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Preface

Clouds play a paramount role in the weather and climate of the earth-atmosphere
system through a host of direct and feedback processes, which results in the vertical
and horizontal transport of energy and moisture as well as the modulation of radiation
balance, large-scale dynamics and thermal structure of the atmosphere and hydro-
logical cycle. Impact of clouds on the radiation budget and latent heating of the
atmosphere depends on the cloud properties, the most prominent among them being
their frequency of occurrence, spatial distribution and water content. An excess surface
radiative heating produces instability in the atmosphere, resulting in convection and
transfer of energy from the surface and its subsequent cooling. This, in turn, affects the
large-scale atmospheric circulation, triggering a chain of non-linear processes and af-
fects the meteorology of the regions that are even well separated from the initial source
of instability. Cloud feedback processes are highly non-linear and complex and are
among the largest sources of uncertainties in the modelling and prediction of weather
and climate. As a result, the response of clouds to climate change differs widely among
general circulation models (GCMs). Detailed knowledge of the spatial and vertical
distribution of clouds, their properties and temporal evolution are of fundamental im-
portance for understanding the genesis and impact of clouds and their feedback on the
above processes and their subsequent accurate parametrization in weather and climate
models. This is also important for investigating the aerosol-cloud interaction, radia-
tive impact of aerosols under cloudy conditions and heterogeneous chemistry in the

atmosphere.

Horizontal distribution of clouds and their temporal evolution had been extensively
investigated in the past using about three decades of systematic observations employ-
ing passive remote sensing imagers onboard various satellites and had immensely con-
tributed to the understanding of cloud processes and their impact as well as to the
assessment of GCMs and climate change. Such extensive studies have also been car-
ried out over the Indian region and the surrounding oceans. However, investigations
on the vertical distribution of clouds, especially the optically thicker clouds, have been
sparse, though these are crucial and offer the best avenue for improving the understand-
ing and modelling of most of the processes listed above. Major gaps in the accurate
knowledge of the three-dimensional distribution of clouds, their properties and tem-
poral variations as well as the atmospheric processes involving clouds exist at present.
Further, the observed 3-dimensional distribution of clouds can act as a proxy for some

of the atmospheric dynamical processes which are not explored hitherto.

Spatial distribution of clouds, their temporal evolution and impact on the energet-
ics of the earth-atmosphere system over the Indian subcontinent and the surrounding

oceans have several unique features, which mainly include: (i) substantial, but sys-
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tematic, annual variation in the distribution and properties of clouds associated with
the massive monsoon circulation caused by the largest annual migration of ITCZ over
the entire globe, (ii) occurrence of the deepest convection and highest cloud tops over
the entire globe over the north and east Bay of Bengal during the June to August
period, (iii) the strongest ascending limb of the Walker circulation located in the east
equatorial Indian Ocean and the western Pacific and its descending limb at the west
equatorial Indian Ocean/east Africa, (iv) large spatial variations in SST from <23°C to
>30°C over the Indian Ocean region and the associated changes in cloud development,
and (v) significantly large negative net cloud radiative forcing (NCRF) over the Indian
region (<-30 Wm™?) during the Asian summer monsoon season, which is distinctly

different from the near-zero NCRF over the tropics.

