by calculating the total sound power for different structural materials to understand the
effect of the material on the sound power radiated due to the landing / taking off of an
airplane. The geometrical and material parameters used for the numerical analysis of a

floating airport are given in Table 5.2.

Table 5.2: Material Parameters - Floating Airport

For Steel

E=20x10"°  N/m?
pu = 7800 kg/m?
D = 560 KNm

For Aluminium

E=71x10" N/m?

Py = 2700 kg/m?
D =237 KNm
h=254%x10"2 m
v=0.3

k? = 0.85

For water

Co = 1481 m/s
po = 1000 kg/m?
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Relative Power(dB) Vs Wavenumber ratio — Water Loaded Plate — ISL =0.1
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Fig. 5.30 Relative sound power v/s wavenumber ratio for Steel with various KoL = 0.1

The external force strength (fp) is assumed to be of unit magnitude. By varying the
values of parameters M and KL, the sound power is computed and then plotted against

the wave number ratio () or nondimensional frequency.

The sound power has been calculated for KoL = 0 and 27 in the frequency range
0.01 < v < 2.2. The results so obtained for steel plate are shown in Figures 5.30

and 5.31. The sound variation by an Aluminium plate is shown in Figures 5.32 and 5.33.

5.7.2 Discussion

The sound power generated by the moving load on a Timoshenko-Mindlin plate model
made of steel can be viewed in Figures 5.30 and 5.31. With increased speed, the sound
power generated increases, though marginally. However increased acoustic length KL
reduces the sound power level over the entire frequency range. This effect is expected
since the total applied force strength is kept constant. No pronounced peak is noticed in
the sound power curves. This is attributed to the fact that denser mediums like water
drain the energy faster from the structure disallowing the formation of the peak. One

can see four distinct frequency ranges: the very low frequency region (v < 0.1); the low
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Relative Power(dB) Vs Wavenumber ratio — Water Loaded Plate — I6L = 6.2832
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Fig. 5.31 Relative sound power v/s wavenumber ratio for Steel with various KoL = 27
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Fig. 5.32 Relative sound power v/s wavenumber ratio for Aluminium with various KoL = 0.1

frequency region (0.1 < v < 1.0); the frequency region near coincidence (v ~ 1.0); and
the frequency region above coincidence (7 > 1.0). In the very low frequency region and
in the region above coincidence frequency, the sound powers radiated show no discernible
difference. It is the low frequency region and the region near coincidence which are of

significance.

Figures 5.32 and 5.33 show the sound power generated by a moving load on a

133



Chapter 5 Numerical Analysis

Relative Power(dB) Vs Wavenumber ratio — Water Loaded Plate — I6L = 6.2832
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Fig. 5.33 Relative sound power v/s wavenumber ratio for Aluminium with various KoL = 27
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Fig. 5.34 % difference in sound power between Steel and Al. structures;KoL = 0.1

Timoshenko-Mindlin plate made of Aluminium. As expected the sound produced from
an Aluminium structure is lesser than that from a steel structure for all acoustic lengths.
The difference of the acoustic power is however very large at low frequencies which re-
duces and then increases again as seen in Figures 5.34 to 5.36. The same trend is noticed
for higher values of KyL. What is interesting to note that the differences tend to converge

for varying convective speed of loading at higher frequencies as noted by Keltie and Peng
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% Difference Power(dB) Vs Wavenumber ratio — Water Loaded Plate — I6L =3.1416
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Fig. 5.36 % difference in sound power between Steel and Aluminium structures KoL = 27

(1988).

5.7.3 Conclusion

Sound produced by an airplane landing / taking off from a floating runway has been in-

vestigated for different structural materials. The entire analysis is carried out assuming a
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one dimensional plate in lieu of a three dimensional runway with time varying harmonic
loading. The sound generated at various speeds of convective loading has been calcu-
lated and as expected an increase in sound is observed with increasing Mach number.
The overall sound generated reduces with an increased acoustic length KoL over the
entire frequency range. No pronounced peaks are observed in the sound power curves
due to the denser medium of water wherein the energy drain is faster disallowing peak
formation. Changing of structural material from steel to aluminium has a similar effect,
however the difference of sound power from different speeds of convective loadings is seen

to converge at higher frequencies.

For a floating airport the relationship between the frequency and the non-dimensional
frequency (7) is as given in Table 5.3. When analyzing the sound produced by the float-
ing airport due to a landing / taking off of an airplane in conjunction with the hearing
curves for the select teleost fishes as given in Figure 1.1, one notices that the low fre-
quency region (0 < v < 1.0) is what is of concern with respect to the marine life and is
an area of concern in our study. One can thus infer that the sound power produced by
the landing / taking off of an airplane from a floating airport has a direct co-relation to

the hearing threshold of the fishes.

Table 5.3: Freq. relation with ~ (for Floating Airport)

Parameter
y 0.2 0.4 0.8 1.0 1.4 1.8 2.0 2.2
w 2,500 10,000 40,000 62,500 122500 202,500 250000 302,500

Freq (Hz) 398 1,592 6,369 9,952 19,506 32,245 39,809 48,169

It is thus concluded that the effect of sound produced by an aircraft landing / takeoff on
a floating airport needs to be factored into while undertaking the design of a VLFS to

be used as a floating airport for safer marine environment.
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5.8 Floating Airport subjected to a Mean Flow

5.8 Floating Airport subjected to a Mean Flow

5.8.1 Introduction

Conventional Mega-Floats are set up in relatively calm water behind islands or break-
waters. This limitation has disallowed Mega-Floats to demonstrate primary cost perfor-
mance. To extend their versatility, devices are being developed / studied to widen the

range of potential setup sites .

In the present study the investigation of a floating airport subjected to the landing /
taking off of an airplane and a mean flow is undertaken and the total radiated sound
power is evaluated. The parameters used for the numerical analysis of a floating airport
are given in Table 5.2. The mean flow velocity is taken as varying between —10m/s to
10m/s. The magnitude of this current is governed by both the natural currents and
those created by man due to discharge of effluent and waste into the oceans. In
actual the maximum surface current is that of Gulf stream at 2.5m/s followed by the
Agulhas current at 2m/s. One may argue to say that the magnitude of these currents is
so low that the resultant effects shall be negligible, which is as observed in the present
study. However effect of mean flow when considered in conjunction with other factors
such as inplane loading etc., cannot be neglected when calculating the sound power gen-

erated by a moving load.

Recent discussions of having a floating airport in UK positioned in the river Thames
which has a tidal rise and fall of 7 m (23 ft) leading to effective currents of 4.5 knots

(2.3m/s) are indicative that study of “current” is essential.

In this section, Equation (3.34) is numerically evaluated for the case of a one dimensional
steel plate (beam) immersed in water. The external force strength (fy) is assumed to be
of unit magnitude. By varying the values of parameters M and KyL, the sound power
is computed and then plotted against the wave number ratio () or non-dimensional

frequency. The sound power has been calculated for KoL = 0.1 and 27 in the frequency

137



Chapter 5 Numerical Analysis

Relative Power(dB) Vs Wavenumber ratio — Water Loaded Plate — I6L =0.1M=0.7
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Fig. 5.37 Relative sound power v/s wavenumber ratio with current; varying KoL

range 0.01 < v < 2.2. Figures 5.37 and 5.38 shows the effect on steel structures of varying

current for M = 0.7 and the same combination of KoL = 0.1 and 2.

5.8.2 Discussion

Figures 5.37 and 5.38 shows the effect of the presence of current on the sound radiation
for M = 0.7. The nature of the curves remain the same as that without current. The
curves show a proportional shift due to the presence of current. The minus (-) current
indicates direction of the current opposite to the direction of the subsonic moving force.
The net effect is an increased Mach number and hence a shift of the curve upwards as
was observed in Figures 5.30 and 5.31. The shift however is not very large. It may be
noted that a high value of the current which makes the modified Mach number greater
than 1 is not permissible since the calculations are valid for the subsonic speed domain.
Since the variations due to the presence of current is not predominantly visible in
Figures 5.37 and 5.38, we replot the figure as a difference curve with U = 0 as the
reference to get Figures 5.39 to 5.50. Figure 5.37 and 5.38 are for fixed M with varying
KyL. Figures 5.39 to 5.41 are for non-integral multiples of 7 and Figures 5.45 to 5.47
are for integral multiples of = for M = 0.01. Similarly Figures 5.42 to 5.44 are for

non-integral multiples of 7 and Figures 5.48 to 5.50 are for integral multiples of 7 for
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Relative Power(dB) Vs Wavenumber ratio — Water Loaded Plate - IBL =6.2832M =0.7
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Fig. 5.38 Relative sound power v/s wavenumber ratio with current; varying KoL
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Fig. 5.39 Difference in Relative sound power for current; M = 0.001; KoL = 7/2

M = 0.7. It is interesting to note that the trend of curves of integral multiples and

non-integral multiples is different, but consistent. The variation due to convective speed

of loading is increased magnitudes for increased U while the curve trends remain to be

the same. It is noted that for non-integral multiples of 7, for every step increase of 7/2,

there is an added node with the magnitude of the previous nodes being reduced. For

integral multiples of 7, for every step increase of 7, there are two added nodes, again
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Relative Power(dB) Vs Wavenumber ratio — Water Loaded Plate — IﬁL =4.7124 M = 0.001
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Fig. 5.40 Difference in Relative sound power for current; M = 0.001; KoL = 37 /2
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Fig. 5.41 Difference in Relative sound power for current; M = 0.001; KoL = 57/2

the previous nodes being reduced in magnitude. It may also be noted that the relative
difference of sound power due to presence of mean flow is limited to 1 dB which may be
considered to be negligible if considered in isolation but when considered in conjunction

with other variables, it may be considered to be of a large magnitude.
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Relative Power(dB) Vs Wavenumber ratio — Water Loaded Plate - IBL =1.5708 M =0.7
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Fig. 5.42 Difference in Relative sound power for current; M = 0.7; KoL = 7/2

Relative Power(dB) Vs Wavenumber ratio — Water Loaded Plate - IﬁL =4.7124 M =0.7
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Fig. 5.43 Difference in Relative sound power for current; M = 0.7; KoL = 37/2

5.8.3 Conclusion

Sound produced by an airplane landing / taking off from a floating runway has been

investigated in the presence of a mean flow on a floating steel runway. The entire analysis

is carried out assuming a one dimensional plate in lieu of a three dimensional runway

with time varying loading. The sound generated at various speeds of convective loading

has been calculated and as expected an increase in sound is observed with an increasing
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Relative Power(dB) Vs Wavenumber ratio — Water Loaded Plate

- IBL =7.854M=0.7

251

-

Io 2 |

-

g

o 15

S

@

g 1t

a

- S

c /

3 05f /!

(2] - '/

[} /

= -

8 0 ==

[ —

14

£

g —0.5r U =-10m/s
S U=/,5m/s
?GE) 1t Uz0mls
[a) =5m/s

U=10m/s
-15 i i i i i
0 0.5 1 1.5 2 25

Wavenumber Ratio (y)
Fig. 5.44

Relative Power(dB) Vs Wavenumber ratio — Water Loaded Plate —
1

Difference in Relative sound power for current; M = 0.7; KoL = 57/2

I%L =3.1416 M = 0.001

L?’o‘ 0.8F

-

L 06f

o

k)

T 04F——

[

: N\

a 02r N

e

9 - —

3 0 — -

3 —

S

E -0.21+

&

< -0.4F

2 U=-10m/s
g 0.6 U=-5mis
2 Uu=0m/s

5 -0.8F U=5m/is

U=10m/s
1 i i i i i
0 0.5 1 1.5 2 25

Wavenumber Ratio (y)