Motivation for the present study is to improve the scientific understanding on the
prominent gap areas in the average three-dimensional distribution of clouds and their
impact on the energetics of the earth-atmosphere system. This study is focused on the
Indian subcontinent and the surrounding oceans bound within the latitude-longitude
bands of 30°S to 30°N and 30°E to 110°E. Main objectives of this study are to : (i) es-
timate the monthly and seasonal mean vertical distributions of clouds and their spatial
variations (which provide the monthly and seasonal mean 3-dimensional distributions
of clouds) using multi-year satellite data and investigate their association with the
general circulation of the atmosphere, (ii) investigate the characteristics of the ‘pool of
inhibited cloudiness’ that appear over the southwest Bay of Bengal during the Asian
summer monsoon season (revealed by the 3-dimensional distribution of clouds) and
identify the potential mechanisms for its genesis, (iii) investigate the role of SST and
atmospheric thermo-dynamical parameters in regulating the vertical development and
distribution of clouds, (iv) investigate the vertical distribution of tropical cirrus clouds
and their descending nature using lidar observations at Thiruvananthapuram (8.5°N,
77°E), a tropical coastal station at the southwest Peninsular India, and (v) assessment
of the impact of clouds on the energetics of the earth-atmosphere system, by estimat-
ing the regional seasonal mean cloud radiative forcing at top-of-the-atmosphere (TOA)

and latent heating of the atmosphere by precipitating clouds using satellite data.

General introduction to clouds and the background for this study are provided in
Chapter 1. Chapter 2 provides the details of the satellite data, experimental details
of the Micropulse lidar system, methods used for the analyses, and advantages, limita-
tions and uncertainties of the derived parameters. Chapter 3 describes the monthly
and seasonal mean vertical distributions of clouds, their spatial variations, and associ-
ation with atmospheric circulation. Detailed characteristics and potential generation
mechanisms of the ‘pool of inhibited cloudiness’ over the southwest Bay of Bengal dur-

ing the Asian summer monsoon season are presented in Chapter 4. The role of SST
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and its spatial gradient, and atmospheric thermo-dynamical parameters on the vertical
distribution and development of clouds are investigated in Chapter 5. Chapter 6
presents the characteristics of cirrus clouds and their prominent descending nature over
a tropical coastal station Thiruvananthapuram, based on multi-year dual polarization
lidar observations. Chapter 7 presents the impact of clouds on the energetics of the
earth-atmosphere system, investigated using the satellite-based estimations of clouds
radiative forcing at TOA and latent heating of the atmosphere by precipitating clouds.
Chapter 8 provides the summary of the results obtained from the present study and

scope for future research.
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Chapter 1

Introduction to Clouds:
Characteristics and Measurement

Techniques

I bring fresh showers for the thirsting flowers,
From the seas and the streams;
I bear light shade for the leaves when laid

In their noon-day dreams.

‘The Cloud’ (P.B.Shelley)

1.1 Introduction

Clouds are among the most vital elements of the earth-atmosphere system, which
play a pivotal role in regulating the weather and climate by modifying the radia-
tion balance, vertical and horizontal transfer of energy, thermo-dynamical structure
and hydrological cycle [e.g., Rogers and Yau, 1979; Pruppacher and Klett, 1980; Ra-
manathan et al., 1989; Kiehl and Trenberth, 1997; Seinfeld and Pandis, 1997; Trenberth
et al., 2009]. Feedback processes that further modify the impact of clouds are highly
non-linear and complex [Stephens, 1988; Rossow, 1989]. Accurate parameterization
of the cloud processes are challenging and major sources of uncertainties in climate
and weather prediction [e.g., Pruppacher and Klett, 1980; Schiffer and Rossow, 1983;
Cess et al., 1990]. Clouds also play a vital role in aerosol scavenging and hence atmo-
spheric residence time of aerosols — as well as aqueous phase chemical reactions leading
to the production of secondary species [Seinfeld and Pandis, 1997]. The occurrence of
clouds in the upper troposphere and lower stratosphere (UTLS) modifies the chemistry,

moisture content and thermal structure of this region [Sherwood and Dessler, 2001].