Fig. 5.45 Difference in Relative sound power for current; M = 0.001; KoL = 7

mean flow. The overall sound generated reduces with an increased acoustic length KoL
over the entire frequency range. No pronounced peaks are observed in the sound power
curves due to the denser medium of water wherein the energy drain is faster disallowing
peak formation. The presence of current does not alter the sound produced prominently
and the change is seen to be in the range of 1dB. On analysing the difference of sound

power with current a unique trend of curves is observed for acoustic lengths of integral
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Relative Power(dB) Vs Wavenumber ratio — Water Loaded Plate — FSL =6.2832 M = 0.001
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Fig. 5.46 Difference in Relative sound power for current; M = 0.001; KoL = 27
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sound power for current; M = 0.001; KoL = 37

inter se trend however remains consistent.
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Relative Power(dB) Vs Wavenumber ratio — Water Loaded Plate — FSL =3.1416 M =0.7
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Fig. 5.48 Difference in Relative sound power for current; M = 0.7; KoL = 7
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Fig. 5.49 Difference in Relative sound power for current; M = 0.7; KoL = 27
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Relative Power(dB) Vs Wavenumber ratio — Water Loaded Plate — ISL =9.4248 M =0.7
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Fig. 5.50 Difference in Relative sound power for current; M = 0.7; KoL = 37
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5.9 Floating Airport subjected to Inplane Loading

5.9.1 Introduction

The effect of inplane loading on a floating airport is undertaken by evaluating the total
radiated sound power for an inplane loaded Timoshenko-Mindlin plate. Equation (3.34)
is numerically evaluated for the case of a steel beam floating on water. Geometrical and
material parameters used in this section are given in Table 5.2. With a typical weight
of a fully loaded Boeing-747-400 at 7767 KN (as available from the BOEING webpage)
which acts as a compressive load on the deck of the floating airport, the compressive (Q)
and tensile (T) load are varied between 5 M N to 200 M N. The external force strength
(fo) is assumed to be of unit magnitude. By varying the values of parameters M and
KoL, the sound power is computed and then plotted versus the wave number ratio () or
non-dimensional frequency. The sound power has been calculated for KoL = 0.1 and 27
in the frequency range 0.01 < v < 2.2. The results so obtained for compressive loading

are shown in Figures 5.51 and 5.52 and that for tensile loading in Figures 5.55 and 5.56.

5.9.2 Discussion

The sound power generated by the moving load on a one dimensional Timoshenko-
Mindlin plate subjected to compressive inplane loading can be seen in Figures 5.51 and
5.52. With increased speed, there is a marginal decrease in the sound power generated,
while an increased acoustic length KoL reduces the sound power level over the entire
frequency range. This occurs since the total applied force strength remains a constant.
Due to a denser medium, like water, wherein energy drain is faster, no pronounced peaks
are noticed.

With increasing compressive loading the sound power from the structure decreases
as seen in Figures 5.51 and 5.52. The tensile loading on the other hand shows a corre-
sponding increase in the sound power magnitude. The increase of the acoustic power is
however not very large over the entire range of frequency as seen in Figures 5.53 and 5.54

for compressive loading and Figures 5.57 and 5.58 for tensile loading. It may be noted
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Relative Power (dB) Vs Wavenumber ratio — Water Loaded Beam — IgL =0.1M=05
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Fig. 5.51 Relative sound power v/s wavenumber ratio under Compressive Load; M = 0.5; KoL = 0.1
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Fig. 5.52 Relative sound power v/s wavenumber ratio under Compressive Load; M = 0.5; KoL = 27

that the differences tend to converge for varying convective speed of loading at higher

frequencies as noted by IKeltic and Peng (1988).

5.9.3 Conclusion

The effect of inplane loading on total sound power generated by a one dimensional floating

plate has been analysed. It is concluded that the effect of a compressive loading, is a
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Difference in Relative Power (dB) — Water Loaded Beam - I%L =0.1IM=05
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Fig. 5.53 % Difference for sound power v/s wavenumber ratio under Compressive Load; M = 0.5;
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Fig. 5.54 % Difference for sound power v/s wavenumber ratio under Compressive Load; M = 0.5;
KoL =2m
decreased sound power while an increased tensile loading increases the sound
power of the floating structure, the change is however not very large over the entire
range of frequency however cannot be neglected when treated with other components
of loading. The observations so made are considered to be analogous to a guitar string
which produces greater sound when tightened (under tensile loading) as compared to

the dull sound it creates when relatively loose (under compressive loading). What is
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Relative Power (dB) Vs Wavenumber ratio — Water Loaded Beam — IgL =0.1M=0.8
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Fig. 5.55 Relative sound power v/s wavenumber ratio under Tensile Load; M = 0.8; KoL = 0.1
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Fig. 5.56 Relative sound power v/s wavenumber ratio under Tensile Load; M = 0.8; KoL = 27

interesting to note is the difference tends to converge for varying convective speed of
loading at higher frequencies as noted by Keltie and Peng (1988). For lower convective
loading the wavenumber response peaks are approximately symmetrical and are identified
as propagating flexural waves. With increased convective loading speed, the spectral

response changes.
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Difference in Relative Power (dB) — Water Loaded Beam - I%L =0.1M=0.8
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Fig. 5.57 % Difference for sound power v/s wavenumber ratio under Tensile Load; M = 0.8;
KoL =0.1
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Fig. 5.58 % Difference for sound power v/s wavenumber ratio under Tensile Load; M = 0.8; KoL = 27
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5.10 Structural Response of a Floating Airport

5.10.1 Introduction

The numerical investigation of the structural response of a floating airport subject to a
moving load is discussed in this section. The investigation of the problem is undertaken
by comparing the wavenumber response for a floating airport made of steel. The response
is studied by analysing the response of a point loading and a distributed loading. In order
to undertake the required investigation, Equation(3.13) is numerically evaluated for the
case of a plate immersed in water. The properties of the floating airport model analysed

are given in Table 5.2.

5.10.2 Discussion

The displacement of the idealized one dimensional floating airport is seen in Figures 5.59
and 5.60 for a distributed loading and a point loading respectively. In both the Fig-
ures 5.59 and 5.60, the large spectral responses of the fluid loaded flexural wavenumber
are visible. These are seen as local peaks emanating the point of load application, indi-
cated by ¢ = 0 from the M = 0.1 to 0.9. The presence of peak in the positive wavenumber
is noticed, which represents the flexural wave that propagates in the same direction as
the convected loading. With increased convected loading speed, the peak moves towards
a larger value of wavenumber due to the Doppler effect. Similarly the negative peak
represents the flexural wave for which the propagating direction is opposite to that of
the convected loading. The wavenumber for this peak is found to be decreasing with
increased convected loading thus indicating that the negative going wave may be super-
sonic. These sets of propagating positive going and negative going flexural waves can be
noted in both the loading cases. The identification or pre-definition of the location of
these peaks precisely can however not be done. It is further noticed that the local peak
moves in a curvilinear path with increasing speed of the airplane (indicated by the in-
creasing M). This local peak in turn gives the maximum deflection of the floating airport

and is in concurrence with the results published by other researchers.
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Fig. 5.59 Three Dimensional plot for Wavenumber response V /s Dimensionless Frequency;
Distributed loading

To improve the understanding and visualization of the three dimensional plot, slice plots
are presented in Figures 5.61 and 5.62 for both distributed loading and line loading re-
spectively. For lower convective loading the structural response peaks are approximately
symmetrical and are identified as propagating flexural waves. With increased convective

loading speed, the spectral response changes as shown.

5.10.3 Conclusion

The structural response of a floating airport subjected to landing / taking off of an
airplane has been analyzed. Since such problems are not conducive to physical modeling
and experimental validation due to their size and speeds involved, numerical analysis is an
excepted norm. However conventional means of using a three dimensional runway with
time varying loads is extremely difficult and time consuming. The problem has been
simplified by using a Timoshenko-Mindlin plate model. In developing the expression
for the structural response, a Fourier transformation in space for the whole structure in

wavenumber domain is utilized rather than using the wave propagation method to reduce
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Fig. 5.60 Three Dimensional plot for Wavenumber response V /s Dimensionless Frequency; Point
loading
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Fig. 5.61 Two Dimensional plot for Wavenumber response V /s Dimensionless Frequency; Distributed
loading

the analysis to a substructure. One notices that

e Large spectral responses of the fluid loaded flexural wavenumber are visible when

the wavenumber is plotted against the increasing speed of the airplane.

e The large spectral responses are seen as local peaks emanating from the point of
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Fig. 5.62 Two Dimensional plot for Wavenumber response V /s Dimensionless Frequency; Point
loading

load application and represent the flexural wave propagating in the same direction

as the convected loading due to the Doppler Effect.
e Defining the location of these peaks precisely aprior is however not feasible.
e The local peak moves in a curvilinear path with increasing speed of the airplane.

e The results obtained are similar to those reported by other researchers in this field.
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Chapter 6

Closure

6.1 Salient Feature of the Thesis

The present study provides a methodology for calculating of total sound power radiated due
to a moving load on a floating platform (ship or airport). The ship has been modeled as
a beam while the floating airport has been modeled as a one dimensional plate to simplify
the formulation. The effect of external factors such as loss factor, mean flow, inplane
loading on the total sound power radiated has been analyzed additionally. A GUI has been

developed to undertake all the above analysis by varying the input parameters.

6.2 Contribution of the Thesis

The following are the contributions of this study:-

e An expression for total sound power due to the presence of a moving load
on Rayleigh beam, Shear beam and Fuler-Bernoulli beam has been developed. It is
observed that the sound radiation from a Timoshenko beam is lower and increases
with the Shear beam, Rayleigh beam to the Euler-Bernoulli beam in that order

and is attributed to the inclusion or otherwise of the rotary and shear factors.
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e The effect of varying loss factor (structural damping) on such floating beams
has been evaluated. It is noticed that increased vibrational levels (due to struc-
tural damping) lead directly to increased sound radiation. It is interesting to note
that the curves appear to have the same basic shape. As the structural damping
decreases, the amount of steady-state vibrational energy in the beam increases.
What is most interesting is that the curves shift up by an amount which is directly

proportional to the change in the loss factor.

e The methodology has been extended to a floating airport and the sound power
generated by the landing / takeoff of airplanes has been investigated. The
concept of sound generated from the floating airport is important due to the effect

the sound has on the ecology and the marine life below the airport.

e The floating airport has been evaluated for generated sound power in the presence
of a current in the fluid along with the moving load. The relative difference of
sound power due to the presence of mean flow is limited to 1dB, a small magnitude,

however cannot be neglected when acting along with other types of loading.

e The effect of inplane loading in the sound power produced by a moving load
on the structure has been analysed. The effect of increasing tensile loading shows
an increased sound power from the structure while increased compressive loading

shows reduced sound power.

e The structural deflections due to the moving load on a floating airport is studied.
The effect of a point loading and distributed loading is considered to study this

deflection.

e A GUI for undertaking the above analysis for both a ship model and a floating
airport model has been developed for making the calculation procedure user friendly

and speed up the user’s work especially for non-technical people.

The study undertaken herein develops a methodology for understanding the total sound

power produced by a floating structure, namely a ship modeled as a beam and a floating
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airport modeled as a one dimensional plate due to moving loads. This study shall allow
researchers to calculate sound produced by moving loads on such structures and hence

reduce sound from such structures.

6.3 Brief Overview of the Research Work Pursued

The content of the thesis is divided into siz chapters for ease of explanation and the

problems investigated.

Chapter 1, gives a basic introduction and the motivation behind the present study.
The available literature relevant to the present study is reviewed thoroughly followed by
a brief introduction of the research work pursued in this thesis. The basic physical equa-
tions, boundary conditions associated with acoustic problems associated with fluids and

moving loads and the preliminary mathematical tools relevant to the thesis are discussed.

In Chapter 2, the generalized expression for the total sound power due to a moving
load on a ship (modeled as a beam) as given by Keltie and Peng (1988) is formulated
in detail for the various beam types, viz. Rayleigh beam, Shear beam and the Fuler-

Bernoulli beam.