15
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Aerosols can act as cloud condensation nuclei, thereby modifying the microphysical
properties, residence time and precipitation efficiency of clouds. This, known as the
indirect effect of aerosols, is one of the highly uncertain and least understood problems
in climate modelling and is a major hindrance in the assessment of aerosol impact on
climate [Twomey, 1977; Koren, 2004; Metz et al., 2007]. Clouds are also major compo-
nents in the exchange of electric charges between the atmosphere and earth’s surface
and hence are important in the global electric circuit [Siingh et al., 2007]. Release of
latent heat associated with deep convective clouds significantly warms the tropospheric
column, while clouds in the convective cores as well as the large anvils emanating from
them influence the synoptic and mesoscale radiation balance [Ramanathan et al., 1989;
Grossman and Garcia, 1990]. Formation of deep convective clouds is the most effective
mechanism for the transport of heat and moisture from the earth’s surface and atmo-
spheric boundary layer to the upper troposphere. Despite their enormous importance,
clouds still remain one of the least understood components of the earth-atmosphere

system and are major stumbling blocks in the prediction of weather and climate.

Understanding of the physical, microphysical, optical and radiative properties of
clouds as well as the three-dimensional distribution of clouds and their temporal evolu-
tion are essential for estimating their impact on the energetics of the earth-atmosphere
system. This information is also required for parameterization of cloud properties for
incorporating in the weather and climate models and understanding their role in cli-
mate and the associated feedback mechanisms. Though the horizontal distribution of
clouds has been extensively studied using satellite observations [Fu et al., 1990; Mapes
and Houze, 1993; Zhang, 1993; Hall and Vonder Haar, 1999; Gettelman et al., 2002;
Hong et al., 2007; Rossow and Pearl, 2007; Meenu et al., 2007, 2010, 2011, 2012; Meenu,
2010; Sunilkumar et al., 2010], the vertical distribution of clouds is less explored [Nair
et al., 2011; Rajeevan et al., 2012]. The impact of clouds on the energetics of the earth-
atmosphere system (both radiative and latent heating) over the Indian region are also
less explored [e.g., Rajeevan and Srinivasan, 2000; Sathiyamoorthy et al., 2004; Patil
and Yadav, 2005; Roca et al., 2005].

Main purpose of the present study is to improve the understanding on the ver-
tical and horizontal distributions of clouds and their impact on the energetics of the
earth-atmosphere system over Indian subcontinent and the surrounding oceanic regions
based on the analysis of multi-year satellite data. As the monthly and seasonal mean
horizontal distributions of total cloudiness over this region were investigated in detail in
the earlier studies [e.g., Meenu et al., 2007, 2010, 2011, 2012; Meenu, 2010], this thesis
focuses on the monthly and seasonal mean vertical distribution of clouds, its spatial
variations, the role of sea surface temperature (SST) and atmospheric dynamics in reg-

ulating the vertical development of clouds and the impact of clouds on the energetics of
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the earth-atmosphere system (in terms of cloud radiative forcing and latent heating).
The three-dimensional distribution of clouds reveals certain atmospheric dynamical
features which are not explored hitherto and are investigated in detail. Background
information on the generation of clouds and their classification, in situ and remote
sensing methods for investigating the cloud properties, global and regional distribution
of clouds and their association with atmospheric general circulation, effect of clouds on
the radiation budget and atmospheric energetics, importance of the cloud studies over
the Indian subcontinent and the surrounding oceans and scope of the present study

are presented in this chapter.

1.2 Physics of cloud formation

Clouds are formed by the condensation of water vapour. They can be produced by
the updraft of warm moist air - driven by processes such as convection, frontal move-
ments, or forced ascent due to flow over orography - which lead to adiabatic cooling of
the air parcel and condensation of water vapour above the altitude at which supersat-
uration is attained [Rogers and Yau, 1979; Pruppacher and Klett, 1980; Seinfeld and
Pandis, 1997]. Clouds can also be formed by radiative cooling (e.g., fog formation) at
a given location or advection of warm humid air over to a cold surface. In principle,
radiative cooling can also result in the in situ production of cirrus clouds. Cooler air
has a lower saturation vapour pressure so that the air-mass with a given water vapour
content becomes saturated upon sufficient cooling. The specific cloud morphologies
are mainly determined by atmospheric water vapour content and thermo-dynamical
processes that govern the cloud formation. For example, localized vertical motions
caused by hydrostatic instability produce cumuliform clouds while much larger scale
wave motions from a variety of sources produce stratiform clouds. Thus, the vertical
structure of clouds is diagnostic of the atmospheric motions that produce the clouds
[Rossow and Schiffer, 1991, 1999].