Studies of sound generated from floating airfields due to the traveling load of starting,
landing or taxiing planes is a natural extension of the ship (modeled as a floating beam)
studied in the previous chapter. A dynamic analysis of a three-dimensional runway with
time varying loading during take-off however would be exceeding difficult. In Chapter 3,
this analysis is made simpler by assuming that the runway behaves as a simple, infinitely
long beam floating on water and supported by buoyancy. The model is assumed to be a
one dimensional plate, described by the Timoshenko-Mindlin plate equation. The under-
standing of radiated sound power as established in chapter 2 has been extended to model

a floating airport. The sound generated and platform response in frequency domain
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by the landing / taking-off of an airplane from such an airport, which would be akin to
a moving load, has been analysed in section 2 of the chapter. Acoustic analysis in the
presence of a mean flow or current complicates the analysis of a floating airport by
modifying the effect of the moving load. The effect of mean flow on the response of a
fluid-loaded structure has been studied in Section 3. Even though a VLF'S is structurally
very long, the longitudinal strength does not play an important role in their design. The
most severe type of loading for the bottom plate occurs when the structure is subjected to
the combined action of uniformly distributed hydrostatic lateral loading and compression
due to hogging. Similarly for the deck plate, maximum loading occurs when the struc-
ture is subjected to compression and tension due to sagging and hogging respectively.
The inplane loading plays an important role for such structures during berthing, plate
connections at ends, initial deformation and corrosion to name a few and hence needs
to be accounted for. This effect of inplane loading has been studied in section 4 by

extending the formulation developed in section 2.

Having developed the general expressions for the ship (in chapter 2) and floating air-
port (in chapter 3), one needs to validate the model. This is done by using the published
results for a Timoshenko beam by Keltie and Peng (1988). Once the model has been
validated, a Graphical User Interface for undertaking numerical calculations using
these mathematical formulations is developed and discussed in Chapter 4. The GUI has
been generated to make the calculation procedure user friendly and speed up the user’s

work especially for non-technical people.

The GUI developed in chapter 4 has been used to undertake numerical analysis to
understand the total sound power radiated due to a moving load on a ship (modeled as a
beam) and a floating airport (modeled as a plate) in Chapter 5. Using the beam model
to represent the ship, we first analyse the total sound power produced by a Timoshenko
beam, a Rayleigh beam, a Shear beam and an Euler-Bernoulli beam. We then compare
them to understand which beam type produces the maximum sound power and the rea-

sons associated with it in section 5.5. This is followed by the calculation and analysis of
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the total sound power from a Timoshenko beam due to varying loss factor in section 5.6.
Having analysed the beam model, the plate model is used to undertake the numerical
analysis of the total sound power from a floating airport due to a landing / taking off of
an airplane. The analysis is carried out for aluminium and steel and the effect of the
material on the total sound power is studied in section 5.7. The same plate model is
then extended by modifying the governing equation Equation (3.3) to Equation (3.21) to
incorporate the effect of mean flow and the numerical results of the total sound power
are obtained and analysed in section 5.8. Another extension is obtained by incorporating
the inplane loading to the plate model to get Equation (3.35). This is analysed nu-
merically next in section 5.9 to understand the effect of compressive and tensile inplane
loads on the floating airport. The numerical analysis terminates with the structural
response of the floating airport due to airplane landing / taking off modeled as a point

and a harmonic moving load in section 5.10.

Finally, Chapter 6, summarizes the work done in the thesis followed by the future
scope of research. Major contributions made in the thesis are also highlighted in this

chapter.

Additional information used and derived is enumerated in the Appendices for clarity
of the methods described in the chapters and as a starting point for future researchers

working in this area.
e Appendix A : Time Averages of Products.

e Appendix B : Detailed derivation for the non-dimensionalized sound power.

6.4 Scope of Future Work

The study undertaken herein develops a methodology for understanding the total sound
power produced by a floating platform due to moving loads. It hence allows development

of procedures to reduce sound from structures. The following are the possible areas of
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extension of this work

e The present analysis has been undertaken assuming a one dimensional plate for ease
of formulation. The work can be extended to a two dimensional / three dimensional

plate to model a floating airport.

e The structural material considered in the present study is isotropic. Further study

could be undertaken for orthotropic material and cater for composite structures.

e The moving load type considered in the present study is a point / line load. More
complicated loads such as platoon loads, circular loads, multiple loads etc. can be

looked at to represent a variety of loads.

e This is an extremely difficult problem to tackle. What has been done as part of
this thesis study is based on sound principles and are considered valuable as a first
attempt to tackle a tough problem. However to validate these results the following

may be considered as possible areas of extension of this work:

— Laboratory testing with a scaled down model using relevant scaling laws and

laws of similitude.

— Field testing by deploying hydrophones around the floating platform, recording
the acoustic pressure and comparing the results obtained with those recorded

using these hydrophones.

— Numerical modeling using other standard Finite Element packages (Abaqus/

Ansys etc).

6.5 Concluding remarks

6.5.1 Marine noise problem

Sound becomes noise when it is too loud, unexpected, contains unwanted tones (e.g. a
whine, whistle, or hum), or is unpleasant. Sound only has to be unwanted for it to be

noise, not necessarily just loud.
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Acoustic pressure level takes into account the surroundings and the distance of the source
as discussed in section 1.9.3. Available information in regards to the hearing curves for
select fishes have been discussed in Figure 1.1 as a graph between frequency (Hz) and
threshold (dB re 1 p Pa). By calculating the acoustic power from a floating airport
due to landing / taking off of an airplane one infers that the sound power produced by
the landing / taking off of an airplane from a floating airport has a direct co-relation
to the hearing threshold of the fishes and hence should be treated as a noise problem.
Accordingly the effect of sound produced by the aircraft landing / taking off on a floating
airport needs to be factored into while undertaking the design of such a floating airport

for safer marine environment and hence the need for the present study.

6.5.2 Present study

We notice that the initial work of [Keltie and Peng (1988) is for a harmonic line force mov-
ing along an infinite beam at a constant subsonic speed undertaken for a Timoshenko

beam filled with an acoustic medium (water, air etc).

The present study may be considered as an extension of the work of Keltie and Peng
(1988). The study is commenced by remodeling the Timoshenko beam as modeled by
Keltie and Peng (1988) for validation of the model as discussed in section 5.2 (which can

be considered as the only similarity between the two studies).

The study is then extended by modeling a ship as an Euler-Bernoulli, Rayleigh and
Shear beam and comparing the results obtained to discuss the performance of the beam
model in section 5.5. It is noticed that the Timoshenko model gives the least sound

radiation power and is better when compared to other beam types in section 5.5.3.