1.2.1 Condensation and growth of cloud droplets

Cloud droplets are formed by the condensation of water vapor through heteroge-
neous or homogeneous nucleation, under appropriate conditions of supersaturation.
The condensation process is governed by the supersaturation (S), which is defined as
the relative humidity (RH) exceeding 100%; S=0 for RH=100%; S<0 for unsatura-
tion and S>0 for supersaturation. The unsaturated airmass can become saturated or
supersaturated by undergoing various thermodynamic processes such as adiabatic ex-
pansion (e.g., updraft of air parcel), isobaric cooling (e.g., radiative cooling in a stable

atmosphere) or incursion of moisture through mixing or advective processes. Produc-
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tion of cloud droplets occurs through homogeneous nucleation when the water vapour
condenses on embryos comprised of water molecules only. On the other hand, cloud
droplets are formed through heterogeneous nucleation when the condensation of water
vapor occurs over a foreign particle called cloud condensation nuclei (CCN). Initial
size of a droplet formed through homogeneous nucleation is very small (typically the
size of an aggregate comprising of a few tens or hundreds of water vapour molecules).
Due to the energy associated with the surface tension of a droplet it is energetically
unfavourable for a small droplet to grow. In contrast, the initial size of a droplet
formed through condensation over a CCN will have relatively larger size. As the equi-
librium saturation vapor pressure required for the maintenance of a droplet is quite
large for small droplets (Kelvin effect), very tiny droplets get vaporized immediately
after formation unless the airmass is highly supersaturated. Hence, the homogeneous

nucleation takes place only at very high supersaturation.

In practice, clouds in the atmosphere are formed as a result of heterogeneous nu-
cleation. Sufficiently large-sized aerosols can act as CCN. Regions having larger con-
centration of CCN would produce larger number of smaller cloud droplets compared to
those having clean air which would produce fewer but larger droplets for the same total
water content (indirect effect of aerosols). Nucleation efficiency of CCN depends on its
physical size and water affinity, which considerably limits the percentage of aerosols
that can act as CCN. For a given size of CCN, a water soluble particulate can act as
better CCN compared to a non-soluble particulate. A non-soluble CCN can provide
only the core area for the condensation to take place. In contrast, in addition to provid-
ing the surface area required for condensation, some of the dissolved foreign molecules
in the water soluble CCN also appear at the surface of the droplet and reduce the

equilibrium supersaturation required for the maintenance of the droplet (solute effect).

1.2.2 Kohler equation

Growth of a cloud droplet with supersaturation in the atmosphere can be esti-
mated by considering the Kelvin and solute effects and is given by the Kohler equation
[Seinfeld and Pandis, 1997):

In <%) _ Di _ D% (1.1)

P
where e;(Dp) is the equilibrium saturation vapor pressure for a droplet having diameter
D,, and ey is the equilibrium saturation vapour pressure over a flat surface of water.
The first term on the right-hand-side of Equation 1.1 represents the Kelvin effect and
the second term represents the solute effect. The coefficients A and B are given by:

4M,,o 0.66
A= wWIW ) o 1.2
( RTpy, ) T 1-2)




Chapter 1: Introduction 19

6M,ns _ 3.44 x 10%3vm,
_ n ~ X vm (1.3)
TPuw M

3

B

where A has the unit of ym while B is in um°. In the above equations, M, is the
molecular weight of water, o, is the surface tension, R is the gas constant, T is the
temperature (in K), p,, is the density of water, My is the molecular weight of the solute
(in g/mole), my is the mass of solute (in g), n, is the number of moles of solute and v

is the number of ions resulting from the dissolution of one solute molecule.