The effect of the varying loss factor (structural damping) on sound radiation by floating

beams has then been evaluated in section 5.6
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This model has then been extended to a floating airport modeled as a one dimensional
plate described by the Timoshenko-Mindlin plate in section 5.7. Since the plate can be
one, two or three dimensional and since one dimensional plate has been studied here, the
study of the two / three dimensional plate has been proposed as a likely extension of the
study in section 6.4. Performance of the plate models can however be concluded once

the study for two and three dimensional plate is undertaken.

The effect of presence of current and inplane loading on the one dimensional plate model

has then been studied in section 5.8 and section 5.9 respectively.

Further structural deflections of the floating airport have been analyzed in section 5.10.

A GUI for undertaking the above studies for both a ship (beam model) and a float-
ing airport (plate model) has been developed for making the calculation procedure more
user friendly and speed up the user’s work especially for non-technical people. This GUI

has been discussed in Chapter 4.

6.5.3 Frequency Independent results

Results obtained in this study have been expressed as a wave number ratio () against
the total sound power (dB re 1  Pa), where wave number ratio (v) is the ratio between

the acoustic wave number (Kj) and the free bending wave number (Kp).

By doing so, the dependence on type of sound and structure have been removed hence
making the results more versatile. If we were to make the results frequency dependent,

then for varying structures, the analysis shall become more cumbersome.

Notwithstanding, for a floating airport with the structural parameters under reference,
the relationship between the wave number ratio (), angular frequency (w) and frequency

(Hz) has been discussed in Table 5.3.
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6.5.4 Conclusion

Effect of loss factor, shear effect and rotatory inertia on radiated sound power from a
ship (modeled as a beam) subjected to a moving load has been investigated. It is con-
cluded that a Timoshenko beam gives the least sound radiation power when compared to
the other beam types. The correction for shear effect and rotatory inertia yield results
within 4 — 5% more accurate than classical beam theory. As the structural damping
(loss factor) decreases, vibrational levels increase thus causing an increase in the sound

vibrations. The shift of the curves are proportional to the change in the loss factor.

Sound produced by an airplane taking off from a floating runway has been investigated
for different structural materials, presence of mean flow and inplane loading indepen-
dently assuming a one-dimensional plate in lieu of a three dimensional runway with time
varying loading. The sound generated at wvarious speeds of convective loading has been
calculated and as expected an increase in sound is observed with increasing Mach number.
No pronounced peaks are observed in the sound power curves due to the denser medium
of water wherein the energy drain is faster disallowing peak formation. Changing of
structural material from steel to Aluminium has an effect of higher sound power from
steel as compared to Aluminium. Presence of current does not alter the sound produced
prominently and the change is seen to be in the range of 1dB. Though the need to study
effect of mean flow (current) may be considered irrelevant in light of the fact that such
structures are set up in relatively calm waters behind islands or breakwater, however re-
cent interests to have a floating airport in River Thames, UK and studies to widen range
of potential setup sites for VLFS emphasizes this need. With increasing compressive
inplane loading, the sound power decreases while tensile inplane loading shows a corre-
sponding increase in the sound power magnitude. The change though not very large over
the entire range of frequency, cannot be neglected when treated with other components
of loading. The observations so made are considered to be analogous to a guitar string
which produces greater sound when tightened (under tensile loading) as compared to the

dull sound it creates when relatively loose (under compressive loading).
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When analyzing the structural response of a floating airport subjected to landing
/ taking off of an airplane, one notices that a number of large spectral responses are
visible when the wave number is plotted against the increasing speed of the airplane.
These large spectral responses are seen as local peaks emanating from the point of load
application and represent the flexural wave propagating in the same direction as the
convected loading due to the Doppler Effect with the local peak moving in a curvilinear
path with increasing speed of the airplane. Defining the location of these peaks precisely

a priori is however not feasible.
The methodology discussed herein provides the designer a simple tool for understand-

ing the total sound power radiated from a floating structure subject to a moving load.

Such a tool shall help in a better design of a VLFS for a safer marine environment.
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Appendix A

Time Averages of Products

A.1 Introduction

When dealing with waves of constant frequency, one often makes use of averages over
a wave period of the product of two quantities that oscillate with the same frequency.
Before further discussion it is convenient to introduce the basic theory involved in the

time averages of products.

A.2 Time Averages of Products

Let

p = Re(pe %) (A.1)
and

v = Re(te ") (A.2)
be two such quantities. Then the time average of their product is

[P(@)v(t)]av = [pl]0][cos(wt — dp)cos(wt — ¢)]av (A.3)
where ¢, and ¢, are phases of p and © respectively. The trigonometric identity

cos(A)cos(B) = %[COS(A + B) + cos(A — B)] (A.4)
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Time Averages of Products

with appropriate identifications for A and B, yields a term which averages out to zero

and a term which is independent of time. Thus one has

p(1)0(0)]ew = 5 pllilcos(6, — 6.) (4.5)
or, equivalently

()00 = 57101 Rele ) (4.6)
which in turn can be written

[p(t)v(t)]aw = 5 Re(pd”) (A.T)

The asterisk here denotes the complex conjugate. Because the real part of a complex
conjugate is the same as the real part of the original complex number, it is immaterial
whether one takes the complex conjugate of p or v , but one takes the complex conjugate

of only one.