As seen in Equation 1.1, for CCNs that are insoluble in water, the equilibrium
saturation vapour pressure decreases with increase in droplet size. Note that the sign
of the solute effect in Equation 1.1 is negative. Hence, the Kelvin effect tends to increase
the equilibrium saturation vapor pressure, while the solute effect tends to decrease it.
However, magnitudes of both these effects decrease with increase in droplet size. As the
solute effect decreases much faster (as cube of D,,), the Kelvin effect dominates in large
droplets. Figure 1.1 shows the Kohler curves representing the variations of equilibrium
supersaturation as a function of cloud droplet diameter for droplets formed from NaCl

particulates acting as CCN. The curves correspond to different dry diameters of NaCl.

The value of S rapidly increases with droplet diameter and attain a maximum at
the critical droplet diameter D,.=(3B/A)'/2. The corresponding value of S(D,.) is the
critical equilibrium saturation ratio. Figure 1.1 shows that, for a droplet with D, <D,
any increase in the droplet size will require larger equilibrium vapor pressure than the
prevailing value of atmospheric saturation vapor pressure e, and hence is not favourable
for growth. On the other hand, the value of S decreases with further increase in droplet
diameter above the critical radius. Hence, for droplets with D,, >D,., any increase in
the size of the droplet will decrease the equilibrium vapor pressure to less than e, and
the drop can grow further. Thus, for a droplet to grow in a cloud, the size of the droplet
has to be larger than D,.. If the saturation ratio of the atmosphere exceeds that for
D,., the particulates having size larger than D, start growing through condensation
and are said to be activated. Hence, only those particulates which are having size

above the critical size D,. can act as CCN.

The percentage of aerosols which can act as CCN varies considerably with the phys-
ical and chemical properties of aerosols. Though a generalization is rather complicated
due to the spatial and temporal variations of aerosols, one of the most commonly used
relationships between CCN and supersaturation S (in %) is given by [Seinfeld and
Pandis, 1997]:

CCN(S) = CS* (1.4)

where C corresponds to the CCN at 1% supersaturation. The values of C and K show
large temporal and spatial variations; typical the values of C and K are in the range
of 100 to 2000 cm™2 and 0.3 to 1.3 respectively [Hegg and Hobbs, 1992; Seinfeld and
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Pandis, 1997). The cloud droplet concentration is largest (200 to 1000 cm™3) over
continents and least (10 to 200 cm™>) over pristine oceans [e.g., Seinfeld and Pandis,
1997].

Kohler curves for different dry diameters of MaCl
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Figure 1.1: Kohler curves for NaCl particles as solute with dry diameters of 0.03,
0.05, 0.10, 0.30 and 0.50 pm at temperature of 293 K. Supersaturation is expressed in
percentage (for RH=100.6%, supersaturation = 0.6%).

1.2.3 Lifting condensation level

The critical supersaturation required for the growth of a cloud droplet can be
achieved in the atmosphere through several processes such as adiabatic cooling of a
rising moist air parcel in an unstable atmosphere (convective processes), isobaric ra-
diative cooling of an air parcel and the entrainment of warm moist air in a cold airmass.
Processes such as heating of the surface layer and evolution of convective boundary
layer during the day, low-level wind convergence and atmospheric instability can lead
to convection. As a moist air parcel ascends, the temperature of the rising air parcel
initially decreases at the dry adiabatic lapse rate (-9.76 K/km) up to the altitude where
the parcel becomes supersaturated. Condensation can occur at this altitude - referred
as the lifting condensation level (LCL) - and is usually very close to the cloud base. In
practice, the rising air will mix with the surrounding air which leads to the formation
of cloud base above the LCL. Because of the heating of air parcel due to latent heat
released during the condensation of water vapor, further rising of the moist air parcel
above the cloud base will result in a temperature decrease at the moist adiabatic lapse
rate up to the cloud top. Magnitude of the moist adiabatic lapse rate depends on the

amount of moisture condensed and is less than the dry adiabatic lapse rate. Ascending
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of the airmass can continue so long as the air parcel is warmer than the environment
and instability prevails. This is the main mechanism responsible for the formation of

convective clouds.