A.3 Time Averaged Sound Intensity

Surface sound intensity distribution is integrated over the surface of the structure to seek
the sound power generated by the structure. By using the definition, of time averaged
sound intensity as given by Morse and Ingard (1968), the time averaged surface sound

intensity distribution, I(z) is given as
_1
I=— PVdt A8
7 (A8)
Using Equation (A.7) the time averaged surface sound intensity distribution is given as
_ 1 oy
I = éRe[PU (&,1)] (A.9)

where P is the sound pressure on the beam / plate surface, U*(¢, ) is the beam / plate

surface velocity of conjugation. Hence

o =28~ jor e (A.10)
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A.3 Time Averaged Sound Intensity

In order to find the total acoustic power (II), the surface acoustic intensity distribution

Equation (A.9) needs to be integrated over the infinite length of the beam /plate as

I = /: %Re[P(f,y = 0,1)U* (&, t)]d¢ (A.11)

In this respect, sound power per unit width is calculated in the area of wave number to

get

<1

= [ L RelPe.y = 0.00°(€ 0)dg (A12)
oo Am

Upon substituting the reduced sound pressure equation i.e Equation (3.10) and calculat-

ing the surface velocity using Equation (A.10), the sound power radiated per unit width

of the beam /plate is given as

o) 2
= el [~ R+ e @ (A13)
This can be simplified as
e’} 3
1= %Re{/_ %\U(f)ﬁdf} (A.14)

Limiting the study to subsonic motion of the moving load, the limits within which K, is

real is given by

—K Ky
= <E<SEy = Al
S T VR I v (A-15)
This allows us to rewrite the expression for the sound power as
&2 3
00 (w+&V) 5
II=-—R _ d Al
" Re| A S CIRE (A.16)

This completes the formulation of an expression for the total acoustic power for varying

beam / plate types subjected to a moving load.
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Appendix B

Nondimensionalization

B.1 Introduction

In engineering results obtained from the use of empirical results provide data which is
often difficult to present in a readable form. Even from graphs it may be difficult to inter-
pret this data. Dimensional analysis provides a strategy for choosing relevant data and
how it should be presented. This is a useful technique in all experimentally based areas
of engineering. If it is possible to identify the factors involved in a physical situation, di-
mensional analysis can form a relationship between them. The resulting expressions may
not at first sight appear rigorous but these qualitative results converted to quantitative

forms can be used to obtain any unknown factors from experimental analysis.

Nondimensionalization is the partial or full removal of units from an equation involving
physical quantities by a suitable substitution of variables. This technique can simplify
and parameterize problems where measured units are involved. It is closely related to
dimensional analysis. In some physical systems, the term scaling is used interchangeably
with nondimensionalization, in order to suggest that certain quantities are better mea-
sured relative to some appropriate unit. These units refer to quantities intrinsic to the

system, rather than units such as SI units.

Nondimensionalization is not the same as converting extensive quantities in an equa-
tion to intensive quantities, since the latter procedure results in variables that still carry
units. Nondimensionalization can also recover characteristic properties of a system. For
example, if a system has an intrinsic resonance frequency, length, or time constant, nondi-

mensionalization can recover these values. The technique is especially useful for systems
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Nondimensionalization

that can be described by differential equations. One important use is in the analysis of
control systems. One of the simplest characteristic units is the doubling time of a system
experiencing exponential growth, or conversely the half-life of a system experiencing ex-
ponential decay; a more natural pair of characteristic units is mean age/mean lifetime,

which correspond to base “e” rather than base “2”.

B.2 Nondimensionalization steps
To nondimensionalize a system of equations, one must do the following:
e Identify all the independent and dependent variables;

e Replace each of them with a quantity scaled relative to a characteristic unit of

measure to be determined;
e Divide through by the coefficient of the highest order polynomial or derivative term,;

e Choose judiciously the definition of the characteristic unit for each variable so that

the coefficients of as many terms as possible become 1;

e Rewrite the system of equations in terms of their new dimensionless quantities.

The last three steps are usually specific to the problem where nondimensionalization is

applied. However, almost all systems require the first two steps to be performed.

B.3 Nondimensionalization

The expression for the total acoustic power for varying beam types subjected to a moving
load as obtained at Equation (A.16) is

lh{%{fwﬁgfwm%] (B.1)

Rewriting Equation (B.1) explicitly we get

o ©(WwH+EV)?| ZeF(©) |
H—ERe[/& v dg] (B.2)

To nondimensionalise we use the following nondimensional parameters

. W avenumber variable (£)
b bl = B.
Wavenumber variable (C) Acoustic wavenumber (Kj) (B.3)
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B.3 Nondimensionalization

1
12p,w?] %
Free bending wavenumber (Kp) = [ E,O;;) }
K
W avenumber ratio (7) = —
Kp
S E
Longitudinal wave speed (Cr) = [ —
Po
pOCL
Fluid loading parameter (ag) =
V vaO
4 h)?
Power per unit width (W) = MH
pofa
: E
Displacement of plate (Us(C)) = mUS(S)
F
Strength of external force (F(C)) = Jgf)
0
Hence using Equation (B.20) we get
d§ = Kod¢

and (w+ &V) can we re-written as

((JJ -+ fV) = (K(]C() -+ KOCMCO)
= KoCo(1+ M)

Similarly K, can be re-written as

K, = /(Ko + M¢)? — €2
= V(Ko + MK()? — (KoC)?
= Ko/(1+ M()? -2

Introducing new nondimensionalised constants as a = (1+ M() and g =

Ky - Koﬁ
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Nondimensionalization

B.3.1 Parameter Zp

The parameter Zp is given by

h2

Zp=1+ Qth BED™ 2G( w+EV)? ... Timoshenko beam
Zp=1 ... Rayleigh beam
EI
Zp=1 ——¢?
F + H?‘th Shear beam
Zr=1 ... FEuler — Bernoulli beam

The nondimensional parameter (Zr) for Timoshenko beam is given by

EI puh?
Zp =1 __ - V)?
Pl naS T aee@ Y
E(i+nj)2(1 +v)I o puh*2(14v) 2
=1 K
T T RE( T nj)h ot~ 155 2E(1+ nJ)(w+fv)
B 2(1+v)h? s ph*2(1+4v) w Ky ?
=1+, B - apa T |9 T Y
h?2(1+ v) R*2(1+v) p ?
=1+ (K ()? — o Ko+ Ko(M
g (Red) 1262 E(1+1j) [CO( 0+ Koo )}
h22(1 +v) , h201+v) 1 Co\” ?
-1+ e - s () [k an)
Thus
h2(1+v) ) 1 Co\” )
Zp = 1+T{(KOO BGEET) (O_L) (Koa)] (B.12)
But
i [Ko]
=15,
ER*  h? E_ K2
4
012pvw2 - 12(pv)( )KO
h 2
120L02
Thus
e
4 Vool
v = 12K0 c? (B.13)
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B.3 Nondimensionalization