1.2.4 Ice nuclei and cloud ice crystals

Cloud droplets can exist in liquid form even below 0°C (i.e., even above ~5 km al-
titude in the atmosphere). Such supercooled water droplets are very common in clouds
warmer than -10°C. Formation of pure ice particles through homogeneous nucleation
occurs only at very low temperatures, typically below -40°C [Hobbs, 1993]. However,
the presence of an ice nucleus (IN) allows ice formation at temperatures well above
-40°C. Insoluble aerosols having chemical bonding and crystalline structure similar to
that of ice can act as efficient IN. Likelihood of ice crystal occurrence increases with
decrease in temperature. At -20°C, only ~10% of the clouds consist entirely of super-
cooled water droplets [Seinfeld and Pandis, 1997]. Ice crystals and water droplets can
co-exist in the same cloud, which is typically the case with the tropical clouds occurring
around 6 to 8 km altitude. Interestingly, for clouds comprising of ice crystals alone, the
number of ice crystals in clouds are generally larger than the IN concentration [Rangno
and Hobbs, 1991]. Potential reasons for this conspicuous feature include breaking of
primary ice particles, ice splitter productions during droplet freezing and unusually
high supersaturation.

The IN concentrations in the atmosphere varies with space and time. Similar to
CCN, the potential of particulates to act as IN depends on their microphysical prop-
erties as well as the water vapour pressure and temperature of the atmosphere. Nu-
cleating efficiency of IN increases with their size. Freezing temperature decreases with
decrease in the size of ice particles and is more pronounced for crystal diameter smaller
than 0.02 pum. Thus, the ice nucleating ‘active’ fraction of an aerosol population in-
creases with decrease in temperature [Pruppacher and Klett, 1980; Seinfeld and Pandis,
1997]. Ice crystals in clouds have a variety of shapes such as plates, poly-crystalline
bullet rosettes, single bullets, and banded columns [Pruppacher and Klett, 1980].

1.2.5 Growth of droplets through collision and coalescence

processes

Increase in the size of a water droplet by condensation of water vapor slows down
as the droplet size increases. Growth of a droplet through condensation process alone
takes considerable time before they attain sizes large enough to fall as precipitation. In
the atmosphere, once the droplet has attained significant size through condensation,

their further growth take place rapidly through the collision-coalescence process in
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which the relatively small droplets are collided with bigger drops and coalesce to form
large rain drops. Convection and turbulence significantly aid the collision-coalescence
process. In the absence of significant convection and turbulence, the size of the cloud
droplet produced is typically a few micrometers. Clouds produced thus (e.g., scattered
fair-weather cumulus, stratocumulus) do not produce precipitation and dissipate unless
supported by upward motions since such small droplets fall very slowly and evaporate
within a few minutes after they leave the cloud environment. Typical lifetime of a
cumulus is 10 to 20 minutes. Stronger vertical motions of moist-laden air tend to
produce larger droplets, typically having radius of ~15 to 30 pum which fall more
rapidly and collide with each other to grow further.

Probability for collision is low for small droplets and the collision efficiency increases
with the size of the droplets. However, for much larger drops, the efficiency decreases
because droplets tend to follow the streamlines around the drop. Further, two colliding
droplets need not always coalesce permanently but can coalesce temporarily before
breaking into a number of small drops. They are quantified through a factor called
coalescence efficiency, which is the ratio of number of coalescence to the total number of
collisions. Thus the droplet growth through collision-coalescence depends on collection
efficiency which is the product of collision and coalescence efficiencies. In effect, the
collision and coalescence processes cause much rapid increase in droplet sizes compared
to the growth by condensation of water vapour. Those clouds containing only a very
few droplets having size larger than ~18 pum will be relatively stable with respect to
growth by collision and coalescence while clouds with significant number of larger drops
may develop precipitation [Rogers and Yau, 1979]. Very strong vertical motions result
in the generation of deep convective clouds such as the cumulonimbus clouds in which
the growth (as well as breaking) of the cloud droplets (water or ice droplet) is very

rapid and causes intense rainfall with large droplet sizes.

1.2.6 Growth of ice crystals

In mixed clouds (having both ice crystals and liquid droplets) which occur at sub-
freezing temperature, the saturation vapor pressure over water surface is greater than
that over ice. This causes vapor molecules to diffuse from water droplet towards ice.
This process by which an ice crystal grows at the expense of the surrounding super-
cooled water droplets is known as Wegener-Bergeron-Findeisen process (usually re-
ferred as Bergeron process). The consequence is that the ice crystals grow much more
quickly to larger sizes in the range from 20 to 100 pm and keep growing below the
cloud, reaching sizes of a few hundred micrometers, because the relative humidity is still
>100% with respect to ice below the initial cloud base. As the ice crystals fall, they may
collide with each other and stick together (aggregation) or collide and stick with other
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supercooled water droplets (accretion/rimming), which support the growth of ice crys-
tals. In practice, violent collisions take place in a vertically developing cloud with large
updraft velocity (typically 5 to 15 ms™) and turbulence, which considerably amplifies
the growth and break up of ice crystals through collision and coalescence. For example,
in the violent vertical motions of strong thunderstorms, the particles can fall and rise

many times, producing large hail stones that have been known to reach sizes >10 cm.

1.2.7 Effect of aerosols on clouds

Any increase in the concentration of aerosols (especially the coarse particles) will
increase the concentration of CCN. For a given amount of water vapor available in
the atmosphere, the effective size of the droplets will decrease with increase in CCN.
Smaller size of cloud droplets causes an increase in cloud albedo, increase in cloud
lifetime and decrease in the precipitation efficiency of the cloud. This will increase
the solar radiation scattered back to space while decreasing the insolation at earth’s
surface. This effect of aerosols on clouds, termed as the indirect effect of aerosols
[ Twomey, 1977; Albrecht, 1989; Charlson et al., 1992; Ramanathan et al., 2001; Koren,
2004] and is demonstrated using observations of cloud albedo and size of cloud droplets
above ship stacks as well as over major pollution sources [e.g., Charlson et al., 1992;
Andreae and Rosenfeld, 2008; Pandithurai et al., 2012]. Recent studies also point to
their impact on the large-scale weather systems [Rosenfeld et al., 2008; Zhang et al.,
2009; Krall and Cottom, 2012; Rosenfeld et al., 2012]. Notwithstanding these studies,
the indirect effect of aerosols is among the most uncertain factors while modelling the
aerosol-cloud interaction and predicting climate change [e.g., IPCC', 2007]. In addition,
the absorption of radiation by aerosols (especially those having small values of single
scattering albedo, such as soot) can cause heating of the atmosphere and increase
the atmospheric temperature, eventually causing the ‘burning of clouds’. This effect
is termed as semi-direct effect of aerosols [Ackerman, 2000]. Both these effects have
considerably large spatial and seasonal variations as the atmospheric residence time
of tropospheric aerosols are rather short (typically 3 to 10 days) and their properties
and concentrations undergo substantial regional variations [e.g., Prospero et al., 1983;
Moorthy et al., 1997; Parameswaran et al., 1997; Satheesh et al., 1998; Ramanathan
et al., 2001; Rajeev and Ramanathan, 2001; Tahnk and Coakley, 2002; Babu, 2004; Nair
et al., 2005; Jayaraman et al., 2006; Niranjan et al., 2007; Nair et al., 2008; Satheesh
and Krishna Moorthy, 2005; Lawrence and Lelieveld, 2010; Menon et al., 2011; Moorthy
et al., 2013].