Using Equation (B.19) in Equation (B.12) we get

2(1+v) 4

C,
(=

&l (&) @]

B.3.2 The acoustic impedance operator(7,)

Zrp=1+ 5
K

The acoustic impedance operator is dependent on the acoustic pressure and does not get
effected by the change of the geometry / material being analysed. Hence for Timoshenko
beam, Rayleigh beam, Shear beam, Euler-Bernoulli beam or Timoshenko-Mindlin plate,

Z, remains the same and is given by

(w+EV)?
K

Y

Za :]pO

and the nondimensional acoustic impedance operator is given by

K3C3(L+MQ)® . KyCi(L+ M)’
oA MO - AT MO

Zy=j (B.14)

Thus Equation (B.14) reduces to

KoC2a?
B
pohw? KoK%C3a?
5 K%hw?
__pohw? Koa? K5CF
7 KLh KiC;
__pohw? o? VERK,
B 212007
B pohw?a? 1 E 1
B v\ G
_ phetar Gy
B P26
5 Ol

B7?

Za - ]Po

= jpuhw

which can be rewritten as

g _ pohe” Dy
¢ B Zr

(B.15)
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Nondimensionalization

B.3.3 The plate impedance operator(Z,,)

As discussed previously Z,,, changes with the material and the geometry of the structure.

For various structures discussed herein Z,, is given as

T = EIE = poh(w + EV)? — Ep, 1 (1 + %) (@ +EV)? + p I L (w + V)
k2G K2G

Timoshenko beam

T = EIE* — pyh(w + EV)? — Ep I (w + EV)? ... Rayleigh beam
7 eA 2 s Elp, 2
Zm = EIE — pyh(w+ V) =& Z—G(w+§V) ... Shear beam
K
Ty = EIE* — pyh(w + £V)? ... Euler — Bernoulli beam

Nondimensionalising for Timoshenko beam gives

3

Zy = B(L+ 1) (Kod)* — poh(KoCon)

h’ E(1+n5)2(1+v) h? 2(1+v)p,
— (KoC)pugy (1 /@2E(1+77j) )(Kocoo‘) +p”12m(m)4

= E(1+ )h K (Do 4‘4— h(wa)? hS(Kc)2 1+
= nj 128 KB PollWa Pu12 0
h* 2(1+v) py 4

h3 12p, v
= (14 1) 15 ()6t (e =t (a)? (14 2 ) (wa

2
pow? 2(1+v) 1 4
wh —

TN R 2 ) O,%(“O‘)

= pohi? {(Hmwg (HK_g_ - { 2(1; )D
Koy 2(1+v) 1 .
(KB m@4( )]

2(1 Jg 1/)) (wa)?

: C 2(1+v) 2(14+v) ,Co
— o h?l (1 44 1 0 1 4 Y
puhw {( + i)y ¢ — ‘ ( +7(CL)C { T Df e @
. b 5,
Zm = pvh(JJQ(D]_ - D2 + Dg) (B16)

where the expression for Dq, Dy, D3, Dy and Zp vary based on the type of the beam as

under
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B.3 Nondimensionalization

(a) Timoshenko beam:

B 2(1+u)'y4 Co 2 5 1 Co 2 5
=t (@) [ ma(e)
Dy =*C* (1 +nj)

2
Dy = o’ [1 +[1+ 2(1; V)W‘CQ(@) }

2 c,
2(1 !
y = 2( + V)’ 'yt (@)
2 (1 +1n7) Cr
2
Qo
Dy = Zp—
gl
(b) Rayleigh beam:
Zp =1

Dy =~*C* (1 +nj)

C 2
D, = 21 4,2 _0
2 =« l +77°¢ (CL
D3=0
Oé()Oé2
,-)/2

Dy=7Zp

(c) Shear beam:
2(1+v)y? (00)2<2

IiQ CL

Dy =~*¢H (1 +nj)

2
SRR AL

Zp=1+

D3=0

apa’?
2
Y

Dy=7Zp

(d) Euler-Bernoulli beam:
Zrp=1

Dy =~*¢* (1 +nj)

D2:Oé2
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Nondimensionalization

D3 = O

2

Dy = 2,22
g

B.3.4 The Force Parameter

If fo is the strength of external force per unit width, H(z) the Heavyside step func-
tion, and 6(x — V't) a Delta function, the moving force may be expressed as a uniform

distributed line force by

_fo

= ZL[H(.I‘ ~Vt+L)— H(z -Vt — L)]e

[, 1)
which after taking a spatial transformation gives the force as

e ) = fo D) torevy

On nondimensionalising we get

F(() = %SEL) (B.17)
If the force is expressed as a point force then
f(z,t) = foe’'6(x — V1)
and the nondimensionalised force is given as
F)=1 (B.18)
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B.3 Nondimensionalization

B.3.5 Power per unit length

Knowing the nondimensionalised expressions for F'(§), Zp, Z,, and Z,, we begin simpli-

fying Equation (B.2). Hence

pohw?® D
Zon + ZpZa = pohw? (D1 — Dy + D3) + Zpj” 5 -
F

D

o hiw? .
_f 3 {B(D1 — Dy + Ds) +]D4}
Hence
pohw?
I+ LpZ, = 5 D (B.19)
Using Equations (B.8) and (B.2) gives
4 B)2 &2 3/ 7.F 2
pOfO 4 &1 Ky Zm + ZFZa
2 &2 3 7. F 2
S [ [ L VP O I
It o Ky |\ZutZrl,
Substituting from Equations (B.19) and (B.11), we get
w(puh)? l /42 (KoCo + Ko¢MCp)? |l 7 }
W = ——F"Re ZpF ———| Kod
13 G Kop rE(E) Zn+ ZpZa| " .
w(poh)? /@ 30 s r
= R —\|ZpF —— 1 d
f(? ‘ 6] “ ﬁ " (5) thWZD C
1 S 1)
= —Re / " BIZpF (&) |= dg}
f(? |: 1 " ( ) D
For a uniformly distributed line force the dimensionless radiated sound can be expressed
as
w- [* 5|7, SR KoL) 2\D\‘2dg (B.20)
I e '
where

D = B(Dy — Dy + Ds) + jD,4
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