Cirrus clouds are also influenced by the ice-forming properties of the aerosol pre-
cursors [Kdrcher and Solomon, 1999]. Modification of cloud microphysical properties

by aerosols depends on the altitude structure of their size distribution and chemical
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composition. On the contrary, cloud processing of aerosols can significantly modify the
properties of aerosols [Seinfeld and Pandis, 1997]. Further, the washout, rainout and
scavenging of aerosols by clouds and precipitation are the main processes that control
the aerosol residence time and their abundance in the atmosphere [Prospero et al.,
1983; Seinfeld and Pandis, 1997].

1.3 Cloud types and classification

Differences in the cloud dynamics under different meteorological conditions pro-
duce different cloud types. Depending on their texture, physical properties, and rain
bearing nature, clouds are generally classified into four basic types [Battan, 2003].
Their names and meaning are (i) Cirrus (curl of hair) (ii) Stratus (layer), (iii) Cumulus
(heap), and (iv) Nimbus (rain). In addition, alto-clouds refer to the middle level clouds.
Other cloud types are a combination of the above basic types (e.g., stratocumulus,
nimbostratus, altostratus, altocumulus, cirro-startus, cirro-cumulus, cumulonimbus).
Combinations that include nimbus are the most common precipitating clouds (e.g.,
Nimbostratus, Cumulonimbus). Different cloud types often co-exist over a given lo-
cation. Generation mechanisms for different cloud types are different. For example,
cumulonimbus clouds occur during intense convection of highly humid air from the
lower-troposphere into the upper troposphere in a highly unstable atmosphere. The
updraft velocity of airmass in such clouds from typically ranges from 1 to 20 m s—*
[Pruppacher and Klett, 1980]. For stratiform clouds, the updraft velocity and super-
saturation are very small (0 to 1 m s~* and about 0.05% respectively). Fog (which is
classified as the stratus cloud reaching the ground) is formed under stable conditions
and the maximum supersaturation is ~0.1% [Seinfeld and Pandis, 1997]. Based on
the altitude of cloud base above the surface, clouds are classified into 4 major groups:
low-level clouds (0 to ~2 km), middle-level clouds (~2 to ~8 km in the tropics, ~2 to
~7 km in the mid-latitudes and ~2 to ~4 km in the high latitudes), high-level clouds
(~8 to ~18 km in tropics, ~7 to ~13 km in mid-latitudes and ~4 to 8 km in high
latitudes) and vertically developing clouds (~500 m to the upper troposphere).

1.3.1 Low-level clouds

They include the status, cumulus, and stratocumulus. Cumulus is fair weather
cloud while stratus can be rain-bearing. They are warm clouds composing of water
droplets. Base altitudes of these clouds are usually at the lifting condensation level or
just above. Majority of the vertically developing clouds originate as low level clouds.
Under favourable conditions, they can develop vertically to cumulus congestus. Cumu-

lus with small vertical development is called Cumulus humulis (fair weather cumulus).
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Ragged edge cumulus which are often smaller than cumulus humulis and scattered
across the sky are called cumulus fractus. Such cumiliform clouds often cap the at-
mospheric boundary layer. In general, the individual low-level clouds have relatively
short residence time and small horizontal extent which is comparable to their vertical
extent. This leads to large spatio-temporal variations in their occurrence over a given
location. Very often they appear as a cluster of individual clouds and have significant
diurnal variation in the frequency of occurrence. Over the continents, their frequency
of occurrence usually increases during the development of daytime convective boundary

layer, with peak occurrence around the afternoon.

1.3.2 Middle-level clouds

They mainly include altocumulus and altostratus clouds. Though the Nimbostra-
tus have cloud base occurring in the lower troposphere, their top altitude often extend
above ~4 km